电路分析基础第1章
电路分析基础第1章
手电筒电路:
干 电 池
导线
二、集总假设、电路元件 1. 集总假设:
J不考虑电路中电场与磁场的相互作用; J不考虑电磁波的传播现象; J实际 电路的 尺寸远小于最 高 工作 频 率所对应 的 波
长 时, 可 将它 所 反映 的 物 理 现象 分 别进行 研究, 即 用三种基本元件表示其三种物理现象;
目 录
第一章 第二章 第三章 第四章 第五章 第六章 第七章 第八章 第十一章 集总电路中电压、电流的约束关系 网孔分析和节点分析 叠加方法和网络函数 分解方法和单口网络 电容元件和电感元件 一阶电路 二阶电路 阻抗与导纳 耦合电感和理想变压器
第一章 集总电路中的电压、电流约束关系
1-1 电路及集总电路模型 1-2 电路变量,电压,电流及功率 1-3 基尔霍夫定律 1-4 电阻元件 1-5 电压源 1-6 电流源 1-7 受控源 1-8 分压电路,分流电路 1-9 两类约束,支路电压法和支路电流法
掌握基本概念、基本理论、基本方法。
集总电路: 由电 阻 、电容、电感等元件组成的
电路。(电阻电路、动态电路)
集总参数电路:当实际电路的尺寸远小于使用时
其最高工作频率所对应的波长时,可以用“集总参数 元件”来构成实际部、器件的模型。每一种元件只反 映一种基本电磁现象,且可由数学方法加以定义。
例如,无线电调频接收机,若所接收的信号频率为100MHz, 对应波长λ=c/f = 3m,连接接收天线与接收机之间的传输线 即便只有1m长,也不能作为集总电路来处理。 又如,我国电力用电频率为50Hz,对应的波长为6×106m,对 以此为工作频率的用电设备来说,其尺寸远小于这一波长,可 以按集总电路处理,而对于远距离输电线来说,就不能按集总 电路来处理。
电路分析基础第一章 电路模型和电路定律
+
–
+
–
+
实际方向
实际方向
+
U >0
U<0
上页
下页
电压参考方向的两种表示方式
(1) 用正负极性表示
+
(2) 用双下标表示
U
A
UAB
B
UAB =UA- UB= -UBA
上页 下页
3. 关联参考方向 元件或支路的u,i 采用相同的参考方向称之为关联 采用相同的参考方向称之为 参考方向,即电流从电压的“+”极流入,从“-” 极流出该元件。反之,称为非关联参考方向。 极流出该元件
P6吸 = U 6 I 3 = (−3) × (−1) = 3W
上页 下页
注
对一完整的电路,发出的功率=吸收的功率
3. 电能(W ,w)
在电压、电流一致参考方向下,在t0到t的时间内 该部分电路吸收的能量为
w(t0 , t ) = ∫ p (τ ) dτ = ∫ u (τ )i (τ ) dτ
t0 t0
电源 Sourse
灯 Lamp
RS US 电路模型
R
Circuit Models 干电池 Battery
上 页 下 页
电路理论中研究的是 理想电路元件构成的电路(模型)。
电路模型,不仅能够反映实际电路及 其器件的基本物理规律,而且能够对 其进行数学描述。这就是电路理论把 电路模型作为分析研究对象的实质所 在。
干电池 Battery 电路理论中,“电路”与“网络”这两个术语可通用。“网络” 的含义较为广泛,可引申至非电情况。
例:手电筒电路
开关 灯泡
10BASE-T wall plate
电路分析基础练习题及答案第一章精选全文
可编辑修改精选全文完整版电路分析基础练习题及答案第1章 习题一、填空题1-1.通常,把单位时间内通过导体横截面的电荷量定义为 。
1-2.习惯上把 运动方向规定为电流的方向。
1-3.单位正电荷从a 点移动到b 点能量的得失量定义为这两点间的 。
1-4.电压和电流的参考方向一致,称为 方向。
1-5.电压和电流的参考方向相反,称为 方向。
1-6.电压和电流的负值,表明参考方向与实际方向 。
1-7.若P>0(正值),说明该元件 功率,该元件为 。
1-8.若P<0(负值),说明该元件 功率,该元件为 。
1-9. 定律体现了线性电路元件上电压、电流的约束关系,与电路的连接方式无关;定律则是反映了电路的整体规律,其中 定律体现了电路中任意结点上汇集的所有 的约束关系, 定律体现了电路中任意回路上所有 的约束关系,具有普遍性。
1-10.基尔霍夫电流定律(KCL )说明在集总参数电路中,在任一时刻,流出(或流出)任一节点或封闭面的各支路电流的 。
1-11.基尔霍夫电压定律(KVL )说明在集总参数电路中,在任一时刻,沿任一回路巡行一周,各元件的 代数和为零。
