复习课七年级下第十章
人教版七年级数学(下册)第十章-数据的收集、整理与总结教案
人教版七年级数学(下册)第十章-数据的收
集、整理与总结教案
教学目标
1. 理解数据的概念和数据在日常生活中的作用。
2. 掌握数据的收集方法,包括观察法、实验法和调查法。
3. 学会整理数据的方法,包括制作频数表、制作条形统计图和
折线统计图。
4. 能够运用所学知识对数据进行分析和总结。
教学准备
1. 教材:人教版七年级数学(下册)第十章教材。
2. 教具:白板、黑板、多媒体课件、绘图工具。
教学过程
1. 导入:通过实例引入数据的概念和作用,激发学生的研究兴趣。
2. 授课:介绍数据的收集方法,包括观察法、实验法和调查法,并进行详细讲解和示范。
3. 练:分组进行实践操作,让学生亲自收集数据,并使用合适
的方法整理和表达数据。
4. 深化:引导学生分析和总结所收集的数据,提出问题并讨论。
5. 归纳:对本节课所学内容进行归纳总结,强化学生对数据收集、整理和总结方法的理解。
6. 作业:布置相应的练题和作业,巩固所学知识。
教学评价
1. 观察学生在课堂上的表现和参与程度。
2. 检查学生的作业完成情况和答案正确率。
3. 进行小组或个别评价,关注学生的理解深度和解决问题的能力。
教学活动设计合理,有助于学生对数据的收集、整理和总结方
法有更深入的认识。
第十章 第二节直方图
七年级数学导学稿班组号学生姓名:序号56日期执笔审核七年级数学组课题第十章第一节统计调查课型复习课学习目标1、会用条形统计图、扇形统计图直观地描述数据。
2、了解总体、个体、样本及样本容的概念以及抽样调查的意义教师教法教师布置任务,检查完成任务。
重点对数据的收集、整理及描述难点绘制扇形统计图和条形统计图其他项目教师教法学生学法教师布置1.做统计调查时,通常先采用问卷调查的方法____________,为此要设计______;为了更清楚地了解数据所蕴含的规律,经常用表格______;为了更直观地看出表中的信息,还可以用统计图来____________.学生根据上节任务,检查完成任务。
2.在调查中,考察全体对象的调查叫做_____________.3.某校组织学生开展“八荣八耻”宣传教育活动,其中有38%的同学走出校门进行宣讲,这部分学生在扇形统计图中应为____________部分(选择A,B,C,D填空).4.2008年4月16日至20日,在北京奥林匹克公园公共区举办了“好运北京”综合测试赛.测试期间,公共餐饮售卖点5课所学的内容,完成习题学而时习之不亦悦乎温故而知新可以为师矣敏而好学不耻下问自主·合作·探究互助·相长·共享学而不厌诲人不倦学而不思则罔思而不学则殆业精于勤行成于思七年级数学导学稿班组号学生姓名:8.下列调查的样本中不缺乏代表性的有哪几个___________.(填序号)①为了了解你校七年级学生期中考试数学成绩,抽取七1班50名学生的成绩进行分析;②为了了解我国18岁青年的身高,从不同的地区随机抽取1000名18岁青年的身高;③为了了解一批洗衣粉的质量情况,从中抽取50袋进行调查;④为了了解某公园的每天游园人数,从中抽查一年中每个星期天的游园人数.9.下图是根据某乡2009年第一季度“家电下乡”产品的购买情况绘制成的两幅不完整的统计图,请根据统计图提供的信息解答下列问当堂达标促学题:(1)第一季度购买的“家电下乡”产品的总台数为______;(2)把两幅统计图补充完整.10.小李通过对某地区1998年至2000年快餐公司发展情况的调查,制成了该地区快餐公司个数情况的条形图和快餐公司盒饭年销量的平均数情况条形图,解答下列问题(1)1999年该地区共销售盒饭__________万盒;(2)该地区盒饭销量最大的年份是______年,这一年的年销量是______万盒;学而时习之不亦悦乎温故而知新可以为师矣敏而好学不耻下问自主·合作·探究互助·相长·共享学而不厌诲人不倦学而不思则罔思而不学则殆业精于勤行成于思。
沈阳市第二中学七年级数学下册第十章数据的收集整理与描述章末复习导学案新版新人教版
章末复习一、复习导入1.导入课题:前面我们学习了在生产和生活中对数据的收集、整理与描述方法,为了使大家更全面、准确、熟练地掌握本章知识和技能,下面我们一起来进行本章的小结与复习.2.学习目标:(1)更进一步认识收集数据的方式和方法.(2)学会整理数据的方法.(3)领会描述数据的方法.3.学习重、难点:重点:制表整理数据、绘图描述数据.难点:合理设计统计图表及描述和分析数据的合理方式和方法.二、分层复习1.自学指导:(1)自学内容:本章全部内容.(2)自学时间:8分钟.(3)自学方法:阅读课本P157小结,对小结中不熟悉的问题查看课本内容及学习笔记,并记录新的疑点.(4)自学参考提纲:①收集数据有哪些方法?不同的方法各有什么优缺点?②对收集的数据如何进行整理?③对整理出的数据进行描述的目的是什么?①样调查的作用是什么?抽样时应注意什么?②种描述数据的图表在表示数据方面各有什么特点?⑥反映一天的气温随时间的变化情况适用折线图描述,反映某校近视的学生人数占全校学生人数的百分比适用扇形统计图描述,反映某村种植水稻、棉花、花生等农作物种植面积情况适用条形统计图描述.2.自学:学生可围绕自学参考提纲进行自学.3.助学:(1)师助生:①明了学情:教师深入课堂了解自学进度和自学中存在的问题.②差异指导:对学有困难或方法不当的学生进行引导.(2)生助生:小组内学生之间相互交流,提供帮助.4.强化:(1)数据处理的一般过程.(2)收集数据的方法.(3)整理数据的方法.(4)描述数据的方法.1.自学指导:(1)自学内容:典例剖析.(2)自学时间:6分钟.(3)自学要求:在自学提纲的分析引领下,积极思考,逐个解答.(4)自学提纲:【例1】为了了解某市八年级学生的肺活量,从中抽样调查了500名学生的肺活量,这项调查中的样本是( B )A.某市八年级学生的肺活量B.从中抽取的500名学生的肺活量C.从中抽取的500名学生D.500【例2】某市积极开展“阳光体育进校园”活动,各校学生坚持每天锻炼一小时,某校根据实际,决定主要开展A.乒乓球,B.篮球,C.跑步,D.跳绳四种运动项目,随机抽取了100名学生进行调查,并将调查结果(每名学生统计一个最喜欢的项目)绘制成如下统计图,请你结合图中信息解答下列问题:①本中最喜欢B项目的人数占所调查人数的百分比是 20% ,其所在扇形图中的圆心角的度数是 72° .②请把统计图补充完整.③已知该校有1200人,请根据样本估计全校最喜欢乒乓球的人数是多少.1200×44100=528(人)提示:理解不同的统计图描述数据的侧重点及特征,用样本估计总体的统计思想.【例3】李老师为了了解班里学生的作息时间,调查了班上50名学生上学路上花费的时间,他发现学生所花时间都少于50分钟,然后将调查数据整理,作出如下频数分布直方图的一部分(每组数据含最小值,不含最大值),请根据该频数分布直方图,回答下列问题:①此项调查的总体是什么?(50名学生上学路上花费的时间)②补全频数分布直方图;③该班学生上学路上花费时间在30分钟及以上的人数占全班人数的百分比是多少?解:(4+1)÷50×100%=10%提示:利用数形结合,根据图形提供的信息,联系题意可解决问题.2.自学:同学们结合自学指导进行学习,尽量自己独立完成,若有困难可相互协作研讨解决.3.助学:(1)师助生①明了学情:教师深入课堂了解自学进度、遇到的困难和存在的问题等.②差异指导:根据学情进行相应指导.(2)生助生:小组内相互交流、研讨、纠错,互帮互学.4.强化:各小组展示学习成果,准确解释相关概念的含义,如何从图形中获取相关信息,进一步强化用样本估计总体的统计思想.