高三物理上学期带电粒子在复合场中的运动

合集下载

高三物理带电粒子在复合场中的运动

高三物理带电粒子在复合场中的运动
3 t 1 2 2 ml qE
【名师支招】带电粒子分别在两个区域中做类平抛运动和匀速圆周运动,通过连接点的 速度将两种运动联系起来。
1
在平面直角坐标系xOy中,第Ⅰ象限存在沿y轴负方向的匀强 电场,第Ⅳ象限存在垂直于坐标平面向外的匀强磁场,磁感 应强度为B。一质量为m、电荷量为q的带正电的粒子从y 轴正 半轴上的M点以速度v0垂直于y轴射入电场,经x轴上的N点与x 轴正方向成θ=60°角射入磁场,最后从y轴负半轴上的P点垂 直于y轴射出磁场,如图8-3-7所示。不计粒子重力,求: (1)M、N两点间的电势差UMN; (2)粒子在磁场中运动的轨道半径r; (3)粒子从M 点运动到P点的总时间t。
图8-3-8
图8-3-9 【名师支招】(1)带电物体在复合场中做变速直线运动时,所受的洛伦兹力的大小不 断变化,而洛伦兹力的变化往往引起其他力的变化,从而导致加速度的产生。 (2)分析带电物体在复合场中的运动问题,与力学中相关问题的分析方法完全一致, 只不过须注意同时分析电场力及洛伦兹力对带电物体运动的影响。
图8-3-7
3mv0 2 【答案】(1) 2q 2mv0 (2) qB 3 (3) 3qB
3 2 m

热点二
带电体在相互叠加场的运动
【例2】如图8-3-8所示,套在很长的绝缘直棒上的小球,其质量为m,电荷量为+q,小球可在棒上 滑动。将此棒竖直放在互相垂直,且沿水平方向的匀强电场和匀强磁场中,电场强度为E,磁 感应强度为B,小球与棒的动摩擦因数为μ。求小球由静止沿棒下滑的最大加速度和最大速度。 (小球电量不变)
热点一
带电粒子在相互分离的电场和磁场中的运动
【例1】[2009年高考宁夏理综卷]如图8-3-5所示,在第一象限有一匀强电场,场强 大小为E,方向与y轴平行;在x轴下方有一匀强磁场,磁场方向与纸面垂直。一 质量为m、电荷量为-q(q>0)的粒子以平行于x轴的速度从y轴上的P点处射入电场, 在x轴上的Q点处进入磁场,并从坐标原点O离开磁场。粒子在磁场中的运动轨迹 与y轴交于M点。已知OP=l,OQ= 2 3 l。不计重力。求: (1)M点与坐标原点O间的距离; (2)粒子从P点运动到M点所用的时间。

带电粒子在复合场中的运动公式

带电粒子在复合场中的运动公式

带电粒子在复合场中的运动公式在物理学中,带电粒子在复合场中的运动是一个重要的研究课题。

复合场是指同时存在电磁场和重力场的情况,这种情况下带电粒子的运动将受到两种力的影响。

为了描述带电粒子在复合场中的运动,物理学家们提出了一系列的运动公式,其中最著名的是洛伦兹力和引力的相互作用。

洛伦兹力是指带电粒子在电磁场中受到的力,它可以用以下公式描述:\[ \mathbf{F} = q(\mathbf{E} + \mathbf{v} \times\mathbf{B}) \]其中,\( \mathbf{F} \) 是洛伦兹力,\( q \) 是带电粒子的电荷,\( \mathbf{E} \) 是电场强度,\( \mathbf{v} \) 是带电粒子的速度,\( \mathbf{B} \) 是磁感应强度。

这个公式表明了带电粒子在电磁场中受到的力是电场力和磁场力的叠加效果。

另一方面,带电粒子在重力场中受到的力可以用牛顿的引力定律描述:\[ \mathbf{F} = m\mathbf{g} \]其中,\( \mathbf{F} \) 是重力,\( m \) 是带电粒子的质量,\( \mathbf{g} \) 是重力加速度。

当带电粒子同时受到电磁场和重力场的影响时,它的运动将受到这两种力的综合作用。

这种情况下,带电粒子的运动将由洛伦兹力和引力共同决定,可以用牛顿第二定律来描述:\[ \mathbf{F} = m\mathbf{a} \]其中,\( \mathbf{F} \) 是带电粒子所受的合力,\( m \) 是带电粒子的质量,\( \mathbf{a} \) 是带电粒子的加速度。

通过这些运动公式,我们可以定量地描述带电粒子在复合场中的运动规律,为理解和预测带电粒子在复合场中的行为提供了重要的理论基础。

这对于电磁场和引力场的研究以及相关技术应用具有重要意义。

高中物理-第一篇 专题三 微专题4 带电粒子在复合场中的运动

高中物理-第一篇 专题三 微专题4 带电粒子在复合场中的运动
1234
(2)电场的电场强度大小E以及磁场的磁感应强度大小B;
答案
mv2 6qL
2 3mv 3qL
1234
对粒子从Q点运动到P点的过程,根据动能
定理有 -qEL=12mv2-12mv02 解得 E=6mqvL2
设粒子从Q点运动到P点的时间为t1,有
0+v0sin 2
θ·t1=L
1234
解得
t1=2
3mv02 3qE

竖直方向的位移 y=0+2 vyt=m6qvE02

则粒子发射位置到P点的距离为
d=
x2+y2=
13mv02 6qE

(2)求磁感应强度大小的取值范围; 答案 3-3q3lmv0<B<2mqlv0
设粒子在磁场中运动的速度为 v,结合题意及几何
关系可知,v=sinv60 0°=233v0
垂直于纸面向外的匀强磁场.OM上方存在电场强度大小为E的匀强电场,
方向竖直向上.在OM上距离O点3L处有一点A,在电场中距离A为d的位置
由静止释放一个质量为m、电荷量为q的带负电的粒子,经电场加速后该
粒子以一定速度从A点射入磁场后,第一次恰好不从ON边界射出.不计粒
子的重力.求:
(1)粒子运动到A点时的速率v0;
d.N边界右侧区域Ⅱ中存在磁感应强度大小为B、方向垂直于纸面向里的匀
强磁场.M边界左侧区域Ⅲ内,存在垂直于纸面向外的匀强磁场.边界线M
上的O点处有一离子源,水平向右发射同种正离子.已知初速度为v0的离子 第一次回到边界M时恰好到达O点,电场及两磁场区域
足够大,不考虑离子的重力和离子间的相互作用.
(1)求离子的比荷;
迹如图乙所示,设此时的轨迹圆圆心为O2,半

高中物理人教版第十章-磁场 第七课时 带电粒子(质点)在复合场中的运动

高中物理人教版第十章-磁场 第七课时  带电粒子(质点)在复合场中的运动

a F合 qvB 2g
mm
y 1 at2,x vt,tan y
2
x
解得:t 3v,x 3v2
g
g
x
B o A θ F电
mg
B z
y
则A、B之间的距离为:L x 2 3v2 cos 60 g
电场力做功:W=EqL=6mv2
例4:如图所示,虚线上方有场强为E1=6×104 N/C的匀强 电场,方向竖直向上,虚线下方有场强为E2的匀强电场 (电场线用实线表示),另外在虚线上、下方均有匀强磁 场,磁感应强度相等,方向垂直纸面向里.ab是一根长为 L=0.3 m的绝缘细杆,沿E1电场线方向放置在虚线上方的 电磁场中,b端在虚线上.现将套在ab杆上的电荷量为q= -5×10−8 C的带电小环从a端由静止开始释放后,小环先 做加速运动后做匀速运动到达b端,小环与杆间的动摩擦 因数为μ=0.25,不计小环的重力,小环脱离ab杆后在虚线 下方仍沿原方向做匀速直线运动.
(1)求虚线下方的电场强度E2方向以及a 大E小1 ;
Bb
(2)若小环到达b点时立即撤去虚线下方的磁场,其他
条件不变,测得小环进入虚线下方区域后运动轨迹上一点
P到b点的水平距离为 L ,竖直距离为 L ,则小环从a
2
3
到b的运动过程中克服摩擦力做的功为多少?
解析:(1)小环脱离ab杆后
a E1
向下方向做匀速直线运动,受力
U qvB E电q d q
U
F电
F洛
v
v
即:E U Bvd
F洛
F电
3.电磁流量计
如图所示为原理图。一圆形导管直径为d,用非
磁性材料制成,其中有可以导电的液体向右流动。导

带电粒子在复合场中的运动

带电粒子在复合场中的运动

带电粒子在复合场中的运动一、知识梳理1.复合场的分类(1)叠加场:电场、磁场、重力场共存,或其中某两场共存.(2)组合场:电场与磁场各位于一定的区域内,并不重叠,或相邻或在同一区域电场、磁场交替出现.2.带电粒子在复合场中的运动形式当带电粒子在复合场中所受的合外力为0时,粒子将做匀速直线运动或静止。

当带电粒子所受的合外力与运动方向在同一条直线上时,粒子将做变速直线运动. 当带电粒子所受的合外力充当向心力时,粒子将做匀速圆周运动。

当带电粒子所受的合外力的大小、方向均是不断变化的时,粒子将做变加速运动,这类问题一般只能用能量关系处理。

3. 题型分析:带电粒子在匀强电场、匀强磁场中可能的运动性质在电场强度为E 的匀强电场中 在磁感应强度为B 的匀强磁场中 初速度为零做初速度为零的匀加速直线运动保持静止初速度垂直场线 做匀变速曲线运动(类平抛运动) 做匀速圆周运动 初速度平行场线 做匀变速直线运动 做匀速直线运动特点受恒力作用,做匀变速运动洛伦兹力不做功,动能不变“电偏转”和“磁偏转"的比较垂直进入匀强磁场(磁偏转)垂直进入匀强电场(电偏转)情景图受力 F B =qv 0B ,大小不变,方向总指向圆心,方向变化,F B 为变力F E =qE ,F E 大小、方向不变,为恒力运动规律 匀速圆周运动r =mv 0Bq,T =错误!类平抛运动v x =v 0,v y =Eqm tx =v 0t ,y =错误!t 2运动时间 t =错误!T =错误!t =错误!,具有等时性动能 不变变化4。

常见模型(1)从电场进入磁场电场中:加速直线运动⇓磁场中:匀速圆周运动电场中:类平抛运动⇓磁场中:匀速圆周运动(2)从磁场进入电场磁场中:匀速圆周运动⇓错误!电场中:匀变速直线运动磁场中:匀速圆周运动⇓错误!电场中:类平抛运动二、针对练习1.在某一空间同时存在相互正交的匀强电场和匀强磁场,匀强电场的方向竖直向上,磁场方向如图。

