第二章 关系数据库(2)
(第二讲)数据库(第二章:关系数据库的基本概念)
类型 char(10) char(10) char(2) Int char(4) 学号,主码 姓名:字符类型
说明
性别:只能为男或女 年龄:整形 所在专业编号,外码,参照专业表
4. 选课表(XK_Tab):记录学生的选课结果,对于任意一门课,每 个学生一年最多只能选一次,因此用课程编号、学号和年份联合作为 选课表的主码。选课表通过学号参照学生表,通过课程编号参照课程 表。
2. 课程表(KC_Tab):存放多门课程,主码为课程编号。
表2-4 课程表(KC_Tab)
列名 KC_Id KC_Name KC_KC_Id KC_Point
类型 char(4) char(50) char(4) Float
说明 课程编号,主码 课程名称 先修课课程编号 课程的学分
3. 学生表(XS_Tab):记录学生的基本信息,主码为学号,通过专业 编号参照专业表。
2.3 关系模型规范化
关系模型规范化的目的是为了消除存储异常,减少数据冗余, 保证数据的完整性和存储效率。 关系数据库中的关系是要满足一定的规范化要求的。对于不 同规范化程度,可以使用“范式”来衡量。满足最低要求的为I范 式。。在I范式的基础上,进一步满足一些要求的为II范式,以次 类推。一般情况下,在实践中关系模式满足3范式就基本可以。
元素的每一个值 di 叫作一个分量。关系模型中要求每一 个分量必须属于某种基本数据类型,如整形或字符串型。
关系:笛卡尔积的子集就是一个关系。
R( D1 , D2 ,, Dn )
这里R表示关系的名字,n是关系的目或度。
例: 我们给出如下三个域: D1 =导师集合。导师={王新,赵阳} D2=专业集合。专业={计算机,通信} D3=学生集合。学生={(张三,101),(李四,201)} 则笛卡尔积为: D1XD2XD3={(王新,计算机,张三,101), (王新,计算机,李四,201),
第2章 关系数据库数学模型
关系——二维表(行列),实体及其联系 都用关系表示。在用户看来关系数据的逻辑模 型就是一张二维表。
关系数据模型概述(续I)
关系操作 查询: 1)选择Select; 4)除Divide; Intersection; 编辑: 1)增加Insert; Update;
2)投影Project; 3)连接Join; 5)并Union; 6)交 7)差Difference;
三元关系的转换 一般要引入分离关系 如公司、产品和国家之间的m:n:p的三元关系及销 售联系。
关系代数
关系代数概述 关系代数的运算符 集合运算符
并U 交∩ 差 专门的关系运算符
笛卡尔积 × 选择σ 投影π 连接 除 算术比较符
> ≥ < ≤ = ≠ 逻辑运算符
EER模型到关系模式的转换(续IV)
为此,本例中引入一个分离关系On_Load(借 出的书),可以避免空值的出现。 这样,存在以下三个关系模式: Borrower(B#,Name,Address,……) Book(ISBN,Title,……) On_Load(ISBN,B#,Date1,Date2) 只有借出的书才会出现在关系On_Load中, 避免空值 的出现,并把属性Date1和Date2加到 关系On_Load中。
D1 x D2 x…x Dn={(d1,d2,…,dn) | di∈Di, i=1,2,…,n} (d1,d2,…,dn) --------n元组(n-tuple) di--------元组的每一分量(Component) Di为有限集时,其基数为mi,则卡积的基 数为M=m1*m2*…*mn
关系数据库
数据库原理2 关系数据库
三、用户定义的完整性(User-defined integrity)
实体完整性和参照性适用于任何关系数据 库系统。除此之外,不同的关系数据库 系统根据其应用环境的不同,往往还需 要一些特殊的约束条件。用户定义的完 整性就是针对某一具体关系数据库的约 束条件,它反映某一具体应用所涉及的 数据必须满足的语义要求。关系模型应 提供定义和检验这类完整性的机制,以 便用统一的系统的方法处理它们,而不 要由应用程序承担这一功能。
体和实体间的联系的关系的集合构成一 个关系数据库。同样,关系数据库也有 型和值之分。
型:关系数据库模式 是对关系数据库的描 述。
值:一般就称为关系数据库。
2.3 关系的完整性
关系模型的完整性规则是对关系的某种约 束条件。
关系模型的三类完整性:
1. 实体完整性 2. 参照完整性 3. 用户定义的完整性
2.4 关系代数
本节要求
给定关系和关系代数表达式,要会算。
给定关系模式和查询(语义)要求,要会写 关系代数表达式。
关系代数是一种抽象的查询语言,用对
关系的运算来表达查询,作为研究关系 数据语言的数学工具。