二、选择题1-1.当电路中电流的参考方向与电流的真实方向相反时,该电流A 、一定为正值B 、一定为负值C 、不能肯定是正值或负值1-2.已知空间有a 、b 两点,电压U ab =10V ,a 点电位为V a =4V ,则b 点电位V b 为A 、6VB 、-6VC 、14V1-3.当电阻R 上的u 、i 参考方向为非关联时,欧姆定律的表达式应为A 、Ri u =B 、Ri u -=C 、 i R u =1-4.一电阻R 上u 、i 参考方向不一致,令u =-10V ,消耗功率为0.5W ,则电阻R 为A 、200ΩB 、-200ΩC 、±200Ω1-5.两个电阻串联,R 1:R 2=1:2,总电压为60V ,则U 1的大小为A 、10VB 、20VC 、30V1-6.已知接成Y 形的三个电阻都是30Ω,则等效Δ形的三个电阻阻值为A 、全是10ΩB 、两个30Ω一个90ΩC 、全是90Ω1-7.电阻是 元件,电感是 的元件,电容是 的元件。
电路分析基础第1章
1-11 电路如图题1-9所示。 (1)图(a)中已知u=7cos(2t) V,求i;
4 i
-u + (a)
i u• 7 cos 2t 7 cos 2t A 444
(2)图(b)中已知u=(5+4e-6t) V ,i=(15+12e-6t)A ,求R;
iR
+u - (b)
R
u i
5 4e 6t 15 12e 6t
2A,求u4 。
•
i1 a
5
b
1
i4 c
(1)u1 5i1 5 4 20 V
+
+ u1 - +
+ u4 -
i2
-
i3
(2)u2 4i2 4 (2) 8 V uS-
u2 4 -
u3 3 +
d
(3)u3 3i3 3 2 6 V
(4)u4 i4 (2) 2 V
1-14 电路如图题1-12所示若u1=10V,u2=-5V,试电压源的
12V -
4
u=11V
-
1-16 求图题1-14所示电路中的uS 和i 。 uS
5A -
+
6A•
12
i1 15 18 3 A
3
i1
18A
15A
R
i 1
uS 18 3 12i1 54 12 3 90 V
i 651 A
1-20 电路如图题1-15所示,试求电流源电压u和电压源电流i,
i2/A 2
1
•
i3/A
1
o 1 2 3 t/s -1
o1 -1
2 3 t/s
对图1-9所示节点列KCL方程:
i1/A 1
i1 i2 i3
o1 -1
《电路分析基础》第一章:集总电路中电压(流)的约束关系
信息学院电子系
10
(3). 功率
中¾ 定义:电路中能量转换的速率 p(t) = dw = u(t)i(t) (关联参考方向) 国dt SI单位:瓦[特](W)
能量传 输方向
海 p(t)>0,吸收功率,功率的实际方向与参考方向一致 洋 p(t)<0,产生功率,功率的实际方向与参考方向相反
大 ¾ 在 t0 到 t 的时刻内所吸收的能量为:
¾ 分类
大 线性电阻与非线性电阻 学 时变电阻与非时变电阻
特性曲线
信息学院电子系
21
(1). 线性电阻元件
¾两端的电压与电流服从欧姆定律
中 形式一: u(t)=Ri(t)
(关联参考方向)
• R 称为电阻,其 SI单位为欧[姆](Ω)
国• 对于非关联参考方向, u(t)=-Ri(t)
• 欧姆定律体现电阻对电流呈现阻力的本质
¾ 受控源的功率根据受控支路计算 p(t)= u2(t) i2(t)
信息学院电子系
29
例 求受控源的功率
中a
I2
国 I3
海洋大学 思路: P=ui;分析电路构成;依据为KCL、KVL和VCR
信息学院电子系
30
If
If
+
中ω
_ RIf
国海洋大学 CCVS 直流发电机
μ = 1+ R2 R1
VCVS 由运放构成比例器
信息学院电子系
4
1.2 电路变量 电流、电压及功率
中电路的特性是由电流、电压和功率等物理量来描述的
(1). 电流
国 ¾ 电量: 带电粒子所带电荷的多少(符号:q或Q,单位:库[仑]( C ))
海 ¾ 电流: 带电粒子定向移动形成电流
第1章电路分析基础
三. 短路工作状态
当电源两端由于某种原因而 联在一起时,称电源被短路。
IS a
c
短路时,可将电源外电阻视 E
R
为零,电流有捷径流过而不 通过负载。
R0
由于R0很小,所以此时电流
b
d
很大,称之为短路电流 Is 。
U=0
电路短路时的特征为
I = Is = E / R0
P = P = I2 R0
P5 例1-1
Eba
W电源力 q
方向:电动势的实际方向是由电源低电位端指向电 源高电位端。在分析问题时可设参考方向。
单位:电动势与电压的单位相同。为伏特(V)
标量性:电动势与电压和电流都是标量。
电动势
例题
I=0.28A I =-0.28A
如图所示
电动势为E=3V
E=3V + U=2.8V
方向由负极指向正极 电压为U=2.8V 由指向 R0
例
I1 I2
I3
广义节点
例
I=?
