LM201A中文资料
笔记本常见的芯片 (修改)
红色:代表我见过的紫色:代表我见过加上去的千兆网卡芯片:88E8001、RTL8101L笔记本电脑温度传感器芯片:ADM1032、DS1620、LM26、1、LM 75 76 78 79 LM 75负责CPU温度LM 75负责电压CPU风扇转速及主板温度。
2、S:S5597/5595,内速温控功能。
3、WINBOLD 系列:83781B 温度监控芯片83782B 温度监控芯片83783B 温度监控芯片支持6MA33/66芯片笔记本电脑指纹传感器: AES2501A\笔记本电脑液晶显示器高压驱动芯片:BA9741F、BD9766FV、BD9882F、BD9883FV、MAX1522/MAX1523/MAX1524 、OZ960、L1451、TL5001、笔记本电源管理芯片:(可待换)RT9221---SC1164RT9222---SC1165RT9223---SC1153RT9224---HIP6004BRT9224B---CL6911ERT9224C---HIP6004DRT9227A---HIP6016RT9228---HIP6018BRTL9229---HIP6019BRT9230---HIP6020RT9231---HIP6021RT-9231A---HIP6021ART9238---ISL6524RT9239---HIP6021笔记本待机控制芯片:max1631 TB62501 PMH4 H8笔记本电脑开机控制芯片:BD4175KV、BD4176KVT、IPC47N253、PC87551、TB62506、PC8394T(T43)笔记本电脑I/O芯片:FDC37N97、IT8716FCX、IT8705F 、IT8712F 、IT8712G 、IT8702 、W83627HF 、W8671F 、笔记本电脑CPU散热风扇转速控制芯片:G781、笔记本电脑主板时钟芯片:ICS950810、ICS954302、ICS954310、ICS954309、SLG84420、笔记本电脑系统供电控制芯片:LTC1628、LTC3728L 、MAx1632、MAx1901、MAX1977、MAx8734、SC1403、SC1404、SC2450、SI786LG、笔记本电脑内存供电控制芯片:ISL6224 、ISL6225 、ISL6227、ISL6537、G2996、MAx1540、MAxl541、MAx1623、MAX1644、MAx1809、MAx1844、MAX1992/MAX1993、MAX1858、MAX8505、MAX8632、MAx8743、MAx8794、SC470、SC1485、SC1486/SC1486A 、TPS51117、TPS51124、TPS54610、TPS54672、笔记本电脑CPU供电控制芯片:ADP3181 、ADP3203 ADP3205、ADP3421 、APW7057、IPM6220A 、ISL6217、ISL6223、ISL6262、LTC3716、LTC3735、LTC1709 、MAX1830/MAX1831 、MAx1907、MAx1987、MAx8760、MAx8770、SC1474、SC1476、SC451、SC452、CPU供电芯片:ADP3166、ADP3170、ADP3180、ADP3181、ADP3203、ADO3205、ADP3207、ADP3208、ADP3209、ADP3421、AIC1567ISL6215、ISL6217、ISL6218、ISL6219、ISL6223、ISL6227、ISL6260、ISL6262、LTC1436、LTC1736、LTC1709、LTC3716、LTC3735、MAX1532、MAX1533、MAX1710、MAX1711、MAX1712、MAX1714、MAX1717、MAX1718、MAX1830、MAXl831、MAX1897、MAX1907、MAX1987、MAX1988、MAX798、MAX8760、MAX8770、MAX8771、MAX8774、SC451、SC452、SC1474、SC1476、笔记本电脑充电控制芯片:AAT3680 、BQ24700 、BQ24701 、BQ24702/BQ24703 、DS2770 、LT1505、LTC4008 、MAX1645B 、MAX1736 、MAX745、MAX1873 、MAx8724、MAx8725、MAx8765、MB3887、MB39A126PFV、TL594、TPC8109 东芝 120000 0.9 SOP-8笔记本电池电量检测芯片:BQ2040、BQ2060低压差稳压器:AAT3200、AME8824、AMS1505、AP15912、G9338、LPL1084、MAX8863、MIC5205 、SCl565、SC4215、SI9183、100mA低压差稳压器:LP2951、笔记本主板声卡芯片: ALC200 、ALC201A 、ALC262、ALC655(我的废旧主板) 、ALC658、 ALC660、 ALC86l、ALC880、 ALC883、ALC202、AD1986、CS4205、CS20468、CS20549、Esl92l、PT2353、笔记本主板音频功率放大芯片: AN12943、APA2020/TPA0202、G1420、LM4835、LM4838、LM4882、LM4861 、LM4863、LM4880/LM4881 、LM4911 、MAX9710、MAx9750、MAx9751、MAX9755、MAx9789、MAx9790、TPA0142、TPA0142、TPA0312、TPA6017、音频功放芯片:APA2020、TPA0142、TPA0312、TPA6017、TPA0202、LM4835、LM4838、LM4861、LM4863、LM4880、LM4881、LM4882、LM4911、MAX9710、MAX9750、MAX9751、MAX9755、MAX9789、MAX9790、ESS1980S、8552TS、8542TS、TPA0302、AU8810 、BA7786、AN1294、AN12941、AN12942B、AN12943 G1420、主板声卡芯片: ALC655(我的废旧主板)主板网卡芯片:RTL8201CL主板io芯片:Fintek f71872fCMOS 控制芯片:GD75232主板电源管理芯片:SC6243主板内存供电芯片:AP1250、APW7060 、CM8501/CM8501A 、CM8562 、ISL6520 、NCP5201 、RT9202、RT9214、APW7120、RT9203 、RT9173、RT9218、SC2595、SC2614、SC411、SC2616、主板CPU供电控制芯片:ADP3166 、ADP3170 、ADP3180 、ADP3198、AIC1567 、CS5322 、FAN5019、FAN5090、FAN5056 、HIP6004 、HIP6016 、HIP6017 、HIP6018 、HIP6019 、HIP6020 、HIP6021 、HIP6302 、HIP6301、HIP6521 、ISL6312 、ISL6524 、I ISL6556 、SL6559、ISL6561 、ISL6566、L6711、L6917、NCP5314 、TL494/KA7500/MB3759 、L6714 、LM2637/LM2638 、RC5051、RT8802A、RT9237 、RT9238、RT9246A、RT9241 、RT9243 、RT9245 、RT9248 、SC2643(我的废旧主板)、SC1121S SC1155、SC1189 、SC2422、主板时钟芯片:CS950502、CY28405—2/ICS952606、CY28404C、ICS9248?153、ICS954218、ICS9248?151、ICS9248?39、ICS950202、ICS950208BF、ICS950901、ICS950902 、ICS950908 、ICS952018 、ICS952617 、ICS952643 、ICS954127 、双运算放大器:LM13700M、满摆幅输入/输出运算放大器:MAX4490、四电压比较器:LM324、双路可编程电流LJSB开关:MAx1558、主板供电控制芯片:MAx1626、MAxl627、多通道RS-232线性驱动/接收器:MAX3243 3~5V、主板开机芯片:MS-6、笔记本电脑键盘/电源控制芯片:Pc87570、笔记本电脑I/O控制芯片:PC87591、PC97551、高速差分开关芯片: P131500E、MAX4927\双路电压控制开关:SC338、RS-232接口驱动/接收芯片:ST75185、具有串行接口的1A双插槽PC卡电源开关:TPS2206、TPS2211、主板声卡芯片:CMI9738 、VT1611A、VT1612A、AD1885、AD1888、AD1981、端口限流保护芯片:AAT4280、MIC2545、笔记本电脑供电控制芯片:ADP3168、笔记本电脑电池充/放电控制芯片:ADP3806、笔记本电脑电池电量检测芯片:BQ2040、BQ2060、M61040FP、笔记本电脑电源适配器控制芯片:FAN7601、M51995A、NCP1205、NCP1207、88E8001千兆网卡芯片AD1986主板声卡芯片ADM1032笔记本电脑温度传感器芯片ADP3198主板CPU供电控制芯片ADP3205笔记本电脑CPU供电控制芯片ADP3207笔记本电脑CPU供电控制芯片ADP3806笔记本电脑电池充、放电控制芯片(IBM T43)AES2501A笔记本电脑指纹传感器ALC202主板声卡芯片ALC262笔主板声卡芯片ALC658主板声卡芯片ALC660主板声卡芯片ALC86l主板声卡芯片ALC880主板声卡芯片ALC883主板声卡芯片AME8824低压差稳压器AN12943音频功率放大芯片AP1250主板内存供电芯片AP15912大电流低压差稳压器APW7057笔记本电脑芯片组供电控制芯片BA9741F笔记本电脑液晶显示器高压驱动芯片BD4175KV笔记本电脑开机控制芯片BD9766FV笔记本电脑液晶显示器高压驱动芯片BD9882F笔记本电脑液晶显示器高压驱动芯片BD9883FV笔记本电脑液晶显示器高压驱动芯片CS4205笔记本电脑声卡芯片CS20468笔记本电脑声卡芯片CS20549笔记本电脑声卡芯片CY28405—2/ICS952606主板时钟芯片Esl92l笔记本电脑声卡芯片FAN5019主板CPU供电控制芯片FAN5090主板CPU供电控制芯片FDC37N972笔记本电脑I/O芯片G1420笔记本电脑音频功放芯片G2996笔记本电脑内存供电控制芯片G781笔记本电脑CPU散热风扇转速控制芯片G9338低压差线性稳压控制器ICS950810笔记本电脑主板时钟芯片ICS954302笔记本电脑主板时钟芯片ICS954309笔记本电脑主板时钟芯片ICS954310笔记本电脑主板时钟芯片ISL6227笔记本电脑内存供电控制芯片ISL6262笔记本电脑CPU供电控制芯片ISL6559主板CPU供电控制芯片ISL6566主板CPU供电控制芯片IT8716FCX主板I/O芯片LPL1084低压差稳压器L6711主板CPU供电控制芯片L6917主板CPU供电控制芯片LM13700M双运算放大器LM26笔记本电脑温度传感器LM324四电压比较器LM4835/LM4838笔记本电脑音频功放芯片LM4882笔记本电脑音频功放芯片LP2951 100mA低压差稳压器IPC47N253笔记本电脑开机芯片LTC3716笔记本电脑CPU供电控制芯片LTC3735笔记本电脑cPu供电控制电路MAx1540/MAxl541笔记本电脑内存/芯片组供电控制芯片MAx1558双路可编程电流LJSB开关MAx1623笔记本电脑内存供电电路MAx1626/MAxl627主板供电控制芯片MAx1632笔记本电脑系统供电控制芯片MAx1809笔记本电脑内存供电电路MAx1844笔记本电脑芯片组/显卡供电控制芯片MAx1901笔记本电脑系统供电控制芯片MAx1907笔记本电脑cPu供电控制芯片MAx1987笔记本电脑cPu供电控制芯片MAX3243 3~5V多通道RS-232线性驱动/接收器MAX4490满摆幅输入/输出运算放大器MAX8505笔记本电脑芯片组控制芯片MAX8632笔记本电脑内存供电控制芯片MAx8724笔记本电脑充电控制芯片MAx8725笔记本电脑充电控制芯片MAx8734笔记本电脑系统供电控制芯片MAx8743笔记本电脑显卡/芯片组供电控制芯片MAx8760笔记本电脑cPu供电控制芯片MAx8765笔记本电脑电池充电控制芯片MAx8770笔记本电脑CPU供电控制芯片MAx8794笔记本电脑DDR内存供电控制芯片MAX8863低压差稳压芯片MAX9710笔记本电脑音频功放芯片MAx9750/MAx9751/MAX9755笔记本电脑音频功放芯片MAx9789/MAx9790笔记本电脑音频功放芯片MB3887笔记本电脑充电控制电路MlB39A126PFV笔记本电脑充电控制芯片MS-6主板开机芯片PC87551笔记本电脑控制芯片Pc87570笔记本电脑键盘/电源控制芯片PC87591笔记本电脑I/O控制芯片PC97551笔记本电脑I/O控制芯片P131500E/MAX4927高速差分开关芯片PT2353笔记本电脑音效处理芯片RT8802A主板CPu供电控制芯片RT9202主板DDR内存供电控制芯片RT9214/APW7120芯片组/内存供电控制芯片RT9218芯片组/内存供电控制芯片RT9238主板CPU供电控制芯片RT9246A主板CPU供电控制芯片RTL8101L主板网卡芯片RTL8201CL 主板网卡芯片SC1403笔记本电脑主电源控制芯片SC1404笔记本电脑主电源控制芯片SC1474笔记本电脑芯片组供电控制芯片SC1476笔记本电脑芯片组供电控制芯片SC1485笔记本电脑芯片组供电控制芯片SCl565低压差稳压器SC2450笔记本电脑主电源控制芯片SC2595主板DDR内存供电控制芯片SC2614主板DDR内存供电控制芯片SC2643主板CPU供电控制芯片SC338双路电压控制开关SC411主板芯片组供电控制芯片SC4215具有使能功能的低压差稳压器SC451笔记本电脑CPU供电控制芯片SC452笔记本电脑CPU供电控制芯片SC470笔记本电脑显卡供电控制芯片SI786LG笔记本电脑供电控制芯片SI9183低压差稳压器SLG84420笔记本电脑主板时钟芯片ST75185 RS-232接口驱动/接收芯片TB62506笔记本电脑开机控制芯片TL1451笔记本电脑液晶屏高压驱动控制芯片TL5001笔记本电脑液晶屏高压驱动控制芯片TL594-笔记本电脑充电控制芯片TPA0142笔记本电脑音频功放芯片TPA0312笔记本电脑音频功放芯片TPA6017笔记本电脑音频功放芯片TPC8010(T43)TPS2206具有串行接口的1A双插槽PC卡电源开关TPS2211具有并行接口的1A单槽位PC卡电源开关TPS51117笔记本电脑供电控制芯片TPS51124笔记本电脑芯片组供电控制芯片TPS51120笔记本电源管理芯片TPS54610笔记本电脑内存供电控制芯片VT1611A主板声卡芯片VT1612A主板声卡芯片AAT3200 低压差稳压器AAT3680 笔记本电脑充电控制芯片AAT4280 端口限流保护芯片AD1885 主板声卡芯片AD1888 主板声卡芯片AD1981 主板声卡芯片ADP3160/ADP3167 笔记本电脑供电控制芯片ADP3166 主板CPU供电控制芯片ADP3168 笔记本电脑供电控制芯片ADP3170 主板CPU供电控制芯片ADP3180 主板CPU供电控制芯片ADP3181 笔记本电脑CPU供电芯片ADP3203 笔记本电脑CPU供电芯片ADP3421 笔记本电脑CPU供电芯片ADP3806 笔记本电脑电池充/放电控制芯片AIC1567 主板CPU供电控制芯片ALC200 主板声卡芯片ALC201A 主板声卡芯片ALC655 主板声卡芯片AMS1505 低压差稳压器APA2020/TPA0202 小功率音频功率放大芯片APW7060 主板供电控制芯片BQ2040 笔记本电脑电池电量检测芯片BQ2060 笔记本电脑电池电量检测芯片BQ24700 笔记本电脑充电控制芯片BQ24701 笔记本电脑充电控制芯片BQ24702/BQ24703 笔记本电脑充电控制芯片CM8501/CM8501A 主板内存供电控制芯片CM8562 主板内存供电控制芯片CMI9738 主板声卡芯片CS5322 主板CPU供电控制芯片CS950502 主板时钟芯片CY28404C 主板时钟芯片DS1620 笔记本电脑数字温度控制芯片DS2770 笔记本电脑充电控制芯片FAN5056 主板CPU供电控制芯片FAN7601 笔记本电脑电源适配器控制芯片HIP6004 主板CPU供电控制芯片HIP6016 主板CPU供电控制芯片HIP6017 主板CPU供电控制芯片HIP6018 主板CPU供电控制芯片HIP6019 主板CPU供电控制芯片HIP6020 主板CPU供电控制芯片HIP6021 主板CPU供电控制芯片HIP6301 主板CPU供电控制芯片HIP6302 主板CPU供电控制芯片HIP6303 主板CPU供电控制芯片HIP6521 主板供电控制芯片ICS9248?153 主板时钟芯片ICS954218 主板时钟芯片ICS9248?151 主板时钟芯片ICS9248?39 主板时钟芯片ICS950202 主板时钟芯片ICS950208BF 主板时钟芯片ICS950901 主板时钟芯片ICS950902 主板时钟芯片ICS950908 主板时钟芯片ICS952018 主板时钟芯片ICS952617 主板时钟芯片ICS952643 主板时钟芯片ICS954127 主板时钟芯片IPM6220A 笔记本电脑电源管理芯片ISL6223 笔记本电脑CPU供电控制芯片ISL6224 笔记本电脑内存供电控制芯片ISL6225 笔记本电脑内存供电控制芯片ISL6312 主板CPU供电控制芯片ISL6520 主板DDR内存供电控制芯片ISL6524 主板CPU供电控制芯片ISL6537 主板DDR内存供电控制芯片ISL6556 主板CPU供电控制芯片ISL6561 主板CPU供电控制芯片IT8705F 主板I/O芯片IT8712F 主板I/O芯片IT8712G 主板I/O芯片IT8702 主板I/O芯片TL494/KA7500/MB3759 主板CPU供电控制芯片L6714 主板CPU供电控制芯片LM2637/LM2638 主板CPU供电控制芯片LM4861 小功率音频功率放大芯片LM4863 小功率音频功率放大芯片LM4880/LM4881 小功率音频功率放大芯片LM4911 小功率音频功率放大芯片LT1505 笔记本电脑充电控制芯片LTC1628 笔记本电脑系统供电电路LTC1709 笔记本电脑CPU供电控制芯片LTC3728L 笔记本电脑系统供电控制芯片LTC4008 笔记本电脑充电控制芯片M51995A 笔记本电脑电源适配器控制芯片M61040FP 笔记本电脑电池管理控制芯片MAX1522/MAX1523/MAX1524 笔记本电脑LCD背光电源控制芯片MAX1540/ MAX1541 笔记本电脑供电控制芯片MAX1631 笔记本电脑主电源控制芯片MAX1644 笔记本电脑供电控制芯片MAX1645B 笔记本电脑电池充电管理芯片MAX1710/MAX1711/MAX1712 笔记本电脑CPU内核供电芯片MAX1714 笔记本电脑CPU外核供电控制芯片MAX1715 笔记本电脑CPU供电芯片MAX1717 笔记本电脑CPU供电控制芯片MAX1718 笔记本电脑CPU供电控制芯片MAX1736 笔记本电脑充电控制芯片MAX1772 笔记本电脑充电控制芯片MAX1773 笔记本电脑充电控制芯片MAX1830/MAX1831 笔记本电脑CPU供电控制芯片MAX1845 笔记本电脑CPU内核供电控制芯片MAX1873 笔记本电脑充电控制芯片MAX1902 笔记本电脑系统供电控制芯片MAX1908 笔记本电脑充电控制芯片MAX1909 笔记本电脑充电控制芯片MAX1992/MAX1993 笔记本电脑供电控制芯片MAX1999 笔记本电脑系统供电控制芯片MAX745 笔记本电脑充电控制器MAX785/MAX786 笔记本电脑系统供电控制芯片MAX8794 笔记本电脑DDR内存供电控制芯片MB3878 笔记本电脑充电控制芯片MIC2545 端口限流保护芯片MIC5205 低压差稳压器NCP1205 笔记本电脑电源适配器控制芯片NCP1207 笔记本电脑电源适配器控制芯片NCP5201 主板DDR2内存供电控制芯片NCP5314 主板CPU供电控制芯片OZ960 笔记本电脑液晶屏高压驱动控制芯片RC5051 主板CPU供电控制芯片RT9173 主板供电控制芯片RT9203 主板DDR内存供电控制芯片RT9237 主板CPU供电控制芯片RT9241 主板CPU供电控制芯片RT9243 主板CPU供电控制芯片RT9245 主板CPU供电控制芯片RT9248 主板CPU供电控制芯片SC1155 主板CPU供电控制芯片SC1189 主板CPU供电控制芯片SC1470 笔记本电脑供电控制芯片SC1486/SC1486A 笔记本电脑内存供电芯片SC2422 主板CPU供电控制芯片SC2616 主板DDR2内存供电控制芯片TPS51020 笔记本电脑DDR内存供电控制芯片TPS54672 笔记本电脑内存供电控制芯片W83627HF 主板I/O芯片W8671F 主板I/O芯片。
EDR201A0500Z中文资料
1A
0.5 ADC Max. 1.0 ADC Max. 10 VA Max. (Ref 10VDC,10mA) 150m Max. 1x108
2A
0.5 ADC Max. 1.0 ADC Max. 10 VA Max. (Ref 10VDC,10mA) 150m Max. 1x108
1B
0.5 ADC Max. 1.0 ADC Max. 10 VA Max. (Ref 10VDC,10mA) 150m Max. 1x108
元器件交易网
PART NUMBERING SYSTEM
EDR 1 0 1A 05 00 Z | | | | | | | | | | | | | +--- Z:RoHS Compliance | | | | | +--- SPECIAL CODE:00~99 | | | | | 00:PIN OUT 1357 | | | | | 50:PIN OUT 1267 | | | | +--- NOMINAL VOLTAGE: | | | | 05:5VDC | | | | 12:12VDC | | | | 24:24VDC | | | +--- CONTACT FORM: | | | 1A:OPEN TYPE, 1 FORM A | | +--- FUNCTION: | | 0:NORMAL FUNCTION | | D:WITH DIODE TYPE | +--- TYPE: | 1:SIP TYPE +--- MODEL NAME EDR 2 0 1A 05 00 Z | | | | | | | | | | | | | +--- Z:RoHS Compliance | | | | | +--- SPECIAL CODE:00~99 | | | | +--- NOMINAL VOLTAGE: | | | | 05:5VDC | | | | 12:12VDC | | | | 24:24VDC | | | +--- CONTACT FORM: | | | 1A:OPEN TYPE, 1 FORM A | | | 2A:OPEN TYPE, 2 FORM A | | | 1B:CLOSE TYPE, 1 FORM B | | | 1C:1 OPEN 1 CLOSE TYPE, 1 FORM C | | +--- FUNCTION: | | 0:NORMAL FUNCTION | | D:WITH DIODE TYPE | | H:HIGH INSUALTION | +--- TYPE: | 2:DIP TYPE | 3:SMD TYPE +--- MODEL NAME
漫威mps201音响说明书
漫威mps201音响说明书漫威MPS201音响说明书第一章:产品概述1.1 产品介绍漫威MPS201音响是一款高品质的多媒体音响系统,专为家庭和办公室环境设计。
它采用先进的音频技术,能够提供清晰、逼真的音效,让用户享受沉浸式的音乐和影音体验。
1.2 主要特点- 强大的音质:漫威MPS201音响采用高保真音频解码技术,能够还原音乐的原始细节和动态范围,提供出色的音质表现。
- 多媒体支持:除了作为音响系统使用外,漫威MPS201还支持多种多媒体格式的播放,包括MP3、WAV、FLAC等音频格式,以及AVI、MP4、MKV等视频格式。
- 便捷的连接:漫威MPS201音响支持蓝牙、USB、AUX等多种连接方式,方便用户连接各类音频源设备,如手机、电脑、平板等。
- 人性化设计:音响主机采用紧凑的设计,外观简洁大方,搭配触摸式控制面板,操作简单方便。
第二章:外观与配件2.1 外观描述漫威MPS201音响主机采用高品质的ABS塑料材质制造,表面经过精细处理,手感舒适。
整体设计简约时尚,配以金属装饰,展现出豪华感。
主机上配有显示屏和触摸式控制面板,方便用户操作。
2.2 配件清单- 漫威MPS201音响主机 x 1- 电源适配器 x 1- 蓝牙天线 x 1- 音频线(AUX)x 1- 使用手册 x 1第三章:使用说明3.1 连接电源将电源适配器插头插入音响主机的电源接口,然后将适配器插头插入电源插座。
确保电源连接正确并稳定。
3.2 连接音频源设备- 蓝牙连接:打开音响主机的蓝牙功能,并在手机或电脑等设备上搜索并连接到"MPS201"设备。
- USB连接:将USB闪存盘或其他支持USB接口的设备插入音响主机的USB接口。
- AUX连接:使用音频线将音响主机的AUX接口与其他音频源设备连接。
3.3 操作指南- 音量调节:在音响主机的控制面板上滑动音量条或按音量加减按钮进行音量调节。
- 播放控制:通过触摸面板的播放/暂停、上一曲、下一曲按钮进行音频播放控制。
LM20143MH资料
January 16, 2008 LM201433A, PowerWise® Adjustable Frequency Synchronous Buck RegulatorGeneral DescriptionThe LM20143 is a full featured adjustable frequency syn-chronous buck regulator capable of delivering up to 3A of continuous output current. The current mode control loop can be compensated to be stable with virtually any type of output capacitor. For most cases, compensating the device only re-quires two external components, providing maximum flexibil-ity and ease of use. The device is optimized to work over the input voltage range of 2.95V to 5.5V making it suited for a wide variety of low voltage systems.The device features internal over voltage protection (OVP) and over current protection (OCP) circuits for increased sys-tem reliability. A precision enable pin and integrated UVLO allows the turn-on of the device to be tightly controlled and sequenced. Start-up inrush currents are limited by both an internally fixed and externally adjustable Soft-Start circuit. Fault detection and supply sequencing is possible with the integrated power good circuit.The frequency of this device can be adjusted from 500 kHz to 1.5 MHz by connecting an external resistor from the RT pin to ground.The LM20143 is designed to work well in multi-rail power supply architectures. The output voltage of the device can be configured to track a higher voltage rail using the SS/TRK pin. If the output of the LM20143 is pre-biased at startup it will not sink current to pull the output low until the internal soft-start ramp exceeds the voltage at the feedback pin.The LM20143 is offered in a 16-pin eTSSOP package with an exposed pad that can be soldered to the PCB, eliminating the need for bulky heatsinks.Features■Input voltage range 2.95V to 5.5V■Accurate current limit minimizes inductor size■97% peak efficiency■Adjustable output voltage down to 0.8V■Adjustable switching frequency (500 kHz to 1.5 MHz)■32 mΩ integrated FET switches■Starts into prebiased loads■Output voltage tracking■Peak current mode control■Adjustable Soft-Start with external capacitor■Precision enable pin with hysteresis■Integrated OVP, UVLO, power good and thermal shutdown■eTSSOP-16 exposed pad package Applications■Simple to design, high efficiency point of load regulation from a 5V or 3.3V bus■High Performance DSPs, FPGAs, ASICs and microprocessors■Broadband, Networking and Optical Communications InfrastructureTypical Application Circuit30030501 PowerWise® is a registered trademark of National Semiconductor Corporation.