三、评价1.学生的自我评价:各小组长汇报本组的学习收获和存在的困惑.2.教师对学生的评价:(1)表现性评价:对学生在学习中的态度、学法和成效进行点评.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):这节课的内容主要是让学生学会收集数据,感受生活中处处有数学,会把数据分类、收集,掌握整理数据的方法.在教学中,注重让学生全程参与学习活动——课前参与、课中体会、课后反思,激发学生的学习积极性、主动性,使学生体会数学知识的产生、形成与发展的过程,获得积极的情感体验,感受数学的力量,同时,让学生掌握必要的基础知识与基本技能.(时间:12分钟满分:100分)一、基础巩固(60分)1.(10分)下列调查中,调查方式选择正确的是( C )A.了解1000只灯泡的使用寿命,选择全面调查B.了解某路段的日车流量,选择全面调查C.了解月球车仪表的性能状况,选择全面调查D.了解某水库中鱼的种类,选择全面调查2.(10分)某水果公司对1000箱苹果进行质量检验,从中抽取100箱检查,在这个问题中,总体是 1000箱苹果的质量,样本是 100箱苹果的质量,样本容量是100 .3.(20分)如图,是某班一次数学测验成绩的频数分布直方图,则数学成绩在69.5~89.5分范围内的学生占全班学生人数的百分比为 60% .(每组中数据含最小值,不含最大值)第3题图第4题图4.(10分)如图,用整圆表示一个普通家庭月收入为4500元,扇形D表示房屋租赁收入,则D表示的数据是(B)A.680元B.900元C.750元D.850元5.(10分)某校学生来自甲、乙、丙三个村,其人数比为4∶3∶5,如图所示的扇形表示三个村学生占全校学生人数情况的统计图,已知甲村有180人.(1)该校有学生 540 人;(2)丙村人数所在的扇形圆心角为 150 度.二、综合运用(20分)6.如图是某医院对3000名慢性支气管炎患者使用中草药治疗的效果统计图,观察统计图,并回答下列问题.(1)使用中草药治疗显著的有多少人?(2)你对这种中草药的疗效有何评价?(3)试将上图反映的信息用条形统计图来描述.解:(1)3000×(1-8%-20%-35%)=1110(人)答:使用中草药治疗显著的有1110人.(2)疗效显著的患者占总数的37%,属于人数最大人群,无效的患者所占比例最小,所以,总体而言,这种中草药的疗效还是很不错的.(3)条形统计图如图.三、拓展延伸(20分)7.某校九年级(1)班50名学生参加1分钟跳绳比赛,1分钟跳绳次数统计情况如下图表(表中60~70表示大于或等于60,并且小于70,其余同理).(1)求m,n的值.(2)求该班1分钟跳绳成绩在80分及以上的人数占全班人数的百分比.解:(1)由题意得,950m+×100%=54%,得m=18.12 50n+×100%=30%,得n=3.(2)12189350+++×100%=84%答:该班1分钟跳绳成绩在80分及以上的人数占全班人数的84%.章末复习一、复习导入1.导入课题:同学们,我们学完有理数这一章后,你对本章的知识结构、知识要点和知识的运用等有没有深刻、清晰的总体认知,还有哪些不够熟悉的知识点和它们之间内在联系不够清楚的地方,下面我们一起走进本章的知识圈再去仔细审视一遍!2.三维目标:(1)知识与技能①会记录统计相关数据.②会计算相关的数量.③会建立收支账目,并作为家庭理财的参考资料.(2)过程与方法通过建立家庭生活收支帐目,体会数学在生活中的应用价值.(3)情感态度感受数学和生活的紧密联系,激发学习数学的兴趣.3.学习重、难点:重点:有理数的有关概念、运算法则和运算顺序.难点:有理数的运算技巧和数学思想方法.二、分层复习1.复习指导:(1)复习内容:教材第50页到第51页的内容.(2)复习时间:5~8分钟.(3)复习要求:对照小结归纳的内容,运用边看书、边回忆、边交流总结的方式回顾和梳理本章的学习内容、知识要点.(4)复习参考提纲:为了运算简便灵活运用(交换)律、(结合)律和(分配)律进行有理数运算.②什么叫做数轴?它有什么用途?什么叫做绝对值?怎样化简绝对值?什么是相反数和倒数?≥③为了表示具有相反意义的量,引入了相反数.它在现实生产、生活中有什么用途?⑤有理数的减法法则:减去一个数,等于加这个数的相反数.有理数的乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.任何数与0相乘,都得0.有理数的除法法则:除以一个不为0的数,等于乘这个数的倒数.⑥有理数的乘方意义是n个相同的因数相乘.一个数的乘方符号怎样确定?⑦有理数的混合运算顺序是先乘方,再乘除,后加减.⑧什么叫做科学记数法,它的表达形式是怎样的?如何按要求求一个数的近似数?以及由近似数怎么确定其精确度?将一个数表示成a×10n的形式(其中1≤a<10,n为正整数),这种记数方法叫做科学记数法.求一个数的近似数时,先明了要求的精确度,再根据精确度四舍五入.由近似数确定其精确度,则要看近似数的最末位数字在哪个数位上即为其精确度.2.自主复习:学生依据复习指导进行复习.3.互助复习:(1)师助生:①明了学情:教师巡视课堂了解学生对本章知识的熟知情况,发现学生的薄弱之处.②差异指导:通过深入了解学情后,适时让不同层次的学生展示复习成果,找准问题并强化本章知识学习中的易错点、易混点、易忘点.(2)生助生:学生相互交流,相互帮助解决疑难问题,相互补充完善知识结构.4.强化复习:(1)本章知识结构.(2)运算法则及运算的顺序.(3)相互交流并板演展示复习成果.1.复习指导:(1)复习内容:典例剖析.(2)复习时间:8分钟.(3)复习方法:按复习提纲的指引、提示,积极动脑,寻求解决问题中的所用知识和办法.(4)复习提纲:【例1】某股民在上星期五买进某种股票500股,每股60元,下表是本周每日该股票的涨跌情况(单位:元).①星期三收盘时,每股是多少元?②已知买进股票时付了1.5‰的手续费,卖出时需付成交额1.5‰的手续费和1‰的交易费,如果在星期五收盘前将全部股票一次性地卖出,他的收益情况如何?分析:①实际上是求买股票时每股的价格与星期一、二、三几天的每股涨跌值的代数和,故列出算式:60+4+4.5-1=67.5.②收益=总收入-总支出总收入=卖出时每股价格×股数,所以总收入=59×500=29500总支出由购买成本、手续费,卖出时手续费、交易费四部分组成.其中购买成本=60×500=30000购买时手续费=30000×1.5‰=45卖出时手续费=29500×1.5‰=44.25卖出时交易费=29500×1‰=29.5按上面结果求得它的最终收益为:29500-30000-45-44.25-29.5=-618.75元【例2】计算:①-22×-12+8÷(-2)2=4②(-3)2÷214×(-23)2+4-22×(-13)=649③{1+[116-(-34)3]×(-2)4}÷(-116-34-12)=-203分析:在有理数的加、减、乘、除、乘方几种运算的运算法则及运算顺序烂熟于胸的情况下,仔细审题,细心求解,能适当使用运算律进行简便运算.2.自主复习:同学们结合“复习指导”进行学习,能自己单独解决的尽量独立完成,有困难的可请教他人或相互协作完成.3.互助复习:(1)师助生:①明了学情:教师深入课堂了解学生的自学进度,遇到的疑难和出现的问题.②差异指导:根据学情进行相应指导.(2)生助生:小组内相互纠错、改正答案.4.强化复习:(1)展示各小组的学习成果.(2)根据典型(代表性的错误或独到的解法)情况予以评讲.三、评价1.学生的自我评价:通过本节课的学习,让学生代表谈谈自己的收获或困惑.2.教师对学生的评价:(1)表现性评价:对学生的学习态度、学习方法和收获进行点评.(2)纸笔评价:课堂评价检测.3.教师自我评价(教学反思):本课时教学时应抓住以下重点:(1)分类问题:教师让学生从实践入手,给定三角形三边,学生在薄纸上画,然后小组的同学看所画三角形是否重合,探索归纳、形成结论.(2)教师可用多媒体展示现实生活中的实际例子:如桥梁、铁塔、自行车的三角架等,从中体验三角形的稳定性,认识“边边边”可作为三角形全等的判定依据.(3)强调思路分析和书写规范.一、基础巩固。