R
R
+
+R
+
_U1 _U2
R1
_ U3
I1+I2=I3
I=0
P7例1-3
a
I3
该图为直流电桥电路。已知
I6
R1 I1
+
U- S b
I5
R3
I1=10mA,I2=20mA,I3=15mA, 电流的参考方向如图中箭头
G d 所示。求其余支路的电流。
R2 I2
R4
I4
c
解:从结点a得I6=I1+I3=25mA 从结点b得I5=I1-I2=-10mA 从结点d得I4=I3+I5=5mA
电路分析基础
V RI
若采用非关联参考方向,如图 1-6(b)所示,则电阻 R 两端的电压为
(1-1)
(1-2 V RI 当电阻的单位为欧姆(Ω) 、电流的单位为安培(A)时,电压的单位为伏特(V) 。 例 1-1 应用欧姆定律对图 1-7 的电路列出式子,并求电阻 R 。
6V
3A
R
6V
-3A
R
-6V
—3—
Байду номын сангаас
P = –VI
(1-4)
在此规定下,将电流 I 和电压 V 数值的正负号如实代入公式,如果计算结果为 P > 0 时,表 示元件吸收功率,该元件为负载;反之,P < 0 时,表示元件发出功率,该元件为电源。 例 1-2 图 1-8 所示电路中,已知:V S1 = 15V,V S2 = 5V,R = 5Ω,试求电流 I 和各元件 的功率。 R 解:由图中电流的参考方向,可得
I E VS Ro RL Ro RL
(1-5)
式中,R L 为负载电阻,R o 为电源的内阻,通常 R o 很小。负载两端的电压也就是电源输出电
—4—
压: V = E – IRo = V S – IR o 通路时的功率平衡关系式为:
PRL PE PRO EI I 2 Ro VI
第 1 章 电路分析基础
电工电子技术的应用离不开电路。电路由电路元件构成。本章着重介绍电路的基本 概念、常用电路元件、电路的基本定律和电路常用的分析方法,为学习各种类型的电工电子 电路建立必要的基础。
1.1
1.1.1
电路的基本概念
电路的组成和作用
从日常生活和生产实践可以体会到,要用电一般要用导线、开关等将电源和用电设备或 用电器连接起来,构成一个电流流通的闭合路径。这就是所谓电路。 电路的形式是多种多样的,但从电路的本质来说,其组成都有电源、负载、中间环节三 个最基本的部分。例如图 1-1 所示的手电筒电路中,电池把化学能转换成电能供给灯泡,灯 泡却把电能转换成光能作照明之用。 凡是将化学能、 机械能等非电能转换成电能的供电设备, 称为电源,如干电池、蓄电池和发电机等;凡是将电能转换成热能、光能、机械能等非电能 的用电设备,称为负载,如电热炉、白炽灯和电动机等;连接电源和负载的部分,称为中间 环节,如导线、开关等。 电路的种类繁多,但从电路的功能来说,其作用分为两个方面:其一实现电能的传输和 转换(如电力工程,它包括发电、输电、配电、电力拖动、电热、电气照明、以及交直流电 之间的整流和逆变等等。 ) ;其二进行信号的传递与处理(如信息工程,它包括语言、文字、 音乐、图象的广播和接收、生产过程中的自动调节、各种输入数据的数值处理、信号的存储 等等。 ) 。电路的作用不同,对其提出的技术要求也不同,前者较多的侧重于传输效率的提高, 后者多侧重于信号在传递过程中的保真、运算的速度和抗干扰等。
第1章 电路分析基础
i1
u R1
R2 R1 R2
iS
i2
u R2
R1 R1 R2
iS
简单电阻电路的计算:18页例1.9
第40页,共58页。
1.3.3支路电流法
电路有m条电路,以m条支路电流作为未知量,应用
基尔霍夫定律列出m个独立的方程式,联立求解方程式 即可解出各支路电流。这就是支路电流法。
I1 U1
R1
a I2
b
电感(Inductance)等 为了对实际电路进行分析,可忽略负载的次要因素,将其近 似看作理想电路元件,简称为元件(Element ) 。 元件通过端子与外电路相连,按端子的数目可将元件分为 :二端元件、三端元件、四端元件等。
第4页,共58页。
实际情况中,电路由电源(信号源)、负载和中间环结组 成。
3、联立求解3个方程即可。
R1
b
3个方程如下: Il+I2+IS3-I4=0 I1R1-US1+US2-I2R2=0 I2R2-US2+I4R4=0
解之得:
Il=-22(A)
I2=14(A) I4=10(A)
第43页,共58页。
