初二第二学期《代数方程》的应用题训练卷
初二第二学期代数方程的应用题训练卷
2015年初二第二学期《代数方程》的应用题训练卷一、选择题1.如果关于x 的方程m x =+-312没有实数根,那么m 的取值范围是( )(A )m ≥0; (B )m ≥3; (C)m <0 ; (D)m <3.2.等式29x -=x +3·x -3成立的条件是 ( )(A )x ≤3; (B )x ≥3; (C )x ≥-3; (D )-3≤x ≤3.3.打印一份稿件,甲需要a 小时,乙需要b 小时,甲、乙两人共同打印这份稿件需要的时间是( )(A )2b a +小时; (B )ab b a +小时; (C )b a ab +小时; (D )ba +2小时. 4.某市为发展教育事业,加强了对教育经费的投入,2007年投入3000万元,预计2009年投入5000万元.设教育经费的年平均增长率为x ,根据题意,下面所列方程正确的是( )(A )23000(1)5000x +=; (B )230005000x =; (C )23000(1)5000x +=%; (D )23000(1)3000(1)5000x x +++=.5.某经济开发区今年一月份工业产值达50亿元,第一季度总产值175亿元,为求二月、三月平均每月的增长率是多少,可设平均每月增长的百分率为x ,根据题意,列出的方程是( )(A ) 50(1+x )2=175 ; (B )50+50(1+x )2=175;(C )50(1+x )+50(1+x )2=175; (D )50+50(1+x )+50(1+x )2=175 .6.某景区有一景点的改造工程要限期完工.甲工程队独做可提前1天完成,乙工程队独做要误期6天.现由两工程队合做4天后,余下的由乙工程队独做,正好如期完成.设工程期限为x 天,则下面所列方程中正确的是( ).(A )1614=-++x x x ;(B )614-=-x x x ;(C )1614=++-x x x ;(D )x x x x =++-614. 二、填空题 1.已知关于x 的方程1(3)10(0)m x m x x ++--=≠,当m_________时,它是一元二次方程。
八下代数方程应用题
4、某铁路的提速改造工程完成后,旅客列车的平均速度提高了50千米/小时,已知甲、乙两站之间的行程约为190千米,提速后运行时间缩短了38分钟,求提速后旅客列车的平均速度。
5、某工厂甲、乙两个车间各生产300个机械零件,按原来的工效,乙车间需要比甲车间多用一天时间完成;现在甲车间和乙车间都提高了工效,其中甲车间工作效率提高了20%,而乙车间提高了一倍,结果生产同样的300个机械零件,乙车间比甲车间少用两天就可完成。
甲、乙两车间原来生产300个机械零件各需要多少天?
6、7月份进入汛期,部分路面积水比较严重,为了改善这一状况,市政公司决定将一段路的排水工程承包给甲、乙两工程队,计划由两队合作,只需12天就可以完成此项工程,但两队合作了4天后,因为台风降临,甲队被紧急抽调到其他工程,因此乙队又单独醉了20天才完成了此项目。
(1)求甲、乙两队单独完成此项工程各需多少天;
(2)如果甲队每施工一天需要费用2万元,乙队每施工一天需要费用1.5万元,那么实际完成此项工程的费用有没有超出预算?差额是多少?。
2021沪教版八年级数学第二学期代数方程的应用练习含答案
代数方程的应用解题步骤:①审题,分析题意,找到题中未知数和题给条件的相等关系;②设元,选择适当的未知数.③找出相等关系,并用它列出方程;④解方程求出题中未知数的值;⑤检验所求的答案是否符合题意,并做答.练习:1. 有一个数,它的正的平方根比它的倒数的正的平方根的1 0倍多3,这个数是_________.2. 某年哈尔滨市政府为了申办冬奥会,决定改善城市容貌,绿化环境,计划过两年时间使绿地面积增加44%,设这两年平均每年绿地面积的增长率为x,则可列出方程_________.3. 某玩具店采购人员第一次用去100元去采购“企鹅牌”玩具,很快售完.第二次去采购时发现批发价上涨了0 . 5元,用去了150元,所购玩具数量比第一次多了10件.设第二次采购x件,则可列方程_________.4. 社区艺术节需要用红纸花3 0 0 0朵,某班全体同学自愿承担制作红花任务,但在实际制作时,有10名同学因排列节目而没有参加,这样参加劳动的同学平均每人制花的数量比原定全班同学平均每人要完成的数量多1 5朵,这个班级共有多少名同学?5. (古印度群峰问题)有一群蜜蜂,一部分飞进来枸杞叶里,其个数等于全体总数的一半的平方根,还有全体的89遗留在后面.此外,蜂群里还有一只小蜜蜂在莲花旁徘徊,它被一只坠入香花陷阱的同伴的声音所吸引试问这群蜜蜂共有多少只?6. 某商场计划销售一批运动衣,能获得利润1 2 0 0 0元,经过市场调查后,进行促销活动,由于降低售价,每套运动衣少获利1 0元,但可多销售4 0 0套,结果总利润比计划多4 0 0 0元,求实际销售运动衣多少套?7. 一项工程,若甲、乙两队单独完成,甲队比乙队多用5天,若甲、乙两队合作,6天可以完成,(1)求两队单独完成此项工程各需多少天?(2)若这项工程由甲、乙两队合作完成后,厂家付给他们50000报酬,两队商定按各自完成的工作量分配这笔钱,问甲、乙两队各得多少元?8. 甲、乙二人分别从A、B两地同时同向出发,甲经过B地后再走3小时12分钟在C地追上乙,这时二人共走了72千米,而C、A两地的距离等于乙走5小时的路程,求甲、乙二人的速度和A、B两地的距离.9. 某车间一月份生产甲型冰箱8 0台,以后每月的增长率相同,而生产的乙型冰箱每月比上月增产50台,二月份甲、乙两种型号的冰箱产量之比为2 : 3,三月份两种型号的冰箱总产量为325台,求二月份甲型冰箱的增长率和一月份乙型冰箱的产量.10. 甲杯中装有含盐20%的盐水40千克,乙杯中装有含盐4%的盐水60千克,现在从甲杯中取出一些盐水放入丙杯,再从乙杯中取出一些盐水放入丁杯,然后将丁杯盐水全部倒入甲杯,把丙杯盐水全部倒入乙杯,结果甲、乙两杯成为含盐浓度相同的两杯盐水,若已知从乙杯取出并倒入丁杯的盐水重量是从甲杯取出并倒入丙杯盐水重量的6倍,试确定从甲杯取出并倒入丙杯的盐水为多少千克.11. 某农户种植花生,原来种植的花生亩产量为200千克,出油率为50%,现在种植新品种花生后,每亩收获的花生可加工成花生油1 3 2千克,其中花生出油率的增长率是亩产量的增长率的一半,求新品种花生亩产量的增长率.12. 某商店在“端午节”到来之际,准备购进礼品装和普通家庭装两种类型的盒装粽子,礼品装的进价是家庭装的进价的2倍少4,若1000元购进礼品装粽子的盒数与550元购进的普通家庭装的盒数相同,求礼品装粽子的进价是多少元?13. 某人计划按一定的速度,在规定时间内从A地出发,步行1 5千米到B地,走了5千米后,他加快速度,每小时比原计划多走1千米,因此提前2 0分钟到达B地。
八年级第二学期代数方程应用题 (偏难)
代数方程应用题提高练习1、某商厦进货员在A 市发现一种应季服装,预料能畅销市场,就用80000元购进所有服装,但还急需2倍这种服装,经人介绍又在B 市用176000元购进所需服装,只是单价比A 价贵4元,商厦按每件58元销售,销路很好,最后剩下的150件按八折销售,很快销完,问商厦在这笔生意中盈利多少元?2、要完成一件工作,甲独坐要比甲、乙、丙三人合作多用10天,乙独做要比甲、乙、丙三人合作多用18天,丙在合做中完成全部任务的83,问甲、乙、丙三人合做几天才能完成任务?3、A 、B 两地间的路程为150千米,甲、乙两车分别从A 地和B 地同时出发相向而行,2小时相遇,相遇后,各以原来速度继续行驶,甲车到达B 地后立即原路返回,返回时的速度是原来速度的2倍,结果甲、乙两车同时到达A 地,求甲车的原速度和乙车的速度。
4、某工厂拟建一座平面图形为矩形且面积为200平方米的三级污水处理池(如图),由于地形限制,三级污水处理池的长、宽都不能超过16米,如果池的外围墙建造单价为每米400元,中间两条隔墙建造单价为每米300元,池底建造单价为每平方米80元。
(池墙的厚度忽略不计),当三级污水池的总造价为47200元时,求池长x ;5、已知正方形ABCD的边长为1,点M在正方形的边上由A点出发沿着AB、BC移动到C,点N是点M关于直线AC的对称点,设BM=x,△AMN的周长为y。
(1)求y关于x的函数解析式及其定义域;(2)若∠MAN=60°,求y的值。
6、某公司要改制成股份公司,职工投资总额需达a万元,计划由公司职工平均投资入股,如果职工中有4人愿意每人投资10万元,那么剩下的职工平均每人可以少投资0.5万元;如果职工中有6人愿意每人投资12万元,那么剩下的职工平均每人可以少投资1万元,如果职工中有10人不参加投资入股,那么剩下的职工平均每人需投资多少万元?7、为加强防汛工作,市工程队准备对苏州河一段长为2240米的河堤进行加固。
数学初二代数方程练习题
数学初二代数方程练习题1. 解下列代数方程,并将解表示在数轴上:a) 2x + 3 = 5b) 3(x + 4) = 45c) 5(2x - 1) = 3(x + 2)2. 解下列代数方程组,并判断其解的情况:a) 2x + y = 9x - y = 1b) 3x - 4y = 62x + 5y = 33. 解下列乘法方程:a) x(x + 1) = 20b) (3x - 2)(x + 4) = 04. 解下列分式方程:a) (x + 1)/2 - (x - 2)/3 = 3/4b) (x - 1)/(2x + 3) + (x + 2)/(1 - x) = 5/65. 解下列带根式的方程:a) √(x + 2) - √(x - 1) = 3b) √(x^2 + 5) - √(x^2 - 3) = √26. 解下列二次方程:a) 2x^2 - 7x - 4 = 0b) 3x^2 + 4x + 1 = 07. 解下列含参数的方程,并分参数的取值讨论解的情况:a) (k + 2)x - 3k = 0b) x^2 + (k + 1)x + k = 08. 解下列绝对值方程:a) |2x + 1| = 5b) |x + 2| - |x - 3| = 49. 解下列多项式方程:a) x^3 - x^2 + x - 1 = 0b) 2x^4 + 5x^3 - 3x^2 + 6x - 1 = 010. 解下列分段函数的方程:a) f(x) = x^2 - 4x + 4, x ≤ 1= 2x - 1, x > 1b) f(x) = 3x + 2, x < 2= x^2 - 1, x ≥ 2以上为初二代数方程的练习题,希望对你的数学学习有所帮助。
通过解这些练习题,你可以更深入地理解代数方程的求解过程,掌握方程解的表示方法,并且熟悉各种类型的方程求解技巧和方法。
祝你数学学习进步!。
沪教版(上海)八年级数学第二学期第二十一章代数方程综合训练试题(含答案及详细解析)
八年级数学第二学期第二十一章代数方程综合训练考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、直线2y x =--与直线3y x 的交点为( ) A .71,22⎛⎫ ⎪⎝⎭ B .51,22⎛⎫- ⎪⎝⎭ C .(0,2)- D .(0,3)2、要使关于x 的一元二次方程210ax +-=有两个实数根,且使关于x 的分式方程2244x a x x ++=--的解为非负数的所有整数a 的个数为( )A .6个B .7个C .8个D .9个3、用换元法解分式方程2211x x x x+-++1=0时,如果设21x x +=y ,那么原方程可以变形为整式方程( )A .y 2﹣3y ﹣1=0B .y 2+3y ﹣1=0C .y 2﹣y ﹣1=0D .y 2+y ﹣1=04、已知方程:① 264x x x +=;② 232x x +=+;③ 2190x -=;④ ()3618x x ⎛⎫++=- ⎪⎝⎭.这四个方程中,分式方程的个数是( )A .1B .2C .3D .45、在平面直角坐标系内,一次函数y =k 1x +b 1与y =k 2x +b 2的图象如图所示,则关于x ,y 的方程组1122y k x b y k x b -=⎧⎨-=⎩的解是( )A .11x y =⎧⎨=⎩B .12x y =⎧⎨=⎩C .21x y =⎧⎨=⎩D .22x y ==⎧⎨⎩6、A ,B 两地相距48千米,一艘轮船从A 地顺流航行至B 地,又立即从B 地逆流返回A 地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x 千米/时,则可列方程( )A .4848944x x +=+-B .4848944+=+-x xC .9696944x x +=+-D .9696944+=+-x x 7、若关于x 的方程11ax x =+的解大于0,则a 的取值范围是( ) A .1a > B .1a < C .1a >- D .1a <-8、小华早上从家出发到离家5千米的国际会展中心参观,实际每小时比原计划多走1千米,结果比原计划早到了15分钟,设小华原计划每小时行x 千米,可列方程( )A .55114x x -=+B .551+14x x -=C .5515+1x x -=D .55151x x-=+ 9、自带水杯已成为人们良好的健康卫生习惯.某公司为员工购买甲、乙两种型号的水杯,用720元购买甲种水杯的数量和用540元购买乙种水杯的数量相同,已知甲种水杯的单价比乙种水杯的单价多15元.设甲种水杯的单价为x元,则列出方程正确的是()A.72054015x x=-B.72054015x x=+C.72054015x x=-D.72054015x x=+10、如果关于x的方程3111ax x=---无解,则a=()A.1 B.3 C.-1 D.1或3第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若一次函数y=3x﹣5与y=2x﹣7的交点P坐标为(﹣2,﹣11),则方程组3527x yx y-=⎧⎨-=⎩的解为___.2、甲做360个零件与乙做480个零件所用的时间相同,已知两人每天共做140个零件,若设甲每天做x个零件,则可列方程______.3、一个两位数的十位数字是6,如果把十位数字与个位数字对调,那么所得的两位数与原来的两位数之比是47,原来得两位数是______.4、“有一种速度叫中国速度,有一种骄傲叫中国高铁.”快速发展的中国高速铁路,正改变着中国人的出行方式.下表是从北京到上海的两次列车的相关信息:已知从北京到上海乘坐G27次高铁列车比T109次特快列车用时少10小时26分钟.设G27次高铁列车的平均速度为x km/h,根据题意可列方程为____________.5、代数式22231x xx---的值等于0,则x=________.三、解答题(5小题,每小题10分,共计50分)1、某汽车公司有甲、乙两种货车可供租用,现有一批货物要运往某地,货主准备租用该公司货车,已知甲,乙两种货车运货情况如表:(1)甲、乙两种货车每辆可装多少吨货物?(2)王先生要租用该公司的甲、乙两种货车送一批货,如果租用甲种货车数量比乙种货车数量多1辆,而乙种货车每辆的运费是甲种货车的1.4倍,结果甲种货车共付运费800元,乙种货车共付运费980元,试求此次甲、乙两种货车每辆各需运费多少元?2、如图,已知直线1l:y=3x+1与y轴交于点A,且和直线2l:y=mx+n交于点P(-2,a),根据以上信息解答下列问题:(1)求a的值;(2)不解关于x,y的方程组31y xy mx n=+⎧⎨=+⎩,请你直接写出它的解;(3)判断直线3l:122y nx m=--是否也经过点P?请说明理由;(4)若直线1l,2l表示的两个一次函数都大于0,此时恰好x>3,求直线2l的函数解析式.3、虎林西苑社区在扎实开展党史学习教育期间,开展“我为群众办实事”活动,为某小区铺设一段全长为720米的排污管道,为减少施工对居民生活的影响,须缩短施工时间,实际施工时每天铺设管道的长度是原计划的1.2倍,结果提前2天完成任务,求原计划每天铺设管道的长度.4、甲、乙两小商贩每次都去同一批发商场买进白糖.甲进货的策略是:每次买1000元钱的糖;乙进货的策略是每次买1000斤糖.最近他俩同去买进了两次价格不同的糖,问两人中谁的平均价格低一些?5、(1)解分式方程21233xx x-+=--(2)先化简,再求值(22444xx x--+-22x-)÷222x xx+-,然后选取一个你喜欢的数代入求值.-参考答案-一、单选题1、B【分析】直接联立两个函数解析式组成方程组,再解方程组即可得到两函数图象的交点.【详解】解:联立两个函数解析式得23y xy x=--⎧⎨=+⎩,解得5212xy⎧=-⎪⎪⎨⎪=⎪⎩,则两个函数图象的交点为(52-,12),故选:B.【点睛】本题主要考查了两函数交点问题,两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解.2、C【分析】根据一元二次方程的应用以及根据的判别式得到0a ≠且240b ac ∆=-≥,将分式方程整理为整式方程,得出x 的解,然后根据分式方程2244x a x x++=--的解为非负数确定a 的取值范围,然后写出此范围内的整数即可.【详解】解:∵关于x 的一元二次方程210ax +-=有两个实数根,∴0a ≠且241240b ac a ∆=-=+≥,∴3a ≥-且0a ≠, 对于分式方程2244x a x x ++=--, 去分母得22(4)x a x --=-,解得:6x a =-,∵分式方程的解为非负数,∴60a -≥且64a -≠,解得6a ≤且2a ≠,∴36a -≤≤且0a ≠,2a ≠,∴整数a 的值为3-、2-、1-、1、3、4、5、6共8个,故选:C .【点睛】本题考查了根得判别式:一元二次方程ax 2+bx +c =0(a ≠0)的根与Δ=b 2−4ac 有如下关系:当Δ>0时,方程有两个不相等的两个实数根;当Δ=0时,方程有两个相等的两个实数根;当Δ<0时,方程无实数根.也考查了分式方程的解.3、D【分析】 根据换元法,把21x x +换成y ,然后整理即可得解. 【详解】 解:∵21x x +=y , ∴原方程化为110y y -+=. 整理得:y 2+y ﹣1=0.故选D .【点睛】本题考查的是换元法解分式方程,换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理.4、C【分析】分母中含有未知数的方程叫分式方程,根据定义解答.【详解】解:根据定义可知:①②③为分式方程,故选:C .【点睛】此题考查分式方程的定义,熟记定义是解题的关键.5、C【分析】利用方程组的解就是两个相应的一次函数图象的交点坐标求解.【详解】解:∵一次函数y =k 1x +b 1与y =k 2x +b 2的图象的交点坐标为(2,1),∴关于x ,y 的方程组1122y k x b y k x b -=⎧⎨-=⎩的解是21x y ⎧⎨⎩==. 故选:C .【点睛】本题考查了一次函数与二元一次方程(组):方程组的解就是两个相应的一次函数图象的交点坐标.6、A【分析】根据轮船在静水中的速度为x 千米/时可进一步得出顺流与逆流速度,从而得出各自航行时间,然后根据两次航行时间共用去9小时,列出方程即可.【详解】∵轮船在静水中的速度为x 千米/时, ∴顺流航行时间为:484x +,逆流航行时间为:484x -, ∴可得出方程:4848944x x +=+-, 故选:A .【点睛】 本题主要考查了分式方程的应用,熟练掌握顺流与逆流速度的性质是解题关键.7、A【分析】先去分母,求出分式方程的解,进而得到关于a 的不等式组,即可求解.【详解】 解:由11ax x =+,解得:11x a =-, ∴101a >-且a -1≠0, ∴1a >,故选A .【点睛】本题主要考查解分式方程以及不等式,掌握去分母,把分式方程化为整式方程,是解题的关键.8、B【分析】根据结果比“原计划早到了15分钟”,则等量关系为:昨天所用时间−今天所用时间14=,根据等量关系列方程即可解答.【详解】解:设小华原计划每小时行x 千米, 依题意得:55114x x -=+, 故选:B .【点睛】本题考查了由实际问题抽象出分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.9、A【分析】设甲种水杯的单价为x 元,则乙种水杯的单价为(x -15)元,根据720元购买甲种水杯的数量和用540元购买乙种水杯的数量相同列方程即可得解.【详解】解:设甲种水杯的单价为x元,则乙种水杯的单价为(x-15)元根据题意列出方程得:720540-15x x=.故选项A.【点睛】本题考查列分式方程解应用题,掌握列分式方程解应用题的方法与步骤,抓住等量关系列方程是解题关键.10、B【分析】先去分母,化成整式方程,令x-1=0,确定x的值,回代x=4-a,得a值.【详解】∵3111ax x=---,∴去分母,得3=x-1+a,整理,得x=4-a,令x-1=0,得x=1,∴4-a=1,∴a=3.故选B.【点睛】本题考查了分式方程无解问题,正确理解分式方程无解的意义是解题的关键.二、填空题1、211x y =-⎧⎨=-⎩ 【分析】根据函数图象交点坐标为两函数解析式组成的方程组的解即可求解.【详解】解:∵一次函数y =3x ﹣5与y =2x ﹣7的交点P 坐标为(﹣2,﹣11),∴方程组3527x y x y -=⎧⎨-=⎩的解为211x y =-⎧⎨=-⎩. 故答案为:211x y =-⎧⎨=-⎩【点睛】本题考查了一次函数与二元一次方程(组)的关系,函数图象交点坐标为两函数解析式组成的方程组的解.2、360480140x x=- 【分析】设甲每天做x 个零件,则乙每天做()140x - 个零件,根据“甲做360个零件与乙做480个零件所用的时间相同,”列出方程,即可求解.【详解】解:设甲每天做x 个零件,则乙每天做()140x - 个零件,根据题意得:360480140x x=- . 故答案为:360480140x x=-【点睛】本题主要考查了分式方程的应用,明确题意,准确得到等量关系是解题的关键.3、63【分析】设这个两位数个位上的数为x,,再根据等量关系列出方程,最后检验并作答.【详解】解:设这个两位数个位上的数为x,则可列方程:1064 6107xx+=⨯+,整理得66x=198,解得x=3,经检验x=3是原方程的解,则60+x=63,故答案为:63.【点睛】本题主要考查分式方程的应用,解题的关键是熟练掌握列分式方程解应用题的一般步骤,即①根据题意找出等量关系②列出方程③解出分式方程④检验⑤作答.注意:分式方程的解必须检验.4、146313252610 9860x-=【分析】由题意直接依据从北京到上海乘坐G27次高铁列车比T109次特快列车用时少10小时26分钟建立分式方程即可.【详解】解:由题意设G27次高铁列车的平均速度为x km/h,可得146313252610 9860x-=.故答案为:1463132526109860x -=. 【点睛】 本题考查分式方程的实际应用,读懂题意并根据题干所给定的等量关系建立方程是解题的关键. 5、3【分析】根据题意建立分式方程,求解并检验即可.【详解】 解:由题意,222301x x x --=-, 左右同乘21x -,得:2230x x --=,()()310x x -+=,解得:3x =或1x =-,检验:当3x =时,210x -≠;当1x =-时,210x -=,则舍去;故答案为:3.【点睛】本题考查可化为一元二次方程的分式方程,理解题意,准确建立分式方程求解并检验是解题关键.三、解答题1、(1)甲种货车每辆可装2吨货物,乙种货车每辆可装3吨货物;(2)甲种货车每辆需运费100元,乙种货车每辆需运费140元.【分析】(1)设甲种货车每辆可装x 吨货物,乙种货车每辆可装y 吨货物,根据前两次甲,乙两种货车运货情况表中的数据,即可得出关于x ,y 的二元一次方程组,解之即可得出甲、乙两种货车每辆可装货物吨数.(2)设甲种货车每辆需运费m元,则乙种货车每辆需运费1.4m元,利用租车数量=总运费÷每辆车的租金,结合租用甲种货车数量比乙种货车数量多1辆,即可得出关于m的分式方程,解之经检验后即可得出结论.【详解】解答:解:(1)设甲种货车每辆可装x吨货物,乙种货车每辆可装y吨货物,依题意得:2313 5628x yx y+=⎧⎨+=⎩,解得:23xy=⎧⎨=⎩.答:甲种货车每辆可装2吨货物,乙种货车每辆可装3吨货物.(2)设甲种货车每辆需运费m元,则乙种货车每辆需运费1.4m元,依题意得:80098011.4m m-=,解得:m=100,经检验,m=100是原方程的解,且符合题意,∴1.4m=1.4×100=140.答:甲种货车每辆需运费100元,乙种货车每辆需运费140元.【点睛】本题主要是考查了二元一次方程组和分式方程的实际应用,正确地从题中找到等量关系,列出对应的方程,并正确求解方程,是解决本题的关键.2、(1)-5;(2)25xy=-⎧⎨=-⎩;(3)122y nx m=--经过点P,见解析;(4)y=x-3.【分析】(1)因为点P(-2,a)在直线y=3x+1上,可求出a=-5;(2)因为直线y=3x+1直线y=mx+n交于点P,所以方程组31y xy mx n=+⎧⎨=+⎩的解就是P点的坐标;(3)把点P坐标代入直线l2,得到关于m、n的等式,再把点P代入直线l3,如果得到同样的m、n 的关系式,则点P在直线l3上,否则不在;(4)因为直线l1,l2表示的两个一次函数都大于0,此时恰好x>3,所以直线l2过点(3,0),又有直线l2过点P(-2,-5),可得关于m、n的方程组,解方程组即可.【详解】解:(1)∵(-2,a)在直线y=3x+1上,∴当x=-2时,a=-5;(2)∵直线l1:y=3x+1与y轴交于点A,且和直线l2:y=mx+n交于点P(-2,-5),∴关于x,y的方程组31y xy mx n=+⎧⎨=+⎩的解为25xy=-⎧⎨=-⎩;(3)由(2)知点P(-2,-5),∵点P(-2,-5)在直线l2:y=mx+n上,∴-2m+n=-5,当x=-2时,直线l3:y=-12nx-2m=-2m+n=-5,所以直线l3:y=-12nx-2m也经过点P(-2,5);(4)∵直线l1,l2表示的两个一次函数都大于0,此时恰好x>3,∴直线l2过点(3,0),又∵直线l2过点P(-2,-5),∴3025m nm n+=⎧⎨-+=-⎩,解得13mn=⎧⎨=-⎩.∴直线l 2的函数解析式为y =x -3.【点睛】本题考查了一次函数与二元一次方程(组),用待定系数法确定函数的解析式,是常用的一种解题方法,另外本题还渗透了数形结合的思想.3、60米【分析】设原计划每天铺设管道x 米,根据题中等量关系原计划完成时间-实际完成时间=2列分式方程,然后求解即可解答.【详解】解:设原计划每天铺设管道x 米,由题意,得72072021.2x x-=, 解得x =60,经检验,x =60是原方程的解.且符合题意,答:原计划每天铺设管道60米. -【点睛】本题考查分式方程的应用,理解题意,找准等量关系,正确列出方程是解答的关键.4、两人中甲的平均价格低一些【分析】根据题意求出甲乙两人的平均价格,利用作差法比较大小即可.【详解】设两次买糖的进价分别是,x y x y ≠、(单位:元/斤),A 、B 分别是甲、乙两人买糖的平均进价, 则根据题意得:10001000221000()xy A x y x y=⨯÷+=+,(10001000)(10001000)2x y B x y +=+÷+=, ∴222()4()22()2()x y xy x y xy x y B A x y x y x y ++---=-==+++>0, ∴甲的平均价低一些,【点睛】此题考查了分式的混合运算,弄清题意并列出式子是解本题的关键.5、(1)5x =;(2)12x +,当1x = 时,原式13= 【分析】(1)先把分式方程化为整式方程,再解出整式方程,然后检验,即可求解;(2)先将原式化简,再根据分式的分母不等于0,可得x 不能取 2,-2,0 ,再选合适的数代入,即可求解.【详解】解:(1)方程两边同乘以3x -,得:22(3)1x x -+-=.解得:5x =.检验:当5x =时,320x -=≠ ,所以5x =是原方程的解;(2)解:原式()()()()22222222x x x x x x x ⎡⎤+--=-⋅⎢⎥-+-⎢⎥⎣⎦ =(22x x +--22x -)·2(2)x x x -+ =2x x -·2(2)x x x -+ =12x + ,根据题意得:()220,0,20x x x -≠≠+≠ ,所以x 不能取 2,-2,0 ,当1x = 时,原式11123==+ . 【点睛】本题主要考查了解分式方程,分式的化简求值,熟练掌握相关运算步骤是解题的关键.。