© 2008 National Semiconductor LM20143 3A, PowerWise ® Adjustable Frequency Synchronous Buck RegulatorConnection Diagram30030502Top VieweTSSOP-16 PackageOrdering InformationOrder Number Package Type NSC Package DrawingPackage MarkingSupplied As LM20143MH eTSSOP-16MXA16A20143MH92 Units of Rail LM20143MHE 250 Units of Tape and Reel LM20143MHX2500 Units of Tape and ReelPin DescriptionsPin #Name Description1SS/TRKSoft-Start or Tracking control input. An internal 5 µA current source charges an external capacitor to set the Soft-Start ramp rate. If driven by a external source less than 800 mV, this pin overrides the internal reference that sets the output voltage. If left open, an internal 1ms Soft-Start ramp is activated.2FBFeedback input to the error amplifier from the regulated output. This pin is connected to the inverting input of the internal transconductance error amplifier. An 800 mV reference connected to the non-inverting input of the error amplifier sets the closed loop regulation voltage at the FB pin.3PGOOD Power good output signal. Open drain output indicating the output voltage is regulating within tolerance. is recommend for most applications.4COMP External compensation pin. Connect the compensation network to resistor and capacitor to this pin to compensate the device.5NC These pins must be connected to GND to ensure proper operation.6,7PVIN Input voltage to the power switches inside the device. These pins should be connected together at the device. A low ESR capacitor should be placed near these pins to stabilize the input voltage.8,9SW Switch pin. The PWM output of the internal power switches.10,11PGND Power ground pin for the internal power switches.12EN Precision enable input for the device. An external voltage divider can be used to set the device turn-on threshold. If not used the EN pin should be connected to PVIN.13VCC Internal 2.7V sub-regulator. This pin should be bypassed with a 1 µF ceramic capacitor.14AVIN Analog input supply that generates the internal bias. Must be connected to VIN through a low pass RC filter.15AGND Quiet analog ground for the internal bias circuitry.16RT Frequency adjust pin. Connecting a resistor on this pin to ground will set the oscillator frequency.EPExposed PadExposed metal pad on the underside of the package with a weak electrical connection to ground. It is recommended to connect this pad to the PC board ground plane in order to improve heat dissipation. 2L M 20143Absolute Maximum Ratings (Note 1)If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.Voltages from the indicated pins to GNDAVIN, PVIN, EN, PGOOD, SS/TRK, COMP, FB, RT-0.3V to +6V Storage Temperature-65°C to 150°C Junction Temperature150°CPower Dissipation (Note 2) 2.6W Lead Temperature (Soldering,10 sec)260°C Minimum ESD Rating (Note 3)±2kV Operating RatingsPVIN, AVIN to GND 2.95V to 5.5V Junction Temperature−40°C to + 125°CElectrical Characteristics Unless otherwise stated, the following conditions apply: AVIN = PVIN = VIN = 5V.Limits in standard type are for TJ = 25°C only, limits in bold face type apply over the junction temperature (TJ) range of -40°C to+125°C. Minimum and Maximum limits are guaranteed through test, design, or statistical correlation. Typical values represent the most likely parametric norm at TJ= 25°C, and are provided for reference purposes only.Symbol Parameter Conditions Min Typ Max UnitV FB Feedback pin voltage VIN= 2.95V to 5.5V0.7880.80.812VΔV OUT/ΔI OUT Load Regulation I OUT = 100 mA to 3A0.08%/AI CL Switch Current Limit Threshold VIN= 3.3V 4.3 4.8 5.3ARDS_ON High-Side Switch On Resistance ISW= 3.5A3655mΩRDS_ON Low-Side Switch On Resistance ISW= 3.5A3252mΩI Q Operating Quiescent Current Non-switching, VFB= VCOMP3.56mAI SD Shutdown Quiescent current VEN= 0V90180µAV UVLO VIN Under Voltage Lockout Rising VIN2.45 2.7 2.95VVUVLO_HYS VIN Under Voltage Lockout Hysteresis Falling VIN45100mVV VCC VCC Voltage IVCC= 0 µA 2.45 2.7 2.95VI SS Soft-Start Pin Source Current VSS/TRK= 0V2 4.57µAV TRACK SS/TRK Accuracy, VSS- VFBVSS/TRK= 0.4V-10315mVOscillatorF OSCH Oscillator Frequency RT= 49.9 kΩ135015001650kHzF OSCL Oscillator Frequency RT= 249 kΩ450510570kHzDCMAX Maximum Duty Cycle ILOAD= 0A85%TON_TIMEMinimum On Time100nsTCL_BLANK Current Sense Blanking Time After Rising VSW80nsError Amplifier and ModulatorI FB Feedback pin bias current VFB= 0.8V1100nAICOMP_SRC COMP Output Source Current VFB= VCOMP= 0.6V80100µAICOMP_SNK COMP Output Sink Current VFB= 1.0V, VCOMP= 0.6V80100µAGm Error Amplifier Transconductance ICOMP= ± 50 µA450510600µmhoAVOLError Amplifier Voltage Gain2000V/V Power GoodV OVP Over Voltage Protection Rising Threshold With respect to VFB105108111%VOVP_HYSOver Voltage Protection Hysteresis23%V PGTH PGOOD Rising Threshold With respect to VFB929496%VPGHYSPGOOD Falling Hysteresis23%TPGOODPGOOD deglitch time16µsI OL PGOOD Low Sink Current VPGOOD= 0.4V0.61mAI OH PGOOD High Leakage Current VPGOOD= 5V5100nALM20143Symbol ParameterConditionsMinTypMaxUnitEnableV IH_EN EN Pin turn-on Threshold V EN Rising 1.08 1.18 1.28V V EN_HYS EN Pin Hysteresis 66 mV Thermal ShutdownT SD Thermal Shutdown160 °C T SD_HYS Thermal Shutdown Hysteresis 10 °C Thermal ResistanceθJAJunction to Ambient38°C/WNote 1:Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics.Note 2:The maximum allowable power dissipation is a function of the maximum junction temperature, T J_MAX , the junctions-to-ambient thermal resistance, θJA ,and the ambient temperature, T A . The maximum allowable power dissipation at any ambient temperature is calculated using: P D_MAX = (T J_MAX – T A )/θJA . The maximum power dissipations of 2.6W is determined using T A = 25°C, θJA = 38°C/W, and T J_MAX = 125°C.Note 3:The human body model is a 100 pF capacitor discharged through a 1.5 k Ω resistor to each pin.Typical Performance CharacteristicsUnless otherwise specified: C IN = C OUT = 100 µF, L = 1.0 µH(Coilcraft MSS1038), V IN = 5V, V OUT = 1.2V, R LOAD = 1.2Ω, f SW = 1 MHz, T A = 25°C for efficiency curves, loop gain plots and waveforms, and T J = 25°C for all others.Efficiency vs. Load Current (V IN = 5V, f SW = 1.5 MHz)30030531Efficiency vs. Load Current (V IN = 3.3V, f SW = 1.5 MHz)30030530Efficiency vs. Load Current (V IN = 5V, f SW = 1.0 MHz)30030547Efficiency vs. Load Current (V IN = 3.3V, f SW = 1.0 MHz)30030546 4L M 20143Efficiency vs. Load Current (V IN = 5.0V, f SW = 500 kHz)30030549Efficiency vs. Load Current (V IN = 3.3V, f SW = 500 kHz)30030548High-Side FET Resistance vs. Temperature 30030557Low-Side FET Resistance vs. Temperature30030558Error Amplifier Gain vs. Frequency 30030536Line Regulation30030537LM20143Load Regulation30030538Feedback Pin Voltage vs. Temperature30030551Switching Frequency vs. Temperature30030539Switching Frequency vs. R T30030550Quiescent Current vs. V IN (Not Switching)30030540Shutdown Current vs. Temperature30030541 6L M 20143Enable Threshold vs. Temperature30030528UVLO Threshold vs. Temperature30030545Peak Current Limit vs. Temperature30030542Peak Current Limit vs. V OUT30030554Peak Current Limit vs. V IN30030555Load Transient Response30030534LM20143Line Transient Response30030543Start Up (Soft-Start)30030544Start Up (Tracking)30030533Short Circuit Input Current vs. V IN30030556Power Down30030532 8L M 20143Block Diagram30030503 LM20143Operation DescriptionGENERALThe LM20143 switching regulator features all of the functions necessary to implement an efficient low voltage buck regula-tor using a minimum number of external components. This easy to use regulator features two integrated switches and is capable of supplying up to 3A of continuous output current.The regulator utilizes peak current mode control with nonlin-ear slope compensation to optimize stability and transient response over the entire output voltage range. Peak current mode control also provides inherent line feed-forward, cycle-by-cycle current limiting and easy loop compensation. The switching frequency can be varied from 500 kHz to 1.5 MHz with an external resistor to ground. The device can operate at high switching frequency allowing use of a small inductor while still achieving efficiencies as high as 96%. The precision internal voltage reference allows the output to be set as low as 0.8V. Fault protection features include: current limiting,thermal shutdown, over voltage protection, and shutdown ca-pability. The device is available in the eTSSOP-16 package featuring an exposed pad to aid thermal dissipation. The LM20143 can be used in numerous applications to efficiently step-down from a 5V or 3.3V bus. The typical application cir-cuit for the LM20143 is shown in Figure 2 in the design guide.PRECISION ENABLEThe enable (EN) pin allows the output of the device to be en-abled or disabled with an external control signal. This pin is a precision analog input that enables the device when the volt-age exceeds 1.2V (typical). The EN pin has 100 mV of hys-teresis and will disable the output when the enable voltage falls below 1.1V (typical). If the EN pin is not used, it should be connected to VIN. Since the enable pin has a precise turn-on threshold it can be used along with an external resistor divider network from V IN to configure the device to turn-on at a precise input voltage. The precision enable circuitry will re-main active even when the device is disabled.PEAK CURRENT MODE CONTROLI n most cases, the peak current mode control architecture used in the LM20143 only requires two external components to achieve a stable design. The compensation can be select-ed to accommodate any capacitor type or value. The external compensation also allows the user to set the crossover fre-quency and optimize the transient performance of the device.For duty cycles above 50% all current mode control buck converters require the addition of an artificial ramp to avoid sub-harmonic oscillation. This artificial linear ramp is com-monly referred to as slope compensation. What makes the LM20143 unique is the amount of slope compensation will change depending on the output voltage. When operating at high output voltages the device will have more slope com-pensation than when operating at lower output voltages. This is accomplished in the LM20143 by using a non-linear parabolic ramp for the slope compensation. The parabolic slope compensation of the LM20143 is much better than the traditional linear slope compensation because it optimizes the stability of the device over the entire output voltage range.CURRENT LIMITThe precise current limit of the LM20143 is set at the factory to be within 10% over the entire operating temperature range.This enables the device to operate with smaller inductors that have lower saturation currents. When the peak inductor cur-rent reaches the current limit threshold, an over current event is triggered and the internal high-side FET turns off and thelow-side FET turns on allowing the inductor current to ramp down until the next switching cycle. For each sequential over-current event, the reference voltage is decremented and PWM pulses are skipped resulting in a current limit that does not aggressively fold back for brief over-current events, while at the same time providing frequency and voltage foldback protection during hard short circuit conditions.SOFT-START AND VOLTAGE TRACKINGThe SS/TRK pin is a dual function pin that can be used to set the start up time or track an external voltage source. The start up or Soft-Start time can be adjusted by connecting a capac-itor from the SS/TRK pin to ground. The Soft-Start feature allows the regulator output to gradually reach the steady state operating point, thus reducing stresses on the input supply and controlling start up current. If no Soft-Start capacitor is used the device defaults to the internal Soft-Start circuitry re-sulting in a start up time of approximately 1 ms. For applica-tions that require a monotonic start up or utilize the PGOOD pin, an external Soft-Start capacitor is recommended. The SS/TRK pin can also be set to track an external voltage source. The tracking behavior can be adjusted by two external resistors connected to the SS/TRK pin as shown in Figure 7.in the design guide.PRE-BIAS START UP CAPABILITYThe LM20143 is in a pre-biased state when the device starts up with an output voltage greater than zero. This often occurs in many multi-rail applications such as when powering an FP-GA, ASIC, or DSP. In these applications the output can be pre-biased through parasitic conduction paths from one sup-ply rail to another. Even though the LM20143 is a syn-chronous converter it will not pull the output low when a pre-bias condition exists. During start up the LM20143 will not sink current until the Soft-Start voltage exceeds the voltage on the FB pin. Since the device can not sink current it protects the load from damage that might otherwise occur if current is conducted through the parasitic paths of the load.POWER GOOD AND OVER VOLTAGE FAULT HANDLING The LM20143 has built in under and over voltage compara-tors that control the power switches. Whenever there is an excursion in output voltage above the set OVP threshold, the part will terminate the present on-pulse, turn-on the low-side FET, and pull the PGOOD pin low. The low-side FET will re-main on until either the FB voltage falls back into regulation or the zero cross detection is triggered which in turn tri-states the FETs. If the output reaches the UVP threshold the part will continue switching and the PGOOD pin will be asserted and go low. Typical values for the PGOOD resistor are on the or-der of 100 k Ω or less. To avoid false tripping during transient glitches the PGOOD pin has 16 µs of built in deglitch time to both rising and falling edges.UVLOThe LM20143 has a built-in under-voltage lockout protection circuit that keeps the device from switching until the input voltage reaches 2.7V (typical). The UVLO threshold has 45mV of hysteresis that keeps the device from responding to power-on glitches during start up. If desired the turn-on point of the supply can be changed by using the precision enable pin and