物理选修3-21汉文
新课标人教版高中物理选修3-2全套教案[97P]甄选
[极品]新课标人教版高中物理选修3-2全套教案[97P]优.选高中物理选修3-2全册教案第一节划时代的发现【教学目标】1.知识与技能(1)知道奥斯特实验、电磁感应现象,(2)了解电生磁和磁生电的发现过程,(3)知道电磁感应和感应电流的定义。
2.过程与方法(1)通过阅读使学生掌握自然现象之间是相互联系和相互转化的;(2)通过学习了解科学家们在探究过程中的失败和贡献,从中学习科学探究的方法和思想。
(3)领悟科学探究中提出问题、观察实验、分析论证、归纳总结等要素在研究物理问题时的重要性3.情感、态度与价值观(1)通过学习阅读培养学生正确的探究自然规律的科学态度和科学精神;(2)领会科学家对自然现象、自然规律的某些猜想在科学发现中的重要性。
(3)以科学家不怕失败、勇敢面对挫折的坚强意志激励自己。
【教学重点】探索电磁感应现象的历史背景;【教学难点】体会人类探究自然规律的科学态度和科学精神【教学方法】讲授【教学过程】(一)奥斯特梦圆“电生磁”到18世纪末,人们开始思考不同自然现象之间的联系,例如:摩擦生热表明了机械运动向热运动转化,而蒸汽机则实现了热运动向机械运动的转化,于是,一些独具慧眼的哲学家如康德等提出了各种自然现象之间的相互联系和转化的思想。
由于受康德哲学与谢林等自然哲学家的哲学思想的影响,坚信自然力是可以相互转化的,长期探索电与磁之间的联系。
1803年奥斯特指出:“物理学将不再是关于运动、热、空气、光、电、磁以及我们所知道的各种现象的零散的罗列,我们将把整个宇宙纳在一个体系中”。
在此思想的指导下,1820年4月奥斯特发现了电流对磁针的作用,即电流的磁效应。
同年7月21日奥斯特又以《关于磁针上电冲突作用的实验》为题发表了他的发现。
这篇短短的论文使欧洲物理学界产生了极大震动,导致了大批实验成果的出现,由此开辟了物理学的新领域──电磁学。
1820年因电流磁效应这一杰出发现获英国皇家学会科普利奖章。
1829年起任哥本哈根工学院院长。
高中物理选修32知识点总结.doc
高中物理选修3-2知识点总结第四章 电磁感应1.两个人物:a.法拉第:磁生电 b.奥斯特:电生磁2.感应电流的产生条件:a.闭合电路b.磁通量发生变化 注意:①产生感应电动势的条件是只具备b ②产生感应电动势的那部分导体相当于电源③电源内部的电流从负极流向正极 3.感应电流方向的判定: (1)方法一:右手定则(2)方法二:楞次定律:(理解四种阻碍) ①阻碍原磁通量的变化(增反减同) ②阻碍导体间的相对运动(来拒去留) ③阻碍原电流的变化(增反减同)④面积有扩大与缩小的趋势(增缩减扩) 4.感应电动势大小的计算: (1)法拉第电磁感应定律: A 、内容:闭合电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比。
B 、表达式:tnE ∆∆=φ (2)磁通量发生变化情况 ①B 不变,S 变,S B ∆=∆φ ②S 不变,B 变,BS ∆=∆φ ③B 和S 同时变,12φφφ-=∆ (3)计算感应电动势的公式①求平均值:tn E ∆∆=φ②求瞬时值:BLv E =(导线切割类) ③导体棒绕某端点旋转:ω221BL E = 5.感应电流的计算: 瞬时电流:总总R BLvR E I ==(瞬时切割) 6.安培力的计算:瞬时值:rR vL B BIL F +==227.通过截面的电荷量:rR n t I q +∆=∆=φ注意:求电荷量只能用平均值,而不能用瞬时值 8.自感:(1)定义:是指由于导体本身的电流发生变化而产生的电磁感应现象。
(2)决定因素:线圈越长,单位长度上的匝数越多,截面积越大,它的自感系数就越大。
另外,有铁芯的线圈自感系数比没有铁芯时大得多。
(3)类型:通电自感和断电自感(4)单位:亨利(H )、毫亨(mH)、微亨(H μ)(5)涡流及其应用①定义:变压器在工作时,除了在原副线圈中产生感应电动势外,变化的磁通量也会在哎铁芯中产生感应电流。
一般来说,只要空间里有变化的磁通量,其中的导体中就会产生感应电流,我们把这种感应电流叫做涡流 ②应用:a.电磁炉b.金属探测器,飞机场火车站安全检查、扫雷、探矿接通电源的瞬间,灯泡A 1较慢地亮起来。
教科版高中物理选修3-2全册课件
“静变”思维的束缚
未显示作用
毫无反应
不行
从普通的磁铁中 获得电的希望,时 时激励着我从实验 上探求电流的感应 效应。
法拉第 日记
自然哲学家谢林:宇宙间具有普遍的自 然力的统一。
一、奥斯特实验的启迪
电与磁是有联系的! 艰辛探索(1807-1820) : 静电——没感觉 改变中的突破:1820 发现小磁针偏转 安培的华丽转身:安培定则、电动力学
法拉第:“它突然打开了科学 中一个黑暗领域的大门,使其 充满光明。”
二、电磁感应现象的发现
课前自主学案
一、奥斯特实验的启迪
奥斯特 1820年,________发现了电流的磁效应.根据
对称性,很多物理学家做了不少“磁生电”的 实验都以失败告终.1821年,法拉第全身投入 “磁生电”的研究中.