沪教版(上海)八年级数学第二学期第二十一章代数方程章节训练试卷(精选含答案)
八年级数学第二学期第二十一章代数方程章节训练考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、一艘轮船顺水航行100km 后返回,返回时用同样的时间只航行了80km ,若列方程100802525x x =+-表示题中的等量关系,则关于方程中x 和25这两个量的描述正确的是( )A .x 表示轮船在静水中的速度为x km/hB .x 表示水流速度为x km/hC .25 表示轮船在静水中的速度为25 km/hD .25 表示轮船顺水航行速度为25km/h2、关于x 的方程312a x x -=-的解为整数.且关于x 的不等式组312(2)413x x x a +≤-⎧⎪-⎨≤⎪⎩的解集为5x ≤-.则满足条件的所有整数a 值之和为( )A .5B .3C .4D .03、若直线y x m =-+与直线24y x =+的交点在第一象限,则m 的取值范围是( ).A .4m ≥B .1m ≥-C .4m >D .1m >-4、学校建围栏,要为24000根栏杆油漆,由于改进了技术,每天比原计划多油400根,结果提前两天完成了任务,请问原计划每天油多少根栏杆?如果设原计划每天油x 根栏杆,根据题意列方程为( )A .24000x =24000400x -+2 B .24000x =24000400x -﹣2 C .24000x =24000400x +﹣2 D .24000x =24000400x ++2 5、已知关于x 的分式方程10327333x k x x --=---的解满足2<x <5,则k 的取值范围是( ) A .﹣7<k <14B .﹣7<k <14且k ≠0C .﹣14<k <7且k ≠0D .﹣14<k <76、若分式方程244x a x x =+--无解,则a 的值为( ) A .4 B .2 C .1 D .07、已知直线l 1:y=kx +b 与直线l 2:y =-2x+4交于点C (m ,2),则方程组24y kx b y x =+⎧⎨=-+⎩的解是( )A .12x y =⎧⎨=⎩B .12x y =-⎧⎨=⎩C .21x y =⎧⎨=⎩D .21x y =⎧⎨=-⎩ 8、如图,直线l 1:y =x ﹣4与直线l 2:y =﹣43x +3相交于点(3,﹣1),则方程组2223944x y y x ⎧-=⎪⎪⎨⎪+=⎪⎩的解是( )A .31x y =⎧⎨=-⎩B .13x y =-⎧⎨=⎩C .13x y =-⎧⎨=-⎩D .31x y =⎧⎨=⎩ 9、一辆汽车开往距离出发地180千米的目的地,出发后第一小时内按原计划的速度匀速行驶,一小时后以原来的1.5倍匀速行驶,并比原计划提前40分钟到达目的地.求前一小时的行驶速度.设前一小时的行驶速度为x km/h ,则可列方程( )A .180218013 1.5x x-=+ B .180218013 1.5x x +=+ C .180218013 1.5x x x --=+ D .180218013 1.5x x x ++=+ 10、设直线y =kx +6与y =(k +1)x +6(k 是正整数)及x 轴围成的三角形面积为S k (k =1,2,3,…),则S 5的值等于( )A .35B .910C .1D .3第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、一次函数y kx b =+的图象上一部分点的坐标见下表:正比例函数的关系式为y x =,则方程组y kx b y x =+⎧⎨=⎩的解为x =________. 2、某中学全体同学到距学校15千米的科技馆参观,一部分同学骑自行车先走40分钟后,其余同学乘汽车出发,结果他们同时到达科技馆,已知汽车的速度是自行车速度的3倍,求汽车的速度,设汽车的速度是x 千米/小时,根据题意列方程________________.3、一次函数24y x =-+与1y x =-的图像交点坐标为______.4、若点A (8,0),B (0,n ),且直线AB 与坐标轴围成的三角形面积为12,则n =____.5、为了了解某池塘里背蛙的数量,先从池塘里捕捞30只青蛙,作上标记后放回池塘,经过一段吋间后,再从池塘中捕捞出40只青蛙,其中有标记的青蛙有4只,估计这个池塘里大约有 _____只青蛙.三、解答题(5小题,每小题10分,共计50分)1、设a ,b 是任意两个实数,规定a 与b 之间的一种运算“⊕”为:a ⊕b =(0)(0)a ab a b a ⎧>⎪⎨⎪-≤⎩例如:111(3)33⊕-==--;(3)2(3)25-⊕=--=-,221(1)(1)1x x x x ++⊕-=-(因为210x ) 参照上面材料,解答下列问题:(1)(-)²______________.(2)解方程:22(2)8(4)x x ⊕-=⊕-2、长春市政府计划对城区某道路进行改造,现安排甲、乙两个工程队共同完成.已知甲队的工作效率是乙队工作效率的1.5倍,甲队改造480米的道路比乙队改造同样长的道路少用2天.(1)求乙工程队每天能改造道路的长度;(2)若甲队工作一天的改造费用为8万元,乙队工作一天的改造费用为6万元,如需改造的道路全长为8000米,如果安排甲、乙两个工程队同时开工,并一起完成这项城区道路改造,求改造该段道路所需的总费用.3、为了迎接新学期的到来,某文化用品商店分两批购进同样的书包,提供给新入学的学生购买使用.(1)第二批购进书包的单价是多少元?(2)两批书包的销售价格都是90元,当第二批书包投放市场后立即产生了滞销,商店以进价的八五折优惠促销,全部售出后,商店是盈利还是亏损?4、某经销商用16000元采购A 型商品的件数是用7500元采购B 型商品的件数的2倍,一件A 型商品的进价比一件B 型商品的进价多10元.(1)求一件A ,B 型商品的进价分别为多少元?(2)若该经销商购进A,B型商品共250件进行试销,其中A型商品的件数不大于B型的件数,且不小于80件,已知A型商品的售价为240元/件,B型商品的售价为220元/件,且全部售出,设购进A 型商品m件,求该经销商销售这批商品的利润p与m之间的函数关系式,并写出m的取值范围;(3)在(2)的条件下,该经销商决定在试销活动中每售出一件A型商品,就从一件A型商品的利润中捐献慈善资金a元,求该经销商售完所有商品并捐献慈善资金后获得的最大收益.5、解分式方程:(1)231x x= +(2)11222xx x-=----参考答案-一、单选题1、A【分析】根据题意,这是一个顺(逆)水行船问题,根据基本关系:顺水速度=水速+船速,逆水速度=水速-船速即可判断.【详解】根据题意,等量关系是往返时间相同,∴x表示轮船在静水中的速度为x km/h,25表示水流速度为25 km/h.故选:A.【点睛】本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.注意:顺水速度=水速+船速,逆水速度=水速-船速.2、B(1)先解分式方程得62x a =+,由于解是整数,故可推出a 的值,解不等式,由于解集为5x ≤-,即可确定a 的可能值,相加即可得出答案.【详解】 解分式方程得:62x a =+, ∵x 为整数,2x ≠且0x ≠,∴a 可为8-,5-,4-,-3,1-,0,4,312(2)413x x x a +≤-⎧⎪⎨-≤⎪⎩①②, 由①得:5x ≤-,由②得:43x a ≤+,∵解集为5x ≤-,∴435a +≥-,解得:2a ≥-,∴整数a 可为1-,0,4,∴1043-++=.故选:B .【点睛】本题考查解分式方程和一元一次不等式组,掌握求解的步骤是解题的关键.3、C【分析】联立两直线解析式求出交点坐标,再根据交点在第一象限列出不等式组求解即可.解:根据题意,联立方程组24y x m y x =-+⎧⎨=+⎩, 解得:43243m x m y -⎧=⎪⎪⎨+⎪=⎪⎩, 则两直线交点坐标为4(3m -,24)3m +, 两直线交点在第一象限, ∴4032403m m -⎧>⎪⎪⎨+⎪>⎪⎩, 解得:4m >,故选:C .【点睛】本题考查了两直线相交的问题,解二元一次方程组和一元一次不等式组,联立两函数解析式求交点坐标是常用的方法.4、D【分析】如果设每天油x 根栏杆,要为24000根栏杆油漆,开工后,每天比原计划多油400根,结果提前2天完成任务,根据原计划天数=实际天数+2可列出方程.【详解】解:设每天油x 根栏杆, 根据题意列方程:24000x =24000400x ++2 故选:D .本题考查列分式方程解应用题,掌握列分式方程解应用题的步骤与解法,抓住原计划天数=实际天数+2可列出方程是解题关键.5、C【分析】先解分式方程,然后根据分式方程的解满足2<x <5和分式有意义的条件进行求解即可.【详解】 解:∵10327333x k x x --=---, ∴()1032733x k x -=-++-, ∴217k x -=, ∵分式方程10327333x k x x --=---的解满足2<x <5, ∴212572137k k -⎧<<⎪⎪⎨-⎪≠⎪⎩, 解得147k -<<且0k ≠,故选C .【点睛】本题主要考查了解一元一次不等式组,解分式方程,分式方程的解,解题的关键在于能够熟练掌握相关知识进行求解.6、A【分析】分式方程去分母转化为整式方程,根据分式方程有增根,得到最简公分母为0,求出x 的值,代入整式方程即可求出a 的值.【详解】解:分式方程去分母得:2(4)x x a =-+,由分式方程有增根,得到40x -=,即4x =,把4x =代入整式方程得:42(44)a =⨯-+,解得:4a =,故选:A .【点睛】此题考查了分式方程的增根,增根问题可按如下步骤进行:①化分式方程为整式方程;②让最简公分母为0确定增根;③把增根代入整式方程即可求得相关字母的值.7、A【分析】根据直线解析式求出点C 坐标,根据两函数交点坐标与方程组的解得关系即可求解.【详解】解:∵y =-2x+4过点C (m ,2),∴224m =-+,解得1m =,∴点C (1,2),∴方程组24y kx b y x =+⎧⎨=-+⎩的解12x y =⎧⎨=⎩. 故选择A .【点睛】本题考查两函数的交点坐标与方程组的解的关系,掌握两函数的交点坐标与方程组的解是解题关键.8、A【分析】关于x 、y 的二元体次方程组2223944x y y x ⎧-=⎪⎪⎨⎪+=⎪⎩的解即为直线1:4l y x =-与直线24:33l y x =-+相交于点(3,﹣1)的坐标.【详解】解:因为直线1:4l y x =-与直线24:33l y x =-+相交于点(3,﹣1),则方程组2223944x y y x ⎧-=⎪⎪⎨⎪+=⎪⎩的解是31x y =⎧⎨=-⎩ , 故选A..【点睛】本题考查了一次函数与二元一次方程组的关系的理解和运算,主要考查学生的观察图形的能力和理解能力.9、C【分析】根据原计划的时间=实际所用时间+提前的时间可以列出相应的分式方程.【详解】解:设前一小时的行驶速度为x km/h , 由题意可得:180******** 1.5x x x--=+, 即180218013 1.5x x x--=+, 故选:C .【点睛】本题主要是考查了列分式方程,熟练地根据题意找到等量关系,通过等量关系列出对应的分式方程,这是解题的关键.10、A【分析】利用一次函数图象上点的坐标特征,可分别求出直线y=5x+6、y=6x+6与两坐标轴的交点坐标,再利用三角形的面积公式即可求出结论.【详解】解:当x=0时,y=5×0+6=6,∴直线y=5x+6与y轴的交点A的坐标为(0,6);当y=0时,5x+6=0,解得:x=65 -,∴直线y=5x+6与x轴的交点B的坐标为(65-,0),当x=0时,y=6×0+6=6,∴直线y=6x+6与y轴的交点C的坐标为(0,6);当y=0时,6x+6=0,解得:x=-1,∴直线y=6x+6与x轴的交点D的坐标为(-1,0).∴S5=12BD•OA=12×|-1-(65-)|×6=35,故选:A.【点睛】本题考查了一次函数图象上点的坐标特征以及三角形的面积,牢记直线上任意一点的坐标都满足函数关系式y =kx +b 是解题的关键.二、填空题1、2【分析】根据函数图象上的坐标,可以求出k 和b 的值,然后把k 、b 的值代入方程组即可求得x 的值.【详解】解:点(1,7)--,(0,4)-是函数图象上的点,∴74k b b -+=-⎧⎨=-⎩, 把4b =-代入方程,可得:3k =,∴34y x y x =-⎧⎨=⎩①②,把②代入①得:2x =, 故答案为:2.【点睛】本题考查了根据函数图象与坐标求k 、b 的值,熟练掌握一次函数与二元一次方程组的关系是解题关键.2、154015 1603x x-=【分析】根据汽车的速度是x千米/小时,则自行车的速度是13x,根据题意,自行车比汽车多走40分钟列方程即可.【详解】解:根据题意得:154015 1603xx-=,故答案为:154015 1603xx-=.【点睛】本题考查了分式方程得应用,读懂题意,找准等量关系是解本题的关键.3、∴关于x的方程(a-1)x=b-2的解为:x=故答案为x=3.【点睛】本题考查了一次函数与二元一次方程(组)的关系:方程组的解就是两个相应的一次函数图象的交点坐标.3.52 () 33,【分析】两函数解析式联立方程组,求出方程组的解即可.【详解】解:联立方程组,得:241y x y x =-+⎧⎨=-⎩, 解得,5323x y ⎧=⎪⎪⎨⎪=⎪⎩∴一次函数24y x =-+与1y x =-的图像交点坐标为(5233,) 故答案为:52()33,.【点睛】本题考查了两直线交点坐标的求法,联立方程组是解答此类试题的常用方法.4、±3【分析】先分别求出点A 、点B 到坐标轴的距离即OA 、OB ,再利用三角形的面积公式求解即可.【详解】解:∵点A (8,0),B (0,n ),∴OA =8,OB =|n |,∵直线AB 与坐标轴围成的三角形面积等于12, ∴12×8×|n |=12,解得:n =±3,故答案为:±3.【点睛】本题考查了坐标与图形性质、三角形的面积公式,熟练掌握坐标与图形的性质,会利用点的坐标求图形的面积的方法是解答的关键.5、300【分析】设池塘大约有x 只,根据题意,得到30440x =,计算即可. 【详解】设池塘大约有x 只,根据题意,得到30440x =, 解得 x =300,经检验,x=300是原方程的根,故答案为:300.【点睛】本题考查了分式方程的应用,正确列出分式方程是解题的关键.三、解答题1、(1)4--(2)原方程无解.【分析】(1)根据10-< ,再代入新定义的运算,即可求解;(2)根据20,80>> ,再代入新定义的运算,可得到分式方程22824x x =--,解出即可. 【详解】解:(1)∵10-< ,∴()((2211111124-⊕=--=---=--(2)∵20,80>> ,∴()2222x x ⊕-=-,()228844x x ⊕-=-, 22824x x ∴=--, 去分母:()228x +=解得:2x =,检验:当2x =时,240x -=,所以2x =是原方程的增根,∴原方程无解.【点睛】本题主要考查了二次根式的混合运算,解分式方程,熟练掌握相关运算法则是解题的关键.2、(1)乙工程队每天能改造道路的长度为80米;(2)甲、乙两个工程队一起完成这项城区道路改造的总费用为560万元.【分析】(1)设乙工程队每天能改造道路的长度为x 米,则甲工程队每天能改造道路的长度为1.5x 米,由题意:甲队改造480米的道路比乙队改造同样长的道路少用2天.列出分式方程,解方程即可;(2)设安排甲、乙两个工程队同时开工需要m 天完成,由题意:需改造的道路全长为8000米,安排甲、乙两个工程队同时开工,列出一元一次方程,解得40m =,再求出总费用即可.【详解】解:(1)设乙工程队每天能改造道路的长度为x 米,则甲工程队每天能改造道路的长度为1.5x 米, 根据题意得:48048021.5x x-=, 解得:80x =,经检验,80x =是所列分式方程的解,且符合题意,答:乙工程队每天能改造道路的长度为80米.(2)设安排甲、乙两个工程队同时开工需要m 天完成,由题意得:120808000m m +=,解得:40m =,则408406560⨯+⨯=(万元),答:甲、乙两个工程队一起完成这项城区道路改造的总费用为560万元.【点睛】本题考查了分式方程的应用以及一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)找准等量关系,正确列出一元一次方程.3、(1)第二批购进的单价是64元;(2)全部书包售出后,商店是盈利【分析】(1)设设第一批购进的单价是x 元,则第二批购进的单价是()4x +元,根据两次购买书包的数量之间的关系列出分式方程求解即可;(2)根据题意分别计算出两批书包的利润,然后求解判断即可.【详解】(1)设第一批购进的单价是x 元,则第二批购进的单价是()4x +元, 依题意得:30006400142x x =⨯+, 解这个方程得:60x =,经检验:60x =是原分式方程的解,且符合题意.460464x +=+=(元)答:第二批购进的单价是64元;(2)由(1)得,第二批购机书包的价格为64元,第一批销售的利润:()()90603000601500-÷=(元)第二批销售的利润:64000.856400960⨯-=-(元)1500960540-=(元)答:全部书包售出后,商店是盈利.【点睛】此题考查了分式方程应用题,解题的关键是正确分析题目中的等量关系.4、(1)一件B 型商品的进价为150元,则一件A 型商品的进价为160元;(2)()101750080125p m m =+≤≤;(3)当010a <<时,该经销商售完所有商品并捐献慈善资金后获得的最大收益为(18750125)a ﹣元;当10a =时,该经销商售完所有商品并捐献慈善资金后获得的最大收益为17500元;当1080a <≤时,该经销商售完所有商品并捐献慈善资金后获得的最大收益为(1830080)a -元【分析】(1)设一件B 型商品的进价为x 元,则一件A 型商品的进价为(10)x +元.根据16000元采购A 型商品的件数是用7500元采购B 型商品的件数的2倍,列出方程即可解决问题;(2)根据总利润=两种商品的利润之和,列出式子即可解决问题;(3)设利润为w 元.则(80)70(250)(10)17500w a m m a m =-+-=-+,分三种情形讨论利用一次函数的性质即可解决问题.(1)解:设一件B 型商品的进价为x 元,则一件A 型商品的进价为(10)x +元, 由题意:160007500210x x=⨯+, 解得150x =,经检验150x =是分式方程的解,∴10160x +=,答:一件B 型商品的进价为150元,则一件A 型商品的进价为160元;(2)解:∵客商购进A 型商品m 件,∴客商购进B 型商品(250)m -件,由题意:()()240160220150(250)1017500p m m m =-+--=+,∵A 型商品的件数不大于B 型的件数,且不小于80件,∵80250m m ≤≤-,∴80125m ≤≤;(3)解:设收益为w 元,则()(240160)220150(250)(10)17500w a m m a m =--+--=-+,①当100a ->时,即010a <<时,w 随m 的增大而增大,∴当125m =时,最大收益为(18750125)a ﹣元; ②当100a =-,即10a =时,最大收益为17500元;③当100a <-时,即1080a <≤时,w 随m 的增大而减小,∴80m =时,最大收益为(1830080)a -元,∴当010a <<时,该经销商售完所有商品并捐献慈善资金后获得的最大收益为(18750125)a ﹣元;当10a =时,该经销商售完所有商品并捐献慈善资金后获得的最大收益为17500元;当1080a <≤时,该经销商售完所有商品并捐献慈善资金后获得的最大收益为(1830080)a -元.【点睛】本题主要考查了分式方程的实际应用,一次函数的实际应用,,熟练掌握相关知识及寻找题目的等量关系列式求解是解决本题的关键.5、(1)3x =-;(2)分式方程无解【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【详解】解:(1)去分母得:2x=3x+3,解得:x=﹣3,经检验x=﹣3是分式方程的解;(2)去分母得:1﹣x=﹣1﹣2x+4,移项合并得:x=2,经检验x=2是增根,分式方程无解.【点睛】本题考查解分式方程;注意去分母时,单独的一个数也要乘最简公分母;互为相反数的两个式子为分母,最简公分母应为其中的一个.。
沪教版八年级(下)数学第二十一章代数方程练习卷二和参考答案
八年级(下)数学第二十一章代数方程练习卷二姓名一、选择: (每题3分,共18分) 1.下列方程中:① x π=1, ② 3x -2=1+x, ③ 2x ²-1=0, ④ 1x +x =0, ⑤(1x +5)(x -1)=3⑥ 8x -2=-1, ⑦ x 2+3x =1.分式方程有几个. ( )(A) 7 (B) 6 (C) 5 (D)42.方程02322=--x x x 、x ⁴-3x ²+2=0的实数根个数分别是几个. ( )(A) 3,4 (B) 3,2 (C) 2,4 (D) 2,23.方程ax ²=2ax -a 的解是 ( )(A) x 1=x 2=1 (B) x 有无数个解 (C) 无实数根 (D) 与a 的值有关4.甲、乙两队要限期完成某工程,甲队独做提前2天完成,乙队独做要延期5天,现两工程队合作3天后,余下的由乙队独做正好如期完工,设某工程期限为x 天,则下面所列方程中正确的是 ( )(A) 3x +2+x x -5=1 (B) 3x -2=x x -5 (C) 3x -2+x x +5=1 (D) 3x -2+x x +5=x 5. 下列方程中,有实数根的是 ( )(A) 11-=+x (B) x x -=-1 (C) 033=+x (D) 044=+x 6. 下列方程中,二元二次方程是 ( )(A) 04322=-+x x (B) 022=+x y (C) 2)(2=+x x y (D) 0312=-+x y 二、填空:(第12题4分,其余每空2分,共30分)7.当m________时,关于x 的方程(m ²-1)x=m-1有实数解.8.方程x x 83=的解是________________, 12x ⁴=8的解是____________. 9.当k________时,关于x 的方程x ²-4-3k=1无实数根.10.方程222-=-x x x 的解是 . 11.写出一个二项方程_____________________.13.用换元法解方程3x x+1-2x+25x=1时,可设__________=y,则原方程化为关于y 的整式方程是 14.已知关于x 的方程:12.解方程组 可根据其特点将其化成四个方程组,它们分别是 9x ²-6xy+y ²=43x ²+xy=0⑦ x 3-x -1=1 ⑧ x x +1=2 ⑨ x ²=-1 ⑩x 2x +1-13=0 ⑪ x 3=x ⑫ 1x ²+3=-1 其中整式方程是_____________________________分式方程是_____________________________无理方程是_____________________________15.下列方程中,有实数根的是____________________.① x ³+8=0 ② 16x ⁴+81=0 ③ x x -1=1x -1④ x ⁴-2x ²+4=0 ⑤ x -4+1-x =2 ⑥ 1-x +x -1=2 ⑦ 1-x ²+x ²-1=0⑧ 4x ⁴-1+3=0 ⑨ x ²+10=1 ⑩ x ²-x =-2x16.某厂1月份的产量为4万台,3月份的产量为9万台,则每月的平均增长率是____________.三、解下列关于x 、y 的方程(组): (每题4分,共32分)17. ax ²=2(x ²+1) 18. 3x ⁴+2x ²-1=019. 3x ³+4-3x ²-4x =0 20. 2x x -2 -12x ²-x -2=121. 22. x +4-3x +1=-123. 24. 3x +2+12y -3=2 12x +4-26y -9=-12 x ²-2xy -3y ²=0 x ²-2xy +y ²=4 x ²-y ²=0 x ²-5xy +4y ²=0四、应用:(每题5分,共20分)25.将长、宽分别为12厘米和8厘米的纸片裁剪成6个面积相同的正方形,经精心设计不计损耗,则纸片恰好用完,没有剩余.求每个正方形的边长.26.圣诞某公司员工互赠贺卡420张,问:这个公司有多少名员工.27.已知点A(12,2),B(3,-1),坐标轴上找一点P,使PA=2PB.28.A、B两地相距50千米,甲骑自行车从A地前往B地,1小时30分钟后乙骑摩托车也从A地出发前往B地,结果乙比甲先到1小时,已知乙的速度是甲的2.5倍,求甲、乙两人的速度.参考答案1.D 2.C 3.D 4.C 5.C 6. B7. 1-≠8. x 1=0, x 2=22-, x 3=22; x 1=-2, x 2=29. 31-< 10. 无解 11. 例:013=+x12. ⎩⎨⎧=+-=-⎩⎨⎧=-=-⎩⎨⎧=+=-⎩⎨⎧==-0323,023,0323,023y x y x x y x y x y x x y x 13. 1+x x ; 025152=--y y 14. ①、④、⑨、⑪; ⑥、⑩、⑫; ②、③、⑤、⑦、⑧15. ①、⑦、16. 50%17. 当2≤a 时,无解;当a>2时,22,2221---=--=a a x a a x 18. 33,3321-==x x 19. x 1=1, 332,33232-==x x 20. x= -521. ⎩⎨⎧==21y x 22. x=523. ⎩⎨⎧=-=⎩⎨⎧-==⎩⎨⎧-=-=⎩⎨⎧==11,11,13,1344332211y x y x y x y x 24. ⎩⎨⎧==ay a x ,a 为任何实数25. 提示:设每个正方形的边长为x 厘米,则6812=⋅x x ,解得:x=4 26. 提示:设这个公司共有x 名员工,则420)1(=-x x ,解得:x=21则PA =22)02()12(-+-x ; PB=22)01()3(--+-x ∵ PA =2PB ∴22)02()12(-+-x =222)01()3(--+-x 解得:6-=x 或6=x所以:P 1(-6,0),P 2(6,0)(2) 这一点在y 轴上,设为(0,y )则PA =22)2()012(y -+-; PB=22)1()03(y --+- ∵ PA =2PB ∴22)2()012(y -+- =222)1()03(y --+- 解得:1022+-=y 或1022--=y所以:P 3(0,1022+-),P 4(0,1022--)综合(1)、(2)得:P 1(-6,0),P 2(6,0),P 3(0,1022+-),P 4(0,1022--)28. 设甲的速度为x 千米/时,则乙的速度为2.5x 千米/时 则:5.25.25050+=xx , 解得:x=122.5x=30所以:甲、乙两人的速度分别是12千米/时、30千米/时.。
