高三数学一轮(人教A版)阶段性测试题1(集合与常用逻辑用语)
人教A版(2019)高中数学 必修第一册 第一章 集合与常用逻辑用语 单元测试题
人教A版(2019)高中数学必修第一册第一章集合与常用逻辑用语单元测试题一、单选题(共8题;共40分)1.(5分)下列元素与集合的关系表示不正确的是()A.0∈N B.0∈Z C.32∈Q D.π∈Q2.(5分)设集合A={x|5<x<16},B={3,4,6,7,9,12,13,16},则A∩B中元素的个数为()A.3B.4C.5D.63.(5分)已知集合A={0,2},B={a,0,3},且A∪B有16个子集,则实数a可以是()A.-1B.0C.2D.34.(5分)已知全集U=R,集合A={y|y=x2+2},集合B={x|9−x2>0},则阴影部分表示的集合为()A.[−3, 2]B.(−3, 2)C.(−3, 2]D.[−3, 2)5.(5分)已知集合A,B满足A∪B={x|1<x≤3},A∩B={x|a≤x≤a+1},则实数a的取值范围为()A.[1,2]B.(1,2)C.(1,2]D.∅6.(5分)已知集合M={0,1,2},N={x∈Z|0<x<4},则M∩N=()A.{0,1,2}B.{0,2}C.{1,2}D.{1}7.(5分)已知全集U={1,2,3,4,5},集合M={1,2},N={3,4},则C u(MUN)=()A.{5}B.{1,2}C.{3,4}D.{1,2,3,4}8.(5分)记不等式x2+x−2>0、x2−ax+1≤0(a>0)解集分别为A、B,A∩B中有且只有两个正整数解,则a的取值范围为()A.(103,174)B.[103,174)C.(52,174)D.[52,174)二、多选题(共4题;共20分)9.(5分)图中阴影部分用集合符号可以表示为()A.A∩(B∪C)B.A∪(B∩C)C.A∩∁U(B∩C)D.(A∩B)∪(A∩C)10.(5分)已知集合A={x∈R|x2−3x−18<0},B={x∈R|x2+ax+a2−27<0},则下列命题中正确的是()A.若A=B,则a=−3B.若A⊆B,则a=−3C.若B=∅,则a≤−6或a≥6D.若B⊊A时,则−6<a≤−3或a≥611.(5分)已知非空集合A、B满足:全集U=A∪B=(−1,5],A∩(∁U B)=[4,5],下列说法不一定正确的有()A.A∩B=∅B.A∩B≠∅C.B=(−1,4)D.B∩(∁U A)=(−1,4)12.(5分)设集合M={x|a<x<3+a},N={x|x<2或x>4},则下列结论中正确的是()A.若a<−1,则M⊆N B.若a>4,则M⊆NC.若M∪N=R,则1<a<2D.若M∩N≠∅,则1<a<2三、填空题(共4题;共20分)13.(5分)已知集合A={x∈Z∣32−x∈Z},用列举法表示集合A,则A=.14.(5分)已知集合A={−1,2m−1},B={m2},若B⊆A,则实数m=.15.(5分)已知1∈{−x,x2},则实数x的值是.16.(5分)已知集合A={4,2a+1,a},B={a−3,4−a,3}且A∩B={3},则a的取值为.四、解答题(共6题;共70分)17.(10分)已知集合A={x|a−3≤x≤2a+1},B={x|−5≤x≤3},全集U=R.(1)(4分)当a=1时,求(∁U A)∩B;(2)(6分)若A⊆B,求实数a的取值范围.18.(12分)已知集合A={x|1<x<3},集合B={x|m<x<1−m}.(1)(6分)当m=−1时,求A∪B;(2)(6分)若A∩B=A,求实数m的取值范围.19.(12分)A={x|−3≤x<6},B={x|a−7<x≤2a}(1)(6分)A∪B=B,求a的取值范围;(2)(6分)(∁U A)∩B=∅,求a的取值范围.20.(12分)已知集合A={x||x+2|≥5},B={x|x2−6x+5<0},求:(1)(6分)集合A,B;(2)(6分)A∪B.21.(12分)设数集A由实数构成,且满足:若x∈A(x≠1且x≠0),则11−x∈A.(1)(4分)若2∈A,则A中至少还有几个元素?(2)(4分)集合A是否为双元素集合?请说明理由.(3)(4分)若A中元素个数不超过8,所有元素的和为143,且A中有一个元素的平方等于所有元素的积,求集合A.22.(12分)设全集U=R,集合A={x|(x+1)(x−3)≥0},B={x|2x−4≥x−2}(1)(4分)求A∩B,A∪B;(2)(4分)若集合C={x|2x+a≥0},且B⊆C,求实数a的取值范围;(3)(4分)若集合D={x|a<x<a+5},且A∪D=R,求实数a的取值范围.答案解析部分1.【答案】D【知识点】元素与集合关系的判断【解析】【解答】根据元素与集合的关系可得0∈N,0∈Z,32∈Q,π∉Q,D不正确,符合题意.故答案为:D.【分析】根据元素与集合的关系,结合数集的表示方法,判断选项中的命题真假性即可。
2015届高考数学一轮总复习 阶段性测试题1(集合与常用逻辑用语)
阶段性测试题一(集合与常用逻辑用语)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
满分150分。
考试时间120分钟。
第Ⅰ卷(选择题共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(文)(2014·甘肃临夏中学、金昌市二中期中)设集合A={x|x>1},B={x|x(x-2)<0},则A∩B 等于()A.{x|x>2}B.{x|0<x<2}C.{x|1<x<2} D.{x|0<x<1}[答案] C[解析]∵B={x|x(x-2)<0}={x|0<x<2},∴A∩B={x|1<x<2}.(理)(2014·福建省闽侯二中、永泰二中、连江侨中、长乐二中联考)已知全集U=R,集合M={x|x2-x=0},N={x|x=2n+1,n∈Z},则M∩N为()A.{0} B.{1}C.{0,1} D.∅[答案] B[解析]∵M={x|x2-x=0}={0,1},N={x|x=2n+1,n∈Z}中的元素是奇数,∴M∩N={1},选B.2.(2014·威海期中)已知集合A={-1,1},B={m|m=x+y,x∈A,y∈A},则集合B等于() A.{-2,2} B.{-2,0,2}C.{-2,0} D.{0}[答案] B[解析]∵x∈A,y∈A,A={-1,1},m=x+y,∴m的取值为-2,0,2,即B={-2,0,2},故选B.3.(2014·山西曲沃中学期中)集合A={x|(x-1)(x+2)≤0},B={x|x<0},则A∪B=()A.(-∞,0] B.(-∞,1]C.[1,2] D.[1,+∞)[答案] B[解析]∵A={x|-2≤x≤1},B={x|x<0},∴A∪B={x|x≤1},故选B.4.(文)(2014·山东省德州市期中)若U={1,2,3,4,5,6},M={1,2,4},N={2,3,6},则∁U(M∪N)=()A.{1,2,3} B.{5}C.{1,3,4} D.{2}[答案] B[解析] ∵U ={1,2,3,4,5,6},M ∪N ={1,2,3,4,6}, ∴∁U (M ∩N )={5}.(理)(2014·文登市期中)已知集合A ={x |log 4x <1},B ={x |x ≥2},则A ∩(∁R B )=( ) A .(-∞,2) B .(0,2) C .(-∞,2] D .[2,4)[答案] B[解析] ∵A ={x |log 4x <1}={x |0<x <4},B ={x |x ≥2},∴∁R B ={x |x <2},所以A ∩∁R B =(0,2),故选B.5.(文)(2014·福州市八县联考)命题“有些实数的绝对值是正数”的否定是( ) A .∀x ∈R ,|x |>0 B .∃x 0∈R ,|x 0|>0 C .∀x ∈R ,|x |≤0 D .∃x 0∈R ,|x 0|≤0[答案] C[解析] 由词语“有些”知原命题为特称命题,故其否定为全称命题,因为命题的否定只否定结论,所以选C.(理)(2014·甘肃临夏中学期中)命题“存在x ∈Z ,使x 2+2x +m ≤0成立”的否定是( ) A .存在x ∈Z ,使x 2+2x +m >0 B .不存在x ∈Z ,使x 2+2x +m >0 C .对于任意x ∈Z ,都有x 2+2x +m ≤0 D .对于任意x ∈Z ,都有x 2+2x +m >0 [答案] D[解析] 特称命题的否定是全称命题.6.(文)(2014·河北冀州中学期中)下列命题中的真命题是( ) A .∃x ∈R ,使得sin x +cos x =32B .∀x ∈(0,+∞),e x >x +1C .∃x ∈(-∞,0),2x <3xD .∀x ∈(0,π),sin x >cos x [答案] B[解析] ∵sin x +cos x =2sin(x +π4)∈[-2,2],32>2,∴不存在x ∈R ,使sin x +cos x =32成立,故A 错;令f (x )=e x -x -1(x ≥0),则f ′(x )=e x -1,当x >0时,f ′(x )>0,∴f (x )在[0,+∞)上单调递增,又f (0)=0,∴x >0时,f (x )>0恒成立,即e x >x +1对∀x ∈(0,+∞)都成立,故B 正确;在同一坐标系内作出y =2x 与y =3x 的图象知,C 错误;当x =π4时,sin x =22=cos x ,∴D 错误,故选B.(理)(2014·山东省德州市期中)下面命题中,假命题是( ) A .∀x ∈R,3x >0B .∃α,β∈R ,使sin(α+β)=sin α+sin βC .∃m ∈R ,使f (x )=mxm 2+2m 是幂函数,且在(0,+∞)上单调递增D .命题“∃x ∈R ,x 2+1>3x ”的否定是“∀x ∈R ,x 2+1>3x ” [答案] D[解析] 由指数函数性质知,对任意x ∈R ,都有3x >0,故A 真;当α=π3,β=2π时,sin(α+β)=sin α+sin β成立;故B 真;要使f (x )=mxm 2+2m 为幂函数,应有m =1,∴f (x )=x 3,显然此函数在(0,+∞)上单调递增,故C 真;D 为假命题,“>”的否定应为“≤”.7.(文)(2014·甘肃省金昌市二中期中)a 、b 为非零向量,“a ⊥b ”是“函数f (x )=(x a +b )·(x b -a )为一次函数”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件[答案] B[解析] ∵f (x )=(x a +b )·(x b -a )=x 2a ·b +x (|b |2-|a |2)-a ·b ,当f (x )为一次函数时,a ·b =0且|b |2-|a |2≠0,∴a ⊥b ,当a ⊥b 时,f (x )未必是一次函数,因为此时可能有|a |=|b |,故选B.(理)(2014·江西临川十中期中)已知平面向量a ,b 满足|a |=1,|b |=2,a 与b 的夹角为60°,则“m =1”是“(a -m b )⊥a ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 [答案] C[解析] ∵|a |=1,|b |=2,〈a ,b 〉=60°,∴a ·b =1×2×cos60°=1,(a -m b )⊥a ⇔(a -m b )·a =0⇔|a |2-m a ·b =0⇔m =1,故选C.8.(2014·江西都昌一中月考)已知全集U ={1,2,3,4,5,6},集合A ={2,3,4},集合B ={2,4,5},则右图中的阴影部分表示( )A .{2,4}B .{1,3}C .{5}D .{2,3,4,5} [答案] C[解析] 阴影部分在集合B 中,不在集合A 中,故阴影部分为B ∩(∁U A )={2,4,5}∩{1,5,6}={5},故选C.9.(2014·华安、连城、永安、漳平一中,龙海二中,泉港一中六校联考)已知m ,n 是两条不同的直线,α,β,γ是三个不同的平面,下列命题正确的是( )A .若m ∥α,n ∥α,则m ∥nB .若α⊥β,α⊥γ,则β∥γC .若m ∥α,m ∥β,则α∥βD .若m ⊥α,m ⊥β,则α∥β [答案] D[解析] m ∥α,n ∥α时,m 与n 可平行,也可相交或异面,故A 错误;由正方体相邻三个面可知,α⊥β,α⊥γ时,β与γ可能相交,故B 错;当α∩β=l ,m ⊄α,m ⊄β,m ∥l 时,m ∥α,m ∥β,故C 错,故选D.10.(2014甘肃临夏中学期中)已知函数f (x )=x +b cos x ,其中b 为常数.那么“b =0”是“f (x )为奇函数”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件[答案] C[解析] 当b =0时,f (x )=x 为奇函数,故满足充分性;当f (x )为奇函数时,f (-x )=-f (x ),∴-x +b cos x =-x -b cos x ,从而2b cos x =0,∵此式对任意x ∈R 都成立,∴b =0,故满足必要性,选C.11.(2014·海南省文昌市检测)下列命题中是假命题...的是( ) A .∃m ∈R ,使f (x )=(m -1)·xm 2-4m +3是幂函数,且在(0,+∞)上单调递减B .∀a >0,函数f (x )=ln 2x +ln x -a 有零点C .∃α,β∈R ,使cos(α+β)=cos α+sin βD .∀φ∈R ,函数f (x )=sin(2x +φ)都不是偶函数 [答案] D[解析] ∵f (x )为幂函数,∴m -1=1,∴m =2,f (x )=x -1,∴f (x )在(0,+∞)上递减,故A 真;∵y =ln 2x +ln x 的值域为[-14,+∞),∴对∀a >0,方程ln 2x +ln x -a =0有解,即f (x )有零点,故B真;当α=π6,β=2π时,cos(α+β)=cos α+sin β成立,故C 真;当φ=π2时,f (x )=sin(2x +φ)=cos2x为偶函数,故D 为假命题.12.(2014·黄冈中学检测)已知集合M ={(x ,y )|y =f (x )},若对于任意(x 1,y 1)∈M ,存在(x 2,y 2)∈M ,使得x 1x 2+y 1y 2=0成立,则称集合M 是“理想集合”,则下列集合是“理想集合”的是( )A .M ={(x ,y )|y =1x }B .M ={(x ,y )|y =cos x }C .M ={(x ,y )|y =x 2-2x +2}D .M ={(x ,y )|y =log 2(x -1)} [答案] B[解析] 设A (x 1,y 1),B (x 2,y 2),则由x 1x 2+y 1y 2=0知OA ⊥OB ,由理想集合的定义知,对函数y =f (x )图象上任一点A ,在图象上存在点B ,使OA ⊥OB ,对于函数y =1x ,图象上点A (1,1),图象上不存在点B ,使OA ⊥OB ;对于函数y =x 2-2x +2图象上的点A (1,1),在其图象上也不存在点B ,使OA ⊥OB ;对于函数y =log 2(x -1)图象上的点A (2,0),在其图象上不存在点B ,使OA ⊥OB ;而对于函数y =cos x ,无论在其图象上何处取点A ,总能在其位于区间[-π2,π2]的图象上找到点B ,使OA ⊥OB ,故选B.第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题4分,共16分,把正确答案填在题中横线上.) 13.(文)(2014·高州四中质量检测)已知函数f (x )=x 2+mx +1,若命题“∃x 0>0,f (x 0)<0”为真,则m 的取值范围是________.[答案] (-∞,-2)[解析] 由条件知⎩⎪⎨⎪⎧-m 2>0,m 2-4>0,∴m <-2.(理)(2014·福州市八县联考)已知命题p :m ∈R ,且m +1≤0,命题q :∀x ∈R ,x 2+mx +1>0恒成立,若p ∧q 为假命题且p ∨q 为真命题,则m 的取值范围是________.[答案] m ≤-2或-1<m <2[解析] p :m ≤-1,q :-2<m <2,∵p ∧q 为假命题且p ∨q 为真命题,∴p 与q 一真一假,当p 假q 真时,-1<m <2,当p 真q 假时,m ≤-2,∴m 的取值范围是m ≤-2或-1<m <2.14.(文)(2014·安徽程集中学期中)以下四个命题:①在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且b sin A =a cos B ,则B =π4;②设a ,b 是两个非零向量且|a ·b |=|a ||b |,则存在实数λ,使得b =λa ;③方程sin x -x =0在实数范围内的解有且仅有一个;④a ,b ∈R 且a 3-3b >b 3-3a ,则a >b ;其中正确的是________.[答案] ①②③④[解析] ∵b sin A =a cos B ,∴sin B sin A =sin A cos B ,∵sin A ≠0,∴sin B =cos B ,∵B ∈(0,π),∴B =π4,故①正确; ∵|a ·b |=||a |·|b |·cos 〈a ,b 〉|=|a |·|b |,∴|cos 〈a ,b 〉|=1,∴a 与b 同向或反向,∴存在实数λ,使b =λa ,故②正确;由于函数y =sin x 的图象与直线y =x 有且仅有一个交点,故③正确;∵(a 3-3b )-(b 3-3a )=(a 3-b 3)+3(a -b )=(a -b )(a 2+ab +b 2+3)>0,∵a 2+ab +b 2+3>0,∴a -b >0,∴a >b ,故④正确.(理)(2014·屯溪一中期中)下列几个结论:①“x <-1”是“x <-2”的充分不必要条件; ②⎠⎛01(e x +sin x )d x =e -cos1;③已知a >0,b >0,a +b =2,则y =1a +4b 的最小值为92;④若点(a,9)在函数y =3x 的图象上,则tan a π3的值为-3;⑤函数f (x )=2sin(2x -π3)-1的对称中心为(k π2+π6,0)(k ∈Z )其中正确的是________.(写出所有正确命题的序号) [答案] ②③④[解析] x <-1⇒/ x <-2,x <-2⇒x <-1,故①错误;⎠⎛01(e x +sin x )d x =(e x -cos x )|10=e -cos1,故②正确;∵a >0,b >0,a +b =2,∴y =1a +4b =12(a +b )(1a +4b )=12(5+b a +4a b )≥12(5+2b a ·4a b )=92,等号在⎩⎪⎨⎪⎧b a =4a b ,a +b =2,即a =23,b =43时成立,故③正确;∵(a,9)在函数y =3x 的图象上,∴3a =9,∴a=2,∴tan 2π3=-tan π3=-3,故④正确;f (x )=2sin(2x -π3)-1的对称中心不落在x 轴上,故⑤错.