关系代数的运算对象是关系,运算结果
亦为关系。关系代数用到的运算符包括 四类:集合运算符、专门的关系运算符、 算术比较符和逻辑运算符。
第二章 关系数据库
2-5章为本课程重点与难点 关系数据库的理论基础 1970, E.F.Codd “A Relational Model of Data for Shared Data Banks” 现代主流数据库几乎全部支持关系模型 Oracle(甲骨文),Sybase, IBM DB2, MS SQL Server, Ingres
引用的时候,必须取基本表中已经存在的 值。由此引出参照的引用规则。
《数据库系统原理与设计》课后答案 (第四版,王珊,萨师煊)
第1章绪论1 .试述数据、数据库、数据库系统、数据库管理系统的概念。
答:( l )数据( Data ) :描述事物的符号记录称为数据。
数据的种类有数字、文字、图形、图像、声音、正文等。
数据与其语义是不可分的。
解析在现代计算机系统中数据的概念是广义的。
早期的计算机系统主要用于科学计算,处理的数据是整数、实数、浮点数等传统数学中的数据。
现代计算机能存储和处理的对象十分广泛,表示这些对象的数据也越来越复杂。
数据与其语义是不可分的。
500 这个数字可以表示一件物品的价格是500 元,也可以表示一个学术会议参加的人数有500 人,还可以表示一袋奶粉重 500 克。
( 2 )数据库( DataBase ,简称 DB ) :数据库是长期储存在计算机内的、有组织的、可共享的数据集合。
数据库中的数据按一定的数据模型组织、描述和储存,具有较小的冗余度、较高的数据独立性和易扩展性,并可为各种用户共享。
( 3 )数据库系统( DataBas 。
Sytem ,简称 DBS ) :数据库系统是指在计算机系统中引入数据库后的系统构成,一般由数据库、数据库管理系统(及其开发工具)、应用系统、数据库管理员构成。
解析数据库系统和数据库是两个概念。
数据库系统是一个人一机系统,数据库是数据库系统的一个组成部分。
但是在日常工作中人们常常把数据库系统简称为数据库。
希望读者能够从人们讲话或文章的上下文中区分“数据库系统”和“数据库”,不要引起混淆。
( 4 )数据库管理系统( DataBase Management sytem ,简称 DBMs ):数据库管理系统是位于用户与操作系统之间的一层数据管理软件,用于科学地组织和存储数据、高效地获取和维护数据。
DBMS 的主要功能包括数据定义功能、数据操纵功能、数据库的运行管理功能、数据库的建立和维护功能。
解析DBMS 是一个大型的复杂的软件系统,是计算机中的基础软件。
目前,专门研制DBMS 的厂商及其研制的DBMS 产品很多。
数据库原理第二章关系数据库
关系代数小结
❖ 传统的集合运算
▪ 并、差、交、笛卡尔积
❖ 专门的关系运算
▪ 选择、投影、连接、除
❖ 5种基本运算
▪ 并、差、笛卡尔积、投影、选择
二、关系演算
❖ 关系演算是以数理逻辑中的谓词演算为基础的,通过谓词 形式来表示查询表达式。
❖ 根据谓词变元的不同,可将关系演算分为元组关系演算和 域关系演算。前者以元组为变量,简称元组演算;后者以 域为变量,简称域演算。
❖ 元组关系演算
▪ Tuple Relational Calculus ,简称TRC ▪ 元组关系演算语言ALPHA ▪ 元组关系表达式
❖ 域关系运算
▪ Domain Relational Calculus ,简称DRC ▪ 域关系演算语言QUE
1、元组关系演算
❖ 元组关系演算是以元组变量作为谓词变元的基本对象。 ❖ 元组关系演算语言的典型代表是E.F.Codd提出的ALPHA
例2:查询一名男同学的教师号和姓名,并使他的年龄最小。
GET W (1) (Student) : Student. Ssex = ‘男’ up Student.Sage
▪ 所谓的定额查询就是通过在W后面的括号中加上定额数量, 限定查询出元组的个数。
▪ 这里(1)表示查询结果中男同学的个数,取出学生表中第一 个男同学的学号和姓名。
RANGE Course CX SC SCX
GET W (Student.Sname): SCX (SCX.Sno=Student.Sno∧ CX (o=o∧CX.Pcno='6'))
例5:查询选修全部课程的学生姓名。
RANGE SC X Course CX
GET W (Student.SN) : CXSCX (SCX.SNO=Student.SNO∧O=O)
数据库第2章2.1-2.3
候选码主码Fra bibliotek有意义的关系及其值:
导师 专业 研究生姓名 研究生学号 1001 1002 1003
张清玫 信息专业 李 勇 张清玫 信息专业 刘 晨 刘 逸 信息专业 王 敏