数学七年级下册苏教版第十章《二元一次方程组》全章教案
第十章二元一次方程组10.1 二元一次方程(一课时)一、教学目标:1、经历分析实际问题中数量关系的过程,进一步体会方程是刻画现实世界的有效数学模型。
2、了解二元一次方程的概念,并会判断一组数据是否是某个二元一次方程的解。
3、培养学生主动探索、敢于实践、勇于发现、合作交流的精神。
二、教学重难点:重点:二元一次方程的认识。
难点:探求二元一次方程的解。
三、教学方法:引导探索法,讲练结合,探索交流。
四、教学过程:(一)创设情境,感悟新知情境一根据篮球的比赛规则,赢一场得2分,输一场得1分,在某次中学生比赛中,一支球队赛了若干场后积20分,问该队赢了多少场?输了多少场?情境二某球员在一场篮球比赛中共得了35分(其中罚球得10分),问他分别投中了多少个两分球?多少个三分球?情境三小亮在“智力快车”竞赛中回答10个问题,小亮能答对几题、答错几题?(学生自己先思考5分钟后,再讨论。
最后由4个人一小组中的一位同学说出讨论结果.)(二)探索活动,揭示新知1、如果设该队赢了x场,输了y场,那么可得方程:()2、你能列出所有输赢的所有可能情况吗?3、如果设投中了()个两分球,()个三分球,根据题意可列方程:()4、请你设计一个表格,列出这名球员投中两分球和三分球的各种情况,根据你所列的表格回答下列问题:(1)这名球员最多投中了()个三分球(2)这名球员最多投中了()个球(3)如果这名球员投中了10个球,那么他投中了()个三分球,()个两分球列出上面三小题的方程:(1)设该队赢了x场,输了y场,2x+y=20(2)设赢了x场,输了y场,2x+3y=35-10(3)设答对x题,答错y题,x+y=10观察方程:(1)这三个方程有哪些共同的特点?(2)你能根据这些特点给它们起一个名称吗?引导学生和以前学过的一元一次方程相联系,观察方程中有几个未知数,未知数的次数是几次?含有未知数的项的次数是几次?得出结论:像这含有两个未知数,并且所含有未知数的项的次数都是1的方程叫做二元一次方程。
数据的收集、整理和描述复习课
课题:人教版七年级数学第十章数据的收集、整理和描述一、出示目标,明确范围:复习目标:1、了解全面调查和抽样调查的基本收集数据方法,并能根据调查的需要制作简单的问题调查表;2、学会利用表格、条形图、扇形图、折线图、直方图等方式整理数据;3、理解总体、个体、组距、频数等概念并能够从整理的数据中提取有价值的信息。
重点:利用表格、条形图、扇形图、折线图、直方图等方式整理数据难点:条形图和直方图的区别与联系,对整理的数据进行科学的分析。
二、自我检测,暴露问题:要求:独立完成下列各题后,组内进行互批,(5分钟后组长统计学习情况并做汇报)1.下列调查中,适合采用全面调查(普查)方式的是()A.了解一批灯炮的使用寿命B.了解我市居民对废电池的处理情况C.了解全国快递包裹产生包装垃圾的数量D.了解某班同学“跳绳”的成绩2.要了解全校学生的课外作业负担情况,你认为作抽样方法比较合适的是()A.调查全校女生B.调查全校男生C.调查九年级全体学生D.调查七、八、九年级各100人3为了考察某校七年级男生的身高情况,调查了60名男生的身高,那么它的总体是-_____________________________, 个体是_________________________,样本是________________________________,样本容量是______。
.4.要反映某市一周内每天的最高气温的变化情况,宜采用()A.条形统计图B.扇形统计图C.折线统计图D.频数分布直方图5.一个班有40名学生,在期末体育考试中,优秀的有18人,在扇形统计图中,代表体育优秀扇形的圆心角度数是( )A.144B.162C.216D.2506.王大伯为了估计他家鱼塘里有多少条鱼,从鱼塘里捞出150条鱼,将它们作上标记,然后放回鱼塘.经过一段时间后,再从中随机捕捞300条鱼,其中有标记的鱼有30条,请估计鱼塘里鱼的数量大约有()A.1500条B.1600条C.1700条D.3000条7“富春包子”是扬州特色早点,富春茶社为了解顾客对各种早点的喜爱情况,设计了如图所示的调查问卷,对顾客进行了抽样调查.根据统计数据绘制了如下尚不完整的统计图.根据以上信息,解决下列问题:(1)条形统计图中最喜欢“汤包”的人数是________人,扇形统计图中最喜欢“蟹黄包”部分的圆心角为________°;(2)根据抽样调查结果,请你估计富春茶社1000名顾客中最喜欢“汤包”的有多少人.8.某校为了了解七年级学生的学习情况,在这个年级抽取了50名学生对某课进行了测试。
第十章轴对称平移与旋转复习课课件华东师大版七年级数学下册
对称图形也是轴对称图形.
三、考点探究
方法总结 4:
(1)中心对称图形和轴对称图形的主要区别在于一个是绕一点旋转,另 一个是沿一条直线对折. (2)这是易错点,也是辨别它们不同的关键.
〖当堂检测〗
4. 下列说法不正确的是( B ) A. 任何一个具有对称中心的四边形都是平行四边形 B. 平行四边形既是轴对称图形,又是中心对称图形 C. 线段、平行四边形、矩形、菱形、正方形都是中心对称图形 D. 正三角形、矩形、菱形、正方形都是轴对称图形,且对称轴都不止一条.
第十章 轴对称、平移与旋转 复习课
学习导航
学习目标 知识梳理 考点探究 当堂检测 课堂总结
一、学习目标
1.理解图形经过轴对称、平移、旋转后能得到一个与原图形全等 的图形; 2.会画简单图形经过轴对称、平移、旋转后的图形; 3.会用轴对称、平移、旋转、全等的性质解决简单的数学问题.
二、知识梳理
知识点一:轴对称 1. 轴对称图形:把一个图形沿某条直线对折,对折后两部分能完全重合, 这个图形就是轴对称图形,这条直线即为这个图形的对称轴;
考点四 旋转的概念及性质的应用
例 4:如图,将 △AOB 绕点 O 按逆时针方向旋转 60°后得到△COD,若
∠AOB = 15°,则∠AOD的度数是(C )
D C
A. 15 °
B. 60 °
C. 45 ° D. 75 °
分析:抓住旋转前后图形的角度不变,再找出旋转角即可; O 解:已知 △COD 是由 △AOB 旋转得来,且 ∠AOB = 15°;
角的大小不变,变换前后两个图像是全等图形
全等多边形
全等多边形对应边、角分别相等;反之,可做判定.
A. 点A
B. 点B C. 点C D. 点D
人教版七年级下册第十章数据的收集、整理与描述复习与小结
(3)若被调查的家庭占全城区家庭数的10%, 请估计该城区不再使用超薄塑料袋的家庭数. (4)针对本次调查结果,请用一句话发表你的感想.
家庭数
a
10%
C
B 72º
800
A
c
情况
A
B
C
2、某果农承包了一片果林,为了了解整个果林的挂果 情况,果农随机抽查了部分果树的挂果数进行分析. 如图是根据数据绘制的统计图,图中从左到右各 长方形之比为5∶6∶8∶4∶2,又知挂果数大于 60的果树共有48棵. (1)果农共抽查了多少棵果树? (2)在抽查的果树中挂果数在40~60之间的树有多少 棵数 棵,占百分之几?