正确答案为②③④.15.(2013·福建文,16)设S ,T 是R 的两个非空子集,如果存在一个从S 到T 的函数y =f (x )满足:(1)T ={f (x )|x ∈S };(2)对任意x 1,x 2∈S ,当x 1<x 2时,恒有f (x 1)<f (x 2), 那么称这两个集合“保序同构”.现给出以下3对集合: ①A =N ,B =N *;②A ={x |-1≤x ≤3},B ={x |-8≤x ≤10}; ③A ={x |0<x <1},B =R .其中,“保序同构”的集合对的序号是________.(写出所有“保序同构”的集合对的序号) [答案] ①②③[解析] 由(1)知T 是定义域为S 的函数y =f (x )的值域;由(2)知f (x )为增函数,因此对于集合A 、B ,只要能够找到一个增函数y =f (x ),其定义域为A ,值域为B 即可.对于①,A =N ,B =N *,可取f (x )=x +1,(x ∈A );对于②,A ={x |-1≤x ≤3},B ={x |-8≤x ≤10},可取f (x )=92x -72(x ∈A );对于③,A ={x |0<x <1},B =R ,可取f (x )=tan(x -12)π(x ∈A ).16.(文)(2014·合肥八中联考)给出下列四个命题: ①∃α,β∈R ,α>β,使得tan α<tan β;②若f (x )是定义在[-1,1]上的偶函数,且在[-1,0]上是增函数,θ∈(π4,π2),则f (sin θ)>f (cos θ);③在△ABC 中,“A >π6”是“sin A >12”的充要条件;④若函数y =f (x )的图象在点M (1,f (1))处的切线方程是y =12x +2,则f (1)+f ′(1)=3,其中所有正确命题的序号是________.[答案] ①④[解析] ①当α=3π4,β=π3时,tan α<0<tan β,∴①为真命题;∵f (x )是[-1,1]上的偶函数,在[-1,0]上单调递增,∴在[0,1]上单调递减,又θ∈(π4,π2),∴1>sin θ>cos θ>22,从而f (sin θ)<f (cos θ),∴②为假命题;③当A =5π6时,A >π6成立,但sin A =12,∴③为假命题;④由条件知f ′(1)=12,f (1)=12×1+2=52,∴f (1)+f ′(1)=3,∴④为真命题.(理)(2014·银川九中一模)给出下列命题: ①已知a ,b 都是正数,且a +1b +1>ab,则a <b ;②已知f ′(x )是f (x )的导函数,若∀x ∈R ,f ′(x )≥0,则f (1)<f (2)一定成立; ③命题“∃x ∈R ,使得x 2-2x +1<0”的否定是真命题; ④“x ≤1且y ≤1”是“x +y ≤2”的充要条件.其中正确命题的序号是________.(把你认为正确命题的序号都填上) [答案] ①②③[解析] ①∵a ,b 是正数,∴a +1>0,b +1>0,∵a +1b +1>ab ,∴b (a +1)>a (b +1),∴b >a ,即a <b ,∴①正确;②∵对任意x ∈R ,f ′(x )≥0,∴f (x )在R 上为增函数, ∴f (1)<f (2),∴②正确;③“∃x ∈R ,使得x 2-2x +1<0”的否定为“∀x ∈R ,x 2-2x +1≥0”,∵x ∈R 时,x 2-2x +1=(x -1)2≥0成立,∴③正确;④当x ≤1且y ≤1时,x +y ≤2成立;当x =3,y =-2时,满足x +y ≤2,∴由“x +y ≤2”推不出“x ≤1且y ≤1”,∴④错误.三、解答题(本大题共6个小题,共74分,解答应写出文字说明,证明过程或演算步骤.) 17.(本小题满分12分)(文)(2014·福州市八县联考)A ={x |x 2-2x -8<0},B ={x |x 2+2x -3>0},C ={x |x 2-3ax +2a 2<0},(1)求A ∩B ;(2)试求实数a 的取值范围,使C ⊆(A ∩B ).[解析] (1)依题意得:A ={x |-2<x <4},B ={x |x >1或x <-3}, ∴A ∩B ={x |1<x <4}.(2)①当a =0时,C =∅,符合C ⊆(A ∩B ); ②当a >0时,C ={x |a <x <2a },要使C ⊆(A ∩B ),则⎩⎪⎨⎪⎧a ≥12a ≤4,解得1≤a ≤2;③当a <0时,C ={x |2a <x <a },∵a <0,C ⊆(A ∩B )不可能成立,∴a <0不符合题设. ∴综上所述得:1≤a ≤2或a =0.(理)(2014·甘肃临夏中学期中)记函数f (x )=lg(x 2-x -2)的定义域为集合A ,函数g (x )=3-|x |的定义域为集合B .(1)求A ∩B ;(2)若C ={x |x 2+4x +4-p 2<0,p >0},且C ⊆(A ∩B ),求实数p 的取值范围.[解析] (1)由条件知,x 2-x -2>0,∴A ={x |x <-1,或x >2},由g (x )有意义得3-|x |≥0,所以B ={x |-3≤x ≤3},∴A ∩B ={x |-3≤x <-1,或2<x ≤3};(2)∵C ={x |x 2+4x +4-p 2<0}(p >0),∴C ={x |-2-p <x <-2+p }, ∵C ⊆(A ∩B ),∴-2-p ≥-3,且-2+p ≤-1, ∴0<p ≤1,∴实数p 的取值范围是{p |0<p ≤1}.18.(本小题满分12分)(2014·山东省菏泽市期中)已知命题p :关于x 的不等式|x -1|>m -1的解集为R ,命题q :函数f (x )=(5-2m )x 是R 上的增函数,若p 或q 为真命题,p 且q 为假命题,求实数m 的取值范围.[解析] 不等式|x -1|>m -1的解集为R ,须m -1<0,即p 是真命题时,m <1; 函数f (x )=(5-2m )x 是R 上的增函数,须5-2m >1,即q 是真命题时,m <2. ∵p 或q 为真命题,p 且q 为假命题, ∴p 、q 中一个为真命题,另一个为假命题. (1)当p 真,q 假时,m <1且m ≥2,此时无解; (2)当p 假,q 真时,m ≥1且m <2,此时1≤m <2, 因此1≤m <2.19.(本小题满分12分)(文)(2014·灵宝实验高中月考)设命题p :实数x 满足x 2-4ax +3a 2<0,其中a <0;命题q :实数x 满足x 2+2x -8>0且綈p 是綈q 的必要不充分条件,求实数a 的取值范围.[解析] 由x 2-4ax +3a 2<0及a <0得,3a <x <a , ∴p :3a <x <a ;由x 2+2x -8>0得,x <-4或x >2,∴q :x <-4或x >2.∵綈p 是綈q 的必要不充分条件, ∴p 是q 的充分不必要条件,∴a ≤-4.(理)(2014·福建省闽侯二中、永泰二中、连江侨中、长乐二中联考)设命题p :实数x 满足(x -a )(x -3a )<0,其中a >0,命题q :实数x 满足x -3x -2≤0.(1)若a =1,且p ∧q 为真,求实数x 的取值范围;(2)若綈p 是綈q 的充分不必要条件,求实数a 的取值范围. [解析] (1)∵a =1,∴不等式化为(x -1)(x -3)<0,∴1<x <3; 由x -3x -2≤0得,2<x ≤3,∵p ∧q 为真,∴2<x <3. (2)∵綈p 是綈q 的充分不必要条件, ∴q 是p 的充分不必要条件,又q :2<x ≤3,p :a <x <3a ,∴⎩⎪⎨⎪⎧a ≤2,3a >3,∴1<a ≤2.20.(本小题满分12分)(2014·马鞍山二中期中)设命题p :f (x )=2x -m 在区间(1,+∞)上是减函数;命题q :x 1,x 2是方程x 2-ax -2=0的两个实根,且不等式m 2+5m -3≥|x 1-x 2|对任意的实数a ∈[-1,1]恒成立,若(綈p )∧q 为真,试求实数m 的取值范围.[解析] 对命题p :x -m ≠0,又x ∈(1,+∞),故m ≤1,对命题q :|x 1-x 2|=(x 1+x 2)2-4x 1x 2=a 2+8对a ∈[-1,1]有a 2+8≤3, ∴m 2+5m -3≥3⇒m ≥1或m ≤-6. 若(綈p )∧q 为真,则p 假q 真,∴⎩⎪⎨⎪⎧m >1,m ≥1或m ≤-6,∴m >1. 21.(本小题满分12分)(2014·河北冀州中学期中)设集合A 为函数y =ln(-x 2-2x +8)的定义域,集合B 为函数y =x +1x +1的值域,集合C 为不等式(ax -1a )(x +4)≤0的解集.(1)求A ∩B ;(2)若C ⊆∁R A ,求a 的取值范围.[解析] (1)由于-x 2-2x +8>0,解得A =(-4,2),又y =x +1x +1=(x +1)+1x +1-1,当x +1>0时,y ≥2(x +1)·1x +1-1=1;当x +1<0时,y ≤-2(x +1)·1x +1-1=-3.∴B =(-∞,-3]∪[1,+∞), ∴A ∩B =(-4,-3]∪[1,2). (2)∵∁R A =(-∞,-4]∪[2,+∞), 由(ax -1a)(x +4)≤0,知a ≠0,当a >0时,由(ax -1a )(x +4)≤0,得C =[-4,1a 2],不满足C ⊆∁R A ;当a <0时,由(ax -1a )(x +4)≤0,得C =(-∞,-4]∪[1a 2,+∞),欲使C ⊆∁R A ,则1a 2≥2,解得:-22≤a <0或0<a ≤22, 又a <0,所以-22≤a <0, 综上所述,所求a 的取值范围是[-22,0). 22.(本小题满分14分)(2014·九江市七校第一次联考)“城中观海”是近年来国内很多大中型城市内涝所致的现象,究其原因,除天气因素、城市规划等原因外,城市垃圾杂物也是造成内涝的一个重要原因.暴雨会冲刷城市的垃圾杂物一起进入下水道,据统计,在不考虑其他因素的条件下,某段下水道的排水量V (单位:立方米/小时)是杂物垃圾密度x (单位:千克/立方米)的函数.当下水道的垃圾杂物密度达到2千克/立方米时,会造成堵塞,此时排水量为0;当垃圾杂物密度不超过0.2千克/立方米时,排水量是90立方米/小时;研究表明,0.2≤x ≤2时,排水量V 是垃圾杂物密度x 的一次函数.(1)当0≤x ≤2时,求函数V (x )的表达式;(2)当垃圾杂物密度x 为多大时,垃圾杂物量(单位时间内通过某段下水道的垃圾杂物量,单位:千克/小时)f (x )=x ·V (x )可以达到最大,求出这个最大值.[解析] 当0.2≤x ≤2时,排水量V 是垃圾杂物密度x 的一次函数,设为V (x )=mx +n ,将(0.2,90),(2,0)代入得V (x )=-50x +100,V (x )=⎩⎪⎨⎪⎧90(0≤x ≤0.2),-50x +100(0.2<x ≤2).(2)f (x )=x ·V (x )=⎩⎪⎨⎪⎧90x (0≤x ≤0.2),-50x (x -2)(0.2<x ≤2).当0≤x ≤0.2时,f (x )=90x ,最大值为1.8千克/小时; 当0.2≤x ≤2时,f (x )=50x (2-x )≤50, 当x =1时,f (x )取到最大值50,所以,当杂物垃圾密度x =1千克/立方米,f (x )取得最大值50千克/小时.。
2018版高考数学(人教A版理科)一轮复习真题演练集训第一章 集合与常用逻辑用语 1-3 Word版含答案
真题演练集训.命题“∀∈,∃∈*,使得≥”的否定形式是( ).∀∈,∃∈*,使得<.∀∈,∀∈*,使得<.∃∈,∃∈*,使得<.∃∈,∀∈*,使得<答案:解析:根据含有量词的命题的否定的概念可知,选..命题“∀∈*,()∈*且()≤”的否定形式是( ).∀∈*,()∉*且()>.∀∈*,()∉*或()>.∃∈*,()∉*且()>.∃∈*,()∉*或()>答案:解析:写全称命题的否定时,要把量词∀改为∃,并且否定结论,注意把“且”改为“或”..设命题:∃∈,>,则綈为( ).∃∈,≤.∀∈,>.∀∈,≤.∃∈,=答案:解析:因为“∃∈,()”的否定是“∀∈,綈()”,所以命题“∃∈,>”的否定是“∀∈,≤”.故选..若“∀∈,≤”是真命题,则实数的最小值为.答案:解析:由题意,原命题等价于≤在区间上恒成立,即=在上的最大值小于或等于.又=在上的最大值为,所以≥,即的最小值为.课外拓展阅读利用含逻辑联结词的命题的真假求参数的取值范围以逻辑联结词为工具,与函数、数列、立体几何、解析几何等知识相结合,根据命题的真假求参数的取值范围在模拟题中也常出现,题型为选择题或填空题.给定命题:对任意实数都有++>成立;:关于的方程-+=有实数根.如果“∨”为真命题,“∧”为假命题,那么实数的取值范围为.(-∞,)∪当为真命题时,“对任意实数都有++>成立”⇔=或(\\(>,,Δ<,))所以≤<.当为真命题时,“关于的方程-+=有实数根”⇔Δ=-≥,所以≤.因为“∨”为真命题,“∧”为假命题,所以,一真一假.若真假,则<<;若假真,则<.综上,实数的取值范围为(-∞,)∪.根据命题的真假求参数取值范围的方法步骤:()求出当命题,为真命题时,所含参数的取值范围;()判断命题,的真假性;()根据命题的真假情况,利用集合的交集和补集的运算,求解参数的取值范围.考法总结含分式不等式的命题的否定对于含分式不等式的命题的否定,一定要注意,除了改变不等式的符号,还要加上分式无意义的情况,如果要彻底避免这类问题引发的错误,我们可以先求出命题所表示的范围,再对范围进行否定.设函数()=的定义域为,若命题:∈与命题:∈有且只有一个为真命题,求实数的取值范围.由题意,可知,两个命题一真一假,命题等价于{≤<},命题等价于<)))).()若真假,则需满足(\\(≤<,<()或≥))⇒∈∅.()若假真,则需满足(\\(<或≥,,()≤<))⇒∈∪[).综上所述,的取值范围为∪[).点评对于含分式不等式的命题的否定,有两种解法,一是先写出否定形式,再求范围,二是先求范围,再对范围进行否定,但解法一容易遗漏分式无意义的情况,推荐使用解法二进行解题.。
2019届高考数学人教A版理科第一轮复习单元测试题:第一章 集合与常用逻辑用语
单元质检一集合与常用逻辑用语(时间:45分钟满分:100分)一、选择题(本大题共12小题,每小题6分,共72分)1.(2017浙江,1)已知集合P={x|-1<x<1},Q={x|0<x<2},那么P∪Q=()A.(-1,2)B.(0,1)C.(-1,0)D.(1,2)2.命题“若α的逆否命题是()A.若α则sin αB.若ααC.若sin ααD.若sin α则α3.已知集合A={-2,-1,0,1,2,3},B={x|x2-2x-3<0},则A∩B=()A.{-1,0}B.{0,1,2}C.{-1,0,1}D.{-2,-1,0}4.设x∈Z,集合A是奇数集,集合B是偶数集.若命题p:∀x∈A,2x∈B,则()A.p:∃x0∈A,2x0∈BB.p:∃x0∉A,2x0∈BC.p:∃x0∈A,2x0∉BD.p:∀x∉A,2x∉B5.“p∨q是真命题”是“p为假命题”的()A.必要不充分条件B.充分不必要条件C.充分必要条件D.既不充分也不必要条件6.已知p:x≥k,q<1,若p是q的充分不必要条件,则实数k的取值范围是()A.[2,+∞)B.(2,+∞)C.[1,+∞)D.(-∞,-1)7.已知集合B={则A∩(∁R B)=()A.[-3,5]B.(-3,1)C.(-3,1]D.(-3,+∞)8.不等式x2-2x+m>0在R上恒成立的必要不充分条件是()A.m>2B.0<m<1C.m>0D.m>19.(2017北京,理6)设m,n为非零向量,则“存在负数λ,使得m=λn”是“m·n<0”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件10.已知不等式x2-2x-3<0的解集为A,不等式x2+x-6<0的解集为B,不等式x2+ax+b<0的解集为A∩B,则a+b=()A.-3B.1C.-1D.311.已知命题p:∃x0∈R,x0-2>lg x0,命题q:∀x∈R,e x>1,则()A.命题p∨q是假命题B.命题p∧q是真命题C.命题p∧(q)是真命题D.命题p∨(q)是假命题12.对于下列四个命题:p1:∃x0∈(0,+∞p2:∃x0∈0>0;p3:∀x∈(0,+∞),;p4:∀x其中的真命题是()A.p1,p3B.p1,p4C.p2,p3D.p2,p4二、填空题(本大题共4小题,每小题7分,共28分)13.已知全集集合A={-1,1},B={1,4},则A∩(∁U B)=.14.(2017北京,理13)能够说明“设a,b,c是任意实数,若a>b>c,则a+b>c”是假命题的一组整数a,b,c的值依次为.15.若在区间[0,1]上存在实数x使2x(3x+a)<1成立,则a的取值范围是.16.设p:方程x2+2mx+1=0有两个不相等的正根;q:方程x2+2(m-2)x-3m+10=0无实根,则使p∨q为真,p∧q为假的实数m的取值范围是.答案:1.A解析取P,Q所有元素,得P∪Q={x|-1<x<2},故选A.2.C3.B解析∵x2-2x-3<0,∴(x-3)(x+1)<0,即-1<x<3.故B={x|-1<x<3}.又A={-2,-1,0,1,2,3},∴A∩B={0,1,2},故选B.4.C5.A解析若p为假命题,则p为真命题,故p∨q是真命题;若p∨q是真命题,则p可以为假命题,q为真命题,从而p为真命题.故选A.6.B解析10.∴x>2或x<-1.又∵p是q的充分不必要条件,∴k>2,故选B.7.C解析0,解得-3<x≤5.故A={x|-3<x≤5}.∵∴y>1.∴B={y|y>1}.∴∁R B={y|y≤1}.∴A∩(∁R B)={x|-3<x≤1},故选C.8.C解析当不等式x2-2x+m>0在R上恒成立时,Δ=4-4m<0,解得m>1;故m>1是不等式恒成立的充要条件;m>2是不等式成立的充分不必要条件;0<m<1是不等式成立的既不充分也不必要条件;m>0是不等式成立的必要不充分条件.故选C.9.A解析m,n为非零向量,若存在λ<0,使m=λn,即两向量反向,夹角是180°,则m·n=|m||n|cos 180°=-|m||n|<0.反过来,若m·n<0,则两向量的夹角为(90°,180°],并不一定反向,即不一定存在负数λ,使得m=λn,所以是充分不必要条件.故选A.10.A解析由题意得,A={x|-1<x<3},B={x|-3<x<2},故A∩B={x|-1<x<2}.由根与系数的关系可知,a=-1,b=-2,故a+b=-3,故选A.11.C解析因为命题p:∃x0∈R,x0-2>lg x0是真命题,命题q:∀x∈R,e x>1是假命题,所以命题p∧(q)是真命题,故选C.12.D解析可知当x>0时,1,故可知对∀x∈(0,+∞),故p1是假命题;当0<a<1,可知y=log a x在(0,+∞)上是减函数.故对∀x∈(0,1),有0<log log即故∃x0∈>,即p2是真命题.当x=1,=0,,故p是假命题;因为y1,1.又因为y2=,所以1.所以对∀x有故p是真命题.13.{-1}解析由全集U中y=log2x,x得到y∈{-1,0,1,4},即全集U={-1,0,1,4}.∵A={-1,1},B={1,4},∴∁U B={-1,0}.∴A∩(∁U B)={-1}.14.-1,-2,-3(答案不唯一)解析答案不唯一,如令a=-1,b=-2,c=-3,则a>b>c,而a+b=-3=c,能够说明“设a,b,c是任意实数,若a>b>c,则a+b>c”是假命题.15.(-∞,1)解析由2x(3x+a)<1可得3x.故在区间[0,1]上存在实数x使2x(3x+a)<1成立,等价于a<3x)max,其中x∈[0,1].令y=2-x-3x,则函数y在[0,1]上单调递减.故y=2-x-3x的最大值为20-0=1.因此a<1.故a的取值范围是(-∞,1).16.(-∞,-2]∪[-1,3)解析设方程x2+2mx+1=0的两根分别为x1,x2,m<-1,故p为真时,m<-1.由方程x2+2(m-2)x-3m+10=0无实根,可知Δ2=4(m-2)2-4(-3m+10)<0,得-2<m<3,故q为真时,-2<m<3.由p∨q为真,p∧q为假,可知命题p,q一真一假.当p真q假时此时m≤-2;当p假q真时此时-1≤m<3,故所求实数m的取值范围是{m|m≤-2或-1≤m<3}.。