关系(续)
2) 关系的表示
关系也是一个二维表,表的每行对应一个元 组,表的每列对应一个域(属性)。
表 2.2 SAP 关系
SUPERVISOR 张清玫 张清玫 刘逸 SPECIALITY 信息专业 信息专业 信息专业 POSTGRADUATE 李勇 刘晨 王敏
是 型
是值 关系模式是对关系的描述
数据库系统型与值的概念
5) 基本关系的性质
① 同列同质性,不同列可同域,不同名 ② 主码唯一性 ③ 行列无序性 ④ 分量原子性
2.1 关系数据结构
2.1.1 关系
2.1.2 关系模式 2.1.3 关系数据库
2.1.2 关系模式
1.什么是关系模式 2.定义关系模式
3. 关系模式与关系
1.什么是关系模式
关系模式 关系
第二章 关系数据库
2.1 2.2 2.3 2.4 2.5 关系数据结构及形式化定义 关系操作 关系的完整性 关系代数 小结
第二章 关系数据库
2.1 2.2 2.3 2.4 2.5 关系数据结构及形式化定义 关系操作 关系的完整性 关系代数 小结
2.1 关系数据结构
关系数据库系统是支持关系模型 的数据库系统 关系模型的三大组成部分 关系数据结构 关系操作集合 关系完整性约束
4)对关系的几点说明
笛卡尔积不满足交换律,即
(d1,d2,…,dn )≠(d2,d1,…,dn ) 但关系附加的属性名使得关系满足交换律, (d1,d2, …,di,dj ,…,dn)= (d1, d2, …,dj,di ,…,dn) ( i , j = 1 , 2 , …, n ) 例如 : (学号,姓名,性别,年龄)= (学号,姓名,年龄,性别)
数据库系统原理(2018年版)课后习题参考答案解析
第三代数据库系统必须保持或集成第二代数据库系统技术
第三代数据库系统必须对其他系统开放
2.描述数据仓库粒度的概念P182
粒度是指数据仓库数据单位中保存数据的细化或综合程度
3.描述数据挖掘技术的能P183
概念描述
关联分析
分类与预测
聚类
孤立点检测
趋势和演变分析
视图的内容是由存储在数据库中进行查询操作的SQL语句定义的,它的列数据与行数据均来自于定义视图的查询所引用的基本表。
视图不适宜数据集的形式存储在数据库中的,它所对应的数据实际上是存储在视图所引用的基本表中的。
视图是用来查看存储在别处的数据的一种虚拟表,本身不存储数据。
第五章 数据库编程
简答题
1.请简述存储过程的概念P125
答:参照完整性约束是指:若属性或属性组F是基本关系R的外码,与基本关系S的主码K相对应,则对于R中每个元组在F上的取值只允许有两种可能,要么是空值,要么与S中某个元组的主码值对应。
3.请简述关系规范化过程。
答:对于存在数据冗余、插入异常、删除异常问题的关系模式,应采取将一个关系模式分解为多个关系模式的方法进行处理。一个低一级范式的关系模式,通过模式分解可以转换为若干个高一级范式的关系模式,这就是所谓的规范化过程。
数据库系统是指在计算机中引入数据库技术之后的系统,包括数据库、数据库管理系统及相关实用工具、应用程序、数据库管理员和用户。
2.请简述早数据库管理技术中,与人工管理、文件系统相比,数据库系统的优点。
数据共享性高
数据冗余小
易于保证数据一致性
数据独立性高
可以实施统一管理与控制
减少了应用程序开发与维护的工作量
《数据库整理》第2章 关系数据库
关系体
随数据更新不断变化
15
.
• 例如,在第1章的图1-22所示的教学数据库中,共有五个关 系,其关系模式可分别表示为:
– 学生(学号,姓名,性别,年龄,系别) – 教师(教师号,姓名,性别,年龄,职称,工资,岗位津贴,系
别)
– 课程(课程号,课程名,课时) – 选课(学号,课程号,成绩) – 授课(教师号,课程号)
• 给定一组域D1,D2,…,Dn(它们可以包含相同的元素, 即可以完全不同,也可以部分或全部相同)。D1,D2,… ,Dn的笛卡尔积为
D1×D2×……×Dn={(d1,d2,…,dn)|di∈Di,i=1,2,…,n}
每一个元素(d1,d2,…,dn)中的每一个值di叫做一个 分量(Component) ,di∈Di 每一个元素(d1,d2,…,dn)叫做一个n元组(n-Tuple ),简称元组(Tuple) (注意:元组是按序排列的)
5
.
笛卡尔积D1×D2×…×Dn的基数M(即元素(d1,d2, …,dn)的个数)为所有域的基数的累乘之
n
积,即M= m i 。 i1
例如,上述表示教师关系中姓名、性别两个域的笛卡尔 积为:
D1×D2={(李力,男),(李力,女),(王平,男),(王平 ,女),(刘伟,男),(刘伟,女)}
分量:李力、王平、刘伟、男、女 元组 :(李力,男),(李力,女) ,M=m1×m2=3×2=6
第2章 关系数据库
.