带电粒子在复合场中的运动

带电粒子在复合场中的运动

带电粒子在复合场中的运动基础知识归纳1.复合场复合场是指 电场 、 磁场 和 重力场 并存,或其中两场并存,或分区域存在,分析方法和力学问题的分析方法基本相同,不同之处是多了电场力和磁场力,分析方法除了力学三大观点(动力学、动量、能量)外,还应注意:(1) 洛伦兹力 永不做功.(2) 重力 和 电场力 做功与路径 无关 ,只由初末位置决定.还有因洛伦兹力随速度而变化,洛伦兹力的变化导致粒子所受 合力 变化,从而加速度变化,使粒子做 变加速 运动.2.带电粒子在复合场中无约束情况下的运动性质(1)当带电粒子所受合外力为零时,将 做匀速直线运动 或处于 静止 ,合外力恒定且与初速度同向时做匀变速直线运动,常见情况有:①洛伦兹力为零(v 与B 平行),重力与电场力平衡,做匀速直线运动,或重力与电场力合力恒定,做匀变速直线运动.②洛伦兹力与速度垂直,且与重力和电场力的合力平衡,做匀速直线运动.(2)当带电粒子所受合外力充当向心力,带电粒子做 匀速圆周运动 时,由于通常情况下,重力和电场力为恒力,故不能充当向心力,所以一般情况下是重力恰好与电场力相平衡,洛伦兹力充当向心力.(3)当带电粒子所受合外力的大小、方向均不断变化时,粒子将做非匀变速的 曲线运动 .3.带电粒子在复合场中有约束情况下的运动带电粒子所受约束,通常有面、杆、绳、圆轨道等,常见的运动形式有 直线运动 和圆周运动 ,此类问题应注意分析洛伦兹力所起的作用.4.带电粒子在交变场中的运动带电粒子在不同场中的运动性质可能不同,可分别进行讨论.粒子在不同场中的运动的联系点是速度,因为速度不能突变,在前一个场中运动的末速度,就是后一个场中运动的初速度.5.带电粒子在复合场中运动的实际应用(1)质谱仪①用途:质谱仪是一种测量带电粒子质量和分离同位素的仪器.②原理:如图所示,离子源S 产生质量为m ,电荷量为q 的正离子(重力不计),离子出来时速度很小(可忽略不计),经过电压为U 的电场加速后进入磁感应强度为B 的匀强磁场中做匀速圆周运动,经过半个周期而达到记录它的照相底片P 上,测得它在P 上的位置到入口处的距离为L ,则qU =21mv 2-0;q B v =m r v 2;L =2r 联立求解得m =UL qB 822,因此,只要知道q 、B 、L 与U ,就可计算出带电粒子的质量m ,若q 也未知,则228L B U m q 又因m ∝L 2,不同质量的同位素从不同处可得到分离,故质谱仪又是分离同位素的重要仪器.(2)回旋加速器①组成:两个D 形盒、大型电磁铁、高频振荡交变电压,D 型盒间可形成电压U .②作用:加速微观带电粒子.③原理:a .电场加速qU =ΔE kb .磁场约束偏转qBv =m rv 2,r =qB mv ∝v c .加速条件,高频电源的周期与带电粒子在D 形盒中运动的周期相同,即T 电场=T 回旋=qBm π2 带电粒子在D 形盒内沿螺旋线轨道逐渐趋于盒的边缘,达到预期的速率后,用特殊装置把它们引出.④要点深化a .将带电粒子在两盒狭缝之间的运动首尾相连起来可等效为一个初速度为零的匀加速直线运动.b .带电粒子每经电场加速一次,回旋半径就增大一次,所以各回旋半径之比为1∶2∶3∶…c .对于同一回旋加速器,其粒子回旋的最大半径是相同的.d .若已知最大能量为E km ,则回旋次数n =qUE 2k m e .最大动能:E km =mr B q 22m 22 f .粒子在回旋加速器内的运动时间:t =UBr 2π2m (3)速度选择器①原理:如图所示,由于所受重力可忽略不计,运动方向相同而速率不同的正粒子组成的粒子束射入相互正交的匀强电场和匀强磁场所组成的场区中,已知电场强度为B ,方向垂直于纸面向里,若粒子运动轨迹不发生偏转(重力不计),必须满足平衡条件:qBv =qE ,故v =BE ,这样就把满足v =BE 的粒子从速度选择器中选择出来了. ②特点:a .速度选择器只选择速度(大小、方向)而不选择粒子的质量和电荷量,如上图中若从右侧入射则不能穿过场区.b .速度选择器B 、E 、v 三个物理量的大小、方向互相约束,以保证粒子受到的电场力和洛伦兹力等大、反向,如上图中只改变磁场B 的方向,粒子将向下偏转.c .v ′>v =B E 时,则qBv ′>qE ,粒子向上偏转;当v ′<v =BE 时,qBv ′<qE ,粒子向下偏转. ③要点深化a .从力的角度看,电场力和洛伦兹力平衡qE =qvB ;b .从速度角度看,v =BE ; c .从功能角度看,洛伦兹力永不做功.(4)电磁流量计①如图所示,一圆形导管直径为d ,用非磁性材料制成,其中有可以导电的液体流过导管.②原理:导电液体中的自由电荷(正、负离子)在洛伦兹力作用下横向偏转,a 、b 间出现电势差,形成电场.当自由电荷所受电场力和洛伦兹力平衡时,a 、b 间的电势差就保持稳定.由Bqv =Eq =dU q ,可得v =Bd U 液体流量Q =Sv =4π2d ·Bd U =BdU 4π (5)霍尔效应如图所示,高为h 、宽为d 的导体置于匀强磁场B 中,当电流通过导体时,在导体板的上表面A 和下表面A ′之间产生电势差,这种现象称为霍尔效应,此电压称为霍尔电压.设霍尔导体中自由电荷(载流子)是自由电子.图中电流方向向右,则电子受洛伦兹力 向上 ,在上表面A 积聚电子,则qvB =qE ,E =Bv ,电势差U =Eh =Bhv .又I =nqSv导体的横截面积S =hd得v =nqhdI 所以U =Bhv =dBI k nqd BI k=nq1,称霍尔系数.重点难点突破一、解决复合场类问题的基本思路1.正确的受力分析.除重力、弹力、摩擦力外,要特别注意电场力和磁场力的分析.2.正确分析物体的运动状态.找出物体的速度、位置及其变化特点,分析运动过程,如果出现临界状态,要分析临界条件.3.恰当灵活地运用动力学三大方法解决问题.(1)用动力学观点分析,包括牛顿运动定律与运动学公式.(2)用动量观点分析,包括动量定理与动量守恒定律.(3)用能量观点分析,包括动能定理和机械能(或能量)守恒定律.针对不同的问题灵活地选用,但必须弄清各种规律的成立条件与适用范围.二、复合场类问题中重力考虑与否分三种情况1.对于微观粒子,如电子、质子、离子等一般不做特殊交待就可以不计其重力,因为其重力一般情况下与电场力或磁场力相比太小,可以忽略;而对于一些实际物体,如带电小球、液滴、金属块等不做特殊交待时就应考虑其重力.2.在题目中有明确交待是否要考虑重力的,这种情况比较正规,也比较简单.3.直接看不出是否要考虑重力的,在进行受力分析与运动分析时,要由分析结果,先进行定性确定是否要考虑重力.典例精析1.带电粒子在复合场中做直线运动的处理方法【例1】如图所示,足够长的光滑绝缘斜面与水平面间的夹角为α(sin α=0.6),放在水平方向的匀强电场和匀强磁场中,电场强度E =50 V/m ,方向水平向左,磁场方向垂直纸面向外.一个电荷量q =+4.0×10-2 C 、质量m =0.40 kg 的光滑小球,以初速度v 0=20 m/s 从斜面底端向上滑,然后又下滑,共经过3 s 脱离斜面.求磁场的磁感应强度(g 取10 m/s 2).【解析】小球沿斜面向上运动的过程中受力分析如图所示.由牛顿第二定律,得qE cos α+mg sin α=ma 1,故a 1=g sin α+mqE α cos =10×0.6 m/s 2+40.08.050100.42⨯⨯⨯- m/s 2=10 m/s 2,向上运动时间t 1=100a v --=2 s 小球在下滑过程中的受力分析如图所示.小球在离开斜面前做匀加速直线运动,a 2=10 m/s 2运动时间t 2=t -t 1=1 s脱离斜面时的速度v =a 2t 2=10 m/s在垂直于斜面方向上有:qvB +qE sin α=mg cos α故B =T 106.050-T 10100.48.01040.0 sin cos 2⨯⨯⨯⨯⨯=--v E qv mg αα=5 T 【思维提升】(1)知道洛伦兹力是变力,其大小随速度变化而变化,其方向随运动方向的反向而反向.能从运动过程及受力分析入手,分析可能存在的最大速度、最大加速度、最大位移等.(2)明确小球脱离斜面的条件是F N =0.【拓展1】如图所示,套在足够长的绝缘粗糙直棒上的带正电小球,其质量为m ,带电荷量为q ,小球可在棒上滑动,现将此棒竖直放入沿水平方向且互相垂直的匀强磁场和匀强电场中.设小球电荷量不变,小球由静止下滑的过程中( BD )A.小球加速度一直增大B.小球速度一直增大,直到最后匀速C.杆对小球的弹力一直减小D.小球所受洛伦兹力一直增大,直到最后不变【解析】小球由静止加速下滑,f 洛=Bqv 在不断增大,开始一段,如图(a):f 洛<F 电,水平方向有f 洛+F N =F 电,加速度a =mf mg -,其中f =μF N ,随着速度的增大,f 洛增大,F N 减小,加速度也增大,当f 洛=F 电时,a 达到最大;以后如图(b):f 洛>F 电,水平方向有f 洛=F 电+F N ,随着速度的增大,F N 也增大,f 也增大,a =mf mg -减小,当f =mg 时,a =0,此后做匀速运动,故a 先增大后减小,A 错,B 对,弹力先减小后增大,C 错,由f 洛=Bqv 知D 对.2.灵活运用动力学方法解决带电粒子在复合场中的运动问题【例2】如图所示,水平放置的M 、N 两金属板之间,有水平向里的匀强磁场,磁感应强度B =0.5 T.质量为m 1=9.995×10-7 kg 、电荷量为q =-1.0×10-8 C 的带电微粒,静止在N 板附近.在M 、N 两板间突然加上电压(M 板电势高于N 板电势)时,微粒开始运动,经一段时间后,该微粒水平匀速地碰撞原来静止的质量为m 2的中性微粒,并粘合在一起,然后共同沿一段圆弧做匀速圆周运动,最终落在N 板上.若两板间的电场强度E =1.0×103 V/m ,求:(1)两微粒碰撞前,质量为m 1的微粒的速度大小;(2)被碰撞微粒的质量m 2;(3)两微粒粘合后沿圆弧运动的轨道半径.【解析】(1)碰撞前,质量为m 1的微粒已沿水平方向做匀速运动,根据平衡条件有m 1g +qvB =qE解得碰撞前质量m 1的微粒的速度大小为v =5.0100.11010995.9100.1100.187381⨯⨯⨯⨯-⨯⨯⨯=----qB g m qE m/s =1 m/s (2)由于两微粒碰撞后一起做匀速圆周运动,说明两微粒所受的电场力与它们的重力相平衡,洛伦兹力提供做匀速圆周运动的向心力,故有(m 1+m 2)g =qE解得m 2=g qE 1m -=)10995.910100.1100.1(738--⨯-⨯⨯⨯ kg =5×10-10 kg (3)设两微粒一起做匀速圆周运动的速度大小为v ′,轨道半径为R ,根据牛顿第二定律有qv ′B =(m 1+m 2)Rv 2' 研究两微粒的碰撞过程,根据动量守恒定律有m 1v =(m 1+m 2)v ′以上两式联立解得R =5.0100.1110995.9)(87121⨯⨯⨯⨯=='+--qB v m qB v m m m≈200 m 【思维提升】(1)全面正确地进行受力分析和运动状态分析,f洛随速度的变化而变化导致运动状态发生新的变化.(2)若mg 、f 洛、F 电三力合力为零,粒子做匀速直线运动.(3)若F 电与重力平衡,则f 洛提供向心力,粒子做匀速圆周运动.(4)根据受力特点与运动特点,选择牛顿第二定律、动量定理、动能定理及动量守恒定律列方程求解.【拓展2】如图所示,在相互垂直的匀强磁场和匀强电场中,有一倾角为θ的足够长的光滑绝缘斜面.磁感应强度为B ,方向水平向外;电场强度为E ,方向竖直向上.有一质量为m 、带电荷量为+q 的小滑块静止在斜面顶端时对斜面的正压力恰好为零.(1)如果迅速把电场方向转为竖直向下,求小滑块能在斜面上连续滑行的最远距离L 和所用时间t ;(2)如果在距A 端L /4处的C 点放入一个质量与滑块相同但不带电的小物体,当滑块从A点静止下滑到C 点时两物体相碰并黏在一起.求此黏合体在斜面上还能再滑行多长时间和距离?【解析】(1)由题意知qE =mg场强转为竖直向下时,设滑块要离开斜面时的速度为v ,由动能定理有(mg +qE )L sin θ=221mv ,即2mgL sin θ=221mv 当滑块刚要离开斜面时由平衡条件有qvB =(mg +qE )cos θ,即v =qBmg θ cos 2 由以上两式解得L =θθ sin cos 2222B q g m 根据动量定理有t =θθ cot sin 2qBm mg mv = (2)两物体先后运动,设在C 点处碰撞前滑块的速度为v C ,则2mg ·4L sin θ=21mv 2 设碰后两物体速度为u ,碰撞前后由动量守恒有mv C =2mu设黏合体将要离开斜面时的速度为v ′,由平衡条件有qv ′B =(2mg +qE )cos θ=3mg cos θ由动能定理知,碰后两物体共同下滑的过程中有3mg sin θ·s =21·2mv ′2-21·2mu 2 联立以上几式解得s =12sin cos 32222L B q g m -θθ 将L 结果代入上式得s =θθ sin 12cos 352222B q g m 碰后两物体在斜面上还能滑行的时间可由动量定理求得t ′=qBm mg mu v m 35 sin 322=-'θcot θ【例3】在平面直角坐标系xOy 中,第Ⅰ象限存在沿y 轴负方向的匀强电场,第Ⅳ象限存在垂直于坐标平面向外的匀强磁场,磁感应强度为B .一质量为m 、电荷量为q 的带正电粒子从y 轴正半轴上的M 点以速度v 0垂直于y 轴射入电场,经x 轴上的N 点与x 轴正方向成θ=60°角射入磁场,最后从y 轴负半轴上的P 点垂直于y 轴射出磁场,如图所示.不计重力,求:(1)M 、N 两点间的电势差U MN ;(2)粒子在磁场中运动的轨道半径r ;(3)粒子从M 点运动到P 点的总时间t .【解析】(1)设粒子过N 点时的速度为v ,有v v 0=cos θ ① v =2v 0 ②粒子从M 点运动到N 点的过程,有qU MN =2022121mv mv - ③ U MN =3mv 20/2q ④(2)粒子在磁场中以O ′为圆心做匀速圆周运动,半径为O ′N ,有qvB =rmv 2⑤ r =qBmv 02 ⑥ (3)由几何关系得ON =r sin θ⑦ 设粒子在电场中运动的时间为t 1,有ON =v 0t 1 ⑧ t 1=qB m 3 ⑨粒子在磁场中做匀速圆周运动的周期T =qB m π2 ⑩设粒子在磁场中运动的时间为t 2,有t 2=2ππθ-T ⑪ t 2=qB m 32π ⑫t =t 1+t 2=qBm 3π)233(+ 【思维提升】注重受力分析,尤其是运动过程分析以及圆心的确定,画好示意图,根据运动学规律及动能观点求解.【拓展3】如图所示,真空室内存在宽度为s =8 cm的匀强磁场区域,磁感应强度B =0.332 T ,磁场方向垂直于纸面向里.紧靠边界ab 放一点状α粒子放射源S ,可沿纸面向各个方向放射速率相同的α粒子.α粒子质量为m=6.64×10-27 kg ,电荷量为q =+3.2×10-19 C ,速率为v=3.2×106 m/s.磁场边界ab 、cd 足够长,cd 为厚度不计的金箔,金箔右侧cd 与MN 之间有一宽度为L =12.8 cm 的无场区域.MN 右侧为固定在O 点的电荷量为Q =-2.0×10-6 C 的点电荷形成的电场区域(点电荷左侧的电场分布以MN 为边界).不计α粒子的重力,静电力常量k =9.0×109 N·m 2/C 2,(取sin 37°=0.6,cos 37°=0.8)求:(1)金箔cd 被α粒子射中区域的长度y ;(2)打在金箔d 端离cd 中心最远的粒子沿直线穿出金箔,经过无场区进入电场就开始以O 点为圆心做匀速圆周运动,垂直打在放置于中心线上的荧光屏FH 上的E 点(未画出),计算OE 的长度;(3)计算此α粒子从金箔上穿出时损失的动能.【解析】(1)粒子在匀强磁场中做匀速圆周运动,洛伦兹力提供向心力,有qvB =m Rv 2,得R =Bqmv =0.2 m如图所示,当α粒子运动的圆轨迹与cd 相切时,上端偏离O ′最远,由几何关系得O ′P =22)(s R R --=0.16 m 当α粒子沿Sb 方向射入时,下端偏离O ′最远,由几何关系得O ′Q =)(2s R R --=0.16 m故金箔cd 被α粒子射中区域的长度为y =O ′Q +O ′P =0.32 m(2)如上图所示,OE 即为α粒子绕O 点做圆周运动的半径r .α粒子在无场区域做匀速直线运动与MN 相交,下偏距离为y ′,则 tan 37°=43,y ′=L tan 37°=0.096 m 所以,圆周运动的半径为r =︒'+'37 cos Q O y =0.32 m (3)设α粒子穿出金箔时的速度为v ′,由牛顿第二定律有k r v m rQq 22'= α粒子从金箔上穿出时损失的动能为ΔE k =21mv 2-21mv ′2=2.5×10-14 J3.带电体在变力作用下的运动【例4】竖直的平行金属平板A 、B 相距为d ,板长为L ,板间的电压为U ,垂直于纸面向里、磁感应强度为B 的磁场只分布在两板之间,如图所示.带电荷量为+q 、质量为m 的油滴从正上方下落并在两板中央进入板内空间.已知刚进入时电场力大小等于磁场力大小,最后油滴从板的下端点离开,求油滴离开场区时速度的大小.【错解】由题设条件有Bqv =qE =qdU ,v =Bd U ;油滴离开场区时,水平方向有Bqv +qE =ma ,v 2x =2a ·mqU d 22= 竖直方向有v 2y =v 2+2gL 离开时的速度v ′=m qU dB U gL v v y x 2222222++=+ 【错因】洛伦兹力会随速度的改变而改变,对全程而言,带电体是在变力作用下的一个较为复杂的运动,对这样的运动不能用牛顿第二定律求解,只能用其他方法求解.【正解】由动能定理有mgL +qE 212122-'=v m d mv 2 由题设条件油滴进入磁场区域时有Bqv =qE ,E =U /d由此可以得到离开磁场区域时的速度v ′=m qU dB U gL ++2222 【思维提升】解题时应该注意物理过程和物理情景的把握,时刻注意情况的变化,然后结合物理过程中的受力特点和运动特点,利用适当的解题规律解决问题,遇到变力问题,特别要注意与能量有关规律的运用.【例5】回旋加速器是用来加速带电粒子的装置,如图所示。