人教A版(2019)高中必修第一册数学第一章《集合与常用逻辑用语》训练卷 word版,含答案
人教A 版(2019)高中必修第一册数学第一章《集合与常用逻辑用语》训练卷一、选择题1.下列四组对象中能构成集合的是( ).A .本校学习好的学生B .在数轴上与原点非常近的点C .很小的实数D .倒数等于本身的数2.下列命题不是存在量词命题的是( )A .有的无理数的平方是有理数B .有的无理数的平方不是有理数C .对于任意x ∈Z ,21x +是奇数D .存在x ∈R ,21x +是奇数 3.集合A ={x |0≤x <3,x ∈N}的真子集的个数是( )A .7B .8C .16D .44.设,a b ∈R ,则“a b >”是“22a b >”的A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件 5.已知集合{}2A x x x ==,那么 A .0∈A B .1∉A C .{}1∈A D .{0,1}≠A6.设集合{}2,1,2A a =-,{}2,4B =,则“2a =”是“{}4A B ⋂=”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件 7.若集合3,2,1,0,1,2A ,集合{}1,B y y x x A ==+∈,则B =( ) A .{}1,2,3 B .{}0,1,2 C .{}0,1,2,3 D .{}1,0,1,2,3- 8.设集合{|12},{|}A x x B x x a =-≤<=<,若A B ⋂≠∅,则a 的取值范围是( )A .(1,2]-B .(2,)+∞C .[1,)-+∞D .(1,)-+∞9.设集合A ={0,1,2},B ={m |m =x +y ,x ∈A ,y ∈A },则集合A 与B 的关系为( )A .AB ∈ B .A B =C .B A ⊆D .A B ⊆10.已知集合{0,1}A =,{|}B x x A =⊆,则下列关于集合A 与B 的关系正确的是( )A .AB ⊆B .A B ≠⊂C .B A ≠⊂D .A B ∈ 二、填空题11.用符号“∈”或“∉”填空:0______N ;3-______N ;0.5______Z Z ;13______Q ;π______R . 12.命题“对任意一个实数x ,221x x ++都不小于零”,用“∃”或“∀”符号表示为________________.13.满足{1,2}{1,2,3,4,5}M ≠⊂⊆的集合M 有______个. 14.若命题“存在x∈R ,使得2ax 2x a 0++≤”为假命题,则实数a 的取值范围为_____.15.已知:13p x ,:11q x m -<<+,若q 是p 的必要不充分条件,则实数m 的取值范围是_____.16.已知集合{}|1A x x =≤,{}|B x x a =≥,且A B R =,则实数a 的取值范围是______________________ .17.若集合(){}22210A x k x kx =+++=有且仅有2个子集,则满足条件的实数k 的最小值是____. 三、解答题18.用列举法表示下列集合:(1)大于1且小于6的整数;(2){}(1)(2)0A x x x =-+=;(3){}3213B x Z x =∈-<-<.19.已知A ={|x x 满足条件p },B ={|x x 满足条件q },(1)如果A B ⊆,那么p 是q 的什么条件?(2)如果B A ⊆,那么p 是q 的什么条件?(3)如果A B =,那么p 是q 的什么条件?20.设集合{|116}A x x =-≤+≤,{|121}B x m x m =-<<+.(1)当x ∈Z 时,求A 的非空真子集的个数;(2)若A B ⊇,求m 的取值范围.21.设2{|450}A x x x =--=,2{|1}B x x ==,求A B ,A B .22.图中U 是全集,A ,B 是U 的两个子集,用阴影表示:(1)()()U U A B ; (2)()()UU A B ⋃.23.已知集合{}25A x x -≤≤=,{}121B x m x m +≤≤-=.(1)若B A ,求实数m 的取值范围;(2)若A B ⊆,求实数m 的取值范围.24.设集合{|12}A x x =-≤≤,集合{|21}B x m x =<<.(1)若“x A ∈”是“x B ∈”的必要条件,求实数m 的取值范围;(2)若()R B C A ⋂中只有一个整数,求实数m 的取值范围.参考答案1.D【分析】根据集合中元素具有确定性判断选项即可得到结果.【详解】集合中的元素具有确定性,对于,,A B C ,学习好、非常近、很小都是模糊的概念,没有明确的标准,不符合确定性;对于D ,符合集合的定义,D 正确.故选:D .【点睛】本题考查集合的定义,关键是明确集合中的元素具有确定性,属于基础题.2.C【分析】直接根据全称量词与存在量词的概念,找出四个选项中的全称量词与存在量词得答案.【详解】A 、B 、D 中都有存在量词,是存在量词命题,C 中含有量词“任意”,为全称量词命题,故选:C .【点睛】本题考查存在量词与存在量词命题,是基础题.3.A【分析】首先用列举法表示集合A ,含有n 个元素的集合的真子集的个数是21n -个.【详解】{}0,1,2A =,集合含有3个元素,真子集的个数是3217-=,故选A.【点睛】本题考查集合的真子集个数的求解,属于基础题型,一个集合含有n 个元素,其子集个数是2n 个,真子集个数是21n -个.4.D【详解】若0,2a b ==-,则22a b <,故不充分;若2,0a b =-=,则22a b >,而a b <,故不必要,故选D.考点:本小题主要考查不等式的性质,熟练不等式的性质是解答好本类题目的关键.5.A【分析】解方程x 2=x ,化简集合A ,然后根据元素与集合的关系,以及集合之间的关系判断.【详解】已知A={x|x 2=x},解方程x 2=x ,即x 2-x=0,得x=0或x=1,∈A={0,1}.故选A【点睛】本题主要考查元素与集合的关系,以及集合之间的关系,这类题目通常需要先化简集合,再进行判断.6.A【分析】由2a =可以推出{}4A B ⋂=,由{}4A B ⋂=,推出2a =或2a =-,从而进行判断,得到答案.【详解】当“2a =”时,{}1,4,2A =-,{2,4}B =,所以可以推出“{}4A B ⋂=”.当“{}4A B ⋂=”时,得到24a =,所以2a =或2a =-,故不能推出“2a =”.由此可知“2a =”是“{4}A B ⋂=”的充分不必要条件.故选:A.【点睛】本题考查判断充分不必要条件,根据交集运算结果求参数,属于简单题.7.C【分析】将A 集合中元素逐个代入1y x =+中计算y 的值,然后根据元素的互异性得到B 集合的组成.【详解】 由1y x =+,x A ∈得,当3x =-,1时,2y =;当2x =-,0时,1y =;当1x =-时,0y =;当2x =时,3y =.故集合{}0,1,2,3B =,故选C.【点睛】本题考查对集合的两种表示方法的理解,难度较易.通过运算得到函数值的集合时,注意利用互异性对函数值进行取舍.8.D【分析】由A B ⋂≠∅知,集合A ,B 有公共元素,作出图示即可得到结论.【详解】因为A B ⋂≠∅,所以集合A ,B 有公共元素,作出数轴,如图所示,易知1a >-.故选:D.【点睛】本题考查集合的交集的运算,属于基础题.9.D【分析】先分别求出集合A 和B ,由此能求出结果.【详解】∈合A={0,1,2},B={m|m=x+y ,x∈A ,y∈A}={0,1,2,3,4},∈A∈B .故选D .【点睛】本题考查命题真假的判断,考查集合的包含关系等基础知识,考查运算求解能力,是基础题.10.D【分析】根据集合间的基本关系分析即可.【详解】因为x A ⊆,所以{,{0},{1},{0,1}}B =∅,集合{0,1}A =是集合B 中的元素,所以A B ∈.故选:D【点睛】本题主要考查了集合间的基本关系的理解,属于基础题型.11.∈ ∉ ∉ ∉ ∈ ∈【分析】根据自然数,整数,有理数,实数的定义即可判断.【详解】0是自然数,则0N ∈;3-不是自然数,则3N -∉;不是整数,则0.5Z Z ∉;13是有理数,则13Q ∈;π是无理数,则R π∈ 故答案为:(1)∈;(2)∉;(3)∉;(4)∉;(5)∈;(6)∈【点睛】本题主要考查了元素与集合间的关系,属于基础题.12.x ∀∈R ,2210x x ++≥【分析】根据全称量词命题:()x M p x ∀∈,,以及含有全称量词“任意一个”,用符号“∀”表示,“不小于零”就是“0≥”,据此即可表示出结果.【详解】含有全称量词“任意一个”,用符号“∀”表示,“不小于零”就是“0≥”,因此命题用符号表示为“x ∀∈R ,2210x x ++≥”,故填:x ∀∈R ,2210x x ++≥.【点睛】本题考查含有全称量词的命题就称为全称量词命题.一般形式为:全称量词命题:()x M p x ∀∈,.13.7【分析】利用枚举法直接求解即可.【详解】由{1,2}{1,2,3,4,5}M ≠⊂⊆,可以确定集合M 必含有元素1,2,且至少舍有元素3,4,5中的一个,因此依据集合M 的元素个数分类如下:含有三个元素:{1,2,3},{1,2,4},{1,2,5};含有四个元素:{1,2,3,4},{1,2,35},,{1,2,4,5};含有五个元素:{1,2,3,4,5},故满足题意的集合M 共有7个.故答案为:7【点睛】本题主要考查了集合间的基本关系与枚举法的运用,属于中等题型.14.()1,+∞【解析】【分析】由原命题为假命题,则其否定为真命题,得x R ∀∈,使得2ax 2x a 0++>恒成立,即可得a 的范围.【详解】命题“0x R ∃∈,使得a 2x 2x a 0++≤”是假命题,则命题“x R ∀∈,使得2ax 2x a 0++>”是真命题,∈∈a=0,x>0不恒成立;22a>024a 0⎧⇒⎨∆=-<⎩②a >1. 故答案为(1,+∞).【点睛】本题考查了存在命题的否定,不等式恒成立问题,考查转化思想以及计算能力,属于基础题.15.()2,+∞【分析】由题意,命题:13p x ,:11q x m -<<+,因为q 是p 的必要不充分条件,即p q ⊆,根据集合的包含关系,即可求解.【详解】由题意,命题:13p x ,:11q x m -<<+,因为q 是p 的必要不充分条件,即p q ⊆,则13m +>,解得2m >,即实数m 的取值范围是(2,)+∞.【点睛】本题主要考查了必要不充分条件的应用,以及集合包含关系的应用,其中解答中根据题意得出集合p 是集合q 的子集,根据集合的包含关系求解是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.16.1a ≤【分析】由并集的定义及数轴表示可得解.【详解】在数轴上表示出集合A 和集合B ,要使A B R =,只有1a ≤.【点睛】本题主要考查了集合的并集运算,利用数轴找关系是解题的关键,属于基础题.17.-2【分析】根据题意可知,集合A 只有一个元素,从而2k =-时,满足条件,而2k ≠-时,可得到()24420k k ∆=-+=,求出k ,找到最小的k 即可.【详解】 A 只有2个子集;A ∴只有一个元素;2k ①∴=-时,14A ⎧⎫=⎨⎬⎩⎭,满足条件; ∈2k ≠-时,()24420k k ∆=-+=; 解得1k =-或2;综上,满足条件的实数k 的最小值为﹣2.故答案为﹣2.【点睛】考查子集的概念,描述法和列举法表示集合的定义,以及一元二次方程实根个数和判别式∆的关系.18.(1){}2,3,4,5;(2){}1,2A =-;(3){}0,1B =【分析】根据题意,求出集合的元素,用列举法表示出来即可.【详解】解:用列举法表示下列集合(1)大于1且小于6的整数,{}2,3,4,5;(2){|(1)(2)0}A x x x =-+=;所以{}1,2A =-(3){|3213}B x Z x =∈-<-<,由3213x -<-<解得12x -<<,x ∈Z ,故表示为{}0,1B =,19.(1)充分条件;(2)必要条件;(3)充要条件.【分析】(1) 根据集合间的基本关系判断p 和Q 的包含关系再即可.(2) 根据集合间的基本关系判断p 和Q 的包含关系再即可.(3) 根据集合间的基本关系判断p 和Q 的包含关系再即可.【详解】(1)如果A B ⊆,则满足条件p 也满足条件q .故p 是q 的充分条件.(2)如果B A ⊆,则满足条件q 也满足条件p .故p 是q 的必要条件.(3)如果A B =,则满足条件p 满足条件q ,且满足条件q 也满足条件p .故p 是q 的充要条件.【点睛】本题主要考查了集合的关系与充分必要条件的关系,属于基础题型.20.(1)254;(2){|122}m m m -≤≤-或.【分析】对于(1),根据x 的取值范围,可确定集合A 中所含元素,根据其元素的个数可判断出其子集的个数,若集合含有n 个元素时,则有2n 的子集,当1n >时,其非空真子集的个数为22n -,即可得到答案;对于(2),由于空集是任何非空集合的子集,故对于B 集合是否为空集需分情况讨论:∈集合B 为空集,即121m m -≥+; ∈集合B 为非空集合,即121m m -<+.【详解】由题意得{|25}A x x =-≤≤.(1)∈x ∈Z ,∈{2,1,0,1,2,3,4,5}A =--,即A 中含有8个元素,∈A 的非空真子集的个数为822254-=.(2)∈当121m m -≥+,即2m ≤-时,B A =∅⊆;∈当121m m -<+,即2m >-时,{|121}B x m x m =-<<+,因此,要使B A ⊆,则12,12215m m m --⎧⇒-⎨+⎩. 综上所述,m 的取值范围{|12m m -≤≤或2}m -.【点睛】本题主要考查的是非空子集和真子集的定义,集合的包含关系及应用,考查不等式的解法,考查学生的计算能力,考查的核心素养是数学运算、逻辑推理,误区警示:(1)确定方程的解的集合或不等式的解集之间的关系时,当其含有参数时,注意要分类讨论,不讨论易导致误判.(2)()A B B ⊆≠∅包含三种可能,∈A 为∅;∈A 不为必∅,且A B ;∈A 不为∅,且A B =.只写其中一种是不全面的,如果A ,B 是确定的,就只有一种可能,此时只能写出一种形式.是基础题.21.{}1,1,5A B =-,{}1A B ⋂=-.【分析】根据一元二次方程的解法分别求得集合,A B ,由并集和交集的定义直接得到结果.【详解】{}()(){}{}24505101,5A x x x x x x =--==-+==-,{}{}211,1B x x ===- {}1,1,5A B ∴=-,{}1A B ⋂=-【点睛】本题考查集合运算中的交集和并集运算,涉及到一元二次方程的求解问题,属于基础题.22.(1)图象见解析;(2)图象见解析.【分析】根据补集、交集和并集的定义,利用Venn 图表示出来即可.【详解】 如下图阴影部分所示.【点睛】本题考查Venn 图表示集合,涉及到集合的交集、并集和补集运算,属于基础题.23.(1){}3m m ≤;(2)不存在实数m 使A B ⊆.【分析】(1) ∈当B ∅=时,由121m m +>-,得2m <,满足题意;∈当B ≠∅时,根据子集关系列式可解得;(2)根据两个集合的子集关系列式无解,故不存在实数m .【详解】(1)∈当B ∅=时,由121m m +>-,得2m <,满足题意;∈当B ≠∅时,如图所示,12215121m m m m +≥-⎧⎪∴-≤⎨⎪+≤-⎩且12m +=-与215m -=不能同时取等号,解得23m ≤≤. 综上可得,m 的取值范围是:{}3m m ≤.(2)当A B ⊆时,如图所示,此时B ≠∅,21112215m m m m ->+⎧⎪∴+≤-⎨⎪-≥⎩,即233m m m >⎧⎪≤-⎨⎪≥⎩,∈m 不存在,即不存在实数m 使A B ⊆.【点睛】本题考查了根据集合间的子集或真子集关系,容易漏掉空集情况,属于中档题.24.(1)1[,)2-+∞;(2)3[,1)2--. 【分析】(1)由“x A ∈”是“x B ∈”的必要条件,得B∈A ,然后分1122m m =<,,m >12三种情况讨论求解实数m 的取值范围;(2)把()R B C A ⋂中只有一个整数,分1122m m =<,,m >12时三种情况借助于两集合端点值间的关系列不等式求解实数m 的取值范围.【详解】(1)若“x A ∈”是“x B ∈”,则B∈A ,∈A={x|-1≤x≤2}, ∈当12m <时,B={x|2m <x <1},此时-1≤2m <1∈1122m -≤< ; ∈当12m = 时,B=∈,有B∈A 成立; ∈当12m >时B=∈,有B∈A 成立; 综上所述,所求m 的取值范围是1,2⎡⎫-+∞⎪⎢⎣⎭. (2)∈A={x|-1≤x≤2},∈∈R A={x|x <-1或x >2},∈当12m <时,B={x|2m <x <1}, 若(∈R A)∩B 中只有一个整数,则-3≤2m <-2,得312m -≤-<; ∈当m 当12m =时,不符合题意; ∈当12m >时,不符合题意;综上知,m的取值范围是3,12⎡⎫--⎪⎢⎣⎭.【点睛】在集合运算中,不等式的解集、函数的定义域、函数的值域问题,能解的先解出具体的实数范围,再结合数轴进行集合的运算,若端点位置不定时,要注意对端点的位置进行讨论求解,此题是中档题.。
高考数学一轮复习专题一集合与常用逻辑用语1集合综合集训含解析新人教A版