a resistor divider network connected to V IN as shown in Figure 6. in the design guide.THERMAL PROTECTIONInternal thermal shutdown circuitry is provided to protect the integrated circuit in the event that the maximum junction tem-10L M 20143perature is exceeded. When activated, typically at 160°C, the LM20143 tri-states the power FETs and resets soft start. After the junction cools to approximately 150°C, the part starts up using the normal start up routine. This feature is provided to prevent catastrophic failures from accidental device over-heating.LIGHT LOAD OPERATIONThe LM20143 offers increased efficiency when operating at light loads. Whenever the load current is reduced to a point where the peak to peak inductor ripple current is greater than two times the load current, the part will enter the diode emu-lation mode preventing significant negative inductor current.The point at which this occurs is the critical conduction bound-ary and can be calculated by the following equation:Several diagrams are shown in Figure 1 illustrating continu-ous conduction mode (CCM), discontinuous conduction mode, and the boundary condition.It can be seen that in diode emulation mode, whenever the inductor current reaches zero the SW node will become high impedance. Ringing will occur on this pin as a result of the LC tank circuit formed by the inductor and the parasitic capaci-tance at the node. If this ringing is of concern an additional RC snubber circuit can be added from the switch node to ground.At very light loads, usually below 100 mA, several pulses may be skipped in between switching cycles, effectively reducing the switching frequency and further improving light-load effi-ciency.30030505FIGURE 1. Modes of Operation for LM20143LM20143Design GuideThis section walks the designer through the steps necessaryto select the external components to build a fully functionalpower supply. As with any DC-DC converter numerous trade-offs are possible to optimize the design for efficiency, size, orperformance. These will be taken into account and highlight-ed throughout this discussion. To facilitate component selec-tion discussions the circuit shown in Figure 2 below may beused as a reference. Unless otherwise indicated all formulasassume units of amps (A) for current, farads (F) for capaci-tance, henries (H) for inductance and volts (V) for voltages.30030523FIGURE 2. Typical Application CircuitThe first equation to calculate for any buck converter is duty-cycle. Ignoring conduction losses associated with the FETsand parasitic resistances it can be approximated by:INDUCTOR SELECTION (L)The inductor value is determined based on the operating fre-quency, load current, ripple current, and duty cycle.The inductor selected should have a saturation current ratinggreater than the peak current limit of the device. Keep in mindthe specified current limit does not account for delay of thecurrent limit comparator, therefore the current limit in the ap-plication may be higher than the specified value. To optimizethe performance and prevent the device from entering currentlimit at maximum load, the inductance is typically selectedsuch that the ripple current, ΔiL, is less than 30% of the ratedoutput current. Figure 3, shown below illustrates the switchand inductor ripple current waveforms. Once the input volt-age, output voltage, operating frequency, and desired ripplecurrent are known, the minimum value for the inductor can becalculated by the formula shown below:30030509FIGURE 3. Switch and Inductor Current WaveformsIf needed, slightly smaller value inductors can be used, how-ever, the peak inductor current, IOUT+ Δi L/2, should be keptbelow the peak current limit of the device. In general, the in-ductor ripple current, ΔiL, should be greater than 10% of therated output current to provide adequate current sense infor-mation for the current mode control loop. If the ripple currentin the inductor is too low, the control loop will not have suffi-cient current sense information and can be prone to instability.OUTPUT CAPACITOR SELECTION (COUT)The output capacitor, COUT, filters the inductor ripple currentand provides a source of charge for transient load conditions.A wide range of output capacitors may be used with theLM20143 that provide excellent performance. The best per-formance is typically obtained using ceramic, SP, or OSCONtype chemistries. Typical trade-offs are that the ceramic ca-pacitor provides extremely low ESR to reduce the outputripple voltage and noise spikes, while the SP and OSCONcapacitors provide a large bulk capacitance in a small volumefor transient loading conditions.When selecting the value for the output capacitor the two per-formance characteristics to consider are the output voltageripple and transient response. The output voltage ripple canbe approximated by using the formula shown below.Where, ΔVOUT(V) is the amount of peak to peak voltage rippleat the power supply output, RESR(Ω) is the series resistanceof the output capacitor, fSW(Hz) is the switching frequency,and COUT(F) is the output capacitance used in the design.The amount of output ripple that can be tolerated is applica-tion specific; however a general recommendation is to keepthe output ripple less than 1% of the rated output voltage.Keep in mind ceramic capacitors are sometimes preferredbecause they have very low ESR; however, depending onpackage and voltage rating of the capacitor the value of thecapacitance can drop significantly with applied voltage. Theoutput capacitor selection will also affect the output voltagedroop during a load transient. The peak droop on the outputvoltage during a load transient is dependent on many factors;however, an approximation of the transient droop ignoringloop bandwidth can be obtained using the following equation.12LM2143Where, COUT(F) is the minimum required output capacitance,L (H) is the value of the inductor, VDROOP(V) is the outputvoltage drop ignoring loop bandwidth considerations, ΔIOUT-STEP(A) is the load step change, RESR(Ω) is the outputcapacitor ESR, VIN(V) is the input voltage, and VOUT(V) isthe set regulator output voltage. Both the tolerance and volt-age coefficient of the capacitor needs to be examined whendesigning for a specific output ripple or transient drop target.INPUT CAPACITOR SELECTION (CIN)Good quality input capacitors are necessary to limit the ripplevoltage at the VIN pin while supplying most of the switch cur-rent during the on-time. In general it is recommended to usea ceramic capacitor for the input as they provide both a lowimpedance and small footprint. One important note is to usea good dielectric for the ceramic capacitor such as X5R orX7R. These provide better over temperature performanceand also minimize the DC voltage derating that occurs on Y5Vcapacitors. For most applications, a 22 µF, X5R, 6.3V inputcapacitor is sufficient; however, additional capacitance maybe required if the connection to the input supply is far from thePVIN pins. The input capacitor should be placed as close aspossible PVIN and PGND pins of the device.Non-ceramic input capacitors should be selected for RMScurrent rating and minimum ripple voltage. A good approxi-mation for the required ripple current rating is given by therelationship:As indicated by the RMS ripple current equation, highest re-quirement for RMS current rating occurs at 50% duty cycle.For this case, the RMS ripple current rating of the input ca-pacitor should be greater than half the output current. For bestperformance, low ESR ceramic capacitors should be placedin parallel with higher capacitance capacitors to provide thebest input filtering for the device.SETTING THE OUTPUT VOLTAGE (RFB1, RFB2)The resistors RFB1and RFB2are selected to set the outputvoltage for the device. Table 1, shown below, provides sug-gestions for RFB1and RFB2for common output voltages.TABLE 1. Suggested Values for RFB1and RFB2RFB1(kΩ)RFB2(kΩ)V OUTshort open0.84.9910 1.28.8710.2 1.512.710.2 1.821.510.2 2.531.610.2 3.3If different output voltages are required, RFB2should be se-lected to be between 4.99 kΩ to 49.9 kΩ and RFB1can becalculated using the equation below.ADJUSTING THE OPERATING FREQUENCY (RT)The operating frequency of the LM20143 can be adjusted byconnecting a resistor from the RT pin to ground. The equationshown below can be used to calculate the value of RTfor agiven operating frequency.Where, fSWis the switching frequency in kHz, and RTis thefrequency adjust resistor in kΩ. Please refer to the curve Os-cillator Frequency verses RTin the typical performance char-acteristics section. If the RTresistor is omitted the device willnot operate.LOOP COMPENSATION (RC1, CC1)The purpose of loop compensation is to meet static and dy-namic performance requirements while maintaining adequatestability. Optimal loop compensation depends on the outputcapacitor, inductor, load, and the device itself. Table 2 belowgives values for the compensation network that will result ina stable system when using a 100 µF, 6.3V ceramic X5R out-put capacitor and 1 µH inductor.TABLE 2. Recommended Compensation forCOUT= 100 µF, L = 1 µH & fSW= 1 MHzVINVOUTCC1(nF)RC1(kΩ)5.00 3.30 4.717.85.00 2.50 4.712.15.00 1.80 4.77.685.00 1.50 4.7 5.95.00 1.20 4.7 3.575.000.80 4.7 1.583.30 2.504.7133.30 1.804.79.763.30 1.504.7 6.493.30 1.204.7 4.643.300.804.7 1.58If the desired solution differs from the table above the looptransfer function should be analyzed to optimize the loopcompensation. The overall loop transfer function is the prod-uct of the power stage and the feedback network transferfunctions. For stability purposes, the objective is to have aloop gain slope that is -20db/decade from a very low frequen-cy to beyond the crossover frequency. Figure 4, shown below,shows the transfer functions for power stage, feedback/com-pensation network, and the resulting closed loop system forthe LM20143.LM20143。
常用芯片型号大全
常用芯片型号大全4N35/4N36/4N37 "光电耦合器"AD7520/AD7521/AD7530/AD7521 "D/A转换器"AD7541 12位D/A转换器ADC0802/ADC0803/ADC0804 "8位A/D转换器"ADC0808/ADC0809 "8位A/D转换器"ADC0831/ADC0832/ADC0834/ADC0838 "8位A/D转换器" CA3080/CA3080A OTA跨导运算放大器CA3140/CA3140A "BiMOS运算放大器"DAC0830/DAC0832 "8位D/A转换器"ICL7106,ICL7107 "3位半A/D转换器"ICL7116,ICL7117 "3位半A/D转换器"ICL7650 "载波稳零运算放大器"ICL7660/MAX1044 "CMOS电源电压变换器"ICL8038 "单片函数发生器"ICM7216 "10MHz通用计数器"ICM7226 "带BCD输出10MHz通用计数器"ICM7555/7555 CMOS单/双通用定时器ISO2-CMOS MT8880C DTMF收发器LF351 "JFET输入运算放大器"LF353 "JFET输入宽带高速双运算放大器"LM117/LM317A/LM317 "三端可调电源"LM124/LM124/LM324 "低功耗四运算放大器"LM137/LM337 "三端可调负电压调整器"LM139/LM239/LM339 "低功耗四电压比较器"LM158/LM258/LM358 "低功耗双运算放大器" LM193/LM293/LM393 "低功耗双电压比较器" LM201/LM301 通用运算放大器LM231/LM331 "精密电压—频率转换器"LM285/LM385 微功耗基准电压二极管LM308A "精密运算放大器"LM386 "低压音频小功率放大器"LM399 "带温度稳定器精密电压基准电路"LM431 "可调电压基准电路"LM567/LM567C "锁相环音频译码器"LM741 "运算放大器"LM831 "双低噪声音频功率放大器"LM833 "双低噪声音频放大器"LM8365 "双定时LED电子钟电路"MAX038 0.1Hz-20MHz单片函数发生器MAX232 "5V电源多通道RS232驱动器/接收器" MC1403 "2.5V精密电压基准电路"MC1404 5.0v/6.25v/10v基准电压MC1413/MC1416 "七路达林顿驱动器"MC145026/MC145027/MC145028 "编码器/译码器" MC145403-5/8 "RS232驱动器/接收器"MC145406 "RS232驱动器/接收器"MC145407 "RS232驱动器/接收器"MC145583 "RS232驱动器/接收器"MC145740 DTMF接收器MC1488 "二输入与非四线路驱动器"MC1489 "四施密特可控线路驱动器"MC2833 "低功率调频发射系统"MC3362 "低功率调频窄频带接收器"MC4558 "双运算放大器"MC7800系列"1.0A三端正电压稳压器"MC78L00系列0.1A三端正电压稳压器MC78M00系列"0.5A三端正电压稳压器"MC78T00系列3.0A正电压稳压器MC7900系列1.0A三端负电压稳压器MC79L00系列0.1A三端负电压稳压器MC79M00系列0.5A三端负电压稳压器Microchip "PIC系列单片机RS232通讯应用"MM5369 3.579545MHz-60Hz 17级分频振荡器MOC3009/MOC3012 "双向可控硅输出光电耦合器"MOC3020/MOC3023 "双向可控硅输出光电耦合器"MOC3081/MOC3082/MOC3083 "过零双向可控硅输出光电耦合器" MOC8050 "无基极达林顿晶体管输出光电耦合器"MOC8111 "无基极晶体管输出光电耦合器"MT8870 "DTMF双音频接收器"MT8888C DTMF 收发器NE5532/NE5532A "双低噪声运算放大器" NE5534/SE5534 "低噪声运算放大器" NE555/SA555 "单时基电路"NE556/SA556/SE556 "双时基电路"NE570/NE571/SA571 "音频压缩扩展器" OP07 "低电压飘移运算放大器"OP27 "低噪音精密运算放大器"OP37 "低噪音高速精密运算放大器"OP77 "低电压飘移运算放大器"OP90 "精密低电压微功耗运算放大器" PC817/PC827/PC847 "高效光电耦合器" PT2262 "无线遥控发射编码器芯片"PT2272 "无线遥控接收解码器芯片"SG2524/SG3524 "脉宽调制PWM "ST7537 "电力线调制解调器电路"TDA1521 2×12W Hi-Fi 音频功率放大器TDA2030 14W Hi-Fi 音频功率放大器TDA2616 2×12W Hi-Fi 音频功率放大器TDA7000T FM 单片调频接收电路TDA7010T FM 单片调频接收电路TDA7021T FM MTS单片调频接收电路TDA7040T "低电压锁相环立体声解码器"TDA7050 "低电压单/双声道功率放大器"TL062/TL064 "低功耗JFET输入运算放大器"TL071/TL072/TL074 "低噪声JFET输入运算放大器"TL082/TL084 JFET 宽带高速运算放大器TL494 "脉宽调制PWM "TL594 "精密开关模式脉宽调制控制"TLP521/1-4 "光电耦合器"TOP100-4 TOPSwitch 三端PWM开关电源电路TOP200-4 TOPSwitch 三端PWM开关电源电路TOP209/TOP210 TOPSwitch 三端PWM开关电源电路TOP221-7 TOPSwitch-Ⅱ三端PWM开关电源电路TOP232-4 TOPSwitch-FX 五端柔韧设计开关电源电路TOP412/TOP414 TOPSwitch 三端PWM DC-DC 开关电源ULN2068 1.5A/50V 4路达林顿驱动电路ULN2803 500mA/50V 8路达林顿驱动电路ULN2803/ULN2804 线性八外围驱动器阵列VFC32 "电压—频率/频率—电压转换器"常用ic资料2AD711 高精度、底价格、高速BiFET 运放CA3130 15MHz, BiMOS 运放with MOSFET Input/CMOS Output LH0032 Ultra Fast FET-输入单运放LF351 Wide B与门width JFET 输入单运放LF411 Low Offset, Low Drift JFET 输入单运放LM108 高精度、单运放LM208 高精度、单运放LM308 高精度、单运放LM833 双音频运放, 低噪音LM358 双运放LM359 双, 高速, Programmable, Current Mode (Norton) Amplifier LM324 QUADRUPLE 运放LM391 音频Power DriverLM393 双Differential ComparatorNE5532 双音频运放, 低噪音NE5534 Single 音频运放, 低噪音OP27 低噪音、高精度、高速运放OP37 低噪音、高精度、高速运放TL071 Single JFET-输入运放, 低噪音TL072 双JFET-输入运放, 低噪音TL074 Quad JFET-输入运放, 低噪音TL081 Single JFET-输入运放TL082 双JFET-输入运放TL084 Quad JFET-输入运放TLC271 LinCMOS..PROGRAMMABLE LOW-POWER 运放TLC272 LinCMOS.... PRECISION 双运放TLC274 LinCMOS.... PRECISION QUAD 运放MN3004 512 STAGE 低噪音BBDL165 3A POWER 运放(20W)LM388 1.5W 音频功率放大LM1875 20W 音频功率放大TDA1516BQ 24 W BTL or 2 x 12 w 立体声汽车用功率放大器TDA1519C 22 W BTL or 2 X 11 W 立体声功率放大TDA1563Q 2 x 25 W high efficiency car radio 功率放大TDA2002 单声道、功率放大8W [NTE1232]TDA2005 双功率放大20WTDA2004 10 + 10W STEREO 立体声汽车用功率放大器TDA2030 Single 功率放大14WSTK4036 II 模块电路, AF PO, 双电源50WSTK4036 XI 模块电路, AF PO, 双电源50WSTK4038 II AF 功率放大60 WSTK4040 II AF 功率放大70 WSTK4040 XI AF 功率放大70 WSTK4042 II AF 功率放大80 WSTK4042 XI AF 功率放大80 WSTK4044 II 模块电路, AF 功率放大、单声道100WSTK4044 II 模块电路, AF 功率放大、单声道100WSTK4046 XI 模块电路, AF 功率放大、单声道120WSTK4048 XI 模块电路, AF 功率放大、单声道150WSTK4050 V 模块电路, AF 功率放大、单声道200WLM3914 10-Step Dot/Bar显示驱动器, Linear scaleLM3915 10-Step Dot/Bar显示驱动器, Logarithmic scaleLM3916 10-Step Dot/Bar显示驱动器UAA180 LED driver Light or light spot display operation for max. 12 emitting diodes CA3161E BCD to Seven Segment Decoder/DriverCA3162E A/D Converter for 3-Digit DisplayICL7136 3 1/2 Digit LCD, Low Power Display, A/D ConverterLM1800 PLL Stereo Decoder [NTE743]CA3090P Stereo Multiplex Decoder (Comp.to NTE789 From NTE)MC1310P FM Stereo Demodulator (Comp. to NTE801 From NTE)555 时钟556 双555MN3101 时钟/ 驱动XR2206 Monolithic Function Generator4N25 6-PIN 光电晶体管OPTOCOUPLERS4N264N274N284N35 6-PIN 光电晶体管OPTOCOUPLERS4N364N3778xx 系列3端稳压器+5V 到+24V1A78Lxx 系列3端稳压器+5V 到+24V 0.1A78Mxx 系列3端稳压器+5V 到+24V 0.5A78Sxx 系列3端稳压器+5V 到+24V 2A79xx 系列3端负电压稳压器-5V 到-24V 1A 79Lxx 系列3端负电压稳压器-5V 到-24V 0.1A LM117 +1.2V...