2、用样本估计总体,样本应具有代表性。
例 2、
(1).下列调查中,适合采用全面调查方式的是( ) A.对漓江水质情况的调查. B.对端午节期间市场上粽子质量情况的调查. C. 对某班50名同学体重情况的调查. D.对某类烟花爆竹燃放安全情况的调查. (2).下列调查中,样本最具有代表性的是( ) A.在重点中学调查全市七年级学生的数学水平 B.在篮球场上调查青少年对我国篮球事业的关注度 C.了解班上学生的睡眠时间时,调查班上学号为双 的学生的睡眠时间 D.了解某人心地是否善良,调查他对子女的态度
人教版七年级下册第十章
复习课
第十章 数据的收集、整理与描述
复习
一、回顾总结:
1、数据处理的一般过程:
收 整 描 分 得 出 结 论
全面调查
集
抽样调查
理
数 据
条 形 图 扇 形 图
述
数 据
折 线 图 直 方 图
析
数 据
趋 势 图
数 据
2、几个概念: 全面调查(普查)与抽样调查、 总体、个体、样本、样本容量的概念。
2023年苏科版七年级数学下册第十章《小结与复习(1)》导学案
新苏科版七年级数学下册第十章《小结与复习(1)》导学案学习 目标 1.熟练掌握二元一次方程组的解法. 2.体会方程组的价值,感受数学文化.重点难 点重点 二元一次方程组的解法及列二元一次方程组解决实际问题.难点掌握解二元一次方程组的基本思路.学生活动过程教师导学过程 一、自主学习(独学)1.下列几对数值中哪一对是方程5414x y +=的解 ( )A 、12x y =⎧⎨=⎩B 、21x y =⎧⎨=⎩C 、32x y =⎧⎨=⎩D 、41x y =⎧⎨=⎩ 22.在y kx b =+中,当1x =时,4y =,当2x =时,10y =,则k = ,b = .3.在349x y +=中,如果26y =,那么x = .4.已知43x y =⎧⎨=⎩是方程组512ax by bx ay +=⎧⎨+=-⎩的解,则a b += .5.解二元一次方程组:(1)⎩⎨⎧=-=+1352y x y x (2)⎩⎨⎧=-=+5.0259.243y x y x二、合作探究:(对学、群学)1. 对学:一对一检查自学、检测情况,交流问题,及时更正,疑难问题,小组交流。
2. 群学:有不明白的问题小组合作交流。
1.【情景导入】 课本第41页做一做导入2【布置自主学习任务】3.【巡视检查】例1:已知二元一次方程组⎩⎨⎧=+=-b y x a y x 22的解⎩⎨⎧-==53y x求a,b 的值.例2: 已知()032=+-++y x y x ,求x,y 的值三、拓展提升:1.写出一个以02x y =⎧⎨=⎩为解的二元一次方程组.2.关于x 、y 的方程组⎩⎨⎧-=+=-225453by ax y x 与⎩⎨⎧=--=+8432by ax y x 有相同的解,则()b a -= .四、小结反思: 1.收获 2.困惑五、当堂检测: 六作业必做: 选作:反思:。
人教版七年级数学下册第十章《直方图》学习任务单(公开课导学案)及作业设计
人教版七年级数学下册第十章《直方图》学习任务单【学习目标】1.认识频数分布直方图,了解其中横纵坐标等表示的含义.2.能画出频数分布直方图。
3.能利用频数分布直方图解释数据中蕴含的信息.【学习准备】准备好笔记本,铅笔,直尺。
认真思考,做好记录。
【学习方式和环节】认真听课学习,按老师指令完成相应的课上练习,学习环节主要有:(1)复习学过的统计图:条形图,扇形图,折线图。
(2)从生活中的实际问题出发,思考如何选取参赛学生。
创设情景,引出主题。
(3)学习画频数分布直方图的四个步骤,并学习用图表解释数据中蕴含的信息。
(4)通过分析直方图和条形图的联系和区别,更深刻地理解这两个统计图。
(5)通过改变频数分布直方图的组距,感受组距对直方图的影响。
(6)反思与小结。
【作业设计】1. 某校统计七年级学生每分钟心跳次数如图所示,根据频数分布直方图,回答下列问题:(1)总共统计了多少名学生的心跳情况?(2)哪个次数段的学生人数最多?占多大百分比(精确到0.1%)?(3)如果每半分钟心跳在30次~39次属正常范围,那么心跳次数属于正常范围的学生占多大百分比(精确到0.1%)?2. 随着车辆的增加,交通违规的现象越来越严重,交警对某雷达测速区监测到的一组汽车的时速(单位:千米)数据进行整理,得到其频数及频率如下表:(注:30~40为时速大于30千米而小于40千米,其他类同.)(1)请你把表中的数据填写完整;(2)补全频数分布直方图;(3)如果汽车时速不低于60千米即为违章,则违章车辆共有多少辆?【参考答案】1. 解:(1)总共统计学生人数为2+4+7+5+3+1+2+2+1=27(人);解析:小长方形的高(纵坐标)表示该组的频数,所以总频数是所有小长方形的高(纵坐标)的和(2)在30次~33次这个范围内的学生人数最多,共7人,所占百分比为(3)如果每半分钟心跳在30 次~39 次这个范围内属于正常范围,那么心跳属于正常范围的学生占的百分比是2. 解:(1)第二列0.18,第三列78,第四列56,0.28;(2)如图所示;(3)如果汽车时速不低于60千米即为违章,则违章车辆共有76辆.。
人教版七年级地理(下)第十章极地地区复习教案
第十章极地地区课题极地地区课型复习课教学目标1、能够在南北极地区图上辨别极地地区的范围、位置及经纬线特点和地球自转方向。
2、了解两极地区自然环境的特点及差异。
3、了解两极地区进行科学考察和环境保护的意义。
教学重难点重点:极地地区特殊的自然环境。
难点:南北极地区两地的自然差异。
教学过程一、考点梳理1.南极气候特征:(1)酷寒:覆盖着很厚的冰层,平均厚度2000多米,被称为“冰雪高原”。
(2)干燥:降水少,被称为“白色荒漠”;(3)烈风:风力大,被称为“风库”。
2.南极地区比北极地区更寒冷,原因:南极地势更高;南极地表冰层更厚。
3.对南极进行科学考察的最佳时间是暖季11月——次年3月,也就是北半球的冬季。
原因是:此时南极地区是暖季,气温较高,并且是极昼,便于采光。
▲北极地区图:⑴在北极点附近表示地球自转的方向:逆时针。
⑵大洋:①太平洋②大西洋③北冰洋大洲:A 北美洲 B 欧洲 C 亚洲(3)AC的分界线:E 白令海峡。
▲南极地区图:(1)用箭头标明地球自转方向:顺时针。
(2)图中的海洋①太平洋,②大西洋,③印度洋。
(3)我国两个科学考察站A 长城站,B 中山站,(注:位于极圈内,有极昼极夜现象)其中,A 长城站位于极圈以外,无(有或者无)极昼极夜现象。
(4)A点在B点的西北方,C点在B点的东北方。
二、巩固练习2021年10月在北极圈论坛大会上,《中国的北极政策》白皮书中所提出的共建“冰上丝绸之路”,再次受到了与会代表的高度关注。
读图完成1~2题。
1.有关北极航道叙述正确的是( ) A .沿线地区可看到成群的企鹅 B .缩短运输时间,提高运输效率 C .最佳通航时间为每年的1月前后 D .提升了马六甲海峡的航运价值2.关于北极航线所联系的①②③大洲,叙述正确的是( ) A .①大洲地形分三大南北纵列带名称 地球自转方向范围 中心 代表动物特殊名称 科考站南极地区顺时针 南极圈以南的区域陆地 (南极洲)企鹅 “冰雪高原”“白色沙漠”“风库”长城站(极圈外)、中山站、昆仑站(纬度最高)、泰山站北极地区逆时针 北极圈以北的区域海洋 (北冰洋)北极熊气温比南极高 黄河站B.②大洲东部和南部季风气候显著C.③大洲以白色人种为主,多信奉基督教D.①②③洲都地跨寒温热三带2022年4月26日中国南极科考队圆满完成了第38次科考任务,本次科考历时173天。
人教版数学七年级下册第五章至第十章知识总结与复习课件
A
B
C
D
解析:紧扣平移的概念解题.
【归纳拓展】平移前后的图形形状和大小完全相同,
任何一对对应点连线段平行(或共线)且相等.
【迁移应用4】如图所示,△DEF经过平移得到△ABC, 那
么∠C的对应角和ED的对应边分别是 ( C )
A.∠F,AC B.∠BOD,BA A
C.∠F,BA D.∠BOD,AC
【迁移应用4】计算: 答案:(1)5.79;(2)5.48
课堂小结
1.通过对本章内容的复习,你认为平方根和立方根之 间有怎么样的区别与联系?
2.什么是实数? 3.实数的运算法则与有理数的运算法则有什么联系?
课后训练
1.写出两个大于1小于4的无理数___2_、_π___.
2. 10 的整数部分为__3__.小数部分为_ 10 __3__.
线(线段)的距离的线段有( B ) A
A.2条 B.3条
C.4条 D.5条
B
DC
答案:从图中可以看到共有三条,A到BC的垂线 段AD,B到AD的垂线段BD,C到AD的垂线段CD.
【归纳拓展】点到直线的距离容易和两点之间的距离相 混淆.当图形复杂不容易分析出是哪条线段时,准确掌 握概念,抓住垂直这个关键点,认真分析图形是关键. 【迁移应用2】如图AC⊥BC,CD⊥AB于点D,CD=4.8cm, AC=6cm,BC=8cm,则点C到AB的距离是 4.8 cm;点 A到BC的距离是 6 cm;点B到AC的距离是 8 cm.
2.点P(a-1,a2-9)在x轴负半轴上,则P点的坐标
是 (-4 ,0) .
3.点A(2,3)到x轴的距离为 3个单位 ;点B(-4,0)到y 轴的距离为 4个单位 ;点C到x轴的距离为1,到y轴的 距离为3,且在第三象限,则C点坐标是 (-3 ,-1) .