专题一集合与常用逻辑用语备考篇【考情探究】课标解读考情分析备考指导主题内容一、集合的概念与运算1.理解集合的含义,能用自然语言、图形语言、集合语言(列举法或描述法)表示集合.2.理解集合之间的包含关系,能识别给定集合的子集,在具体问题中了解全集与空集的含义.3.理解两个集合的并集与交集的含义,并会求它们的交集与并集;理解给定一个集合的子集的补集含义,会求给定子集的补集;会用韦恩(Venn)图表示集合间的基本关系及运算.1.考查内容:从近五年高考看,本专题重点考查集合的交、并、补运算,所给的数集既有连续型(如2020新高考Ⅰ卷第1题直接给出了两个连续型集合,求它们的并集,而2020课标Ⅰ卷理数第1题则是先求出一元一次、一元二次不等式的解集,后给定了集合交集来求参数的值)、又有离散型的数集(如2020课标Ⅱ卷文数第1题与2020天津卷第1题);对充分条件、必要条件的考查常与其他知识结合(如2020北京卷的第9题以三角函数中的诱导公式为背景考查了充分、必要条件的推理判断);全(特)称命题的考查相对较少.2.本专题是历年必考的内容,在选择题、填空题中出现较多,多以给定的集合或不等式的解集为载体,以集合1.对于给定的集合,首先应明确集合的表示方法,对于描述法表述的集合,要明确集合的元素是什么(是数集、点集等),明确集合是不等式的解集,是函数的定义域还是值域,把握集合中元素的属性是重点.2.了解命题及其逆命题、否命题与逆否命题;通过对概念的理解,会分析四种命题的关系,会写出一个命题的其他三个命题,并判断其真假.能用逻辑联结词正确地表达相关的数学命题.3.对于充分、必要条件的判断问题,必须明确题目中的条件与结论分别是什么,它们之间的互推关系是怎样的,要加强这方面的训练.4.关于全称命题与特称二、常用逻辑用语1.理解必要条件、充分条件与充要条件的意义.2.理解全称量词与存在量词的意义.3.能正确地对含有一个量词的命题进行否定.语言和符号语言为表现形式,考查集合的交、并、补运算;也会与解不等式、函数的定义域、值域相结合进行考查.3.对于充分、必要条件的判断,含有一个量词的命题的否定可以与每一专题内容相关联,全称命题及特称命题是重要的数学语言,高考考题充分体现了逻辑推理的核心素养.命题,一般考查命题的否定.对含有一个量词的命题进行真假判断,要学会用特值检验.【真题探秘】命题立意已知给定的两个连续型的数集,求它们的并集.解题指导1.进行集合运算时,首先看集合是否最简,能化简先化简,再运算.2.注意数形结合思想的应用(1)离散型数集或抽象集合间的运算,常借助Venn图求解. (2)连续型数集的运算,常借助数轴求解,运用数轴时要特别注意端点是实心还是空心.拓展延伸1.集合中的元素的三个特征,特别是无序性和互异性在解题时经常用到,解题后要进行检验,要重视符号语言与文字语言之间的相互转化.2.对连续数集间的运算,借助数轴的直观性,进行合理转化;对已知连续数集间的关系,求其中参数的取值范围时,要注意等号能否取到.3.空集是任何集合的子集,是任何非空集合的真子集,关注对空集的讨论,防止漏解.4.解题时注意区分两大关系:一是元素与集合的从属关系:二是集合与集合的包含关系.5.Venn图图示法和数轴图示法是进行集合交、并、补运算的常用方法.[教师专用题组]1.真题多维细目表考题涉分题型难度考点考向解题方法核心素养2020新高考Ⅰ,1 5单项选择题易集合的运算集合的并集运算数轴法数学运算2020新高考Ⅱ,1 5单项选择题易集合的运算集合的并集运算定义法数学运算2020课标Ⅰ理,2 5选择题易集合的运算解不等式、集合的交集运算定义法数学运算2020课标Ⅰ文,1 5选择题易集合的运算解不等式、集合的交集运算定义法数学运算2020北京,1 4选择题易集合的运算集合的交集运算定义法数学运算2020天津,1 5选择题易集合的运算集合的交、补集运算定义法数学运算2020天津,2 5选择题易充分、必要条件解不等式、充分、必要条件的判断定义法逻辑推理2020北京,9 4选择题难充分、必要条件诱导公式、角的终边位置与角大小关系、充分、必要条件的判断定义法逻辑推理风格.2.2020年新高考考查内容主要体现在以下方面:①新高考Ⅰ卷第1题,新高考Ⅱ卷第1题直接给出了两个集合求它们的并集或交集,课标Ⅰ卷理数则是需要求出一元一次、一元二次不等式的解集,同时通过它们的交集确定参数的值,北京卷与新高考Ⅰ卷相近,直接求两个给定集合的交集;②2020年新高考Ⅰ卷第5题以学生参加体育锻炼为背景考查了利用韦恩(Venn)图求两个集合交集中元素所占总体的比例问题,体现了集合的应用价值;③2020年北京卷第9题以三角函数中的诱导公式为背景考查了充分、必要条件的判断.3.在备考时还要适当关注求集合的补集运算,对含有一个量词的命题的真假判断,集合与充分、必要条件相结合的命题方式,在不同背景下抽象出数学本质的方法等.应强化在知识的形成过程、知识的迁移中渗透学科素养.§1.1 集合 基础篇 【基础集训】考点一 集合及其关系1.若用列举法表示集合A ={(x ,x )|{2x +x =6x -x =3},则下列表示正确的是 ( )A.A ={x =3,y =0}B.A ={(3,0)}C.A ={3,0}D.A ={(0,3)} 答案 B2.若集合M ={x ||x |≤1},N ={y |y =x 2,|x |≤1},则 ( ) A.M =N B.M ⊆N C.M ∩N =⌀ D.N ⫋M 答案 D3.已知集合A ={x ∈R|x 2+x -6=0},B ={x ∈R|ax -1=0},若B ⊆A ,则实数a 的值为 ( ) A.13或-12B.-13或12C.13或-12或0 D.-13或12或0答案 D4.已知含有三个实数的集合既可表示成{x ,x x,1},又可表示成{a 2,a +b ,0},则a 2021+b 2021等于 . 答案 -1考点二 集合的基本运算5.已知集合M ={x |-1<x <3},N ={x |-2<x <1},则M ∩N = ( )A .(-2,1)B .(-1,1)C .(1,3)D .(-2,3) 答案 B6.已知全集U =R,A ={x |x ≤0},B ={x |x ≥1},则集合∁U (A ∪B )=( ) A.{x |x ≥0} B.{x |x ≤1}C.{x|0≤x≤1}D.{x|0<x<1}答案 D7.已知集合A={x|x2-2x-3>0},B={x|lg(x+1)≤1},则(∁R A)∩B= ()A.{x|-1≤x<3}B.{x|-1≤x≤9}C.{x|-1<x≤3}D.{x|-1<x<9}答案 C8.全集U={x|x<10,x∈N*},A⊆U,B⊆U,(∁U B)∩A={1,9},A∩B={3},(∁U A)∩(∁U B)={4,6,7},则A∪B=.答案{1,2,3,5,8,9}[教师专用题组]【基础集训】考点一集合及其关系1.(2018广东茂名化州二模,1)设集合A={-1,0,1},B={x|x>0,x∈A},则B= ()A.{-1,0}B.{-1}C.{0,1}D.{1}答案D由题意可知,集合B由集合A中为正数的元素组成,因为集合A={-1,0,1},所以B={1}.2.设集合A={y|y=x2+2x+5,x∈R},有下列说法:①1∉A;②4∈A;③(0,5)∈A.其中正确的说法个数是()A.0B.1C.2D.3答案C易知A={y|y≥4},所以①②都是正确的;(0,5)是点,而集合A中元素是数,所以③是错误的.故选C.3.(2020陕西西安中学第一次月考,1)已知集合A={x|x≥-1},则正确的是 ()A.0⊆AB.{0}∈AC.⌀∈AD.{0}⊆A答案D对于A,0∈A,故A错误;对于B,{0}⊆A,故B错误;对于C,空集⌀是任何集合的子集,即⌀⊆A,故C错误;对于D,由于集合{0}是集合A的子集,故D正确.故选D.4.(2019辽宁沈阳质量检测三,2)已知集合A={(x,y)|x+y≤2,x,y∈N},则A中元素的个数为()A.1B.5C.6D.无数个答案C由题意得A={(0,0),(0,1),(0,2),(1,0),(1,1),(2,0)},所以A中元素的个数为6.故选C.5.(2020广西桂林十八中8月月考,1)已知集合A={1,a},B={1,2,3},那么 ()A.若a=3,则B⊆AB.若a=3,则A⫋BC.若A⊆B,则a=2D.若A⊆B,则a=3答案B当a=3时,A={1,3},又因为B={1,2,3},所以A⫋B.若A⊆B,则a=2或3.故选B. 6.(2019辽宁师大附中月考,2)已知集合A={0,1},B={x|x⊆A},则下列集合A与B的关系中正确的是()A.A⊆BB.A⫋BC.B⫋AD.A∈B答案D因为x⊆A,所以B={⌀,{0},{1},{0,1}},则集合A={0,1}是集合B中的一个元素,所以A∈B,故选D.,x≠0},集合B={x|x2-4 7.(2020安徽江淮十校第一次联考,1)已知集合A={x|x=x+1x≤0},若A∩B=P,则集合P的子集个数为()A.2B.4C.8D.16答案B A={y|y≤-2或y≥2},B={-2≤x≤2},则P=A∩B={-2,2},所以P的子集个数为4,故选B.8.(2019广东六校9月联考,2)已知集合A={-1,1},B={x|ax+1=0},若B⊆A,则实数a的所有可能取值的集合为()A.{-1}B.{1}C.{-1,1}D.{-1,0,1}答案D因为B⊆A,所以当B=⌀,即a=0时满足条件;},又知B⊆A,当B≠⌀时,a≠0,∴B={x|x=-1x∈A,∴a=±1.∴-1x综上可得实数a的所有可能取值集合为{-1,0,1},故选D.易错警示由于空集是任何集合的子集,又是任何非空集合的真子集,所以遇到“A⊆B或A⫋B且B≠⌀”时,一定要注意讨论A=⌀和A≠⌀两种情况,A=⌀的情况易被忽略,从而导致失分.9.(2019河南豫南九校第一次联考,13)已知集合A={1,2,3},B={1,m},若3-m∈A,则非零实数m的值是.答案 2解析若3-m=1,则m=2,符合题意;若3-m=2,则m=1,此时集合B中的元素不满足互异性,故m≠1;若3-m=3,则m=0,不符合题意.故答案为2.考点二集合的基本运算1.(2019金丽衢十二校高三第一次联考,1)若集合A=(-∞,5),B=[3,+∞),则(∁R A)∪(∁R B)=()A.RB.⌀C.[3,5)D.(-∞,3)∪[5,+∞)答案D∁R A=[5,+∞),∁R B=(-∞,3),所以(∁R A)∪(∁R B)=(-∞,3)∪[5,+∞).2.(2019河南中原联盟9月联考,1)已知集合A={x|(x-1)·(x-2)>0},B={x|y=√2x-1},则A ∩B= ()A.[12,1)∪(2,+∞) B.[12,1)C.(12,1)∪(2,+∞) D.R答案A因为集合A={x|(x-1)(x-2)>0}={x|x<1或x>2},B={x|y=√2x-1}={x|x≥12},所以A∩B=[12,1)∪(2,+∞),故选A.3.(2018河北石家庄3月质检,1)设集合A={x|-1<x≤2},B={x|x<0},则下列结论正确的是()A.(∁R A)∩B={x|x<-1}B.A∩B={x|-1<x<0}C.A∪(∁R B)={x|x≥0}D.A∪B={x|x<0}答案B∵A={x|-1<x≤2},B={x|x<0},∴∁R A={x|x≤-1或x>2},∁R B={x|x≥0}.对于选项A,(∁R A)∩B={x|x≤-1},故A错误;对于选项B,A∩B={x|-1<x<0},故B正确;对于选项C,A∪(∁R B)={x|x>-1},故C错误;对于选项D,A∪B={x|x≤2},故D错误.故选B.名师点拨 对于集合的交、并、补运算,利用数轴求解能减少失误.4.(2020山东夏季高考模拟,1)设集合A ={(x ,y )|x +y =2},B ={(x ,y )|y =x 2},则A ∩B = ( ) A.{(1,1)} B.{(-2,4)} C.{(1,1),(-2,4)} D.⌀ 答案 C 本题主要考查集合的含义及集合的运算. 联立{x +x =2,x =x 2,消y 可得x 2+x -2=0,∴x =1或-2, ∴方程组的解为{x =1,x =1或{x =-2,x =4,从而A ∩B ={(1,1),(-2,4)},故选C .5.(2019山东济南外国语学校10月月考,1)已知R 为实数集,集合A ={x |(x +1)2(x -1)x>0},B ={x |(x +1)(x -12)>0},则图中阴影部分表示的集合为 ( )A.{-1}∪[0,1]B.[0,12]C.[-1,12]D.{-1}∪[0,12] 答案 D ∵(x +1)2(x -1)x>0,∴x ≠-1且x (x -1)>0,∴x <-1或-1<x <0或x >1,∴A ={x |x <-1或-1<x <0或x >1}. ∵(x +1)(x -12)>0,∴x >12或x <-1,∴B ={x |x >12或x <-1}.∴A ∪B ={x |x <-1或-1<x <0或x >12}.故图中阴影部分表示的集合为∁R (A ∪B )={-1}∪{x |0≤x ≤12},即{-1}∪[0,12].故选D .综合篇 【综合集训】考法一 集合间基本关系的求解方法1.(2021届江苏扬州二中期初检测,2)已知集合A ={x |x 2+x =0,x ∈R},则满足A ∪B ={0,-1,1}的集合B 的个数是( )A.4B.3C.2D.1 答案 A2.(2020山东滨州6月三模)已知集合M ={x |x =4n +1,n ∈Z},N ={x |x =2n +1,n ∈Z},则 ( ) A.M ⫋N B.N ⫋M C.M ∈N D.N ∈M 答案 A3.(2019辽宁沈阳二中9月月考,14)设集合A={x|2a+1≤x≤3a-5},B={x|3≤x≤22}.若A⊆(A∩B),则实数a的取值范围为.答案(-∞,9]考法二集合运算问题的求解方法}, 4.(2021届河南郑州一中开学测试,1)已知全集U=R,集合A={x|y=lg(1-x)},B={x|x=√x 则(∁U A)∩B= ()A.(1,+∞)B.(0,1)C.(0,+∞)D.[1,+∞)答案 D5.(2020浙江超级全能生第一次联考,1)记全集U=R,集合A={x|x2-4≥0},集合B={x|2x≥2},则(∁U A)∩B= ()A.[2,+∞)B.⌀C.[1,2)D.(1,2)答案 C6.(2021届湖湘名校教育联合体入学考,1)设全集U=A∪B={x|-1≤x<3},A∩(∁U B)={x|2<x<3},则集合B= ()A.{x|-1≤x<2}B.{x|-1≤x≤2}C.{x|2<x<3}D.{x|2≤x<3}答案 B7.(2020山东德州6月二模,1)若全集U={1,2,3,4,5,6},M={1,3,4},N={2,3,4},则集合(∁U M)∪(∁U N)等于()A.{5,6}B.{1,5,6}C.{2,5,6}D.{1,2,5,6}答案 D8.(2021届重庆育才中学入学考试,1)已知集合A={x|0<x<4,x∈Z},集合B={y|y=m2,m∈A},则A∩B= ()A.{1}B.{1,2,3}C.{1,4,9}D.⌀答案 A[教师专用题组]【综合集训】考法一集合间基本关系的解题方法1.已知集合M={1,m},N={n,log2n},若M=N,则(m-n)2015=.答案-1或0解析 因为M =N ,所以{1,m }={n ,log 2n }. 当n =1时,log 2n =0,则m =0,所以(m -n )2015=-1; 当log 2n =1时,n =2,则m =2,所以(m -n )2015=0.故(m -n )2015=-1或0.2.已知集合A ={x |x =2x +13,x ∈Z },B =,则集合A 、B 的关系为 . 答案 A =B 解析 A =,B ={x |x =13(2x +3),x ∈Z }.∵{x |x =2n +1,n ∈Z}={x |x =2n +3,n ∈Z},∴A =B.故答案为A =B.3.设集合A ={-2},B ={x |ax +1=0,a ∈R},若A ∩B =B ,则a 的值为 . 答案 0或12解析 ∵A ∩B =B ,∴B ⊆A. ∵A ={-2}≠⌀,∴B =⌀或B ≠⌀.当B =⌀时,方程ax +1=0无解,此时a =0,满足B ⊆A. 当B ≠⌀时,a ≠0,则B ={-1x }, ∴-1x∈A ,即-1x=-2,解得a =12.综上,a =0或a =12.4.已知集合A ={x |x <-1或x >4},B ={x |2a ≤x ≤a +3}.若B ⊆A ,则实数a 的取值范围为 .答案 (-∞,-4)∪(2,+∞)解析 ①当B =⌀时,只需2a >a +3,即a >3; ②当B ≠⌀时,根据题意作出如图所示的数轴.可得{x +3≥2x ,x +3<-1或{x +3≥2x ,2x >4, 解得a <-4或2<a ≤3.综上可得,实数a的取值范围为(-∞,-4)∪(2,+∞).考法二集合运算问题的求解方法1.(2017北京东城二模,1)已知全集U是实数集R.如图所示的韦恩图表示集合M={x|x>2}与N={x|1<x<3}的关系,那么阴影部分所表示的集合为()A.{x|x<2}B.{x|1<x<2}C.{x|x>3}D.{x|x≤1}答案D由题中韦恩图知阴影部分表示的集合是∁U(M∪N).∵M∪N={x|x>1},∴∁U(M∪N)={x|x≤1}.2.(2017安徽淮北第二次模拟,2)已知全集U=R,集合M={x|x+2a≥0},N={x|log2(x-1)<1},若集合M∩(∁U N)={x|x=1或x≥3},则()A.a=12B.a≤12C.a=-12D.a≥12答案C∵log2(x-1)<1,∴x-1>0且x-1<2,即1<x<3,则N={x|1<x<3},∵U=R,∴∁U N={x|x≤1或x≥3},又∵M={x|x+2a≥0}={x|x≥-2a},M∩(∁U N)={x|x=1或x≥3},∴-2a=1,解得a=-12.故选C.3.设U=R,集合A={x|x2+3x+2=0},B={x|x2+(m+1)x+m=0},若(∁U A)∩B=⌀,则m=.答案1或2解析A={-2,-1},由(∁U A)∩B=⌀,得B⊆A,∵方程x2+(m+1)x+m=0的判别式Δ=(m+1)2-4m=(m-1)2≥0,∴B≠⌀.∴B={-1}或B={-2}或B={-1,-2}.①若B={-1},则m=1;②若B={-2},则-(m+1)=(-2)+(-2)=-4,且m=(-2)×(-2)=4,这两式不能同时成立,∴B≠{-2};③若B={-1,-2},则-(m+1)=(-1)+(-2)=-3,且m=(-1)×(-2)=2,由这两式得m=2.经检验,m=1和m=2符合条件.∴m=1或2.11。
专题1集合与常用逻辑用语(必刷1~60题)【一轮必刷600题】高三数学一轮复习专项训练(含答案)