沪教版(上海)八年级数学第二学期第二十一章代数方程同步训练试卷(含答案详解)
八年级数学第二学期第二十一章代数方程同步训练考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、用换元法解分式方程2211x x x x+-++1=0时,如果设21x x +=y ,那么原方程可以变形为整式方程( )A .y 2﹣3y ﹣1=0B .y 2+3y ﹣1=0C .y 2﹣y ﹣1=0D .y 2+y ﹣1=02、给出下列说法:①直线24y x =-+与直线1y x =+的交点坐标是()1,2;②一次函数y kx b =+,若0k >,0b <,那么它的图象过第一、二、三象限;③函数6y x =-是一次函数,且y 随x 增大而减小;④已知一次函数的图象与直线1y x =-+平行,且过点()8,2,那么此一次函数的解析式为6y x =-+;⑤直线1y kx k =+-必经过点()1,1--.其中正确的有( ).A .2个B .3个C .4个D .5个 3、若关于x 的方程11ax x =+的解大于0,则a 的取值范围是( ) A .1a > B .1a < C .1a >- D .1a <-4、若a 为整数,关于x 的不等式组2(1)4340x x x a +<+⎧⎨-<⎩有解,且关于x 的分式方程11222ax x x -+=--有正整数解,则满足条件的a 的个数( )A.1 B.2 C.3 D.45、关于x的不等式组2124()3(2)x xa x a x->-⎧⎨+≥+⎩至少有2个整数解,且关于y的分式方程22242a a yy y+-+=--的解为非负整数,则符合条件的所有整数a的和为()A.34 B.24 C.18 D.146、胜利乡决定对一段长7000米的公路进行修建改造.根据需要,该工程在实际施工时增加施工人员,每天修建的公路比原计划增加了40%,结果提前5天完成任务,设原计划每天修建x米,那么下面所列方程中正确的是()A.700070005(140%)x x+=+B.700070005(140%)x x=--C.700070005(140%)x x-=+D.700070005(140%)x x=+-7、A,B两地相距48千米,一艘轮船从A地顺流航行至B地,又立即从B地逆流返回A地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x千米/时,则可列方程()A.4848944x x+=+-B.4848944+=+-x xC.9696944x x+=+-D.9696944+=+-x x8、如图,一次函数y=2x+1的图象与y=kx+b的图象相交于点A,则方程组21x ykx y b-=-⎧⎨-=-⎩的解是()A.37xy=⎧⎨=⎩B.32xy=⎧⎨=⎩C.13xy=⎧⎨=⎩D.23xy=⎧⎨=⎩9、某校八年级一班计划安排一次以“迎冬奥”为主题的知识竞赛,班主任王老师打算到某文具店购买一些笔记本作为竞赛用的奖品.目前该文具店正在搞优惠酬宾活动:购买同样的笔记本,当花费超过20元时,每本便宜1元.已知王老师花费24元比花费20元多买了2本笔记本,求他花费24元买了多少本笔记本,设他花费24元买了x 本笔记本,根据题意可列方程( )A .242012x x -=- B .242012x x -=- C .202412x x -=- D .202412x x -=+ 10、解分式方程8587142x x x x--=--时,去分母后得到的整式方程是( ) A .2(x -8)+5x =16(x -7)B .2(x -8)+5x =8C .2(x -8)-5x =16(x -7)D .2(x -8)-5x =8第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、关于x 的分式方程7311+=--m x x 无解,则m 的值为 _____. 2、若数a 使关于x 的不等式组11(1)3223(1)x x x a x ⎧⎪⎨⎪-≤-≤-⎩-有且仅有三个整数解,且使关于y 的分式方程31222y a y y-+-- =1 有整数解,则满足条件的所有a 的值之和是____________ 3、已知实数x 满足方程222322x x x x +-=+,则22x x+=____________. 4、在平面直角坐标系中,已知两条直线l 1:y =2x +m 和l 2:y =﹣x +n 相交于P (1,3).请完成下列探究:(1)设l 1和l 2分别与x 轴交于A ,B 两点,则线段AB 的长为 _____.(2)已知直线x =a (a >1)分别与l 1l 2相交于C ,D 两点,若线段CD 长为2,则a 的值为 _____.5、已知直线y =x +b 和y =ax +2交于点P (3,-1),则关于x 的方程(a -1)x =b -2的解为_______.三、解答题(5小题,每小题10分,共计50分)1、解方程:48233x x-=-- 2、解方程:2311x x x =+-. 3、解分式方程:2111x x x -=-+. 4、解下列分式方程:(1)2424x x x ---=1 (2)31(1)(2)x x x x =--+ 5、北京市以2022年冬奥会和冬残奥会为契机,大力提升城市服务保障能力,在永定河沿岸,紧邻北京冬奥组委和首钢滑雪大跳台建成冬奥公园.冬奥公园最大的亮点是拥有一条长42km 全封闭的马拉松跑道.马拉松线路设计很有创意,分为智慧跑、公园跑、滨水跑和堤上跑.小明先进行了2km 智慧跑,接着进行了4km 堤上跑,共用时40分钟.已知小明在堤上跑路段的平均速度是他在智慧跑路段的平均速度的1.5倍,求小明在进行智慧跑和堤上跑时的平均速度.-参考答案-一、单选题1、D【分析】 根据换元法,把21x x +换成y ,然后整理即可得解. 【详解】 解:∵21x x +=y ,∴原方程化为110y y-+=. 整理得:y 2+y ﹣1=0.故选D .【点睛】本题考查的是换元法解分式方程,换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理.2、B【分析】联立241y x y x =-+⎧⎨=+⎩,求出交点坐标即可判断①;根据一次函数图像与系数的关系即可判断②③;可设一次函数的解析式为y x b =-+,然后求出解析式即可判断④;根据一次函数解析式可化为()11y k x =+-,即可判断⑤.【详解】解:联立241y x y x =-+⎧⎨=+⎩, 解得12x y =⎧⎨=⎩, ∴直线24y x =-+与直线1y x =+的交点坐标是()1,2,故①正确;∵一次函数y kx b =+,若0k >,0b <,∴它的图象过第一、三、四象限,故②错误;∵函数6y x =-是一次函数,且y 随x 增大而减小,∴③正确;∵一次函数的图象与直线1y x =-+平行,∴可设一次函数的解析式为y x b =-+,∵一次函数经过点()8,2,∴28b =-+,∴10b =,∴一次函数解析式为10y x =-+,故④错误;∵直线的解析式为1y kx k =+-,即()11y k x =+-∴直线1y kx k =+-必经过点()1,1--,故⑤正确;故选B .【点睛】本题主要考查了一次函数图像的性质,求一次函数图像,求两直线的交点等等,解题的关键在于能够熟练掌握相关知识进行求解.3、A【分析】先去分母,求出分式方程的解,进而得到关于a 的不等式组,即可求解.【详解】 解:由11ax x =+,解得:11x a =-, ∴101a >-且a -1≠0, ∴1a >,故选A .【点睛】本题主要考查解分式方程以及不等式,掌握去分母,把分式方程化为整式方程,是解题的关键.4、A【分析】观察此题先解不等式组确定x 的解集,由不等式组有解确定a 的取值范围,再根据分式方程有正整数解,即可找出符合条件的所有整数a .【详解】不等式组2(1)4340x x x a +<+⎧⎨-<⎩①②, 解①得:2x >-, 解②得:4a x <, 24a x ∴-<<且不等式组有解, 2,48,a a ∴-<∴>-解关于x 的分式方程11222ax x x -+=--得: 22x a =-, 分式方程有正整数解,a 为整数,1,0,x a ∴==2,1,x a ==方程产生增根,舍去,∴符合条件的a 的值有1个,为0,故选:A .【点睛】此题考查不等式组的解法以及分式方程的解法,综合性较强,熟练掌握不等式组的解法以及分式方程的解法是解决本题的关键.5、C【分析】求出不等式组的解集,确定a 的取值范围,由分式方程的解得出不等式,求出a 的取值范围,确定a 的整数值求和即可.【详解】解不等式组2124()3(2)x x a x a x ->-⎧⎨+≥+⎩得:12x a x >⎧⎪⎨≤⎪⎩, ∴12a x <≤, ∵不等式组至少有2个整数解,∴符合条件的整数至少是2和3, ∴32a ≤ ∴6a ≤ 分式方程22242a a y y y +-+=--去分母得:22()2(24)a a y y +--=-, ∴1(10)2y a =-,∵分式方程的解为非负整数, ∴1(10)02y a =-≥且为整数,1(10)22y a =-≠,解得:10,6a a ≤≠,a 是偶数综上所述610a <≤,a 是偶数∵a 为整数,∴a的值为8,10∴8+10=18,故选:C.【点睛】本题考查了不等式组的取值范围,分式方程的解,分式方程的增根容易忽略,仔细求解,考虑周全是解决本题的关键.6、C【分析】设原计划每天修建x米,求出现在每天修健x(1+40%)米,先求出原来修建需要天数7000x,提高效率后需要天数为7000(140%)x+,两者作差等于提前的天数,列方程即可.【详解】解:设原计划每天修建x米,每天修健的公路比原计划增加了40%所以现在每天修健x(1+40%)米,根据题意得:700070005(140%)x x-=+,即:700070005(140%)x x-=+.故选C.【点睛】本题考查工程问题分式应用题,掌握列分式方程解工程问题的方法与步骤,抓住原计划天数-实际天数=5是解题关关键.7、A【分析】根据轮船在静水中的速度为x千米/时可进一步得出顺流与逆流速度,从而得出各自航行时间,然后根据两次航行时间共用去9小时,列出方程即可.【详解】∵轮船在静水中的速度为x千米/时,∴顺流航行时间为:484x+,逆流航行时间为:484x-,∴可得出方程:4848944x x+=+-,故选:A.【点睛】本题主要考查了分式方程的应用,熟练掌握顺流与逆流速度的性质是解题关键.8、C【分析】一个一次函数解析式可以看做是一个二元一次方程,两个一次函数解析式可以组合成一个二元一次方程组,方程组的解就是两函数图象的交点.【详解】解:∵点A的纵坐标为3,当2x+1=3时,1x=,∴一次函数y=2x+1的图象与y=kx+b的图象相交于点A坐标为(1,3),又∵方程组21x ykx y b-=-⎧⎨-=-⎩可变形为21y xy kx b=+⎧⎨=+⎩,∴方程组21x ykx y b-=-⎧⎨-=-⎩的解为:13xy=⎧⎨=⎩.故选:C.【点睛】此题主要考查了二元一次方程组和一次函数的关系,关键是掌握方程组的解就是两函数图象的交点.9、C【分析】先求出花费20元买了(2)x-本笔记本,再根据“当花费超过20元时,每本便宜1元”建立方程即可得.【详解】解:由题意得:王老师花费20元买了(2)x-本笔记本,则可列方程为202412x x-=-,故选:C.【点睛】本题考查了列分式方程,正确找出等量关系是解题关键.10、A【详解】略二、填空题1、7【分析】根据分式的性质去分母,再把增根x=1代入即可求出m的值.【详解】解7311+=--m x x∴7+3(x-1)=m∵关于x的分式方程7311+=--mx x无解,∴x =1是方程的增根,∴把增根x =1代入得m =7.故答案为:7.【点睛】此题主要考查分式方程的解法,解题的关键是根据分式方程无解得到关于m 的方程.2、-18【分析】根据不等式的解集,可得a 的范围,根据方程的的整数解,可得a 的值,根据有理数的加法,可得答案.【详解】 解:()()11132231x x x a x ⎧-≤-⎪⎨⎪-≤-⎩①②,解①得x ≥-3,解②得x ≤35a +, 不等式组的解集是-3≤x ≤35a +. ∵仅有三个整数解-3,-2,-1,∴-1≤35a +<0 ∴-8≤a <-3,31222y a y y-+-- =1 3y -a +12=y -2.∴y =142a -,∴a ≠18>-3,又y =142a -有整数解, ∴a =-8,-6,-4,所有满足条件的整数a 的值之和是-8-6-4=-18,故答案为-18.【点睛】本题考查了分式方程的解,有理数的解法,解不等式组,解分式方程,利用不等式的解集及方程的解得出a 的值是解题关键.3、3【分析】 设22x x+=m ,将原式整理为含m 的方程即可得出答案 【详解】 解:设22x x+=m , 则原方程为:32m m-=, 则:2230m m --=,解得:123,1m m ==-,当1m =-时,221x x+=-无实数解,故舍去, 经检验13,m =是32m m-=的解, 故答案为:3.本题考查了换元法解方程,解一元二次方程,熟练掌握解方程的一般步骤是解本题的关键.4、4.5【分析】(1)把P(1,3)分别代入直线l1、 l2,求出直线,再求出两直线与x轴的交点,即可求解;(2)分别表示出C,D的坐标,根据线段CD长为2,得到关于a的方程,故可求解.【详解】解:(1)把P(1,3)代入l1:y=2x+m得3=2+m解得m=1∴l1:y=2x+1令y=0,∴2x+1=0,解得x=-12∴A(-1,0)2把P(1,3)代入l2:y=﹣x+n得3=-1+n解得n=4∴l1:y=﹣x+4令y=0,∴﹣x+4=0解得x=4,∴B(4,0))=4.5;∴AB=4-(-12故答案为:4.5;(2)∵已知直线x =a (a >1)分别与l 1、l 2相交于C ,D 两点,设C 点坐标为(a ,y 1),D 点坐标为(a ,y 2),∴y 1=2a +1,y 2=﹣a +4∵CD =2∴()()4221a a --+=+解得a =13或a =53∵a >1∴a =53. 故答案为:53.【点睛】此题主要考查一次函数的图像与性质,解题的关键是熟知待定系数法、一次函数的性质特点.5、x =3【分析】利用函数图象交点坐标为两函数解析式组成的方程组的解即可求解.【详解】解:解:∵直线y =x +b 和y =ax +2交于点P (3,-1),∴当x =3时,3+b =3a +2,上述等式移项得到:3a-3=b-2,整理得到:3(a -1)=b -2,三、解答题1、9x =【分析】方程两边同乘(x -3)把分式方程化简为整式方程,解整式方程,最后验根即可.【详解】解:42(3)8x --=-4268x -+=-9x =经检验:9x =是原方程的解.所以原方程的解为9x =.【点睛】本题考查了解分式方程,熟练解分式方程的步骤是解答此题的关键.注意:单独数字也要乘以最简公因式.2、x 1=-12,x 2=3.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】解:去分母得:2x (x -1)=3(x +1),整理得:2x 2-5x -3=0,即(2x +1)(x -3)=0,解得:x 1=-12,x 2=3,检验:把x 1=-12,x 2=3代入得:(x +1)(x -1)≠0,∴x 1=-12,x 2=3都是方程的解.【点睛】本题考查了解分式方程,解一元二次方程,利用了转化的思想,解分式方程注意要检验. 3、3x =【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】解:去分母得:()()()()12111x x x x x +--=+-去括号得:22221x x x x +-+=-,解得:3x =,检验:当3x =时,最简公分母()()110x x +-≠,∴原方程的解是3x =.【点睛】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.4、(1)0x =;(2)3x =-【分析】(1)去分母得:x (x +2)-4=(x +2)(x -2),解一元一次方程,然后进行检验确定原方程的解;(2)去分母得:x (x +2)=3,整理得x 2+2x -3=0,解一元二次方程,然后进行检验确定原方程的解.【详解】解:(1)方程两边同乘以(x +2)(x ﹣2),约去分母得:x (x +2)﹣4=(x +2)(x ﹣2),解之得:x =0,检验:当x=0时,(x+2)(x﹣2)≠0,∴x=0是原方程的解,∴原分式方程的解为:x=0;(2)方程两边同乘以(x﹣1)(x+2),约去分母得:x(x+2)=3,整理得x2+2x﹣3=0,解之得x1=1,x2=﹣3,检验:当x=1时,(x﹣1)(x+2)=0,∴x=1不是原方程的解;当x=﹣3时,(x﹣1)(x+2)≠0,∴x=﹣3是原方程的解;∴原分式方程的解为:x=﹣3.【点睛】本题考查了解分式方程:掌握解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论.5、小明进行智慧跑的平均速度为7km/h,进行堤上跑的平均速度为10.5km/h.【分析】设小明进行智慧跑的平均速度为x km/h,则小明进行堤上跑的平均速度为1.5x km/h. 根据题意,列出分式方程,解方程求解即可,注意要检验【详解】设小明进行智慧跑的平均速度为x km/h,则小明进行堤上跑的平均速度为1.5x km/h.根据题意,列出方程:24401.560x x+=.解方程,得=7x.经检验,=7x是原方程的解且符合实际意义.x .∴1.510.5答:小明进行智慧跑的平均速度为7km/h,进行堤上跑的平均速度为10.5km/h.【点睛】本题考查了分式方程的应用,根据题意找到等量关系列出方程是解题的关键.。
2022年必考点解析沪教版(上海)八年级数学第二学期第二十一章代数方程专项训练试卷(含答案详解)
八年级数学第二学期第二十一章代数方程专项训练考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、中国高铁目前是世界高铁的领跑者,无论里程和速度都是世界最高的.郑州、北京两地相距约700km ,乘高铁列车从郑州到北京比乘特快列车少用3.6h ,已知高铁列车的平均行驶速度是特快列车的2.8倍,设特快列车的平均行驶速度为km/h x ,则下面所列方程中正确( )A .700700 3.62.8x x-= B .700700 3.62.8x x -= C .700 2.8700 3.6x x ⨯-= D .7007003.62.8x x =- 2、2021年6月,怀柔区政府和内蒙古自治区四子王旗政府签订了《2021年东西部协作协议》,在乡村振兴、产业合作、消费帮扶、就业帮扶、教育和健康帮扶方面,按计划推动工作落实.在产业合作过程中,怀柔区为四子王旗提供设备和技术支持.运送设备使用大货车,技术人员乘坐面包车.已知怀柔区与四子王旗相距600千米,若面包车的速度是大货车的1.2倍,两车同时从怀柔区出发,大货车到达四子王旗比面包车多用43小时.求大货车和面包车的速度.设大货车速度为x 千米/小时,下面是四位同学所列的方程:①国国:60060041.23x x =+; ②佳佳:4600600+3 1.2x x=;③富富:60060041.23x x =-;④强强:60046003 1.2x x-=.其中,正确的序号是( ) A .①② B .①③ C .①④ D .②③3、若关于x 的一元一次不等式组2(3)4152x x x a +-<+⎧⎨-≤⎩的解集为1x <-,且关于y 的分式方程1144y a y y++=--的解是正整数,则所有满足条件的整数a 的值之和是( ) A .-15 B .-10 C .-7 D .-44、已知关于x 的分式方程10327333x k x x --=---的解满足2<x <5,则k 的取值范围是( ) A .﹣7<k <14B .﹣7<k <14且k ≠0C .﹣14<k <7且k ≠0D .﹣14<k <75、关于x 的方程1011m x x x -+=--有增根,则m 的值是( ) A .2 B .1 C .0 D .-16、某文具店购进A ,B 两种款式的书包,其中A 种书包的单价比B 种书包的单价低10%.已知店主购进A 种书包用了810元,购进B 种书包用了600元,且所购进的A 种书包的数量比B 种书包多20个.设文具店购进B 种款式的书包x 个,则所列方程正确的是( )A .81060010%20x x=⨯+ B .()810600110%20x x =-+ C .60081010%20x x =⨯+ D .()()81060020110%x x x =⨯+- 7、自带水杯已成为人们良好的健康卫生习惯.某公司为员工购买甲、乙两种型号的水杯,用720元购买甲种水杯的数量和用540元购买乙种水杯的数量相同,已知甲种水杯的单价比乙种水杯的单价多15元.设甲种水杯的单价为x 元,则列出方程正确的是( )A .72054015x x =-B .72054015x x =+C .72054015x x =-D .72054015x x=+8、要使关于x 的一元二次方程210ax +-=有两个实数根,且使关于x 的分式方程2244x a x x ++=--的解为非负数的所有整数a 的个数为( )A .6个B .7个C .8个D .9个 9、解分式方程8587142x x x x--=--时,去分母后得到的整式方程是( )A .2(x -8)+5x =16(x -7)B .2(x -8)+5x =8C .2(x -8)-5x =16(x -7)D .2(x -8)-5x =810、体育课上,20人一组进行足球比赛,每人射点球5次,已知某一组的进球总数为49个,进球情况记录如下表,其中进2个球的有x 人,进3个球的有y 人,若(x ,y )恰好是两条直线的交点坐标,则这两条直线的解析式是( )A .222933y x y x =+=+, B .222933y x y x =-+=+, C .222933y x y x =-+=-+, D .222933y x y x =+=-+, 第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,直线:4AB y x =+与直线:22BC y x =--相交于点B ,直线AB 与y 轴交于点A ,直线BC 与x 轴交于点D 与y 轴交于点C ,AE BC ∥交x 轴于点E .直线AB 上有一点P (P 在x 轴上方)且DEP ABC S S =,则点P 的坐标为_______.2、已知一次函数4y kx =-的图象与两坐标轴所围成的三角形的面积等于2,则k 的值是 __.3、直线//AB x 轴,且A 点坐标为(1,2)-,则直线AB 上的任意一点的纵坐标都是2-,此时我们称直线AB 为2y =-,那么直线3y =与直线2x =的交点是______.4、如果关于x 的方程4233k x x x -+=--无解,则k 的值为_____. 5、关于x 的方程233x k x x =+--化为整式方程后,会产生增根,则k 的值为__________. 三、解答题(5小题,每小题10分,共计50分)1、对于任意两个非零实数a ,b ,定义运算⊗如下:()()00a a a b b a b a ⎧>⎪⊗=⎨⎪+<⎩. 如:2233⊗=,()23231-⊗=-+=. 根据上述定义,解决下列问题:(1=,(= ;(2)如果()()2211x x x +⊗-=,那么x = ; (3)如果()()232x x x -⊗=-⊗,求x 的值.2、某一工程,在工程招标时,接到甲乙两个工程队的投标书.施工一天需付甲工程队工程款1.5万元,付乙工程队工程款1.1万元.工程领导们根据甲乙两队的投标书测算,可有三种施工方案: 方案A :甲队单独完成这项工程刚好如期完成;方案B :乙队单独完成这项工程比规定日期多用5天;方案C :若甲乙两队合作4天后,余下的工程由乙队单独做也正好如期完成.在不耽误工期的前提下,你觉得哪一种施工方案最节省工程款?3、今年4月23日是第26个世界读书日.八(1)班举办了“让读书成为习惯,让书香飘满校园”主题活动.准备订购一批新的图书鲁迅文集(套)和四大名著(套).(1)采购员从市场上了解到四大名著(套)的单价比鲁迅文集(套)的单价的贵25元.花费1000元购买鲁迅文集(套)的数量与花费1500元购买鲁迅文集(套)的数量相同.