二、电磁感应现象的发现
法拉第 1 . 1831 年,英国物理学家 ________ 发现了电磁
感应现象,并将“磁生电”的现象分为五类: (1)
三、电磁感规律的发现及其对社会发展意义
关于法拉第,过去说得多的:穷苦、顽强、不为名利。
现在:除此之外还有,甚至更重要的是… …
(1)正确的指导思想(自然现象的相互联系) (2)抹去科学学家头上的光环,正确认识失败。 科学是人做的,科学是为人的。 ――科学中的人文精神。
说明:请同学们阅读教材P3,了解电磁感规律的发现 及其对社会发展意义。
磁场 变化中的 _____ ; (2) 变化中的 _______ ; (3) 运动 电流
高中物理选修3-2第一章知识点详解版
第一章电磁感应知识点总结一、电磁感应现象1、电磁感应现象与感应电流.(1)利用磁场产生电流的现象,叫做电磁感应现象。
(2)由电磁感应现象产生的电流,叫做感应电流。
二、产生感应电流的条件1、产生感应电流的条件:闭合电路中磁通量发生变化。
2、产生感应电流的方法.(1)磁铁运动。
(2)闭合电路一部分运动。
(3)磁场强度B变化或有效面积S变化。
注:第(1)(2)种方法产生的电流叫“动生电流”,第(3)种方法产生的电流叫“感生电流”。
不管是动生电流还是感生电流,我们都统称为“感应电流”。
3、对“磁通量变化”需注意的两点.(1)磁通量有正负之分,求磁通量时要按代数和(标量计算法则)的方法求总的磁通量(穿过平面的磁感线的净条数)。
(2)“运动不一定切割,切割不一定生电”。
导体切割磁感线,不是在导体中产生感应电流的充要条件,归根结底还要看穿过闭合电路的磁通量是否发生变化。
4、分析是否产生感应电流的思路方法.(1)判断是否产生感应电流,关键是抓住两个条件:①回路是闭合导体回路。
②穿过闭合回路的磁通量发生变化。
注意:第②点强调的是磁通量“变化”,如果穿过闭合导体回路的磁通量很大但不变化,那么不论低通量有多大,也不会产生感应电流。
(2)分析磁通量是否变化时,既要弄清楚磁场的磁感线分布,又要注意引起磁通量变化的三种情况:①穿过闭合回路的磁场的磁感应强度B发生变化。
②闭合回路的面积S发生变化。
③磁感应强度B和面积S的夹角发生变化。
三、感应电流的方向1、楞次定律.(1)内容:感应电流具有这样的方向,即感应电流的磁场总是要阻碍引起感应电流的磁通量的变化。
①凡是由磁通量的增加引起的感应电流,它所激发的磁场阻碍原来磁通量的增加。
②凡是由磁通量的减少引起的感应电流,它所激发的磁场阻碍原来磁通量的减少。
(2)楞次定律的因果关系:闭合导体电路中磁通量的变化是产生感应电流的原因,而感应电流的磁场的出现是感应电流存在的结果,简要地说,只有当闭合电路中的磁通量发生变化时,才会有感应电流的磁场出现。
人教版高中物理(选修3-2,3-4部分)公式
人教版高中物理(选修3-2)公式1.Φ=BSsin θ Φ是磁通量(Wb ) B 是磁感应强度(T ) S 是面积(m ²)sin θ是磁场方向与导体面的夹角正弦值;2.E=n ΔΦΔtE 是感应电动势(V ) n 是匝数(匝) Φ是磁通量的变化量(Wb ) Δt 是磁通量的变化时间(s );推导公式:E=n ΔΦΔt =nS ΔB Δt =nB ΔS Δt=BLVsin θ B 是磁感应强度(T ) S 是面积(m ²) ΔS 是变化面积(m ²) ΔB 是变化磁感应强度(T ) L 是有效长度(m ) V 是速度(m/s ) sin θ是磁场方向与运动方向的夹角正弦值;推导公式:F 安= q=nP 安=P 电=B ²L ²V ²R+rF 安是安培力(N ) Vm 是最大速度(m/s ) R 是外总电阻(Ω) r 是内总电阻(Ω)r 导是导体本身电阻(Ω) P 安是安培力的功率(W ) P 电是电功率(W ) V 是速度(m/s ); 3.E 自=L ΔI ΔtE 自是自感电动势(V ) L 是自感系数(H ) ΔI 是变化自感电流(A ) Δt 是变化时间(s );4.e=Emsin ωt e 是电动势(电压)(V ) Em 是电动势(电压)的峰值(V )ω是线圈转动的角速度(rad/s ) t 是时间(s );5.Em=nBS ω Em 是电动势(电压)的峰值(V ) n 是匝数(匝)B 是磁感应强度(T ) S 是面积(m ²) ω是线圈转动的角速度(rad/s );6.T=1fT 是周期(s ) f 是频率(Hz ); 7.I==0.707Im Um==0.707UmI 是电流的有效值(A ) Im 是电流的峰值(A )U 是电压的有效值(V )Um 是电压的峰值(V ); 8.U1是原线圈两端电压(V ) U2是副线圈两端电压(V )n1是原线圈的匝数(匝) n2是副线圈的匝数(匝);推导公式:n1I1=n2I2 I1是原线圈中的电流(A ) I2是副线圈中的电流(A )n1是原线圈的匝数(匝) n2是副线圈的匝数(匝);[选修3-4知识点]1.简谐运动 简谐运动的表达式和图象Ⅱ1、机械振动:物体(或物体的一部分)在某一中心位置两侧来回做往复运动,叫做机械振动。
(完整版)高中物理选修3-1公式
高中物理选修3-1公式第一章 静电场1、库仑力:221rq q kF = (适用条件:真空中静止的点电荷) k = 9.0×109 N ·m 2/ c 2静电力常量 电场力:F = E q (F 与电场强度的方向可以相同,也可以相反) 2、电场强度: 电场强度是表示电场性质的物理量。
是矢量。
定义式: qFE =单位: N / C 或V/m 点电荷电场场强 2r Q k E = 匀强电场场强 dU E = 3、电势能:电势能的单位:J通常取无限远处或大地表面为电势能的零点。
静电力做功等于电势能的减少量 PB PA AB E E W -=4、电势: 电势是描述电场能的性质的物理量。
是标量。
电势的单位:V 电势的定义式:qE p =ϕ 顺着电场线方向,电势越来越低。
一般点电荷形成的电场取无限远处的电势为零,在实际应用中常取大地的电势为零。
5、电势差U ,又称电压 qWU =U AB = φA -φB 电场力做功和电势差的关系: W AB = q U AB 6、粒子通过加速电场: 221mv qU =7、粒子通过偏转电场的偏转量(侧移距离): 做类似平抛运动222022212121V L md qU V L m qE at y === 粒子通过偏转电场的偏转角度 20tan mdv qUlv at v v xy ===θ8、电容器的电容: 电容是表示电容器容纳电荷本领大小的物理量。