人教版七年级下册数学第十单元本章复习教案与教学反思
第十章数据的收集、整理与描述原创不容易,为有更多动力,请【关注、关注、关注】,谢谢!新竹高于旧竹枝,全凭老干为扶持。
出自郑燮的《新竹》本章复习【知识与技能】1.了解通过全面调查和抽样调查收集数据的方法;会设计简单的调查问卷与收集数据;能根据问题查找有关资料,获得数据信息.2.通过抽样调查,初步感受抽样的必要性,通过案例了解简单随机抽样,体会用样本估计总体的思想.3.了解频数及频数分布,掌握划记法,会用表格整理数据表示频数分布,体会表格在整理数据中的作用.4.学会用简单频数分布直方图(等距分组)和折线图描述数据,进一步体会统计图表在描述数据中的作用,会根据问题需要选择适当的统计图描述数据.【过程与方法】先复习本章全部知识点,特别要回顾用表格整理数据和用条形图、扇形图、折线图、直方图描述数据的的技能技巧,再通过典题剖析、小结反思、拓展练习等手段培养学生综合地分析问题和解决问题的能力.【情感态度】通过实际参与收集、整理、描述和分析数据的活动,经历统计的一般过程,感受统计在生活和生产中的作用,增强学习统计的兴趣,初步建立统计的观念,培养重视调查研究的良好习惯和科学态度.【教学重点】1.利用图表描述数据.2.综合地运用统计知识分析问题和解决问题.【教学难点】运用统计知识解决有关的综合题、难题,提高学生的变通能力.一、知识框图,整体把握数据处理的一般过程:二、回顾思考,梳理知识1.数据处理一般包括收集数据、整理数据、描述数据和分析数据等过程,数据处理可以帮助我们更好地了解周围世界,对未知的事物作出合理的推断和预测.2.全面调查和抽样调查是收集数据的两种方式,全面调查通过调查总体来收集数据,抽样调查通过调查样本收集数据.全面调查的优点:全面、准确;缺点:(1)费时、费力;(2)对带有破坏性的实验无法采用.抽样调查的优点:(1)省时、省力;(2)适宜于对实验带有破坏性的事物进行调查;缺点:不全面,不准确.3.实际调查中常常采用抽样调查的方法获取数据.简单随机抽样的特点是总体中的每个个体都有相等的机会被抽到,抽取的样本具有代表性.4.利用统计图表描述数据是统计分析的重要环节,对于收集到的数据加以整理,并用统计图表描述出来,可以使我们了解数据的分布特征和规,帮助我们从数据中获取信息,得出结论.5.条形图能够显示每组中的具体数据;扇形图能够显示部分在总体中所占的百分比;折线图能够显示数据的变化趋势;直方图能够显示数据的分布情况. 三、典例精析,复习新知例1 某校320名学生在电脑培训前后参加了一次水平相同的考试,考分都以同一标准划分成“不合格”、“合格”、“优秀”三个等级.为了了解电脑培训的效果,随机抽取32名学生的两次考试考分等级,所绘制的统计图如图所示.试回答下列问题:(1)这32名学生经过培训,考分等级“不合格”的百分比由___下到____.(2)估计该校,培训后考分等级为“合格”与“优秀”的学生共有____名.(3)你认为上述估计合理吗?理由是什么?答:__________,理由______________________________.解:(1)考前24/32×100%=75%,考后8/32×100%=25%.(2)320×(16/32+8/32)=240(名)(3)不合理,它只是随机抽取,而没有“不合格”、“合格”、“优秀”的三个等级中按一定的比例分别来随机抽取,即没有分层抽取,故样本缺乏代表性.例2为了居民使用超薄塑料袋的情况,某中学课外实践小组的同学利用业余时间对本城区居民家庭使用超薄塑料袋的情况进行了抽样调查.统计情况如图所示,其中A为“不再使用”,B为“明显减少了使用量”,C为“没有明显变化”.(1)本次抽样的样本容量是_______;(2)图中=_______(户,c=_______(户);(3)若被调查的家庭占全城家庭数的10%,请估计该城区不再使用超薄塑料袋的家庭数;(4)针对本次调查结果,请用一句话发表你的感想.解:(1)800÷72°/360°=4000(户),故本次抽样的样本容量为4000;(2)a=4000×(1-10%-20%)=2800;c=4000×10%=400;(3)2800÷10=28000(户)或4000÷10%×70%=28000(户);(4)“不再使用超薄塑料袋的家庭占绝大多数”、“环保意识增强的家庭是多数”、“少数家庭还应该增强环保意识”等.例3初三某班对最近一次数学测验成绩(得分取整数)进行统计分析,将所有成绩由低到高分成五组,并绘制成如图所示的频数分布直方图,请结合直方图提供的信息,回答下列问题:(1)该班共有____名同学参加这次测验;(2)在该频数分布直方图中画出频数折线图;(3)若这次测验中,成绩80分以上(不含80分)为优秀,那么该班这次数学测验的优秀率是多少?解:(1)2+9+10+14+5=40(名);(2)图略;(3)14540×100%=47.5%.例4(云南楚雄中考)在2009年楚雄州“火把节”房交会期间,某房地产公司对参加本次房交会的消费者进行了随机的问卷调查,共发放1000份调查问卷,并全部收回.根据问卷调查,将消费者年收入的情况整理后,制成表格如下:根据调查问卷,将消费者打算购买住房面积的情况整理后,作出如图所示的部分频数分布直方图和扇形统计图.注:每组包含最小值不包含最大值,且住房面积取整数.(1)根据表格可得a=_____,被调查的1000名消费者的平均年收入为_____万元.(2)补全频数分布直方图和扇形统计图.(3)若楚雄州现有购房打算的约有40000人,请估计购房面积在80至120平方米的大约有多少人?解:(1)200;2.39;(2)图略(3)(36%+24%)×40000=24000(人),所以估计购房面积在80至120平方米的大约有24000人.例5 一个水库养了某种鱼10万条,从中捞了20条,称得的质量如下(单位:kg):2.50 1.50 1.00 2.80 1.601.702.903.00 1.90 2.802.60 2.80 2.70 2.60 2.701.602.00 2.10 2.20 2.30经市场调查,1.00~1.50(不包括1.50)kg的鱼每千克8元,1.50~2.00(不包括2.00)kg的鱼每千克9元,2.00~2.50(不包括2.50)kg的鱼每千克10元,2.50~3.00(不包括3.00)kg的鱼每千克11元,3.00(包括3.00kg)以上每千克12元.请你用本章所学的知识估计该水库中这种鱼的价值.分析:用频数分布表、频数分布直方图或频数折线图分析.解:依题意,取组距为0.5kg,3.00 1.000.5=4,所以应分成5组.列频数分布表.可画频数分布直方图与频数折线图,如图所示:于是可估计在1.00~1.50kg范围内的鱼有100000×1/20=5000(条),在1.50~2.00kg范围内的鱼有100000×5/20=25000(条),在2.00~2.50kg范围内的鱼有100000×4/20=20000(条),在2.50~3.00kg范围内的鱼有100000×9/20=45000(条),在3.00kg(包括3.00kg)以上的鱼有5000(条).可估计价值为:8×5000×1.25+9×25000×1.75+10×20000×2.25+11×45000×2.75+12×5000×3.25=2450000(元).可估计该水库中这种鱼的总价值为2450000元.【教学说明】用统计知识估产、估值是现实生活中经常遇到的问题,也是中考命题者非常青睐的问题,同学们一定要加强这方面的训练.四、师生互动,课堂小结中考中对本章知识点的考查主要是用图表描述数据,同学们一定要加强对往届这方面的中考题的训练与研究,以便在今后的考试中得心应手,立于不败之地.1.布置作业:从教材“复习题10”中选取.2.完成练习册中本课时的练习.这节课的内容主要是让学生学会收集数据,感受生活中处处有数学,会把数据分类、收集,掌握整理数据的方法.教学中努力用课标中的新理念指导教学,使学生真正成为学习的主人.在教学中,注重让学生全程参与学习活动——课前参与、课中体会、课后反思,激发学生的学习积极性、主动性,使学生体会数学知识的产生、形成与发展的过程,获得积极的情感体验,感受数学的力量,同时,让学生掌握必要的基础知识与基本技能.【素材积累】驾驭命运的舵是奋斗。
初中数学沪科版七年级下册第10章相交线、平行线和平移复习课课件
【当堂检测】
1.如图.直线AB、CD相交于点O,OE⊥AB于O,OB平分∠ DOF,∠DOE=50°, 求∠AOC、 ∠ EOF的度数.