求鲁迅文集(套)和四大名著(套)的单价各是多少元?(2)若购买鲁迅文集和四大名著共10套(两类图书都要买),总费用不超过570元,问该班有哪几种购买方案?4、某水果批发店销售粑粑柑和苹果,均按整箱出售,粑粑柑比苹果每箱贵30元.某天粑粑柑销售额为1800元,苹果销售额为3600元,该日苹果销售量恰好是粑粑柑销售量的3倍.(1)求粑粑柑、苹果每箱各是多少元?(2)某单位决定去该水果批发店购买粑粑柑、苹果共30箱,恰逢批发店对售价进行调整,苹果单价提高了5%,粑粑柑按九折销售,本次购买预算总费用不超过2100元,那么可最多购买多少箱粑粑柑?5、列分式方程解应用题:某种型号的LED 显示屏为长方形,其长与宽的比为4:3;若将该显示屏的长、宽各减少2cm ,则其长与宽的比值将会变为3:2.求该型号LED 显示屏的长度与宽度.-参考答案-一、单选题1、A【分析】设特快列车的平均行驶速度为km/h x ,则高铁列车的平均行驶速度是2.8km/h x ,根据“郑州、北京两地相距约700km ,乘高铁列车从郑州到北京比乘特快列车少用3.6h ”,即可求解.【详解】解:设特快列车的平均行驶速度为km/h x ,则高铁列车的平均行驶速度是2.8km/h x ,根据题意得: 700700 3.62.8x x-=. 故选:A【点睛】本题主要考查了分式方程的应用,明确题意,准确得到等量关系是解题的关键.2、C【分析】根据题意设大货车速度为x千米/小时,则面包车的速度为1.2x千米/小时,总路程均为600千米,由路程、速度、时间之间的关系及大货车到达四子王旗比面包车多用43小时,列出方程即可得.【详解】解:设大货车速度为x千米/小时,则面包车的速度为1.2x千米/小时,总路程均为600千米,根据题意可得:60060041.23x x-=,变形为:60046003 1.2x x-=,60060041.23x x=+,∴①④正确,故选:C.【点睛】题目主要考查分式方程的应用,理解题意,熟练运用路程、速度、时间之间的关系是解题关键.3、B【分析】解出一元一次不等式组的解集,根据不等式组的解集为1x<-,在数轴上标出x的解集求出a的范围;根据分式方程分母不能为0的性质得出y-4≠0,再在分式方程两边同乘以y-4,解出分式方程的解,再根据a的范围求出y的取值范围,找出符合条件的y的正整数解,分别代入求出a的值,求和即可.【详解】解:2(3)4152x xx a+-<+⎧⎨-≤⎩ ① ②,解不等式①得:x<-1,解不等式②得:x≤25a+,∵不等式组的解集为1x<-,∴25a+≥-1,∴a≥-7;要想分式方程有意义,则y-4≠0,∴y≠4分式方程两边同乘以(y-4)得:y+y-4=-a-1,解得:y=32a-,∵a≥-7∴y=32a-≤5,∵方程的解是正整数且y≠4∴ y的正整数解有:1,2,3,5.把y=1,2,3,5分别代入32a-,可得整数a的值为1,-1,-3,-7.∴所有满足条件的整数a的值之和是:1+(-1)+(-3)+(-7)=-10故选:B.【点睛】解一元一次不等式组可通过数轴求解解集,注意不等式两边同乘以负号的时候不等号的方向一定要改变.解分式方程时,防止增根产生,要保证分母不为0.4、C【分析】先解分式方程,然后根据分式方程的解满足2<x<5和分式有意义的条件进行求解即可.【详解】解:∵10327333x k x x --=---, ∴()1032733x k x -=-++-, ∴217k x -=, ∵分式方程10327333x k x x --=---的解满足2<x <5, ∴212572137k k -⎧<<⎪⎪⎨-⎪≠⎪⎩, 解得147k -<<且0k ≠,故选C .【点睛】本题主要考查了解一元一次不等式组,解分式方程,分式方程的解,解题的关键在于能够熟练掌握相关知识进行求解.5、A【分析】增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.有增根,最简公分母x ﹣1=0,所以增根是x =1,把增根代入化为整式方程的方程即可求出未知字母的值【详解】解:两边都乘(x ﹣1),得:m ﹣1-x =0,∵方程有增根,∴最简公分母x ﹣1=0,即增根是x =1,把x =1代入整式方程,得m =2.故选A .【点睛】考查了分式方程的增根,解决增根问题的步骤:①确定增根的值;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.6、B【分析】设文具店购进B 种款式的笔袋x 个,则购进A 种款式的笔袋(x +20)个,根据单价=总价÷数量结合A 种笔袋的单价比B 种袋的单价低10%,即可得出关于x 的分式方程.【详解】解:设文具店购进B 种款式的笔袋x 个,则购进A 种款式的笔袋(x +20)个, 依题意,得:()810600110%20x x=-+, 故选:B .【点睛】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.7、A【分析】设甲种水杯的单价为x 元,则乙种水杯的单价为(x -15)元,根据720元购买甲种水杯的数量和用540元购买乙种水杯的数量相同列方程即可得解.【详解】解:设甲种水杯的单价为x 元,则乙种水杯的单价为(x -15)元 根据题意列出方程得:720540-15x x =. 故选项A .【点睛】本题考查列分式方程解应用题,掌握列分式方程解应用题的方法与步骤,抓住等量关系列方程是解题关键.8、C【分析】根据一元二次方程的应用以及根据的判别式得到0a ≠且240b ac ∆=-≥,将分式方程整理为整式方程,得出x 的解,然后根据分式方程2244x a x x++=--的解为非负数确定a 的取值范围,然后写出此范围内的整数即可.【详解】解:∵关于x 的一元二次方程210ax +-=有两个实数根,∴0a ≠且241240b ac a ∆=-=+≥,∴3a ≥-且0a ≠, 对于分式方程2244x a x x ++=--, 去分母得22(4)x a x --=-,解得:6x a =-,∵分式方程的解为非负数,∴60a -≥且64a -≠,解得6a ≤且2a ≠,∴36a -≤≤且0a ≠,2a ≠,∴整数a 的值为3-、2-、1-、1、3、4、5、6共8个,故选:C .【点睛】本题考查了根得判别式:一元二次方程ax 2+bx +c =0(a ≠0)的根与Δ=b 2−4ac 有如下关系:当Δ>0时,方程有两个不相等的两个实数根;当Δ=0时,方程有两个相等的两个实数根;当Δ<0时,方程无实数根.也考查了分式方程的解.9、A【详解】略10、C【分析】根据根据进球总数为49个,总共20人,分别列出,x y 的关系式即可.【详解】根据进球总数为49个得:23495342522x y +=⨯⨯=﹣﹣﹣, 整理得:22233y x =-+, ∵20人一组进行足球比赛,∴153220x y +++++=,整理得:9y x =-+. ∴222933y x y x =-+=-+,. 故选C .【点睛】本题考查了两直线交点与二元一次方程组,理解题意列出关系式是解题的关键.二、填空题1、(-3,4)【分析】先求出A (0,4),D (-1,0),C (0,-2),得到AC =6,再求出B 点坐标,从而求出△ABC 的面积;然后求出直线AE 的解析式得到E 点坐标即可求出DE 的长,再由162DEP P ABC SDE y S △进行求解即可.【详解】 解:∵A 是直线4y x =+与y 轴的交点,C 、D 是直线22y x =--与y 轴、x 轴的交点,∴A (0,4),D (-1,0),C (0,-2),∴AC =6;联立422y x y x =+⎧⎨=--⎩ , 解得22x y =-⎧⎨=⎩, ∴点B 的坐标为(-2,2),∴()1==62ABC B S AC x ⋅-△, ∵AE BC ∥,∴可设直线AE 的解析式为2y x b =-+,∴4b =,∴直线AE 的解析式为24y x =-+,∵E 是直线AE 与x 轴的交点,∴点E 坐标为(2,0),∴DE =3, ∴162DEPP ABC S DE y S △, ∴=4P y ,∴=3P x ,∴点P 的坐标为(-3,4),故答案为:(-3,4).【点睛】本题主要考查了一次函数综合,求一次函数与坐标轴的交点,两直线的交点坐标,三角形面积,解题的关键在于能够熟练掌握一次函数的相关知识.2、4±【分析】先求出直线与两坐标轴的交点,再根据三角形的面积公式即可得出结论.【详解】解:当0x =时,044y k =⨯-=-,∴一次函数4y kx =-的图象与y 轴交于点(0,4)-;当0y =时,40kx -=,解得:4x k=, ∴一次函数4y kx =-的图象与x 轴交于点4(k ,0).一次函数4y kx =-的图象与两坐标轴所围成的三角形的面积等于2, ∴14|4|||22k⨯-⨯=,4∴=±,k经检验,4k=±是原方程的解,且符合题意.故答案为:4±.【点睛】本题考查的是一次函数图象上点的坐标特点,熟知坐标轴上点的坐标特点是解答此题的关键.3、(2,3)【分析】根据题意直线y=3是一条平行于x轴纵坐标为3的直线,直线x=2是一条平行于y轴横坐标2的直线,即可得解.【详解】直线y=3是一条平行于x轴纵坐标为3的直线,直线x=2是一条平行于y轴横坐标2的直线,∴两直线交点的横坐标为2,纵坐标为3,∴直线y=3与直线x=2的交点是(2,3)故答案为:(2,3).【点睛】本题主要考查平行于x轴和平行于y轴直线相关的问题,属于基础题,熟练掌握平行于x轴和平行于y轴直线的特点是解题关键.4、1【分析】首先将分式方程化为整式方程,表示出整式方程的解,再根据分式方程无解确定x的值,然后再求k 的值即可.【详解】解:方程去分母得:2(3)4k x x +-=-, 解得:103k x , 由分式方程无解可得:30x -=即3x =, ∴1033k,解得:1k =,故答案为:1.【点睛】本题考查了分式方程无解问题,分两种情况:一种是把分式方程化成整式方程后,整式方程无解;一种是把分式方程化成整式方程后,整式方程有解,但这个解使分式方程的分母为0,是增根,熟练掌握理解这两种情况是解题关键.5、3【分析】将分式方程化为整式方程,再将分式方程的增根代入整式方程计算即可求解.【详解】方程两边同乘以(3)x -,得2(3)x x k =-+,当30x -=时,3x =,∴关于x 的方程233x k x x =+--的增根为3x =, 当3x =时,32(33)k =⨯-+,解得3k =故答案为:3.【点睛】本题主要考查分式方程的增根,求解方程的增根是解题的关键.三、解答题1、(10;(2)1-;(3)1x =±.【分析】(1)根据新定义的运算进行计算即可求解;(2)根据210x +>得到221=1x x x +-,解分式方程即可求解; (3)根据-2<0,得到()2x -⊗=-2+x ,对23x -分大于0和小于0两种情况讨论,得到方程,解方程并对答案进行验证,问题得解.【详解】解:(10,0,=(=0=,,0;(2)∵210x +>,∴()()221x x x +⊗-=221=1x x x +-, ∴ 22+1=x x x -,解得1x =-,经检验,1x =-是方程221=1x x x+-的解, 故答案为:-1;(3)∵-2<0,∴()2x -⊗=-2+x .①当230x ->时,232x x x-=-+, 解得:32x =, 经检验32x =是原方程的解,但不符合230x ->, ∴32x =舍去. ②当230x -<时,232x x x -+=-+,解得:1x =±.经检验1x =±是原方程的解,且符合230x -<.∴1x =±.【点睛】本题考查了新定义问题,二次根式的运算,解分式方程等知识,综合性较强,理解定义的新运算是解题关键,注意第(3)问要分类讨论.2、选择C 方案,理由见解析【分析】设甲单独完成这一工程需x 天,则乙单独完成这一工程需()5+x 天.根据方案C ,可列方程得444155x x x x -++=++,解方程即可解决问题. 【详解】解:设甲单独完成这一工程需x 天,则乙单独完成这一工程需()5+x 天.根据方案C ,可列方程得444155x x x x -++=++, 解这个方程得20x ,经检验:20x 是所列方程的根.即甲单独完成这一工程需20天,乙单独完成这项工程需25天.所以A 方案的工程款为1.52030⨯=(万元),B 方案的工程款为1.12527.5⨯=(万元),但乙单独做超过了日期,因此不能选.C 方案的工程款为1.54 1.14 1.11628⨯+⨯+⨯=(万元),所以选择C 方案.【点睛】本题考查分式方程的应用,列分式方程解应用题的一般步骤:设、列、解、验、答.解题的关键是熟练掌握路程=速度×时间的关系,正确寻找等量关系构建方程解决问题.3、(1)鲁迅文集(套)和四大名著(套)的单价各是50元、75元;(2)见解析【分析】(1)设鲁迅文集(套)的单价为x 元,根据“花费1000元购买鲁迅文集(套)的数量与花费1500元购买鲁迅文集(套)的数量相同”列方程求解;(2)设购买鲁迅文集a 套,根据“总费用不超过570元”列不等式求解.【详解】(1)设鲁迅文集(套)的单价为x 元,列方程得1000150025x x =+, 解得50x =,经检验50x =是方程的解且符合题意,∴25502575x +=+=,答:鲁迅文集(套)和四大名著(套)的单价各是50元、75元;(2)设购买鲁迅文集a 套,则()507510570a a +-≤,解得7.2a ≥,∵10a <且a 为正整数,∴8a =、9,答:该班有两种购买方案.见下表【点睛】4、(1)苹果每箱60元,粑粑柑每箱90元(2)最多可购买11箱粑粑柑【分析】(1)设苹果每箱x元,则粑粑柑每箱(x+30)元,然后根据某天粑粑柑销售额为1800元,苹果销售额为3600元,该日苹果销售量恰好是粑粑柑销售量的3倍,列出方程求解即可;(2)设可以购买m箱粑粑柑,则购买(30﹣m)箱苹果,然后根据某单位决定去该水果批发店购买粑粑柑、苹果共30箱,恰逢批发店对售价进行调整,苹果单价提高了5%,粑粑柑按九折销售,本次购买预算总费用不超过2100元,列出不等式求解即可.(1)解:设苹果每箱x元,则粑粑柑每箱(x+30)元,依题意得:36001800330x x=⋅+,解得:x=60,经检验,x=60是原方程的解,且符合题意,∴x+30=60+30=90.答:苹果每箱60元,粑粑柑每箱90元.(2)解:设可以购买m 箱粑粑柑,则购买(30﹣m )箱苹果,依题意得:90×0.9m +60×(1+5%)(30﹣m )≤2100,解得:m ≤1123,又∵m 为正整数,∴m 的最大值为11.答:最多可购买11箱粑粑柑.【点睛】本题主要考查了分式方程和一元一次不等式的实际应用,解题的关键在于能够正确理解题意列出方程和不等式求解.5、长度为8cm ,宽度为6cm【分析】设LED 显示屏的长为4x cm ,则宽为3x cm ,根据题意列出方程,解方程即可解决问题,注意分式方程应检验【详解】解:设LED 显示屏的长为4x cm ,则宽为3x cm.根据题意列方程得423322x x -=- 解得:2x =.经检验,2x =是原方程的解则48x =,36x =答:该LED 显示屏的长度为8cm ,宽度为6cm.【点睛】本题考查了分式方程的应用,根据题意列出分式方程是解题的关键.。
沪教版(上海)八年级第二学期数学第二十一章代数方程练习题(可编辑修改word版)
沪教版(上海)⼋年级第⼆学期数学第⼆⼗⼀章代数⽅程练习题(可编辑修改word版)- = ? ?⼋年级(下)数学第⼆⼗⼀章代数⽅程练习⼀.选择题(每题 3 分,共 18 分)1. 下列关于 x 的⽅程中,⾼次⽅程是( )(A ) ax 2 -1 = 0(a ≠ 0) ; (B ) x 3 + 25x = 0 ; (C ) 1x5+ x 3 = 2 ; (D ) x 2 + 5 = 0 .2. 如果关于 x 的⽅程(m + 3)x = 6 有解,那么 m 的取值范围是( )(A ) m > -3 ;(B ) m = -3 ; (C ) m ≠ -3 ;(D )任意实数.3. 下列⽅程中,有实数根的是()(A= -x;(B+1 =0 ;(C =0 ;(D = x - 3 .4. ⽤换元法解⽅程x 2 +1 3x 2x x 2 +1 5 ,设 x 2 +1= y ,则得到关于 y 的整式⽅程为 ( )(A ) 2 y 2 - 5 y - 3 = 0 ; (B ) 6 y 2 +10 y -1 = 0 ;(C ) 3y 2 + 5 y - 2 = 0 ; (D ) y 2 -10 y - 6 = 0 .2 + 1= 0xy = 8 xz + y = 1 x 2+ x = 3 ? x y5.下列⽅程组, ?x - y = 2 ; ?2xy = y + x ; ?2 y = 6 ; ?3 1 . 其中,⼆元⼆次⽅程组的个数是 ? ? ? ? x - y = 5()(A ) 1;(B ) 2;(C ) 3;(D ) 4.x 2 - 2xy - 3y 2= 06.⽅程组??x 2+ 6 y = -2 的解的个数是 ()(A ) 1 ;(B ) 2 ;(C ) 3 ;(D ) 4.⼆、填空(每空 2 分,共 24 分)7.⽅程 x 3 -1 = 0 的根是.8.⽅程2x 4 - 7x 2 - 4 = 0 的根是.9. = 3 的解是.10. 把⼆次⽅程9x 2 - 6xy + y 2 = 4 化成两个⼀次⽅程,这两个⼀次⽅程是.11. 已知关于 x 的⽅程2x 2 + mx + 3 = 0 是⼆项⽅程,那么 m =12. 当 m时,关于 x 的⽅程(m + 2)x = m 2 - 4 的根是 x = m - 2 .13.⽅程( x)2 + 6 = 5(x) 的整数解是.x -1x + y = 4 14. ⽅程组?xy = -5 x -1的解是.6 ?15. 若关于 x 的⽅程ax + 3 + 3= 2 有增根 x = -1 ,则 a 的值是 .x +1 x16. 已知⼀个直⾓三⾓形的周长为2 +,斜边上的中线长为 1,那么这个直⾓三⾓形的⾯积是.17. 如果某⼯⼚三⽉份⽣产总值⽐⼀⽉份增加44 0 0 ,那么⼆、三⽉份平均每⽉⽣产总值的增长率是.18. 如果⽅程= k +1 有实数解,那么k 的取值范围是 .三、解答题:(19、20、21、24、25 每题 5 分,22 题 10 分,23 题 10 分, 266 分,27 每题 7 分)19.解⽅程:x 2 - 3x x 2 -1 + 2x -1 = 0 .20.解⽅程:1 +x -1= 2x .x - y = m21.当 m 取什么值时,⽅程组?x 2 - 2 y = -4 有两个相同的实数解?并求出此时⽅程组的解.22. 解关于 x 或 y 的⽅程:(1) ax = 3(3 - x )(2) by 2 + 2 y 2 -1 = 0 ( b ≠ -2 )23. 解⽅程组:x 4x + 110 + 3 = -5 x 2 - 5xy + 6 y 2= 0 ? x + y x - y (1) ?x + y = 8 ;(2) ? 15 2 ?- = -1 x + y x - y24. A 做 90 个零件所需要的时间和 B 做 120 个零件所⽤的时间相同,⼜知每⼩时 A 、B 两⼈共做 35 个机器零件。
八年级数学代数方程练习题及答案2023
八年级数学代数方程练习题及答案2023 1. 代数方程练习题:1) 解方程:2x + 3 = 112) 解方程:5x - 7 = 133) 解方程:3(x + 2) = 214) 解方程:4(2x - 3) = 245) 解方程:2(3x + 4) - 5(2x - 3) = 12. 解答:1) 解方程:2x + 3 = 11首先将方程中的常数项移动至右侧,得到2x = 11 - 3化简得2x = 8再将x的系数2约去,得到x = 4因此方程的解为x = 42) 解方程:5x - 7 = 13将方程中的常数项移动至右侧,得到5x = 13 + 7化简得5x = 20再将x的系数5约去,得到x = 4因此方程的解为x = 43) 解方程:3(x + 2) = 21首先化简方程,得到3x + 6 = 21然后将方程中的常数项移动至右侧,得到3x = 21 - 6化简得3x = 15再将x的系数3约去,得到x = 5因此方程的解为x = 54) 解方程:4(2x - 3) = 24首先化简方程,得到8x - 12 = 24然后将方程中的常数项移动至右侧,得到8x = 24 + 12化简得8x = 36再将x的系数8约去,得到x = 4.5因此方程的解为x = 4.55) 解方程:2(3x + 4) - 5(2x - 3) = 1首先按照运算法则化简方程,得到6x + 8 - 10x + 15 = 1然后合并同类项,得到-4x + 23 = 1再将方程中的常数项移动至右侧,得到-4x = 1 - 23化简得-4x = -22最后将x的系数-4约去,得到x = 5.5因此方程的解为x = 5.53. 练习题答案:1) 方程的解为x = 42) 方程的解为x = 43) 方程的解为x = 54) 方程的解为x = 4.55) 方程的解为x = 5.5总结:本篇文章提供了八年级数学代数方程的练习题及答案。
通过解题过程,我们运用了移项、化简和合并同类项等方法,逐步解得方程的未知数x的解。
2021-2022学年度沪教版(上海)八年级数学第二学期第二十一章代数方程专项练习试卷(精选)
八年级数学第二学期第二十一章代数方程专项练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、关于x 的方程312a x x -=-的解为整数.且关于x 的不等式组312(2)413x x x a +≤-⎧⎪-⎨≤⎪⎩的解集为5x ≤-.则满足条件的所有整数a 值之和为( )A .5B .3C .4D .02、甲、乙两人骑自行车从相距60千米的A 、B 两地同时出发,相向而行,甲从A 地出发至2千米时,想起有东西忘在A 地,即返回去取,又立即从A 地向B 地行进,甲、乙两人恰好在AB 中点相遇,已知甲的速度比乙的速度每小时快2.5千米,求甲、乙两人的速度,设乙的速度是x 千米/小时,所列方程正确的是( )A .32302.5x x =+B .32302.5x x =-C .34302.5x x =-D .34302.5x x=+ 3、熊猫绿道,起于我市环山路玉堂街道,止于青城山镇,总长10千米.甲、乙两人从绿道起点出发,沿着绿道徒步.已知甲每小时徒步a 千米,乙每小时徒步b 千米()a b >,他们各自走完绿道所用的时间,乙比甲多半小时.则符合题意的方程是( )A .101030b a -=B .101030a b-= C .101012b a -= D .101012a b -=4、某工地调来144人参加挖土和运土,已知3人挖出的土1人恰好能全部运走,怎样调配劳动力才使挖出来的土能及时运走且不窝工(停工等待)?为解决此问题,可设派x 人挖土,其他人运土,下列所列方程:①14413x x -=;②1443x x -=;③3144x x +=;④3144x x =-.正确的个数有( ) A .1个 B .2个 C .3个 D .4个5、某校八年级一班计划安排一次以“迎冬奥”为主题的知识竞赛,班主任王老师打算到某文具店购买一些笔记本作为竞赛用的奖品.目前该文具店正在搞优惠酬宾活动:购买同样的笔记本,当花费超过20元时,每本便宜1元.已知王老师花费24元比花费20元多买了2本笔记本,求他花费24元买了多少本笔记本,设他花费24元买了x 本笔记本,根据题意可列方程( )A .242012x x -=- B .242012x x -=- C .202412x x -=- D .202412x x -=+ 6、在设计人体雕像时,使雕像的上部(腰以上)与下部(腰以下)的高度比,等于下部与全部(全身)的高度比,可以增加视觉美感.按此比例,如果雕像的高为3m ,那么它的下部应设计为多高?设它的下部设计高度为x m ,根据题意,列方程正确的是( )A .()233x x =-B .()233x x =-C .23x =D .23x x =-7、若关于x 的一元一次不等式组2(3)4152x x x a+-<+⎧⎨-≤⎩的解集为1x <-,且关于y 的分式方程1144y a y y++=--的解是正整数,则所有满足条件的整数a 的值之和是( ) A .-15 B .-10 C .-7 D .-48、设直线y =kx +6与y =(k +1)x +6(k 是正整数)及x 轴围成的三角形面积为S k (k =1,2,3,…),则S 5的值等于( )A .35B .910C .1D .39、已知关于x 的分式方程3x m x +-﹣1=1x 无解,则m 的值是( ) A .﹣2 B .﹣3 C .﹣2或﹣3 D .0或310、直线1l :1y x =+与直线2l :y mx n =+的交点P 的横坐标为1,则下列说法错误的是( )A .点P 的坐标为(1,2)B .关于x 、y 的方程组1y x y mx n =+⎧⎨=+⎩的解为12x y =⎧⎨=⎩ C .直线1l 中,y 随x 的增大而减小D .直线y nx m =+也经过点P第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知直线y =x +b 和y =ax +2交于点P (3,-1),则关于x 的方程(a -1)x =b -2的解为_______.2、几名同学准备参加“大美青海”旅游活动,包租一辆面包车从西宁前往青海湖.面包车的租价为240元,出发时又增加了4名同学比原来少分担了10元车费.设原有人数为x 人,则可列方程___.3、关于x 的方程211x a x +=-的解是正数,则实数a 的取值范围是________. 4、数形结合是解决数学问题常用的思想方法之一.如图,直线y =2x 和直线y =ax +b 相交于点A ,则方程组200x y ax b y -=⎧⎨+-=⎩的解为______.5、甲、乙两组学生去距学校4.5千米的敬老院打扫卫生,甲组学生步行出发半小时后,乙组学生骑自行车开始出发,两组学生同时到达敬老院,如果步行速度是骑自行车速度的13,求步行与骑自行车的速度各是________.三、解答题(5小题,每小题10分,共计50分)1、小明在解分式方程13233x x x --=--时,过程如下: 第一步:方程整理13233x x x -=-- 第二步:去分母……(1)请你说明第一步和第二步变化过程的依据分别是 、 .(2)请把以上解分式方程的过程补充完整.2、解方程:2111x x x -=-+ 3、八年级某班学生去距学校10km 的博物馆参观,一部分学生骑车先走,过了20min 后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍.(1)求骑车学生的速度;(2)如果要求骑车学生提前10min 赶到现场为参观活动做准备,他们出发的时间和汽车速度保持不变,骑车学生的速度需要提高多少?4、新型冠状病毒肺炎疫情发生后,全社会积极参与疫情防控.某呼吸机厂接到生产600台呼吸机的任务,以每天比原来多生产50台呼吸机的速度进行生产,结果所用时间与原来生产450台呼吸机所用时间相同.(1)求该厂现在每天生产多少台呼吸机?(2)完成这批任务后,该厂又接到在10天内至少生产2400台呼吸机的任务,问该厂每天还应该至少比现在多生产多少台呼吸机才能完成任务?5、解方程:212111x x x --=+-.-参考答案-一、单选题1、B【分析】(1)先解分式方程得62x a =+,由于解是整数,故可推出a 的值,解不等式,由于解集为5x ≤-,即可确定a 的可能值,相加即可得出答案.【详解】 解分式方程得:62x a =+, ∵x 为整数,2x ≠且0x ≠,∴a 可为8-,5-,4-,-3,1-,0,4,312(2)413x x x a +≤-⎧⎪⎨-≤⎪⎩①②, 由①得:5x ≤-,由②得:43x a ≤+,∵解集为5x ≤-,∴435a +≥-,解得:2a ≥-,∴整数a 可为1-,0,4,∴1043-++=.故选:B .【点睛】本题考查解分式方程和一元一次不等式组,掌握求解的步骤是解题的关键.2、D乙的速度是x 千米/小时,则甲的速度为(x +2.5)千米/小时,中点相遇,乙走30千米,甲走34千米,利用时间相等列出方程即可.【详解】设乙的速度是x 千米/小时,则甲的速度为(x +2.5)千米/小时,中点相遇,乙走30千米,甲走34千米,根据时间相等,得34302.5x x=+, 故选D .【点睛】本题考查了分式方程的应用题,正确理解题意,根据相遇时间相等列出方程是解题的关键.3、C【分析】根据各自走完绿道所用的时间,乙比甲多半小时乙可列方程.【详解】解:甲每小时徒步a 千米,乙每小时徒步b 千米()a b >,由乙比甲多半小时. 得:101012b a -=. 故选:C .【点睛】此题主要考查了由实际问题抽象出分式方程,关键是理清甲乙两人各自走完绿道所用的时间,再根据时间差可得方程.解题时要注意单位统一.4、C关键描述语为:“3人挖出的土1人恰好能全部运走”;等量关系为:挖土的人的数量与运土人的数量之比=3:1,由此列式.【详解】解:x 人挖土,则(144﹣x )运土,3人挖出的土1人恰好能全部运走,那么使挖出来的土能及时运走且不窝工,说明挖土的人的数量与运土人的数量之比=3:1.①②④都是这个等量关系的变形正确. ③运土的人数应是3x ,方程应为x 3x +=144, 故选:C .【点睛】找到关键描述语,找到等量关系是解决问题的关键.本题需重点理解:3人挖出的土1人恰好能全部运走.5、C【分析】先求出花费20元买了(2)x -本笔记本,再根据“当花费超过20元时,每本便宜1元”建立方程即可得.【详解】解:由题意得:王老师花费20元买了(2)x -本笔记本, 则可列方程为202412x x -=-, 故选:C .【点睛】本题考查了列分式方程,正确找出等量关系是解题关键.6、B设它的下部设计高度为x m,则上部为3x-米,根据题意列方程化简即可.【详解】解:设它的下部设计高度为x m,则上部为3x-米,根据题意可得:33x xx-=,化简可得()233x x=-故选B【点睛】此题考查了分式方程的应用,解题的关键是理解题意,根据等量关系列出方程.7、B【分析】解出一元一次不等式组的解集,根据不等式组的解集为1x<-,在数轴上标出x的解集求出a的范围;根据分式方程分母不能为0的性质得出y-4≠0,再在分式方程两边同乘以y-4,解出分式方程的解,再根据a的范围求出y的取值范围,找出符合条件的y的正整数解,分别代入求出a的值,求和即可.【详解】解:2(3)4152x xx a+-<+⎧⎨-≤⎩ ① ②,解不等式①得:x<-1,解不等式②得:x≤25a+,∵不等式组的解集为1x<-,∴25a+≥-1,∴a≥-7;要想分式方程有意义,则y-4≠0,∴y≠4分式方程两边同乘以(y-4)得:y+y-4=-a-1,解得:y=32a-,∵a≥-7∴y=32a-≤5,∵方程的解是正整数且y≠4∴ y的正整数解有:1,2,3,5.把y=1,2,3,5分别代入32a-,可得整数a的值为1,-1,-3,-7.∴所有满足条件的整数a的值之和是:1+(-1)+(-3)+(-7)=-10故选:B.【点睛】解一元一次不等式组可通过数轴求解解集,注意不等式两边同乘以负号的时候不等号的方向一定要改变.解分式方程时,防止增根产生,要保证分母不为0.8、A【分析】利用一次函数图象上点的坐标特征,可分别求出直线y=5x+6、y=6x+6与两坐标轴的交点坐标,再利用三角形的面积公式即可求出结论.【详解】解:当x=0时,y=5×0+6=6,∴直线y=5x+6与y轴的交点A的坐标为(0,6);当y=0时,5x+6=0,解得:x=65 -,∴直线y=5x+6与x轴的交点B的坐标为(65-,0),当x=0时,y=6×0+6=6,∴直线y=6x+6与y轴的交点C的坐标为(0,6);当y=0时,6x+6=0,解得:x=-1,∴直线y=6x+6与x轴的交点D的坐标为(-1,0).∴S5=12BD•OA=12×|-1-(65-)|×6=35,故选:A.【点睛】本题考查了一次函数图象上点的坐标特征以及三角形的面积,牢记直线上任意一点的坐标都满足函数关系式y=kx+b是解题的关键.9、C【分析】分式方程去分母转化为整式方程,由分式方程无解确定出x的值,代入整式方程计算即可求出m的值.【详解】解:两边都乘以x(x﹣3),得:x(x+m)﹣x(x﹣3)=x﹣3,整理,得:(m +2)x =﹣3, 解得:32x m =-+, ①当m +2=0,即m =﹣2时整数方程无解,即分式方程无解,②∵关于x 的分式方程3x m x +-﹣1=1x 无解, ∴302m -=+或332m -=+, 即无解或3(m +2)=﹣3,解得m =﹣2或﹣3.∴m 的值是﹣2或﹣3.故选C .【点睛】本题考查了解分式方程,分式方程的解,解题的关键是熟练掌握解分式方程的方法,注意分母不等于0的条件.10、C【分析】A 、将1x =代入1y x =+中,得出y 的值,再判断即可;B 、两直线相交坐标是两对应方程组的解的x 、y 值;C 、根据一次函数k 的值判断增减性;D 、将P 点坐标(1,2)代入进行判断即可.【详解】解:A 、将1x =代入1y x =+中,解得将2y =,点P 的坐标为将(1,2),选项说法正确,不符合题意;B 、关于x 、y 的方程组1y x y mx n =+⎧⎨=+⎩的解为12x y =⎧⎨=⎩,选项说法正确,不符合题意; C 、直线1l 中,10k =>,所以y 随x 的增大而增大,选项说法错误,符合题意;D 、因为2l 经过点P ,将(1,2)P 代入y mx n =+,得2m n +=,将(1,2)P 代入直线y nx m =+中,得2m n +=,所以直线y nx m =+也经过点P ,选项说法正确,不符合题意;故选C .【总结】此题主要考查了两直线相交问题,解决本题的关键是求出直线经过的点的坐标.二、填空题1、x =3【分析】利用函数图象交点坐标为两函数解析式组成的方程组的解即可求解.【详解】解:解:∵直线y =x +b 和y =ax +2交于点P (3,-1),∴当x =3时,3+b =3a +2,上述等式移项得到:3a-3=b-2,整理得到:3(a -1)=b -2,2、240240104x x -=+ 【分析】设原有人数为x 人,根据增加之后的人数为(4)x +人,根据增加人数之后每个同学比原来少分担了10元车费,列方程240240104x x -=+. 【详解】解:设原有人数为x 人,根据则增加之后的人数为(4)x +人, 由题意得,240240104x x -=+.故答案为:240240104x x -=+. 【点睛】 本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程即可.3、1a <-且2a ≠-【分析】根据题意得:0x > 且10x -≠ ,然后解出方程,得到1x a =-- ,从而得到关于a 的不等式,解出即可.【详解】解:根据题意得:0x > 且10x -≠ ,211x a x +=-,解得:1x a =-- , ∴10a --> 且110a ---≠ ,解得:1a <- 且2a ≠- .故答案为:1a <-且2a ≠-【点睛】本题主要考查了分式方程的解,根据题意得到0x > 且10x -≠ 是解题的关键.4、323x y ⎧=⎪⎨⎪=⎩ 【分析】由直线y =2x 求得A 的坐标,两直线的交点坐标为两直线解析式所组成的方程组的解.【详解】解:∵直线y =2x 和直线y =ax +b 相交于点A ,A 的纵坐标为3,∴3=2x ,解得x =32, ∴A (32,3), ∴方程组200x y ax b y -=⎧⎨+-=⎩的解为323x y ⎧=⎪⎨⎪=⎩. 故答案为:323x y ⎧=⎪⎨⎪=⎩. 【点睛】本题考查一次函数与二元一次方程组之间的关系,理解两直线的交点坐标即为两直线解析式所组成的方程组的解是解题关键.5、6km/h,18km/h【分析】设步行速度为km/h x ,则骑自行车的速度为3km/h x ,根据“甲、乙两组学生去距学校4.5千米的敬老院打扫卫生,甲组学生步行出发半小时后,乙组学生骑自行车开始出发,两组学生同时到达敬老院,”可列出方程,解出即可.【详解】解:设步行速度为km/h x ,则骑自行车的速度为3km/h x ,根据题意得:4.5 4.5132xx -= , 解得:6x = ,经检验,6x =是原方程的解且符合题意,则33618x =⨯= ,答:步行与骑自行车的速度各是6km/h,18km/h .故答案为:6km/h,18km/h .【点睛】本题主要考查了分式方程的应用,明确题意,准确得到等量关系是解题的关键.三、解答题1、(1)分式的基本性质,等式的性质;(2)75x =. 【分析】(1)根据分式的基本性质是分式的分子与分母都乘以或除以同一个不为0的数或整式,分式的值不变,将异分母方程化为同分母的分式方程,根据等式的性质,方程两边都乘或乘以同一个不为0的数或整式,两边都乘以(x -3),可去分母把分式方程化为整式方程;(2)将方程整理,去分母,去括号,移项合并,系数化1,验根即可.(1)第一步:根据分式的基本性质将等式右边分子分母都乘以-1方程整理13233x x x -=--, 第二步:去分母根据等式的性质,等式两边都乘以(x -3),故答案为:分式的基本性质,等式的性质;(2) 解:13233x x x--=--, 第一步:方程整理13233x x x -=--, 第二步:去分母得:()1233x x --=,去括号得1263x x -+=,移项合并得57x =,系数化1得75x =. 检验:当75x =时,7833055x -=-=-≠, ∴75x =是分式方程的根. 【点睛】本题考查分式的基本性质和等式性质,解分式方程,掌握解分式方程的方法与步骤,注意转化思想的利用是解题关键.2、3x =【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】解:两边同时乘以()()+11x x -得:()()()()11121x x x x x +-+-=-22122x x x x +-+=-122x x +=-212x x -=+解得:3x =经检验,3x =是原方程的解∴原方程的解为3x =,【点睛】本题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.3、(1)骑车学生的速度为0.25km/min ;(2)骑车学生的速度提高1km /min 12. 【分析】(1)设骑车学生的速度为x km/min ,然后根据题意易得1010202x x=+,进而求解即可; (2)设骑车学生的速度提高y km/min ,由(1)及题意可知1010100.250.5y =++,然后求解即可. 【详解】解:(1)设骑车学生的速度为x km/min ,由题意得:1010202x x=+, 解得:0.25x =,经检验:0.25x =是原方程的解,答:骑车学生的速度为0.25km/min ;(2)设骑车学生的速度提高y km/min ,由(1)及题意可得:1010100.250.5y =++, 解得:112y =; 经检验:112y =是原方程的解, 答:骑车学生的速度提高1km /min 12. 【点睛】 本题主要考查分式方程的应用,熟练掌握分式方程的应用是解题的关键.4、(1)该厂现在每天生产200台呼吸机;(2)该厂每天还应该至少比现在多生产40台呼吸机才能完成任务.【分析】(1)设原计划平均每天生产x 台呼吸机,则实际平均每天生产(50)x +台呼吸机,根据题意可得,现在生产600台所需时间与原计划生产450台呼吸机所需时间相同,据此列方程即可;(2)设该厂每天还应该比现在多生产y 台呼吸机,列出10(200)2400y +≥,求解即可.【详解】解:(1)设该厂现在每天生产x 台呼吸机. 根据题意,得:60045050x x =-. 解得,200x =.经检验:200x =是分式方程的解.答:该厂现在每天生产200台呼吸机.(2)设该厂每天还应该比现在多生产y 台呼吸机.根据题意,得:10(200)2400y +≥.解得,40y ≥.答:该厂每天还应该至少比现在多生产40台呼吸机才能完成任务.【点睛】本题考查了由实际问题抽象出分式方程,一元一次不等式,解题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.5、0x =【分析】先给方程两边乘以(x +1)(x -1),将分式方程化为整式方程,然后解方程即可解答.【详解】解:给方程两边乘以(x +1)(x -1),得:22(1)21x x --=-,22-+-=-,x x x2121x-=,20x=,解得:0x=是原方程的解.经检验,0【点睛】本题考查解分式方程,熟练掌握解分式方程的解法步骤是解答的关键,注意结果要检验.。
2022年沪教版(上海)八年级数学第二学期第二十一章代数方程专题练习试题(含答案解析)
八年级数学第二学期第二十一章代数方程专题练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、设直线y =kx +6与y =(k +1)x +6(k 是正整数)及x 轴围成的三角形面积为S k (k =1,2,3,…),则S 5的值等于( )A .35B .910C .1D .32、甲、乙两人骑自行车从相距60千米的A 、B 两地同时出发,相向而行,甲从A 地出发至2千米时,想起有东西忘在A 地,即返回去取,又立即从A 地向B 地行进,甲、乙两人恰好在AB 中点相遇,已知甲的速度比乙的速度每小时快2.5千米,求甲、乙两人的速度,设乙的速度是x 千米/小时,所列方程正确的是( )A .32302.5x x =+B .32302.5x x =-C .34302.5x x =-D .34302.5x x=+ 3、函数y ax b =+与函数y cx d =+的图象是两条直线,只有一个交点,则二元一次方程组y ax b y cx d=+⎧⎨=+⎩有( )解.A .0个B .1个C .2个D .3个4、如图,已知函数y ax b =+和y kx =的图象交于点P ,则根据图象可得,关于x 、y 的二元一次方程组y ax b y kx =+⎧⎨=⎩的解是( ).A .31x y =⎧⎨=-⎩B .31x y =-⎧⎨=-⎩C .31x y =-⎧⎨=⎩D .31x y =⎧⎨=⎩5、已知关于x 的分式方程10327333x k x x --=---的解满足2<x <5,则k 的取值范围是( ) A .﹣7<k <14B .﹣7<k <14且k ≠0C .﹣14<k <7且k ≠0D .﹣14<k <7 6、胜利乡决定对一段长7000米的公路进行修建改造.根据需要,该工程在实际施工时增加施工人员,每天修建的公路比原计划增加了40%,结果提前5天完成任务,设原计划每天修建x 米,那么下面所列方程中正确的是( )A .700070005(140%)x x+=+ B .700070005(140%)x x =-- C .700070005(140%)x x -=+ D .700070005(140%)x x =+- 7、已知关于x 的分式方程3x m x +-﹣1=1x 无解,则m 的值是( ) A .﹣2 B .﹣3 C .﹣2或﹣3 D .0或38、关于x 的不等式组2124()3(2)x x a x a x ->-⎧⎨+≥+⎩至少有2个整数解,且关于y 的分式方程22242a a y y y +-+=--的解为非负整数,则符合条件的所有整数a 的和为( )A .34B .24C .18D .149、如图,直线l 1:y =x ﹣4与直线l 2:y =﹣43x +3相交于点(3,﹣1),则方程组2223944x y y x ⎧-=⎪⎪⎨⎪+=⎪⎩的解是( )A .31x y =⎧⎨=-⎩B .13x y =-⎧⎨=⎩C .13x y =-⎧⎨=-⎩D .31x y =⎧⎨=⎩10、若关于x 的方程2222x m x x ++=--有增根,则m 的取值是( ) A .0 B .2 C .-2 D .1第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、某校去年租借了三架无人机A ,B ,C 用于体育节航拍,无人机A ,B ,C 飞行平均速度之比为1:8:3,飞行时间之比为2:1:2.今年继续租借,但根据航拍需求,对三架无人机飞行平均速度和时间均作了调整.无人机B 的平均速度比去年低了14,无人机C 的平均速度为去年的43.A ,C 两架无人机的飞行总路程增加,而无人机B 飞行总路程减少.无人机C 增加的路程是无人机A 增加路程的2倍,且占今年三架无人机总路程的20%.无人机A 增加的路程与无人机B 减少的路程之比为7:15,则今年无人机B 与无人机C 的飞行时间之比为________.2、已知关于x 的方程211x k x x -=--的解为正数,则k 的取值范围为_______. 3、如图,已知函数y ax b =+和y kx =的图象交于点A ,则根据图象可得,二元一次方程组y ax b y kx=+⎧⎨=⎩的解是_______.4、某车间有A,B,C型的生产线共12条,A,B,C型生产线每条生产线每小时的产量分别为4m,2m,m件,m为正整数.该车间准备增加3种类型的生产线共7条,其中B型生产线增加1条.受到限电限产的影响,每条生产线(包括之前的和新增的生产线)每小时的产量将减少4件,统计发现,增加生产线后,该车间每小时的总产量恰比增加生产线前减少10件,且A型生产线每小时的产量与三种类型生产线每小时的总产量之比为30:67.请问增加生产线后,该车间所有生产线每小时的总产量为______件.5、代数式22231x xx---的值等于0,则x=________.三、解答题(5小题,每小题10分,共计50分)1、城市因文明而美丽,市民因礼仪而优雅.在长沙市创建全国文明典范城市的过程中,太阳山社区为了巩固垃圾分类的成果,营造干净整洁的生活氛围,创建和谐文明的社区环境、准备购买A、B两种分类垃圾桶,通过市场调研得知:A种垃圾桶每组的单价比B种垃圾桶每组的单价少150元,且用18000元购买A种垃圾桶的组数是用13500元购买B种垃圾桶的组数的2倍.(1)求A、B两种垃圾桶每组的单价分别是多少元;(2)该社区计划用不超过8000元的资金购买A、B两种垃圾桶共20组,则最多可以购买B种垃圾桶多少组?2、列方程解应用题:2021年9月23日,我国迎来第四个中国农民丰收节.在庆祝活动中记者了解到:某种粮大户2020年所种粮食总产量约150吨.在强农惠农富农政策的支持下,2021年该农户种粮积极性不断提高,他不仅扩大耕地面积,而且亩产量也大幅提高,因此取得大丰收.已知他2021年比2020年增加20亩耕地,亩产量是2020年的1.2倍,总产量约216吨,那么2020年该农户所种粮食的亩产量约为多少吨?3、八年级某班学生去距学校10km的博物馆参观,一部分学生骑车先走,过了20min后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍.(1)求骑车学生的速度;(2)如果要求骑车学生提前10min赶到现场为参观活动做准备,他们出发的时间和汽车速度保持不变,骑车学生的速度需要提高多少?4、受新冠肺炎疫情持续影响,医用防护服和防护面罩的需求大大增加,为保障一线医护人员的健康安全,重庆一医疗器械有限公司组织甲、乙两个生产组进行防护服生产.甲生产组工人的人数比乙生产组工人人数多10人,由于乙生产组采用的新生产技术,所以乙生产组每天人均生产的防护服套数是甲生产组每天人均生产的防护服套数的43倍.甲生产组每天可生产防护服2160套,乙生产组每天可生产防护服1920套.(1)求甲、乙两个生产组各有工人多少名?(2)随着天气转凉,疫情有所反弹,医用防护服的需求量急增,该公司紧急组织甲、乙两个生产组加班生产一批防护服,并且在每个生产组都加派了生产工人.甲生产组的总人数比原来增加了13,每天人均生产的防护服套数比原来增加了5%2a;乙生产组的总人数比原来增加了5%a,每天人均生产的防护服套数比原来增加了24套,现在两个生产组每天共生产防护服7200套.求a的值.5、2020年7月24号,四川省人民政府正式批复成立南充临江新区,新区某绿化工程由甲、乙两个工程队共同参加.已知甲,乙工程队在单独完成面积为600m2绿化时,乙队比甲队多用3天,且甲队每天完成绿化的面积是乙队每天完成面积的2倍.(1)求甲,乙两队每天各完成的绿化面积;(2)因工程进度要求在30天内完成7200m2绿化,甲、乙两个工程队至少有多少天必须共同参加施工?-参考答案-一、单选题1、A【分析】利用一次函数图象上点的坐标特征,可分别求出直线y=5x+6、y=6x+6与两坐标轴的交点坐标,再利用三角形的面积公式即可求出结论.【详解】解:当x=0时,y=5×0+6=6,∴直线y=5x+6与y轴的交点A的坐标为(0,6);当y=0时,5x+6=0,解得:x=65 -,∴直线y=5x+6与x轴的交点B的坐标为(65-,0),当x=0时,y=6×0+6=6,∴直线y=6x+6与y轴的交点C的坐标为(0,6);当y=0时,6x+6=0,解得:x=-1,∴直线y=6x+6与x轴的交点D的坐标为(-1,0).∴S5=12BD•OA=12×|-1-(65-)|×6=35,故选:A.【点睛】本题考查了一次函数图象上点的坐标特征以及三角形的面积,牢记直线上任意一点的坐标都满足函数关系式y=kx+b是解题的关键.2、D【分析】乙的速度是x千米/小时,则甲的速度为(x+2.5)千米/小时,中点相遇,乙走30千米,甲走34千米,利用时间相等列出方程即可.【详解】设乙的速度是x 千米/小时,则甲的速度为(x +2.5)千米/小时,中点相遇,乙走30千米,甲走34千米,根据时间相等,得34302.5x x=+, 故选D .【点睛】本题考查了分式方程的应用题,正确理解题意,根据相遇时间相等列出方程是解题的关键.3、B【分析】函数所表示的直线的交点即为函数所组成的方程组的解,方程组有几个解就是要看有几个交点.【详解】函数y ax b =+与函数y cx d =+的图象是两条直线,只有一个交点,则二元一次方程组y ax b y cx d =+⎧⎨=+⎩有唯一解.故选B【点睛】本题考查了一次函数与二元一次方程组,理解直线的交点即方程组的解是解题的关键.4、C【分析】由图可知:两个一次函数的交点坐标为(3,1)-;那么交点坐标同时满足两个函数的解析式,而所求的方程组正好是由两个函数的解析式所构成,因此两函数的交点坐标即为方程组的解.【详解】解:根据函数图可知,函数y ax b =+和y kx =的图象交于点P 的坐标是(3,1)-,故y ax b y kx =+⎧⎨=⎩的解是31x y =-⎧⎨=⎩, 故选:C .【点睛】本题考查了一次函数与二元一次方程组,方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数解析式,因此方程组的解就是两个相应的一次函数图象的交点坐标.5、C【分析】先解分式方程,然后根据分式方程的解满足2<x <5和分式有意义的条件进行求解即可.【详解】 解:∵10327333x k x x --=---, ∴()1032733x k x -=-++-, ∴217k x -=, ∵分式方程10327333x k x x --=---的解满足2<x <5, ∴212572137k k -⎧<<⎪⎪⎨-⎪≠⎪⎩, 解得147k -<<且0k ≠,故选C .【点睛】本题主要考查了解一元一次不等式组,解分式方程,分式方程的解,解题的关键在于能够熟练掌握相关知识进行求解.6、C【分析】设原计划每天修建x米,求出现在每天修健x(1+40%)米,先求出原来修建需要天数7000x,提高效率后需要天数为7000(140%)x+,两者作差等于提前的天数,列方程即可.【详解】解:设原计划每天修建x米,每天修健的公路比原计划增加了40%所以现在每天修健x(1+40%)米,根据题意得:700070005(140%)x x-=+,即:700070005(140%)x x-=+.故选C.【点睛】本题考查工程问题分式应用题,掌握列分式方程解工程问题的方法与步骤,抓住原计划天数-实际天数=5是解题关关键.7、C【分析】分式方程去分母转化为整式方程,由分式方程无解确定出x的值,代入整式方程计算即可求出m的值.【详解】解:两边都乘以x(x﹣3),得:x(x+m)﹣x(x﹣3)=x﹣3,整理,得:(m+2)x=﹣3,解得:32x m =-+, ①当m +2=0,即m =﹣2时整数方程无解,即分式方程无解,②∵关于x 的分式方程3x m x +-﹣1=1x 无解, ∴302m -=+或332m -=+, 即无解或3(m +2)=﹣3,解得m =﹣2或﹣3.∴m 的值是﹣2或﹣3.故选C .【点睛】本题考查了解分式方程,分式方程的解,解题的关键是熟练掌握解分式方程的方法,注意分母不等于0的条件.8、C【分析】求出不等式组的解集,确定a 的取值范围,由分式方程的解得出不等式,求出a 的取值范围,确定a 的整数值求和即可.【详解】解不等式组2124()3(2)x x a x a x ->-⎧⎨+≥+⎩得:12x a x >⎧⎪⎨≤⎪⎩, ∴12a x <≤, ∵不等式组至少有2个整数解,∴符合条件的整数至少是2和3,∴32a ≤ ∴6a ≤ 分式方程22242a a y y y +-+=--去分母得:22()2(24)a a y y +--=-, ∴1(10)2y a =-,∵分式方程的解为非负整数, ∴1(10)02y a =-≥且为整数,1(10)22y a =-≠,解得:10,6a a ≤≠,a 是偶数综上所述610a <≤,a 是偶数∵a 为整数,∴a 的值为8,10∴8+10=18,故选:C .