带电粒子在复合场中的运动(整理).

带电粒子在复合场中的运动(整理).

专题:带电粒子在复合场中的运动一、复合场及其特点这里所说的复合场是指电场、磁场、重力场并存,或其中某两种场并存的场.带电粒子在这些复合场中运动时,必须同时考虑电场力、洛仑兹力和重力的作用或其中某两种力的作用,因此对粒子的运动形式的分析就显得极为重要.二、带电粒子在复合场电运动的基本分析1.当带电粒子在复合场中所受的合外力为0时,粒子将做匀速直线运动或静止.2.当带电粒子所受的合外力与运动方向在同一条直线上时,粒子将做变速直线运动.3.当带电粒子所受的合外力充当向心力时,粒子将做匀速圆周运动.4.当带电粒子所受的合外力的大小、方向均是不断变化的时,粒子将做变加速运动,这类问题一般只能用能量关系处理.三、电场力和洛仑兹力的比较1.在电场中的电荷,不管其运动与否,均受到电场力的作用;而磁场仅仅对运动着的、且速度与磁场方向不平行的电荷有洛仑兹力的作用.2.电场力的大小F=Eq,与电荷的运动的速度无关;而洛仑兹力的大小f=Bqvsina,与电荷运动的速度大小和方向均有关.3.电场力的方向与电场的方向或相同、或相反;而洛仑兹力的方向始终既和磁场垂直,又和速度方向垂直.4.电场力既可以改变电荷运动的速度大小,也可以改变电荷运动的方向,而洛仑兹力只能改变电荷运动的速度方向,不能改变速度大小5.电场力可以对电荷做功,能改变电荷的动能;洛仑兹力不能对电荷做功,不能改变电荷的动能.6.匀强电场中在电场力的作用下,运动电荷的偏转轨迹为抛物线;匀强磁场中在洛仑兹力的作用下,垂直于磁场方向运动的电荷的偏转轨迹为圆弧.四、对于重力的考虑重力考虑与否分三种情况.(1)对于微观粒子,如电子、质子、离子等一般不做特殊交待就可以不计其重力,因为其重力一般情况下与电场力或磁场力相比太小,可以忽略;而对于一些实际物体,如带电小球、液滴、金属块等不做特殊交待时就应当考虑其重力.(2)在题目中有明确交待的是否要考虑重力的,这种情况比较正规,也比较简单.(3)对未知名的带电粒子其重力是否忽略又没有明确时,可采用假设法判断,假设重力计或者不计,结合题给条件得出的结论若与题意相符则假设正确,否则假设错误.五、复合场中的特殊物理模型1.粒子速度选择器2.磁流体发电机3.电磁流量计.4.质谱仪5.回旋加速器1.如图所示,在X轴上方有匀强电场,场强为E;在X轴下方有匀强磁场,磁感应强度为B,方向如图,在x轴上有一点M,离。

带电粒子在复合场中的运动

带电粒子在复合场中的运动
所示],MN 的长度等于直径,粒子在磁场中的路程为二分之一圆周 长,即 s1=πR,
设粒子在电场中运动的路程为 s2, 根据动能定理得 Eq·s22=12mv2,得 s2=mEvq2, 则总路程 s=πR+mEvq2, 代入数据得 s=(0.5π+1)m。
[答案] (1)0.2 T (2)(0.5π+1)m
(3)较复杂的曲线运动: 当带电粒子所受合外力的大小和方向均变化,且与初 速度方向不在同一条直线上,粒子做 非匀变速曲线运动, 这时粒子运动轨迹既不是圆弧,也不是抛物线。 (4)分阶段运动: 带电粒子可能依次通过几个情况不同的复合场区域, 其运动情况随区域发生变化,其运动过程由几种不同的运 动阶段组成。
(1)小球运动到 O 点时的速度大小; (2)悬线断裂前瞬间拉力的大小; (3)ON 间的距离。 [解析] (1)小球从 A 运动到 O 点的过程中,根据动能 定理: 12mv2=mgl-qEl 则小球在 O 点时的速度为 v= 2lg-qmE=2 m/s。
(2)小球运动到 O 点绳子断裂前瞬间,对小球应用牛 顿第二定律:
场 荷受力的方向与该点电场 电势能,且W电=-ΔEp
强度的方向相反)
磁 (1)大小:F=qvB 场 (2)方向:垂直于v和B决
定的平面
洛伦兹力不做功
2.电偏转和磁偏转的比较
受力特征 运动性质
电偏转 F电=qE(恒力) 匀变速曲线运动
运动轨迹
磁偏转 F洛=qvB(变力) 匀速圆周运动
电偏转
类平抛运动
图2
(1)小球运动的速率v; (2)电场E2的大小与方向; (3)磁场B2的大小与方向。
解析:(1)小球在 x 轴下方受力如图所示: 其中重力竖直向下,G=mg=3×10-2 N 电场力水平向右,F=qE1=4×10-2 N G 与 F 的合力 F 合= G2+F2=5×10-2N 设合力与水平方向的夹角为 α, 则 tan α=GF,即 tan α=34,α=37° 由 f=qvB1,f=F 合 得 v=qBf 1=2×5×101-03-×2 5 m/s=5 m/s。

高三物理磁场专题复习二带电粒子在复合场中的运动知识点分析.