+37V 1.5A 正电压可调稳压器LM217 +1.2V...+37V 1.5A 正电压可调稳压器LM317 +1.2V...+37V 1.5A 正电压可调稳压器LM137 -1.2V...-37V 1.5A 负电压可调稳压器LM237 -1.2V...-37V 1.5A 负电压可调稳压器LM337 -1.2V...-37V 1.5A 负电压可调稳压器LM138 +1.2V --32V 5-安培可调LM338 +1.2V -- 32V 5-安培可调LM723 高精度可调L200 2 A / 2.85 to 36 V.可调74LS00 Quad 2-Input 与非门74LS04 Hex 反相器74LS08 Quad 2 input 与门74LS10 Triple 3-Input 与非门74LS13 SCHMITT TRIGGERS 双门/HEX 反相器74LS14 SCHMITT TRIGGERS 双门/HEX 反相器74LS27 TRIPLE 3-INPUT NOR 门74LS30 8-Input 与非门74LS32 Quad 2 input OR74LS42 ONE-OF-TEN DECODER74LS45 BCD to Decimal Decoders/Drivers74LS47 BCD to 7 seg decoder/driver74LS90 Decade 与门Binary 记数器74LS92 Divide by 12 记数器74LS93Binary 记数器74LS121 Monostable multivibrator74LS154 4-Line to 16-Line Decoder/Demultiplexer74LS192 BCD up / down 记数器74LS193 4 bit binary up / down 记数器74HC237 3-to-8 line decoder/demultiplexer with address latches74LS374 3-STATE Octal D-Type Transparent Latches 与门Edge-Triggered Flip-Flops 74LS390 双DECADE 记数器双4-STAGE BINARY 记数器4001 Quad 2-input NOR 门4002 双4-input NOR 门4007 双Complementary Pair 与门反相器4011 Quad 2-Input NOR Buffered4013 双D-Type Flip-Flop4016 Quad Analog Switch/Quad Multiplexer4017 Decade 记数器/Divider4022 Divide-by-8 记数器/Divider with 8 Decoded Outputs4023 Triple 3-input 与非门4025 Triple 3-input NOR 门4026 DEC. COUN./DIVIDER WITH DECODED 7-SEG. DISPLAY OUTPUTS 4028 BCD to Decimal Decoder4029 Binary/Decade Up/Down 记数器4040 12-Stage Ripple-Carry Binary4046 Phase-Locked Loop4051 Single 8-Channel Analog4052 Differential 4-Channel Analog4053 Triple 2-Channel Multipl/Demul4054 显示驱动4055 显示驱动4056 显示驱动4060 14-Stage Ripple-Carry Binary C4066 Quad Bilateral Switch4067 Cmos Analog Multiplexer / Demultiplexer [266kb] 4068 8-input 与非门4069 Hex 反相器4071 Quad 2-input OR 门4072 双4-input OR 门4075 Triple 3-input OR 门4081 Quad 2-Input 与门门4082 双4-input 与门门4093 Quad 2-Input Schm.Trigger4511 BCD-to-7-Segment Latch Decade Driver4518 双BCD 记数器4583 双Schmitt Trigger4584 Hex Schmitt trigger如有侵权请联系告知删除,感谢你们的配合!。
液晶电视控制板规格书LM1EA
七、 接口定义
XS501(10PIN/2.54)板卡供电接口
管脚号
定义
1
12V
2
GND
3
5V
4
5V
5
5V
6
5V
7
GND
8
GND
9
STB
描述 12V 电源输入
地 5V 电源输入 5V 电源输入 5V 电源输入 5V 电源输入
地 地 开关电源待机控制
版权所有,内容如有更改,恕不另行通知
6
中国液晶之家 -
管脚号
定义
1
GND
2
GND
3
24V
4
24V
描述 地 地 功放电源输入 功放电源输入
XS803/XS805(4PIN/2.54)扬声器输出接口
管脚号
定义
描述
1
RO
扬声器右声道输出
2
GND
地
3
GND
地
4
LO
扬声器左声道输出
XS607(4PIN/2.0):IIC 接口
管脚号
定义
1
WP
2
GND
3
5VSB
上海战诚电子科技有限公司(Shanghai Kitking Electronic Co. LTD)
输出 外挂模块 DVD 或者 DVB/T
PC-RGB PC-RGB 音频输入 HDMI USB 耳机输出
1 D-Sub 15 针端子(蓝色) 1 耳机端子(绿色) 2 HDMI 端子 2 USB 端子 1 耳机端子(黑)
4
SDA
5
SCL
描述 写保护脚
地 5V 电源 IIC 总线的 SDA 线 IIC 总线的 SCL 线
放大器型号及选用原则
CA3130 高输入阻抗运算放大器Intersil[DATA]CA3140 高输入阻抗运算放大器CD4573 四可编程运算放大器MC14573ICL7650 斩波稳零放大器LF347(NS[DATA]) 带宽四运算放大器KA347LF351 BI-FET单运算放大器NS[DATA]LF353 BI-FET双运算放大器NS[DATA]LF356 BI-FET单运算放大器NS[DATA]LF357 BI-FET单运算放大器NS[DATA]LF398 采样保持放大器NS[DATA]LF411 BI-FET单运算放大器NS[DATA]LF412 BI-FET双运放大器NS[DATA]LM124 低功耗四运算放大器(军用档) NS[DATA]/TI[DATA]LM1458 双运算放大器NS[DATA]LM148 四运算放大器NS[DATA]LM224J 低功耗四运算放大器(工业档) NS[DATA]/TI[DATA] LM2902 四运算放大器NS[DATA]/TI[DATA]LM2904 双运放大器NS[DATA]/TI[DATA]LM301 运算放大器NS[DATA]LM308 运算放大器NS[DATA]LM308H 运算放大器(金属封装)NS[DATA]LM318 高速运算放大器NS[DATA]LM324(NS[DATA]) 四运算放大器HA17324,/LM324N(TI) LM348 四运算放大器NS[DATA]LM358 NS[DATA] 通用型双运算放大器HA17358/LM358P(TI) LM380 音频功率放大器NS[DATA]LM386-1 NS[DATA] 音频放大器NJM386D,UTC386LM386-3 音频放大器NS[DATA]LM386-4 音频放大器NS[DATA]LM3886 音频大功率放大器NS[DATA]LM3900 四运算放大器LM725 高精度运算放大器NS[DATA]LM733 带宽运算放大器LM741 NS[DATA] 通用型运算放大器HA17741MC34119 小功率音频放大器NE5532 高速低噪声双运算放大器TI[DATA]NE5534 高速低噪声单运算放大器TI[DATA]NE592 视频放大器OP07-CP 精密运算放大器TI[DATA]OP07-DP 精密运算放大器TI[DATA]TBA820M 小功率音频放大器ST[DATA]TL061 BI-FET单运算放大器TI[DATA]TL062 BI-FET双运算放大器TI[DATA]TL064 BI-FET四运算放大器TI[DATA]TL072 BI-FET双运算放大器TI[DATA] TL074 BI-FET四运算放大器TI[DATA] TL081 BI-FET单运算放大器TI[DATA] TL082 BI-FET双运算放大器TI[DATA] TL084 BI-FET四运算放大器TI[DATA]//----------------------------------------- 常用运放与常见运放型号简介LFC2 高增益运算放大器LFC3 中增益运算放大器LFC4 低功耗运算放大器LFC54 低功耗运算放大器LFC75 低功耗运算放大器F003 通用Ⅱ型运算放大器F004(5G23) 中增益运算放大器F005 中增益运算放大器F006 通用Ⅱ型运算放大器F007(5G24) 通用Ⅲ型运算放大器F010 低功耗运算放大器F011 低功耗运算放大器F1550 射频放大器F1490 宽频带放大器F1590 宽频带放大器F157/A 通用型运算放大器F253 低功耗运算放大器F741(F007) 通用Ⅲ型运算放大器F741A 通用型运算放大器F747 双运算放大器OP-07 超低失调运算放大器OP111A 低噪声运算放大器F4741 通用型四运算放大器F101A/201A 通用型运算放大器F301A 通用型运算放大器F108 通用型运算放大器F308 通用型运算放大器F110/210 电压跟随器F310 电压跟随器F118/218 高速运算放大器F441 低功耗JEET输入运算放大器F318 高速运算放大器F124/224 四运算放大器F324 四运算放大器F148 通用型四运算放大器F248/348 通用型四运算放大器F158/258 单电源双运算放大器F358 单电源双运算放大器F1558 通用型双运算放大器F4558 双运算放大器LF791 单块集成功率运算放大器LF4136 高性能四运算放大器FD37/FD38 运算放大器FD46 高速运送放大器LF082 高输入阻抗运送放大器LFOP37 超低噪声精密放大器LF3140 高输入阻抗双运送放大器LF7650 斩波自稳零运送放大器LZ1606 积分放大器LZ19001 挠性石英表伺服电路变换放大器LBMZ1901 热电偶温度变换器LM741 运算放大器LM747 双运算放大器OP-07 超低失调运算放大器LM101/201 通用型运算放大器LM301 通用型运算放大器LM108/208 通用型运算放大器LM308 通用型运算放大器LM110 电压跟随器LM310 电压跟随器LM118/218 高速运算放大器LM318 高速运算放大器LM124/224 四运算放大器LM324 四运算放大器LM148 四741运算放大器LM248/348 四741运算放大器LM158/258 单电源双运算放大器LM358 单电源双运算放大器LM1558 双运算放大器OP-27CP 低噪声运算放大器TL062 低功耗JEET运算放大器TL072 低噪声JEET输入型运算放大器TL081 通用JEET输入型运算放大器TL082 四高阻运算放大器(JEET)TL084 四高阻运算放大器(JEET)MC1458 双运放(内补偿)LF147/347 JEET输入型运算放大器LF156/256/356 JEET输入型运算放大器LF107/307 运算放大器LF351 宽带运算放大器LF353 双高阻运算放大器LF155/355 JEET输入型运算放大器LF157/357 JEET输入型运算放大器LM359 双运放(GB=400MC)LM381 双前置放大器CA3080 跨导运算放大器CA3100 宽频带运算放大器CA3130 BiMOS运算放大器CA3140 BiMOS运算放大器CA3240 BiMOS双运算放大器CA3193 BiMOS精密运算放大器CA3401 单电源运算放大器MC3303 单电源四运算放大器MC3403 低功耗四运放LF411 低失调低漂移JEET输入运放LF444 四高阻抗运算放大器μpc4558低噪声宽频带运放MC4741 四通用运放LM709 通用运放LM725 低漂移高精度运放LM733 宽带放大器LM748 双运放ICL7650 斩波稳零运放ICL7660 CMOS电压放大(变换)器=============常见运放型号简介CA3130 高输入阻抗运算放大器Intersil[DATA]CA3140 高输入阻抗运算放大器CD4573 四可编程运算放大器MC14573ICL7650 斩波稳零放大器LF347(NS[DATA]) 带宽四运算放大器KA347LF351 BI-FET单运算放大器NS[DATA]LF353 BI-FET双运算放大器NS[DATA]LF356 BI-FET单运算放大器NS[DATA]LF357 BI-FET单运算放大器NS[DATA]LF398 采样保持放大器NS[DATA]LF411 BI-FET单运算放大器NS[DATA]LF412 BI-FET双运放大器NS[DATA]LM124 低功耗四运算放大器(军用档) NS[DATA]/TI[DATA] LM1458 双运算放大器NS[DATA]LM148 四运算放大器NS[DATA]LM224J 低功耗四运算放大器(工业档) NS[DATA]/TI[DATA] LM2902 四运算放大器NS[DATA]/TI[DATA]LM2904 双运放大器NS[DATA]/TI[DATA]LM301 运算放大器NS[DATA]LM308 运算放大器NS[DATA]LM308H 运算放大器(金属封装)NS[DATA]LM318 高速运算放大器NS[DATA]LM324(NS[DATA]) 四运算放大器HA17324,/LM324N(TI)LM348 四运算放大器NS[DATA]LM358 NS[DATA] 通用型双运算放大器HA17358/LM358P(TI)LM380 音频功率放大器NS[DATA]LM386-1 NS[DATA] 音频放大器NJM386D,UTC386LM386-3 音频放大器NS[DATA]LM386-4 音频放大器NS[DATA]LM3886 音频大功率放大器NS[DATA]LM3900 四运算放大器LM725 高精度运算放大器NS[DATA]LM733 带宽运算放大器LM741 NS[DATA] 通用型运算放大器HA17741MC34119 小功率音频放大器NE5532 高速低噪声双运算放大器TI[DATA]NE5534 高速低噪声单运算放大器TI[DATA]NE592 视频放大器OP07-CP 精密运算放大器TI[DATA]OP07-DP 精密运算放大器TI[DATA]TBA820M 小功率音频放大器ST[DATA]TL061 BI-FET单运算放大器TI[DATA]TL062 BI-FET双运算放大器TI[DATA]TL064 BI-FET四运算放大器TI[DATA]TL072 BI-FET双运算放大器TI[DATA]TL074 BI-FET四运算放大器TI[DATA]TL081 BI-FET单运算放大器TI[DATA]TL082 BI-FET双运算放大器TI[DATA]TL084 BI-FET四运算放大器TI[DATA]2.2 主要交流指标开环带宽:开环带宽定义为,将一个恒幅正弦小信号输入到运放的输入端,从运放的输出端测得开环电压增益从运放的直流增益下降3db(或是相当于运放的直流增益的0.707)所对应的信号频率。
LM各芯片功能
LM各芯片功能电子2009-11-04 12:32:49 阅读53 评论0 字号:大中小LM12 80W OPERATIONAL AMPLIFIER 80瓦运算放大器LM124 LM224 LM324 LM2902 Low Power Quad Operational Amplifier 低电压双路运算放大器LM324 Low Power Quad Operational Amplifier 低电压双路运算放大器LM129 LM329 Precision Reference 精密电压基准芯片LM135 LM235 LM335 精密温度传感器芯片LM1458 LM1558 Dual Operational Amplifier 双运算放大器LM158 LM258 LM358 LM2904 Low Power Dual Operational Amplifier 低压双运算放大器LM18293 Four Channel Push-Pull Driver 四通道推拉驱动器LM1868 AM/FM Radio System 调幅/调频收音机芯片LM1951 Solid State 1 Amp Switch 1安培固态开关LM2574 Simple Switcher 0.5A Step-Down Voltage Regulator 0.5A降阶式电压调节器LM1575 LM2575 1A Step-Down Voltage Regulator 1A 降阶式电压调节器LM2576 3A Step-Down Voltage Regulator 3A 降阶式电压调节器LM1577 LM2577 Simple Switch Step-Down Voltage Regulator 降阶式电压调节器LM2587 Simple Switch 5A Flyback Regulator 5A 返馈开关式电压调节器LM1893 LM2893 Carrier Current Transceiver 载体电流收发器LM193 LM293 LM393 LM2903 Low Power Low Offset Voltage Dual Comparator 双路低压低漂移比较器LM2907 LM2917 Frequency to Voltage Converter 频率电压转换器LM101A LM201A LM301A Operational Amplifiers 运算放大器芯片LM3045 LM3046 LM3086 Transistor Array 晶体管阵列LM111 LM211 LM311 Voltage Comparator 电压比较器LM117 LM317 3-Terminal Adjustable Regulator 三端可调式稳压器LM118 LM218 LM318 Operational Amplifier 运算放大器LM133 LM333 3A Adjustable Negative Regulator 3安培可调负电压调节器LM137 LM337 3-Terminal Adjustable Negative Regulator 可调式三端负压稳压器LM34 Precision Fahrenheit Temperature Sensor 精密华氏温度传感器LM342 3-Terminal Positive Regulator 三端正压稳压器LM148 LM248 LM348 / LM149 LM349 双LM741运算放大器LM35 Precision Centigrade Temperature Sensors 精密摄氏温度传感器LM158 LM258 LM358 LM2904 Low Power Dual Operational Amplifiers 低压双运算放大器LM150 LM350 3A Adjustable Regulator 3安培可调式电压调节器LM380 2.5W Audio Amplifier 2.5瓦音频放大器LM386 Low Voltage Audio Power Amplifier 低压音频功率放大器LM3886 High-Performance 68W Audio Power Amplifier With Mute 高性能68瓦音频功率放大器/带静音LM555 LM555C Timer Circuit 时基发生器电路LM556 LM556C Timer Circuit 双时基发生器电路LM565 Phase Locked Loop 相位跟随器LM567 Tone Decoder 音频译码器LM621 BrushLess Motor Commutator 无刷电机换向器LM628 LM629 Precision Motion Controller 精密位移控制器LM675 Power Operational Amplifier 功率运算放大器LM723 Voltage Regulator 电压调节器LM741 Operational Amplifier 运算放大器LM7805 LM78xx 系列稳压器LM7812 LM78xx 系列稳压器LM7815 LM78xx 系列稳压器LM78L00 3-Terminal Positive Voltage Regulator 三端正压调节器LM78L05 3-Terminal Positive Voltage Regulator 三端正压调节器LM78L09 3-Terminal Positive Voltage Regulator 三端正压调节器LM78L12 3-Terminal Positive Voltage Regulator 三端正压调节器LM78L15 3-Terminal Positive Voltage Regulator 三端正压调节器LM78L62 3-Terminal Positive Voltage Regulator 三端正压调节器LM78L82 3-Terminal Positive Voltage Regulator 三端正压调节器LM340 LM78Mxx Series 3-Terminal Positive Regulator 三端正压稳压器LM7905 3-Terminal Nagative Voltage Regulator 三端负压调节器LM7912 3-Terminal Nagative Voltage Regulator 三端负压调节器LM7915 3-Terminal Nagative Voltage Regulator 三端负压调节器LM79Mxx 3-Terminal Nagative Voltage Regulator 三端负压调节器LF147 LF347 Wide Bandwidth Quad JFET input operational amplifier 宽带J型场效应输入运算放大器LF351 Wide Bandwidth Quad JFET input operational amplifier 宽带J型场效应输入运算放大器LF353 Wide Bandwidth Quad JFET input operational amplifier 宽带J型场效应输入运算放大器LF444 Quad Low Power JFET input operational amplifier 双低压J型场效应输入运算放大器。
LM101
V IO MAX at 25°CPACKAGEVLM101A, LM201A, LM301AHIGH-PERFORMANCE OPERATIONAL AMPLIFIERSPARAMETERTEST CONDITIONS †UNIT mV V IO Input offset voltageV O = 0Full rangeV O = 0αVIO 315630µV/°C Input offset current I IOnAαIIOnA/°CI IBInput bias currentnAV OPPVA VDLarge-signal differential voltage amplificationV CC ± = ±15 V,V O = ±10 V,R L ≥ 2 k Ω25°C Full range502002520025V/mV15CMRR Common-mode rejection ratio V IC = V ICR mindB k SVR dBI CCSupply current mALM101A, LM201A, LM301AHIGH-PERFORMANCE OPERATIONAL AMPLIFIERSLM101A, LM201A, LM301AHIGH-PERFORMANCE OPERATIONAL AMPLIFIERSLM101A, LM201A, LM301A HIGH-PERFORMANCE OPERATIONAL AMPLIFIERSLM101A, LM201A, LM301AHIGH-PERFORMANCE OPERATIONAL AMPLIFIERSIMPORTANT NOTICETexas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER’S RISK.In order to minimize risks associated with the customer’s applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI’s publication of information regarding any third party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.Copyright © 1998, Texas Instruments Incorporated。
LM系列芯片功能
LM1893 LM2893 Carrier Current Transceiver 载体电流收发器
LM193 LM293 LM393 LM2903 Low Power Low Offset Voltage Dual Comparator 双路低压低漂移比较器
LM137 LM337 3-Terminal Adjustable Negative Regulator 可调式三端负压稳压器
LM34 Precision Fahrenheit Temperature Sensor 精密华氏温度传感器
LM342 3-Terminal Positive Regulator 三端正压稳压器
LM555 LM555C Timer Circuit 时基发生器电路
LM556 LM556C Timer Circuit 双时基发生器电路
LM565 Phase Locked Loop 相位跟随器
LM567 Tone Decoder 音频译码器
LM621 BrushLess Motor Commutator 无刷电机换向器
LM18293 Four Channel Push-Pull Driver 四通道推拉驱ystem 调幅/调频收音机芯片
LM1951 Solid State 1 Amp Switch 1安培固态开关
LM2574 Simple Switcher 0.5A Step-Down Voltage Regulator 0.5A降阶式电压调节器
LM7805 LM78xx 系列稳压器
LM7812 LM78xx 系列稳压器
LM201AH中文资料