1.3.4结点电压法 以结点电压作为未知量,将各支路电流用结点电压表示
U4
R2
R3
U5
R4 R5
电工电子第1章电路与电路分析基础
1.2 电路的基本物理量
其代数和即为该点的电位。从待求点参考点到参考点的路 径往往不止一条,但对同一参考点而言,某一点的电位值 具有唯一性。一般尽量选择简单的路径进行计算。 1.2.3 电动势
电动势反映了电源把其他形式的能量转换为电能本领 的大小。电源常用符号E或US表示。电动势的实际方向为 由电源负极经电源内部到电源正极,即电源内部电位升高 的方向。
1.2 电路的基本物理量
图1-8 例1-1图 例1-1 电路如图1-8所示,已知E1=6V,E2=4V,R1=4Ω, R2=2Ω。 如果以B点为参考点,求A、C点电位。
1.2 电路的基本物理量
解:各电阻中电流的参考方向如图1-8所示。通过观察,R1、R2、 E1形成一个简单的串联回路,R3没有形成回路。以B点为参考点,
P
U I
U
U R总
39.5
220 4.84 1.06
1.47kW
通过计算说明,线路长度仅仅为1km,导线截面已增 大到50平方毫米,线路上仍然有39.5V的电压降,负载端 电压降低到180.5V,造成了电能大量浪费的同时,负载甚 至将无法正常工作。
1.3 电路中的电阻 图1-14 线路的功率损耗
1.3.2 欧姆定律与电阻的串并联
1.一段电路的欧姆定律
I
Uቤተ መጻሕፍቲ ባይዱR
图1-12一段含有电阻的电路 图1-13线性元件的伏安特性曲线
1.3 电路中的电阻 伏安特性曲线:元件的电压与电流的关系曲线。 线性电阻的伏安特性曲线是一条过原点的直线。 线性电路:由线性元件构成的电路。 非线性电路:含有非线性元件的电路叫做。 2.全电路欧姆定律
则有 UB=0,I3=0
第1章 电路分析基础
R0 US
+
U RL
U/V
U= US
电 流 源
_
_
0
b 电压源电路
I/A
理想电压源的外特性
当实际电压源的内阻 R0 0(相当于短路)时,U = US 为一定 值,此时通过电压源的电流I 则由负载电阻 RL 和 U 共同确定,这样 的电源称为理想电压源简称电压源。
电 流 源
a
I
I/A I=IS RL U/V
I1 R1 I6
b
I2
支路:共 ?条
节点:共 ?个
6条 4个
7个
a I4 I3
R6 I5 US4 +U
c
回路:共 ?个
R5
d _ R3
独立回路:?个
S3
有几个网眼就有几个独立回路
3. 基尔霍夫电流定律KCL
用来描述电路中各部分电压或各部分电流间的关系,其中包括 基氏电流定律(KCL)和基氏电压定律(KVL)两个定律。
所以,从 P 的 + 或 - 可以区分器件 的性质,或是电源,或是负载。
检验学习结果
1. 电路由哪几 部分组成?试 述电路的功能 。 2. 电路元件与实 体电路器件不何 不同?何谓电路 模型?
3. 为何要引入 参考方向?参 考方向与实际 方向有何联系 与区别?
4. 如何判别元件 是电源还是负载 ?
(2) 电压 ☆ 电压是电路中产生电流的根本原因。 ☆ 电压等于电路中两点电位之差。 ☆ 电路中a、b两点间的电压定义为单位正电
荷由a点移至b点电场力所做的功。
uab
dwab dq
或
U ab
Wab Q
大写 U 表示直流电压,小写 u 表示电压的一般符号 电压的单位及换算:1V=103mV=10-3KV
电路分析基础
第一篇 电路分析基础【本篇介绍】该篇介绍电路分析的基本概念、基本理论、基本方法和基本定律。
该部分是电路分析的基础。
通过该部分的学习,使同学们掌握分析电路的基本知识与方法,为今后学习和工作打下基础。
第一章 电路的基本概念及基本定律1.1 教学目标本章教学主要目标是让学生掌握电路分析的一些基础知识—基本概念和基本定律。
在基本概念中要明确如何将实际电路转化为电路模型?电路分析中的基本变量有哪些?掌握电路分析的基本定律—基尔霍夫定律和欧姆定律,为学习后面各章打下基础。
1.2 教学内容(1) 电路模型(2) 电路基本变量(3) 基尔霍夫电压定律(KVL )、基尔霍夫电流定律(KCL )和欧姆定律 (4) 电路元件1.3 重点、难点指导1.3.1 电路模型。
电路模型就是把实际电路器件构成的电路进行抽象得出来的模型,俗称电路图。
对实际电路进行模型化处理的前提是:假设电路中的基本电磁现象可以分别研究,并且相应的电磁过程都集中在各理想元件内部进行。