• 本章主要按数据模型的三个要素讲述关系数据库的一
些基本理论(关系模型的数据结构、关系的定义和性 质、关系的完整性、关系代数、关系数据库等 )
• 掌握关系的定义及性质、关系键、外部键等基本概念
以及关系演算语言的使用方法
第2章-关系数据库
计算机科学与工程系
列:属性对应字段
学号 050101
关系对应二维表
姓名 张三秋
性别 男
出生年月 1986-6-9
籍贯 广东
050102
050103 050104
主键
王五
李玉 黄国度
男
女 男
1986-8-8
1985-9-12 1986-8-13
江苏
湖南 广东
行:元组对应记录
分量对应数据项
关系模型与关系数据库的对应关系
院长 张兴杰 杨波 张三 李四 王二 林木
电话 85283291 85285393 85285313 85285329 85285333 85285343
地址 17号楼 信息大楼 1号楼 2号楼 3号楼 4号楼
null
教学进度
计算机科学与工程系
② 参照完整性 是对外键的约束,关系中的外键必 须是另一个关系的主键(或候选键)有效值 或空值(Null)。
A. B. C. D. 层次模型 网状模型 关系模型 以上3个都是
一公司
计算机科学与工程系
二公司
省代理 三公司 四公司
教学进度
复习:选择题
A. B. C. D. 关系型 层次型 网状型 以上皆非
计算机科学与工程系
如图所示的数据模型属于( )。
总裁
副总裁
部门A
员工甲
员工乙
教学进度
复习:选择题
计算机科学与工程系
计算机科学与工程系
Access是一种( )。
A. B. C. D. 数据库管理系统软件 操作系统软件 文字处理软件 CAD软件
教学进度
复习:选择题
计算机科学与工程系
数据库课件第2章
R
A B C
3 2 7 4 R
2=2
S
A B C
3 7 4 2 5 3
6 5 2 4 S
7 7 3 3 R.A
R.B R.C S.A S.B S.C
7 4
2 4
3 3
7 3
2 4
3 5
Question:
• 设关系R和S上的属性个数分别为2和3, 那么R 1<2 S等价于
• A. O1<2 (R*S) • C. O1<2(R S) B. O 1<4(R*S) D. O1<4(R S)
3. 连接(Join)
• 1)连接也称为θ连接 • 2)连接运算的含义 – 从两个关系的笛卡尔积中选取属性间满足一定条 件的元组
R S={
| tr R∧ts S∧tr[A]θts[B] }
– 连接运算从R和S的广义笛卡尔积R×S中选取 (R关系)在A属性组上的值与(S关系)在B属 性组上值满足比较关系的元组。
A
a1 a1 a1 a1 a1 a1 a2 a2 a2
B
b1 b1 b1 b2 b2 b2 b2 b2 b2
C
c1 c1 c1 c2 c2 c2 c1 c1 c1
A
a1 a1 a2 a1 a1 a2 a1 a1 a2
B
b2 b3 b2 b2 b3 b2 b2 b3 b2
C
c2 c2 c1 c2 c2 c1 c2 c2 c1
R
B b1 b2 b3 b4
C 5 6 8 12
B b1 b2 b3 b3 b5
S
E 3 7 10 2 2
连接(续)
R
C<E
S
A
《数据库系统概论》第二章关系数据库复习题及答案
《数据库系统概论》第二章关系数据库复习题及答案一、选择题1、关系数据库管理系统应能实现的专门关系运算包括。
A.排序、索引、统计 B.选择、投影、连接 C.关联、更新、排序 D.显示、打印、制表2、关系模型中,一个关键字是。
A.可由多个任意属性组成 B.至多由一个属性组成C.可由一个或多个其值能惟一标识该关系模式中任何元组的属性组成 D.以上都不是3、自然连接是构成新关系的有效方法。
一般情况下,当对关系R和S使用自然连接时,要求R和S含有一个或多个共有的。
A.元组 B.行 C.记录 D.属性4、关系运算中花费时间可能最长的运算是。
A.投影 B.选择 C.笛卡尔积 D.除5.关系模式的任何属性。
A.不可再分 B.可再分 C.命名在该关系模式中可以不惟一 D.以上都不是6.在关系代数运算中,五种基本运算为。
A.并、差、选择、投影、自然连接 B.并、差、交、选择、投影C.并、差、选择、投影、乘积 D.并、差、交、选择、乘积7、设有关系R,按条件f对关系R进行选择,正确的是。
A.R⨯R B.R ♦❖ R C.σf(R) D.∏f(R)8、如图所示,两个关系R1和R2,它们进行运算后得到R3。
R2R1R3A.交 B.并 C.笛卡尔积 D.连接二、填空题1、一个关系模式的定义格式为。
答案:关系名(属性名1,属性名2,…,属性名n)2、.一个关系模式的定义主要包括关系名、属性名、属性类型、属性长度和关键字。