高三物理磁场专题复习二带电粒子在复合场中的运动知识点分析.

高考综合复习——磁场专题复习二带电粒子在复合场中的运动知识要点梳理知识点一——带电粒子在复合场中的运动▲知识梳理一、复合场复合场是指电场、磁场和重力场并存或其中某两种场并存,或分区域存在。

粒子在复合场中运动时,要考虑静电力、洛伦兹力和重力的作用。

二、带电粒子在复合场中运动问题的分析思路1.正确的受力分析除重力、弹力和摩擦力外,要特别注意电场力和磁场力的分析。

2.正确分析物体的运动状态找出物体的速度、位置及其变化特点,分析运动过程。

如果出现临界状态,要分析临界条件。

带电粒子在复合场中做什么运动,取决于带电粒子的受力情况。

(1)当粒子在复合场内所受合力为零时,做匀速直线运动(如速度选择器)。

(2)当带电粒子所受的重力与电场力等值反向,洛伦兹力提供向心力时,带电粒子在垂直于磁场的平面内做匀速圆周运动。

(3)当带电粒子所受的合力是变力,且与初速度方向F在一条直线上时,粒子做非匀变速曲线运动,这时粒子的运动轨迹既不是圆弧,也不是抛物线,由于带电粒子可能连续通过几个情况不同的复合场区,因此粒子的运动情况也发生相应的变化,其运动过程也可能由几种不同的运动阶段所组成。

3.灵活选用力学规律是解决问题的关键(1)当带电粒子在复合场中做匀速直线运动时,应根据平衡条件列方程求解。

(2)当带电粒子在复合场中做匀速圆周运动时,往往同时应用牛顿第二定律和平衡条件列方程联立求解。

(3)当带电粒子在复合场中做非匀变速曲线运动时,应选用动能定理或能量守恒列方程求解。

注意:由于带电粒子在复合场中受力情况复杂,运动情况多变,往往出现临界问题,这时应以题目中的“恰好”、“最大”、“最高”、“至少”等词语为突破口,挖掘隐含条件,根据临界条件列出辅助方程,再与其他方程联立求解。

4.三种场力的特点(1)重力的大小为,方向竖直向下.重力做功与路径无关,其数值除与带电粒子的质量有关外,还与始末位置的高度差有关。

(2)电场力的大小为,方向与电场强度E及带电粒子所带电荷的性质有关,电场力做功与路径无关,其数值除与带电粒子的电荷量有关外,还与始末位置的电势差有关。

8.3带电粒子在复合场中的运动

8.3带电粒子在复合场中的运动
答案:BC
2.如图所示,在长方形abcd区域内有正交的电磁场,ab=bc/2=L, 一带电粒子从ad的中点垂直于电场和磁场方向射入,恰沿直线从bc边 的中点P射出,若撤去磁场,则粒子从c点射出;若撤去电场,则粒子 将(重力不计)( )
A.从b点射出 B.从b、P间某点射出 C.从a点射出 D.从a、b间某点射出
(1)M、N两点间的电势差UMN; (2)粒子在磁场中运动的轨道半径r; (3)粒子从M点运动到P点的总时间t. [思路点拨] 根据粒子在不同区域内的运动特点和受力特点画出轨 迹,分别利用类平抛和圆周运动的分析方法列方程求解.
[自主解答] (1)设粒子过 N 点时的速度大小为 v,有vv0=cos θ v=2v0 粒子从 M 点运动到 N 点的过程,有 quMN=12mv2-12mv20, UMN=3m2qv20. (2)粒子在磁场中以 O′为圆心做匀速运动, 半径为 O′N,有 qvB=mrv2,r=2qmBv0.
律求解. ③当带电粒子做复杂曲线运动时,一般用动能定理或能量守恒定律 求解. ④对于临界问题,注意挖掘隐含条件.
2.复合场中粒子重力是否考虑的三种情况 (1)对于微观粒子,如电子、质子、离子等,因为其重力一般情况 下与电场力或磁场力相比太小,可以忽略;而对于一些实际物体, 如带电小球、液滴、金属块等一般应当考虑其重力.
(3)由几何关系得 ON=rsin θ
设粒子在电场中运动的时间为 t1,有 ON=v0t1
t1=
3m qB
粒子在磁场中做匀速圆周运动的周期 T=2qπBm
设粒子在磁场中运动的时间为 t2,有 t2=π2-πθT,故 t2=23πqmB
t=t1+t2,t=3
3+2πm 3qB .
[答案]

高三物理二轮复习知识点:带电粒子在复合场中的运动

高三物理二轮复习知识点:带电粒子在复合场中的运动

高三物理二轮复习知识点:带电粒子在复合场中的运动复习精要一、带点粒子在复合场中的运动本质是力学咨询题1、带电粒子在电场、磁场和重力场等共存的复合场中的运动,其受力情形和运动图景都比较复杂,但其本质是力学咨询题,应按力学的差不多思路,运用力学的差不多规律研究和解决此类咨询题。

2、分析带电粒子在复合场中的受力时,要注意各力的特点。

如带电粒子不管运动与否,在重力场中所受重力及在匀强电场中所受的电场力均为恒力,它们的做功只与始末位置在重力场中的高度差或在电场中的电势差有关,而与运动路径无关。

而带电粒子在磁场中只有运动 (且速度不与磁场平行)时才会受到洛仑兹力,力的大小随速度大小而变,方向始终与速度垂直,故洛仑兹力对运动电荷不做功.二、带电微粒在重力、电场力、磁场力共同作用下的运动〔电场、磁场均为匀强场〕1、带电微粒在三个场共同作用下做匀速圆周运动:必定是电场力和重力平稳,而洛伦兹力充当向心力.2、带电微粒在三个场共同作用下做直线运动:重力和电场力是恒力,它们的合力也是恒力。

当带电微粒的速度平行于磁场时,不受洛伦兹力,因此可能做匀速运动也可能做匀变速运动;当带电微粒的速度垂直于磁场时,一定做匀速运动。

3、与力学紧密结合的综合题,要认真分析受力情形和运动情形〔包括速度和加速度〕。

必要时加以讨论。

三、带电粒子在重力场、匀强电场、匀强磁场的复合场中的运动的差不多模型有:1、匀速直线运动。

自由的带点粒子在复合场中作的直线运动通常差不多上匀速直线运动,除非粒子沿磁场方向飞入不受洛仑兹力作用。

因为重力、电场力均为恒力,假设两者的合力不能与洛仑兹力平稳,那么带点粒子速度的大小和方向将会改变,不能坚持直线运动了。

2、匀速圆周运动。

自由的带电粒子在复合场中作匀速圆周运动时,必定满足电场力和重力平稳,那么当粒子速度方向与磁场方向垂直时,洛仑兹力提供向心力,使带电粒子作匀速圆周运动。

3、较复杂的曲线运动。

在复合场中,假设带电粒子所受合外力不断变化且与粒子速度不在一直线上时,带电粒子作非匀变速曲线运动。

高中物理磁场(三)专题带电粒子在复合场中的运动(一)

高中物理磁场(三)专题带电粒子在复合场中的运动(一)

带电粒子在复合场中运动〔一〕一、带电粒子在匀强电场中偏转1.根本规律设粒子带电荷量为q ,质量为m ,两平行金属板间电压为U ,板长为l ,板间距离为d (忽略重力影响),那么有(1) 加速度:a =F m =qE m =qUmd. (2) 在电场中运动时间① 能飞出平行板电容器:t =L v 0。

② 打在平行极板上:y =12at 2=12·qU mdt 2,t =2mdyqU。

(3) 离开电场时偏移量:⎩⎪⎨⎪⎧v x t =v 0t =l 12at 2=y ,y =12at 2=qUl22mv 20d。

(4) 速度⎩⎪⎨⎪⎧v x =v 0v y =at ,v y =qUt md ,v =v 2x +v 2y ,tan θ=v y v x =qUl mv 20d.。

(5) 离开电场时偏转角:tan θ=v y v 0=qULmv 20d。

2.两个结论(1) 不同带电粒子从静止开场经过同一电场加速后再从同一偏转电场射出时偏转角度总是一样。

证明:由qU 0=12mv 20 及tan θ=qUL mdv 20 得tan θ=UL2U 0d。

(2) 粒子经电场偏转后,合速度反向延长线与初速度延长线交点O 为粒子水平位移中点,即O 到电场边缘距离为L2。

3.带电粒子在匀强电场中偏转功能关系当讨论带电粒子末速度v 时也可以从能量角度进展求解:qU y =12mv 2-12mv 20 ,其中U y =Ud y ,指初、末位置间电势差。

二、带电粒子在磁场中圆周运动分析思路1.如何确定“圆心〞(1) 由两点和两线确定圆心,画出带电粒子在匀强磁场中运动轨迹。

确定带电粒子运动轨迹上两个特殊点(一般是射入和射出磁场时两点),过这两点作带电粒子运动方向垂线(这两垂线即为粒子在这两点所受洛伦兹力方向),那么两垂线交点就是圆心,如图(a)所示。

(2) 假设只过其中一个点粒子运动方向,那么除过运动方向该点作垂线外,还要将这两点相连作弦,再作弦中垂线,两垂线交点就是圆心,如图(b)所示。

带电粒子在复合场中的运动

带电粒子在复合场中的运动

带电粒子在复合场中的运动一、带电粒子....(通常不计重力)在混合场中的运动 1.速度选择器正交的匀强磁场和匀强电场组成速度选择器。

带电粒子必须以唯一确定的速度(包括大小、方向)才能匀速(或者说沿直线)通过速度选择器。

否则将发生偏转。

这个速度的大小可以由洛伦兹力和电场力的平衡得出:qvB=Eq ,BE v =。

在本图中,速度方向必须向右。

(1)这个结论与离子带何种电荷、电荷多少都无关。

(2)若速度小于这一速度,电场力将大于洛伦兹力,带电粒子向电场力方向偏转,电场力做正功,动能将增大,洛伦兹力也将增大,粒子的轨迹既不是抛物线,也不是圆,而是一条复杂曲线;若大于这一速度,将向洛伦兹力方向偏转,电场力将做负功,动能将减小,洛伦兹力也将减小,轨迹是一条复杂曲线。

【例1】 某带电粒子从图中速度选择器左端由中点O 以速度v 0向右射去,从右端中心a 下方的b 点以速度v 1射出;若增大磁感应强度B ,该粒子将打到a 点上方的c 点,且有ac =ab ,则该粒子带___电;第二次射出时的速度为_____。

【例2】 如图所示,一个带电粒子两次以同样的垂直于场线的初速度v 0分别穿越匀强电场区和匀强磁场区, 场区的宽度均为L 偏转角度均为α,求E ∶B2.回旋加速器(1)有关物理学史知识和回旋加速器的基本结构和原理1932年美国物理学家应用了带电粒子在磁场中运动的特点发明了回旋加速器,其原理如图所示。

A 0处带正电的粒子源发出带正电的粒子以速度v 0垂直进入匀强磁场,在磁场中匀速转动半个周期,到达A 1时,在A 1 A 1/处造成向上的电场,粒子被加速,速率由v 0增加到v 1,然后粒子以v 1在磁场中匀速转动半个周期,到达A 2/时,在A 2/ A 2处造成向下的电场,粒子又一次被加速,速率由v 1增加到v 2,如此继续下去,每当粒子经过A A /的交界面时都是它被加速,从而速度不断地增加。