LM101A/LM201A/LM301A Operational AmplifiersGeneral DescriptionThe LM101A series are general purpose operational amplifi-ers which feature improved performance over industry stan-dards like the LM709.Advanced processing techniques make possible an order of magnitude reduction in input cur-rents,and a redesign of the biasing circuitry reduces the temperature drift of input current.Improved specifications in-clude:•Offset voltage 3mV maximum over temperature (LM101A/LM201A)•Input current 100nA maximum over temperature (LM101A/LM201A)•Offset current 20nA maximum over temperature (LM101A/LM201A)•Guaranteed drift characteristics•Offsets guaranteed over entire common mode and sup-ply voltage ranges•Slew rate of 10V/µs as a summing amplifierThis amplifier offers many features which make its appli-cation nearly foolproof:overload protection on the inputand output,no latch-up when the common mode range is exceeded,and freedom from oscillations and compensa-tion with a single 30pF capacitor.It has advantages over internally compensated amplifiers in that the frequency compensation can be tailored to the particular applica-tion.For example,in low frequency circuits it can be over-compensated for increased stability margin.Or the com-pensation can be optimized to give more than a factor of ten improvement in high frequency performance for most applications.In addition,the device provides better accuracy and lower noise in high impedance circuitry.The low input currents also make it particularly well suited for long interval inte-grators or timers,sample and hold circuits and low fre-quency waveform generators.Further,replacing circuits where matched transistor pairs buffer the inputs of con-ventional IC op amps,it can give lower offset voltage and a drift at a lower cost.The LM101A is guaranteed over a temperature range of −55˚C to +125˚C,the LM201A from −25˚C to +85˚C,and the LM301A from 0˚C to +70˚C.Connection Diagrams(Top View)Dual-In-Line PackageDS007752-4Order Number LM101AJ,LM101J/883(Note 1),LM201AN or LM301ANSee NS Package Number J08A or N08ECeramic Flatpack PackageDS007752-40Order Number LM101AW/883or LM101W/883See NS Package Number W10ASeptember 1999LM101A/LM201A/LM301A Operational Amplifiers©1999National Semiconductor Corporation Connection Diagrams(Top View)(Continued)Note 1:Available per JM38510/10103.Metal Can PackageDS007752-2Note:Pin 4connected to case.Order Number LM101AH,LM101AH/883(Note 1),LM201AH or LM301AHSee NS Package Number H08CDual-In-Line PackageDS007752-3Order Number LM101AJ-14/883(Note 1)See NS Package Number J14A 2Absolute Maximum Ratings(Note2)If Military/Aerospace specified devices are required,please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.LM101A/LM201A LM301A Supply Voltage±22V±18VDifferential Input Voltage±30V±30VInput Voltage(Note3)±15V±15VOutput Short Circuit Duration(Note4)Continuous ContinuousOperating Ambient Temp.Range−55˚C to+125˚C(LM101A)0˚C to+70˚C−25˚C to+85˚C(LM201A)T J MaxH-Package150˚C100˚CN-Package150˚C100˚CJ-Package150˚C100˚CPower Dissipation at T A=25˚CH-Package(Still Air)500mW300mW(400LF/Min Air Flow)1200mW700mWN-Package900mW500mWJ-Package1000mW650mWThermal Resistance(Typical)θjAH-Package(Still Air)165˚C/W165˚C/W(400LF/Min Air Flow)67˚C/W67˚C/WN Package135˚C/W135˚C/WJ-Package110˚C/W110˚CmW(Typical)θjCH-Package25˚C/W25˚C/WStorage Temperature Range−65˚C to+150˚C−65˚C to+150˚C Lead Temperature(Soldering,10sec.)Metal Can or Ceramic300˚C300˚CPlastic260˚C260˚CESD Tolerance(Note7)2000V2000V Electrical Characteristics(Note5)T A=T JParameter Conditions LM101A/LM201A LM301A UnitsMin Typ Max Min Typ MaxInput Offset Voltage T A=25˚C,R S≤50kΩ0.7 2.0 2.07.5mV Input Offset Current T A=25˚C 1.510 3.050nA Input Bias Current T A=25˚C307570250nA Input Resistance T A=25˚C 1.5 4.00.5 2.0MΩSupply Current T A=25˚C V S=±20V 1.8 3.0mAV S=±15V 1.8 3.0mA Large Signal Voltage Gain T A=25˚C,V S=±15V5016025160V/mVV OUT=±10V,R L≥2kΩInput Offset Voltage R S≤50kΩ 3.010mV Average Temperature Coefficient R S≤50kΩ 3.015 6.030µV/˚Cof Input Offset VoltageInput Offset Current2070nA Average Temperature Coefficient25˚C≤T A≤T MAX0.010.10.010.3nA/˚Cof Input Offset Current T MIN≤T A≤25˚C0.020.20.020.6nA/˚C Input Bias Current0.10.3µA Supply Current T A=T MAX,V S=±20V 1.2 2.5mA3Electrical Characteristics (Note 5)(Continued)T A =T JParameterConditionsLM101A/LM201A LM301A Units Min TypMax MinTypMaxLarge Signal Voltage Gain V S =±15V,V OUT =±10V 2515V/mVR L ≥2k Output Voltage Swing V S =±15V R L =10k Ω±12±14±12±14V R L =2k Ω±10±13±10±13V Input Voltage RangeV S =±20V ±15V V S =±15V +15,−13±12+15,−13V Common-Mode Rejection Ratio R S ≤50k Ω80967090dB Supply Voltage Rejection RatioR S ≤50k Ω80967096dBNote 2:Absolute Maximum Ratings indicate limits beyond which damage to the device may occur.Operating ratings indicate for which the device is functional,but do no guarantee specific performance limits.Electrical Characteristics state DC and AC electrical specifications under particular test conditions which guarantee spe-cific limits.This assumes that the device is within the Operating Ratings.Specifications are not guaranteed for parameters where no limit is given,however,the typical value is a good indication of device performance.Note 3:For supply voltages less than ±15V,the absolute maximum input voltage is equal to the supply voltage.Note 4:Continuous short circuit is allowed for case temperatures to 125˚C and ambient temperatures to 75˚C for LM101A/LM201A,and 70˚C and 55˚C respectively for LM301A.Note 5:Unless otherwise specified,these specifications apply for C1=30pF,±5V ≤V S ≤±20V and −55˚C ≤T A ≤+125˚C (LM101A),±5V ≤V S ≤±20V and −25˚C ≤T A ≤+85˚C (LM201A),±5V ≤V S ≤±15V and 0˚C ≤T A ≤+70˚C (LM301A).Note 6:Refer to RETS101AX for LM101A military specifications and RETS101X for LM101military specifications.Note 7:Human body model,100pF discharged through 1.5k Ω.Guaranteed Performance CharacteristicsLM101A/LM201AGuaranteed Performance CharacteristicsLM301AInput Voltage RangeDS007752-41Output SwingDS007752-42Voltage GainDS007752-43Input Voltage RangeDS007752-44Output SwingDS007752-45Voltage GainDS007752-46 4Typical Performance CharacteristicsSupply CurrentDS007752-47Voltage GainDS007752-48Maximum Power DissipationDS007752-49Input Current,LM101A/LM201A/LM301ADS007752-50Current LimitingDS007752-51Input Noise VoltageDS007752-52Input Noise CurrentDS007752-53Common Mode RejectionDS007752-54Power Supply RejectionDS007752-55 5Typical Performance Characteristics(Continued)Typical Performance Characteristics for Various Compensation Circuits (Note9)Closed Loop OutputImpedanceDS007752-56Single Pole CompensationDS007752-8C S=30pFTwo Pole CompensationDS007752-12C S=30pFC2=10C1Feedforward CompensationDS007752-16f o=3MHz6Typical Performance Characteristics for Various Compensation Circuits (Note9)(Continued)Open Loop FrequencyResponseDS007752-9Open Loop FrequencyResponseDS007752-13Open Loop FrequencyResponseDS007752-17Large Signal Frequency ResponseDS007752-10Large Signal FrequencyResponseDS007752-14Large Signal FrequencyResponseDS007752-18Voltage Follower Pulse ResponseDS007752-11Voltage Follower PulseResponseDS007752-15Inverter Pulse ResponseDS007752-19 7Typical Applications(Note9)Variable Capacitance MultiplierDS007752-20Simulated InductorDS007752-21L≅R1R2C1R S=R2R P=R1Fast Inverting Amplifierwith High Input ImpedanceDS007752-22Inverting Amplifierwith Balancing CircuitDS007752-23†May be zero or equal to parallel combination of R1and R2for minimumoffset.Sine Wave OscillatorDS007752-24f o=10kHz8Typical Applications(Note 9)(Continued)Application Hints (Note 9)Although the LM101A is designed for trouble free operation,experience has indicated that it is wise to observe certain precautions given below to protect the devices from abnor-mal operating conditions.It might be pointed out that the ad-vice given here is applicable to practically any IC op amp,al-though the exact reason why may differ with different devices.Integrator with Bias Current CompensationDS007752-25*Adjust for zero integrator drift.Current drift typically 0.1nA/˚C over −55˚C to +125˚C temperature range.Protecting Against GrossFault ConditionsDS007752-26*Protects input †Protects output‡Protects output —not needed when R4is used.Compensating for Stray Input Capacitancesor Large Feedback ResistorDS007752-27Isolating Large Capacitive LoadsDS007752-289Application Hints (Note 9)(Continued)When driving either input from a low-impedance source,a limiting resistor should be placed in series with the input lead to limit the peak instantaneous output current of the source to something less than 100mA.This is especially important when the inputs go outside a piece of equipment where they could accidentally be connected to high voltage rge capacitors on the input (greater than 0.1µF)should be treated as a low source impedance and isolated with a resis-tor.Low impedance sources do not cause a problem unless their output voltage exceeds the supply voltage.However,the supplies go to zero when they are turned off,so the iso-lation is usually needed.The output circuitry is protected against damage from shorts to ground.However,when the amplifier output is connected to a test point,it should be isolated by a limiting resistor,as test points frequently get shorted to bad places.Further,when the amplifer drives a load external to the equipment,it is also advisable to use some sort of limiting resistance to preclude mishaps.Precautions should be taken to insure that the power sup-plies for the integrated circuit never become reversed —even under transient conditions.With reverse voltages greater than 1V,the IC will conduct excessive cur-rent,fusing internal aluminum interconnects.If there is a possibility of this happening,clamp diodes with a high peak current rating should be installed on the supply lines.Rever-sal of the voltage between V +and V −will always cause a problem,although reversals with respect to ground may also give difficulties in many circuits.The minimum values given for the frequency compensation capacitor are stable only for source resistances less than 10k Ω,stray capacitances on the summing junction less than 5pF and capacitive loads smaller than 100pF.If any of these conditions are not met,it becomes necessary to over-compensate the amplifier with a larger compensation capaci-tor.Alternately,lead capacitors can be used in the feedback network to negate the effect of stray capacitance and large feedback resistors or an RC network can be added to isolate capacitive loads.Although the LM101A is relatively unaffected by supply by-passing,this cannot be ignored altogether.Generally it is necessary to bypass the supplies to ground at least once on every circuit card,and more bypass points may be required if more than five amplifiers are used.When feed-forward compensation is employed,however,it is advisable to by-pass the supply leads of each amplifier with low inductance capacitors because of the higher frequencies involved.Typical Applications(Note 9)Standard Compensation and Offset Balancing CircuitDS007752-29Fast Voltage FollowerDS007752-31Power Bandwidth:15kHz Slew Rate:1V/µs 10Typical Applications(Note 9)(Continued)Fast Summing AmplifierDS007752-30Power Bandwidth:250kHzSmall Signal Bandwiidth:3.5MHz Slew Rate:10V/µsBilateral Current SourceDS007752-32R3=R4+R5R1=R2Fast AC/DC Converter (Note 8)DS007752-33Note 8:Feedforward compensation can be used to make a fast full wave rectifier without a filter.11Typical Applications(Note 9)(Continued)Instrumentation AmplifierDS007752-34R1=R4;R2=R3*,†Matching determines CMRR.Integrator with Bias Current CompensationDS007752-35*Adjust for zero integrator drift.Current drift typically 0.1nA/˚C over 0˚C to+70˚C temperature range.Voltage Comparator for Driving RTL Logic or HighCurrent DriverDS007752-37 12Typical Applications(Note9)(Continued)Low Frequency Square Wave GeneratorDS007752-36Low Drift Sample and HoldDS007752-38 *Polycarbonate-dielectric capacitorVoltage Comparator for DrivingDTL or TTL Integrated CircuitsDS007752-39 13Schematic(Note9)DS007752-1 Note9:Pin connections shown are for8-pin packages.14Physical Dimensions inches(millimeters)unless otherwise notedMetal Can Package(H)Order Number LM101AH,LM101AH/883LM201AH or LM301AHNS Package Number H08CCeramic Dual-In-Line Package(J)Order Number LM101J/883or LM101AJNS Package Number J08A15Physical Dimensions inches(millimeters)unless otherwise noted(Continued)Ceramic Dual-In-Line Package(J)Order Number LM101AJ-14/883NS Package Number J14AMolded Dual-In-Line Package(N)Order Number LM201AN or LM301ANNS Package Number N08E16Physical Dimensions inches(millimeters)unless otherwise noted(Continued)LIFE SUPPORT POLICYNATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION.As used herein:1.Life support devices or systems are devices orsystems which,(a)are intended for surgical implantinto the body,or(b)support or sustain life,andwhose failure to perform when properly used inaccordance with instructions for use provided in thelabeling,can be reasonably expected to result in asignificant injury to the user.2.A critical component is any component of a lifesupport device or system whose failure to performcan be reasonably expected to cause the failure ofthe life support device or system,or to affect itssafety or effectiveness.National SemiconductorCorporationAmericasTel:1-800-272-9959Fax:1-800-737-7018Email:support@National SemiconductorEuropeFax:+49(0)180-5308586Email:europe.support@Deutsch Tel:+49(0)180-5308585English Tel:+49(0)180-5327832Français Tel:+49(0)180-5329358Italiano Tel:+49(0)180-5341680National SemiconductorAsia Pacific CustomerResponse GroupTel:65-2544466Fax:65-2504466Email:sea.support@National SemiconductorJapan Ltd.Tel:81-3-5639-7560Fax:81-3-5639-7507 Ceramic Flatpack Package(W)Order Number LM101AW/883or LM101W/883NS Package Number W10ALM101A/LM201A/LM301AOperationalAmplifiers National does not assume any responsibility for use of any circuitry described,no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.。
LM301AH中文资料