【点睛】本题考查了不等式组的取值范围,分式方程的解,分式方程的增根容易忽略,仔细求解,考虑周全是解决本题的关键.9、A【分析】关于x 、y 的二元体次方程组2223944x y y x ⎧-=⎪⎪⎨⎪+=⎪⎩的解即为直线1:4l y x =-与直线24:33l y x =-+相交于点(3,﹣1)的坐标.【详解】解:因为直线1:4l y x =-与直线24:33l y x =-+相交于点(3,﹣1),则方程组2223944x y y x ⎧-=⎪⎪⎨⎪+=⎪⎩的解是31x y =⎧⎨=-⎩, 故选A..【点睛】本题考查了一次函数与二元一次方程组的关系的理解和运算,主要考查学生的观察图形的能力和理解能力.10、A【分析】方程两边都乘以最简公分母(x -2),把分式方程化为整式方程,再根据分式方程的增根就是使最简公分母等于0的未知数的值求出x 的值,然后代入进行计算即可求出m 的值.【详解】方程两边都乘以(x -2)得:-2+x +m =2(x -2),∵分式方程有增根,∴x -2=0,解得x =2,∴-2+2+m =2×(2-2),解得m =0.故答案为:A .【点睛】此题考查分式方程的增根,掌握运算法则是解题关键.二、填空题1、17:57【分析】设去年无人机A,B,C飞行平均速度之比为x,8x,3x,飞行时间之比为2t,t,2t,表示出去年无人机A,B,C飞行的路程分别为2xt,8xt,6xt,设今年无人机A增加路程为m,无人机B减少路程为n,则无人机C增加路程为2m,进而用代数式表示有关的路程和时间,表示出今年无人机B与无人机C的飞行时间,即可求出无人机B与无人机C的飞行时间之比.【详解】解:∵去年无人机A,B,C飞行平均速度之比为1:8:3,飞行时间之比为2:1:2,∴设去年无人机A,B,C飞行平均速度之比为x,8x,3x,飞行时间之比为2t,t,2t,∴去年无人机A,B,C飞行的路程分别为2xt,8xt,6xt,∵今年无人机B的平均速度比去年低了14,无人机C的平均速度为去年的43∴今年无人机B的平均速度为:(1﹣14)×8x=6x,无人机C的平均速度为:43×3x=4x,设今年无人机A增加路程为m,无人机B减少路程为n,则无人机C增加路程为2m,∴今年无人机A、B、C飞行的路程分别为2xt+m,8xt﹣n,6xt+2m,∴今年无人机A、B、C飞行的时间分别为2xt mx+,86xt nx-,62342xt m xt mx x++=,∵无人机C增加的路程占今年三架无人机总路程的20%,∴2m=20%(2xt+m+8xt﹣n+6xt+2m),整理得:16xt﹣7m﹣n=0①,∵无人机A增加的路程与无人机B减少的路程之比为7:15,∴m:n=7:15,∴m=715n②,把②代入①得:16xt ﹣7×715n ﹣n =0, ∴xt =415n , ∴今年无人机B 与无人机C 的飞行时间之比为:84881761534793579+321515xt n n n xt n x xt m xt m n n x -⨯--===++⨯⨯, 故答案为:17:57.【点睛】本题考查了分式方程的应用,利用比例设未知数是解决本题的关键.2、2k <且1k ≠【分析】先求出分式方程的解,再根据解为正数,确定解的取值范围,解不等式,即可得到结论.【详解】解:去分母得,2(1)x x k --=,解得:2x k =-,∵分式方程的解为正数,且1x ≠,∴20k ->且21k -≠,解得,2k <且1k ≠故答案为:2k <且1k ≠.【点睛】本题考查解分式方程、分式方程的解、解一元一次不等式,解分式方程是解答的关键,注意不能产生增根,所以要使x ≠1.3、23x y =⎧⎨=⎩ 【分析】根据两个一次函数图象的交点坐标满足由两个一次函数解析式所组成的方程组求解.【详解】解:由图像可知二元一次方程组y ax b y kx =+⎧⎨=⎩的解是23x y =⎧⎨=⎩, 故答案为:23x y =⎧⎨=⎩【点睛】本题考查了一次函数与二元一次方程(组):两个一次函数图象的交点坐标满足由两个一次函数解析式所组成的方程组.4、134【分析】设增加生产线前A 、B 、C 型生产线各有x 、y 、z 条,增加生产线后A 型增加a 条,则C 型增加(7-1-a )条,由题意得:()()()()()()42441246410mx my mz x a m y m z a m ++=+-++-++--+,从而可以求出6638m a =+,由m 是正整数,06a ≤≤且a 是整数,可求出1a =,6m =,再由A 型生产线每小时的产量与三种类型生产线每小时的总产量之比为30:67可得()()()()()()()()146430146412647116467x x y z +⨯-=+⨯-++⨯-++---可以求出4544940y z -=,由z 是非负整数,则45449y -一定能被40整除,即45449y -的个位数字一定是0,即49y 的个位数字一定是4,即可求出6y =,4z =,2x =,由此即可得到答案.【详解】解:设增加生产线前A 、B 、C 型生产线各有x 、y 、z 条,增加生产线后A 型增加a 条,则C 型增加(7-1-a )条,由题意得:()()()()()()42441246410mx my mz x a m y m z a m ++=+-++-++--+,x +y +z =12, ∴424444224464244mx my mz mx am x a my m y mz m am z a ++=+--++--++---+,整理得:38660am m +-=, ∴6638m a =+, ∵m 是正整数,∴3866a +=或3833a +=或3822a +=或3811a +=或382a +=或381a +=,又∵06a ≤≤且a 是整数,∴只有3811a +=符合题意,即1a =,∴6m =,∵A 型生产线每小时的产量与三种类型生产线每小时的总产量之比为30:67∴()()()()()()()()146430146412647116467x x y z +⨯-=+⨯-++⨯-++---, ∴1340134060060024024060300x x y z +=+++++,∴7420246x y z +=+,∴()741220246z y y z --+=+,∴9087474246y z y z --=+,∴4940454y z +=, ∴4544940y z -=, ∵z 是非负整数,∴45449y -一定能被40整除,∴45449y -的个位数字一定是0,即49y 的个位数字一定是4,又∵y 是非负整数,∴6y =,∴4z =,∴2x =,经检验当6y =,4z =,2x =时,原分式方程分母不为0,∴该车间所有生产线每小时的总产量为()()()2021861245134+++++=,故答案为:134.【点睛】本题主要考查了二元一次方程和分式方程,解题的关键在于能够理解题意列出方程求解. 5、3【分析】根据题意建立分式方程,求解并检验即可.【详解】 解:由题意,222301x x x --=-, 左右同乘21x -,得:2230x x --=,()()310x x -+=,解得:3x =或1x =-,检验:当3x =时,210x -≠;当1x =-时,210x -=,则舍去;故答案为:3.【点睛】本题考查可化为一元二次方程的分式方程,理解题意,准确建立分式方程求解并检验是解题关键.三、解答题1、(1)A 、B 两种垃圾桶每组的单价分别是300元,450元;(2)最多可以购买B 种垃圾桶13组【分析】(1)设A 种垃圾桶每组的单价是x 元,则B 种垃圾桶每组的单价是()150x + 元,然后根据用18000元购买A 种垃圾桶的组数是用13500元购买B 种垃圾桶的组数的2倍,列出方程求解即可;(2)设购买B 种垃圾桶y 组,则购买A 种垃圾桶()20y -组,然后根据计划用不超过8000元的资金购买A 、B 两种垃圾桶共20组,列出不等式求解即可.(1)解:设A 种垃圾桶每组的单价是x 元,则B 种垃圾桶每组的单价是()150x + 元, 由题意得:18000135002150x x =⋅+, 解得300x =,经检验,300x =是原方程的解,∴150450x +=,∴A 、B 两种垃圾桶每组的单价分别是300元,450元;答:A 、B 两种垃圾桶每组的单价分别是300元,450元;(2)解:设购买B 种垃圾桶y 组,则购买A 种垃圾桶()20y -组,由题意得:()300204508000y y -+≤,∴60003004508000y y -+≤,∴1502000y ≤, ∴1133y ≤, ∵y 是整数,∴y 的最大值为13,∴最多可以购买B 种垃圾桶13组,答:最多可以购买B 种垃圾桶13组.【点睛】本题主要考查了分式方程和一元一次不等式的应用,解题的关键在于能够准确理解题意,列出方程和不等式求解.2、约为1.5吨【分析】设2020年所种粮食的亩产量约为x 吨,则2021年所种粮食的亩产量约为1.2x 吨,根据“2021年比2020年增加20亩耕地”列出方程即可.【详解】解:设2020年所种粮食的亩产量约为x 吨,则2021年所种粮食的亩产量约为1.2x 吨 由题意,得15021620 1.2x x+=.解得 1.5x =. 经检验, 1.5x =是原分式方程的解,且符合实际.答:2020年该农户所种粮食的亩产量约为1.5吨.【点睛】本题考查分式方程的应用,解答本题的关键是明确题意,列出相应的分式方程,注意分式方程要检验.3、(1)骑车学生的速度为0.25km/min ;(2)骑车学生的速度提高1km /min 12. 【分析】(1)设骑车学生的速度为x km/min ,然后根据题意易得1010202x x=+,进而求解即可; (2)设骑车学生的速度提高y km/min ,由(1)及题意可知1010100.250.5y =++,然后求解即可. 【详解】解:(1)设骑车学生的速度为x km/min ,由题意得:1010202x x =+,解得:0.25x =,经检验:0.25x =是原方程的解,答:骑车学生的速度为0.25km/min ;(2)设骑车学生的速度提高y km/min ,由(1)及题意可得:1010100.250.5y =++, 解得:112y =; 经检验:112y =是原方程的解, 答:骑车学生的速度提高1km /min 12.【点睛】本题主要考查分式方程的应用,熟练掌握分式方程的应用是解题的关键.4、(1)甲生产组有工人30名,乙生产组有工人20名(2)10【分析】(1)设甲生产组有工人x 名,则乙生产组有工人()10x -名,根据“乙生产组每天人均生产的防护服套数是甲生产组每天人均生产的防护服套数的43倍”列出分式方程,即可求解; (2)结合(1)的结果得到甲、乙生产组原每天人均生产套数,根据题意得到甲、乙生产组紧急组织后的总人数和每天人均生产套数,再根据“两个生产组每天共生产防护服7200套”列出方程,即可求解.(1)解:设甲生产组有工人x 名,则乙生产组有工人()10x -名, 由题意得:216041920310x x ⋅=-, 解得30x =.经检验,30x =是原方程的解.∴10301020x -=-=(名).答:甲生产组有工人30名,乙生产组有工人20名.(2)解:甲生产组原每天人均生产套数为21603072÷=(套),乙生产组原每天人均生产套数为19202096÷=(套). 由题意得:1530(1)72(1%)(9624)20(15%)720032a a ⨯+⨯+++⨯+=,解得10a =.答:a 的值为10.【点睛】本题是实际问题与方程.利用方程的思想解决实际问题,简单便捷.在求解分式方程时,要注意对解进行检验.5、(1)甲队每天完成的绿化面积为200m2,乙队每天完成的绿化面积为100m2;(2)12天【分析】(1)设乙队每天完成的绿化面积为x m2,则甲队每天完成的绿化面积为2x m2,利用工作时间=工作总量÷工作效率,结合甲,乙工程队在单独完成面积为600m2绿化时乙队比甲队多用3天,即可得出关于x的分式方程,解之经检验后即可得出乙队每天完成的绿化面积,再将其代入2x中即可求出甲队每天完成的绿化面积;(2)设甲、乙两个工程队有m天共同参加施工,则甲工程队单独施工(30﹣m)天,利用工作总量=工作效率×工作时间,结合30天内至少完成7200m2绿化,即可得出关于m的一元一次不等式,解之取其中的最小值即可得出结论.【详解】解:(1)设乙队每天完成的绿化面积为x m2,则甲队每天完成的绿化面积为2x m2,依题意得:600x﹣6002x=3,解得:x=100,经检验,x=100是原方程的解,且符合题意,∴2x=2×100=200.答:甲队每天完成的绿化面积为200m2,乙队每天完成的绿化面积为100m2.(2)设甲、乙两个工程队有m天共同参加施工,则甲工程队单独施工(30﹣m)天,依题意得:(200+100)m+200(30﹣m)≥7200,解得:m≥12.答:甲、乙两个工程队至少有12天必须共同参加施工.【点睛】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式.。
最新沪教版(上海)八年级数学第二学期第二十一章代数方程专项训练试题(含答案解析)
八年级数学第二学期第二十一章代数方程专项训练考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,已知函数y ax b =+和y kx =的图象交于点P ,则根据图象可得,关于x 、y 的二元一次方程组y ax b y kx=+⎧⎨=⎩的解是( ).A .31x y =⎧⎨=-⎩B .31x y =-⎧⎨=-⎩C .31x y =-⎧⎨=⎩D .31x y =⎧⎨=⎩2、若分式方程1244x a x x +=---无解,则a 的值是( ) A .-5 B .4 C .3 D .03、设甲、乙、丙为三个连续的正偶数,已知甲的倒数与丙的倒数的2倍之和等于乙的倒数的3倍,设乙为x ,所列方程正确的是( )A .12311x x x+=-+ B .12322x x x +=+- C .12322x x x +=-+ D .12311x x x +=+- 4、某文具店购进A ,B 两种款式的书包,其中A 种书包的单价比B 种书包的单价低10%.已知店主购进A 种书包用了810元,购进B 种书包用了600元,且所购进的A 种书包的数量比B 种书包多20个.设文具店购进B 种款式的书包x 个,则所列方程正确的是( )A .81060010%20x x =⨯+B .()810600110%20x x=-+ C .60081010%20x x =⨯+ D .()()81060020110%x x x=⨯+- 5、自带水杯已成为人们良好的健康卫生习惯.某公司为员工购买甲、乙两种型号的水杯,用720元购买甲种水杯的数量和用540元购买乙种水杯的数量相同,已知甲种水杯的单价比乙种水杯的单价多15元.设甲种水杯的单价为x 元,则列出方程正确的是( )A .72054015x x =-B .72054015x x =+ C .72054015x x =- D .72054015x x =+ 6、直线2y x =--与直线3y x 的交点为( ) A .71,22⎛⎫ ⎪⎝⎭ B .51,22⎛⎫- ⎪⎝⎭ C .(0,2)- D .(0,3)7、方程322x x =-的解为( ) A .x =2 B .x =6 C .x =﹣6 D .x =﹣38、如图,在平面直角坐标系中,一次函数y =kx +b (k ≠0)和y =mx +n (m ≠0)相交于点(2,﹣1),则关于x ,y 的方程组kx y b mx n y =-⎧⎨+=⎩的解是( )A .12x y =-⎧⎨=⎩B .21x y =⎧⎨=-⎩C .12x y =⎧⎨=⎩D .21x y =⎧⎨=⎩ 9、在平面直角坐标系内,一次函数y =k 1x +b 1与y =k 2x +b 2的图象如图所示,则关于x ,y 的方程组1122y k x b y k x b -=⎧⎨-=⎩的解是( )A .11x y =⎧⎨=⎩B .12x y =⎧⎨=⎩C .21x y =⎧⎨=⎩D .22x y ==⎧⎨⎩10、某单位向一所希生小学赠送1080件文具,现用A ,B 两种不同的包装箱进行包装,已知每个B 型包装箱比A 型包装箱多装15件文具,单独使用B 型包装箱比单独使用A 型包装箱可少用12个,设B 型包装箱每个可以装x 件文具,根据题意列方程为( )A .108010801215x x =+-B .108010801215x x =-- C .108010801215x x =-+ D .108010801512x x =+- 第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、为了营造绿色环境,小区决定进行绿化美化工程.甲、乙两队合作6天可以完成,乙、丙两队合作10天可以完成,甲、丙两队合作5天可以完成全工程的23,问三个队分别单独做该工程,各需几天完成?设甲、乙、丙单独做各需x 、y 、z 天,由题意可得方程组________________,又设111,,a b c x y z ===,原方程组变形为________________,解这个关于a 、b 、c 的三元方程组,得a =______,b =______,c =______,所以x =______,y =______,z =______.2、如图,直线:4AB y x =+与直线:22BC y x =--相交于点B ,直线AB 与y 轴交于点A ,直线BC 与x 轴交于点D 与y 轴交于点C ,AE BC ∥交x 轴于点E .直线AB 上有一点P (P 在x 轴上方)且DEP ABC S S =,则点P 的坐标为_______.3、已知1x 、2x 是方程()22210x m x m -++-=的两个实数根且满足12111x x +=,则m 的值为__________.4、若直线2y x b =+经过直线2y x =-与4y x =-+的交点,则b 的值为____________.5、为了了解某池塘里背蛙的数量,先从池塘里捕捞30只青蛙,作上标记后放回池塘,经过一段吋间后,再从池塘中捕捞出40只青蛙,其中有标记的青蛙有4只,估计这个池塘里大约有 _____只青蛙.三、解答题(5小题,每小题10分,共计50分)1、一粥一饭当思来之不易,半丝半缕恒念物力维艰.开展“光盘行动”,拒绝“舌尖上的浪费”,已经成为一种时尚. 某学校食堂为了鼓励同学们做到光盘不浪费,针对每餐后光盘的学生奖励苹果或砂糖橘一份.近日,学校食堂花了1500 元和1800元分别采购了砂糖橘和苹果,采购的砂糖橘比苹果多50千克,砂糖橘每千克的价格比苹果每千克的价格低40%.求苹果每千克的价格.2、解分式方程:(1)216111x x x +-=-- (2)13244x x x -=+-- 3、2020年3月,象群共计16头从西双版纳州进入普洱市,一路“象”北.当地政府组成大象护卫队,全程跟踪象群迁移轨迹,全景式记录大象“出走”经过.护卫队分成甲、乙两组,甲组行程120km 和乙组行程80km 所用时间相等,已知甲组的速度比乙组速度每小时快3km ,求甲、乙两组的速度.4、2020年7月24号,四川省人民政府正式批复成立南充临江新区,新区某绿化工程由甲、乙两个工程队共同参加.已知甲,乙工程队在单独完成面积为600m 2绿化时,乙队比甲队多用3天,且甲队每天完成绿化的面积是乙队每天完成面积的2倍.(1)求甲,乙两队每天各完成的绿化面积;(2)因工程进度要求在30天内完成7200m 2绿化,甲、乙两个工程队至少有多少天必须共同参加施工?5、为落实党中央“绿水青山就是金山银山”发展理念,某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前8天完成了这一任务,求原计划工作时每天绿化的面积为多少万平方米.-参考答案-一、单选题1、C【分析】由图可知:两个一次函数的交点坐标为(3,1)-;那么交点坐标同时满足两个函数的解析式,而所求的方程组正好是由两个函数的解析式所构成,因此两函数的交点坐标即为方程组的解.【详解】解:根据函数图可知,函数y ax b =+和y kx =的图象交于点P 的坐标是(3,1)-,故y ax b y kx =+⎧⎨=⎩的解是31x y =-⎧⎨=⎩, 故选:C .【点睛】本题考查了一次函数与二元一次方程组,方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数解析式,因此方程组的解就是两个相应的一次函数图象的交点坐标.2、A【分析】按解分式方程的步骤化为关于x 的一元一次方程,可知x =4是一元一次方程的解,把解代入即可求得a 的值.【详解】 方程1244x a x x +=---两边同乘(x -4),得:12(4)x x a +=-- 即9x a -=由题意知,x=4是原分式方程的增根,则它是9x a -=的解∴49a -=解得5a =-故选:A【点睛】本题是分式方程无解问题,考查了分式方程的解法,一元一次方程的解的概念,关键是理解分式方程无解,则它在一般情况下是有增根,也即使分式方程的分母为零的未知数的值.3、C【分析】因为甲、乙、丙为三个连续的正偶数,设乙为x ,则甲为2x -,丙为2x +,然后根据已知甲的倒数与丙的倒数的2倍之和等于乙的倒数的3倍列出方程即可.【详解】解:∵甲、乙、丙为三个连续的正偶数,∴设乙为x ,则甲为2x -,丙为2x +, 根据题意得:12322x x x+=-+, 故选:C .【点睛】本题考查了分式方程的应用,读懂题意,找准等量关系是解决本题的关键.4、B【分析】设文具店购进B 种款式的笔袋x 个,则购进A 种款式的笔袋(x +20)个,根据单价=总价÷数量结合A 种笔袋的单价比B 种袋的单价低10%,即可得出关于x 的分式方程.【详解】解:设文具店购进B 种款式的笔袋x 个,则购进A 种款式的笔袋(x +20)个, 依题意,得:()810600110%20x x =-+, 故选:B .【点睛】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.5、A【分析】设甲种水杯的单价为x元,则乙种水杯的单价为(x-15)元,根据720元购买甲种水杯的数量和用540元购买乙种水杯的数量相同列方程即可得解.【详解】解:设甲种水杯的单价为x元,则乙种水杯的单价为(x-15)元根据题意列出方程得:720540-15x x=.故选项A.【点睛】本题考查列分式方程解应用题,掌握列分式方程解应用题的方法与步骤,抓住等量关系列方程是解题关键.6、B【分析】直接联立两个函数解析式组成方程组,再解方程组即可得到两函数图象的交点.【详解】解:联立两个函数解析式得23y xy x=--⎧⎨=+⎩,解得5212xy⎧=-⎪⎪⎨⎪=⎪⎩,则两个函数图象的交点为(52-,12),故选:B.本题主要考查了两函数交点问题,两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解.7、B【分析】方程两边同乘以x(x-2),将分式方程化为整式方程,解整式方程,最后验根.【详解】解:方程两边同乘以x(x-2),得3(x-2)=2x,去括号,得3x-6=2x,移项,得x=6,检验:当x=6时,x(x-2)=24≠0,∴x=6是原方程的解,故选:B【点睛】本题考查了解分式方程,熟练掌握分式方程的方法以及最后要验根是解题的关键.8、B【分析】利用方程组的解就是两个相应的一次函数图象的交点坐标解决问题.【详解】解:∵一次函数y=kx+b和y=mx+n相交于点(2,-1),∴关于x、y的方程组kx y bmx n y=-⎧⎨+=⎩的解是21xy=⎧⎨=-⎩.【点睛】本题考查了一次函数与二元一次方程(组):方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.9、C【分析】利用方程组的解就是两个相应的一次函数图象的交点坐标求解.【详解】解:∵一次函数y =k 1x +b 1与y =k 2x +b 2的图象的交点坐标为(2,1),∴关于x ,y 的方程组1122y k x b y k x b -=⎧⎨-=⎩的解是21x y ⎧⎨⎩==. 故选:C .【点睛】本题考查了一次函数与二元一次方程(组):方程组的解就是两个相应的一次函数图象的交点坐标.10、B【分析】根据题意可以列出相应的方程,本题得以解决.【详解】 解:由题意可得,108010801215x x =--, 故选:B .【点睛】本题考查由实际问题抽象出分式方程,解答本题的关键是明确题意,列出相应的方程.二、填空题1、11611125311101⎧⎛⎫+=⎪ ⎪⎝⎭⎪⎪⎪⎛⎫+=⎨ ⎪⎝⎭⎪⎪⎛⎫⎪+= ⎪⎪⎝⎭⎩x y x z z y 6()125()310()1+=⎧⎪⎪+=⎨⎪+=⎪⎩a b a c c b 110 115 130 10 15 30 【分析】设甲、乙、丙单独做各需x 、y 、z 天,由题意可得关于x 、y 、z 的方程组,再设111,,a b c x y z===,可得到关于,,a b c 的方程组,可求出110115130⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩a b c ,从而求出10,15,30x y z === ,即可求解.【详解】解:设甲、乙、丙单独做各需x 、y 、z 天,由题意可得:11611125311101⎧⎛⎫+=⎪ ⎪⎝⎭⎪⎪⎪⎛⎫+=⎨ ⎪⎝⎭⎪⎪⎛⎫⎪+= ⎪⎪⎝⎭⎩x y x z z y 又设111,,a b c x y z===, 则原方程组变形为6()125()310()1+=⎧⎪⎪+=⎨⎪+=⎪⎩a b a c c b ,解得:110115130⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩a b c , ∴111111,,101530===x y z , 解得:10,15,30x y z === .故答案为: 11611125311101⎧⎛⎫+=⎪ ⎪⎝⎭⎪⎪⎪⎛⎫+=⎨ ⎪⎝⎭⎪⎪⎛⎫⎪+= ⎪⎪⎝⎭⎩x y x z z y ;6()125()310()1+=⎧⎪⎪+=⎨⎪+=⎪⎩a b a c c b ;110;115;130;10;15;30. 【点睛】本题主要考查了分式方程组的应用,明确题意,准确得到等量关系是解题的关键.2、(-3,4)【分析】先求出A (0,4),D (-1,0),C (0,-2),得到AC =6,再求出B 点坐标,从而求出△ABC 的面积;然后求出直线AE 的解析式得到E 点坐标即可求出DE 的长,再由162DEP P ABC SDE y S △进行求解即可.