带电粒子在磁场中作匀速圆周运动的周期为qBT mπ2=,为达到不断加速的目的,只要在A A /上加上周期也为T 的交变电压就可以了。

带电粒子在复合场中的运动

带电粒子在复合场中的运动

等,简化动力学方程的求解过程。
动力学方程的应用
带电粒子在磁场中的回旋运动
当带电粒子在磁场中作圆周运动时,其轨迹为一回旋线,可以根据动力学方程计算粒子的 回旋半径和回旋频率等参数。
带电粒子在电场中的加速运动
当带电粒子在电场中作加速运动时,可以根据动力学方程计算粒子的速度和位移等参数。
带电粒子的偏转运动
速度恒定
带电粒子的速度保持不变, 不随时间变化。
运动轨迹稳定
带电粒子的运动轨迹应是 一条稳定的曲线,不会发 生突变或震荡。
平衡位置的确定
受力分析
对带电粒子进行受力分析,找出各个力的方向和 大小,判断其平衡位置。
速度分析
根据速度恒定的条件,分析带电粒子在平衡位置 附近的速度变化情况。
轨迹分析
根据运动轨迹稳定的条件,分析带电粒子在平衡 位置附近的轨迹变化情况。
动力学方程的求解
分离变量法
01
将带电粒子的运动分解为在电场中的运动和在磁场果合并。
数值计算方法
02
对于一些复杂的动力学问题,可以采用数值计算方法,如有限
差分法、有限元法等,通过迭代求解动力学方程。
近似解法
03
对于一些特殊情况,可以采用近似解法,如小参数法、变分法
能量守恒定律的应用场景
在解决带电粒子在复合场中的运动问题时,我们通常需要分析带电粒子的受力情况,然后利用能量守恒 定律计算出带电粒子的速度、位移等物理量。
THANKS FOR WATCHING
感谢您的观看
匀速圆周运动
总结词
带电粒子在复合场中以恒定速率绕圆周运动,受到的电场力和洛伦兹力提供向心 力。
详细描述
当带电粒子在复合场中受到的电场力和洛伦兹力达到平衡时,粒子将绕圆周匀速 运动。此时,粒子的速度大小保持不变,方向不断变化,且受到的磁场力充当向 心力,使粒子保持圆周运动。

带电粒子在复合场中的(类)平抛运动

带电粒子在复合场中的(类)平抛运动

带电粒子在复合场中的(类)平抛运动带电粒子在复合场中的(类)平抛运动,是指带电粒子在电磁场和重力场的共同作用下,做类似于平抛运动的运动轨迹。

这种运动在物理学中被广泛研究,对于了解电磁场和重力场的相互作用,以及带电粒子在这些场中的运动规律具有重要意义。

一、电磁场和重力场的基本概念电磁场是由电荷和电流所产生的物理场。

电磁场的基本量是电场和磁场,它们是相互作用的。

电磁场的作用可以通过麦克斯韦方程组来描述。

重力场是由物体所产生的物理场。

重力场的基本量是重力加速度,它是物体受到的重力作用的大小和方向。

重力场的作用可以通过牛顿万有引力定律来描述。

二、带电粒子在电磁场中的运动规律带电粒子在电磁场中的运动规律可以通过洛伦兹力公式来描述。

洛伦兹力公式表示带电粒子在电磁场中受到的力的大小和方向。

洛伦兹力公式为:F=q(E+v×B)其中,F是带电粒子所受的力,q是粒子的电荷量,E是电场强度,B是磁场强度,v是粒子的速度。

带电粒子在电磁场中的运动轨迹可以通过牛顿第二定律和洛伦兹力公式来描述。

牛顿第二定律表示物体所受的合力等于物体的质量乘以加速度。

带电粒子在电磁场中的加速度可以通过洛伦兹力公式来计算。

因此,带电粒子在电磁场中的运动轨迹可以通过解微分方程来求解。

三、带电粒子在重力场中的运动规律带电粒子在重力场中的运动规律可以通过牛顿第二定律和牛顿万有引力定律来描述。

牛顿万有引力定律表示两个物体之间的引力大小与它们的质量和距离的平方成正比,与它们之间的相对位置有关。

带电粒子在重力场中的运动可以看作是一个质点在重力场中的运动,因此可以应用牛顿第二定律来描述。

四、带电粒子在复合场中的运动规律带电粒子在复合场中的运动规律可以通过将电磁场和重力场的作用合并来描述。

带电粒子在复合场中的运动轨迹可以通过解微分方程来求解。

在复合场中,带电粒子所受的合力等于电磁力和重力的合力,因此可以应用牛顿第二定律来描述。

总之,带电粒子在复合场中的(类)平抛运动是一个复杂的物理过程,它涉及到电磁场和重力场的相互作用,以及带电粒子在这些场中的运动规律。

高三物理带电粒子在复合场中的运动

高三物理带电粒子在复合场中的运动

第三讲 带电粒子在复合场中的运动(一)一.正确进行复合场中带电粒子的受力分析二.带电粒子在复合场中运动的典型运用 1.练图8-3-1带电质点在匀强磁场中运动,某时刻速度方向如练图8-3-1所示,所受的重力和洛伦兹力的合力恰好与速度方向相反,不计阻力,则在此后的一小段时间内,带电质点将( )A .可能做直线运动B .可能做匀减速运动C .一定做曲线运动D .可能做匀速圆周运动带电质点在运动过程中,重力做功,速度大小和方向发生变化,洛伦兹力的大小和方向也随之发生变化,故带电质点不可能做直线运动,也不可能做匀减速运动或匀速圆周运动,C 项正确. 答案 C3.(多选题)(速度选择器)练图8-3-3如练图8-3-3所示,一束粒子(不计重力,初速度可忽略)缓慢通过小孔O 1进入极板间电压为U 的水平加速电场区域Ⅰ,再通过小孔O 2射入相互正交的恒定匀强电场、磁场区域Ⅱ,其中磁场的方向如图所示,磁感应强度大小可根据实际要求调节,收集室的小孔O 3与O 1、O 2在同一条水平线上.则收集室收集到的是( )A .具有特定质量的粒子B .具有特定比荷的粒子C .具有特定速度的粒子D .具有特定动能的粒子解析 粒子在加速电场Ⅰ中由动能定理可得:qU =12m v 2⇒v = 2qU m ,粒子沿直线O 1O 2O 3运动,则在相互正交的恒定匀强电场、磁场区域Ⅱ中必定受力平衡,可得qE =Bq v⇒v =E B为某一定值.故选项B 、C 正确. 答案 BC 4.练图8-3-4(多选题)如练图8-3-4所示,空间存在正交的匀强电场和匀强磁场,匀强电场方向竖直向上,匀强磁场的方向垂直纸面向里.有一内壁光滑、底部有带正电小球的试管.在水平拉力F 作用下,试管向右匀速运动,带电小球能从试管口处飞出.已知小球质量为m 、带电荷量为q ,场强大小为E =mg q .关于带电小球及其在离开试管前的运动,下列说法中正确的是( )A .洛伦兹力对小球不做功B .洛伦兹力对小球做正功C .小球的运动轨迹是一条抛物线D .维持试管匀速运动的拉力F 应逐渐增大解析 洛伦兹力总是与带电粒子速度的方向垂直,所以不做功,A 项正确,B 项错;小球在水平方向上做匀速运动,在竖直方向上的合力等于洛伦兹力的竖直分力,即F 合=Bq v ,故竖直方向做匀加速运动,所以运动轨迹是一条抛物线,选项C 正确;由于小球在竖直方向上的速度增大,洛伦兹力的水平分力增大,而试管又向右做匀速运动,所以F 要逐渐增大,故D 项正确.答案 ACD 5.练图8-3-5磁流体发电机可以把气体的内能直接转化为电能,是一种低碳环保发电机,有着广泛的发展前景.其发电原理示意图如练图8-3-5所示,将一束等离子体(即高温下电离的气体,含有大量带正电和负电的微粒,整体上呈电中性)喷射入磁感应强度为B 的匀强磁场中,磁场区域有两块面积为S 、相距为d 的平行金属板与外电阻R 相连构成一电路,设气流的速度为v ,气体的电导率(电阻率的倒数)为g .则( )A .两板间电势差为U =Bd vB .上板是电源的正极,下板是电源的负极C .流经R 的电流为I =Bd v RD .流经R 的电流为 I =Bd v S gSR +d 解析 等离子体喷射入磁场后,在洛伦兹力F 1=qB v 的作用下正离子向上偏,负离子向下偏,则上板是电源的正极,下板是电源的负极,B 项对;两板间形成向下的电场,正负离子将受到电场力F 2=q U d 阻碍其偏转,假设外电路断路,则qB v =q U d ,即U =Bd v 为电源电动势,A 项错.电源内阻为r =ρd S =d gS ,由闭合电路欧姆定律得I =Bd v R +r =Bd v Sg gSR +d,C 、D 项错.答案 B6.(回旋加速器)(多选题)(2013·江西百校联考)练图8-3-6①是回旋加速器的示意图,其核心部分是两个D 形金属盒,在加速带电粒子时,两金属盒置于匀强磁场中,并分别与高频电源相连.带电粒子在磁场中运动的动能E k 随时间t 的变化规律如练图8-3-6②所示,若忽略带电粒子在电场中的加速时间,则下列说法中正确的是( )练图8-3-6A .在E k -t 图中应有t 4-t 3=t 3-t 2=t 2-t 1B .高频电源的变化周期应该等于t n -t n -1C .要使粒子获得的最大动能增大,可以增大D 形盒的半径D .在磁感应强度B 、D 形盒半径、粒子的质量m 及其电荷量q 不变的情况下,粒子的加速次数越多,粒子的最大动能一定越大解析 根据回旋加速器的原理可知,带电粒子运动周期相同,每经过半个周期加速一次,在E k-t图中应有t4-t3=t3-t2=t2-t1,选项A正确;高频电源的变化周期应该等于2(t n-t n-1),选项B错误;粒子的最大动能只与回旋加速器的D形盒半径和磁感应强度有关,与加速电压和加速次数无关,要使粒子获得的最大动能增大,可以增大D形盒的半径,选项C正确,D错误.答案AC。

带电粒子在复合场中的运动-高中物理专题(含解析)

带电粒子在复合场中的运动-高中物理专题(含解析)