专题一集合与常用逻辑用语(必刷1~60题)考点1:集合与元素(1)集合元素的三个特征:确定性、互异性、无序性.(2)元素与集合的关系是属于或不属于关系,用符号∈或∉表示.(3)集合的表示法:列举法、描述法、V enn 图法.(4)常见数集的记法集合自然数集正整数集整数集有理数集实数集符号NN +(或N *)ZQR(5)集合的分类若按元素的个数分类,可分为有限集、无限集、空集;若按元素的属性分类,可分为点集、数集等.特别注意空集是一个特殊而又重要的集合,如果一个集合不包含任何元素,这个集合就叫做空集,空集用符号“∅”表示,规定:空集是任何集合的子集,是任何非空集合的真子集.解题时切勿忽视空集的情形.考点2:集合间的基本关系关系自然语言符号语言V enn 图子集集合A 中所有元素都在集合B 中(即若x ∈A ,则x ∈B )A ⊆B (或B ⊇A )真子集集合A 是集合B 的子集,且集合B 中至少有一个元素不在集合A 中A (B (或B (A )集合相等集合A ,B 中元素完全相同或集合A ,B 互为子集A =B(1)、子集与真子集的区别与联系:一个集合的真子集一定是其子集,而其子集不一定是其真子集.(2)、若有限集A 中有n 个元素,则集合A 的子集个数为2n ,真子集的个数为2n -1.【必刷1】设全集{1,2,3,4,5}U =,集合M 满足{1,3}U M =ð,则()A .2M∈B .3M∈C .4M∉D .5M∉【必刷2】已知集合(){}223A x y xy x Z y Z =+≤∈∈,,,,则A 中元素的个数为()A .9B .8C .5D .4【必刷3】已知集合{}22(,)1A x y x y =+=,{}(,)B x y y x ==,则A B 中元素的个数为()A .3B .2C .1D .0【必刷4】已知集合{}0,1,2A =,{}32B x x =-<<,则A B 子集的个数为()A .3B .4C .7D .8【必刷5】已知集合(){}2,A x y y x ==,(){,B x y y ==,则A B 的真子集个数为()A .1个B .2个C .3个D .4个【必刷6】已知集合{}15A x x =-<<,{}Z 18B x x =∈<<,则A B 的子集个数为()A .4B .6C .8D .9【必刷7】已知集合}{{}2|23,9,,A x Z x B x x M A B =∈-<≤=<=⋂则M 的子集的个数为()A .16B .7C .4D .3【必刷8】已知集合A ={(x ,y )|x 2+y 2=1},B ={(x ,y )|y =x +1},则集合A ∩B 中元素的个数为()A .0B .1C .2D .3【必刷9】设集合{}1,0,1,2A =-,{}2230B x x x =+-<,则A B 的子集个数为()A .2B .4C .8D .16【必刷10】设集合{}22A x x =≤,Z 为整数集,则集合A ⋂Z 子集的个数是()A .3B .6C .7D .8【必刷11】已知集合{}2,0,1M =-,{}220N x x ax =+-=,若N M ⊆,则实数a =()A .2B .1C .0D .-1【必刷12】集合{}22log 2x Z x ∈≤的子集个数为()A .4B .8C .16D .32【必刷13】已知集合{2,0,2}A =-,π1sin ,4B y y x x A ⎧⎫==+∈⎨⎬⎩⎭,则集合A B 的真子集的个数是()A .7B .31C .16D .15【必刷14】已知集合{}1,2,3,4,5,6A =,6,1B xx A x ⎧⎫=∈∈⎨⎬-⎩⎭N ,则集合B 的子集的个数是()A .3B .4C .8D .16【必刷15】已知集合{}21,S s s n n Z ==+∈,{}3T x x =<,则S T 的真子集的个数是()A .1B .2C .3D .4【必刷16】已知集合22{(,)|1}A x y x y =+=,集合{(,)|||1}B x y y x ==-,则集合A B 的真子集的个数为()A .3B .4C .7D .8【必刷17】若集合{}1,2,3,4,5U =,{}13,5A =,,{}3,4,5B =,则图中阴影部分表示的集合的子集个数为()A .3B .4C .7D .8考点3:集合的运算如果一个集合包含了我们所要研究的各个集合的全部元素,这样的集合就称为全集,全集通常用字母U 表示;集合的并集集合的交集集合的补集图形符号A ∪B ={x |x ∈A ,或x ∈B }A ∩B ={x |x ∈A ,且x ∈B }∁U A ={x |x ∈U ,且x ∉A }【必刷18】若集合{4},{31}M x x N x x =<=≥∣∣,则M N = ()A .{}02x x ≤<B .123x x ⎧⎫≤<⎨⎬⎩⎭C .{}316x x ≤<D .1163x x ⎧⎫≤<⎨⎬⎩⎭【必刷19】集合{}{}2,4,6,8,10,16M N x x ==-<<,则M N = ()A .{2,4}B .{2,4,6}C .{2,4,6,8}D .{2,4,6,8,10}【必刷20】设集合{1,2,3,4,5,6},{1,3,6},{2,3,4}U A B ===,则()U A B = ð()A .{3}B .{1,6}C .{5,6}D .{1,3}【必刷21】已知集合{}23log 1,02x P x x Q xx -⎧⎫=>=≤⎨⎬+⎩⎭,则()P Q =R I ð()A .[2,2]-B .(2,2]-C .[0,2]D .(0,2]【必刷22】已知集合204x A xx ⎧⎫+=<⎨⎬-⎩⎭,{}0,1,2,3,4,5B =,则()R A B ⋂=ð()A .{}5B .{}4,5C .{}2,3,4D .{}0,1,2,3【必刷23】设集合{}2120A x x x =--≤,12416x B x ⎧⎫=<<⎨⎬⎩⎭,则A B 等于()A .(]3,4-B .[)3,2-C .(]4,4-D .[]3,4-【必刷24】若集合{}4A y y x ==-,{}3log 2B x x =≤,则A B = ()A .(]0,9B .[)4,9C .[]4,6D .[]0,9【必刷25】已知集合(){}0.2log 20A x x =->,{}24B x x =≤,则A B ⋃=()A .[]22-,B .(]2,1-C .[)2,3-D .∅【必刷26】已知全集{1,2,3,4,5,6,7,8,9}U =,{1,3,5,8,9}A =,{2,3,4,6}B =,则()U A B = ð()A .{2,4}B .{2,4,6}C .{1,3,5,7}D .{3}【必刷27】已知集合{}12M x x =-≤≤,{}ln N x y x ==,则M N = ()A .[]1,2-B .(]1,2-C .(]0,2D .()[),12,-∞-⋃+∞【必刷28】已知集合{}{}Z 33,2e xA x xB y y =∈-<<==-,则A B = ()A .{2,1,0,1,2}--B .(,2)-∞C .{2,1,0,1}--D .(3,2)-【必刷29】若全集{}0,1,2,3,4,5U =,集合{}0,1,2A =,{}1,2,3B =,则()U A B = ð()A .{}0,1,2B .{}1,2,3C .{}0D .{}0,1,2,4,5【必刷30】设集合{}{}11,124x M x x N x =-≤≤=<<∣∣,则M N = ()A .{10}xx -≤<∣B .{01}xx <≤∣C .{12}xx ≤<∣D .{12}xx -≤<∣【必刷31】如图,全集U =R ,集合{}1,0,2,3,6A =-,集合{}2,3,5,7B =,则阴影部分表示集合()A .{}1,0,5,7-B .{}1,0,2,3,5,6,7-C .{}2,3D .{}1,0,5,6,7-【必刷32】设集合{}2|log ,4A y y x x ==>,{}2|320B x x x =-+<,则()A B =R U ð()A .(1,2)B .(1,2]C .(,2]-∞D .(,2)-∞【必刷33】已知全集{}0,1,2,3,4,5,6U =,集合{}0,2,4,5A =,集合{}2,3,4,6B =,用如图所示的阴影部分表示的集合为()A .{2,4}B .{0,3,5,6}C .{0,2,3,4,5,6}D .{1,2,4}【必刷34】已知集合{}2A x x =<,(){}2ln 3B x y x x==-,则A B ⋃=()A .()0,2B .()0,3C .()2,3D .()2,3-【必刷35】若集合{}{}21,0,1,2A x Z x B =∈-<<=,则A B ⋃=()A .(2,1)-B .{1,0}-C .(2,1]{2}-⋃D .{1,0,1,2}-【必刷36】已知集合{}234|0A x x x =--=,{}2|B x a x a =<<,若A B =∅ ,则实数a 的取值范围是()A .(],1-∞-B .[)4,+∞C .()(),12,4-∞-⋃D .[][)1,24,-⋃+∞【必刷37】已知集合(){}22240,(1)2101x A xB x x a x a a x ⎧⎫-==-+++<⎨⎬+⎩⎭,若A B =∅ ,则实数a 的取值范围是()A .()2,+∞B .{}()12,∞⋃+C .{}[)12,+∞U D .[)2,+∞【必刷38】设{}28120A x x x =-+=,{}10B x ax =-=,若A B B = ,则实数a 的值不可以是()A .0B .16C .12D .2【必刷39】已知集合{}23A x x =∈<Z ,32B x a x a ⎧⎫=<<+⎨⎬⎩⎭,若A B 有2个元素,则实数a 的取值范围是()A .3,12⎛⎫-- ⎪⎝⎭B .3,02⎛⎫- ⎪⎝⎭C .()3,01,2⎛⎫-⋃+∞ ⎪⎝⎭D .31,1,022⎛⎫⎛⎫--⋃- ⎪ ⎪⎝⎭⎝⎭【必刷40】已知集合{}21,Z A x x n n ==+∈,{}2B =<,则A B = ()A .{}1,3B .{}1,3,5,7C .{}3,5,7D .{}3,5,7,9考点4.四种命题及其相互关系(1)四种命题间的相互关系(2)四种命题的真假关系①两个命题互为逆否命题,它们具有相同的真假性;考点5.全称量词和存在量词(1)全称量词有:所有的,任意一个,任给,用符号“∀”表示;存在量词有:存在一个,至少有一个,有些,用符号“∃”表示.(2)含有全称量词的命题,叫做全称命题.“对M 中任意一个x ,有p (x )成立”用符号简记为:∀x ∈M ,p (x ).(3)含有存在量词的命题,叫做特称命题.“存在M 中元素x 0,使p (x 0)成立”用符号简记为:∃x 0∈M ,p (x 0).【必刷41】下列四个命题中真命题的个数是()①“x =1”是“2320x x -+=”的充分不必要条件;②命题“R x ∀∈,sin 1x ≤”的否定是“R x ∃∈,sin 1x >”;③命题p :[)1,x ∀∈+∞,lg 0x ≥,命题q :R x ∃∈,210x x ++<,则p q ∧为真命题;④“若2ϕπ=,则()sin 2y x ϕ=+为偶函数”的否命题为真命题.A .0B .1C .2D .3【必刷42】下列命题正确的是()A .命题“若2320x x -+=,则2x =”的否命题为“若2320x x -+=,则2x ≠”B .若给定命题:R p x ∃∈,210x x +-<,则:R p x ⌝∀∈,210x x +->C .已知:12p x -<<,()12:2log 210x q x +++<,则p 是q 的充分必要条件D .若p q ∨为假命题,则p ,q 都为假命题【必刷43】下列说法错误的是()A .命题“x R ∀∈,cos 1≤x ”的否定是“0x R ∃∈,0cos 1x >”B .在△ABC 中,sin sin A B ≥是A B ≥的充要条件C .若a ,b ,R c ∈,则“20ax bx c ++≥”的充要条件是“0a >,且240b ac -≤”D .“若1sin 2α≠,则6πα≠”是真命题【必刷44】命题“若220x y +=,则0x y ==”的否命题为()A .若220x y +=,则0x ≠且0y ≠B .若220x y +=,则0x ≠或0y ≠C .若220x y +≠,则0x ≠且0y ≠D .若220x y +≠,则0x ≠或0y ≠【必刷45】下列说法正确的是()A .若2000:,2310p x R x x ∃∈++>,则2:,2310p x R x x ⌝∀∈++<B .“(0)0f =”是“函数()f x 是奇函数”的充要条件C .(0,)∀∈+∞x ,都有22x x >D .在ABC 中,若A B >,则sin sin A B >【必刷46】已知下列命题:①x ∀∈R ,210x x ++>;②“2a >”是“5a >”的充分不必要条件;③已知p 、q 为两个命题,若“p q ∨”为假命题,则“p q ⌝∧⌝”为真命题;④若x 、y ∈R 且2x y +>,则x 、y 至少有一个大于1.其中真命题的个数为()A .4B .3C .2D .1【必刷47】设命题0:p x R ∃∈,2010x +=,则命题p 的否定为()A .x R ∀∉,210x +=B .x R ∀∈,210x +≠C .0x R ∃∉,2010x +=D .0x R ∃∈,2010x +≠【必刷48】命题“x R ∀∈,sin x x >”的否定是()A .0x R ∃∈,00sin x x <B .0x R ∃∉,00sin x x ≤C .x R ∀∈,sin x x≤D .0x R ∃∈,00sin x x ≤【必刷49】命题“π,02x ⎛⎫∀∈- ⎪⎝⎭,tan x x >”的否定是()A .,02x π⎛⎫∀∈- ⎪⎝⎭,tan x x≤B .,02x π⎛⎫∀∈- ⎪⎝⎭,tan x x<C .,02x π⎛⎫∃∈- ⎪⎝⎭,tan x x≤D .,02x π⎛⎫∃∈- ⎪⎝⎭,tan x x<【必刷50】下列命题正确的是()A .命题“若2320x x -+=,则2x =”的否命题为“2320x x -+=,则2x ≠”B .若给定命题p :x ∃∈R ,210x x +-<,则p ⌝:x ∀∈R ,210x x +->C .若p q ∧为假命题,则p ,q 都为假命题D .“1x <”是“2320x x -+>”的充分不必要条件考点6:充分条件、必要条件与充要条件的概念若p ⇒q ,则p 是q 的充分条件,q 是p 的必要条件p 是q 的充分不必要条件p ⇒q 且q ⇏p p 是q 的必要不充分条件p ⇏q 且q ⇒p p 是q 的充要条件p ⇔q p 是q 的既不充分也不必要条件p ⇏q 且q ⇏p【必刷51】若x ,y 为实数,则“11x y<”是“22log log x y >”的()A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【必刷52】在ABC 中,“sin 2sin 2A B =”是“A B =”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件【必刷53】下列四个命题中正确的是()A .若函数()y f x =的定义域为[]1,1-,则()1y f x =+的定义域为[]0,2B .若正三角形ABC 的边长为2,则2AB BC ⋅=C .已知函数()()2log 11f x x =+-,则函数()y f x =的零点为()1,0D .“αβ=”是“tan tan αβ=”的既不充分也不必要条件【必刷54】不等式1133x⎛⎫> ⎪⎝⎭成立是不等式21x <成立的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【必刷55】设x ∈R ,则“|1|4x -<”是“502x x -<-”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【必刷56】已知条件:p 直线210x y +-=与直线()2110a x a y ++-=平行,条件:q 1a =,则p 是q 的()A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件【必刷57】已知命题2:log 1p x >,命题2:20q x x ->,则p 是q 的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【必刷58】设a 、b都是非零向量,下列四个条件中,使a a b b = 成立的充分条件是()A .a b =r r 且a b∥B .a b=-r r C .a b∥D .2a b= 【必刷59】已知向量a 和b ,则“||||a b a b ⋅=⋅ ”是“a b =”的()A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件【必刷60】设实数0x >,则“2log 1x <”成立的一个必要不充分条件是()A .122x <<B .12x <<C .1x <D .2x <专题一集合与常用逻辑用语(必刷1~60题)考点1:集合与元素(1)集合元素的三个特征:确定性、互异性、无序性.(2)元素与集合的关系是属于或不属于关系,用符号∈或∉表示.(3)集合的表示法:列举法、描述法、V enn 图法.(4)常见数集的记法集合自然数集正整数集整数集有理数集实数集符号NN +(或N *)ZQR(5)集合的分类若按元素的个数分类,可分为有限集、无限集、空集;若按元素的属性分类,可分为点集、数集等.特别注意空集是一个特殊而又重要的集合,如果一个集合不包含任何元素,这个集合就叫做空集,空集用符号“∅”表示,规定:空集是任何集合的子集,是任何非空集合的真子集.解题时切勿忽视空集的情形.考点2:集合间的基本关系关系自然语言符号语言V enn 图子集集合A 中所有元素都在集合B 中(即若x ∈A ,则x ∈B )A ⊆B (或B ⊇A )真子集集合A 是集合B 的子集,且集合B 中至少有一个元素不在集合A 中A (B (或B (A )集合相等集合A ,B 中元素完全相同或集合A ,B 互为子集A =B(1)、子集与真子集的区别与联系:一个集合的真子集一定是其子集,而其子集不一定是其真子集.(2)、若有限集A 中有n 个元素,则集合A 的子集个数为2n ,真子集的个数为2n -1.【必刷1】设全集{1,2,3,4,5}U =,集合M 满足{1,3}U M =ð,则()A .2M ∈B .3M∈C .4M∉D .5M∉【答案】A【解析】先写出集合M ,然后逐项验证即可;【详解】由题知{2,4,5}M =,对比选项知,A 正确,BCD 错误,故选:A【必刷2】已知集合(){}223A x y xy x Z y Z =+≤∈∈,,,,则A 中元素的个数为()A .9B .8C .5D .4【答案】A【解析】根据枚举法,确定圆及其内部整点个数.【详解】223x y +≤ ,23,x ∴≤x Z ∈ ,1,0,1x ∴=-当1x =-时,1,0,1y =-;当0x =时,1,0,1y =-;当1x =时,1,0,1y =-;所以共有9个,故选:A.