【详解】解:∵A 是直线4y x =+与y 轴的交点,C 、D 是直线22y x =--与y 轴、x 轴的交点,∴A (0,4),D (-1,0),C (0,-2),∴AC =6;联立422y x y x =+⎧⎨=--⎩ ,解得22x y =-⎧⎨=⎩, ∴点B 的坐标为(-2,2), ∴()1==62ABC B S AC x ⋅-△, ∵AE BC ∥,∴可设直线AE 的解析式为2y x b =-+,∴4b =,∴直线AE 的解析式为24y x =-+,∵E 是直线AE 与x 轴的交点,∴点E 坐标为(2,0),∴DE =3, ∴162DEPP ABC S DE y S △, ∴=4P y ,∴=3P x ,∴点P 的坐标为(-3,4),故答案为:(-3,4).【点睛】本题主要考查了一次函数综合,求一次函数与坐标轴的交点,两直线的交点坐标,三角形面积,解题的关键在于能够熟练掌握一次函数的相关知识.3、3【分析】 将12111x x +=变形为21121x x x x +=,然后根据根与系数的关系代入求解即可. 【详解】解:∵1x 、2x 是方程()22210x m x m -++-=的两个实数根, ∴122b x x m a +=-=+,1221c x x m a ==-, 将12111x x +=通分整理为21121x x x x +=, ∴2121m m +=-, 解得:3m =,经检验,3m =是方程2121m m +=-的根, 故答案为:3.【点睛】本题考查了一元二次方程根与系数的关系,以及解分式方程,分式的加法等知识点,熟练掌握一元二次方程根与系数的关系是解本题的关键.4、-5【分析】先求出直线y =x -2与直线y =-x +4的交点坐标,再代入直线y =2x +b ,求出b 的值.【详解】解:解方程组24y x y x -⎧⎨-+⎩==, 得31x y ⎧⎨⎩==. ∴直线2y x =-与4y x =-+的交点为(3,1)把(3,1)代入y =2x +b ,得:1=2×3+b ,解得:b =-5.故答案为-5.【点睛】本题主要考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.5、300【分析】设池塘大约有x 只,根据题意,得到30440x =,计算即可. 【详解】设池塘大约有x 只,根据题意,得到30440x =, 解得 x =300,经检验,x=300是原方程的根,故答案为:300.【点睛】本题考查了分式方程的应用,正确列出分式方程是解题的关键.三、解答题1、14元【分析】设苹果每千克的价格为x 元,则砂糖橘每千克的价格为(140%)x -元.根据“学校食堂花了1500 元和1800元分别采购了砂糖橘和苹果,采购的砂糖橘比苹果多50千克,”列出方程,即可求解.【详解】解:设苹果每千克的价格为x 元,则砂糖橘每千克的价格为(140%)x -元. 根据题意,得1500180050(140%)x x-=- 解得14x =经检验:14x =是原分式方程的解,且符合题意,∴苹果每千克的价格为14元. 【点睛】本题主要考查了分式方程的应用,明确题意,准确得到等量关系是解题的关键.2、(1)2x =;(2)4x =是方程的增根.【分析】(1)方程两边同时乘以21x -,得到22(1)61x x +-=-的形式,解得2x =,将2x =代入21x -中检验4130-=≠,从而得到分式方程的解.(2)方程两边同时乘以4x -,得到132(4)x x -=+⨯-的形式,解得4x =,将4x =代入4x -中检验440-=,从而得到4x =为分式方程的增根.【详解】解:(1)方程两边同时乘以21x -得22(1)61x x +-=-解方程得2x =经检验得2x =是分式方程的解.(2)方程两边同时乘以4x -得132(4)x x -=+⨯-解方程得4x =经检验得4x =是分式方程的增根.【点睛】本题考查了分式方程的求解、增根.解题的关键和难点在于找最简公分母.易错点是是否对整式方程的解进行验证.3、甲组的速度为9km/h ,乙组的速度为6km/h .【分析】设乙组的速度为x km/h ,则甲组的速度为(x +3)km/h ,根据题意可列出关于x 的分式方程,解出方程并检验,即可得出结果.【详解】解:设乙组的速度为x km/h ,则甲组的速度为(x +3)km/h , 依题意列方程得:120803x x=+ 解得x =6经检验,x=6是方程的解∴x+3=6+3=9(km/h)答:甲组的速度为9km/h,乙组的速度为6km/h.【点睛】本题考查分式方程的实际应用.根据题意找出数量关系列出方程是解答本题的关键.4、(1)甲队每天完成的绿化面积为200m2,乙队每天完成的绿化面积为100m2;(2)12天【分析】(1)设乙队每天完成的绿化面积为x m2,则甲队每天完成的绿化面积为2x m2,利用工作时间=工作总量÷工作效率,结合甲,乙工程队在单独完成面积为600m2绿化时乙队比甲队多用3天,即可得出关于x的分式方程,解之经检验后即可得出乙队每天完成的绿化面积,再将其代入2x中即可求出甲队每天完成的绿化面积;(2)设甲、乙两个工程队有m天共同参加施工,则甲工程队单独施工(30﹣m)天,利用工作总量=工作效率×工作时间,结合30天内至少完成7200m2绿化,即可得出关于m的一元一次不等式,解之取其中的最小值即可得出结论.【详解】解:(1)设乙队每天完成的绿化面积为x m2,则甲队每天完成的绿化面积为2x m2,依题意得:600x﹣6002x=3,解得:x=100,经检验,x=100是原方程的解,且符合题意,∴2x=2×100=200.答:甲队每天完成的绿化面积为200m2,乙队每天完成的绿化面积为100m2.(2)设甲、乙两个工程队有m天共同参加施工,则甲工程队单独施工(30﹣m)天,依题意得:(200+100)m+200(30﹣m)≥7200,解得:m≥12.答:甲、乙两个工程队至少有12天必须共同参加施工.【点睛】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式.5、原计划每天绿化的面积为1.5万平方米.【分析】设原计划每天绿化的面积为x万平方米,则实际工作每天绿化的面积为(1+25%)x万平方米,由题意:某工程队承接了60万平方米的荒山绿化任务,结果提前8天完成了这一任务,列出分式方程,解方程即可.【详解】解:设原计划每天绿化的面积为x万平方米,则实际工作每天绿化的面积为(1+25%)x万平方米,依题意得:60x﹣60(125%)x=8,解得:x=1.5,经检验,x=1.5是原方程的解,且符合题意.答:原计划每天绿化的面积为1.5万平方米.【点睛】本题考查了分式方程的应用.找准等量关系,列出分式方程是解决问题的关键.。
精品试卷沪教版(上海)八年级数学第二学期第二十一章代数方程专题训练试题(含详解)
八年级数学第二学期第二十一章代数方程专题训练考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,直线2y x =与y kx b =+相交于点(),2P m ,则关于x 的方程2kx b +=的解是( )A .12x =B .1x =C .2x =D .4x =2、张老师和李老师同时从学校出发,步行15千米去县城购买书籍,张老师比李老师每小时多走1千米,结果比李老师早到半小时,两位老师每小时各走多少千米?设李老师每小时走x 千米,依题意,得到的方程是( )A .1515112x x -=+ B .1515112x x -=+ C .1515112x x -=- D .1515112x x -=- 3、若(1)a b s s b a+=≠-,则b 可用含a 和s 的式子表示为( )A .1a as s ++B .1a as s -+C .1a as s --D .1a as s +- 4、关于x 的方程1011m x x x -+=--有增根,则m 的值是( ) A .2 B .1 C .0 D .-15、小明和小强为端午节做粽子,小强比小明每小时少做2个,已知小明做100个粽子的时间与小强做90个所用的时间相等,小明、小强每小时各做粽子多少个?假设小明每小时做x 个,则可列方程得( )A .1009022x x =-+B .100902x x =-C .100902x x =-D .100902x x=+ 6、如图,直线l 1:y =x ﹣4与直线l 2:y =﹣43x +3相交于点(3,﹣1),则方程组2223944x y y x ⎧-=⎪⎪⎨⎪+=⎪⎩的解是( )A .31x y =⎧⎨=-⎩B .13x y =-⎧⎨=⎩C .13x y =-⎧⎨=-⎩D .31x y =⎧⎨=⎩ 7、若整数a 使关于x 的不等式组2062x a x x->⎧⎨->⎩有解,且最多有2个整数解,且使关于y 的分式方程2ay y +-412y=-的解为整数,则符合条件的所有整数a 的和为( ) A .4- B .4 C .2- D .28、若a 为整数,关于x 的不等式组2(1)4340x x x a +<+⎧⎨-<⎩有解,且关于x 的分式方程11222ax x x -+=--有正整数解,则满足条件的a 的个数( )A .1B .2C .3D .49、两个工程队共同参与一项筑路工程,甲队单独施工1个月完成总工程的13,这时增加了乙队,两队又共同工作了半个月,总工程全部完成,设乙队单独完成总工程共需x 个月,列方程正确的是( )A .111132x ++=B .11111332x+⨯+= C .1111()1332x ++⨯= D .11111332x ++⨯= 10、以二元一次方程21x y -=的解为坐标的点组成的图象画在坐标系中可能是( )A .B .C .D .第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、一次函数24y x =-+与1y x =-的图像交点坐标为______.2、已知210a a --=,且4232232324a xa a xa a -+=+-,则x =______. 3、学校用一笔钱买奖品,若以1支钢笔和2本日记本为1份奖品,则可买60份奖品;若以1支钢笔和3本日记本为一份奖品,则可买50份奖品,那么,这笔钱全部用来买钢笔可以买________支.4、一次函数1y x =-+与7y x =-的图象与y 轴围成的三角形的面积是________.5、阅读下列材料:①1111123x x x x -=-+--的解为x =1,②1111134x x x x -=----的解为x =2,③11111245x x x x -=-----的解为x =3.请你观察上述方程与解得特征,写出能反映上述方程一般规律的方程 ___,这个方程的解为 ___.三、解答题(5小题,每小题10分,共计50分)1、(1)计算:(x ﹣2)(x ﹣5)﹣x (x ﹣3);(2 (3)因式分解:9a 2(x ﹣y )+4b 2(y ﹣x );(4)解方程:23x x ---113x =-. 2、解方程:(1)2111x x x x -=-- (2)2311x x x x -=++ 3、为了迎接新学期的到来,某文化用品商店分两批购进同样的书包,提供给新入学的学生购买使用.(1)第二批购进书包的单价是多少元?(2)两批书包的销售价格都是90元,当第二批书包投放市场后立即产生了滞销,商店以进价的八五折优惠促销,全部售出后,商店是盈利还是亏损?4、如图,表示一个正比例函数与一个一次函数的图象,它们交于点A (4,3),一次函数的图象与y轴交于点B ,且OA =OB .(1)求这两个函数的表达式;(2)求两直线与y 轴围成的三角形的面积.5、解分式方程:224124x x x -=-+- -参考答案-一、单选题1、B【分析】首先利用函数解析式y =2x 求出m 的值,然后再根据两函数图象的交点横坐标就是关于x 的方程kx +b =2的解可得答案.【详解】解:∵直线y =2x 与y =kx +b 相交于点P (m ,2),∴2=2m ,∴m =1,∴P (1,2),∴当x =1时,y =kx +b =2,∴关于x 的方程kx +b =2的解是x =1,【点睛】此题主要考查了一次函数与一元一次方程,关键是求得两函数图象的交点坐标.2、B【分析】 根据关键描述语是:“比李老师早到半小时”;等量关系为:李老师所用时间﹣张老师所用时间=12.即可列出方程.【详解】 解:李老师所用时间为:15x ,张老师所用的时间为:151x +.所列方程为:1515112x x -=+. 故选:B .【点睛】此题主要考查列分式方程,由题意可知未知量是速度,有路程,一定是根据时间来列等量关系的.找到关键描述语,找到等量关系是解决问题的关键.3、D【分析】 先将a b s b a +=-转化为关于b 的整式方程,然后用a 、s 表示出b 即可. 【详解】 解:∵a b s b a+=-,s ≠1 ∴()s b a a b -=+, ∴1a asb s +=- 故选:D .本题考查解分式方程,解答的关键是熟练掌握分式方程的一般步骤.4、A【分析】增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.有增根,最简公分母x﹣1=0,所以增根是x=1,把增根代入化为整式方程的方程即可求出未知字母的值【详解】解:两边都乘(x﹣1),得:m﹣1-x=0,∵方程有增根,∴最简公分母x﹣1=0,即增根是x=1,把x=1代入整式方程,得m=2.故选A.【点睛】考查了分式方程的增根,解决增根问题的步骤:①确定增根的值;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.5、C【分析】假设小明每小时做x个,则小强每小时做(x−2)个,根据题意可得:小明做100个粽子的时间与小强做90个所用的时间相等,据此列方程.【详解】解:假设小明每小时做x个,则小强每小时做(x−2)个,由题意得,100902x x=-.【点睛】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列出方程.6、A【分析】关于x 、y 的二元体次方程组2223944x y y x ⎧-=⎪⎪⎨⎪+=⎪⎩的解即为直线1:4l y x =-与直线24:33l y x =-+相交于点(3,﹣1)的坐标.【详解】解:因为直线1:4l y x =-与直线24:33l y x =-+相交于点(3,﹣1),则方程组2223944x y y x ⎧-=⎪⎪⎨⎪+=⎪⎩的解是31x y =⎧⎨=-⎩ , 故选A..【点睛】本题考查了一次函数与二元一次方程组的关系的理解和运算,主要考查学生的观察图形的能力和理解能力.7、D【分析】根据题意先解不等式,确定a 的范围,进而根据分式方程的解为整数,确定a 的值,再求其和即可.【详解】解:2062x a x x ->⎧⎨->⎩①②解不等式①得:2ax >解不等式②得:2x < 不等式组有解,则22a x <<且最多有2个整数解,则122a -≤< 解得24a -≤<2,1,0,1,2,3a ∴=--分式方程去分母得:42ay y -=- 解得21y a =- 分式方程2ay y +-412y =-的解为整数, 21a ∴-是整数,且2,10y a ≠-≠ 2,1,2a ∴≠-1,0,3a ∴=-1032∴-++=即符合条件的所有整数a 的和为2,故选D【点睛】此题考查了分式方程的解,以及一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.8、A【分析】观察此题先解不等式组确定x 的解集,由不等式组有解确定a 的取值范围,再根据分式方程有正整数解,即可找出符合条件的所有整数a .【详解】不等式组2(1)4340x x x a +<+⎧⎨-<⎩①②, 解①得:2x >-, 解②得:4a x <, 24a x ∴-<<且不等式组有解, 2,48,a a ∴-<∴>-解关于x 的分式方程11222ax x x -+=--得: 22x a =-, 分式方程有正整数解,a 为整数,1,0,x a ∴==2,1,x a ==方程产生增根,舍去,∴符合条件的a 的值有1个,为0,故选:A .【点睛】此题考查不等式组的解法以及分式方程的解法,综合性较强,熟练掌握不等式组的解法以及分式方程的解法是解决本题的关键.9、C【分析】设乙队单独施1个月能完成总工程的1x ,根据甲队完成的任务量+乙队完成的任务量=总工程量(单位1),即可得出关于x 的分式方程,此题得解.【详解】解:设乙队单独施1个月能完成总工程的1x ,根据题意得: 即1111()1332x ++⨯=.故选:C .【点睛】本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键.10、B【分析】先解出方程2x −y =1的二个解,再在平面直角坐标系中利用描点法解答.【详解】解:二元一次方程2x −y =1的解可以为:01x y =⎧⎨=-⎩或120x y ⎧=⎪⎨⎪=⎩. 所以,以方程2x −y =1的解为坐标的点分别为:(12,0)、(0,-1),它们在平面直角坐标系中的图象如下图所示:,故选:B .【点睛】本题主要考查的是二元一次方程的解及其直线方程的图象,表示出方程的解是解题的关键.二、填空题1、∴关于x 的方程(a -1)x =b -2的解为:x =故答案为x =3.【点睛】本题考查了一次函数与二元一次方程(组)的关系:方程组的解就是两个相应的一次函数图象的交点坐标.3.52()33,【分析】两函数解析式联立方程组,求出方程组的解即可.【详解】解:联立方程组,得:241y x y x =-+⎧⎨=-⎩, 解得,5323x y ⎧=⎪⎪⎨⎪=⎪⎩∴一次函数24y x =-+与1y x =-的图像交点坐标为(5233,) 故答案为:52()33,.【点睛】本题考查了两直线交点坐标的求法,联立方程组是解答此类试题的常用方法.2、76【分析】先根据a 2-a -1=0,得出a 2,a 3,a 4的值,然后将方程左边分式化简,再解方程求解即可.【详解】解:由题意可得a 2−a −1=0,∴a 2=a +1,∴a 4=(a 2)2=(a +1)2=a 2+2a +1=a +1+2a +1=3a +2,a 3=a ⋅a 2=a (a +1)=a 2+a =a +1+a =2a +1, ∵4232232324a xa a xa a -+=+-, ∴22643232124a a a a x x a +-+=++-, ()()()613131214a a a x x a +-+∴=+++, ()()()()16331124a a x x +-∴=++(a +1≠0), ()()633124x x -∴=+, 去分母得()()463312x x -=+ ,∴1821x = ,76x ∴=, 检验:76x =,()4120x +≠, ∴76x =是原方程的根, 故答案为: 76.【点睛】本题主要考查了分式化简,解分式方程,通知所学知识对a 2,a 3,a 4进行变形是解题的关键. 3、100【分析】设一支钢笔x 元,一本笔记本y 元,根据“若以1支钢笔和2本日记本为1份奖品,则可买60份奖品;若以1支钢笔和3本日记本为一份奖品,则可买50份奖品,”可列出方程,从而得到3x y =,再用这笔钱除以一支钢笔的价钱,即可求解.【详解】解:设一支钢笔x 元,一本笔记本y 元,根据题意得:()()602503x y x y +=+ ,解得:3x y = ,∴()()60260321003x y y y x y ++==即这笔钱全部用来买钢笔可以买100支.故答案为:100.【点睛】本题主要考查了二元一次方程的应用,分式的性质,明确题意,列出方程,得到3x y =是解题的关键.4、16【分析】首先求出两直线与y 轴的交点坐标,再求出两直线的交点坐标,进而求出三角形的面积.【详解】解:在1y x =-+中,令x =0,则y =1;在7y x =-中,令x =0,则y =-7;∴两个一次函数与y 轴的交点坐标分别为(0,1)和(0,-7),解方程组17y x y x =-+⎧⎨=-⎩,得43x y =⎧⎨=-⎩, 两直线的交点坐标为(4,3-),∴两直线与y 轴围成的三角形面积为12×4×(1+7)=16.故答案为:16.【点睛】本题主要考查了一次函数图象上的交点坐标以及直线与y 轴围成的三角形的面积,解题的关键是求出两直线交点坐标,此题难度不大.5、()()()()11112112x n x n x n x n -=------+-+ x n = 【分析】根据观察发现规律:方程的解是方程的最简公分母为零时x 值的平均数,可得答案.【详解】解:方程为:()()()()11112112x n x n x n x n -=------+-+,解为x n =,故填:()()()()11112112x n x n x n x n -=------+-+,x n =. 【点睛】此题考查了分式方程的解,弄清题中的规律是解本题的关键.三、解答题1、(1)-4x +10(2)43)(x ﹣y )(3a +2b )(3a -2b )(4)无解【分析】(1)根据多项式的乘法运算法则即可化简求解;(2)根据二次根式的混合运算法则即可求解;(3)先提取(x -y ),再根据公式法即可因式分解;(4)去分母化为整式方程,再解整式方程即可求解.【详解】(1)(x ﹣2)(x ﹣5)﹣x (x ﹣3)=x 2-5x -2x +10-x 2+3x=-4x +10(2=4(3)9a 2(x ﹣y )+4b 2(y ﹣x )=(x ﹣y )(9a 2-4b 2)=(x ﹣y )(3a +2b )(3a -2b )(4)23x x ---113x =-23x x---113x =- x -2-(3-x )=1x -2-3+x =12x =6x =3把x =3代入分母得分母为零,故原方程无解.【点睛】此题主要考查整式的乘法、二次根式的运算、因式分解及分式方程的求解,解题的关键是熟知其运算法则.2、(1)原方程无解;(2)3x =-.【分析】(1)方程两边同乘以1x -化成整式方程,再解一元一次方程即可得;(2)方程两边同乘以(1)x x +化成整式方程,再解一元二次方程即可得.【详解】解:(1)2111x x x x -=--, 方程两边同乘以1x -,得21x x =-,移项、合并同类项,得1x -=-,系数化为1,得1x =,经检验,1x =不是分式方程的解,所以原方程无解;(2)2311x x x x -=++,方程两边同乘以(1)x x +,得23x x x x -=+,移项、合并同类项,得230x x +=,因式分解,得(3)0x x +=,解得0x =或3x =-,经检验,0x =不是分式方程的解;3x =-是分式方程的解,所以原方程的解为3x =-.【点睛】本题考查了解分式方程,熟练掌握方程的解法是解题关键.需注意的是,分式方程需进行检验.3、(1)第二批购进的单价是64元;(2)全部书包售出后,商店是盈利【分析】(1)设设第一批购进的单价是x 元,则第二批购进的单价是()4x +元,根据两次购买书包的数量之间的关系列出分式方程求解即可;(2)根据题意分别计算出两批书包的利润,然后求解判断即可.【详解】(1)设第一批购进的单价是x 元,则第二批购进的单价是()4x +元, 依题意得:30006400142x x =⨯+, 解这个方程得:60x =,经检验:60x =是原分式方程的解,且符合题意.460464x +=+=(元)答:第二批购进的单价是64元;(2)由(1)得,第二批购机书包的价格为64元,第一批销售的利润:()()90603000601500-÷=(元)第二批销售的利润:64000.856400960⨯-=-(元)1500960540-=(元)答:全部书包售出后,商店是盈利.【点睛】此题考查了分式方程应用题,解题的关键是正确分析题目中的等量关系.4、(1)34y x =,25y x =-;(2)10AOB S ∆= 【分析】(1)由点A 的坐标及勾股定理即可求得OA 与OB 的长,从而可得点B 的坐标,用待定系数法即可求得函数的解析式;(2)由点A 的坐标及OB 的长度即可求得△AOB 的面积.【详解】∵A (4,3)∴OA =OB 5,∴B (0,-5),设直线OA 的解析式为y =kx ,则4k =3,k =34, ∴直线OA 的解析式为34y x =, 设直线AB 的解析式为y k x b '=+,把A 、B 两点的坐标分别代入得:435k b b +==-'⎧⎨⎩, ∴25k b =⎧⎨=-'⎩,∴直线AB 的解析式为y =2x -5.(2)154102AOBS ⨯⨯==. 【点睛】本题考查了待定系数法求一次函数的解析式,直线与坐标轴围成的三角形面积等知识,本题重点是求一次函数的解析式.5、x =4【分析】两边都乘以x 2-4化为整式方程求解,然后验根即可.【详解】 解:224124x x x -=-+-, 两边都乘以x 2-4,得2(x -2)-4x =-(x 2-4),x 2-2x -8=0,(x +2)(x -4)=0,x 1=-2,x 2=4,检验:当x =-2时,x 2-4=0,当x =4时,x 2-4≠0,∴x =4是原分式方程的根.【点睛】本题考查了分式方程的解法,其基本思路是把方程的两边都乘以各分母的最简公分母,化为整式方程求解,求出未知数的值后不要忘记检验.。
最新沪教版(上海)八年级数学第二学期第二十一章代数方程章节练习试题(含详细解析)