单位:F 定义式: c Q U=电容器的带电荷量: Q=cU 平行板电容器的电容: kdS c πε4=平行板电容器与电源的两极相连,则两极板间电压不变平行板电容器充电后,切断电源,电容器所带电荷量不变电容器接在电源上,电压不变;断开电源时,电容器上电量不变;改变两板距离E不变。
第二章恒定电流1、电流强度定义式:I=tq微观式:I=nevs (n是单位体积电子个数) 决定式:IUR=2、电阻:定义式:IUR=决定式:电阻定律:电阻率ρ:只与导体材料性质和温度有关,与导体横截面积和长度无关。
高中物理选修3-1知识点归纳(完美版)
物理选修3-1一、电场1.两种电荷、电荷守恒定律、元电荷(e =1.60×10-19C );带电体电荷量等于元电荷的整数倍 2.库仑定律:F KQ Q r=122(真空中的点电荷){F:点电荷间的作用力(N); k:静电力常量k =9.0×109N •m 2/C 2;Q 1、Q 2:两点电荷的电量(C);r:两点电荷间的距离(m); 作用力与反作用力;方向在它们的连线上;同种电荷相互排斥,异种电荷相互吸引} 3.电场强度:E Fq=(定义式、计算式){E:电场强度(N/C),是矢量(电场的叠加原理);q :检验电荷的电量(C)}4.真空点(源)电荷形成的电场E KQr =2{r :源电荷到该位置的距离(m ),Q :源电荷的电量} 5.匀强电场的场强ABU E d={U AB :AB 两点间的电压(V),d:AB 两点在场强方向的距离(m)} 6.电场力:F =qE {F:电场力(N),q:受到电场力的电荷的电量(C),E:电场强度(N/C)} 7.电势与电势差:U AB =φA -φB ,U AB =W AB/q =qP E Δ减8.电场力做功:W AB =qU AB =qEd =ΔE P 减{W AB :带电体由A 到B 时电场力所做的功(J),q:带电量(C),U AB :电场中A 、B 两点间的电势差(V )(电场力做功与路径无关),E:匀强电场强度,d:两点沿场强方向的距离(m);ΔE P 减 :带电体由A 到B 时势能的削减量}9.电势能:E PA =q φA {E PA :带电体在A 点的电势能(J),q:电量(C),φA :A 点的电势(V)} 10.电势能的变更ΔE P 减=E PA -E PB {带电体在电场中从A 位置到B 位置时电势能的削减量} 11.电场力做功与电势能变更W AB =ΔE P 减=qU AB (电场力所做的功等于电势能的削减量)12.电容C =Q/U(定义式,计算式) {C:电容(F),Q:电量(C),U:电压(两极板电势差)(V)} 13.平行板电容器的电容εSC 4πkd=(S:两极板正对面积,d:两极板间的垂直距离,ω:介电常数)常见电容器14.带电粒子在电场中的加速(Vo =0):W =ΔE K 增或22mVt qU =15.带电粒子沿垂直电场方向以速度V 0进入匀强电场时的偏转(不考虑重力作用) : 类平抛运动(在带等量异种电荷的平行极板中:dU E = 垂直电场方向:匀速直线运动L =V 0t平行电场方向:初速度为零的匀加速直线运动22at d =, F qE qUa m m m===注: (1)两个完全相同的带电金属小球接触时,电量安排规律:原带异种电荷的先中和后平分,原带同种电荷的总量平分;(2)电场线从正电荷动身终止于负电荷,电场线不相交,切线方向为场强方向,电场线密处场强大,顺着电场线电势越来越低,电场线与等势线垂直; (3)常见电场的分布要求熟记;(4)电场强度(矢量)与电势(标量)均由电场本身确定,而电场力与电势能还与带电体带的电量多少和电荷正负有关;(5)处于静电平衡导体是个等势体,表面是个等势面,导体外表面旁边的电场线垂直于导体表面,导体内部合场强为零,导体内部没有净电荷,净电荷只分布于导体外表面;(6)电容单位换算:1F =106μF =1012PF ;(7)电子伏(eV)是能量的单位,1eV =1.60×10-19J ;(8)其它相关内容:静电屏蔽、示波管、示波器及其应用、等势面带电粒子在匀强电场中的类平抛运动一、模型原题一质量为m ,带电量为q 的正粒子从两极板的中部以速度v 0水平射入电压为U 的竖直向下的匀强电场中,如图所示,已知极板长度为L ,极板间距离为d 。
物理选修3-1-知识点归纳(全)
第一章《静电场》一、电荷、电荷守恒定律1、两种电荷:“+”“-”用毛皮摩擦过的橡胶棒带负电荷,用丝绸摩擦过的玻璃棒带正电荷。
2、元电荷:所带电荷的最小基元,一个元电荷的电量为1.6×10-19C,是一个电子(或质子)所带的电量。
说明:任何带电体的带电量皆为元电荷电量的整数倍。
荷质比(比荷):电荷量q与质量m之比,()叫电荷的比荷3、起电方式有三种①摩擦起电②接触起电注意:电荷的变化是电子的转移引起的;完全相同的带电金属球相接触,同种电荷总电荷量平均分配,异种电荷先中和后再平分。
③感应起电——切割B,或磁通量发生变化。
④光电效应——在光的照射下使物体发射出电子4、电荷守恒定律:电荷既不能创造,也不能被消灭,它们只能从一个物体转移到另一个物体,或者从物体的一部分转移到另一部分,系统的电荷总数是不变的.二、库仑定律1.内容:真空中两个点电荷之间相互作用的电力,跟它们的电荷量的乘积成正比,跟它们的距离的二次方成反比,作用力的方向在它们的连线上。
方向由电性决定(同性相斥、异性相吸)2.公式:221 r QQkF k=9.0×109N·m2/C2极大值问题:在r和两带电体电量和一定的情况下,当Q12时,有F最大值。
3.适用条件:(1)真空中;(2)点电荷.点电荷是一个理想化的模型,在实际中,当带电体的形状和大小对相互作用力的影响可以忽略不计时,就可以把带电体视为点电荷.(这一点与万有引力很相似,但又有不同:对质量均匀分布的球,无论两球相距多近,r 都等于球心距;而对带电导体球,距离近了以后,电荷会重新分布,不能再用球心距代替r)。
点电荷很相似于我们力学中的质点.注意:①两电荷之间的作用力是相互的,遵守牛顿第三定律②使用库仑定律计算时,电量用绝对值代入,作用力的方向根据“同性相排斥,异性相吸引”的规律定性判定。
计算方法:①带正负计算,为正表示斥力;为负表示引力。
②一般电荷用绝对值计算,方向由电性异、同判断。
高中物理选修3-2 2.1-2.3提纲pdf