LM101A/LM201A/LM301A Operational AmplifiersGeneral DescriptionThe LM101A series are general purpose operational amplifi-ers which feature improved performance over industry stan-dards like the LM709.Advanced processing techniques make possible an order of magnitude reduction in input cur-rents,and a redesign of the biasing circuitry reduces the temperature drift of input current.Improved specifications in-clude:•Offset voltage 3mV maximum over temperature (LM101A/LM201A)•Input current 100nA maximum over temperature (LM101A/LM201A)•Offset current 20nA maximum over temperature (LM101A/LM201A)•Guaranteed drift characteristics•Offsets guaranteed over entire common mode and sup-ply voltage ranges•Slew rate of 10V/µs as a summing amplifierThis amplifier offers many features which make its appli-cation nearly foolproof:overload protection on the inputand output,no latch-up when the common mode range is exceeded,and freedom from oscillations and compensa-tion with a single 30pF capacitor.It has advantages over internally compensated amplifiers in that the frequency compensation can be tailored to the particular applica-tion.For example,in low frequency circuits it can be over-compensated for increased stability margin.Or the com-pensation can be optimized to give more than a factor of ten improvement in high frequency performance for most applications.In addition,the device provides better accuracy and lower noise in high impedance circuitry.The low input currents also make it particularly well suited for long interval inte-grators or timers,sample and hold circuits and low fre-quency waveform generators.Further,replacing circuits where matched transistor pairs buffer the inputs of con-ventional IC op amps,it can give lower offset voltage and a drift at a lower cost.The LM101A is guaranteed over a temperature range of −55˚C to +125˚C,the LM201A from −25˚C to +85˚C,and the LM301A from 0˚C to +70˚C.Connection Diagrams(Top View)Dual-In-Line PackageDS007752-4Order Number LM101AJ,LM101J/883(Note 1),LM201AN or LM301ANSee NS Package Number J08A or N08ECeramic Flatpack PackageDS007752-40Order Number LM101AW/883or LM101W/883See NS Package Number W10ASeptember 1999LM101A/LM201A/LM301A Operational Amplifiers©1999National Semiconductor Corporation Connection Diagrams(Top View)(Continued)Note 1:Available per JM38510/10103.Metal Can PackageDS007752-2Note:Pin 4connected to case.Order Number LM101AH,LM101AH/883(Note 1),LM201AH or LM301AHSee NS Package Number H08CDual-In-Line PackageDS007752-3Order Number LM101AJ-14/883(Note 1)See NS Package Number J14A 2Absolute Maximum Ratings(Note2)If Military/Aerospace specified devices are required,please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.LM101A/LM201A LM301A Supply Voltage±22V±18VDifferential Input Voltage±30V±30VInput Voltage(Note3)±15V±15VOutput Short Circuit Duration(Note4)Continuous ContinuousOperating Ambient Temp.Range−55˚C to+125˚C(LM101A)0˚C to+70˚C−25˚C to+85˚C(LM201A)T J MaxH-Package150˚C100˚CN-Package150˚C100˚CJ-Package150˚C100˚CPower Dissipation at T A=25˚CH-Package(Still Air)500mW300mW(400LF/Min Air Flow)1200mW700mWN-Package900mW500mWJ-Package1000mW650mWThermal Resistance(Typical)θjAH-Package(Still Air)165˚C/W165˚C/W(400LF/Min Air Flow)67˚C/W67˚C/WN Package135˚C/W135˚C/WJ-Package110˚C/W110˚CmW(Typical)θjCH-Package25˚C/W25˚C/WStorage Temperature Range−65˚C to+150˚C−65˚C to+150˚C Lead Temperature(Soldering,10sec.)Metal Can or Ceramic300˚C300˚CPlastic260˚C260˚CESD Tolerance(Note7)2000V2000V Electrical Characteristics(Note5)T A=T JParameter Conditions LM101A/LM201A LM301A UnitsMin Typ Max Min Typ MaxInput Offset Voltage T A=25˚C,R S≤50kΩ0.7 2.0 2.07.5mV Input Offset Current T A=25˚C 1.510 3.050nA Input Bias Current T A=25˚C307570250nA Input Resistance T A=25˚C 1.5 4.00.5 2.0MΩSupply Current T A=25˚C V S=±20V 1.8 3.0mAV S=±15V 1.8 3.0mA Large Signal Voltage Gain T A=25˚C,V S=±15V5016025160V/mVV OUT=±10V,R L≥2kΩInput Offset Voltage R S≤50kΩ 3.010mV Average Temperature Coefficient R S≤50kΩ 3.015 6.030µV/˚Cof Input Offset VoltageInput Offset Current2070nA Average Temperature Coefficient25˚C≤T A≤T MAX0.010.10.010.3nA/˚Cof Input Offset Current T MIN≤T A≤25˚C0.020.20.020.6nA/˚C Input Bias Current0.10.3µA Supply Current T A=T MAX,V S=±20V 1.2 2.5mA3Electrical Characteristics (Note 5)(Continued)T A =T JParameterConditionsLM101A/LM201A LM301A Units Min TypMax MinTypMaxLarge Signal Voltage Gain V S =±15V,V OUT =±10V 2515V/mVR L ≥2k Output Voltage Swing V S =±15V R L =10k Ω±12±14±12±14V R L =2k Ω±10±13±10±13V Input Voltage RangeV S =±20V ±15V V S =±15V +15,−13±12+15,−13V Common-Mode Rejection Ratio R S ≤50k Ω80967090dB Supply Voltage Rejection RatioR S ≤50k Ω80967096dBNote 2:Absolute Maximum Ratings indicate limits beyond which damage to the device may occur.Operating ratings indicate for which the device is functional,but do no guarantee specific performance limits.Electrical Characteristics state DC and AC electrical specifications under particular test conditions which guarantee spe-cific limits.This assumes that the device is within the Operating Ratings.Specifications are not guaranteed for parameters where no limit is given,however,the typical value is a good indication of device performance.Note 3:For supply voltages less than ±15V,the absolute maximum input voltage is equal to the supply voltage.Note 4:Continuous short circuit is allowed for case temperatures to 125˚C and ambient temperatures to 75˚C for LM101A/LM201A,and 70˚C and 55˚C respectively for LM301A.Note 5:Unless otherwise specified,these specifications apply for C1=30pF,±5V ≤V S ≤±20V and −55˚C ≤T A ≤+125˚C (LM101A),±5V ≤V S ≤±20V and −25˚C ≤T A ≤+85˚C (LM201A),±5V ≤V S ≤±15V and 0˚C ≤T A ≤+70˚C (LM301A).Note 6:Refer to RETS101AX for LM101A military specifications and RETS101X for LM101military specifications.Note 7:Human body model,100pF discharged through 1.5k Ω.Guaranteed Performance CharacteristicsLM101A/LM201AGuaranteed Performance CharacteristicsLM301AInput Voltage RangeDS007752-41Output SwingDS007752-42Voltage GainDS007752-43Input Voltage RangeDS007752-44Output SwingDS007752-45Voltage GainDS007752-46 4Typical Performance CharacteristicsSupply CurrentDS007752-47Voltage GainDS007752-48Maximum Power DissipationDS007752-49Input Current,LM101A/LM201A/LM301ADS007752-50Current LimitingDS007752-51Input Noise VoltageDS007752-52Input Noise CurrentDS007752-53Common Mode RejectionDS007752-54Power Supply RejectionDS007752-55 5Typical Performance Characteristics(Continued)Typical Performance Characteristics for Various Compensation Circuits (Note9)Closed Loop OutputImpedanceDS007752-56Single Pole CompensationDS007752-8C S=30pFTwo Pole CompensationDS007752-12C S=30pFC2=10C1Feedforward CompensationDS007752-16f o=3MHz6Typical Performance Characteristics for Various Compensation Circuits (Note9)(Continued)Open Loop FrequencyResponseDS007752-9Open Loop FrequencyResponseDS007752-13Open Loop FrequencyResponseDS007752-17Large Signal Frequency ResponseDS007752-10Large Signal FrequencyResponseDS007752-14Large Signal FrequencyResponseDS007752-18Voltage Follower Pulse ResponseDS007752-11Voltage Follower PulseResponseDS007752-15Inverter Pulse ResponseDS007752-19 7Typical Applications(Note9)Variable Capacitance MultiplierDS007752-20Simulated InductorDS007752-22Inverting Amplifierwith Balancing CircuitDS007752-23†May be zero or equal to parallel combination of R1and R2for minimumoffset.Sine Wave OscillatorDS007752-24f o=10kHz8Typical Applications(Note 9)(Continued)Application Hints (Note 9)Although the LM101A is designed for trouble free operation,experience has indicated that it is wise to observe certain precautions given below to protect the devices from abnor-mal operating conditions.It might be pointed out that the ad-vice given here is applicable to practically any IC op amp,al-though the exact reason why may differ with different devices.Integrator with Bias Current CompensationDS007752-25*Adjust for zero integrator drift.Current drift typically 0.1nA/˚C over −55˚C to +125˚C temperature range.Protecting Against GrossFault ConditionsDS007752-26*Protects input †Protects output‡Protects output —not needed when R4is used.Compensating for Stray Input Capacitancesor Large Feedback ResistorDS007752-27Isolating Large Capacitive LoadsDS007752-289Application Hints (Note 9)(Continued)When driving either input from a low-impedance source,a limiting resistor should be placed in series with the input lead to limit the peak instantaneous output current of the source to something less than 100mA.This is especially important when the inputs go outside a piece of equipment where they could accidentally be connected to high voltage rge capacitors on the input (greater than 0.1µF)should be treated as a low source impedance and isolated with a resis-tor.Low impedance sources do not cause a problem unless their output voltage exceeds the supply voltage.However,the supplies go to zero when they are turned off,so the iso-lation is usually needed.The output circuitry is protected against damage from shorts to ground.However,when the amplifier output is connected to a test point,it should be isolated by a limiting resistor,as test points frequently get shorted to bad places.Further,when the amplifer drives a load external to the equipment,it is also advisable to use some sort of limiting resistance to preclude mishaps.Precautions should be taken to insure that the power sup-plies for the integrated circuit never become reversed —even under transient conditions.With reverse voltages greater than 1V,the IC will conduct excessive cur-rent,fusing internal aluminum interconnects.If there is a possibility of this happening,clamp diodes with a high peak current rating should be installed on the supply lines.Rever-sal of the voltage between V +and V −will always cause a problem,although reversals with respect to ground may also give difficulties in many circuits.The minimum values given for the frequency compensation capacitor are stable only for source resistances less than 10k Ω,stray capacitances on the summing junction less than 5pF and capacitive loads smaller than 100pF.If any of these conditions are not met,it becomes necessary to over-compensate the amplifier with a larger compensation capaci-tor.Alternately,lead capacitors can be used in the feedback network to negate the effect of stray capacitance and large feedback resistors or an RC network can be added to isolate capacitive loads.Although the LM101A is relatively unaffected by supply by-passing,this cannot be ignored altogether.Generally it is necessary to bypass the supplies to ground at least once on every circuit card,and more bypass points may be required if more than five amplifiers are used.When feed-forward compensation is employed,however,it is advisable to by-pass the supply leads of each amplifier with low inductance capacitors because of the higher frequencies involved.Typical Applications(Note 9)Standard Compensation and Offset Balancing CircuitDS007752-29Fast Voltage FollowerDS007752-31Power Bandwidth:15kHz Slew Rate:1V/µs 10Typical Applications(Note 9)(Continued)Fast Summing AmplifierDS007752-30Power Bandwidth:250kHzSmall Signal Bandwiidth:3.5MHz Slew Rate:10V/µsBilateral Current SourceDS007752-32R3=R4+R5R1=R2Fast AC/DC Converter (Note 8)DS007752-33Note 8:Feedforward compensation can be used to make a fast full wave rectifier without a filter.11Typical Applications(Note 9)(Continued)Instrumentation AmplifierDS007752-34R1=R4;R2=R3*,†Matching determines CMRR.Integrator with Bias Current CompensationDS007752-35*Adjust for zero integrator drift.Current drift typically 0.1nA/˚C over 0˚C to+70˚C temperature range.Voltage Comparator for Driving RTL Logic or HighCurrent DriverDS007752-37 12Typical Applications(Note9)(Continued)Low Frequency Square Wave GeneratorDS007752-36Low Drift Sample and HoldDS007752-38 *Polycarbonate-dielectric capacitorVoltage Comparator for DrivingDTL or TTL Integrated CircuitsDS007752-39 13Schematic(Note9)DS007752-1 Note9:Pin connections shown are for8-pin packages.14Physical Dimensions inches(millimeters)unless otherwise notedMetal Can Package(H)Order Number LM101AH,LM101AH/883LM201AH or LM301AHNS Package Number H08CCeramic Dual-In-Line Package(J)Order Number LM101J/883or LM101AJNS Package Number J08A15Physical Dimensions inches(millimeters)unless otherwise noted(Continued)Ceramic Dual-In-Line Package(J)Order Number LM101AJ-14/883NS Package Number J14AMolded Dual-In-Line Package(N)Order Number LM201AN or LM301ANNS Package Number N08E16Physical Dimensions inches(millimeters)unless otherwise noted(Continued)LIFE SUPPORT POLICYNATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION.As used herein:1.Life support devices or systems are devices orsystems which,(a)are intended for surgical implantinto the body,or(b)support or sustain life,andwhose failure to perform when properly used inaccordance with instructions for use provided in thelabeling,can be reasonably expected to result in asignificant injury to the user.2.A critical component is any component of a lifesupport device or system whose failure to performcan be reasonably expected to cause the failure ofthe life support device or system,or to affect itssafety or effectiveness.National SemiconductorCorporationAmericasTel:1-800-272-9959Fax:1-800-737-7018Email:support@National SemiconductorEuropeFax:+49(0)180-5308586Email:europe.support@Deutsch Tel:+49(0)180-5308585English Tel:+49(0)180-5327832Français Tel:+49(0)180-5329358Italiano Tel:+49(0)180-5341680National SemiconductorAsia Pacific CustomerResponse GroupTel:65-2544466Fax:65-2504466Email:sea.support@National SemiconductorJapan Ltd.Tel:81-3-5639-7560Fax:81-3-5639-7507 Ceramic Flatpack Package(W)Order Number LM101AW/883or LM101W/883NS Package Number W10ALM101A/LM201A/LM301AOperationalAmplifiers National does not assume any responsibility for use of any circuitry described,no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.。
LM301A中文资料
8 1
Figure 1. Standard Compensation and Offset Balancing Circuit
VEE Inverting Input Non– Inverting Input Balance 10 MΩ VCC Output + Freq Compen 30 pF
Figure 2. Double–Ended Limit Detector
2
MOTOROLA ANALOG IC DEVICE DATA
元器件交易网
LM301A LM201A
Figure 4. Minimum Input Voltage Range
VOR, OUTPUT VOLTAGE RANGE ( ±V) 20 VIR , INPUT VOLTAGE RANGE (V) 16 Applicable to the Specified Operating Temperature Ranges 20 16 Applicable to the Specified Operating Temperature Ranges
MAXIMUM RATINGS
Value Rating Power Supply Voltage Input Differential Voltage Input Common Mode Range (Note 1) Output Short Circuit Duration Power Dissipation (Package Limitation) Plastic Dual–In–Line Package (LM201A/ Derate above TA = +25°C 301A) Operating Ambient Temperature Range Storage Temperature Range Symbol VCC, VEE VID VICR tSC PD 625 5.0 TA Tstg –25 to +85 625 5.0 0 to +70 mW mW/°C °C °C LM201A ±22 ±30 ±15 Continuous LM301A ±18 Unit Vdc V V
及其他系列芯片引脚图资料大全