解:因为AB⊥OE (已知) 所以 ∠EOB=90°,(垂直的定义)
因为∠DOE= 50°,(已知) 所以∠DOB=40°,(余角的定义) 所以∠AOC=∠DOB=40°,(对顶角相等) 又因为OB平分∠DOF,(已知) 所以∠BOF= ∠DOB=40°.(角平分线性质) 所以∠EOF= ∠EOB+ ∠BOF=90°+40°=130°.(两角和的定义)
典型例题
例2.如图,火车站、码头分别位于A,B两点,直线a和b分别表示铁路与河流. (1)从火车站到码头怎样走最近?画图并说明理由; (2)从码头到铁路怎样走最近?画图并说明理由; (3)从火车站到河流怎样走最近?画图并说明理由.
分析:(1)从火车站到码头的距离是点到点的距离,即两点间的距离. 根据两点之间线段最短解答. (2)从码头到铁路的距离是点到直线的距离.根据垂线段最短解答. (3)从火车站到河流的距离是点到直线的距离.根据垂线段最短解答.
解: 因为两个三角形大小一样,
所以阴影部分的面积等于梯形ABEH的面积.
由平移的性质,得DE=AB,BE=6.
因为AB=10,DH=4, 所以HE=DE-DH=10-4=6,
所以阴影部分的面积=
1 2
×(6+10)×6=48.
典型例题
归纳总结:图形平行的性质: (1)图形平移前后的对应的线段相等,对应角相等. (2)图形平移前后的对应线段共线或平行. (3)图形平移前后的对应点的连线共线或平行.
A D
B
C
三、知识回顾
知识点三 平行线
华师大版七年级数学下册课件 第十章 小结与复习
CD
A O 图a B
5. 下列图形中,既是轴对称图形,又是中心对称图形 的是( D )
A
B
C
D
6. 如图,某居民小区有一长方形地,居民想在长方形 地内修筑同样宽的两条小路(图中画线的是两条小 路),余下部分绿化,道路的宽为 2 米,则绿化的 面积为多少平方米?
解:32×20 − 32×2 − 20×2 + 2×2 = 540(平方米)
轴对称图形
两个图形成轴对称
2. 轴对称和轴对称图形的性质
轴对称图形(或关于某条直线对称的两个图形) 沿对称轴对折后的两部分是完全重合的,所以它的 对应线段相等,对应角相等.
如果一个图形是轴对称图形,那么连结对称点 的线段的垂直平分线就是该图形的对称轴.
(1)线段是轴对称图形,它的对称轴是线段 的垂直平分线.
(3)旋转前后对应线段、对应角分别相等,图形的 大小、形状不变.
5. 中心对称
把一个图形绕着某一个点旋转 180°,如果 它能与另一个图形重合,那么,我们就说这两个 图形成中心对称,这个点叫做对称中心,这两个 图形中的对应点叫做关于中心的对称点.
6. 中心对称的特征及中心对称的判定
中心对称的特征: 在成中心对称的两个图形中,连结对称点的线
)
A
B 图 10-1C
D
3. 如图所示,下列四组图形中,有一组中的两个图形 经过平移其中一个能得到另一个,这组图形是( D )
A
B
C
D
4. 如图 a,将△AOB 绕点 O 按逆时针方向旋转 60°
后得到△COD,若∠AOB = 15°,则∠AOD 的度
数是( C ) A. 15° C. 45°
B. 60° D. 75°
鲁教版五四制七年级数学下第十章三角形的有关证明之三角形中的边角关系复习教学课件
AC BC AB
AC AB BC
AB BC AC
AC AB BC
BC AC AB
AB BC AC
三角形中任何两边的和大于第三边
想一想,由不等式的变形,三角形的两边之差 与第三边有何关系?
三角形中任何两边的差小于第三边
2.一根木棒长为8,另一根木棒长为3,若要围成三角形,
则第三根木棒长度x的取值范围是 5 < x < 11
当x=3.6时2x=2×3.6=7.2 为x cm,则 2×4+x=18
答:三角形的各边长分别
解得 x=10
是7.2cm,7.2cm,3.6cm.
∵4+4<10, ∴4cm为腰不能构成三角形.
答:三角形另外两个边长都是7cm
4.在等腰三角形中,周长为22cm,若一边 长8cm,求其他两边长。
解 ①若底边长为8cm,设腰长为xcm,则有
例1 等腰三角形中,周长为18cm,
(1)如果腰长是底边长的2倍,求各边长.(2)如果一 边长等于4cm,求另两边的长?
解:(1)设底边长为xcm, 则腰长为2xcm,则有
2x+2x+x=18 解得 x=3.6
(2)①若底边长为4cm, 设腰长为xcm,则有
2x+4=18
解得 x=7 ②若腰长为4cm,设底边长
注意:腰、底边、顶角、底角等是相对于等腰三角形来 说的, 一般的三角形则不存在这些概念。
在A点的小狗,为了尽快吃到B点的香肠,它 选择A B 路线,而不选择A C B路线,
你能说出其中的道理吗?
C
B A
AC+CB>AB(两点之间线段最短)
由此可以得到: AC BC AB
七年级英语下册练习册第十单元复习课完形填空翻译
七年级英语下册练习册第十单元复习课完形填空翻译Do you have a beautiful dream? I know almost everyone 1 his own dream in his life.The dreams are (very important) 2 them.The dreams can (make them) 3 harder.I am studying in a school now.I do well in all my subjects. 4 the teachers like me very much.My dream is 5 a teacher (in the west of )China.Many children there(want to)go to shoo1 6 they cant.Their families are poor and their parents dont have enough money to send their children to shoo1.I think (that going)to school and studying is the only 7 to change their life.Teachers are greatly(needed) there,so I (want to) be a teacher (to help) them. I will be( kind to) my students and make friends with them.A11 the children 8 like to talk with me,too.I will give them love and teach them 9 to be a useful person.I think it is (an interesting) job in the world.I hope my dream can 10 !你有一个美丽的梦吗?我知道几乎每个人一生都有自己的梦想。
2020--2021学年苏科版七年级数学下册第十章《二元一次方程组》实际应用解(三)