中性面(1)位置:当线圈平面与磁感线垂直时所处的平面(2)特征:A、磁通量最大,磁通量变化率为零B、导体棒速度与磁感线平行,有效速度为零C 、感应电动势为零D、经过中性面,电流反向•线圈经过中性面时,穿过线圈的磁通量最大,但磁通量的变化率为零(ab和cd边都不切割磁感线),线圈中的电动势为零.•线圈经过中性面时,电流将改变方向,线圈转动一周,两次经过中性面,电流方向改变两次.当线圈平面与中性面垂直时线圈的特征( 1 )磁通量为零,磁通量变化率最大。
线圈中的感应电动势最大,为E m.(2)导体棒切割磁感线的速度与磁感线垂直。
E m =2BL 1vsin θ=2BL 1v又所以E m =BL 1L 2ω=BS ω对n 匝的线圈E m =n BS ω2L ωv 2交变电流的概念交变电流的特点:方向变化,但大小不一定变化1.方向不随时间变化的电流叫直流电.2.强弱和方向都不随时间改变的电流叫恒定电流.3.强弱和方向都随时间周期性变化的电流叫交流电。
(广义定义:方向随时间变化的电流叫交流电)一、交变电流的图象波形:大小和方向都随时间周期性变化;日常生活和生产中所使用的交变电流是按正弦规律变化的交变电流;二、交变电流的产生由交流发电机产生——线圈在磁场中匀速转动,产生的电流大小和方向都随时间做周性变化;t NBS e sin 表达式Rt NBS i sin e=BS ωsin ωt e随时间而变化,不同时刻有不现的数值,某时刻的电动势的值叫瞬时值.线圈有N匝时,可见在匀强磁场中,匀速转动的线圈中产生的感应电动势是按正弦规律变化的。
这样的交变电流叫正弦交流电.设整个回路的电阻为R,则电路的感应电流为瞬时值由表达式e=BS ωsin ωt可知最大值(峰值)Em=_________;用R表示闭合电路的总电阻,用Im 表示峰值,i 表示感应电流的瞬时值,则I m =NBS ω/R i=I m sinωt当线圈转到线圈平面和磁感线平行时,电动势最大.NBSωE m=NBSω,即仅由匝数N,线圈面积S,磁感强度B和角速度ω四个量决定。
(完整版)高中物理选修3-1知识点清单(非常详细精选全文
最新精选全文完整版(可编辑修改)(完整版)高中物理必修3-1知识点清单(非常详细)第一章 静电场精选全文,可以编辑修改文字!一、电荷和电荷守恒定律1.点电荷:形状和大小对研究问题的影响可忽略不计的带电体称为点电荷. 2.电荷守恒定律(1)电荷既不会创生,也不会消灭,它只能从一个物体转移到另一个物体,或者从物体的一部分转移到另一部分;在转移过程中,电荷的总量保持不变.(2)起电方式:摩擦起电、接触起电、感应起电. 二、库仑定律1.内容:真空中两个静止点电荷之间的相互作用力,与它们的电荷量的乘积成正比,与它们的距离的二次方成反比,作用力的方向在它们的连线上.2.公式:F =kq 1q 2r2,式中的k =9.0×109 N ·m 2/C 2,叫做静电力常量. 3.适用条件:(1)点电荷;(2)真空. 三、电场强度1.意义:描述电场强弱和方向的物理量. 2.公式(1)定义式:E =F q,是矢量,单位:N/C 或V/m.(2)点电荷的场强:E =k Q r ,Q 为场源电荷,r 为某点到Q 的距离.(3)匀强电场的场强:E =Ud.3.方向:规定为正电荷在电场中某点所受电场力的方向. 四、电场线及特点1.电场线:电场线是画在电场中的一条条有方向的曲线,曲线上每点的切线方向表示该点的电场强度方向.2.电场线的特点(1)电场线从正电荷或无限远处出发,终止于负电荷或无限远处. (2)电场线不相交.(3)在同一电场里,电场线越密的地方场强越大. (4)沿电场线方向电势降低.(5)电场线和等势面在相交处互相垂直. 3.几种典型电场的电场线(如图所示)考点一 对库仑定律的理解和应用 1.对库仑定律的理解 (1)F =kq 1q 2r 2,r 指两点电荷间的距离.对可视为点电荷的两个均匀带电球,r 为两球心间距.(2)当两个电荷间的距离r →0时,电荷不能视为点电荷,它们之间的静电力不能认为趋于无限大.2.电荷的分配规律(1)两个带同种电荷的相同金属球接触,则其电荷量平分.(2)两个带异种电荷的相同金属球接触,则其电荷量先中和再平分. 考点二 电场线与带电粒子的运动轨迹分析1.电荷运动的轨迹与电场线一般不重合.若电荷只受电场力的作用,在以下条件均满足的情况下两者重合:(1)电场线是直线.(2)电荷由静止释放或有初速度,且初速度方向与电场线方向平行. 2.由粒子运动轨迹判断粒子运动情况:(1)粒子受力方向指向曲线的内侧,且与电场线相切. (2)由电场线的疏密判断加速度大小.(3)由电场力做功的正负判断粒子动能的变化. 3.求解这类问题的方法: (1)“运动与力两线法”——画出“速度线”(运动轨迹在初始位置的切线)与“力线”(在初始位置电场线的切线方向),从二者的夹角情况来分析曲线运动的情景.(2)“三不知时要假设”——电荷的正负、场强的方向(或等势面电势的高低)、电荷运动的方向,是题意中相互制约的三个方面.若已知其中的任一个,可顺次向下分析判定各待求量;若三个都不知(三不知),则要用“假设法”分别讨论各种情况.第二章 电势能和电势差一、电场力做功和电势能 1.电场力做功(1)特点:静电力做功与实际路径无关,只与初末位置有关. (2)计算方法①W =qEd ,只适用于匀强电场,其中d 为沿电场方向的距离. ②W AB =qU AB ,适用于任何电场. 2.电势能(1)定义:电荷在电场中具有的势能,数值上等于将电荷从该点移到零势能位置时静电力所做的功.(2)静电力做功与电势能变化的关系:静电力做的功等于电势能的减少量,即W AB =E p A-E p B =-ΔE p .(3)电势能具有相对性. 二、电势、等势面 1.电势(1)定义:电荷在电场中某一点的电势能与它的电荷量的比值.(2)定义式:φ=E p q.(3)相对性:电势具有相对性,同一点的电势因零电势点的选取不同而不同. 2.等势面(1)定义:电场中电势相同的各点构成的面. (2)特点①在等势面上移动电荷,电场力不做功.②等势面一定与电场线垂直,即与场强方向垂直. ③电场线总是由电势高的等势面指向电势低的等势面.④等差等势面的疏密表示电场的强弱(等差等势面越密的地方,电场线越密). 三、电势差1.定义:电荷在电场中,由一点A 移到另一点B 时,电场力所做的功W AB 与移动的电荷的电量q 的比值.2.定义式:U AB =W ABq. 3.电势差与电势的关系:U AB =φA -φB ,U AB =-U BA . 4.电势差与电场强度的关系匀强电场中两点间的电势差等于电场强度与这两点沿电场方向的距离的乘积,即U AB =Ed .特别提示:电势和电势差都是由电场本身决定的,与检验电荷无关,但电场中各点的电势与零电势点的选取有关,而电势差与零电势点的选取无关.