一:分类74ls00 2输入四与非门74ls01 2输入四与非门(oc)74ls02 2输入四或非门74ls03 2输入四与非门(oc)74ls04 六倒相器74ls05 六倒相器(oc)74ls06 六高压输出反相缓冲器/驱动器(oc,30v) 74ls07 六高压输出缓冲器/驱动器(oc,30v)74ls08 2输入四与门74ls09 2输入四与门(oc)74ls10 3输入三与非门74ls11 3输入三与门74ls12 3输入三与非门(oc)74ls13 4输入双与非门(斯密特触发)74ls14 六倒相器(斯密特触发)74ls15 3输入三与门(oc)74ls16 六高压输出反相缓冲器/驱动器(oc,15v) 74ls17 六高压输出缓冲器/驱动器(oc,15v)74ls18 4输入双与非门(斯密特触发)74ls19 六倒相器(斯密特触发) 74ls20 4输入双与非门74ls21 4输入双与门74ls22 4输入双与非门(oc)74ls23 双可扩展的输入或非门74ls24 2输入四与非门(斯密特触发)74ls25 4输入双或非门(有选通)74ls26 2输入四高电平接口与非缓冲器(oc,15v) 74ls27 3输入三或非门74ls28 2输入四或非缓冲器74ls30 8输入与非门74ls31 延迟电路74ls32 2输入四或门74ls33 2输入四或非缓冲器(集电极开路输出) 74ls34 六缓冲器74ls35 六缓冲器(oc)74ls36 2输入四或非门(有选通)74ls37 2输入四与非缓冲器74ls38 2输入四或非缓冲器(集电极开路输出74ls39 2输入四或非缓冲器(集电极开路输出)7 4ls40 4输入双与非缓冲器4ls41 bcd-十进制计数器7 4ls42 4线-10线译码器(bcd输入)7 4ls43 4线-10线译码器(余3码输入)7 4ls44 4线-10线译码器(余3葛莱码输入)7 4ls45 bcd-十进制译码器/驱动器7 4ls46 bcd-七段译码器/驱动器7 4ls47 bcd-七段译码器/驱动器7 4ls48 bcd-七段译码器/驱动器7 4ls49 bcd-七段译码器/驱动器(oc)7 4ls50 双二路2-2输入与或非门(一门可扩展)7 4ls51 双二路2-2输入与或非门7 4ls51 二路3-3输入,二路2-2输入与或非门7 4ls52 四路2-3-2-2输入与或门(可扩展)7 4ls53 四路2-2-2-2输入与或非门(可扩展) 4ls53 四路2-2-3-2输入与或非门(可扩展)7 4ls54 四路2-2-2-2输入与或非门7 4ls54 四路2-3-3-2输入与或非门7 4ls54 四路2-2-3-2输入与或非门7 4ls55 二路4-4输入与或非门(可扩展)7 4ls60 双四输入与扩展7 4ls61 三3输入与扩展7 4ls62 四路2-3-3-2输入与或扩展器7 4ls63 六电流读出接口门7 4ls64 四路4-2-3-2输入与或非门7 4ls65 四路4-2-3-2输入与或非门(oc)7 4ls70 与门输入上升沿jk触发器7 4ls71 与输入r-s主从触发器7 4ls72 与门输入主从jk触发器4ls73 双j-k触发器(带清除端)7 4ls74 正沿触发双d型触发器(带预置端和清除端)7 4ls75 4位双稳锁存器7 4ls76 双j-k触发器(带预置端和清除端)7 4ls77 4位双稳态锁存器4ls78 双j-k触发器(带预置端,公共清除端和公共时钟端)7 4ls80 门控全加器7 4ls81 16位随机存取存储器7 4ls82 2位二进制全加器(快速进位)7 4ls83 4位二进制全加器(快速进位)7 4ls84 16位随机存取存储器74ls85 4位数字比较器7 4ls86 2输入四异或门7 4ls87 四位二进制原码/反码/oi单元7 4ls89 64位读/写存储器7 4ls90 十进制计数器7 4ls91 八位移位寄存器7 4ls92 12分频计数器(2分频和6分频)7 4ls93 4位二进制计数器7 4ls94 4位移位寄存器(异步)7 4ls95 4位移位寄存器(并行io)7 4ls96 5位移位寄存器7 4ls97 六位同步二进制比率乘法器7 4ls100 八位双稳锁存器7 4ls103 负沿触发双j-k主从触发器(带清除端)4ls106 负沿触发双j-k主从触发器(带预置,清除,时钟)7 4ls107 双j-k主从触发器(带清除端)7 4ls108 双j-k主从触发器(带预置,清除,时钟)7 4ls109 双j-k触发器(带置位,清除,正触发)7 4ls110 与门输入j-k主从触发器(带锁定)7 4ls111 双j-k主从触发器(带数据锁定)7 4ls112 负沿触发双j-k触发器(带预置端和清除端)7 4ls113 负沿触发双j-k触发器(带预置端)7 4ls114 双j-k触发器(带预置端,共清除端和时钟端)7 4ls116 双四位锁存器7 4ls120 双脉冲同步器/驱动器7 4ls121 单稳态触发器(施密特触发)7 4ls122 可再触发单稳态多谐振荡器(带清除端) 4ls123 可再触发双单稳多谐振荡器7 4ls125 四总线缓冲门(三态输出)7 4ls126 四总线缓冲门(三态输出)7 4ls128 2输入四或非线驱动器7 4ls131 3-8译码器7 4ls132 2输入四与非门(斯密特触发)7 4ls133 13输入端与非门7 4ls134 12输入端与门(三态输出)7 4ls135 四异或/异或非门7 4ls136 2输入四异或门(oc)7 4ls137 八选1锁存译码器/多路转换器7 4ls138 3-8线译码器/多路转换器7 4ls139 双2-4线译码器/多路转换器7 4ls140 双4输入与非线驱动器4ls141 bcd-十进制译码器/驱动器7 4ls142 计数器/锁存器/译码器/驱动器7 4ls145 4-10译码器/驱动器7 4ls147 10线-4线优先编码器7 4ls148 8线-3线八进制优先编码器7 4ls150 16选1数据选择器(反补输出)7 4ls151 8选1数据选择器(互补输出)7 4ls152 8选1数据选择器多路开关7 4ls153 双4选1数据选择器/多路选择器7 4ls154 4线-16线译码器7 4ls155 双2-4译码器/分配器(图腾柱输出)7 4ls156 双2-4译码器/分配器(集电极开路输出)7 4ls157 四2选1数据选择器/多路选择器7 4ls158 四2选1数据选择器(反相输出) 4ls160 可预置bcd计数器(异步清除)7 4ls161 可预置四位二进制计数器(并清除异步)7 4ls162 可预置bcd计数器(异步清除)7 4ls163 可预置四位二进制计数器(并清除异步)7 4ls164 8位并行输出串行移位寄存器7 4ls165 并行输入8位移位寄存器(补码输出)7 4ls166 8位移位寄存器7 4ls167 同步十进制比率乘法器7 4ls168 4位加/减同步计数器(十进制)7 4ls169 同步二进制可逆计数器7 4ls170 4*4寄存器堆7 4ls171 四d触发器(带清除端)7 4ls172 16位寄存器堆7 4ls173 4位d型寄存器(带清除端)4ls174 六d触发器7 4ls175 四d触发器7 4ls176 十进制可预置计数器7 4ls177 2-8-16进制可预置计数器7 4ls178 四位通用移位寄存器7 4ls179 四位通用移位寄存器7 4ls180 九位奇偶产生/校验器7 4ls181 算术逻辑单元/功能发生器7 4ls182 先行进位发生器7 4ls183 双保留进位全加器7 4ls184 bcd-二进制转换器7 4ls185 二进制-bcd转换器7 4ls190 同步可逆计数器(bcd,二进制)7 4ls191 同步可逆计数器(bcd,二进制) 4ls192 同步可逆计数器(bcd,二进制)7 4ls193 同步可逆计数器(bcd,二进制)7 4ls194 四位双向通用移位寄存器7 4ls195 四位通用移位寄存器7 4ls196 可预置计数器/锁存器7 4ls197 可预置计数器/锁存器(二进制)7 4ls198 八位双向移位寄存器7 4ls199 八位移位寄存器7 4ls210 2-5-10进制计数器7 4ls213 2-n-10可变进制计数器7 4ls221 双单稳触发器7 4ls230 八3态总线驱动器7 4ls231 八3态总线反向驱动器4ls240 八缓冲器/线驱动器/线接收器(反码三态输出)7 4ls241 八缓冲器/线驱动器/线接收器(原码三态输出)7 4ls242 八缓冲器/线驱动器/线接收器7 4ls243 4同相三态总线收发器7 4ls244 八缓冲器/线驱动器/线接收器7 4ls245 八双向总线收发器7 4ls246 4线-七段译码/驱动器(30v)7 4ls247 4线-七段译码/驱动器(15v)7 4ls248 4线-七段译码/驱动器7 4ls249 4线-七段译码/驱动器7 4ls251 8选1数据选择器(三态输出)7 4ls253 双四选1数据选择器(三态输出)7 4ls256 双四位可寻址锁存器4ls257 四2选1数据选择器(三态输出)7 4ls258 四2选1数据选择器(反码三态输出)7 4ls259 8为可寻址锁存器7 4ls260 双5输入或非门7 4ls261 4*2并行二进制乘法器7 4ls265 四互补输出元件7 4ls266 2输入四异或非门(oc)7 4ls270 2048位rom (512位四字节,oc)7 4ls271 2048位rom (256位八字节,oc)7 4ls273 八d触发器7 4ls274 4*4并行二进制乘法器7 4ls275 七位片式华莱士树乘法器7 4ls276 四jk触发器7 4ls278 四位可级联优先寄存器4ls279 四s-r锁存器7 4ls280 9位奇数/偶数奇偶发生器/较验器7 4ls2817 4ls283 4位二进制全加器7 4ls290 十进制计数器7 4ls291 32位可编程模7 4ls293 4位二进制计数器7 4ls294 16位可编程模7 4ls295 四位双向通用移位寄存器7 4ls298 四-2输入多路转换器(带选通)7 4ls299 八位通用移位寄存器(三态输出)7 4ls348 8-3线优先编码器(三态输出)7 4ls352 双四选1数据选择器/多路转换器7 4ls353 双4-1线数据选择器(三态输出) 4ls354 8输入端多路转换器/数据选择器/寄存器,三态补码输出7 4ls355 8输入端多路转换器/数据选择器/寄存器,三态补码输出7 4ls356 8输入端多路转换器/数据选择器/寄存器,三态补码输出7 4ls357 8输入端多路转换器/数据选择器/寄存器,三态补码输出7 4ls365 6总线驱动器7 4ls366 六反向三态缓冲器/线驱动器7 4ls367 六同向三态缓冲器/线驱动器7 4ls368 六反向三态缓冲器/线驱动器7 4ls373 八d锁存器7 4ls374 八d触发器(三态同相)7 4ls375 4位双稳态锁存器7 4ls377 带使能的八d触发器7 4ls378 六d触发器7 4ls379 四d触发器7 4ls381 算术逻辑单元/函数发生器7 4ls382 算术逻辑单元/函数发生器7 4ls384 8位*1位补码乘法器7 4ls385 四串行加法器/乘法器7 4ls386 2输入四异或门7 4ls390 双十进制计数器7 4ls391 双四位二进制计数器7 4ls395 4位通用移位寄存器7 4ls396 八位存储寄存器74ls398 四2输入端多路开关(双路输出)74ls399 四-2输入多路转换器(带选通)74ls422 单稳态触发器74ls423 双单稳态触发器74ls440 四3方向总线收发器,集电极开路74ls441 四3方向总线收发器,集电极开路74ls442 四3方向总线收发器,三态输出74ls443 四3方向总线收发器,三态输出74ls444 四3方向总线收发器,三态输出74ls445 bcd-十进制译码器/驱动器,三态输出74ls446 有方向控制的双总线收发器74ls448 四3方向总线收发器,三态输出74ls449 有方向控制的双总线收发器74ls465 八三态线缓冲器74ls466 八三态线反向缓冲器74ls467 八三态线缓冲器74ls468 八三态线反向缓冲器74ls490 双十进制计数器74ls540 八位三态总线缓冲器(反向)74ls541 八位三态总线缓冲器74ls589 有输入锁存的并入串出移位寄存器74ls590 带输出寄存器的8位二进制计数器74ls591 带输出寄存器的8位二进制计数器74ls592 带输出寄存器的8位二进制计数器74ls593 带输出寄存器的8位二进制计数器74ls594 带输出锁存的8位串入并出移位寄存器74ls595 8位输出锁存移位寄存器74ls596 带输出锁存的8位串入并出移位寄存器74ls597 8位输出锁存移位寄存器74ls598 带输入锁存的并入串出移位寄存器74ls599 带输出锁存的8位串入并出移位寄存器74ls604 双8位锁存器74ls605 双8位锁存器74ls606 双8位锁存器74ls607 双8位锁存器74ls620 8位三态总线发送接收器(反相)74ls621 8位总线收发器74ls622 8位总线收发器74ls623 8位总线收发器74ls640 反相总线收发器(三态输出)74ls641 同相8总线收发器,集电极开路74ls642 同相8总线收发器,集电极开路74ls643 8位三态总线发送接收器74ls644 真值反相8总线收发器,集电极开路74ls645 三态同相8总线收发器74ls646 八位总线收发器,寄存器74ls647 八位总线收发器,寄存器74ls648 八位总线收发器,寄存器74ls649 八位总线收发器,寄存器74ls651 三态反相8总线收发器74ls652 三态反相8总线收发器74ls653 反相8总线收发器,集电极开路74ls654 同相8总线收发器,集电极开路74ls668 4位同步加/减十进制计数器74ls669 带先行进位的4位同步二进制可逆计数器74ls670 4*4寄存器堆(三态)74ls671 带输出寄存的四位并入并出移位寄存器74ls672 带输出寄存的四位并入并出移位寄存器74ls673 16位并行输出存储器,16位串入串出移位寄存器74ls674 16位并行输入串行输出移位寄存器74ls681 4位并行二进制累加器74ls682 8位数值比较器(图腾柱输出)74ls683 8位数值比较器(集电极开路)74ls684 8位数值比较器(图腾柱输出)74ls685 8位数值比较器(集电极开路)74ls686 8位数值比较器(图腾柱输出)74ls687 8位数值比较器(集电极开路)74ls688 8位数字比较器(oc输出)74ls689 8位数字比较器74ls690 同步十进制计数器/寄存器(带数选,三态输出,直接清除)74ls691 计数器/寄存器(带多转换,三态输出)74ls692 同步十进制计数器(带预置输入,同步清除)74ls693 计数器/寄存器(带多转换,三态输出)74ls696 同步加/减十进制计数器/寄存器(带数选,三态输出,直接清除)74ls697 计数器/寄存器(带多转换,三态输出)74ls698 计数器/寄存器(带多转换,三态输出)74ls699 计数器/寄存器(带多转换,三态输出) 74ls716 可编程模n十进制计数器74ls718 可编程模n十进制计数器LM12瓦运算放大器LM124 LM224 LM324 LM2902 低电压双路运算放大器LM324 低电压双路运算放大器LM129 LM329 精密电压基准芯片LM135 LM235 LM335 精密温度传感器芯片LM1458 LM1558 双运算放大器LM158 LM258 LM358 LM2904 低压双运算放大器LM18293 四通道推拉驱动器LM1868 调幅/调频收音机芯片LM1951 1安培固态开关LM2574 0.5A降阶式电压调节器LM1575 LM2575 1A 降阶式电压调节器LM2576 3A 3A 降阶式电压调节器LM1577 LM2577 降阶式电压调节器LM2587 5A 返馈开关式电压调节器LM1893 LM2893 载体电流收发器LM193 LM293 LM393 LM2903 双路低压低漂移比较器LM2907 LM2917 频率电压转换器LM101A LM201A LM301A 运算放大器芯片LM3045 LM3046 LM3086 晶体管阵列LM111 LM211 LM311 电压比较器LM117 LM317 三端可调式稳压器LM118 LM218 LM318 运算放大器LM133 LM333安培可调负电压调节器LM137 LM337 可调式三端负压稳压器LM34 精密华氏温度传感器LM342 三端正压稳压器LM148 LM248 LM348 / LM149 LM349 双LM741运算放大器LM35 精密摄氏温度传感器LM158 LM258 LM358 LM2904 低压双运算放大器LM150 LM350 3安培可调式电压调节器LM380 2.5瓦音频放大器LM386 低压音频功率放大器LM3886 高性能68瓦音频功率放大器/带静音LM555 LM555C 时基发生器电路LM556 LM556C 双时基发生器电路LM565 相位跟随器LM567 音频译码器LM621 无刷电机换向器LM628 LM629精密位移控制器LM675功率运算放大器LM723 电压调节器LM741 运算放大器LM7805 LM78xx 系列稳压器LM7812 LM78xx 系列稳压器LM7815 LM78xx 系列稳压器LM78L00 三端正压调节器LM78L05 三端正压调节器LM78L09三端正压调节器LM78L12 三端正压调节器LM78L15 三端正压调节器LM78L62 三端正压调节器LM78L82 三端正压调节器LM340 LM78Mxx 三端正压稳压器 LM7905 三端负压调节器 LM7912 三端负压调节器 LM7915 三端负压调节器 LM79Mxx三端负压调节器 LF147 LF347 宽带J 型场效应输入运算放大器 LF351 宽带J 型场效应输入运算放大器 LF353 宽带J 型场效应输入运算放大器LF444 双低压J 型场效应输入运算放大器(1) 74LS00双输入四与非门,管脚图如附图1-27所示。
ST LM101A LM201A LM301A 数据手册
1/11LM101A LM301ALM201As INPUT OFFSET VOLTAGE 0.7mV 2mV s INPUT BIAS CURRENT25nA70nA s INPUT OFFSET CURRENT 1.5nA2nAs SLEW RATE AS INVERSING 10V/µs 10V/µsAMPLIFIER DESCRIPTIONThe LM101A is a general purpose operational am-plifier which offers many features: supply voltages from ±5V to ±22V, low current drain, overload pro-tection on the input and output, no latch-up when the common-mode range is exceeded, free from oscillations and compensation with a single 30pF capacitor. It has advantages over internally com-pensated amplifiers in that the compensation can be tailored to the particular application: slew rate of 10V/µs and bandwidth of 3.5MHz can be easily achieved.ORDER CODEN = Dual in Line Package (DIP)D = Small Outline Package (SO) - also available in Tape & Reel (DT)PIN CONNECTIONS (top view)Part Number Temperature Range Package N D LM101A -55°C, +125°C ••LM201A -40°C, +105°C ••LM301A 0°C, +70°C ••Example :LM201ANLM101A-LM201ALM301ASINGLE OPERATIONAL AMPLIFIERSDecember 2001LM101A - LM201A - LM301A2/11SCHEMATIC DIAGRAMABSOLUTE MAXIMUM RATINGSSymbol ParameterLM101ALM201A LM301AUnit V CC Supply voltage ±22V V i Input Voltage±15V V id Differential Input Voltage ±30V P tot Power DissipationN Suffix D Suffix500300mW Output Short-circuit DurationInfinite T oper Opearting Free-air Temperature Range -55 to +125-40 to +1050 to +70°C T stgStorage Temperature Range-65 to +150°CLM101A - LM201A - LM301A3/11ELECTRICAL CHARACTERISTICS±5V ≤ V CC ≤ ±20V, C1 = 30pF, T amb = 25°C (unless otherwise specified)SymbolParameterLM101A - LM201ALM301AUnitMin.Typ.Max.Min.Typ.Max.V io Input Offset Voltage (R S ≤ 10k Ω) T amb = +25°CT min ≤ T amb ≤ T max 0.72327.510mVDV io Input Offset Voltage DriftT min ≤ T amb ≤ T max 315630µV/°CI ibInput Bias Current - noteT amb = +25°CT min ≤ T amb ≤ T max 257510070250300nAI ioInput Offset Current T amb = +25°CT min ≤ T amb ≤ T max 1.5102025070nADI IioInput Offset Current DriftT min ≤ T amb ≤ 25°C T min ≤ T amb ≤ T max 10201002001020300600pA/°CA vdLarge Signal Voltage Gain *V O ≤ 10V, R L = 2k Ω)T amb = +25°CT min ≤ T amb ≤ T max50251002515100V/mVSVR Supply Voltage Rejection Ratio (R s ≤ 10k Ω)T amb = +25°CT min ≤ T amb ≤ T max 808096707096dBI CCSupply Current, no load T amb = +25°CT min ≤ T amb ≤ T max1.8331.833mAV icmInput Common Mode Voltage Range (V CC = ±20V)T amb = +25°CT min ≤ T amb ≤ T max±15±15±15±15VCMR Common Mode Rejection Ratio (R s ≤ 10k Ω)T amb = +25°CT min ≤ T amb ≤ T max 808096707096dBI OSOutput Short-circuit Current * T amb = +25°C 103050103050mA±V OPPOutput Voltage Swing *T amb = +25°CR L = 10k Ω R L = 2k ΩT min ≤ T amb ≤ T maxR L = 10k Ω R L = 2k Ω121012101413121012101413VSRSlew Rate (V i = ±10V, R L = 2k Ω,C L = 100pF,unity gain) - 1)0.250.50.250.5V/µsLM101A - LM201A - LM301A4/11t rRise (V i = ±20mV, R L = 2k Ω,C L = 100pF, unity gain)0.30.3µs K OV Overshoot (V i = 20mV, R L = 2k Ω,C L = 100pF, unity gain)55%Z i Input Impedance *1.54 1.54M ΩGBPGain Bandwidth Product *(V i = 10mV, R L = 2k Ω,C L = 100pF, f = 100KHz)0.510.51MHzTHDTotal Harmonic Distortion(f = 1kHz, A v = 20dB, R L = 2k Ω, V o = 2V pp ,C L = 100pF)0.0150.015%e nEquivalent Input Noise Voltage f = 1kHz, R s = 100Ω25251.May be improved up to 10V/µs in inverting amplifier configuration * ==> V CC = ±15V, T amb = +25°C (unless otherwise specified)SymbolParameterLM101A - LM201ALM301AUnitMin.Typ.Max.Min.Typ.Max.nV Hz-----------LM101A - LM201A - LM301A5/11LM101A - LM201A - LM301A6/11SINGLE POLE COMPENSATIONFEED FORWARD COMPENSATIONLM101A - LM201A - LM301A7/11LM101A - LM201A - LM301A8/11LM101A - LM201A - LM301A9/11LM101A - LM201A - LM301A10/11PACKAGE MECHANICAL DATA 8 PINS - PLASTIC DIPlimetersInches Min.Typ.Max.Min.Typ.Max.A 3.320.131a10.510.020B 1.15 1.650.0450.065b 0.3560.550.0140.022b10.2040.3040.0080.012D 10.920.430E 7.959.750.3130.384e 2.540.100e37.620.300e47.620.300F 6.60260i 5.080.200L 3.18 3.810.1250.150Z1.520.060LM101A - LM201A - LM301A11/11PACKAGE MECHANICAL DATA8 PINS - PLASTIC MICROPACKAGE (SO)limetersInches Min.Typ.Max.Min.Typ.Max.A 1.750.069a10.10.250.0040.010a2 1.650.065a30.650.850.0260.033b 0.350.480.0140.019b10.190.250.0070.010C 0.250.50.0100.020c145° (typ.)D 4.8 5.00.1890.197E 5.86.20.2280.244e 1.270.050e3 3.810.150F 3.8 4.00.1500.157L 0.41.270.0160.050M 0.60.024S8° (max.)Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.© The ST logo is a registered trademark of STMicroelectronics© 2001 STMicroelectronics - Printed in Italy - All Rights ReservedSTMicroelectronics GROUP OF COMPANIESAustralia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - MalaysiaMalta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States© 。
运算放大器LM301