带电粒子在复合场中的运动目的:1. 掌握带电粒子在电场、磁场中运动的特点2. 理解复合场、组合场对带电粒子受力的分析。

重难点:重点: 带电粒子在电场、磁场中运动的特点;带电粒子在复合场中受力分析 难点: 带电粒子在复合场中运动受力与运动结合。

知识:知识点1 带电粒子在复合场中的运动 1.复合场的分类(1)叠加场:电场、磁场、重力场共存,或其中某两场共存.(2)组合场:电场与磁场各位于一定的区域内,并不重叠,或相邻或在同一区域电场、磁场交替出现. 2.带电粒子在复合场中的运动形式(1)静止或匀速直线运动:当带电粒子在复合场中所受合外力为零时,将处于静止状态或做匀速直线运动.(2)匀速圆周运动:当带电粒子所受的重力与电场力大小相等,方向相反时,带电粒子在洛伦兹力的作用下,在垂直于匀强磁场的平面内做匀速圆周运动.(3)较复杂的曲线运动:当带电粒子所受合外力的大小和方向均变化,且与初速度方向不在同一直线上,粒子做非匀变速曲线运动,这时粒子运动轨迹既不是圆弧,也不是抛物线. 易错判断(1)带电粒子在复合场中不可能处于静止状态.(×) (2)带电粒子在复合场中可能做匀速圆周运动.(√) (3)带电粒子在复合场中一定能做匀变速直线运动.(×) 知识点2 带电粒子在复合场中的运动实例 1.质谱仪(1)构造:如下图,由粒子源、加速电场、偏转磁场和照相底片等构成.(2)原理:粒子由静止被加速电场加速,qU =12mv 2.粒子在磁场中做匀速圆周运动,有qvB =m v 2r .由以上两式可得r =1B2mUq , m =qr 2B 22U , q m =2UB 2r 2.2.盘旋加速器(1)构造:如下图,D 1、D 2是半圆形金属盒,D 形盒的缝隙处接交流电源,D 形盒处于匀强磁场中.(2)原理:交流电的周期和粒子做圆周运动的周期相等,粒子经电场加速,经磁场盘旋,由qvB =mv 2r ,得E km =q 2B 2r 22m ,可见粒子获得的最大动能由磁感应强度B 和D 形盒半径r 决定,与加速电压无关.3.速度选择器(1)平行板中电场强度E 和磁感应强度B 互相垂直.这种装置能把具有一定速度的粒子选择出来,所以叫做速度选择器(如下图).(2)带电粒子可以沿直线匀速通过速度选择器的条件是qE =qvB ,即v =E/B. 4.磁流体发电机(1)磁流体发电是一项新兴技术,它可以把内能直接转化为电能. (2)根据左手定那么,图中的B 是发电机正极.(3)磁流体发电机两极板间的间隔 为L ,等离子体速度为v ,磁场的磁感应强度为B ,那么由qE =qU/L =qvB 得两极板间能到达的最大电势差U =BLv . 易错判断(1)电荷在速度选择器中做匀速直线运动的速度与电荷的电性有关.(×) (2)不同比荷的粒子在质谱仪磁场中做匀速圆周运动的半径不同.(√)(3)粒子在盘旋加速器中做圆周运动的半径、周期都随粒子速度的增大而增大.(×)题型分类:题型一 带电粒子在组合场中的运动题型分析:1.带电粒子在匀强电场、匀强磁场中可能的运动性质在电场强度为E 的匀强电场中 在磁感应强度为B 的匀强磁场中 初速度为零 做初速度为零的匀加速直线运动 保持静止 初速度垂直场线 做匀变速曲线运动(类平抛运动) 做匀速圆周运动 初速度平行场线 做匀变速直线运动 做匀速直线运动特点 受恒力作用,做匀变速运动洛伦兹力不做功,动能不变2.“电偏转〞和“磁偏转〞的比拟垂直进入匀强磁场(磁偏转)垂直进入匀强电场(电偏转)情景图受力F B =qv 0B ,大小不变,方向总指向圆心,方向变化,F B 为变力F E =qE ,F E 大小、方向不变,为恒力 运动规律匀速圆周运动r =mv 0Bq ,T =2πmBq类平抛运动v x =v 0,v y =Eqm t x =v 0t ,y =Eq2m t 2运动时间 t =θ2πT =θmBqt =Lv 0,具有等时性动能不变变化(1)从电场进入磁场(2)从磁场进入电场考向1 先电场后磁场【例1】.(2021·哈尔滨模拟)如下图,将某正粒子放射源置于原点O ,其向各个方向射出的粒子速度大小均为v 0,质量均为m 、电荷量均为q ;在0≤y ≤d 的一、二象限范围内分布着一个匀强电场,方向与y 轴正向一样,在d <y ≤2d 的一、二象限范围内分布着一个匀强磁场,方向垂直于xOy 平面向里.粒子第一次分开电场上边缘y =d 时,可以到达的位置xd ≤xd, 而且最终恰好没有粒子从y =2d 的边界分开磁场.sin 37°=0.6,cos 37°=0.8,不计粒子重力以及粒子间的互相作用,求: (1)电场强度E ; (2)磁感应强度B ;(3)粒子在磁场中运动的最长时间.(只考虑粒子第一次在磁场中的运动时间) [解析](1)沿x 轴正方向发射的粒子有:由类平抛运动根本规律得1.5d =v 0t, d =12at 2a =qE m ,联立可得:E =8mv 209qd .(2)沿x 轴正方向发射的粒子射入磁场时有:d =v y 2t,联立可得:v y =43v 0,v =v 2x +v 2y =53v 0 方向与程度成53°,斜向右上方,据题意知该粒子轨迹恰与上边缘相切,那么其电场中:加速直线运动⇓磁场中:匀速圆周运动 电场中:类平抛运动⇓磁场中:匀速圆周运动磁场中:匀速圆周运动 ⇓v 与E 同向或反向 电场中:匀变速直线运动磁场中:匀速圆周运动⇓v 与E 垂直 电场中:类平抛运动余粒子均达不到y =2d 边界,由几何关系可知:d =R +35R根据牛顿第二定律得:Bqv =m v 2R 联立可得:B =8mv 03qd .(3)粒子运动的最长时间对应最大的圆心角,经过(1.5d ,d)恰与上边界相切的粒子轨迹对应的圆心角最大,由几何关系可知圆心角为:θ=254°粒子运动周期为:T =2πR v =3πd4v 0那么时间为:t =θ360°T =127πd240v 0.考向2 先磁场后电场 【例2】.(2021·潍坊模拟)在如下图的坐标系中,第一和第二象限(包括y 轴的正半轴)内存在磁感应强度大小为B 、方向垂直xOy 平面向里的匀强磁场;第三和第四象限内存在平行于y 轴正方向、大小未知的匀强电场.p 点为y 轴正半轴上的一点,坐标为(0,l );n 点为y 轴负半轴上的一点,坐标未知.现有一带正电的粒子由p 点沿y 轴正方向以一定的速度射入匀强磁场,该粒子经磁场偏转后以与x 轴正半轴成45°角的方向进入匀强电场,在电场中运动一段时间后,该粒子恰好垂直于y 轴经过n 点.粒子的重力忽略不计.求: (1)粒子在p 点的速度大小;(2)第三和第四象限内的电场强度的大小;(3)带电粒子从由p 点进入磁场到第三次通过x 轴的总时间.[解析] 粒子在复合场中的运动轨迹如下图(1)由几何关系可知rsin 45°=l 解得r =2l 又因为qv 0B =m v 20r ,可解得v 0=2Bql m .(2)粒子进入电场在第三象限内的运动可视为平抛运动的逆过程,设粒子射入电场坐标为(-x 1,0),从粒子射入电场到粒子经过n 点的时间为t 2,由几何关系知x 1=(2+1)l ,在n 点有v 2=22v 1=22v 0由类平抛运动规律有(2+1)l =22v 0t 2;22v 0=at 2=Eqm t 2 联立以上方程解得t 2=2+1m qB ,E =2-1qlB 2m. (3)粒子在磁场中的运动周期为T =2πmqB粒子第一次在磁场中运动的时间为t 1=58T =5πm4qB 粒子在电场中运动的时间为2t 2=22+1mqB粒子第二次在磁场中运动的时间为t 3=34T =3πm2qB故粒子从开场到第三次通过x 轴所用时间为t =t 1+2t 2+t 3=(11π4+22+2)mqB .[反思总结] 规律运用及思路①带电粒子经过电场区域时利用动能定理或类平抛的知识分析; ②带电粒子经过磁场区域时利用圆周运动规律结合几何关系来处理; ③注意带电粒子从一种场进入另一种场时的衔接速度.【稳固】如下图,在第Ⅱ象限内有程度向右的匀强电场,电场强度为E ,在第Ⅰ、Ⅳ象限内分别存在如下图的匀强磁场,磁感应强度大小相等.有一个带电粒子以垂直于x 轴的初速度v 0从x 轴上的P 点进入匀强电场中,并且恰好与y 轴的正方向成45°角进入磁场,又恰好垂直于x 轴进入第Ⅳ象限的磁场.OP 之间的间隔 为d ,那么带电粒子在磁场中第二次经过x 轴时,在电场和磁场中运动的总时间为( ) A.7πd 2v 0B.dv 0(2+5π) C.d v 0⎝ ⎛⎭⎪⎫2+3π2D.d v 0⎝ ⎛⎭⎪⎫2+7π2D [带电粒子的运动轨迹如下图.由题意知,带电粒子到达y 轴时的速度v =2v 0,这一过程的时间t 1=d v 02=2dv 0.又由题意知,带电粒子在磁场中的偏转轨道半径r =22d.故知带电粒子在第Ⅰ象限中的运动时间为:t 2=38×2πr v =32πd2v =3πd 2v 0带电粒子在第Ⅳ象限中运动的时间为:t 3=12×2πr v =22πd v =2πd v 0故t 总=d v 0⎝ ⎛⎭⎪⎫2+7π2.故D 正确.] 题型二 带电粒子在叠加场中的运动考向1 电场、磁场叠加【例3】(多项选择)(2021·临川模拟)向下的匀强电场和程度方向的匀强磁场正交的区域里, 一带电粒子从a 点由静止开场沿曲线abc 运动到c 点时速度变为零, b 点是运动中可以到达的最高点, 如下图,假设不计重力,以下说法中正确的选项是( ) A .粒子肯定带负电, 磁场方向垂直于纸面向里 B .a 、c 点处于同一程度线上 C .粒子通过b 点时速率最大D. 粒子到达c 点后将沿原途径返回到a 点ABC [粒子开场受到电场力作用而向上运动,受到向右的洛伦兹力作用,那么知电场力方向向上,故粒子带负电;根据左手定那么判断磁场方向垂直于纸面向里,故A 正确.将粒子在c 点的状态与a 点进展比拟,c 点的速率为零,动能为零,根据能量守恒可知,粒子在c 与a 两点的电势能相等,电势相等,那么a 、c 两点应在同一条程度线上;由于在a 、c 两点粒子的状态(速度为零,电势能相等)一样,粒子将在c 点右侧重现前面的曲线运动,因此,粒子是不可能沿原曲线返回a 点的,故B正确,D 错误.根据动能定理得,粒子从a 运动到b 点的过程电场力做功最大,那么b 点速度最大,故C 正确.考向2 电场、磁场、重力场的叠加【例4】(2021·全国Ⅰ卷)如下图,空间某区域存在匀强电场和匀强磁场,电场方向竖直向上(与纸面平行),磁场方向垂直于纸面向里.三个带正电的微粒a 、b 、c 电荷量相等,质量分别为m a 、m b 、m c .在该区域内,a 在纸面内做匀速圆周运动,b 在纸面内向右做匀速直线运动,c 在纸面内向左做匀速直线运动.以下选项正确的选项是( ) A .m a >m b >m c B .m b >m a >m c C .m c >m a >m b D .m c >m b >m aB [设三个微粒的电荷量均为q ,a 在纸面内做匀速圆周运动,说明洛伦兹力提供向心力,重力与电场力平衡,即 m a g =qE ①b 在纸面内向右做匀速直线运动,三力平衡,那么m b g =qE +qvB ②c 在纸面内向左做匀速直线运动,三力平衡,那么m c g +qvB =qE ③ 比拟①②③式得:m b >m a >m c ,选项B 正确.]考向3 复合场中的动量、能量综合问题【例5】(2021·南昌模拟)如下图,带负电的金属小球A 质量为m A =0.2 kg ,电量为q =0.1 C ,小球B 是绝缘体不带电,质量为m B =2 kg ,静止在程度放置的绝缘桌子边缘,桌面离地面的高h =0.05 m ,桌子置于电、磁场同时存在的空间中,匀强磁场的磁感应强度B =2.5 T ,方向沿程度方向且垂直纸面向里,匀强电场电场强度E =10 N/C ,方向沿程度方向向左且与磁场方向垂直,小球A 与桌面间的动摩擦因数为μ=0.4,A 以某一速度沿桌面做匀速直线运动,并与B 球发生正碰,设碰撞时间极短,B 碰后落地的程度位移为0.03 m ,g 取10 m/s 2,求: (1)碰前A 球的速度? (2)碰后A 球的速度?(3)假设碰后电场方向反向(桌面足够长),小球A 在碰撞完毕后,到刚分开桌面运动的整个过程中,合力对A 球所做的功.[答案](1)2 m/s (2)1 m/s ,方向与原速度方向相反 (3)6.3 J 【例5-2】 (1)上题中,A 与B 的碰撞是弹性碰撞吗?为什么?(2)在第(3)问中,根据现有知识和条件,能否求出电场力对A 球做的功?提示:A 、B 碰前,只有A 有动能E kA =12m A v 2A1=12×0.2×22 J =0.4 JA 、B 碰后,E kA ′=12m A v 2A2=12×0.2×12 J =0.1 JE kB =12m B v 2B =122=0.09 J 因E kA >E kA ′+E kB故A 、B 间的碰撞不是弹性碰撞.提示:不能.因无法求出A 球的位移.【稳固1】(多项选择)(2021·济南模拟)如下图,在正交坐标系O ­xyz 中,分布着电场和磁场(图中未画出).在Oyz 平面的左方空间内存在沿y 轴负方向、磁感应强度大小为B 的匀强磁场;在Oyz 平面右方、Oxz 平面上方的空间内分布着沿z 轴负方向、磁感应强度大小也为B 的匀强磁场;在Oyz 平面右方、Oxz 平面下方分布着沿y 轴正方向的匀强电场,电场强度大小为aqB 24m .在t =0时刻,一个质量为m 、电荷量为+q 的微粒从P 点静止释放,P 点的坐标为(5a ,-2a,0),不计微粒的重力.那么( )A .微粒第一次到达x 轴的速度大小为aqb mB .微粒第一次到达x 轴的时刻为4mqBC .微粒第一次到达y 轴的位置为y =2aD .微粒第一次到达y 轴的时刻为⎝ ⎛⎭⎪⎫40+5π2mqBBD [微粒从P 点由静止释放至第一次到达y 轴的运动轨迹如下图.释放后,微粒在电场中做匀加速直线运动,由E =aqB 24m ,根据动能定理有Eq ·2a =12mv 2,解得微粒第一次到达x 轴的速度v =aqB m ,又Eqm t 1=v ,解得微粒第一次到达x轴的时刻t 1=4mqB ,应选项A 错误,B 正确;微粒进入磁场后开场做匀速圆周运动,假设运动的轨道半径为R ,那么有qvB =m v 2R ,可得:R =a ,所以微粒到达y 轴的位置为y =a ,选项C 错误;微粒在磁场中运动的周期T =2πR v =2πm qB ,那么运动到达y 轴的时刻:t 2=5t 1+54T ,代入得:t 2=⎝ ⎛⎭⎪⎫40+5π2m qB ,选项D 正确.]【稳固2】 (多项选择)(2021·兰州模拟)如下图,空间中存在一程度方向的匀强电场和一程度方向的匀强磁场,磁感应强度大小为B ,电场强度大小为E =3mgq ,且电场方向和磁场方向互相垂直,在正交的电磁场空间中有一足够长的固定粗糙绝缘杆,与电场正方向成60°夹角且处于竖直平面内,一质量为m ,带电量为q (q >0)的小球套在绝缘杆上,假设小球沿杆向下的初速度为v 0时,小球恰好做匀速直线运动,重力加速度大小为g ,小球电荷量保持不变,那么以下说法正确的选项是( )A .小球的初速度v 0=mg2qBB .