【必刷3】已知集合{}22(,)1A x y x y =+=,{}(,)B x y y x ==,则A B 中元素的个数为()A .3B .2C .1D .0【答案】B【解析】集合中的元素为点集,由题意可知,集合A 表示以()0,0为圆心,1为半径的单位圆上所有点组成的集合,集合B 表示直线y x =上所有的点组成的集合,又圆221x y +=与直线y x =相交于两点⎝⎭,⎛ ⎝⎭,则A B 中有2个元素.故选B.【必刷4】已知集合{}0,1,2A =,{}32B x x =-<<,则A B 子集的个数为()A .3B .4C .7D .8【答案】B【解析】先求得A B ,然后求得A B 子集的个数.【详解】{}0,1A B = ,所以A B 子集的个数为224=个.故选:B【必刷5】已知集合(){}2,A x y y x ==,(){,B x y y ==,则A B 的真子集个数为()A .1个B .2个C .3个D .4个【答案】C【解析】解方程组可求得A B ,根据A B 元素个数可求得真子集个数.【详解】由2y xy ⎧=⎪⎨=⎪⎩00x y =⎧⎨=⎩或11x y =⎧⎨=⎩,()(){}0,0,1,1A B ∴= ,即A B 有2个元素,A B ∴ 的真子集个数为2213-=个.故选:C.【必刷6】已知集合{}15A x x =-<<,{}Z 18B x x =∈<<,则A B 的子集个数为()A .4B .6C .8D .9【答案】C【解析】根据集合交集的定义,结合子集的个数公式进行求解即可.【详解】因为{}15A x x =-<<,{}Z 18B x x =∈<<,所以{}2,3,4A B = ,因此A B 中有三个元素,所以A B 的子集个数为328=,故选:C【必刷7】已知集合}{{}2|23,9,,A x Z x B x x M A B =∈-<≤=<=⋂则M 的子集的个数为()A .16B .7C .4D .3【答案】A【解析】化简,A B ,进而根据交集的定义,计算A B ,然后利用子集的概念即可求解.【详解】因为{}{}{}293310123B x |x x |x ,A ,,,,,=<=-<<=-所以{}1012M A B ,,,,==- 所以M 的子集共有42=16(个).故选:A【必刷8】已知集合A ={(x ,y )|x 2+y 2=1},B ={(x ,y )|y =x +1},则集合A ∩B 中元素的个数为()A .0B .1C .2D .3【解析】联立=+12+2=1可得=0=1或=−1=0,故集合A ∩B 中元素的个数为2,故选:C .【必刷9】设集合{}1,0,1,2A =-,{}2230B x x x =+-<,则A B 的子集个数为()A .2B .4C .8D .16【答案】B【解析】求出集合B ,可求得集合A B ,确定集合A B 的元素个数,利用集合子集个数公式可求得结果.【详解】因为{}{}223031B x x x x x =+-<=-<<,所以,{}1,0A B ⋂=-,则集合A B 的元素个数为2,因此,A B 的子集个数为224=.故选:B.【必刷10】设集合{}22A x x =≤,Z 为整数集,则集合A ⋂Z 子集的个数是()A .3B .6C .7D .8【答案】D【解析】解不等式求得A ,然后求得A ⋂Z ,进而求得正确答案.【详解】222x x ≤⇒≤,所以A ⎡=⎣,所以{}1,0,1A ⋂=-Z ,所以A ⋂Z 子集的个数是328=.故选:D【必刷11】已知集合{}2,0,1M =-,{}220N x x ax =+-=,若N M ⊆,则实数a =()A .2B .1C .0D .-1【答案】B【解析】对于集合N ,元素x 对应的是一元二次方程的解,根据判别式得出必有两个不相等的实数根,又根据韦达定理以及N M ⊆,可确定出其中的元素,进而求解.【详解】对于集合N ,因为280a ∆=+>,所以N 中有两个元素,且乘积为-2,又因为N M ⊆,所以{}2,1N =-,所以211a -=-+=-.即a =1.故选:B.【必刷12】集合{}22log 2x Z x ∈≤的子集个数为()A .4B .8C .16D .32【答案】C【解析】求出集合A 后可得其子集的个数.【详解】{}{}2224|log 2|2,1,1,20x x Z x x Z x ⎧⎫⎧≤⎪⎪∈≤=∈=--⎨⎨⎬≠⎪⎪⎩⎩⎭,故该集合的子集的个数为:4216=.故选:C.【必刷13】已知集合{2,0,2}A =-,π1sin ,4B y y x x A ⎧⎫==+∈⎨⎬⎩⎭,则集合A B 的真子集的个数是()A .7B .31C .16D .15【答案】D【解析】先求得集合B ,然后求得A B ,从而求得A B 的真子集的个数.【详解】{0,1,2}B = ,{2,0,1,2}A B ∴⋃=-,A B 的真子集的个数为42115-=个.故选:D【必刷14】已知集合{}1,2,3,4,5,6A =,6,1B xx A x ⎧⎫=∈∈⎨⎬-⎩⎭N ,则集合B 的子集的个数是()A .3B .4C .8D .16【答案】C【解析】先求出集合B ,再根据子集的定义即可求解.【详解】依题意{}2,3,4B =,所以集合B 的子集的个数为328=,故选:C.【必刷15】已知集合{}21,S s s n n Z ==+∈,{}3T x x =<,则S T 的真子集的个数是()A .1B .2C .3D .4【答案】C【解析】先求出集合T ,然后根据交集的定义求出S T ,最后根据真子集的定义求出真子集的个数.【详解】∵{}21,S s s n n Z ==+∈,{}33T x x =-<<,∴{}1,1S T =- ,∴S T 的真子集个数为2213-=,故选:C .【必刷16】已知集合22{(,)|1}A x y x y =+=,集合{(,)|||1}B x y y x ==-,则集合A B 的真子集的个数为()A .3B .4C .7D .8【答案】C【解析】利用数形结合法得到圆与直线的交点个数,得到集合A B 的元素个数求解.【详解】如图所示:,集合A B 有3个元素,所以集合A B 的真子集的个数为7,故选:C【必刷17】若集合{}1,2,3,4,5U =,{}13,5A =,,{}3,4,5B =,则图中阴影部分表示的集合的子集个数为()A .3B .4C .7D .8【答案】D【解析】根据题意求得阴影部分表示的集合,结合集合子集的概念及运算,即可求解.【详解】由题意,集合{}13,5A =,,{}3,4,5B =,可得{}3,5A B = ,可得{}()1,2,4U A B = ð,即阴影部分表示的集合为{}1,2,4,所以阴影部分表示的集合的子集个数为328=.故选:D.考点3:集合的运算如果一个集合包含了我们所要研究的各个集合的全部元素,这样的集合就称为全集,全集通常用字母U 表示;集合的并集集合的交集集合的补集图形符号A ∪B ={x |x ∈A ,或x ∈B }A ∩B ={x |x ∈A ,且x ∈B }∁U A ={x |x ∈U ,且x ∉A }【必刷18】若集合{4},{31}M x x N x x =<=≥∣∣,则M N = ()A .{}02x x ≤<B .123x x ⎧⎫≤<⎨⎬⎩⎭C .{}316x x ≤<D .1163x x ⎧⎫≤<⎨⎬⎩⎭【答案】D【解析】求出集合,M N 后可求M N ⋂.【详解】1{16},{}3M xx N x x =≤<=≥∣0∣,故1163M N x x ⎧⎫=≤<⎨⎬⎩⎭,故选:D 【必刷19】集合{}{}2,4,6,8,10,16M N x x ==-<<,则M N = ()A .{2,4}B .{2,4,6}C .{2,4,6,8}D .{2,4,6,8,10}【答案】A【解析】根据集合的交集运算即可解出.【详解】因为{}2,4,6,8,10M =,{}|16N x x =-<<,所以{}2,4M N = .故选:A.【必刷20】设集合{1,2,3,4,5,6},{1,3,6},{2,3,4}U A B ===,则()U A B = ð()A .{3}B .{1,6}C .{5,6}D .{1,3}【答案】B【解析】根据交集、补集的定义可求()U A B ⋂ð.【详解】由题设可得{}U 1,5,6B =ð,故(){}U 1,6A B ⋂=ð,故选:B.【必刷21】已知集合{}23log 1,02x P x x Q xx -⎧⎫=>=≤⎨⎬+⎩⎭,则()P Q =R I ð()A .[2,2]-B .(2,2]-C .[0,2]D .(0,2]【答案】B【解析】利用对数不等式及分式不等式的解法求出集合,P Q ,结合集合的补集及交集的定义即可求解.【详解】由2log 1x >,得2x >,所以{}2,P x x =>{}R 2P x x =≤ð.由302x x -≤+,得23x -<≤,所以{}23x x Q =-<≤,所以(){}{}{}R 23222P Q x x x x x x -<=≤=≤-<≤ ð,故选:B.【必刷22】已知集合204x A xx ⎧⎫+=<⎨⎬-⎩⎭,{}0,1,2,3,4,5B =,则()R A B ⋂=ð()A .{}5B .{}4,5C .{}2,3,4D .{}0,1,2,3【答案】B【解析】首先化简集合A ,再根据补集的运算得到R A ð,再根据交集的运算即可得出答案.【详解】因为20(2,4)4x A xx ⎧⎫+=<=-⎨⎬-⎩⎭,所以{R |2A x x =≤-ð或}4x ≥,所以(){}R 4,5A B = ð,故选:B.【必刷23】设集合{}2120A x x x =--≤,12416x B x ⎧⎫=<<⎨⎬⎩⎭,则A B 等于()A .(]3,4-B .[)3,2-C .(]4,4-D .[]3,4-【答案】C【解析】先解出集合A 、B ,再求A B .【详解】由题意{}{}212034A x x x x x =--≤=-≤≤,{}1244216x B x x x ⎧⎫=<<=-<<⎨⎬⎩⎭,所以(]4,4A B =- .故选:C.【必刷24】若集合{A y y ==,{}3log 2B x x =≤,则A B = ()A .(]0,9B .[)4,9C .[]4,6D .[]0,9【答案】A【解析】先解出集合A 、B ,再求A B .【详解】因为{{}0A y y y y ==≥,{}{}3log 209B x x x x =≤=<≤,所以{}09A B x x ⋂=<≤.故选:A .【必刷25】已知集合(){}0.2log 20A x x =->,{}24B x x =≤,则A B ⋃=()A .[]22-,B .(]2,1-C .[)2,3-D .∅【答案】C【解析】解对数不等式确定集合A ,解二次不等式确定集合B ,然后由并集定义计算.【详解】由题意{|021}{|23}A x x x x =<-<=<<,{|22}B x x =-≤≤,所以{|23}[2,3)A B x x =-≤<=- .故选:C .【必刷26】已知全集{1,2,3,4,5,6,7,8,9}U =,{1,3,5,8,9}A =,{2,3,4,6}B =,则()U A B = ð()A .{2,4}B .{2,4,6}C .{1,3,5,7}D .{3}【答案】B【解析】应用集合的交补运算求()U A B I ð.【详解】由题设{2,4,6,7}U A =ð,又{2,3,4,6}B =,所以()={2,4,6}U A B = ð,故选:B【必刷27】已知集合{}12M x x =-≤≤,{}ln N x y x ==,则M N = ()A .[]1,2-B .(]1,2-C .(]0,2D .()[),12,-∞-⋃+∞【答案】C【解析】先化简集合N ,再去求M N ⋂即可解决【详解】{}{}ln 0N x y x x x ===>,则{}{}{}12002M N x x x x x x ⋂=-≤≤⋂>=<≤,故选:C【必刷28】已知集合{}{}Z 33,2e xA x xB y y =∈-<<==-,则A B = ()A .{2,1,0,1,2}--B .(,2)-∞C .{2,1,0,1}--D .(3,2)-【答案】C【解析】求出函数2e x y =-的值域,再利用交集的定义求解作答.【详解】因e 0x >,则22e x -<,即(,2)B =-∞,而{}Z 33A x x =∈-<<,所以{2,1,0,1}A B =-- .故选:C【必刷29】若全集{}0,1,2,3,4,5U =,集合{}0,1,2A =,{}1,2,3B =,则()U A B = ð()A .{}0,1,2B .{}1,2,3C .{}0D .{}0,1,2,4,5【答案】D【解析】先求解集合B 的补集,再利用并集运算即可求解.【详解】由题得{}0,4,5U B =ð,又{}0,1,2A =,所以(){}0,1,2,4,5U B A ⋃=ð,故选:D.【必刷30】设集合{}{}11,124x M x x N x =-≤≤=<<∣∣,则M N = ()A .{10}xx -≤<∣B .{01}x x <≤∣C .{12}x x ≤<∣D .{12}xx -≤<∣【答案】B【解析】解指数不等式得到{}02N x x =<<,进而求出交集.【详解】因为124x <<,所以02x <<,所以{}02N x x =<<,所以M N = {}01x x <≤,故选:B【必刷31】如图,全集U =R ,集合{}1,0,2,3,6A =-,集合{}2,3,5,7B =,则阴影部分表示集合()A .{}1,0,5,7-B .{}1,0,2,3,5,6,7-C .{}2,3D .{}1,0,5,6,7-【答案】D【解析】求出,A B A B ,阴影表示集合为()A B A B ð,由此能求出结果.【详解】矩形表示全集U =R ,集合{}1,0,2,3,6A =-,集合{}2,3,5,7B =,{}{}2,3,1,0,2,3,5,6,7A B A B ∴⋂=⋃=-,则阴影表示集合为(){}1,0,5,6,7A B A B ⋃⋂=-ð.故选:D.【必刷32】设集合{}2|log ,4A y y x x ==>,{}2|320B x x x =-+<,则()A B =R U ð()A .(1,2)B .(1,2]C .(,2]-∞D .(,2)-∞【答案】C【解析】利用对数函数的单调性求得集合A ,解一元二次不等式求得B ,即可根据集合的补集以及并集运算求得答案.【详解】由题意得{}2|log ,4{|2}A y y x x y x ==>=>,则{|2}A y y =≤R ð,而{}2|320{|12}B x x x x x =-+<=<<,故()(,2]A B =-∞R ðU ,故选:C.【必刷33】已知全集{}0,1,2,3,4,5,6U =,集合{}0,2,4,5A =,集合{}2,3,4,6B =,用如图所示的阴影部分表示的集合为()A .{2,4}B .{0,3,5,6}C .{0,2,3,4,5,6}D .{1,2,4}【答案】B【解析】根据文氏图求解即可.【详解】{2,4}A B ⋂=,{}0,2,3,4,5,6A B ⋃=,阴影部分为{}0,3,5,6.故选:B .【必刷34】已知集合{}2A x x =<,(){}2ln 3B x y x x==-,则A B ⋃=()A .()0,2B .()0,3C .()2,3D .()2,3-【答案】D【解析】解出集合A 、B ,利用并集的定义可求得结果.【详解】{}{}222A x x x x =<=-<<,(){}{}{{}22ln 33003B x y x xx x xx x ==-=->=<<.所以,()2,3A B =- .故选:D.【必刷35】若集合{}{}21,0,1,2A x Z x B =∈-<<=,则A B ⋃=()A .(2,1)-B .{1,0}-C .(2,1]{2}-⋃D .{1,0,1,2}-【答案】D【解析】根据已知条件求出集合A ,再利用并集的定义即可求解.【详解】由题意可知{}}{211,0A x Z x =∈-<<=-,又{}0,1,2B =,所以}{{}1,00,1,2{1,0,1,2}A B =-=- ,故选:D .【必刷36】已知集合{}234|0A x x x =--=,{}2|B x a x a =<<,若A B =∅ ,则实数a 的取值范围是()A .(],1-∞-B .[)4,+∞C .()(),12,4-∞-⋃D .[][)1,24,-⋃+∞【答案】D【解析】由题知{}1,4A =-,进而分B =∅和B ≠∅空集两种情况讨论求解即可.【详解】由题知{}{}2|3401,4A x x x =--==-,因为A B =∅ ,所以,当{}2|B x a x a =<<=∅时,2a a ≥,解得01a ≤≤,当{}2|B x a x a =<<≠∅时,2241a a a a ⎧≤⎪≥-⎨⎪>⎩或24a a a ≥⎧⎨>⎩,解得[)(][)1,01,24,a ∈-+∞ ,综上,实数a 的取值范围是[][)1,24,-⋃+∞.故选:D【必刷37】已知集合(){}22240,(1)2101x A xB x x a x a a x ⎧⎫-==-+++<⎨⎬+⎩⎭,若A B =∅ ,则实数a 的取值范围是()A .()2,+∞B .{}()12,∞⋃+C .{}[)12,+∞U D .[)2,+∞【答案】C【解析】先解出集合A ,考虑集合B 是否为空集,集合B 为空集时合题意,集合B 不为空集时利用24a或211a +- 解出a 的取值范围.【详解】由题意(]40141x A x x ⎧⎫-==-⎨⎬+⎩⎭, ,(){}()(){}2222(1)210210B x x a x a a x x a x a ⎡⎤=-+++<=--+<⎣⎦,当B =∅时,221a a =+,即1a =,符合题意;当B ≠∅,即1a ≠时,()22,1B a a =+,则有24a或211a +- ,即 2.a 综上,实数a 的取值范围为{}[)12,+∞U .故选:C.【必刷38】设{}28120A x x x =-+=,{}10B x ax =-=,若A B B = ,则实数a 的值不可以是()A .0B .16C .12D .2【答案】D【解析】根据题意可以得到B A ⊆,进而讨论0a =和0a ≠两种情况,最后得到答案.【详解】由题意,{}2,6A =,因为A B B = ,所以B A ⊆,若0a =,则B =∅,满足题意;若0a ≠,则1B a ⎧⎫=⎨⎬⎩⎭,因为B A ⊆,所以12a =或16a =,则12a =或16a =.综上:0a =或12a =或16a =.故选:D.【必刷39】已知集合{}23A x x =∈<Z ,32B x a x a ⎧⎫=<<+⎨⎬⎩⎭,若A B 有2个元素,则实数a 的取值范围是()A .3,12⎛⎫-- ⎪⎝⎭B .3,02⎛⎫- ⎪⎝⎭C .()3,01,2⎛⎫-⋃+∞ ⎪⎝⎭D .31,1,022⎛⎫⎛⎫--⋃- ⎪ ⎪⎝⎭⎝⎭【答案】D【解析】由题知{}1,0,1A =-,进而根据题意求解即可.