答案:①关系名②属性名③属性类型④属性长度⑤关键字3、.关系代数运算中,传统的集合运算有①、②、③和④。
答案:①笛卡尔积②并③交④差4、关系代数运算中,基本的运算是①、②、③、④和⑤。
答案:①并②差③笛卡尔积④投影⑤选择5、关系代数运算中,专门的关系运算有选择、投影和连接。
答案:①选择②投影③连接6、关系数据库中基于数学上两类运算是关系代数和关系演算。
答案:①关系代数②关系演算7、.已知系(系编号,系名称,系主任,电话,地点)和学生(学号,姓名,性别,入学日期,专业,系编号)两个关系,系关系的主关键字是①,系关系的外关键字②,学生关系的主关键字是③,外关键字④答案:①系编号②无③学号④系编号三、应用题:设有如下所示的关系S(S#,SNAME,AGE,SEX)、C(C#,CNAME,TEACHER)和SC(S#,C#,GRADE),试用关系代数表达式表示下列查询语句:(1)检索“程军”老师所授课程的课程号(C#)和课程名(CNAME)。
数据库 第二章 关系数据库
关系的描述称为关系模式,在上图中二维表的表头那行
称为关系模式,又称表的框架。
(2)形式化定义 :
R(U,D,Dom,F)
其中:R表示关系名;
U表示组成该关系的属性集合;
D表示U中属性所来自的域;
Dom表示属性向域的映像的集合
F表示属性间数据的依赖关系集合
上一页 下一页 第一页 最末页
退出
第一节 关系数据结构及形式化定义
一、和”关系”相关的概念定义 二、“关系”相关的概念 三、关系数据库中关系的类型 四、数据库中基本关系的性质
上一页 下一页 第一页 最末页
退出
一、和”关系”相关的概念定义
1、域:P47 2、笛卡儿积:P48 3、关系:P48
上一页 下一页 第一页 最末页
退出
域的定义
专业号 001 002
专业名 计算机应用 信息管理
二、DBMS在维护完整性方面具备的功能
1、提供定义完整性约束条件的机制 2、提供完整性检查的方法 3、违约处理
1、实体完整性
(1)定义:Primary key ->主键 (2)检查:
①对基本表插入一条记录 ②对基本表的主码进行更新 (3)违约处理 ① 若主码不唯一则拒绝插入或修改 ②若主码的各个属性有一个为空则拒绝插入或修改
3、参照完整性(Referential Integrity)
(1)外码 (2)参照完整性规则
外码(Foreign Key)
• 外码的定义:设F是基本关系R的一个或一组属性,但 不是R的码,如果F与基本关系S的主码相对应,则 称F为基本关系R的外码。并称R为参照关系,S为被 参照关系。
• 外码举例: 学生(学号,姓名,性别,专业号,年龄) 专业(专业号,专业名)
第2章关系数据库
(2)模型概念单一。 (3)集合操作:操作对象和结果都是元组的集合,即关系。
LOGO
2.1 关系模型的基本概念
2.1.3 关系模型、关系子模式、关系内模式
美国国家标准学会(ANSI)所属标准计划和要求委员 会在1975年公布的研究报告中,把数据库分为三级:模式、 外模式和内模式。对用户而言可以对应分为概念级模式、 一般用户级模式和物理级模式(其体系结构如图2-1)。 关系模型中,概念模式是关系模式的集合,外模式是关系 子模式的集合,内模式是存储模式的集合。
2,…,n}
其中每一个元素(d 1 ,d 2 ,…,d n)称为一个n元组(nTuple),或简称为元组(Tuple)通常元素中的每一个值d i
称为一个分量。
LOGO
2.1 关系模型的基本概念来自❖ 两个集合R和S的笛卡尔积(或只是乘积)是元素对的集合, 该元素对是通过选择R的任何元素作为第一个元素,S的元 素作为第二个元素构成的。该乘积用RS表示。当R和S是 关系时,乘积本质上相同。
LOGO
2.1 关系模型的基本概念
1. 关系模式
关系实质上是一张二维表,表的每一行为一个元组, 每一列为一个属性。一个元组就是该关系所涉及的属性集 的笛卡尔积的一个元素。关系是元组的集合,也就是笛卡 尔积的一个子集。因此关系模式必须指出这个元组集合的 结构,即它由哪些属性构成,这些属性来自哪些域,以及 属性与域之间的映象关系。
•计算机专业
•李喆
•刘德成
•通信专业
•吕景刚
•刘德成
•通信专业
•王弶
•刘德成
•通信专业
•李喆
LOGO
数据库系统原理版课后习题参考答案
答案仅供参考第一章数据库系统概述选择题B、B、A简答题1.请简述数据,数据库,数据库管理系统,数据库系统的概念。
P27数据是描述事物的记录符号,是指用物理符号记录下来的,可以鉴别的信息。
数据库即存储数据的仓库,严格意义上是指长期存储在计算机中的有组织的、可共享的数据集合。