考点一 电势高低及电势能大小的比较 1.比较电势高低的方法(1)根据电场线方向:沿电场线方向电势越来越低.(2)根据U AB =φA -φB :若U AB >0,则φA >φB ,若U AB <0,则φA <φB .(3)根据场源电荷:取无穷远处电势为零,则正电荷周围电势为正值,负电荷周围电势为负值;靠近正电荷处电势高,靠近负电荷处电势低.2.电势能大小的比较方法 (1)做功判断法电场力做正功,电势能减小;电场力做负功,电势能增加(与其他力做功无关). (2)电荷电势法正电荷在电势高处电势能大,负电荷在电势低处电势能大.考点二等势面与粒子运动轨迹的分析 1电场 等势面(实线)图样 重要描述匀强电场垂直于电场线的一簇平面点电荷的电场以点电荷为球心的一簇球面等量异种点电荷的电场连线的中垂线上的电势为零2.带电粒子在电场中运动轨迹问题的分析方法(1)从轨迹的弯曲方向判断受力方向(轨迹向合外力方向弯曲),从而分析电场方向或电荷的正负;(2)结合轨迹、速度方向与静电力的方向,确定静电力做功的正负,从而确定电势能、电势和电势差的变化等;(3)根据动能定理或能量守恒定律判断动能的变化情况.考点三公式U=Ed的拓展应用1.在匀强电场中U=Ed,即在沿电场线方向上,U∝d.推论如下:(1)如图甲,C点为线段AB的中点,则有φC=φA+φB2.(2)如图乙,AB∥CD,且AB=CD,则U AB=U CD.2.在非匀强电场中U=Ed虽不能直接应用,但可以用作定性判断.考点四电场中的功能关系1.求电场力做功的几种方法(1)由公式W=Fl cos α计算,此公式只适用于匀强电场,可变形为W=Eql cos α.(2)由W AB=qU AB计算,此公式适用于任何电场.(3)由电势能的变化计算:W AB=E p A-E p B.(4)由动能定理计算:W电场力+W其他力=ΔE k.注意:电荷沿等势面移动电场力不做功.2.电场中的功能关系(1)若只有电场力做功,电势能与动能之和保持不变.(2)若只有电场力和重力做功,电势能、重力势能、动能之和保持不变.(3)除重力、弹簧弹力之外,其他各力对物体做的功等于物体机械能的变化.(4)所有外力对物体所做的功等于物体动能的变化.3.在解决电场中的能量问题时常用到的基本规律有动能定理、能量守恒定律和功能关系.(1)应用动能定理解决问题需研究合外力的功(或总功).(2)应用能量守恒定律解决问题需注意电势能和其他形式能之间的转化.(3)应用功能关系解决该类问题需明确电场力做功与电势能改变之间的对应关系.(4)有电场力做功的过程机械能不守恒,但机械能与电势能的总和可以守恒.四、电容器、电容1.电容器(1)组成:由两个彼此绝缘又相互靠近的导体组成.(2)带电量:一个极板所带电量的绝对值.(3)电容器的充、放电充电:使电容器带电的过程,充电后电容器两板带上等量的异种电荷,电容器中储存电场能.放电:使充电后的电容器失去电荷的过程,放电过程中电场能转化为其他形式的能.2.电容(1)定义式:C=QU.(2)单位:法拉(F),1 F=106μF=1012pF.3.平行板电容器(1)影响因素:平行板电容器的电容与正对面积成正比,与介质的介电常数成正比,与两极板间距离成反比.(2)决定式:C =εr S4πkd,k 为静电力常量.特别提醒:C =Q U ⎝ ⎛⎭⎪⎫或C =ΔQ ΔU 适用于任何电容器,但C =εr S4πkd仅适用于平行板电容器.五、带电粒子在电场中的运动 1.加速问题(1)在匀强电场中:W =qEd =qU =12mv 2-12mv 20;(2)在非匀强电场中:W =qU =12mv 2-12mv 20.2.偏转问题(1)条件分析:不计重力的带电粒子以速度v 0垂直于电场线方向飞入匀强电场. (2)运动性质:匀变速曲线运动.(3)处理方法:利用运动的合成与分解. ①沿初速度方向:做匀速运动.②沿电场方向:做初速度为零的匀加速运动. 特别提示:带电粒子在电场中的重力问题(1)基本粒子:如电子、质子、α粒子、离子等除有说明或有明确的暗示以外,一般都不考虑重力(但并不忽略质量).(2)带电颗粒:如液滴、油滴、尘埃、小球等,除有说明或有明确的暗示以外,一般都不能忽略重力.六、带电粒子在电场中的偏转 1.基本规律设粒子带电荷量为q ,质量为m ,两平行金属板间的电压为U ,板长为l ,板间距离为d (忽略重力影响),则有(1)加速度:a =F m =qE m =qUmd.(2)在电场中的运动时间:t =l v 0.(3)位移⎩⎪⎨⎪⎧v x t =v 0t =l 12at 2=y ,y =12at 2=qUl22mv 20d . (4)速度⎩⎪⎨⎪⎧v x =v 0v y =at,v y =qUtmd, v =v 2x +v 2y ,tan θ=v y v x =qUl mv 20d. 2.两个结论(1)不同的带电粒子从静止开始经过同一电场加速后再从同一偏转电场射出时的偏转角度总是相同的.证明:由qU 0=12mv 20及tan θ=qUl mdv 20得tan θ=Ul2U 0d.(2)粒子经电场偏转后,合速度的反向延长线与初速度延长线的交点O 为粒子水平位移的中点,即O 到电场边缘的距离为l2.3.带电粒子在匀强电场中偏转的功能关系:当讨论带电粒子的末速度v 时也可以从能量的角度进行求解:qU y =12mv 2-12mv 20,其中U y =Udy ,指初、末位置间的电势差.第三章 恒定电流 第四章 闭合电路的欧姆定律一、电流、欧姆定律 1.电流(1)定义:自由电荷的定向移动形成电流. (2)方向:规定为正电荷定向移动的方向. (3)三个公式①定义式:I =q /t ;②微观式:I =nqvS ;③I =U R.2.欧姆定律(1)内容:导体中的电流I 跟导体两端的电压U 成正比,跟导体的电阻R 成反比. (2)公式:I =U /R .(3)适用条件:适用于金属和电解液导电,适用于纯电阻电路. 二、电阻、电阻率、电阻定律 1.电阻(1)定义式:R =U I.(2)物理意义:导体的电阻反映了导体对电流阻碍作用的大小,R 越大,阻碍作用越大. 2.电阻定律(1)内容:同种材料的导体,其电阻与它的长度成正比,与它的横截面积成反比,导体的电阻还与构成它的材料有关.(2)表达式:R =ρl S . 3.电阻率(1)计算式:ρ=R S l.(2)物理意义:反映导体的导电性能,是导体材料本身的属性. (3)电阻率与温度的关系①金属:电阻率随温度的升高而增大. ②半导体:电阻率随温度的升高而减小. ③超导体:当温度降低到绝对零度附近时,某些材料的电阻率突然减小为零成为超导体. 