【详解】因为{}{}231,0,1A x Z x =∈<=-,32B x a x a ⎧⎫=<<+⎨⎬⎩⎭,若A B 有2个元素,则13012a a <-⎧⎪⎨<+≤⎪⎩或10312a a -≤<⎧⎪⎨+>⎪⎩,解得312a -<<-或102a -<<,所以,实数a 的取值范围是31,122⎛⎫⎛⎫--⋃- ⎪ ⎪⎝⎭⎝⎭.故选:D .【必刷40】已知集合{}21,Z A x x n n ==+∈,{}2B =<,则A B = ()A .{}1,3B .{}1,3,5,7C .{}3,5,7D .{}3,5,7,9【答案】A【解析】先求出集合[)1,5B =,再根据集合的交集运算求得答案.【详解】由题意得[){2}1,5B x =<=,其中奇数有1,3,又{}21,Z A x x n n ==+∈,则{}1,3A B = ,故选:A .考点4.四种命题及其相互关系(1)四种命题间的相互关系(2)四种命题的真假关系①两个命题互为逆否命题,它们具有相同的真假性;考点5.全称量词和存在量词(1)全称量词有:所有的,任意一个,任给,用符号“∀”表示;存在量词有:存在一个,至少有一个,有些,用符号“∃”表示.(2)含有全称量词的命题,叫做全称命题.“对M 中任意一个x ,有p (x )成立”用符号简记为:∀x ∈M ,p (x ).(3)含有存在量词的命题,叫做特称命题.“存在M 中元素x 0,使p (x 0)成立”用符号简记为:∃x 0∈M ,p (x 0).【必刷41】下列四个命题中真命题的个数是()①“x =1”是“2320x x -+=”的充分不必要条件;②命题“R x ∀∈,sin 1x ≤”的否定是“R x ∃∈,sin 1x >”;③命题p :[)1,x ∀∈+∞,lg 0x ≥,命题q :R x ∃∈,210x x ++<,则p q ∧为真命题;④“若2ϕπ=,则()sin 2y x ϕ=+为偶函数”的否命题为真命题.A .0B .1C .2D .3【答案】C【解析】①由2320x x -+=解得1x =或2x =,根据充分、必要条件定义理解判断;②根据全称命题的否定判断;③根据题意可得命题p 为真命题,命题q 为假命题,则p q ∧为假命题;④先写出原命题的否命题,取特值2πϕ=-,代入判断.【详解】①2320x x -+=,则1x =或2x =“1x =”是“1x =或2x =”的充分不必要条件,①为真命题;②根据全称命题的否定判断可知②为真命题;③命题p :[)1,x ∀∈+∞,lg lg10x ≥=,命题p 为真命题,22131024x x x ⎛⎫++=++> ⎪⎝⎭,命题q 为假命题,则p q ∧为假命题,③为假命题;④“若2ϕπ=,则()sin 2y x ϕ=+为偶函数”的否命题为“若2πϕ≠,则()sin 2y x ϕ=+不是偶函数”若2πϕ=-,则sin 2cos 22y x x π⎛⎫=-=- ⎪⎝⎭为偶函数,④为假命题故选:C .【必刷42】下列命题正确的是()A .命题“若2320x x -+=,则2x =”的否命题为“若2320x x -+=,则2x ≠”B .若给定命题:R p x ∃∈,210x x +-<,则:R p x ⌝∀∈,210x x +->C .已知:12p x -<<,()12:2log 210x q x +++<,则p 是q 的充分必要条件D .若p q ∨为假命题,则p ,q 都为假命题【答案】D【解析】根据否命题,命题的否定,充分必要条件的定义,复合命题真假判断各选项.【详解】命题“若2320x x -+=,则2x =”的否命题为“若2320x x -+≠,则2x ≠”,A 错;命题:R p x ∃∈,210x x +-<的否定是R x ∀∈,210x x +-≥,B 错;易知函数12()2log (2)x f x x +=++在定义域内是增函数,()11f -=,(2)10f =,所以12x -<<时,()1212log 210x x +<++<满足()122log 210x x +++<,但()122log 210x x +++<时,22x -<<不满足12x -<<,因此题中应不充分不必要条件,C 错;p q ∨为假命题,则p ,q 都为假命题,若,p q 中有一个为真,则p q ∨为真命题,D 正确.故选:D .【必刷43】下列说法错误的是()A .命题“x R ∀∈,cos 1≤x ”的否定是“0x R ∃∈,0cos 1x >”B .在△ABC 中,sin sin A B ≥是A B ≥的充要条件C .若a ,b ,R c ∈,则“20ax bx c ++≥”的充要条件是“0a >,且240b ac -≤”D .“若1sin 2α≠,则6πα≠”是真命题【答案】C【解析】利用全称命题的否定可判断A ,由正弦定理和充要条件可判断B ,通过举特例可判断C ,通过特殊角的三角函数值可判断D .【详解】A.命题“x R ∀∈,cos 1≤x ”的否定是“0x R ∃∈,0cos 1x >”,正确;B.在△ABC 中,sin sin A B ≥,由正弦定理可得22a bR R≥(R 为外接圆半径),a b ≥,由大边对大角可得A B ≥;反之,A B ≥可得a b ≥,由正弦定理可得sin sin A B ≥,即为充要条件,故正确;C.当0,0a b c ==≥时满足20ax bx c ++≥,但是得不到“0a >,且240b ac -≤”,则不是充要条件,故错误;D.若1sin 2α≠,则6πα≠与6πα=则1sin 2α=的真假相同,故正确;故选:C【必刷44】命题“若220x y +=,则0x y ==”的否命题为()A .若220x y +=,则0x ≠且0y ≠B .若220x y +=,则0x ≠或0y ≠C .若220x y +≠,则0x ≠且0y ≠D .若220x y +≠,则0x ≠或0y ≠【答案】D【解析】同时否定条件和结论即可,注意x =0且y =0,的否定为0x ≠或0y ≠.【详解】命题“若220x y +=,则0x y ==”即为“若220x y +=,则0x =且0y =”所以否命题为:若220x y +≠,则0x ≠或0y ≠.故选:D【必刷45】下列说法正确的是()A .若2000:,2310p x R x x ∃∈++>,则2:,2310p x R x x ⌝∀∈++<B .“(0)0f =”是“函数()f x 是奇函数”的充要条件C .(0,)∀∈+∞x ,都有22x x >D .在ABC 中,若A B >,则sin sin A B >【答案】D【解析】根据存在量词命题的否定为全称量词命题判断A ,根据奇函数的定义判断B ,利用特殊值判断C ,根据三角形的性质及正弦定理判断D ;【详解】对于A :2000:,2310p x R x x ∃∈++>则2:,2310p x R x x ⌝∀∈++≤,故A 错误;对于B :由(0)0f =,得不到函数()f x 是奇函数,如2()f x x =满足(0)0f =,但是2()f x x =为偶函数,由函数()f x 是奇函数也不一定得到(0)0f =,如()1f x x=为奇函数,当时函数在0处无意义,故B 错误;对于C :当2x =时22x x =,故C 错误;对于D :因为A B >根据三角形中大角对大边,可得a b >,再由正弦定理可得sin sin A B >,故D 正确;故选:D【必刷46】已知下列命题:①x ∀∈R ,210x x ++>;②“2a >”是“5a >”的充分不必要条件;③已知p 、q 为两个命题,若“p q ∨”为假命题,则“p q ⌝∧⌝”为真命题;④若x 、y ∈R 且2x y +>,则x 、y 至少有一个大于1.其中真命题的个数为()A .4B .3C .2D .1【答案】B【解析】利用配方法可判断①的正误;利用集合的包含关系可判断②的正误;利用复合命题的真假可判断③的正误;利用反证法可判断④的正误.【详解】对于①,因为22131024x x x ⎛⎫++=++> ⎪⎝⎭,①对;对于②,因为{}2a a >({}5a a >,故“2a >”是“5a >”的必要不充分条件,②错;对于③,“p q ∨”为假命题,则p 、q 均为假命题,所以,p q ⌝∧⌝为真命题,③对;对于④,假设1x ≤且1y ≤,则2x y +≤,与2x y +>矛盾,假设不成立,④对.故选:B.【必刷47】设命题0:p x R ∃∈,2010x +=,则命题p 的否定为()A .x R ∀∉,210x +=B .x R ∀∈,210x +≠C .0x R ∃∉,2010x +=D .0x R ∃∈,2010x +≠【答案】B【解析】根据特称命题的否定是全称命题,即可得到答案.【详解】利用含有一个量词的命题的否定方法可知,特称命题0:p x R ∃∈,2010x +=的否定为:x R ∀∈,210x +≠.故选:B.【必刷48】命题“x R ∀∈,sin x x >”的否定是()A .0x R ∃∈,00sin x x <B .0x R ∃∉,00sin x x ≤C .x R ∀∈,sin x x ≤D .0x R ∃∈,00sin x x ≤【答案】D【解析】根据命题否定的定义即可求解.【详解】对于全称量词的否定是特称量词,并对结果求反,即000,sin x R x x ∃∈≤;故选:D.【必刷49】命题“π,02x ⎛⎫∀∈- ⎪⎝⎭,tan x x >”的否定是()A .,02x π⎛⎫∀∈- ⎪⎝⎭,tan x x≤B .,02x π⎛⎫∀∈- ⎪⎝⎭,tan x x<C .,02x π⎛⎫∃∈- ⎪⎝⎭,tan x x≤D .,02x π⎛⎫∃∈- ⎪⎝⎭,tan x x<【答案】C【解析】利用含有一个量词的命题的否定的定义求解.【详解】由全称命题的否定是存在量词命题,所以命题“,02x π⎛⎫∀∈- ⎪⎝⎭,tan x x >”的否定是“,02x π⎛⎫∃∈- ⎪⎝⎭,tan x x ≤”,故选:C .【必刷50】下列命题正确的是()A .命题“若2320x x -+=,则2x =”的否命题为“2320x x -+=,则2x ≠”B .若给定命题p :x ∃∈R ,210x x +-<,则p ⌝:x ∀∈R ,210x x +->C .若p q ∧为假命题,则p ,q 都为假命题D .“1x <”是“2320x x -+>”的充分不必要条件【答案】D【解析】A 选项直接否定条件和结论即可;B 选项存在一个量词的命题的否定,先否定量词,后否定结论;C 选项“且”命题是一假必假;D 选项,利用“小集合”是“大集合”的充分不必要条件作出判断.【详解】对于A ,命题“若2320x x -+=,则2x =”的否命题为“2320x x -+≠,则2x ≠”,A 错误;对于B ,命题p :x ∃∈R ,210x x +-<,则p ⌝:x ∀∈R ,210x x +-≥,B 错误;对于C ,若p q ∧为假命题,则p ,q 有一个假命题即可;C 错误;对于D , 2320x x -+>1x ∴<或2x >11x x ∴<⇒<或2x >,即“1x <”是“2320x x -+>”的充分不必要条件,D 正确.故选:D考点6:充分条件、必要条件与充要条件的概念若p ⇒q ,则p 是q 的充分条件,q 是p 的必要条件p 是q 的充分不必要条件p ⇒q 且q ⇏p p 是q 的必要不充分条件p ⇏q 且q ⇒p p 是q 的充要条件p ⇔q p 是q 的既不充分也不必要条件p ⇏q 且q ⇏p【必刷51】若x ,y 为实数,则“11x y<”是“22log log x y >”的()A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】B【解析】根据充分必要条件的定义及对数不等式即可求解;【详解】由题意可知当2,1x y =-=时,满足11x y<,但不满足22log log x y >;由22log log x y >,得0x y >>,满足11x y <,所以“11x y<”是“22log log x y >”的必要不充分条件,故选:B .【必刷52】在ABC 中,“sin 2sin 2A B =”是“A B =”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件【答案】B【解析】根据给定条件,利用充分条件、必要条件的定义求解作答.【详解】在ABC 中,A B =,则22A B =,必有sin 2sin 2A B =,而,63A B ππ==,满足sin 2sin 2A B =,此时ABC 是直角三角形,不是等腰三角形,所以“sin 2sin 2A B =”是“A B =”的必要不充分条件.故选:B【必刷53】下列四个命题中正确的是()A .若函数()y f x =的定义域为[]1,1-,则()1y f x =+的定义域为[]0,2B .若正三角形ABC 的边长为2,则2AB BC ⋅=C .已知函数()()2log 11f x x =+-,则函数()y f x =的零点为()1,0D .“αβ=”是“tan tan αβ=”的既不充分也不必要条件【答案】D【解析】利用抽象函数的定义域可判断A 选项;利用平面向量数量积的定义可判断B 选项;利用函数零点的定义可判断C 选项;利用特殊值法结合充分条件、必要条件的定义可判断D 选项.【详解】对于A 选项,若函数()y f x =的定义域为[]1,1-,对于函数()1y f x =+,则有111x -≤+≤,解得20x -≤≤,即函数()1y f x =+的定义域为[]2,0-,A 错;对于B 选项,若正三角形ABC 的边长为2,则cos1202AB BC AB BC ⋅=⋅=-,B 错;对于C 选项,已知函数()()2log 11f x x =+-,令()0f x =,解得1x =,所以,函数()y f x =的零点为1,C 错;对于D 选项,若2παβ==,则tan α、tan β无意义,即“αβ=”⇒“tan tan αβ=”;若tan tan αβ=,可取4πα=,54πβ=,则αβ≠,即“αβ=”⇐/“tan tan αβ=”.因此,“αβ=”是“tan tan αβ=”的既不充分也不必要条件,D 对.故选:D.【必刷54】不等式1133x⎛⎫> ⎪⎝⎭成立是不等式21x <成立的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】B【解析】根据指数不等式和一元二次不等式的解法解出对应的不等式,结合必要不充分条件的概念即可得出结果.【详解】解不等式1133x⎛⎫> ⎪⎝⎭,得1x <,解不等式21x <,得11x -<<,。
高三数学一轮复习 专题1 集合、常用逻辑用语、不等式、函数与导数综合测试(一)
专题一:集合、常用逻辑用语、不等式、函数与导数阶段质量评估(一)一、选择题(本大题共12小题,每小题5分,总分60分)1.已知全集U =R ,集合2{|1}M x x =<,2{|0}N x x x =-<,则集合M ,N 的关系用韦恩(Venn )图可以表示为 ( )2.已知函数①()ln f x x =;②cos ()xf x e =;③()xf x e =;④()cos f x x =.其中对于()f x 定义域内的任意一个自变量1x ,都存在定义域内的唯一一个自变量2x ,使得12()()1f x f x •=成立的函数是( )A .①②④B .②③C .③D .④3.下列函数既是奇函数,又在区间[]1,1-上单调递减的是( )A ()sin f x x = B.()1f x x =-+ C.()1()2x xf x a a -=+ D.2()ln 2x f x x -=+ 4.下列结论①命题“0,2>-∈∀x x R x ”的否定是“0,2≤-∈∃x x R x ”;②当),1(+∞∈x 时,函数221,x y x y ==的图象都在直线x y =的上方;③定义在R 上的奇函数()x f ,满足()()x f x f -=+2,则()6f 的值为0. ④若函数()x x mx x f 2ln 2-+=在定义域内是增函数,则实数m 的取值范围为12m ≥.其中,正确结论的个数是( )A .1B . 2C . 3D . 4 5.命题“x R ∀∈,2240x x -+≤”的否定为 ( )A .x R ∀∈,2240x x -+≥ B .2,240x R x x ∀∉-+≤C .x R ∃∈,2240x x -+>D .x R ∃∉,2240x x -+>6.若曲线4y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为A .4x y -B .450x y +-=C .430x y -+=D .430x y ++=7.函数2()ln f x x x =-的零点所在的大致区间是( )A .(1,2)B .(e ,3)C .(2,e )D .(e,+∞)8.函数2()(0)f x ax bx c a =++≠的图像关于直线2bx a =-对称。
2021高三理科数学一轮复习单元卷:集合与常用逻辑用语A卷附答案