即所谓的电路理论的集中化假设。
集中参数元件的主要特点是:元件外形尺寸与其正常工作频率所对应的波长而言小很多。
1.3.2 电路基本变量电路分析中的基本变量为电流、电压和功率,其中tt q t i d )(d )(=)(d )(d )(t q t w t u =)()(d )(d )(t i t u tt w t p ==在应用这些变量分析电路问题时,一定要注意以下三个问题:1. 在电路图中所用到的电流或电压,一定要先设定参考方向,这是求解电路的前提,否则所得结果的正、负值没有意义。
2. 一定要搞清楚某支路上电流和电压方向是关联还是非关联参考方向。
否则无法列出方程。
如图1-1所示,对于网络N 2而言,u 和i 方向是关联的;对于网络N 1而言,u 和i 方向是非关联的。
3. 在计算元件(或网络)的功率时,若u 和i则功率ui p =若u 和i 方向非关联,则功率应写为图1-1 参考方向示例ui p −=若p >0,则说明该元件(或网络)吸收功率;若p <0,则说明该元件(或网络)产生功率。
《电路分析基础》_第1章-2
i/A
is 0 i=is-uGs u/V isRs
实际电流源模型
在参考方向下,由伏安特性可见,它是斜率为GS的直线,实际电源的内阻越大(GS越小),分流 作用越小,斜率越平缓,就越接近理想电流源。
当GS=0,伏安特性演变为图中虚线所示,成为理想电流源。
需要说明的是: • • 理想电流源在实际中不存在,但在实际中可用电子电 路来实现。 实际电源(如光电池、充电器等)在一定条件下可近 似地看成是一个电流源,或看作是由一个电流源与电 阻元件的并联构成。 引入电流源模型后,把没有并联电阻的电流源称为无 伴电流源。 在处理工程问题时,当实际电源内阻远小于负载电阻 时,就可以将实际电源近似看作电压源; 反之,当实际电源内阻远大于负载电阻时,就可以将 实际电源近似看作电流源。
+
-i+ u -来自外 电 路u/V
us
u=us-iRs 0 i/A uS/Rs
实际电压源模型
在参考方向下,由伏安特性可见,它是一条斜率为-RS的 直线,实际电源的内阻越小,分压作用越小,斜率越平缓, 就越接近理想电压源。 当RS=0,伏安特性演变为图中虚线所示,成为理想电压源。
•
理想电压源虽然不存在,但在实际中可用电子电路来 近似实现,如晶体管稳压电源。
常用的各种二端电阻器件
☆ 线性电阻R是一个与电压和电流无关的常数。 R = t gα ☆电阻的倒数称为电导G
即:G 1 R
则 欧姆定律表示为 电阻的单位:Ω (欧) 电导的单位: S (西) ☆电阻的功率和能量
i=Gu。 (Ohm,欧姆) (Siemens,西门子)
WR pdξ uidξ
作 业
P54 P55 P56 P57
电工第一章电路分析基础
三、 电路的工作状态
全电路欧姆定律
1、电路的负载状态
1)电压电流关系
I a S
E I R0 R
U E R0 I E
电源外特性
R
R0
c E
-
.
U
b
负载状态
2)功率关系
如果将电压电流关系两端同时乘以I则可得:
IU IE I R0
2
P=UI——负载消耗功率; PE=IE——电源产生的功率;
二、用支路电流法分析电路的一般步骤
1)在电路图上,标出电流、 电压、电动势等各物理量的参 考方向。 2)对(n-1)个独立节点列写 KCL方程 对节点a列出
c
US1
R1 I1 I3
第一章
电路分析基础
8学时
1-1 电路的基本概念
一、电路的组成及作用
电源 中间环节 负载
强电电路:处理的是电 能,即实现电能的传输 与转换
信 号 源
弱电电路:处理的是信号, 即实现信号的传递与处 理
强、弱电电路中的物理量 都是电流、电压
即:电路由电源(信号源)、 负载、中间环节等组成
二、电路中的基本物理量与参考方向
任 意 电 路
I U c
任 意 电 路
I U d
任 意 电 路
P UI 220 (1) 220W P UI 220 (1) 220W P UI 220 (1) 220W P UI 220 (1) 220W
相当于电源
相当于负载 相当于负载
电动势(电源)的实际方向:是由低电位指向高电位, 即电位升高的方向。正好与电压的实际方向相反。
E ——直流电动势
第一章 电路分析基础
u0
u
电流源不能开路!