三、电功、电功率、焦耳定律 1.电功 (1)实质:电流做功的实质是电场力对电荷做正功,电势能转化为其他形式的能的过程. (2)公式:W =qU =UIt ,这是计算电功普遍适用的公式. 2.电功率(1)定义:单位时间内电流做的功叫电功率.(2)公式:P =W t=UI ,这是计算电功率普遍适用的公式.3.焦耳定律电流通过电阻时产生的热量Q =I 2Rt ,这是计算电热普遍适用的公式. 4.热功率(1)定义:单位时间内的发热量. (2)表达式:P =Q t=I 2R .四、串、并联电路的特点 1.特点对比串联并联电流 I =I 1=I 2=…=I n I =I 1+I 2+…+I n 电压 U =U 1+U 2+…+U nU =U 1=U 2=…=U n 电阻R =R 1+R 2+…+R n1R =1R 1+1R 2+…+1R n2.几个常用的推论(1)串联电路的总电阻大于其中任一部分电路的总电阻.(2)并联电路的总电阻小于其中任一支路的总电阻,且小于其中最小的电阻.(3)无论电阻怎样连接,每一段电路的总耗电功率P 总是等于各个电阻耗电功率之和. (4)无论电路是串联还是并联,电路中任意一个电阻变大时,电路的总电阻变大. 五、电源的电动势和内阻 1.电动势(1)定义:电动势在数值上等于非静电力把1 C 的正电荷在电源内从负极移送到正极所做的功.(2)表达式:E =W q.(3)物理意义:反映电源把其他形式的能转化成电能的本领大小的物理量. 2.内阻电源内部也是由导体组成的,也有电阻,叫做电源的内阻,它是电源的另一重要参数. 六、闭合电路欧姆定律1.内容:闭合电路的电流跟电源的电动势成正比,跟内、外电路的电阻之和成反比.2.公式⎩⎪⎨⎪⎧I =E R +r只适用于纯电阻电路E =U 外+U 内适用于任何电路3.路端电压U 与电流I 的关系(1)关系式:U =E -Ir . (2)U -I 图象如图所示.①当电路断路即I =0时,纵坐标的截距为电源电动势. ②当外电路电压为U =0时,横坐标的截距为短路电流. ③图线的斜率的绝对值为电源的内阻. 七、测量电路的选择对伏安法测电阻,应根据待测电阻的大小选择电流表不同的接法.1.阻值判断法:当R V ≫R x 时,采用电流表“外接法”; 当R x ≫R A 时,采用电流表“内接法”. 2.倍率比较法:(1)当R V R x =R x R A ,即R x =R V ·R A 时,既可选择电流表“内接法”,也可选择“外接法”;(2)当R V R x >R xR A即R x <R V ·R A 时,采用电流表外接法;(3)当R V R x <R x R A即R x >R V ·R A 时,采用电流表内接法. 3.试触法:ΔU U 与ΔII 比较大小:(1)若ΔU U >ΔII ,则选择电压表分流的外接法;(2)若ΔI I>ΔUU,则选择电流表的内接法.八、实验器材的选择 1.安全因素通过电源、电表、电阻的电流不能超过允许的最大电流. 2.误差因素选择电表时,保证电流和电压均不超过其量程.使指针有较大偏转(一般取满偏度的13~23);使用欧姆表选挡时让指针尽可能在中值刻度附近. 3.便于操作选滑动变阻器时,在满足其他要求的前提下,可选阻值较小的. 4.关注实验的实际要求.第五章 磁场一、磁场、磁感应强度 1.磁场(1)基本性质:磁场对处于其中的磁体、电流和运动电荷有磁力的作用. (2)方向:小磁针的N 极所受磁场力的方向. 2.磁感应强度(1)物理意义:描述磁场强弱和方向.(2)定义式:B =F IL(通电导线垂直于磁场).(3)方向:小磁针静止时N 极的指向. (4)单位:特斯拉,符号T. 二、磁感线及特点 1.磁感线在磁场中画出一些曲线,使曲线上每一点的切线方向都跟这点的磁感应强度的方向一致. 2.磁感线的特点(1)磁感线上某点的切线方向就是该点的磁场方向.(2)磁感线的疏密定性地表示磁场的强弱,在磁感线较密的地方磁场较强;在磁感线较疏的地方磁场较弱.(3)磁感线是闭合曲线,没有起点和终点.在磁体外部,从N 极指向S 极;在磁体内部,由S 极指向N 极.(4)同一磁场的磁感线不中断、不相交、不相切. (5)磁感线是假想的曲线,客观上不存在. 3.电流周围的磁场直线电流通电螺线管环形电流非匀强磁场三、安培力的大小和方向1.安培力的大小(1)磁场和电流垂直时,F=BIL.(2)磁场和电流平行时:F=0.2.安培力的方向(1)用左手定则判定:伸开左手,使拇指与其余四个手指垂直,并且都与手掌在同一个平面内;让磁感线从掌心进入,并使四指指向电流的方向,这时拇指所指的方向就是通电导线在磁场中所受安培力的方向.(2)安培力的方向特点:F⊥B,F⊥I,即F垂直于B和I决定的平面.(注意:B和I可以有任意夹角)四、洛伦兹力1.定义:运动电荷在磁场中所受的力.2.大小(1) v∥B时,F=0.(2) v⊥B时,F=qvB.(3) v与B夹角为θ时,F=qvB sin_θ.3.方向(1)判定方法:应用左手定则,注意四指应指向正电荷运动方向或负电荷运动的反方向.(2)方向特点:F⊥B,F⊥v.即F垂直于B、v决定的平面.(注意B和v可以有任意夹角).由于F始终垂直于v的方向,故洛伦兹力永不做功.五、洛伦兹力和电场力的比较1.洛伦兹力方向的特点(1)洛伦兹力的方向总是垂直于运动电荷速度方向和磁场方向确定的平面.(2)当电荷运动方向发生变化时,洛伦兹力的方向也随之变化.(3)左手判断洛伦兹力方向,但一定分正、负电荷.六、带电粒子在匀强磁场中的运动1.圆心的确定(1)已知入射点、出射点、入射方向和出射方向时,可通过入射点和出射点分别作垂直于入射方向和出射方向的直线,两条直线的交点就是圆弧轨迹的圆心(如图甲所示,图中P 为入射点,M为出射点).(2)已知入射方向、入射点和出射点的位置时,可以通过入射点作入射方向的垂线,连接入射点和出射点,作其中垂线,这两条垂线的交点就是圆弧轨迹的圆心(如图乙所示,P 为入射点,M为出射点).2.半径的确定可利用物理学公式或几何知识(勾股定理、三角函数等)求出半径大小.3.运动时间的确定粒子在磁场中运动一周的时间为T,当粒子运动的圆弧所对应的圆心角为θ时,其运动时间表示为:t=θ2πT⎝⎛⎭⎪⎫或t=θRv.4.求解粒子在匀强磁场中运动问题的步骤:(1)画轨迹:即确定圆心,画出运动轨迹.(2)找联系:轨迹半径与磁感应强度、运动速度的联系,偏转角度与圆心角、运动时间的联系,在磁场中的运动时间与周期的联系.(3)用规律:即牛顿运动定律和圆周运动的规律,特别是周期公式、半径公式.总之,在这一学年中,我不仅在业务能力上,还是在教育教学上都有了一定的提高。