TL H 7752LM101A LM201A LM301A Operational AmplifiersDecember1994LM101A LM201A LM301A Operational AmplifiersGeneral DescriptionThe LM101A series are general purpose operational amplifi-ers which feature improved performance over industry stan-dards like the LM709 Advanced processing techniquesmake possible an order of magnitude reduction in input cur-rents and a redesign of the biasing circuitry reduces thetemperature drift of input current Improved specificationsincludeY Offset voltage3mV maximum overtemperature(LM101A LM201A)Y Input current100nA maximum overtemperature(LM101A LM201A)Y Offset current20nA maximum overtemperature(LM101A LM201A)Y Guaranteed drift characteristicsY Offsets guaranteed over entire common mode and sup-ply voltage rangesY Slew rate of10V m s as a summing amplifierThis amplifier offers many features which make its applica-tion nearly foolproof overload protection on the input andoutput no latch-up when the common mode range is ex-ceeded and freedom from oscillations and compensationwith a single30pF capacitor It has advantages over inter-nally compensated amplifiers in that the frequency compen-sation can be tailored to the particular application For ex-ample in low frequency circuits it can be overcompensatedfor increased stability margin Or the compensation can beoptimized to give more than a factor of ten improvement inhigh frequency performance for most applicationsIn addition the device provides better accuracy and lowernoise in high impedance circuitry The low input currentsalso make it particularly well suited for long interval integra-tors or timers sample and hold circuits and low frequencywaveform generators Further replacing circuits wherematched transistor pairs buffer the inputs of conventional ICop amps it can give lower offset voltage and a drift at alower costThe LM101A is guaranteed over a temperature range ofb55 C to a125 C the LM201A from b25 C to a85 Cand the LM301A from0 C to a70 CConnection Diagrams(Top View)Dual-In-Line PackageTL H 7752–4Order Number LM101AJ LM101J 883LM201AN or LM301ANSee NS Package Number J08A or N08ACeramic Flatpack PackageTL H 7752–4Order Number LM101AW 883or LM101W 883See NS Package Number W10AMetal Can PackageTL H 7752–2Note Pin4connected to caseOrder Number LM101AHLM101AH 883 LM201AH or LM301AHSee NS Package Number H08CDual-In-Line PackageTL H 7752–3Order Number LM101AJ-14 883See NS Package Number J14A Available per JM38510 10103C1995National Semiconductor Corporation RRD-B30M115 Printed in U S AAbsolute Maximum RatingsIf Military Aerospace specified devices are required please contact the National Semiconductor Sales Office Distributors for availability and specificationsLM101A LM201A LM301A Supply Voltage g22V g18VDifferential Input Voltage g30V g30VInput Voltage(Note1)g15V g15VOutput Short Circuit Duration(Note2)Continuous ContinuousOperating Ambient Temp Range b55 C to a125 C(LM101A)0 C to a70 Cb25 C to a85 C(LM201A)T J MaxH-Package150 C100 CN-Package150 C100 CJ-Package150 C100 CPower Dissipation at T A e25 CH-Package(Still Air)500mW300mW(400LF Min Air Flow)1200mW700mW N-Package900mW500mWJ-Package1000mW650mWThermal Resistance(Typical)i jAH-Package(Still Air)165 C W165 C W (400LF Min Air Flow)67 C W67 C W N Package135 C W135 C WJ-Package110 C W110 CmW(Typical)i jCH-Package25 C W25 C WStorage Temperature Range b65 C to a150 C b65 C to a150 CLead Temperature(Soldering 10sec )Metal Can or Ceramic300 C300 CPlastic260 C260 CESD Tolerance(Note5)2000V2000V Electrical Characteristics(Note3)T A e T JParameter ConditionsLM101A LM201A LM301AUnits Min Typ Max Min Typ MaxInput Offset Voltage T A e25 C R S s50k X0 72 02 07 5mV Input Offset Current T A e25 C1 5103 050nA Input Bias Current T A e25 C307570250nA Input Resistance T A e25 C1 54 00 52 0M X Supply Current T A e25 C V S e g20V1 83 0mAV S e g15V1 83 0mALarge Signal Voltage Gain T A e25 C V S e g15V5016025160V mVV OUT e g10V R L t2k XInput Offset Voltage R S s50k X3 010mVAverage Temperature Coefficient R S s50k X3 0156 030m V C of Input Offset VoltageInput Offset Current2070nA Average Temperature Coefficient25 C s T A s T MAX0 010 10 010 3nA C of Input Offset Current T MIN s T A s25 C0 020 20 020 6nA C2Electrical Characteristics(Note3)T A e T J(Continued)Parameter ConditionsLM101A LM201A LM301AUnits Min Typ Max Min Typ MaxInput Bias Current0 10 3m A Supply Current T A e T MAX V S e g20V1 22 5mA Large Signal Voltage Gain V S e g15V V OUT e g10V2515V mVR L t2kOutput Voltage Swing V S e g15V R L e10k X g12g14g12g14VR L e2k X g10g13g10g13V Input Voltage Range V S e g20V g15VV S e g15V a15 b13g12a15 b13V Common-Mode Rejection Ratio R S s50k X80967090dB Supply Voltage Rejection Ratio R S s50k X80967096dB Note1 For supply voltages less than g15V the absolute maximum input voltage is equal to the supply voltageNote2 Continuous short circuit is allowed for case temperatures to125 C and ambient temperatures to75 C for LM101A LM201A and70 C and55 C respectively for LM301ANote3 Unless otherwise specified these specifications apply for C1e30pF g5V s V S s g20V and b55 C s T A s a125 C(LM101A) g5V s V S s g20V and b25 C s T A s a85 C(LM201A) g5V s V S s g15V and0 C s T A s a70 C(LM301A)Note4 Refer to RETS101AX for LM101A military specifications and RETS101X for LM101military specificationsNote5 Human body model 100pF discharged through1 5k XGuaranteed Performance Characteristics LM101A LM201AInput Voltage Range Output Swing Voltage GainTL H 7752–5 Guaranteed Performance Characteristics LM301AInput Voltage Range Output Swing Voltage GainTL H 7752–63Typical Performance CharacteristicsSupply CurrentVoltage GainMaximum Power DissipationLM101A LM201A LM301AInput CurrentCurrent Limiting Input Noise VoltageInput Noise Current Common Mode Rejection Power Supply RejectionImpedanceClosed Loop Output TL H 7752–74Typical Performance Characteristics for Various Compensation CircuitsSingle Pole CompensationTL H 7752–8C1tR1C S R1a R2C S e 30pFTwo Pole CompensationC1tR1C SR1a R2C S e 30pF C2e 10C1TL H 7752–12Feedforward CompensationC2e12q f o R2f o e 3MHzTL H 7752–16Response Open Loop Frequency TL H 7752–9Response Open Loop Frequency TL H 7752–13ResponseOpen Loop Frequency TL H 7752–17Response Large Signal Frequency TL H 7752–10Response Large Signal Frequency TL H 7752–14ResponseLarge Signal Frequency TL H 7752–18Response Voltage Follower Pulse TL H 7752–11ResponseVoltage Follower Pulse TL H 7752–15Inverter Pulse ResponseTL H 7752–19Pin connections shown are for 8-pin packages5Typical ApplicationsVariable Capacitance MultiplierC e 1aR bR aC1TL H 7752–20Simulated InductorL j R1R2C1R S e R2R P e R1TL H 7752–21Fast Inverting Amplifier with High Input Impedance TL H 7752–22Inverting Amplifier with Balancing CircuitMay be zero or equalto parallel combina-tion of R1and R2for minimum offsetTL H 7752–23Integrator with Bias CurrentSine Wave OscillatorCompensationTL H 7752–25Adjust for zero integrator drift Current drift typically 0 1nA C over b 55 C to a 125 C temperature rangef o e 10kHzTL H 7752–24Pin connections shown are for 8-pin packages6Application HintsProtecting Against GrossFault ConditionsProtects inputProtects output TL H 7752–26 Protects output not needed when R4is used Compensating for Stray Input Capacitancesor Large Feedback ResistorC2eR1C SR2TL H 7752–27Isolating Large Capacitive LoadsTL H 7752–28Although the LM101A is designed for trouble free operation experience has indicated that it is wise to observe certain precautions given below to protect the devices from abnor-mal operating conditions It might be pointed out that the advice given here is applicable to practically any IC op amp although the exact reason why may differ with different de-vicesWhen driving either input from a low-impedance source a limiting resistor should be placed in series with the input lead to limit the peak instantaneous output current of the source to something less than100mA This is especially important when the inputs go outside a piece of equipment where they could accidentally be connected to high voltage sources Large capacitors on the input(greater than0 1m F) should be treated as a low source impedance and isolated with a resistor Low impedance sources do not cause a problem unless their output voltage exceeds the supply volt-age However the supplies go to zero when they are turned off so the isolation is usually neededThe output circuitry is protected against damage from shorts to ground However when the amplifier output is connected to a test point it should be isolated by a limiting resistor as test points frequently get shorted to bad places Further when the amplifer drives a load external to the equipment it is also advisable to use some sort of limiting resistance to preclude mishaps Precautions should be taken to insure that the power sup-plies for the integrated circuit never become reversed even under transient conditions With reverse voltages greater than1V the IC will conduct excessive current fus-ing internal aluminum interconnects If there is a possibility of this happening clamp diodes with a high peak current rating should be installed on the supply lines Reversal of the voltage between V a and V b will always cause a prob-lem although reversals with respect to ground may also give difficulties in many circuitsThe minimum values given for the frequency compensation capacitor are stable only for source resistances less than 10k X stray capacitances on the summing junction less than5pF and capacitive loads smaller than100pF If any of these conditions are not met it becomes necessary to overcompensate the amplifier with a larger compensation capacitor Alternately lead capacitors can be used in the feedback network to negate the effect of stray capacitance and large feedback resistors or an RC network can be add-ed to isolate capacitive loadsAlthough the LM101A is relatively unaffected by supply by-passing this cannot be ignored altogether Generally it is necessary to bypass the supplies to ground at least once on every circuit card and more bypass points may be required if more than five amplifiers are used When feed-forward compensation is employed however it is advisable to by-pass the supply leads of each amplifier with low inductance capacitors because of the higher frequencies involvedPin connections shown are for8-pin packages7Typical Applications (Continued)Standard Compensation andOffset Balancing CircuitTL H 7752–29Fast Summing AmplifierPower Bandwidth 250kHzSmall Signal Bandwiidth 3 5MHzSlew Rate 10V m sTL H 7752–30Fast Voltage FollowerPower Bandwidth 15kHzSlew Rate 1V m sTL H 7752–31Bilateral Current SourceI OUT eR3V INR1R5R3e R4a R5R1e R2TL H 7752–32Fast AC DC ConverterFeedforward compensationcan be used to make a fast fullwave rectifier without a filterTL H 7752–33Pin connections shown are for8-pin packages8Typical Applications (Continued)Instrumentation AmplifierR1e R4 R2e R3A V e 1aR1R2Matching determines CMRRTL H 7752–34Integrator with Bias Current CompensationAdjust for zero integrator drift Current drift typically 0 1nA C over 0 C to a 70 C temperature rangeTL H 7752–35Voltage Comparator for Driving RTL Logic orHigh Current DriverTL H 7752–37Low Frequency Square Wave GeneratorTL H 7752–36Pin connections shown are for 8-pin packages9Typical Applications (Continued)Low Drift Sample and HoldPolycarbonate-dielectric capacitorTL H 7752–38Voltage Comparator for Driving DTL or TTL Integrated CircuitsTL H 7752–39SchematicTL H 7752–1Pin connections shown are for 8-pin packages1011Physical Dimensions inches(millimeters)Metal Can Package(H)Order Number LM101AH LM101AH 883LM201AH or LM301AHNS Package Number H08CCeramic Dual-In-Line Package(J)Order Number LM101J 883or LM101AJNS Package Number J08A12Physical Dimensions inches(millimeters)(Continued)Ceramic Dual-In-Line Package(J)Order Number LM101AJ-14 883NS Package Number J14AMolded Dual-In-Line Package(N)Order Number LM201AN or LM301ANNS Package Number N08E13L M 101A L M 201A L M 301A O p e r a t i o n a l A m p l i f i e r s Physical Dimensions inches (millimeters)(Continued)Ceramic Flatpack Package (W)Order Number LM101AW 883or LM101W 883NS Package Number W10ALIFE SUPPORT POLICYNATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION As used herein1 Life support devices or systems are devices or2 A critical component is any component of a life systems which (a)are intended for surgical implantsupport device or system whose failure to perform can into the body or (b)support or sustain life and whosebe reasonably expected to cause the failure of the life failure to perform when properly used in accordancesupport device or system or to affect its safety or with instructions for use provided in the labeling caneffectiveness be reasonably expected to result in a significant injuryto the userNational SemiconductorNational Semiconductor National Semiconductor National Semiconductor CorporationEurope Hong Kong Ltd Japan Ltd 1111West Bardin Road Fax (a 49)0-180-530858613th Floor Straight Block Tel 81-043-299-2309。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
元器件交易网
LM101A, LM201A, LM301A
HIGH-PERFORMANCE OPERATIONAL AMPLIFIERS
Copyright 1991, Texas Instruments Incorporated
V IO MAX at 25°C
PACKAGE
V
LM101A, LM201A, LM301A
HIGH-PERFORMANCE OPERATIONAL AMPLIFIERS
元器件交易网
PARAMETER
TEST CONDITIONS †UNIT mV V IO Input offset voltage
V O = 0Full range
V O = 0
αVIO 3
15
6
30
µV/°C Input offset current I IO
nA
αIIO
nA/°C
I IB
Input bias current
nA
V OPP
V
A VD
Large-signal differential voltage amplification
V CC ± = ±15 V,V O = ±10 V,R L ≥ 2 k Ω
25°C Full range
5020025200
25
V/mV
15
CMRR Common-mode rejection ratio V IC = V ICR min
dB k SVR dB
I CC
Supply current mA
LM101A, LM201A, LM301A
HIGH-PERFORMANCE OPERATIONAL AMPLIFIERS
元器件交易网
元器件交易网
LM101A, LM201A, LM301A
HIGH-PERFORMANCE OPERATIONAL AMPLIFIERS
元器件交易网
LM101A, LM201A, LM301A
HIGH-PERFORMANCE OPERATIONAL AMPLIFIERS
元器件交易网
LM101A, LM201A, LM301A
HIGH-PERFORMANCE OPERATIONAL AMPLIFIERS
元器件交易网
IMPORTANT NOTICE
Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor
product or service without notice, and advises its customers to obtain the latest version of relevant information
to verify, before placing orders, that the information being relied on is current.
TI warrants performance of its semiconductor products and related software to the specifications applicable at
the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are
utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each
device is not necessarily performed, except those mandated by government requirements.
Certain applications using semiconductor products may involve potential risks of death, personal injury, or
severe property or environmental damage (“Critical Applications”).
TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED
TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER
CRITICAL APPLICATIONS.
Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI
products in such applications requires the written approval of an appropriate TI officer. Questions concerning
potential risk applications should be directed to TI through a local SC sales office.
In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards should be provided by the customer to minimize inherent or procedural hazards.
TI assumes no liability for applications assistance, customer product design, software performance, or
infringement of patents or services described herein. Nor does TI warrant or represent that any license, either
express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property
right of TI covering or relating to any combination, machine, or process in which such semiconductor products
or services might be or are used.
Copyright © 1996, Texas Instruments Incorporated。