数据库管理系统是专门用于建立和管理数据库的一套软件,介于应用程序和操作系统之间。
数据库系统是指在计算机中引入数据库技术之后的系统,包括数据库、数据库管理系统及相关实用工具、应用程序、数据库管理员和用户。
2.请简述早数据库管理技术中,与人工管理、文件系统相比,数据库系统的优点。
数据共享性高数据冗余小易于保证数据一致性数据独立性高可以实施统一管理与控制减少了应用程序开发与维护的工作量3.请简述数据库系统的三级模式和两层映像的含义。
P31答:数据库的三级模式是指数据库系统是由模式、外模式和内模式三级工程的,对应了数据的三级抽象。
两层映像是指三级模式之间的映像关系,即外模式/模式映像和模式/内模式映像。
4.请简述关系模型与网状模型、层次模型的区别。
P35使用二维表结构表示实体及实体间的联系建立在严格的数学概念的基础上概念单一,统一用关系表示实体和实体之间的联系,数据结构简单清晰,用户易懂易用存取路径对用户透明,具有更高的数据独立性、更好的安全保密性。
.第二章关系数据库选择题C、C、D简答题1.请简述关系数据库的基本特征。
P48答:关系数据库的基本特征是使用关系数据模型组织数据。
2.请简述什么是参照完整性约束。
P55答:参照完整性约束是指:若属性或属性组F是基本关系R的外码,与基本关系S的主码K相对应,则对于R中每个元组在F上的取值只允许有两种可能,要么是空值,要么与S中某个元组的主码值对应。
3.请简述关系规范化过程。
答:对于存在数据冗余、插入异常、删除异常问题的关系模式,应采取将一个关系模式分解为多个关系模式的方法进行处理。
一个低一级范式的关系模式,通过模式分解可以转换为若干个高一级范式的关系模式,这就是所谓的规范化过程。
第2章 关系数据库
函数依赖
数据依赖是关系中各属性间互相依存,互相制约的 各种不同形式。它是数据内在的性质。 假如有一个描述学生的关系模式 : R(S#,SN,SD ),其中, S#(学号); SN(学生 姓名); SD(学生所属系名)。 学号S#确定后,学生姓名SN,所在系 SD就确定了。 这时我们说: S#函数决定SN,SD 。 或说SN,SD 函数依赖于S#。 记为S# → SN, S# → SD。
2.1 关系模型的概述
关系数据库系统是支持关系模型的数 据库系统。 关系模型由关系数据结构、关系操作集 合和关系的完整性约束三部分组成。 1. 关系数据结构 单一的数据结构----关系
现实世界的实体以及实体间的各种联系 均用关系来表示
数据的逻辑结构----二维表
从用户角度,关系模型中数据的逻辑结构 是一张二维表。
范式(Normal Form)
4. BC范式(BCNF) 通常认为是对3NF的修正,有时也称为第三范式。 定义: 关系R ∈1NF,若X→Y且YX时,X必含有码,则R ∈BCNF。 换句话说,在关系模式R中,若每一个决定因素包含码,则R ∈BCNF。 由BCNF的定义可得以下几个结论: (1)所有的非主属性对每一个码都是完全函数依赖。 (2)所有的主属性对每一个不包含它的码也是完全函数依赖。 (3)不存在任何属性能够完全函数依赖于不是码的任何一组属性。 例:关系模式C(C#,CNAME,PC#) 其中,C#(课程编号) CNAME(课程名称) PC#(先行课编号)
范式(Normal Form)
学生信息也删了)、冗余(例学生选了K门课,系地址就存储了k次)。 用投影方法,将R分解成两个关系模式: RSD(S#,SD,SDADDR) RSC(S#,C#,CG) 这样课与系地址无关了。 这样以来:(S#,C#) f CG S# f SD S# f SDADDR 所以:RSC ∈2NF;RSD ∈2NF
数据库第2章2.4-2.5
21
象集举例
例
A a1 a1 a2
17
常用的几个记号
( 3 ) tr ts R 为 n 目关系,S 为 m 目关系, tr R,tsS, tr ts 称为元组的连接。 它是一个 n + m 列 的元组,前 n 个分量为 R 中的一个 n 元组,后 m 个分量为 S 中的一个 m 元组。(R 和 S 的笛卡尔积)
19
A R a1 a1 a2 A
概述 传统的集合运算 专门的关系运算
并 交
差
笛卡尔积
6
1. 并(Union)
设关系 R 和 S: 具有相同的目 n(即两个关系都有 n 个属性) 相应的属性取自同一个域 则: 1)关系 R 和 S 的 并 记为: R∪S = { t | t R ∨ t S } 结果仍为 n 目关系,由 属于R 或者属于S 的 元组组成
7
并(续)
A R a1 a1 B b1 b2 C c1 c2 A R∪S a1 a1 a1 a2 B b1 b2 b3 b2 C c1 c2 c2 c1