高中物理选修3-1全册知识点总结
111076.1⨯=em e 高中物理选修3-1全册知识点总结第一章 静电场1.1电荷及其守恒定律一、电荷 1、 使物体带电的三种方式电荷守恒定律:电荷既不能创造,也不能消灭,只能从一个物体转移到另一个物体,或者从物体的一部分转移到另一部分;在转移过程中,电荷的总量保持不变 三、元电荷电荷的多少叫做电荷量.符号:Q 或q 单位:库仑 符号:C 1、元电荷:电子所带的电荷量(最小的电荷量),用e 表示.注意:所有带电体的电荷量或者等于e ,或者等于e 的整数倍。
2、电荷量e 的值:e =1.60×10-19C3、比荷(荷质比):电子的电荷量e 和电子的质量m e 的比值,为C/㎏1.2库仑定律一、库仑定律1、内容:真空中两个静止点电荷之间的相互作用力,与他们的电荷量的乘积成正比,与它们的距离的二次方成反比.作用力的方向在两个点电荷的连线上表达式:221r q q kF = (适用条件:真空中,点电荷——理想化模型)2静电力常量k = 9.0×109N ·m2/C2 二、库仑的实验库仑扭秤实验(1785年,法国物理学家.库仑)1.3电场强度一、电场:1、产生:电荷的周围都存在电场A、电荷之间的相互作用是通过特殊形式的物质——电场发生的B、物质性:是客观存在的2、基本性质:A、对放入其中的电荷有力的作用引入电场中的任何带电体都将受到电场力的作用,且同一点电荷在电场中不同点处受到的电场力的大小或方向都可能不一样.B、有能的性质当带电体在电场中移动时,电场力将对带电体做功,这表示电场具有能量.可见,电场具有力和能的特征二、电场强度1.物理意义:描述电场强弱的物理量2.定义:电荷在电场中某点所受到的电场力F跟它的电荷量q的比值,叫做该点的电场强度,简称场强.用E表示。
(比值法)3.定义式:E=F/q (适用于所有电场)4、方向:与正电荷在该点所受的电场力的方向相同;与负电荷在该点所受的电场力的方向相反5.单位:N/C V/m注意:电场中某一点处的电场强度E是唯一的,它的大小和方向与放入该点电荷q无关,它决定于电场的源电荷及空间位置,电场中每一点对应着的电场强度与是否放入电荷无关三、(真空中)点电荷周围的电场1、大小:E=kQ/r2 (只适用于点电荷的电场)2、方向:如果是正电荷,E的方向就是沿着PQ的连线并背离Q;如果是负电荷:E的方向就是沿着PQ的连线并指向Q四、电场强度的叠加电场中某点的电场场强为各个点电荷单独在该点产生的电场场强的矢量和五、电场线----形象描述电场强度的大小和方向(人们假想的)1、定义:电场线是画在电场中的一条条有方向的曲线,曲线上每点的切线方向表示该点的电场强度的方向。
物理选修3-1复习资料
库仑定律、电场强度一周强化一、一周知识强化静电场知识是高考常见考点,重点要能用物质的微观模型和电荷守恒定律分析、解释常见的静电现象,知道电荷量的概念;知道库仑定律,认识点电荷间的相互作用规律,会计算真空中两个点电荷的相互作用力大小,认识电场、知道电场力、会用电场线、电场强度描述电场。
二、重难点知识归纳及讲解(一)电荷库仑定律1、电荷守恒定律和元电荷自然界中只有两种电荷,正电荷和负电荷。
电荷的多少叫做电荷量,正电荷的电荷量用正数表示,负电荷的电荷量用负数表示。
同种电荷互相排斥,异种电荷互相吸引。
使物体带电的方法有:(1)摩擦起电;(2)接触带电;(3)感应起电。
不管哪种方式使物体带电,都是由于电荷转移的结果。
元电荷e=1.60×10-19C.2、电荷守恒定律电荷既不能创造,也不能消灭,只能从一个物体转移到另一个物体,或者从物体的一部分转移到另一部分,在转移过程中,电荷的总量保持不变。
这个结论叫做电荷守恒定律。
3、比荷:带电粒子的电荷量与粒子的的质量之比,叫做该粒子的比荷。
4、库仑定律真空中两个静止点电荷之间的相互作用力,与它们的电荷量的乘积成正比,与它们距离的二次方成反比,作用力的方向在它们的连线上。
(1)公式(2)k=9.0×109N·m2/c2(3)适用于点电荷(注意:看作点电荷的前提是带电体间的距离远大于带电体的尺寸5、由于物体带电是由于电荷的转移,可知,物体所带电荷量或者等于电荷量e,或者等于电荷量e的整数倍。
电荷量e称为元电荷,e=1.60×10-19C,比荷C/kg.6、点电荷:如果带电体的距离比它们自身的大小大得多,带电体的大小和形状忽略不计。
这样的带电体可看作点电荷,它是一种理想化的物理模型。
(二)电场电场强度1、电场的基本性质:就是对放入其中的电荷有力的作用,这种力叫做电场力。
2、电场是一种特殊的物质形态。
3、电场强度放入电场中某点的电荷受到的电场力F跟它的电荷量q的比值,叫做该点的电场强度,简称场强。
(完整)高中物理选修3-1公式(2)
高中物理选修3-1公式第一章静电场1、 库仑力:F k q i q 2 (适用条件:真空中静止的点电荷 ) k = 9.0 x 109 N •吊/ c 2静电力常量r电场力:F = E q (F 与电场强度的方向可以相同,也可以相反)2、 电场强度: 电场强度是表示电场性质的物理量。
是矢量。
定义式:E匸单位: qN / C 或 V/m点电荷电场场强Ek Qr匀强电场场强EUd3、电势能:电势能的单位:J通常取无限远处或大地表面为电势能的零点。
一般点电荷形成的电场取无限远处的电势为零,在实际应用中常取大地的电势为零。
5、电势差U,又称电压U AB = © A - © B电场力做功和电势差的关系:AB= q U AB6、粒子通过加速电场:2-mv2y 2 at 2 2_mV0r 1 qU L 2 2 md V 02粒子通过偏转电场的偏转角度7、粒子通过偏转电场的偏转量(侧移距离)做类似平抛运动静电力做功等于电势能的减少量WABE pA E pB4、电势:电势是描述电场能的性质的物理量。
是标量。
电势的单位:V电势的定义式: E p顺着电场线方向,电势越来越低。
qUta nV y at V xv。
qUI mdv o8、电容器的电容:电容是表示电容器容纳电荷本领大小的物理量。
单位:F 定义式:c QU2平行板电容器与电源的两极相连,则两极板间电压不变电容器的带电荷量:平行板电容器的电容: Q=cU S c4 kd平行板电容器充电后,切断电源,电容器所带电荷量不变电容器接在电源上,电压不变;断开电源时,电容器上电量不变;改变两板距离3、⑴串联电路⑵并联电路①各支踣电压味瞎;U=Ui=6=……% ②分流原理;b=1迟]=-"“T U R L③电路的总电阻:丄=—+—++丄④电路中的总电流:I二b+A R % R2也两个电阻并联R RR 并联的总电阻比任何一个分电阻小R1 R2无论串联电路还是并联电路。