苏科版七年级数学下册第十章《二元一次方程组》实际应用解答题常考题(三)1.在期末一节复习课上,八年(一)班的数学老师要求同学们列二元一次方程组解下列问题:在我市“精准扶贫”工作中,甲、乙两个工程队先后接力为扶贫村庄修建3000m的村路,甲队每天修建150m,乙队每天修建200m,共用18天完成.(1)粗心的张红同学,根据题意,列出的两个二元一次方程,等号后面忘记写数据,得到了一个不完整的二元一次方程组,张红列出的这个不完整的方程组中未知数p表示的是,未知数q表示的是;张红所列出正确的方程组应该是;(2)李芳同学的思路是想设甲工程队修建了xm村路,乙工程队修建了ym村路.下面请你按照李芳的思路,求甲、乙两个工程队分别修建了多少天?2.在《二元一次方程组》这一章的复习课上,李老师让同学们根据下列条件探索还能求出哪些量.某电器公司计划用甲、乙两种汽车运送190台家电到农村销售,已知甲种汽车每辆可运送家电20台,乙种汽车每辆可运送家电30台,且规定每辆汽车按规定满载,一共用了8辆汽车运送.(1)小宇同学根据题意列出了一个尚不完整的方程组,请写出小宇所列方程组中未知数x,y表示的意义:x表示,y表示,该方程组中“?”处的数应是,“*”处的数应是.(2)小琼同学的思路是设甲种汽车运送m台家电,乙种汽车运送n台家电.下面请你按照小琼的思路列出方程组,并求甲种汽车的数量.(3)如果每辆甲种汽车的运费是180元,每辆乙种汽车的运费是300元,那么该公司运完这190台家电后的总运费是多少?3.某环卫公司通过政府采购的方式计划购进一批A,B两种型号的新能源汽车.据了解,2辆A型汽车和3辆B型汽车的进价共计80万元;3辆A型汽车和2辆B型汽车的进价共计95万元.(1)求A,B两种型号的汽车每辆进价分别为多少万元;(2)该公司计划恰好用200万元购进以上两种型号的新能源汽车(两种型号的汽车均购买),并使得购进的B种型号的新能源汽车数量多于A种型号的新能源汽车数量,请直接写出该公司的采购方案.4.丹东的草莓久负盛名,当下正是草莓的销售旺季,某日,我市一水果店以3650元购进两种不同品种的草莓,若按标价出售可获毛利润1600元(毛利润=售价﹣进价),这两种草莓的进价、标价如下表所示:价格/品种A品种B品种进价(元/千克)35 45标价(元/千克)50 65求这两个品种的草莓各购进多少千克.5.政府为应对新冠疫情,促进经济发展,对商家打折销售进行了补贴,不打折时,6个A 商品,5个B商品,总费用114元.3个A商品,7个B商品,总费用111元.打折后,小明购买了9个A商品和8个B商品共用了141.6元.(1)求出商品A、B每个的标价.(2)若商品A、B的折扣相同,商店打几折出售这两种商品?小明在此次购物中得到了多少优惠?6.一方有难,八方支援.“新冠肺炎”疫情来袭,除了医务人员主动请缨走向抗疫前线,众多企业也伸出援助之手,某公司用甲、乙两种货车向武汉运送爱心物资,两次满载的运输情况如表:甲种货车(辆)乙种货车(辆)总量(吨)第一次 4 5 31第二次 3 6 30(1)甲、乙两种货车每辆分别能装货多少吨?(2)现有45吨物资需要再次运往武汉,准备同时租用这两种货车,每辆均全部装满货物,问有哪几种租车方案?7.由于酒泉独特的气候资源,生产的洋葱品质好、干物质含量高且耐储存,品质、色泽、风味明显优于其他洋葱产区,因而受到国内外客商青睐.现欲将一批洋葱运往外地销售,若用2辆A型车和1辆B型车载满洋葱一次可运走10吨;用1辆A型车和2辆B型车载满洋葱一次可运走11吨.现有洋葱31吨,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都载满洋葱.根据以上信息,解答下列问题:(1)1辆A型车和1辆B型车都载满洋葱一次可分别运送多少吨?(2)请你帮该物流公司设计租车方案;(3)若1辆A型车需租金100元/次,1辆B型车需租金120元/次.请选出费用最少的租车方案,并求出最少租车费.8.甘肃省白银市具有悠久的历史和灿烂的文化,在历史长河中,黄河文化、西夏文化、中原文化等多种文化在这里相互渗透,融合发展.千姿百态、景象万千的景泰黄河石林,被称为“中华自然奇观”.寿鹿山、屈吴山、哈思山、铁木山等自然景观各具特色,引人入胜.一外地游客到某特产专营店,准备购买红枸杞和小口大枣两种盒装特产.若购买3盒红枸杞和2盒小口大枣共需285元;购买1盒红枸杞和3盒小口大枣共需270元.(1)请分别求出每盒红枸杞和每盒小口大枣的价格;(2)该游客购买了4盒红枸杞和2盒小口大枣,共需多少元?9.2019年2月《上海市生活垃圾管理条例》正式出台,其中规定生活垃圾分为可回收物、有害垃圾、湿垃圾、干垃圾四类.某校由六、七两个年级共17名同学组成了“垃圾分类宣传”志愿者小队,他们对本校每天的生活垃圾收集情况进行调查统计后发现:①由于宣传到位,学校现在每天生活垃圾的重量比原来每天400千克下降了20%;②其中可回收物重量和干垃圾重量之和占现在每天生活垃圾重量的,可回收物中废纸占70%;③由于部分同学对干垃圾的认识还不够清楚,因此,发现干垃圾中还有20%的废纸;④可回收物中的废纸与干垃圾中的废纸合在一起共重82千克.根据上述信息回答下面的问题:(1)学校现在每天生活垃圾重量是多少千克?(2)学校现在每天的可回收物和干垃圾各多少千克?(用二元一次方程组解)10.某体育器材店有A、B两种型号的篮球,已知购买3个A型号篮球和2个B型号篮球共需310元,购买2个A型号篮球和5个B型号篮球共需500元.(1)A、B型号篮球的价格各是多少元?(2)某学校在该店一次性购买A、B型号篮球共96个,总费用为5700元,这所学校购买了多少个B型号篮球?11.喜迎元旦,某玩具店购进2022年冬奥会吉祥物冰墩墩与冬残奥会吉祥物雪容融共100个,花去3300元,这两种吉祥物的进价、售价如下表:进价(元/个)售价(元/个)冰墩墩30 40雪容融35 50 (1)求冰墩墩、雪容融各进了多少个?(2)如果销售完100个吉祥物所得的利润,全部捐赠,那么,该玩具店捐赠了多少钱?12.列二元一次方程组解应用题:小颖家离学校1880米,其中有一段为上坡路,另一段为下坡路.她跑步去学校共用了16分钟,已知小颖在上坡路上的平均速度是80米/分钟,在下坡路上的平均速度是200米/分钟.求小颖上坡、下坡各用了多长时间?13.购买铅笔7支,作业本3本,圆珠笔1支共需3元;购买铅笔10支,作业本4本,圆珠笔1支共需4元.问购买铅笔11支,作业本5本,圆珠笔2支共需多少元?14.司机小李驾车在公路上匀速行驶,他看到里程碑上的数是两位数,1小时后,看到里程碑上的数恰好是第一次看到的数颠倒了顺序的两位数,再过1小时后,第三次看到里程碑上的数又恰好是第一次见到的两位数字之间添上一个零的三位数,这三块里程碑上的数各是多少?15.疫情期间,为保护学生和教师的健康,某学校用33000元购进甲、乙两种医用口罩共计1000盒,甲,乙两种口罩的售价分别是30元/盒,35元/盒.(1)求甲、乙两种口罩各购进了多少盒?(2)现已知甲,乙两种口罩的数量分别是20个/盒,25个/盒,按照教育局要求,学校必须储备足够使用十天的口罩,该校师生共计800人,每人每天2个口罩,问购买的口罩数量是否能满足教育局的要求?参考答案1.解:(1)方程组中未知数p表示的是:甲工程队修建的天数,未知数q表示的是:乙工程队修建的天数,列出正确的方程组应该是:.故答案为:甲工程队修建的天数,乙工程队修建的天数,;(2)设甲工程队修建了xm村路,乙工程队修建了ym村路,根据题意,得,解得,所以甲工程队修建的天数==12(天),乙工程队修建的天数==6(天).答:甲、乙两个工程队分别修建了12天、6天.2.解:(1)依题意得:x表示使用甲种汽车的数量,y表示使用乙种汽车的数量,“?”处的数应是8,“*”处的数应是190.故答案为:使用甲种汽车的数量;使用乙种汽车的数量;8;190.(2)依题意得:,解得:,∴==5.答:使用甲种汽车5辆.(3)180×5+300×(8﹣5)=1800(元).答:该公司运完这190台家电后的总运费是1800元.3.解:(1)设A型汽车每辆的进价为x万元,B型汽车每辆的进价为y万元,依题意,得:,解得:,答:A型汽车每辆的进价为25万元,B型汽车每辆的进价为10万元.(2)设购进A型汽车m辆,购进B型汽车n辆,m<n,依题意,得:25m+10n=200,∴m=8﹣n.∵m,n均为正整数,∴n为5的倍数,∴或或,∵m<n,∴不合题意舍去,∴共2种购买方案,方案一:购进A型车4辆,B型车10辆;方案二:购进A型车2辆,B型车15辆.4.解:设A品种的草莓购进x千克,B品种的草莓购进y千克,由题意得:,解得:,答:A品种的草莓购进40千克,B品种的草莓购进50千克.5.解:(1)设每个A商品的标价为x元,每个B商品的标价为y元,依题意得:,解得:.答:每个A商品的标价为9元,每个B商品的标价为12元.(2)设商店打m折出售这两种商品,依题意得:9×9×+8×12×=141.6,解得:m=8,9×9+12×8﹣141.6=35.4(元).答:商店打8折出售这两种商品,小明在此次购物中得到了35.4元的优惠.6.解:(1)设甲种货车每辆能装货x吨,乙种货车每辆能装货y吨,依题意得:,解得:.答:甲种货车每辆能装货4吨,乙种货车每辆能装货3吨.