a2
A S a1 a1 a2
b2
B b2 b3 b2
c1
C c2 c2 c1
8
2. 差(Difference)
设关系 R 和 S: 具有相同的目 n(即两个关系都有 n 个属性) 相应的属性取自同一个域 则: 2)关系 R 和 S 的 差 记为: R-S={t|tR∧tS} 结果仍为 n 目关系,由 属于R 而不属于S 的 元组组成
设关系模式为R(A1,A2,…,An),它的一 个关系设为R。tR 表示 t 是 R 的一个元组,t[Ai] 则表示元组 t 中相应于属性 Ai 的一个分量
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
交 (续)
2.4 关系代数
概述
传统的集合运算 专门的关系运算
2.4.2 专门的关系运算
先引入几个记号
(1) R,tR,t[Ai]
设关系模式为R(A1,A2,…,An)
它的一个关系设为R tR表示t是R的一个元组 t[Ai]则表示元组t中相应于属性Ai的一个分量
专门的关系运算(续)
数据库系统概论
An Introduction to Database System
第二章 关系数据库
第二章 关系数据库
2.1 关系模型概述
2.2 关系数据结构
2.3 关系的完整性
2.4 关系代数
2.5 关系演算
2.6 小结
2.4 关系代数
概述
传统的集合运算 专门的关系运算
概述
表2.4 关系代数运算符 运算符 含义 运算符 含义
Student
学号 Sno 姓名 Sname 性别 Ssex 年龄 Sage 所在系 Sdept
200215121
200215122
李勇
刘晨
男
女
20
19
CS
IS
200215123
200215125
王敏
张立
女
男 (a)
18
19
MA
IS
专门的关系运算(续)
Course
课程号 Cno 1 2 3 4 5 6 7 课程名 Cname 数据库 数学 信息系统 操作系统 数据结构 数据处理 PASCAL语言 6 1 6 7 先行课 Cpno 5 学分 Ccredit 4 2 4 3 4 2 4
小结(续)
关系代数表达式 关系代数运算经有限次复合后形成的式子
典型关系代数语言 ISBL(Information System Base Language) 由IBM United Kingdom研究中心研制 用于PRTV(Peterlee Relational Test Vehicle)实验系统
专门的关系运算(续)
x1在R中的象集
Zx1 ={Z1,Z2,Z3},
x2在R中的象集
Zx2 ={Z2,Z3},
x3在R中的象集
Zx3={Z1,Z3}
象集举例
专门的关系运算(续)
选择
投影
学生关系Student、课程关系Course和选修关系SC
剩余的属性组。
专门的关系运算(续)
(3) tr ts R为n目关系,S为m目关系。
tr R,tsS, tr ts称为元组的连接。
tr ts是一个n + m列的元组,前n个分量为R中的一个
n元组,后m个分量为S中的一个m元组。
专门的关系运算(续)
(4)象集Zx
给定一个关系R(X,Z),X和Z为属性组。 当t[X]=x时,x在R中的象集(Images Set)为: Zx={t[Z]|t R,t[X]=x} 它表示R中属性组X上值为x的诸元组在Z上分量的集合
具有相同的目n 相应的属性取自同一个域
R - S
仍为n目关系,由属于R而不属于S的所有元组组成
R -S = { t|tR∧tS }
差(续)
3. 交(Intersection)
R和S
具有相同的目n 相应的属性取自同一个域
R∩S
仍为n目关系,由既属于R又属于S的元组组成 R∩S = { t|t R∧t S } R∩S = R –(R-S)
(2) A,t[A], A
若A={Ai1,Ai2,…,Aik},其中Ai1,Ai2,…,Aik是A1, A2,…,An中的一部分,则A称为属性列或属性组。 t[A]=(t[Ai1],t[Ai2],…,t[Aik])表示元组t在属性列A上诸 分量的集合。 A则表示{A1,A2,…,An}中去掉{Ai1,Ai2,…,Aik}后
连接(续)
3)两类常用连接运算 等值连接(equijoin) 什么是等值连接 θ为“=”的连接运算称为等值连接 等值连接的含义 从关系R与S的广义笛卡尔积中选取A、B属性 值相等的那些元组,即等值连接为: R S = { tr ts | tr R∧ts S∧tr[A] = ts[B] }
连接(续)
外连接