例1.10: 计算各元件的功率。
i
解:
2A
i iS 2 A
u 5V
产生
5V
u
_
满足:P(产)=P(吸)
+
+
_
P2 A iS u 2 5 10W
P5V uS i 5 2 10W
吸收
实际电流源 i
伏安特性:
iS
i
u i iS RS
色码电阻
色别 黑 数字 0 误差 棕 1 红 2 橙 3 黄 4 绿 5 蓝 6 紫 7 灰 8 白 9 金 银 本色 I II III 5 10 20
有效数值 ‘0’的个数 1 2 3 4 误差等级 7 5 0
±5 %
6 8 0 0 = 6.8K
±10 %
二. 电阻元件的特性
参考方向与真实方向的关系
a
I(DC) i
(AC)
b b
I1 I2 b b
计算 结果
>0 一致 <0 相反
例1.1: 如何表示1A的电流从a点流向b点。
a
解:
a
a
I1=1A
I2= -1A 电流表
4.电流的测量 电流表要串联接入
被测量支路
电流表
二.电压
1. 电压的大小和极性
(1) 电压大小: 单位正电荷从 a点移到 b 点所获得的能量 u(t)=dw/dq (2) 电压极性: 高电位指向低电位,即电 压降方向。 (3) 电压的单位: 伏特(V) 1V=1000mV 1mV=1000uV
5i1 +
u+
1
解:
电路分析基础第一章
理想电流源 输出电流恒 定,两端电 压由它和负 载共同决定
(b)可以用电压或电流按数学方式描述; (c)不能被分解为其他元件。
三. 集总参数电路(lumped parameter circuit)
指由集总参数元件连接组成的电路,即用理想元件的组 合取代实际电路元器件和设备所得到的理想电路,又称电路 模型,简称电路。 • 集总参数元件:实际元件的电能消耗及电、磁能的贮存等现
对于电视天线及其传输线来说,其工作频率为108Hz数
量级,譬如某频道,工作频率约为200MHz,相应的工作波 长为1.5m,这时0.2m长的传输线也不能看作是集总参数电
路。对于不符合集总化假设的实际电路,就需要用分布
(distributed)参数电路理论或电磁场理论来研究,这将会 在以后见到。本书只讨论集中参数电路,而今后所说的 “元件”、“电路”均指理想化的集总参数的元件和电路。
它们分析和解决电路中的实际问题。
• 电路分析是“电路理论”学科的重要分支
电路理论(circuit theory)是物理学中电磁
学的一个分支,若从欧姆定律(1827年)和基尔
霍夫定律(1845年)的发表算起,至今已有170多
年的历史。随着电力和通信工程技术的发展,电
路理论逐渐形成一门比较系统且应用广泛的工程 学科。自20世纪60年代以来,新的电子器件不断 涌现,集成电路、大规模集成电路、超大规模集 成电路的飞跃发展、计算机技术的迅猛发展和广 泛应用等等,
l
这样,可以认为传送到实际电路各处的电磁能量是同时 到达的。这时,与电磁波的波长相比,电路尺寸可以忽略不 计。从电磁场理论的观点来看,整个实际电路可看作是电磁 空间的一个点,这与经典力学中把小物体看作质点是相类似 的。
第1章 电路分析基础
例
b
支路:共 ?条
I2 结点:共 ?个
6条 4个
I1
a I6 R6
c
I5 回路:共 ?个 独立回路:?个
I4
I3 d
+E _ 3
R3
3个
有几个网眼就有几个独立回路
基尔霍夫电流定律(KCL) 在任何电路中,任何结点上的所有支路电流的代数 和在任何时刻都等于0:
i 0
基尔霍夫电流定律同样适用于任一闭合面。
I1 I 2 I 3 0
(2) 选定单孔回路Ⅰ和Ⅱ为顺时针方向,得回路电压方程
U S1 R1 I1 R2 I 2 U S 2 0 U S 2 R2 I 2 R3 I 3 U S 3 0
(3) 将已知数据代入各方程式,整理后得
I1 I 2 I 3 0 20 10 3 I1 60 10 3 I 2 4 0 60 10 3 I 2 30 10 3 I 3 24 0
基尔霍夫电压定律
对电路中的任一回路,沿任意循行方向转一周,其电位降 等于电位升,或电压的代数和为 0。
I1
R1 + U1 - #1 I3
a R #3 b
3
+ #2 _ U2
I2 R2
U 0 即:
电位降为正 电位升为负
例如: 回路#1
I1R1 I3R3 U 1
电位降
对回路#2:
对回路#3:
列电流方程 结点a:
I 3 I 4 I1
结点b:
结点c:
I1 I 6 I 2
I 2 I5 I3
+
U3
d
R3 结点d:
I 4 I6 I5
电路分析基础(第四版)课后答案第1章
示。 由KCL推广形式可知I1=0;由KVL对回路A列方程, 有
6I-5-5+4I=0
55 I 1A 46
自a点沿任何一条路径巡行至b点, 沿途各段电路电压之代数 和即是电压Uab。 Uab=6I-5+10I1+5-3=3 V
19
第1章 电路基本概念 1.7 求图示各电路中的电流I。 解 图(a)电路中, 由KVL, U=2I-2=6 V 所以
41
第1章 电路基本概念
题解1.12图
42
第1章 电路基本概念
由KCL推广可知I1=0, 应用KVL, 由回路Ⅰ求得电压
源
Us=(2+1+3)×2=12 V
由回路Ⅱ
6 I 1.2 A 5
所以节点a Va=2×1+5-6=1 V
43
第1章 电路基本概念 1.13 求图示各电路ab端的等效电阻Rab。
32
第1章 电路基本概念
1.10