假设小球沿杆向下的初速度v =mgqB ,小球将沿杆做加速度不断增大的减速运动,最后停顿C .假设小球沿杆向下的初速度v =3mgqB ,小球将沿杆做加速度不断减小的减速运动,最后停顿D. 假设小球沿杆向下的初速度v =4mgqB ,那么从开场运动到稳定过程中,小球克制摩擦力做功为6m 3g 2q 2B 2BD题型三 带电粒子在复合场中运动的常见实例考向1 盘旋加速器的工作原理【例6】(多项选择)(2021·成都模拟)粒子盘旋加速器的工作原理如下图,置于真空中的D 形金属盒的半径为R ,两金属盒间的狭缝很小,磁感应强度为B 的匀强磁场与金属盒盒面垂直,高频率交流电的频率为f ,加速器的电压为U ,假设中心粒子源处产生的质子质量为m ,电荷量为+e ,在加速器中被加速.不考虑相对论效应,那么以下说法正确是( )A .质子被加速后的最大速度不能超过2πRfB .加速的质子获得的最大动能随加速器的电压U 增大而增大C .质子第二次和第一次经过D 形盒间狭缝后轨道半径之比为2∶1 D .不改变磁感应强度B 和交流电的频率f ,该加速器也可加速其它粒子AC [质子出盘旋加速器时速度最大,此时的半径为R ,最大速度为:v =2πRT =2πRf ,故A 正确; 根据qvB =m v 2R 得,v =qBR m ,那么粒子的最大动能E km =12mv 2=q 2B 2R 22m ,与加速器的电压无关,故B 错误;粒子在加速电场中做匀加速运动,在磁场中做匀速圆周运动,根据qU =12mv 2,得v =2qU m ,质子第二次和第一次经过D 形盒狭缝的速度比为2∶1,根据r =mvqB ,那么半径比为2∶1,故C 正确;带电粒子在磁场中运动的周期与加速电场的周期相等,根据T =2πmqB 知,换用其它粒子,粒子的比荷变化,周期变化,盘旋加速器需改变交流电的频率才能加速其它粒子,故D 错误.应选AC.]考向2 速度选择器的工作原理【例7】在如下图的平行板器件中,电场强度E 和磁感应强度B 互相垂直.一带电粒子(重力不计)从左端以速度v 沿虚线射入后做直线运动,那么该粒子( ) A .一定带正电B .速度v =EBC .假设速度v >EB ,粒子一定不能从板间射出D .假设此粒子从右端沿虚线方向进入,仍做直线运动B考向3 质谱仪的工作原理【例7】质谱仪是测量带电粒子的质量和分析同位素的重要工具.如下图为质谱仪的原理示意图,现利用质谱仪对氢元素进展测量.让氢元素三种同位素的离子流沉着器A 下方的小孔S 无初速度飘入电势差为U 的加速电场.加速后垂直进入磁感应强度为B 的匀强磁场中.氢的三种同位素最后打在照相底片D 上,形成a 、b 、c 三条“质谱线〞.那么以下判断正确的选项是( ) A .进入磁场时速度从大到小排列的顺序是氕、氘、氚 B .进入磁场时动能从大到小排列的顺序是氕、氘、氚 C .在磁场中运动时间由大到小排列的顺序是氕、氘、氚 D .a 、b 、c 三条“质谱线〞依次排列的顺序是氕、氘、氚A [离子通过加速电场的过程,有qU =12mv 2,因为氕、氘、氚三种离子的电量一样、质量依次增大,故进入磁场时动能一样,速度依次减小,故A 项正确,B 项错误;由T =2πmqB 可知,氕、氘、氚三种离子在磁场中运动的周期依次增大,又三种离子在磁场中运动的时间均为半个周期,故在磁场中运动时间由大到小排列依次为氚、氘、氕,C 项错误;由qvB =m v 2R 及qU =12mv 2,可得R =1B 2mUq ,故氕、氘、氚三种离子在磁场中的轨道半径依次增大,所以a 、b 、c 三条“质谱线〞依次对应氚、氘、氕,D 项错误.]【稳固3】(多项选择)如下图,含有11H 、21H 、42He 的带电粒子束从小孔O 1处射入速度选择器,沿直线O 1O 2运动的粒子在小孔O 2处射出后垂直进入偏转磁场,最终打在P 1、P 2两点.那么( )A .打在P 1点的粒子是42HeB .打在P 2点的粒子是21H 和42He C .O 2P 2的长度是O 2P 1长度的2倍D .粒子在偏转磁场中运动的时间都相等BC [通过同一速度选择器的粒子具有一样的速度,故11H 、21H 、42He 的速度相等,由牛顿第二定律得qvB 2=m v 2R ,解得R =mv qB 2,由此可知,设质子的质量为m ,质子带电量为q ,11H 的半径R 1=mvqB 2,21H 的半径R 2=2mv qB 2,42He 的半径R 3=2mvqB 2,故打在P 1点的粒子是11H ,打在P 2点的粒子是21H 和42He ,选项A 错误,B 正确;O 2P 1=2R 1=2mv qB 2,O 2P 2=2R 2=4mvqB 2,故O 2P 2=2O 2P 1,选项C 正确;粒子在磁场中运动的时间t =T 2=πmqB ,11H 运动的时间与21H 和42He 运动的时间不同,选项D 错误.应选B 、C.]根底练习:考察点:速度选择器1.如下图,一束质量、速度和电荷不全相等的离子,经过由正交的匀强电场和匀强磁场组成的速度选择器后,进入另一个匀强磁场中并分裂为A 、B 两束,以下说法中正确的选项是( ) A .组成A 束和B 束的离子都带负电 B .组成A 束和B 束的离子质量一定不同 C .A 束离子的比荷大于B 束离子的比荷D .速度选择器中的磁场方向垂直于纸面向外[答案] C考察点:磁流体发电机2.(多项选择)磁流体发电机是利用洛伦兹力的磁偏转作用发电的.A 、B 是两块处在磁场中互相平行的金属板,一束在高温下形成的等离子束(气体在高温下发生电离,产生大量的带等量异种电荷的粒子)射入磁场.以下说法正确的选项是( ) A .B 板是电源的正极 B .A 板是电源的正极C .电流从上往下流过电流表D .电流从下往上流过电流表[答案] AD考察点:电磁流量计3.如下图,电磁流量计的主要局部是柱状非磁性管.该管横截面是边长为d 的正方形,管内有导电液体程度向左流动.在垂直于液体流动方向上加一个程度指向纸里的匀强磁场,磁感应强度为B .现测得液体上下外表a 、b 两点间的电势差为U .那么管内导电液体的流量Q (流量是指流过该管的液体体积与所用时间的比值)为( )A.UdB B.Ud 2B C.U BdD.d BU[答案] A考察点:质谱仪4. A 、B 是两种同位素的原子核,它们具有一样的电荷、不同的质量.为测定它们的质量比,使它们从质谱仪的同一加速电场由静止开场加速,然后沿着与磁场垂直的方向进入同一匀强磁场,打到照相底片上.假如从底片上获知A 、B 在磁场中运动轨迹的直径之比是d 1∶d 2,那么A 、B 的质量之比为( )A .d 21∶d 22B .d 1∶d 2C .d 22∶d 21 D .d 2∶d 1 [答案] A 分类稳固:带电粒子在组合场中的运动1.如下图,某种带电粒子由静止开场经电压为U 1的电场加速后,射入程度放置、电势差为U 2的两导体板间的匀强电场中,带电粒子沿平行于两板的方向从两板正中间射入,穿过两板后又垂直于磁场方向射入边界限竖直的匀强磁场中,那么粒子射入磁场和射出磁场的M 、N 两点间的间隔 d 随着U 1和U 2的变化情况为(不计重力,不考虑边缘效应)( )A .d 随U 1变化,d 与U 2无关B .d 与U 1无关,d 随U 2变化C .d 随U 1变化,d 随U 2变化D .d 与U 1无关,d 与U 2无关A [带电粒子在电场中做类平抛运动,可将射出电场的粒子速度v 分解成初速度方向与加速度方向,设出射速度与程度夹角为θ,那么有:v 0v =cos θ 而在磁场中做匀速圆周运动,设运动轨迹对应的半径为R ,由几何关系得,半径与直线MN 夹角正好等于θ,那么有:d2R =cos θ,所以d =2Rv 0v ,又因为半径公式R =mv Bq ,那么有d =2mv 0Bq =2B 2mU 1q .故d 随U 1变化,d 与U 2无关,故A 正确,B 、C 、D 错误.]2.(多项选择)(2021·烟台模拟)如下图,在x 轴上方有沿y 轴负方向的匀强电场,电场强度为E ,在x轴下方的等腰直角三角形CDM 区域内有垂直于xOy 平面向外的匀强磁场,磁感应强度为B ,其中C 、D 在x 轴上,它们到原点O 的间隔 均为a .现将质量为m 、电荷量为+q 的粒子从y 轴上的P 点由静止释放,设P 点到O 点的间隔 为h ,不计重力作用与空气阻力的影响.以下说法正确的选项是( )A .假设粒子垂直于CM 射出磁场,那么h =B 2a 2q2mEB .假设粒子垂直于CM 射出磁场,那么h =B 2a 2q8mEC .假设粒子平行于x 轴射出磁场,那么h =B 2a 2q2mED .假设粒子平行于x 轴射出磁场,那么h =B 2a 2q8mEAD [粒子在电场中加速,有qEh =12mv 20.在磁场中做圆周运动,假设粒子垂直于CM 射出磁场,那么轨迹所对的圆心角θ=45°,半径R =a ,由洛伦兹力提供向心力,有qv 0B =mv 20R ,得R =mv 0qB ,联立以上各式得h =B 2a 2q2mE ,A 正确;假设粒子平行于x 轴射出磁场,那么轨迹所对的圆心有θ=90°,半径R =a 2,同理可得h =B 2a 2q8mE ,D 正确.]3.(2021·银川模拟)如下图,AB 、CD 间的区域有竖直向上的匀强电场,在CD 的右侧有一与CD 相切于M 点的圆形有界匀强磁场,磁场方向垂直于纸面.一带正电粒子自O 点以程度初速度v 0正对P 点进入该电场后,从M 点飞离CD 边界,再经磁场偏转后又从N 点垂直于CD 边界回到电场区域,并恰能返回O 点.OP 间间隔 为d ,粒子质量为m ,电荷量为q ,电场强度大小E =3mv 20qd ,不计粒子重力.试求: (1)M 、N 两点间的间隔 ;(2)磁感应强度的大小和圆形匀强磁场的半径;(3)粒子自O 点出发到回到O 点所用的时间. [解析](1)据题意,作出带电粒子的运动轨迹,如下图:粒子从O 到M 的时间:t 1=d v 0;粒子在电场中加速度:a =qE m =3v 2d 故PM 间的间隔 为:PM =12at 21=32d粒子在M 点时竖直方向的速度:v y =at 1=3v 0粒子在M 点时的速度:v =v 20+v 2y =2v 0速度偏转角正切:tan θ=v yv 0= 3 ,故θ=60°粒子从N 到O 点时间:t 2=d 2v 0,粒子从N 到O 点过程的竖直方向位移:y =12at 22故P 、N 两点间的间隔 为:PN =y =38d.所以MN =PN +PM =538 d.(2)由几何关系得:Rcos 60°+R =MN =538d,可得半径:R =5312d由qvB =m v 2R 解得:B =83mv 05qd ;由几何关系确定区域半径为:R ′=2Rcos 30°,即R ′=54d.(3)O 到M 的时间:t 1=d v 0;N 到O 的时间:t 2=d2v 0在磁场中运动的时间:t 3=4π3R 2v 0=53πd18v 0无场区运动的时间:t 4=Rcos 30°2v 0=5d 16v 0;t =t 1+t 2+t 3+t 4=29d 16v 0+53πd18v 0. 带电物体在叠加场中的运动4.如下图,界面MN 与程度地面之间有足够大且正交的匀强磁场B 和匀强电场E ,磁感线和电场线都处在程度方向且互相垂直.在MN 上方有一个带正电的小球由静止开场下落,经电场和磁场到达程度地面.假设不计空气阻力,小球在通过电场和磁场的过程中,以下说法中正确的选项是( )A .小球做匀变速曲线运动B .小球的电势能保持不变C .洛伦兹力对小球做正功D .小球的动能增量等于其电势能和重力势能减少量的总和D [带电小球在刚进入复合场时受力如下图,那么带电小球进入复合场后做曲线运动,因为速度会发生变化,洛伦兹力就会跟着变化,所以不可能是匀变速曲线运动,选项A 错误;根据电势能公式E p =q φ,知只有带电小球竖直向下做直线运动时,电势能保持不变,选项B 错误;根据洛伦兹力的方向确定方法知,洛伦兹力方向始终和速度方向垂直,所以洛伦兹力不做功,选项C 错误;从能量守恒角度知道选项D 正确.]5. (2021·桂林模拟)如下图,空间存在互相垂直的匀强电场和匀强磁场,图中虚线为匀强电场的等势线,一不计重力的带电粒子在M 点以某一初速度垂直等势线进入正交电磁场中,运动轨迹如下图(粒子在N 点的速度比在M 点的速度大).那么以下说法正确的选项是( )A .粒子一定带正电B .粒子的运动轨迹一定是抛物线C .电场线方向一定垂直等势面向左D .粒子从M 点运动到N 点的过程中电势能增大C [根据粒子在电、磁场中的运动轨迹和左手定那么可知,粒子一定带负电,选项A 错误;由于洛伦兹力方向始终与速度方向垂直,故粒子受到的合力是变力,而物体只有在恒力作用下做曲线运动时,轨迹才是抛物线,选项B 错误;由于空间只存在电场和磁场,粒子的速度增大,说明在此过程中电场力对带电粒子做正功,那么电场线方向一定垂直等势面向左,选项C 正确;电场力做正功,电势能减小,选项D 错误.]6.如下图,空间存在程度向左的匀强电场和垂直纸面向里的匀强磁场,电场和磁场互相垂直.在电磁场区域中,有一个光滑绝缘圆环,环上套有一个带正电的小球.O 点为圆环的圆心,a 、b 、c 为圆环上的三个点,a 点为最高点,c 点为最低点, bd 沿程度方向.小球所受电场力与重力大小相等.现将小球从环的顶端a 点由静止释放,以下判断正确的选项是( )A .当小球运动到c 点时,洛伦兹力最大B .小球恰好运动一周后回到a 点C .小球从a 点运动到b 点,重力势能减小,电势能减小D .小球从b 点运动到c 点,电势能增大,动能增大C [电场力与重力大小相等,那么二者的合力指向左下方45°,由于合力是恒力,故类似于新的重力,所以ad 弧的中点相当于平时竖直平面圆环的“最高点〞.关于圆心对称的位置(即bc 弧的中点)就是“最低点〞,速度最大,此时洛伦兹力最大;由于a 、d 两点关于新的最高点对称,假设从a 点静止释放,最高运动到d 点,故A 、B 错误.从a 到b ,重力和电场力都做正功,重力势能和电势能都减少,故C 正确.小球从b 点运动到c 点,电场力做负功,电势能增大,但由于bc 弧的中点速度最大,所以动能先增大后减小,故D 错误.所以C 正确,A 、B 、D 错误.]7.(多项选择)(2021·哈尔滨模拟)如下图,空间同时存在竖直向上的匀强磁场和匀强电场,磁感应强度为B ,电场强度为E .一质量为m ,电量为q 的带正电小球恰好处于静止状态,如今将磁场方向顺时针旋转30°,同时给小球一个垂直磁场方向斜向下的速度v ,那么关于小球的运动,以下说法正确的选项是( )A .小球做匀速圆周运动B .小球运动过程中机械能守恒C .小球运动到最低点时电势能增加了mgv 2BqD .小球第一次运动到最低点历时πm2qBAD [小球在复合电磁场中处于静止状态,只受两个力作用,即重力和电场力且两者平衡.当把磁场顺时针方向倾斜30°,且给小球一个垂直磁场方向的速度v ,那么小球受到的合力就是洛伦兹力,且与速度方向垂直,所以带电粒子将做匀速圆周运动,选项A 正确.由于带电粒子在垂直。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