如果把舍弃的元组也保存在结果关系中,而在其他属 性上填空值(Null),这种连接就叫做外连接(OUTER JOIN)。
左外连接
如果只把左边关系R中要舍弃的元组保留就叫做左外连 接(LEFT OUTER JOIN或LEFT JOIN)
右外连接
如果只把右边关系S中要舍弃的元组保留就叫做右外连 接(RIGHT OUTER JOIN或RIGHT JOIN)。
[例10] 查询选修了全部课程的学生号码和姓名。
πSno,Cno(SC)÷πCno(Course) πSno,Sname(Student)
小结
关系代数运算
关系代数运算
并、差、交、笛卡尔积、投影、选择、连接、除
基本运算
并、差、笛卡尔积、投影、选择
交、连接、除
可以用5种基本运算来表达
引进它们并不增加语言的能力,但可以简化表达
πSdept(Student)
结果: Sdept CS
IS MA
3. 连接(Join)
1)连接也称为θ连接 2)连接运算的含义 从两个关系的笛卡尔积中选取属性间满足一定条件的 元组 R S = t{ t | tr R∧ts S∧tr[A]θts[B] }
AθB r s
A和B : 分别为R和S上度数相等且可比的属性 组 θ:比较运算符 连接运算从R和S的广义笛卡尔积R×S中选取(R 关系)在A属性组上的值与(S关系)在B属性组 上值满足比较关系θ的元组
连接(续)
下图是例5中关系R和关系S的外连接
连接(续)
图(b)是例5中关系R和关系S的左外连接,图(c)是右外连接
4. 除(Division)
给定关系R (X,Y) 和S (Y,Z),其中X,Y,Z为属性组。
R中的Y与S中的Y可以有不同的属性名,但必须出自相同的域集。 R与S的除运算得到一个新的关系P(X), P是R中满足下列条件的元组在 X 属性列上的投影:
第二章 关系数据库
2.1 关系模型概述
2.2 关系数据结构
2.3 关系的完整性
概述
传统的集合运算 专门的关系运算
1. 并(Union)
R和S
具有相同的目n(即两个关系都有n个属性) 相应的属性取自同一个域
R∪S
仍为n目关系,由属于R或属于S的元组组成 R∪S = { t|t R∨t S }
并(续)
2. 差(Difference)
R和S
女
女 男
19
18 19
IS
MA IS
2. 投影(Projection)
1)投影运算符的含义
从R中选择出若干属性列组成新的关系
πA(R) = { t[A] | t R }
A:R中的属性列
2. 投影(Projection)
2)投影操作主要是从列的角度进行运算
π
但投影之后不仅取消了原关系中的某些列,而 且还可能取消某些元组(避免重复行)
πSname(σCpno='5'(Course 或 πSname(σCpno='5'(Course) 或
πSname (πSno (σCpno='5' (Course) SC)
SC
Student))
SC
πSno,Sname(Student))
πSno,Sname (Student))
综合举例(续)
选择(续)
3) 选择运算是从关系R中选取使逻辑表达式F为真
的元组,是从行的角度进行的运算
σ
选择(续)
[例1] 查询信息系(IS系)全体学生 σSdept = 'IS' (Student) 或 σ5 ='IS' (Student)
结果:
Sno 200215122
Sname 刘晨
Ssex 女
Sage 19
4)一般的连接操作是从行的角度进行运算。
R
S
AθB
自然连接还需要取消重复列,所以是同时从行和 列的角度进行运算。
连接(续)
[例5]关系R和关系S 如下所示:
连接(续)
一般连接 R
C<E
S的结果如下:
连接(续)
等值连接 R S 的结果如下:
R.B=S.B
连接(续)
自然连接 R S的结果如下:
元组在X上分量值x的象集Yx包含S在Y上投影的集合,记作:
R÷S = {tr [X] | tr R∧π Y (S) Yx }
Yx:x在R中的象集,x = tr[X]
除(续)
2)除操作是同时从行和列角度进行运算
R
÷
S
除(续)
[例6]设关系R、S分别为下图的(a)和(b),R÷S的结果为图(c)
Sdept IS
200215125
张立
男
19
IS
选择(续)
[例2] 查询年龄小于20岁的学生 σSage < 20(Student) 或 σ4 < 20(Student) 结果:
Sno Sname Ssex Sage Sdept
200215122
200215123 200215125
刘晨
王敏 张立
200215121
200215121 200215122 200215122
2
3 2 3
综合举例(续)
[例 8] 查询选修了2号课程的学生的学号。