求图示各电路中的电流I。
题解1.10图
33
第1章 电路基本概念
解 图(a):
I 100 2A [50 / /50 6 / /30] / /60 / /20 40
图(b): 在图示电路中设节点a及电流I1、I2、I3、I4的参 考方向,如题解1.10图(b)所示。 应用电阻串并联等效, 得 电流
图(b): 在图示电路中设电压U1的参考方向, 如题解1.8
图(b)所示。 应用电阻串并联等效及分压关系式, 得电压
(2 4) / /3 U1 9 6V (2 4) / /3 1
所以
4 2 U U1 6 4 V 24 3
27
第1章 电路基本概念 图(c): 在图示电路中设电流I1、 I2的参考方向, 如题解
电路分析基础第一章
I =-2A
在求解电路中的电流时,应该首先选定电流的 参考方向(正方向),然后根据假设的电流方向进 行分析求解。 若求得I > 0,则电流的实际方向与参考方向一致 若求得I < 0,则电流的实际方向与参考方向相反
二、受控源的类型
电压控制电压源(VCVS) 电压控制电流源(VCCS) 电流控制电压源(CCVS); 电流控制电流源(CCCS)
三、受控源的符号
+ u1 + + u1 -
u1
-
+
u1
-
电压控制电压源
电压控制电流源
i1
i1
-
i1
gi1
电流控制电压源
电流控制电流源
1-4 基尔霍夫定律
在电路理论中,电路元件的电压、电流受自身伏安关系的 约束。当各元件联接成一个电路以后,电路中的电压、电流除 了必须满足元件自身的约束方程以外,还必须同时满足电路结 构的约束。这种约束体现为基尔霍夫的两个定律,即基尔霍夫 电流定律(Kirchhoff’s Current Law),简写为KCL)和基尔 霍夫电压定理(Kirchhoff’s Voltage Law),简写为KVL。
1-2 电路的基本变量
1-2-1 电流
一、电流的定义
电荷的定向移动形成电流,电流的大小 用电流强度来描述,符号为I或i。电流强度 定义为电位时间流过导体横截面的电量,即
dq i dt
如果电流的大小方向随时间变化,称为交流电 流;若电流的大小方向不随时间变化,称为直流电 流。在这种情况下,通过导体横截面的电量Q与时间 t呈正比,即
i iS u / RS
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
i6
1
i8 1
1-12电路如图题1-10所示,已知i1=3A、i2=-2A、i3=4A、i4= 6A、i5=-7A、i6=5A。如果少给i6 ,但给定i7=7A ,本题是否 能解?
a i9 1 i5 2 c i7 i11 i3 i2 d i6 1 2 i4 i10 i1 b
(2)如i6未知,但给定i7=7A 则i6、i8、i9、i10、i11均可求解
1 2 3
u2 u3 u5 u6 0
(3)若给定u2=10V,u3 =5V,
+ + 1 u1 -
u2 2
- +
u4 4
- + u5 5 -
u6=-4V试确定其余各电压。
+ 3 u3 -
u1 u2 u3 10 5 15 V u5 u2 u3 u6 10 5 4 11 V
(3)图(c)中已知u=3(cos2t) V,求5电阻的功率;
- u +
6 ( c)
5
u2 ( 3 cos 2t ) 2 9 P cos 2 2t W 5 5 5
(4)图(a)中已知电压u的波形如图1-15中的u3,求i的波形。 4 i u/V 2 o 1 2 3 4 t/s 0.5 o 1 2 3 4 t/s i/A
i8 1
i6、i7、i9、i10、i11无法求解 1
1-13 电路如图题1-11所示,(1)已知i1=4A,求u1;(2)已 知i2=-2A,求u2;(3)已知i3=2A,求u3; (2)已知i4= -2A,求u4 。 i1 5 1 i4 c b a + u1 - + u4 - (1)u1 5i1 5 4 20 V i3 i2 + - + uS u3 3 u2 4 u2 4i2 4 (2) 8 V - (2) + -
给定几个电压才能确定其余电压?这些给定电压应具有什么特点?
+
u7
-
u6 6 - u12 12 +
u5 u7 u6 3 2 5 V u11 u1 u5 u2
7
+ u5 5 - + -
10 5 5 10 V
u10 u2 u6 u12 u4
+ u1 1 -
5 2 8 3 14 V
其余电压均可确定。
+ + + 4 u4 u2 2 u3 3 - - - 11 8 9 - u11 + + u9 - + u8 - 10 + u10 -
不能确定u3、u8和u9 。由图可知,只要知道这三个电压中的任一个,
1-9 电路如图题1-7所示,采用关联的参考方向,且已知下列各支路 电流;i1=2A、i4=5A、 i7=-5A 以及i10=-3A。其它各支路电流是
2 3 6 8
由图可知,只要知道这四个电流中的任一个,其余电流均可确定。
1-10 电路如图题1-8所示,已知i1=2A, i3=-3A, u1=10V, u4 =-5V,试计算各元件吸收的功率。 设元件4的电流i4的参考
i1
方向如图所示
+ i4 i1 i3 2 3 1 A u2 2 -
否都能确定?试尽可能多地确定各未知电流。如需确定所有电流,
尚需知道哪些电流。本电路需要给定几个电流才能确定其余电流? 这些给定电流应具有什么特点?