+ F E a v + v F E B ××××
× × ××
b c
+
v
,涉及到力 学、电磁学的基本知识,但问题的本质还是物体的运 动,因此处理的根本思路和力学是一样的。
三、应用与提高
例1、如图所示,长为L
的丝线一端栓一质量为m带
E
电量为-q的小球,另一端
连在水平轴O上,丝线拉着 小球可在竖直平面内做圆 周运动,整个装置处在竖

⑵、带电颗粒:液滴、油滴、尘埃、小球等,除有说明或明
确暗示以外,一般都不能忽略重力。
4、如图所示,将一质子自由释放,判断其运动情况?
××××
+ F E a b + F E
××××
× × ××
c
+
B
受力分析
5、若给质子一水平向右的初速度V, 其运动情况如 何?(假定电场和磁场区域很大)
× × × × f
E
1 2 2( Eq mg)l Eql mgl m v v 2 m
④、小球通过最低点B时丝线对 小球的拉力大小。
O
A
B
参考答案
由向心力公式可得:
v T m g Eq m
l v 2( Eq m g)l m
2
T=3(Eq+mg)
练习: 带电量为+q的质量为m的小 球,在离光滑绝缘平面高H0处, 以初速度v0竖直向上运动,匀强 电场场强为E,方向竖直向下, 如图示,求带电小球第一次到 达光滑绝缘平面时的速度大小? 答案:
带电粒子在复合场中的运动(一)
讲 授:
董 刚
一:高考回顾 分析近10年的高考试题,带电粒子在复 合场中的运动每年基本上都以压轴题的形式 出现。2000年、2001年两年的理科综合测试 试题中,以这一部分知识为载体的包含有高 科技的信息给予题频繁出现。本部分知识涉 及力学、电磁学知识的综合运用,要求考生 具有较强的对物理过程进行综合分析的能力, 注重考查基本素质和综合能力,因此应引起 高度重视。预计这类题将会以新的物理情景 出现在今后的高考试卷中。

l
2 g sin
v
2
1 2 (mglsin= mv ) 2
小结:
带电粒子在复合场中的运动实质上是力学知识 和电磁学知识的综合。
⑴、正确分析带电粒子的受力及运动特征是 解决问题的前提; ⑵、灵活选用力学规律是解决问题的关键.
学生作业: 分析近10年高考中关于带电粒子在复合场中 运动的考题。(以89,2000年考题为主)
v0
H0
E
1 1 2 2 由动能定理 ( m g Eq) H 0 m vt m v0 2 2
v
t

2(m g Eq) H 0 m v0 m
2
例 2、
动态演示
练习: 质量为m电量为q的小物块,放在倾角为的绝缘 光滑斜面上,整个斜面置于磁感强度为B的匀强磁场
中,磁场方向如图示,物块由静止开始下滑,滑到某一
二:带电粒子在复合场中运动的基本分析
或其中某两种场并存的场。
2、复合场中各种场的特点: ⑴、电场力和重力做功与路径无关 ⑵、洛仑兹力对电荷不做功 3、带电粒子在复合场中运动时,重力是否可以
1、复合场:复合场指电场、磁场和重力场并存,
不计?
⑴、基本粒子:电子、质子、 粒子 、离子等除 有说明或明确暗示以外,一般都不考虑重力(但并 不忽略质量)。
位置时,开始离开斜面(设斜面足够长,重力加速度为 g )求 :
⑴、物块带何种电荷? ⑵、物块离开斜面时的速度多大?
⑶、物块在斜面上滑行的最大距离.
×B × × q×× m × × × ×× × × × ×× × × × ××
⑴ 负 ⑵
m g cos v Bq
(N=0,Bqv=mgcos)
O
A
B
直向上的匀强电场中,电场强度为E。现将小球拉到
与轴O在同一水平面的A点上,然后无初速将小球释放,
重力加速度为g,求:
⑴、小球通过最低点B时的速度大小;
⑵、小球通过最低点B时丝线对小球
的拉力大小。 分析: ①、若没有电场,小球将做何 种运动? ②、小球通过最低点B时速度 大小?
E
O
A
B
③、加上竖直向上的匀强电场后,小球通过最低点B的 速度大小是多少? 由动能定理:
相关文档
最新文档