物理选修3-1全书全套_3
第一章 静电场§电荷及其守恒定律、库仑定律、电场强度【学习目标】1、了解元电荷的含义,理解电荷守恒定律的不同表述。
2、掌握库仑定律,能够解决有关的问题。
3、理解电场强度及其矢量性,掌握电场强度的叠加,并进行有关的计算。
4、知道用电场线描述电场的方法。
理解引入电场线的意义。
【自主学习】一、电荷及电荷守恒1、自然界中存在 电荷,正电荷和负电荷,同种电荷相互 ,异种电荷相互 。
电荷的多少叫做 ,单位是库仑,符号是C 。
所有带电体的带电量都是电荷量e= 的整数倍,电荷量e 称为 。
2、(1)点电荷是一种 模型,当带电体本身 和 对研究的问题影响不大时,可以将带电体视为点电荷。
真正的点电荷是不存在的,这个特点类似于力学中质点的概念。
3、使物体带电有方法:摩擦起电、感应起电、接触起电,其实质都是电子的转移。
4、电荷既不能 ,也不能 ,只能从一个物体 到另一个物体,或从物体的 转移到 ,在转移的过程中,电荷的总量 ,这就是电荷守恒定律。
二、库仑定律1、真空中两个 之间的相互作用力F 的大小,跟它们的电荷量Q 1、Q 2的乘积成 ,跟它们的距离r 的 成反比,作用力的方向沿着它们的 。
公式F= 其中静电力常量k 适用范围:真空中的 。
(1)FE q=是电场强度的定义式,适用于 的静电场。
(2)2QE kr=是点电荷在真空中形成的电场中某点场强的计算式,只适用于 在真空中形成的电场。
+Q +2QA C D B(3)UE d是匀强电场中场强的计算式,只适用于 ,其中,d 必须是沿 的距离。
3、电场的叠加电场需按矢量的运算法则,即按平行四边形定则进行运算。
四、电场线(1)电场线:在电场中画出一些曲线,使曲线上每一点的 方向都跟该点的 方向一致,这样的曲线就叫做电场线。
电场线是人们为了描述 而人为地画出来的,电场中并非真正存在着这样一些曲线。
它可以形象直观地反映电场的 和 。
(2)电场线的性质:电场线起始于 (或无穷远处);终止于 (或无穷远处)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
伊犁州一中2012-2013学年第一学期期末试卷
(高二物理 选修3-2 ,90分钟,100分)
Ⅰ.选择题 4分×8=32分
1.关于感应电动势大小的下列说法中,正确的是:
A .线圈中磁通量变化越大,线圈中产生的感应电动势一定越大
B .线圈中磁通量越大,产生的感应电动势一定越大
C .线圈放在磁感强度越强的地方,产生的感应电动势一定越大
D .线圈中磁通量变化越快,产生的感应电动势越大
2.一个N 匝圆线圈,放在磁感强度为B 的匀强磁场中,线圈平面跟磁感强度方向成30°角,磁感强度随时间均匀变化,线圈导线规格不变,下列方法中可使线圈中感应电流增加一倍的是 :
A .将线圈匝数增加一倍
B .将线圈面积增加一倍
C .将线圈半径增加一倍
D .适当改变线圈的取向 3. 如图所示,AB 为固定的通电直导线,闭合导线框P 与AB 在同一平面内。
当P 远离AB 做匀速运动时,它受到AB 的作用力 为( ) A .零 B .引力,且逐步变小 C .引力,且大小不变 D .斥力,且逐步变小
4. 长0.1m 的直导线在B =1T 的匀强磁场中,以10m/s 的速度运动,导线中产生的感应电动势:
A .一定是1V
B .可能是0.5V
C . 可能为零
D .最大值为1V:
5. 一只“220 V
,100 W ”的灯泡接在u =311sin314t V 的交变电源上,
则下列判断正确的是 :
A .灯泡能正常发光
B .与灯泡串联的电流表的示数为0.45 A
C .与灯泡并联的电压表的示数为220 V
D .通过灯泡的电流的表达式为i =0.64sin314t A
6. 矩形线框在磁场中作如下图所示的各种运动,运动到图上所示位置时,其中有感应电流产生的是图:
7.右如图所示,当条形磁铁作下列运动时,线圈中的感应电流方向应是
(从左往右看)( ).
A.磁铁靠近线圈时,电流的方向是逆时针的
B.磁铁靠近线圈时,电流的方向是顺时针的
C.磁铁向上平动时,电流的方向是逆时针的
D.磁铁向上平动时,电流的方向是顺时钊的
8. 理想变压器原线圈两端电压不变,当副线圈电路中的电阻减小时,以下说法正确的是( )
A .输出电流增大,输入电流减小
B .输出电流增大,输入电流也随着增大
C .输出电压保持不变
D .输出功率和输入功率都增大
4题
Ⅱ.填空题 3分×12=36分
1. 闭合回路中产生感应电流的条件是……………………………,感应电流的方向可用………………..或……………………..判断。
2. 法拉第电磁感应定律的内容………………………………..,数学表达式……………………….
3. 表示交变电流的物理量有………,………..,……….,……….,
4. 变压器的电压与匝数的关系………….,
5. 如图所示,线幽abcd 自由下落进入匀强磁场中,则当只有dc 边进入磁场时,线圈中感应电流的方向是________.当整个线圈进入磁场中时,线圈中________感应电流(选填“有”或“无”). Ⅲ.作图题并简答题 (4分×3=12分)
1. 如图所示,当导线棒MN 在外力作用下沿导轨向右运动时,流过R 的电流方向是:
2. 如图所示,当磁铁突然向铜环运动时,铜环的运动情况是:
3. 什么叫传感器?它由哪几部分组成?并说出各部分的作用及其相互间的关系:
Ⅳ.计算题
1. 一台发电机产生的按正弦规律变化的电动势的峰值为 400 V ,线圈匀速转动的角速度为 314 rad /s ,试写出电动势瞬时值的表达式.如果该发电机与只含电阻的负载组成的闭合电路的总电阻为2 000Ω,则电路中电流的峰值为多少?电流的瞬时值表达式怎样?(6分)
2.有一个1000匝的线圈,在0.4秒内通过它的磁通量从0.02wb 增加到0.09wb ,求线圈中的感应电动势。
如果线圈的电阻是10欧姆,把一个电阻为990欧姆的电热器连接在它的两端,通过电热器的电流是多大?(5分)
3.如图所示的磁感应强度B=1T ,平行导轨宽ab=1m , 金属棒ab 以1m/s 的速度贴着导轨向右运动,R=1欧姆 其它电阻不变。
1. 求运动导线产生的感应电动势大小?
2. 求通过R 的感应电流的大小和方向?
⨯
⨯
R。