+
+ + u1 1 - u5 5 - u7
-
u6 6 - u12 12 +
i11 i1 2 A i12 i4 5 A
7
+ -
+ + + 4 u4 u2 2 u3 3 - - - i9 i4 i10 5 3 2 A 11 8 9 - u11 + + u9 - + u8 - i5 i1 i7 2 5 3 A 10 + u10 - 不能确定i 、i 、i 和i 。
- u + (a)
1-12 电路如图题1-10所示,已知i1=3A、i2=-2A、i3=4A、i4= 6A、i5=-7A、i6=5A, 求其余各支路电流以及uba、udc。 i4 a b i8 i2 i3 2 4 2 A i10 1 i6 i9 i4 i6 6 5 1 A i9 i1 i
10 Uf 10 V 1
+ Uf -
1-3 各元件的情况如图题1-2所示。
(7)若元件G产生的功率10mW,求Ig ; Ig G + 10V - (8)试求元件H产生的功率。 2mA
P 10 I g 10 mW
10 103 Ig 1 mA 10
H
P 2 2 103 4 mW
i3/A
i1/A
对图1-9所示节点列KCL方程: 1 o -1 1 2 3 t/s
i1 i2 i3
-2
1-6 电路如图题1-5所示,试求:(1)图(a)中的i;(2)图 (b)中的各未知电流;
2A 3A -2A 6A i (a) -2A 5A (b) 4A 7A 4A 3A 1A
4A
i 3 ( 2) 5 A
1 + u1 -
i4 - 3 u3 + i3 + 4 u4 -
u2 u1 u4 10 5 5 V
u3 u4 5 V
P1 u1i1 10 2 20 W
P3 u3 i3 5 (3) 15 W
P2 u2 i1 5 2 10 W P4 u4 i4 5 1 5 W
1-2 设在图1-2所示元件中,正电荷以5C/s的速率由a流向b。
(1)如电流的参考方向假定为由a至b,求电流。(2)如电 流的参考方向假定为由b至a ,求电流。(3)如流动的电荷为 负电荷,(1)、(2)答案有何变化?
(1) a
i
b i
dq i 5A dt dq i 5 A dt
(2) a
2 1 2
0 t 1s 1s t 2s
W ( t ) p( t )dt 10tdt 10( t 2)dt 5 5 0 J
0 0 1
1-5 对图1-9所示节点,已知i2(t)和i3(t)的波形图如图题1-4所示, 求i1(t)的波形图。 2 1 o -1 1 2 3 t/s i2/A 1 o -1 1 2 3 t/s
1-11 电路如图题1-9所示。 (1)图(a)中已知u=7cos(2t) V,求i;
4
- u + (a)
i
u 7 cos 2t 7 i cos 2t A 4 4 4
(2)图(b)中已知u=(5+4e-6t) V ,i=(15+12e-6t)A ,求R; i R +u - ( b)
u 5 4e 6 t 1 R 6t i 15 12e 3
元件D吸收的功率为
+ 10mV -
20 106 W
1-3 各元件的情况如图题1-2所示。
(5)若元件E产生的功率为10W,求Ie ; Ie E
P 10 I e 10 W
10 Ie 1 A 10
- 10V +
(6)若元件F产生的功率为-10W,求Uf ; 1A
F
P Uf 1 10 W
1-4 某元件电压u和电流i的波形如图题1-3所示, u和i为关联参 考方向,试绘出该元件吸收功率p(t)的波形,并计算该元件从
t=0至t=2s期间所吸收的能量。
u(A) 5 o 1 2 t(s) i (A)
2
o -2 1 2
i
t(s)
+ u -
10t W 则功率p(t)的表达式为: p( t ) 10( t 2) W
1-12 电路如图题1-10所示,已知i1=3A、i2=-2A、i3=4A、i4= 6A、i5=-7A、i6=5A。如果少给一个电流条件,例如i6,本题 是否能解?
a i4 i10 i1 2 i5 2 c i7 i11 i3 i2 d b
(1)如i6未知,且i7未给定
i9 则i8、i10可求解 i9、i11 、i7无法求解 1
(3)u3 3i3 3 2 6 V (4)u4 i4 (2) 2 V d
1 2 3
u2 u3 u5 u6 0
+ + 1 u1 -
u2 2
-
4 + u5 5 -
(1)确定u1 、 u2 、 u5 、及u6 的参考极性;
+ 3 u3 -
(2)能否再进一步确定U4 的参考极性? 不能
1-7 图题1-6电路中电压u3的参考极性已选定,若该电路的两个 KVL方程为: u6 - + 6 u u u 0
1 i10 i4 i8 i1 6 2 3 5 A 2 i7 2 i11 i3 i2 d
8
1
i11 i3 i9 i5 4 1 (7) 12 A i5
i7 i11 i2 i1 12 2 3 7 A
c
uba i10 2i7 2i11 i9 5 14 24 1 44 V udc i8 i10 2i7 2i11 2 5 14 24 45 V
b
(3)如流动的电荷为负电荷,(1)、(2)中求出的电 流值相差一个负号。
1-3 各元件的情况如图题1-2所示。
(1)若元件A吸收功率10W,求Ua ;
1A
A + Ua -
P Ua 1 10 W
10 Ua 10 V 1()若元件B吸收功率10W,求Ib ;
Ib
B
P 10 I b 10 W
元件H产生的功率为4mW。
+ 2V -
1-4 某元件电压u和电流i的波形如图题1-3所示, u和i为关联参 考方向,试绘出该元件吸收功率p(t)的波形,并计算该元件从
t=0至t=2s期间所吸收的能量。
u(A) 5 o 1 2 t(s) i (A)