八年级数学第二学期第二十一章代数方程章节练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知关于x 的分式方程3111m x x +=--的解是正数,则m 的取值范围是( ) A .2m > B .2m ≥ C .2m ≥且3m ≠ D .2m >且3m ≠2、八年级学生去距学校15km 的博物馆参观,一部分学生骑自行车先走,过了30min 后,其余学生乘汽车出发,结果他们同时到达,已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度.若设骑车同学的速度为x 千米/时,则所列方程时( )A .1515302x x+= B .1515302x x -= C .1511522x x += D .1511522x x -= 3、用换元法解分式方程2211x x x x+-++1=0时,如果设21x x +=y ,那么原方程可以变形为整式方程( )A .y 2﹣3y ﹣1=0B .y 2+3y ﹣1=0C .y 2﹣y ﹣1=0D .y 2+y ﹣1=04、某生产厂家更新技术后,平均每天比更新技术前多生产3万件产品,现在生产50万件产品与更新技术前生产40万件产品所需时间相同,设更新技术前每天生产产品x 万件,则可以列方程为( )A .50403x x =+B .40503x x =+C .40503x x =-D .50403x x=- 5、如果关于x 的方程3111a x x =---无解,则a =( ) A .1 B .3 C .-1 D .1或36、某企业车间生产一种零件,3位工人同时生产,1位工人恰好能完成组装,若车间共有工人60人,如何分配工人才能使生产的零件及时组装好.设分配x 名工人生产,由题意列方程,下列选项错误的是( )A .x +3x =60B .1603x x -= C .6013x x -= D .x =3(60-x )7、给出下列说法:①直线24y x =-+与直线1y x =+的交点坐标是()1,2;②一次函数y kx b =+,若0k >,0b <,那么它的图象过第一、二、三象限;③函数6y x =-是一次函数,且y 随x 增大而减小;④已知一次函数的图象与直线1y x =-+平行,且过点()8,2,那么此一次函数的解析式为6y x =-+;⑤直线1y kx k =+-必经过点()1,1--.其中正确的有( ).A .2个B .3个C .4个D .5个8、张老师和李老师同时从学校出发,步行15千米去县城购买书籍,张老师比李老师每小时多走1千米,结果比李老师早到半小时,两位老师每小时各走多少千米?设李老师每小时走x 千米,依题意,得到的方程是( )A .1515112x x -=+ B .1515112x x -=+ C .1515112x x -=- D .1515112x x -=- 9、在平面直角坐标系内,一次函数y =k 1x +b 1与y =k 2x +b 2的图象如图所示,则关于x ,y 的方程组1122y k x b y k x b -=⎧⎨-=⎩的解是( )A .11x y =⎧⎨=⎩B .12x y =⎧⎨=⎩C .21x y =⎧⎨=⎩D .22x y ==⎧⎨⎩10、若整数a 使关于x 的不等式组2062x a x x ->⎧⎨->⎩有解,且最多有2个整数解,且使关于y 的分式方程2ay y +-412y=-的解为整数,则符合条件的所有整数a 的和为( ) A .4- B .4 C .2- D .2第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、方程11212x x =+-的解是x =______. 2、阅读下列材料:①1111123x x x x -=-+--的解为x =1,②1111134x x x x -=----的解为x =2,③11111245x x x x -=-----的解为x =3.请你观察上述方程与解得特征,写出能反映上述方程一般规律的方程 ___,这个方程的解为 ___.3、数形结合是解决数学问题常用的思想方法之一.如图,直线y =2x 和直线y =ax +b 相交于点A ,则方程组200x y ax b y -=⎧⎨+-=⎩的解为______.4、开学在即,由于新冠疫情学校决定共用8000元分两次购进口罩6000个免费发放给学生.若两次购买口罩的费用相同,且第一次购买口罩的单价是第二次购买口罩单价的1.5倍,则第二次购买口罩的单价是 __元.5、若点A (8,0),B (0,n ),且直线AB 与坐标轴围成的三角形面积为12,则n =____.三、解答题(5小题,每小题10分,共计50分)1、(1)化简:()()11y y +--(2 (3)解分式方程:13211x x -=-- 2、如图,在平面直角坐标系中,一次函数 5y kx =+图象经过点A (1,4),点B 是一次函数5y kx =+的图象与正比例函数 23y x = 的图象的交点. (1)求k 的值和直线与x 轴、y 轴的交点C 、D 的坐标;(2)求点B 的坐标;(3)求△AOB 的面积.3、某项工程,需要在规定的时间内完成.若由甲队去做,恰能如期完成;若由乙队去做,需要超过规定日期三天.现在由甲乙两队共同做2天后,余下的工程由乙队独自去做,恰好在规定的日期内完成,求规定的日期是多少天?4、八年级某班学生去距学校10km的博物馆参观,一部分学生骑车先走,过了20min后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍.(1)求骑车学生的速度;(2)如果要求骑车学生提前10min赶到现场为参观活动做准备,他们出发的时间和汽车速度保持不变,骑车学生的速度需要提高多少?5、虎林西苑社区在扎实开展党史学习教育期间,开展“我为群众办实事”活动,为某小区铺设一段全长为720米的排污管道,为减少施工对居民生活的影响,须缩短施工时间,实际施工时每天铺设管道的长度是原计划的1.2倍,结果提前2天完成任务,求原计划每天铺设管道的长度.-参考答案-一、单选题1、D【分析】先求出分式方程的解,由方程的解是正数得m-2>0,由x-1≠0,得m-2-1≠0,计算可得答案.【详解】解:3111mx x+=--,得x=m -2, ∵分式方程3111m x x+=--的解是正数, ∴x >0即m -2>0,得m >2,∵x -1≠0,∴m -2-1≠0,得m ≠3,∴2m >且3m ≠,故选:D .【点睛】此题考查了利用分式方程的解求参数的取值范围,正确求解分式方程并掌握分式的分母不等于零的性质是解题的关键.2、C【分析】设骑车同学的速度为x 千米/时,汽车的速度是2x 千米/时,根据同时到达列出方程即可.【详解】解:设骑车同学的速度为x 千米/时,汽车的速度是2x 千米/时,根据题意列方程得,1511522x x+=, 故选:C .【点睛】本题考查了分式方程的应用,解题关键是找准等量关系,列出方程,注意单位转换.3、D根据换元法,把21x x +换成y ,然后整理即可得解. 【详解】 解:∵21x x +=y , ∴原方程化为110y y -+=. 整理得:y 2+y ﹣1=0.故选D .【点睛】本题考查的是换元法解分式方程,换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理.4、A【分析】更新技术前每天生产产品x 万件,可得更新技术后每天生产产品(x +3)万件.根据现在生产50万件产品与更新技术前生产40万件产品所需时间相同列出方程50403x x=+即可. 【详解】解:∵更新技术前每天生产产品x 万件,∴更新技术后每天生产产品(x +3)万件. 依题意得50403x x =+. 故选:A .【点睛】本题考查列分式方程解应用题,掌握列分式方程解应用题的方法与步骤,抓住等量关系列出方程是解题关键.5、B【分析】先去分母,化成整式方程,令x-1=0,确定x的值,回代x=4-a,得a值.【详解】∵3111ax x=---,∴去分母,得3=x-1+a,整理,得x=4-a,令x-1=0,得x=1,∴4-a=1,∴a=3.故选B.【点睛】本题考查了分式方程无解问题,正确理解分式方程无解的意义是解题的关键.6、A【分析】设分配x名工人生产,由题意可知,完成组装的工人有(60-x)人,根据生产工人数和组装工人数的倍数关系,可列方程.【详解】解:设分配x名工人生产,由题意可知,完成组装的工人有(60-x)人,由3位工人生产,1位工人恰好能完成组装,可得:x=3(60-x)①故D 正确;将①两边同时除以3得:60-x =13x ,则B 正确;将①两边同时除以3x 得:60x x -=13,则C 正确; A 选项中,x 为生产工人数,而生产工人数是组装工人数的3倍,而不是相反,故A 错误. 综上,只有A 不正确.故选:A .【点睛】本题考查了由实际问题抽象出一元一次方程,明确题中的数量关系,是解题的关键.7、B【分析】联立241y x y x =-+⎧⎨=+⎩,求出交点坐标即可判断①;根据一次函数图像与系数的关系即可判断②③;可设一次函数的解析式为y x b =-+,然后求出解析式即可判断④;根据一次函数解析式可化为()11y k x =+-,即可判断⑤.【详解】解:联立241y x y x =-+⎧⎨=+⎩, 解得12x y =⎧⎨=⎩, ∴直线24y x =-+与直线1y x =+的交点坐标是()1,2,故①正确;∵一次函数y kx b =+,若0k >,0b <,∴它的图象过第一、三、四象限,故②错误;∵函数6y x =-是一次函数,且y 随x 增大而减小,∴③正确;∵一次函数的图象与直线1y x =-+平行,∴可设一次函数的解析式为y x b =-+,∵一次函数经过点()8,2,∴28b =-+,∴10b =,∴一次函数解析式为10y x =-+,故④错误;∵直线的解析式为1y kx k =+-,即()11y k x =+-∴直线1y kx k =+-必经过点()1,1--,故⑤正确;故选B .【点睛】本题主要考查了一次函数图像的性质,求一次函数图像,求两直线的交点等等,解题的关键在于能够熟练掌握相关知识进行求解.8、B【分析】 根据关键描述语是:“比李老师早到半小时”;等量关系为:李老师所用时间﹣张老师所用时间=12.即可列出方程.【详解】 解:李老师所用时间为:15x ,张老师所用的时间为:151x +.所列方程为:1515112x x -=+. 故选:B .【点睛】此题主要考查列分式方程,由题意可知未知量是速度,有路程,一定是根据时间来列等量关系的.找到关键描述语,找到等量关系是解决问题的关键.9、C【分析】利用方程组的解就是两个相应的一次函数图象的交点坐标求解.【详解】解:∵一次函数y =k 1x +b 1与y =k 2x +b 2的图象的交点坐标为(2,1),∴关于x ,y 的方程组1122y k x b y k x b -=⎧⎨-=⎩的解是21x y ⎧⎨⎩==. 故选:C .【点睛】本题考查了一次函数与二元一次方程(组):方程组的解就是两个相应的一次函数图象的交点坐标.10、D【分析】根据题意先解不等式,确定a 的范围,进而根据分式方程的解为整数,确定a 的值,再求其和即可.【详解】解:2062x a x x ->⎧⎨->⎩①②解不等式①得:2ax >解不等式②得:2x < 不等式组有解,则22ax <<且最多有2个整数解,则122a -≤< 解得24a -≤<2,1,0,1,2,3a ∴=-- 分式方程去分母得:42ay y -=- 解得21y a =- 分式方程2ay y +-412y=-的解为整数, 21a ∴-是整数,且2,10y a ≠-≠ 2,1,2a ∴≠-1,0,3a ∴=-1032∴-++=即符合条件的所有整数a 的和为2,故选D【点睛】此题考查了分式方程的解,以及一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.二、填空题1、-3【分析】根据解分式方程的步骤去分母,解方程,检验解答即可.【详解】解:方程的两边同乘()()212x x +-,得:221x x -=+,解这个方程,得:3x =-,经检验,3x =-是原方程的解,∴原方程的解是3x =-.故答案为-3.【点睛】本题考查分式方程的解法,掌握分式方程的解题步骤是关键.2、()()()()11112112x n x n x n x n -=------+-+ x n = 【分析】根据观察发现规律:方程的解是方程的最简公分母为零时x 值的平均数,可得答案.【详解】解:方程为:()()()()11112112x n x n x n x n -=------+-+,解为x n =, 故填:()()()()11112112x n x n x n x n -=------+-+,x n =. 【点睛】此题考查了分式方程的解,弄清题中的规律是解本题的关键.3、323x y ⎧=⎪⎨⎪=⎩ 【分析】由直线y =2x 求得A 的坐标,两直线的交点坐标为两直线解析式所组成的方程组的解.【详解】解:∵直线y =2x 和直线y =ax +b 相交于点A ,A 的纵坐标为3,∴3=2x ,解得x =32,∴A(32,3),∴方程组20x yax b y-=⎧⎨+-=⎩的解为323xy⎧=⎪⎨⎪=⎩.故答案为:323xy⎧=⎪⎨⎪=⎩.【点睛】本题考查一次函数与二元一次方程组之间的关系,理解两直线的交点坐标即为两直线解析式所组成的方程组的解是解题关键.4、109【分析】设第二次购买口罩的单价是x元,则第一次购买口罩的单价是1.5x元,根据两次购买口罩的费用相同,两次购进口罩6000个,列出方程求解即可.【详解】解:8000÷2=4000(元).设第二次购买口罩的单价是x元,则第一次购买口罩的单价是1.5x元,依题意得:40001.5x+4000x=6000,解得:x=109,经检验,x=109是原方程的解,且符合题意.故答案为:109.【点睛】本题考查了分式方程的应用,解题关键是准确把握题目中的数量关系,找出等量关系列方程.5、±3【分析】先分别求出点A 、点B 到坐标轴的距离即OA 、OB ,再利用三角形的面积公式求解即可.【详解】解:∵点A (8,0),B (0,n ),∴OA =8,OB =|n |,∵直线AB 与坐标轴围成的三角形面积等于12, ∴12×8×|n |=12,解得:n =±3,故答案为:±3.【点睛】本题考查了坐标与图形性质、三角形的面积公式,熟练掌握坐标与图形的性质,会利用点的坐标求图形的面积的方法是解答的关键.三、解答题1、(1)-y 2-2y -1;(2)(3)x =3 【分析】(1)变形后根据完全平方公式计算;(2)先逐项化简,再合并同类二次根式;(3)两边都乘以x -1,化为整式方程求解,再检验.【详解】解:(1)()()11y y +--=-()()1+1y y +=-()21y +=-y 2-2y -1;(2== (3)13211x x-=-- 两边都乘以x -1,得1-2(x -1)=-3,1-2x +2=-3,解得x =3,检验:当x =3时,x -1≠0,∴x =3是分式方程的解.【点睛】本题考查了全平方公式,二次根式的加减混合运算,以及解分式方程,熟练掌握各知识点是解答本题的关键.2、(1)C (5, 0 ), D (O ,5 );(2)B 点坐标是(3,2);(3)5【分析】(1)直接把A 点坐标代入y=kx+5可求出k 的值,再求直线与x 轴、y 轴的交点C 、D 的坐标即可;(2)根据两直线相交的问题,通过解方程组可得到B 点坐标;(3)先求出直线AB与x轴的交点C的坐标,然后利用S△AOB=S△AOC-S△BOC进行计算.【详解】解:(1)把A(1,4)代入y=kx+5得k+5=4,解得k=-1;则一次函数解析式为y=-x+5,令x=0,则y=5;令y=0,则x=5;∴点C的坐标为(5,0),点D的坐标为(0,5);(2)解方程组523y xy x=-+⎧⎪⎨=⎪⎩,得32xy=⎧⎨=⎩,所以点B坐标为(3,2);(3)∵点C的坐标为(5,0),点A的坐标为(1,4),点B坐标为(3,2),∴S△AOB=S△AOC-S△BOC=12×5×4-12×5×2=5.【点睛】本题考查了两直线相交或平行问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解.3、6天【分析】关键描述语为:“由甲、乙两队合作2天,剩下的由乙队独做,也刚好在规定日期内完成”;本题的等量关系为:甲2天的工作量+乙规定日期的工作量=1,把相应数值代入即可求解.【详解】解:设规定的日期为x 天,则乙队需要(x +3)天, 根据题意得:()11122133x x x x ⎛⎫⨯++-⨯= ⎪++⎝⎭, 解这个方程得:x =6,经检验x =6是原方程的根,答:规定的日期为了6天.【点睛】本题考查了分式方程的应用,解决本题的关键是得到工作量1的等量关系;易错点是得到甲乙两队各自的工作时间.4、(1)骑车学生的速度为0.25km/min ;(2)骑车学生的速度提高1km /min 12. 【分析】(1)设骑车学生的速度为x km/min ,然后根据题意易得1010202x x=+,进而求解即可; (2)设骑车学生的速度提高y km/min ,由(1)及题意可知1010100.250.5y =++,然后求解即可. 【详解】解:(1)设骑车学生的速度为x km/min ,由题意得:1010202x x=+, 解得:0.25x =,经检验:0.25x =是原方程的解,答:骑车学生的速度为0.25km/min ;(2)设骑车学生的速度提高y km/min ,由(1)及题意可得:1010100.250.5y =++, 解得:112y =; 经检验:112y =是原方程的解, 答:骑车学生的速度提高1km /min 12. 【点睛】 本题主要考查分式方程的应用,熟练掌握分式方程的应用是解题的关键.5、60米【分析】设原计划每天铺设管道x 米,根据题中等量关系原计划完成时间-实际完成时间=2列分式方程,然后求解即可解答.【详解】解:设原计划每天铺设管道x 米,由题意,得72072021.2x x-=, 解得x =60,经检验,x =60是原方程的解.且符合题意,答:原计划每天铺设管道60米. -【点睛】本题考查分式方程的应用,理解题意,找准等量关系,正确列出方程是解答的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015年初二第二学期《代数方程》的应用题训练卷一、选择题1.如果关于x 的方程m x =+-312没有实数根,那么m 的取值范围是( )(A )m ≥0; (B )m ≥3; (C)m <0 ; (D)m <3.2.等式29x -=x +3·x -3成立的条件是 ( )(A )x ≤3; (B )x ≥3; (C )x ≥-3; (D )-3≤x ≤3.3.打印一份稿件,甲需要a 小时,乙需要b 小时,甲、乙两人共同打印这份稿件需要的时间是( )(A )2b a +小时; (B )ab b a +小时; (C )b a ab +小时; (D )ba +2小时. 4.某市为发展教育事业,加强了对教育经费的投入,2007年投入3000万元,预计2009年投入5000万元.设教育经费的年平均增长率为x ,根据题意,下面所列方程正确的是( )(A )23000(1)5000x +=; (B )230005000x =; (C )23000(1)5000x +=%; (D )23000(1)3000(1)5000x x +++=.5.某经济开发区今年一月份工业产值达50亿元,第一季度总产值175亿元,为求二月、三月平均每月的增长率是多少,可设平均每月增长的百分率为x ,根据题意,列出的方程是( )(A ) 50(1+x )2=175 ; (B )50+50(1+x )2=175;(C )50(1+x )+50(1+x )2=175; (D )50+50(1+x )+50(1+x )2=175 .6.某景区有一景点的改造工程要限期完工.甲工程队独做可提前1天完成,乙工程队独做要误期6天.现由两工程队合做4天后,余下的由乙工程队独做,正好如期完成.设工程期限为x 天,则下面所列方程中正确的是( ).(A )1614=-++x x x ;(B )614-=-x x x ;(C )1614=++-x x x ;(D )x x x x =++-614. 二、填空题 1.已知关于x 的方程1(3)10(0)m x m x x ++--=≠,当m_________时,它是一元二次方程。
2.已知关于x 的方程21(3)10(0)m x m x x ++--=≠,当m_________时,它是一元二次方程。
3.已知关于x 的方程21(1)(3)10(0)m m x m x x +++--=≠,当m________时,它是一元二次方程。
4.在实数范围内分解因式:=+-5822x x ____________________。
5.在实数范围内分解因式:=+--2223y xy x _________________。
6.方程)0(02≠=++a c bx ax 的两个实数根是,2211+-=x 2212--=x ,则把二次三项式c bx ax ++2因式分解,结果应是 。
7.当m=____________时,分式方程6362-=--x m x x 会产生增根。
8. 在已知范围内定义一种运算*,其规则为:b a b a 11+=*,根据这个规则,方程23)1(=+*x x 的解是 . 9.某种电器,进货价为每台2400元,原销售价为每台4500元,现降价两次但仍盈利20%,则平均每次降价率为 .10.一列火车到某站已经晚点6分钟,如果将速度每小时加快10千米,那么继续行驶20千米便可以在下一站正点到达.设列车原来行驶速度为x 千米/时,则所列出的方程是11.在新年来临之际,某公司员工都向本公司的其他员工发出了1条祝福短信.已知全公司共发出2450条短信,这个公司有员工 人12.若关于x 的方程3321ax x x++=+有增根1x =-,则a 的值是 .13. 一个直角三角形的周长为2+斜边上的中线长为1,那么这个直角三角形的面积是 .14. 某工厂三月份生产总值比一月份增加0044,那么二、三月份平均每月生产总值的增长率是 .15. 1k =+有实数解,那么k 的取值范围是 .16. 一个水池,有甲、乙两进水管。
若独开甲管注满水池需p 小时,而独开乙管注满水池需q 小时,那么两个水管同时开放,要_________小时才注满水池。
17.某商场运进120台空调准备销售,由于开展促销活动,每天比原计划多售出4台,结果提前5天完成销售任务,问原计划每销售 台.三、简答题1.解关于y 的方程: 2221b y y -=- . 2.若分式方程22111x m x x x x x-+-=++会产生增根,求m 的值。
3.方程x x k x x x x +=+-+2112(1)当k 为何值,解这个方程时会产生增根;(2)k 为何值时,这个方 程只有一个实数解。
4.已知方程组224210y mx y x y =+⎧⎨--+=⎩有两组实数解,求m 的取值范围。
5.已知点M是x 轴上一点,它与点A(-2,3)的距离是5,求点M的坐标。
6.沪杭磁悬浮新型交通建设项目目前已经开工开工,预计于2010年上海世博会开幕前正式投入使用。
现假设上海到杭州的铁路与磁悬浮的路程均为168千米,磁悬浮列车行驶的平均速度比现在的铁路列车行驶的平均速度每分钟快5.5千米,乘坐磁悬浮列车比现在的铁路列车要少用88分钟,问磁悬浮列车平均每分钟行驶几千米/7.某人要完成3000个字的打字任务,在打完了800个字后,加快了打字速度,每分钟比原来多打15个字,共用1小时完成任务,求加快速度后每分钟打多少个字?8.小王准备用尽60元钱采购某种商品,看到甲商店每件单价比乙商店便宜2元,因此用这些钱在甲商店购买这种商品可比乙商店多买5件,问:甲商店这种商品的单价是多少?可以买多少件?9.高中就要毕业了,几位同学准备学业考试结束后结伴去杭州旅游,预计共需费用1200元,后来又有2位同学参加进来,但总的费用不变,于是每人可少分担30元,试求共有几位同学准备结伴去杭州旅游?10.某校在书城、当当网共买了25套标价相同的书,由于网上购物可以享受一定的优惠,因此当当网的售价比书城的售价每套便宜10元.已知当当网购书共花去了1350元,比书城多350元,求该校在书城和当当网各买了多少套书?11.某项工程甲、乙合作8天可以完成,若甲单独做6天后,剩下的工程由乙队单独完成,乙还需12天才能完成。
问甲、乙两队单独完成这项工程各需几天?12.甲、乙两人完成某项工作,甲单独完成比乙单独完成快15天,如果甲单独先工作10天,再由乙单独工作15天就可以完成这项工作的32,求甲、乙两人单独完成这项工作各需多少天?13.某市政府为残疾人办实事,在一道路改造中,为盲人修建一条长3000m 的盲道.根据规划设计和要求,该市工程队在实际施工时增加了施工人员,每天修建的盲道比原计划多250米,结果提前2天完成,问实际每天修建盲道多少米?14.某学校组织老师乘坐甲、乙两辆大客车到洋山深水港参观.已知联结临港新城和深水港的东梅大桥全长32千米,从临港新城出发到深水港时,甲车比乙车早4分钟上桥,但由于乙车每小时比甲车多行16千米,所以甲车反而比乙车晚2分钟到达深水港.问甲、乙两车的速度各是多少?15.沪南公路上一路段的道路维修工作准备对外招标,现有甲、乙两个工程队竞标,竞标资料上显示:若由两队合做,6天可以完成,共需工程费用7800元;若单独完成此项工程,甲队比乙队少用5天,但甲队每天的工程费比乙队多300元。
工程指挥部决定从这两个队中选一个队单独完成此项工程,若从节省资金的角度考虑,应该选择哪个工程队?为什么?16.修建360米长的一段高速公路,甲工程队单独修建比乙工程队多用10天,甲工程队每天比乙工程队少修建6米.甲工程队每天修建的费用为2万元,乙工程队每天修建的费用为3.2万元.(1)求甲、乙两个工程队每天各修建多少米;(2)为在35天内完成修建任务,应请哪个工程队修建这段高速公路才能在按时完成任务的前提下所花费用较少?并说明理由.17.有一段河道需进行清淤疏通,现有甲乙两家清淤公司可供选择.如果甲公司单独做4天,乙公司单独做6天,那么恰好能完成全部清淤任务的一半;如果甲公司先做4天,剩下的清淤工作由乙公司单独完成,那么乙公司所用时间恰好比甲公司单独完成清淤任务所用时间多2天.求甲、乙两公司单独完成清淤任务各需多少天?18.某工程队中甲乙两组承包一段路基的改造工程,规定若干天内完成.已知甲组单独完成这项工程所需时间比规定时间的2倍多4天;乙组单独完成这项工程所需时间比规定时间的2倍少16天;甲乙两组合做24天完成.问:甲、乙两组合做能否在规定时间内完成?19.小明与小杰同时从学校出发,骑自行车前往距离学校18千米的公园.已知小明比小杰平均每小时多行6千米,但由于小明在路上修自行车而耽搁了半个小时,结果两人同时到达公园.求小明与小杰平均每小时各行多少千米?20.甲、乙两货车分别从相距300千米的A 、B 两车站相向而行,相遇后甲车再经过4小时到达B 站,乙车再经过你9小时到达A 站,求甲、乙两车的速度。
21.近年来由于受国际油价影响,汽油价格不断上涨,请根据下面信息帮助小明计算今年5月份汽油价格。
信息1:今年5月份汽油价格比去年5月份汽油价格每升多1.8元;信息2:用150元给汽车加油,加油量去去年少18.75升。
22.已知一个长方形的长比宽多40厘米,且长与宽的和比一条对角线长多80厘米,求这个长方形的宽是多少厘米?23.甲、乙两家便利店到批发站采购一批饮料,共25箱,由于两店所处的地理位置不同,因此甲店的销售价格比乙店的销售价格每箱多10元.当两店将所进的饮料全部售完后,甲店的营业额为1000元,比乙店少350元,求甲乙两店各进货多少箱饮料?24 公园里有一块三角形草地,测得90C ∠=︒,边AB 长为26米,周长为60米,求这块草地的另两条边的长.25.小杰放学回家后,向爸爸妈妈问小牛队与太阳队的篮球比赛的结果.爸爸说:“本场比赛太阳队的纳什比小牛队的特里多得了12分.”妈妈说:“如果把特里的得分乘以纳什的得分再加上7分就恰好等于他们两人的得分之和的14倍.”爸爸又说:“如果特里得分超过20分,则小牛队赢;否则太阳队赢.”请你帮小杰分析一下,究竟是哪个队赢了,本场比赛特里、纳什各得了多少分?。