(2)设租用甲种货车m辆,乙种货车n辆,依题意得:4m+3n=45,∴n=15﹣m.又∵m,n均为正整数,∴或或,∴共有3种租车方案,方案1:租用3辆甲种货车,11辆乙种货车;方案2:租用6辆甲种货车,7辆乙种货车;方案3:租用9辆甲种货车,3辆乙种货车.7.解:(1)设1辆A型车载满洋葱一次可运送x吨,1辆B型车载满洋葱一次可运送y吨,依题意,得:,解得:,答:1辆A型车载满洋葱一次可运送3吨,1辆B型车载满洋葱一次可运送4吨.(2)依题意,得:3a+4b=31,∵a,b均为正整数,∴或或.∴一共有3种租车方案,方案一:租A型车1辆,B型车7辆;方案二:租A型车5辆,B型车4辆;方案三:租A型车9辆,B型车1辆;(3)方案一所需租金为100×1+120×7=940(元);方案二所需租金为100×5+120×4=980(元);方案三所需租金为100×9+120×1=1020(元).∵940<980<1020,∴最省钱的租车方案是方案一,即租A型车1辆,B型车7辆,最少租车费为940元.8.解:(1)设每盒红枸杞的价格为x元,每盒小口大枣的价格为y元,由题意得:,解得:,答:每盒红枸杞的价格45元,每盒小口大枣的价格为75元;(2)4×45+2×75=330(元),答:该游客购买了4盒红枸杞和2盒小口大枣,共需330元.9.解:(1)400×(1﹣20%)=320(千克).答:学校现在每天生活垃圾重量是320千克;(2)设学校现在每天的可回收物有x千克,干垃圾有y千克,依题意得:,解得:.答:学校现在每天的可回收物有160千克,干垃圾有60千克.10.解:(1)设A型号篮球的价格为x元,B型号的篮球的价格为y元,依题意得:,解得:.答:A型号篮球的价格为50元、B型号篮球的价格为80元.(2)设这所学校买了m个A型号篮球,买了n个B型号篮球,依题意得:,解得:.答:这所学校购买了30个B型号篮球.11.解:(1)设冰墩墩进x个,雪容融进了y个,由题意可得:,解得:,答:冰墩墩进40个,雪容融进了60个;(2)∵利润=(40﹣30)×40+(50﹣35)×60=1300(元),∴玩具店捐赠了1300元.12.解:设小颖上坡用了x分钟,下坡用了y分钟,依题意得:,解得:.答:小颖上坡用了11分钟,下坡用了5分钟.13.解:设铅笔的单价为x元,作业本的单价为y元,圆珠笔的单价为z元,依题意得:,3×①﹣②得:11x+5y+2z=5.答:购买铅笔11支,作业本5本,圆珠笔2支共需5元.14.解:设第一次他看到的两位数的个位数为x,十位数为y,汽车行驶的速度为v,依题意得:,解得:x=6y.又∵x,y均为1~9内的自然数,∴x=6,y=1,∴10y+x=16,10x+y=61,100y+x=106.答:第一块里程碑上的数为16,第二块里程碑上的数为61,第三块里程碑上的数为106.15.解:(1)设学校购进甲种口罩x盒,购进乙种口罩y盒,依题意,得:,解得:.答:学校购进甲种口罩400盒,购进乙种口罩600盒.(2)购买的口罩总数为:400×20+600×25=23000(个),全校师生两周需要的用量为:800×2×10=16000(个).∵23000>16000,∴购买的口罩数量能满足教育局的要求.。
第十章 极地地区复习课件 2022-2023学年人教版七年级地理下册
C.大群的企鹅在游泳 D.因纽特人正在捕鱼
对点训练:
对点训练3 极地地区的科考和生态环境保护
B 1.下列关于我国南极科学考察站的叙述,正确的是( )
A.四个科学考察站均有极昼极夜现象 B.泰山站位于长城站的东南方向 C.建站时间选择在1月至2月的主要原因是此时南极最寒冷,冰层坚 固,地基牢固 D.一轮船从长城站出发,按顺时针方向环绕南极洲一圈,轮船依次 经过了太平洋——印度洋——大西洋 2.极地地区的环境保护受到全世界的重视,对南极地区的和平利用,下
寒冷、少雨
寒极 白色荒漠 风库
冰雪高原 企鹅
北极熊
淡水、煤、铁等
石油、天然气等
三.在图中对应位置 填入科考站。
黄河站 N
中山站 泰山站 昆仑站体系】
寒冷、少雨 北极熊
黄河站 6月、7月、8月(暖季、极昼)
酷寒、干燥、烈风 企鹅
长城站 泰山站
中山站 昆仑站
11月--次年3月(暖季、极昼)
A.太平洋 B.大西洋 C.印度洋 D.北冰洋
对点训练:
对点训练2 极地地区的自然环境
D 1.有关南极地区的叙述,正确的是( )
①有“高原大陆”之称
②储存着大量的固体淡水资源
③极端恶劣的气候条件,使得南极地区几乎没有生物资源
④11月至次年2月,是去南极科学考察的最佳季节
A.①②
B.①④
C.②③
D.②④
对点训练:
对点训练1 极地地区海陆分布 1.近年来,全球变暖使北极(海洋运输)航线的开通成为可能。下图示
C 意计划中的北极航线(包括东北航线和西北航线),东北航线、西北航
线汇合处N是 ( ) A.马六甲海峡 B.土耳其海峡 C.白令海峡 D.霍尔木兹海峡
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课
题
第十章数据的收集、整理与描述小结日期
精典习题的分析和处理目标:
1、复习调查统计中的基本概念
2、掌握调查统计的过程
3、熟练掌握各种统计图的做法
4、提高读图能力
一、统计调查的实施步骤:
1、收集数据:
获取数据的两种方式全面调查(普查):范围小,数量少
抽样调查:范围大,数量大
全面调查(普查)的优点:准确;
全面调查(普查)的缺点:耗时大、花费大。
抽样调查的优点:耗时短、花费小、快速;
抽样调查的缺点:数据不准确。
Ⅰ.全面调查(普查):
考察全体对象的调查,就叫做全面调查,也叫做普查。
Ⅱ.抽样调查:
抽取一部分对象进行调查,然后根据调查数据推断全体数据的情况,这样的调查称为抽样调查。
考察对象的全体,就叫做总体;组成总体的每一个考察对象称为个体;被抽取的那些对象组成一个样本;样本中个体的数目称为样本容量,样本容量一般不带单位。
抽样调查应具有代表性和广泛性。
在抽取样本的过程中,总体中的每一个个体都有相等的机会被抽到,像这样的抽样调查方法是一种简单的随机抽样调查。
全面调查(普查)可以直接获得总体的情况,但有时总体中个体数目较多,全面调查(普查)的工作量较大,有时受客观条件的限制,无法对所有个体进行全面调查,有时全面调查(普查)又具有破坏性,不允许全面调查(普查),而抽样调查只考察总体中的一部分个体,范围小,又省人力、时间、物力,但调查结果往往不如全面调查得到的准确,因此,为了使抽样调查更加准确地反映总体的实际情况,有时可以采用分层抽样调查的方式进行数据的收集。
2、整理数据:
3、描述数据:
Ⅰ. 条形统计图:
条形统计图是用一个单位长度表示一定的数量,根据数量的多少画成长短不同的直条,然后把这些直条按照一定的顺序排列起来。
从条形统计图中很容易看出各种数量的多少。
制作条形统计图的一般步骤:
(1)根据图纸的大小,画出两条互相垂直的射线,标箭头,标明表示的类型;
(2)在水平射线上,适当分配条形的位置,确定直条的宽度和间隔;
(3)在与水平射线垂直的射线上,根据数据大小的具体情况,确定单位长度表示多少;
(4)按照数据的大小,画出长短不同的直条,并注明数量。
Ⅲ.扇形统计图:
扇形统计图是用整个圆表示总数,用圆内各个扇形的大小表示各部分数量占总数的百分数。
通过扇形统计图可以清楚地表示出各部分数量同总数之间的关系。
(1)先算出各部分数量占总数的百分之几;(计算公式:总数÷对象数=百分比)
(2)再算出表示各部分数量的扇形的圆心角度数;(计算公式:360°×百分比=圆心角度数)
(3)取适当的半径画一个圆,并按照上面算出的圆心角的度数,在圆里画出各个扇形;
(4)在每个扇形中标明所表示的各部分的数量名称和所占的百分数,并用不同的颜色或条纹把各个扇形区别开。
Ⅳ. 频数分布直方统计图:
每个对象出现的次数,就叫做频数;而每个对象出现的次数与总次数的比值,就叫做频率;频数分布直方统计图中:小长方形的面积=组距×(频数÷组距)=频数;各小组的频数之和=数据总数;各小组的频率之和=1;频率=频数÷总数
(1)计算最大值与最小值;
(2)决定组距与组数;
(3)列频数分布表;
(4)画频数分布直方统计图。
4、分析数据:
5、得出结论:。