高三理科数学一轮复习单元卷:集合与常用逻辑用语A 卷一轮单元训练金卷▪高三▪数学卷(A )第一单元 集合与常用逻辑用语注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.若集合{}1A x x =>-,则( )A .3A -∈B .2A -∈C .1A -∈D .0A ∈2.下列表示正确的是( )A .0∈NB .27∈ZC .3-∉ZD .π∈Q3.集合(){},A x y y x == )A .1A ∈B .B A ⊆C .()1,1B ⊆D .A ∅∈4.已知集合{}0,1,2A =,{}1,B m =.若B A ⊆,则实数m 的值是( )A .0B .2C .0或2D .0或1或25.设集合{}A x x a =≤,(),2B =-∞,若A B ⊆,则实数a 的取值范围是( )A .2a ≥B .2a >C .2a ≤D .2a <6.已知集合{}13M x x =-≤<,{}0N x x =<,则集合{}03x x ≤<=( )A .M NB .M NC .()R M ND .()R M N7.已知集合(){}22,1A x y x y =+=,(){},B x y y x ==,则A B 中元素的个数为( ) A .3 B .2 C .1 D .08.命题:“若()220,a b a b +=∈R ,则0a b ==”的逆否命题是A .若()0,a b a b ≠≠∈R ,则220a b +≠B .若()0,a b a b =≠∈R ,则220a b +≠C .若0a ≠且()0,b a b ≠∈R ,则220a b +≠D .若0a ≠或()0,b a b ≠∈R ,则220a b +≠9.设有下面四个命题1:1p a >,1b >是1ab >的必要不充分条件;()2:0,1p x ∃∈,e π11log log x x >;3:p 函数()22x f x x =-有两个零点;41π:0p x ⎛⎫∀∈ ⎪⎝⎭,,π11log 2xx ⎛⎫< ⎪⎝⎭. 其中真命题是( )A .1p ,3pB .1p ,4pC .2p ,3pD .2p ,4p10.若x ,y ∈R ,则“22x y >”是“x y >”的( )A .充分不必要条件B .必要不充分条件C .充分条件D .既不充分也不必要条件11.下面四个命题:1p :命题“n ∀∈N ,22n n >”的否定是“0n ∃∉N ,0202n n ≤”; 2p :向量(),1m =a ,()1,n =-b ,则m n =是⊥a b 的充分且必要条件;3p :“在ABC △中,若A B >,则“sin sin A B >”的逆否命题是“在ABC △中,若sin sin A B ≤,则“A B ≤”;4p :若“p q ∧”是假命题,则p 是假命题.其中为真命题的是( )A .1p ,2pB .2p ,3pC .2p ,4pD .1p ,3p12.给出下列四个命题: ①命题“若π4α=,则tan 1α=”的逆否命题为假命题; ②命题:p x ∀∈R ,sin 1x ≤.则0:p x ⌝∃∈R ,使0sin 1x >; ③“()π2πk k ϕ=+∈Z ”是“函数()sin 2y x ϕ=+为偶函数”的充要条件; ④命题p :“0x ∃∈R ,使003sin cos 2x x +=”;命题q :“若sin sin αβ>,则αβ>”,那么()p q ⌝∧为真命题.其中正确的个数是( )A .1B .2C .3D .4二、填空题(本大题有4小题,每小题5分,共20分.请把答案填在题中横线上)13.已知全集为R ,集合{}24x A x =≥,{}230B x x x =-≥,则()AB =R __________. 14.已知(],A a =-∞,[]1,2B =,且A B φ≠,则实数a 的范围是___________.15.命题“存在x ∈R ,使220x x m ++≤”是假命题,则m 的取值范围是_______.16.已知:12p x ->,22:210q x x a -+-≥,()0a >,若p 是q 的充分不必要条件,则实数a 的取值范围是_____________.三、解答题(本大题有6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(10分)已知集合{}2230,A x x x x =--<∈R ,{}3,B x x a x =-<∈R .(1)求集合A 和B ;(2)若AB A =,求实数a 的取值范围.18.(12分)已知集合{}26A x x =<<,{}39B x x =<<,{}C x x a =>,全集为实数集R .(1)求A R 和()A B R ;(2)如果A C ≠∅,求a 的取值范围.19.(12分)设全集是实数集R ,1203x A x x ⎧-⎫=≥⎨⎬-⎩⎭,{}20B x x a =+≤. (1)当4a =-时,求A B ; (2)若()A B B =R ,求实数a 的取值范围.20.(12分)已知命题:p m ∈R 且10m +≤,命题:q x ∀∈R ,210x mx ++>恒成立.(1)若命题q 为真命题,求m 的取值范围;(2)若p q ∧为假命题且p q ∨为真命题,求m 的取值范围.21.(12分)设命题p :实数x 满足()()30x a x a --<,其中0a >,命题q :实数x 满足()()320x x --≤.(1)若1a =,且p q ∧为真,求实数x 的取值范围.(2)若p ⌝是q ⌝的充分不必要条件,求实数a 的取值范围.22.(12分)已知命题:46p x -≤,111:20222q x m x m ⎛⎫⎛⎫-+--≤ ⎪⎪⎝⎭⎝⎭. (1)若p 是q ⌝的充分而不必要条件,求实数m 的取值范围;(2)若q ⌝是p ⌝的必要而不充分条件,求实数m 的取值范围.。
阶段测试卷01 集合与常用逻辑用语、不等式、函数导数(原卷版)-新高考数学(单元卷+阶段卷+模拟卷)
2023年高考数学优化通关卷(阶段测试卷01)集合与常用逻辑用语、不等式、函数导数姓名_______ 班级_________ 考号___________一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求.1.若集合{}2320A x x x =++≥,集合1284xB x ⎧⎫=<≤⎨⎬⎩⎭,则A B =( )A .RB .[]2,1--C .[]2,3-D .[]1,3-2.已知命题2:,2x p x x ∃∈>R ,则¬p 为( ) A .2,2x x x ∀∈>R B .2,2x x x ∀∈≤R C .2,2x x x ∃∈<RD .2,2x x x ∃∈≤R3.“当()0,x ∈+∞时,幂函数()22231m m y m m x --=--为减函数”是“1m =-或2”的( )条件A .既不充分也不必要B .必要不充分C .充分不必要D .充要4.已知函数()2,0,2,0,x f x x x x ⎧>⎪=⎨⎪+⎩则方程()20xf x -=的解的个数是( )A .0B .1C .2D .35.已知函数()32391f x x mx mx =-++在()1,+∞上为单调递增函数,则实数m 的取值范围为( ) A .(),1-∞-B .[]1,1-C .[]1,3D .[]1,3-6.已知0.635332,lg ,55a b c ⎛⎫=== ⎪⎝⎭,则( )A .a b c <<B .c b a <<C .b c a <<D .c a b <<7.若12x >,则函数2()21=+-f x x x 的最小值为( ) A.B.1C .4D .2.58.若函数()2ln f x kx x =-在区间()2,+∞上单调递增,则k 的取值范围为( )A .1,4⎛⎫+∞ ⎪⎝⎭B .1,4⎡⎫+∞⎪⎢⎣⎭C .1,8⎛⎫+∞ ⎪⎝⎭D .1,8⎡⎫+∞⎪⎢⎣⎭二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.下列命题中,假命题是( ) A .0x R ∃∈,0e 0x ≤ B .x R ∀∈,22x x >C .0a b +=的充要条件是1ab=- D .1a >,1b >是1ab >的充分条件10.下列不等式中正确的有( ) A .若a b >,则22ac bc > B .若0ab >,则2ab b a +≥C .若a b >,则a b >D .若a b c >>,则11b c a>- 11.已知函数()323f x x x =-+,则( )A .()f x 在()0,1上单调递减B .()f x 的极大值点为2C .()f x 的极大值为-2D .()f x 有2个零点12.已知函数()()eln 11f x x x =-+-,其中e 是自然对数的底数()e 2.71828=,则下列结论正确的为( ) A .()f x 的图象恒在x 轴上方 B .311e e e f ⎛⎫'+=- ⎪⎝⎭C .e 1x =+是()f x 的极小值点D .()f x 的最小值为2三、填空题:本题共4小题,每小题5分,共20分13.若函数1f x =-,则()f x =__________.14.写出一个同时满足下列条件①②③的函数()f x =______. ①()1f x +为偶函数;②()f x 的最大值为2;③()f x 不是二次函数. 15.曲线e xy x=在2x =处的切线方程为___________.16.已知函数22,0()e ,0x x x f x x ⎧+<=⎨≥⎩,满足对任意的x ∈R ,()f x ax ≥恒成立,则实数a 的取值范围是_________四.解答题:本小题共6小题,共70分。
人教版A版(2019)高中数学必修第一册: 第一章 集合与常用逻辑用语 综合测试(附答案与解析)
第一章综合测试一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知全集{|13}U x Z x =∈-≤≤,集合{|03}A x x =∈Z ≤≤,则u A =( )A .{1}-B .{1,0}-C .{1,0,1}--D .{|10}x x -≤<2.已知集合{|32},{| 4 1}A x x B x x x =-=-<<<或>,则A B =( )A .{}|43x x --<<B .1{|}3x x -<<C .{}|12x x <<D .|31{}x x x -<或>3.命题“2,210x x x ∀∈-+R ≥”的否定是( )A .2,210x x x ∃∈-+R ≤B .2,210x x x ∃∈-+R ≥C .2,210x x x ∃∈-+R <D .2,210x x x ∀∈-+R <4.设x ∈R ,则“3x <”是“1x -<<3”的( )A .充分必要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件5.已知全集U =R ,{|1}M x x =<-,{|(2)0}N x x x =+<,则图中阴影部分表示的集合是()A .{|10}A x x -≤<B .{|10}x x -<<C .{|21}x x --<<D .{|1}x x -<6.下列语句是存在量词命题的是( )A .整数n 是2和5的倍数B .存在整数n ,使n 能被11整除C .若370x -=,则73x =D .,()x M p x ∀∈7.已知{1,2,3},{2,4},A B ==定义集合,A B 间的运算*{|}A B x x A x B =∈∉且,则集合*A B 等于( )A .{1,2,3}B .{2,4}C .{1,3}D .{2}8若命题“0x ∃∈R ,使得2003210x ax ++<”是假命题,则实数a 的取值范围是( )A .aB .a a ≤C .aD .a a <9.对于实数1,:01a a a α-+>,β:关于x 的方程210x ax -+=有实数根,则α是β成立的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件10.已知命题00:0,10p x x a ∃+-=>,若p 为假命题,则a 的取值范围是( )A .1a <B .1a ≤C .1a >D .1a ≥11.不等式组1,24x y x y +⎧⎨-⎩≥≤的解集为D ,下列命题中正确的是( )A .(,),21x y D x y ∀∈+-≤B .(,),22x y D x y ∀∈+-≥C .(,),23x yD x y ∀∈+≤ D .(,),22x y D x y ∀∈+≥12.已知非空集合,A B 满足以下两个条件:(1){1,2,3,4,5,6},A B A B ==∅;(2)若x A ∈,则1x B +∈.则有序集合对(,)A B 的个数为()A .12B .13C .14D .15二、填空题(本大题共4小题,每小题5分,共20分.把答案写在题中的横线上)13.已知集合{|21,},{|2,}A x x k k B x x k k ==-∈==∈Z Z ,则A B =________.14某中学开展小组合作学习模式,高二某班某组同学甲给组内同学乙出题如下:若命题“2,20x x x m ∃∈++R ≤”是假命题,求m 的范围.同学乙略加思索,反手给了同学甲一道题:若命题“2,20x x x m ∀∈++R >”是真命题,求m 的范围.你认为,两位同学题中m 的范围是否一致?________(填“是”或“否”)15.设,a b 为正数,则“1a b ->”是“221a b ->”的________条件.(选填“充分不必要”“必要不充分”“充要”“既不充分也不必要”)16.已知集合{}22,,{0,1,3}A a a B =+=,且A B ⊆,则实数a 的值是________.三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.[10分]判断下列命题是全称量词命题还是存在量词命题,并判断其真假.(1)至少有一个整数,它既能被11整除,又能被9整除.(2)末位是0的实数能被2整除.(3)21,20x x ∃>->18.[12分]设全集U =R ,已知集合{1,2}A =,{|03}B x x =≤≤,集合C 为不等式组10,360x x +⎧⎨-⎩≥≤的解集. (1)写出集合A 的所有子集;(2)求u B 和B C .19.[12分]已知集合{}2|30,A x x ax a =-+=∈R .(1)若1A ∈,求实数a 的值;(2)若集合{}2|20,B x x bx b b =-+=∈R ,且{3}AB =,求A B .20.[12分]已知集合{|32}A x x =-<<,{|05}B x x =≤<,{|}x m C x =<,全集为R . (1)求()A B R ;(2)若()AB C ⊆,求实数m 的取值范围.21.[12分]已知20,::11,0100,x p q m x m m x +⎧-+⎨-⎩≥≤≤>≤,若p 是q 的必要条件,求实数m 的取值范围.22.[12分]已知:20,:40p x q ax -->>,其中a ∈R 且0a ≠.(1)若p 是q 的充分不必要条件,求实数a 的取值范围;(2)若p 是q 的必要不充分条件,求实数a 的取值范围.第一章综合测试答案解析一、1.【答案】A2.【答案】C3.【答案】C4.【答案】C5.【答案】A6.【答案】B7.【答案】C8.【答案】C9.【答案】B10.【答案】D11.【答案】B 【解析】不等式组1,24,x y x y +⎧⎨-⎩≥≤1,24,x y x y +⎧∴⎨-+-⎩≥≥ 1,201,x y x y y +⎧∴∴+⎨-⎩≥≥≥,即22x y +-≥成立. ∴若124x y x y +⎧⎨-⎩≥≤的解集为D 时,(,),22x y D x y ∀∈+-≥成立,故选B . 12.【答案】A【解析】由题意分类讨论,得若{}1A =,则{2,3,4,5,6}B =;若{}2A =,则B {1,3,4,5,6}=;若{}3A =,则B {1,2,4,5,6}=;若{}4A =,则{1,2,3,5,6}B =;若{}5A =,则{1,2,3,4,6}B =;若{1,3}A =,则{2,4,5,6}B =;若{1,4}A =,则{2,3,5,6}B =;若{1,5}A =,则{2,3,4,6}B =;若{2,4}A =,则{1,3,5,6}B =;若{2,5}A =,则{1,3,4,6}B =;若{3,5}A =,则{1,2,4,6}B =;若{1,3,5}A =,则{2,4,6}B =.综上可得,有序集合对(,)A B 的个数为12.故选A .二、13.【答案】∅14.【答案】是15.【答案】充分不必要【解析】1a b ->,即1a b +>.又,a b 为正数,2222(1)121a b b b b ∴+=+++>>,即221a b ->成立;反之,当1a b =时,满足221a b ->,但1a b ->不成立.∴“1a b ->”是“221a b ->”的充分不必要条件.16.【答案】1【解析】:①0a =,{0,2}A =与A B ⊆矛盾,舍去;②1a =,{1,3}A =,满足A B ⊆;③3a =,{3,11}A =与A B ⊆矛盾,舍去.1a ∴=.三、17.【答案】(1)命题中含有存在量词“至少有一个”,因此是存在量词命题,真命题.(2)命题中省略了全称量词“所有”,是全称量词命题,真命题.(3)命题中含有存在量词“∃”,是存在量词命题,真命题.18.【答案】(1)A 的所有子集为,{1},{2},{1,2}∅.(2){|12}C x x =-≤≤,{|0 3}u B x x x =<或>,{|13}B C x x ∴⋃=-≤≤.19.【答案】(1)1,130,4A a a ∈∴-+=∴=(2){3},3,3A B A B ⋂=∴∈∈9330,1830,a b b -+=⎧∴⎨-+=⎩解得4,9.a b =⎧⎨=⎩{}2|430{1,3}A x x x ∴=-+==, {}23|29903,2B x x x ⎧⎫=-+==⎨⎬⎩⎭. 31,,32A B ⎧⎫∴⋃=⎨⎬⎩⎭. 20.【答案】(1){|05}B x x x =R <或≥,(){}|30A B x x ∴⋂=-R <<(2){|35}A B x x ⋃=-<<,()A B C ⋃≤,5m ∴, ∴实数m 的取值范围为{|5}m m ≥.21.【答案】20:100x p x +⎧⎨-⎩≥,≤,:[2,10]p x ∴∈-. 又:[1,1],0q x m m m ∈-+>,且p 是q 的必要条件.[1,1][2,10]m m ∴-+⊆-012110m m m ⎧⎪∴--⎨⎪+⎩>≥≤03m ∴<≤.∴实数m 的取值范围是03m <≤.22.【答案】(1)设:{|20}p A x x =->,即:{|2}p A x x =>,:{|40}q B x ax =->,因为p 是q 的充分不必要条件,则A B , 即0,42,a a ⎧⎪⎨⎪⎩><解得2a >.所以实数a 的取值范围为2a >.(2)由(1)及题意得B A .①当0a >时,由B A 得42a >,即02a <<;②当0a <时,显然不满足题意.综上可得,实数a 的取值范围为02a <<.。
第1章 集合与常用逻辑用语 练习(1)-人教A版高中数学必修第一册(原卷版)
第一章集合与常用逻辑用语复习一、选择题1.(2018·全国高一课时练习)设集合M={m∈Z|-3<m<2},N={n∈Z|-1≤n≤3},则M∩N等于( ) A.{0,1} B.{-1,0,1}C.{0,1,2} D.{-1,0,1,2}2.(2018·全国高一课时练习)已知集合M={-1,0},则满足M∪N={-1,0,1}的集合N的个数是( ) A.2 B.3C.4 D.83.(2018·全国高一课时练习)已知M={x∈R|x≥2√2},a=π,有下列四个式子:(1)a∈M;(2){a}⊆M;(3)a⊆M;(4){a}∩M=π.其中正确的是( )A.(1)(2) B.(1)(4)C.(2)(3) D.(1)(2)(4)4.(2018·江西高一课时练习)(2017·天津卷)设集合A={1,2,6},B={2,4},C={x∈R|-1≤x≤5},则(A∪B)∩C=( )A.{2} B.{1,2,4}C.{1,2,4,6} D.{x∈R|-1≤x≤5}5.(2018·全国高一课时练习)已知集合U={1,2,3,4,5,6,7},A={2,4,5,7},B={3,4,5},则(∁U A)∪(∁U B)等于()A.{1,6} B.{4,5} C.{2,3,4,5,7} D.{1,2,3,6,7}6.(2018·全国高一课时练习)已知全集U,M,N是U的非空子集,若(∁U M)⊇N,则必有( ) A.M⊆(∁U N) B.N (∁U M)C.(∁U M)=(∁U N) D.M=N7.(2018·全国高一课时练习)设U={不大于10的正整数},A={10以内的素(质)数},B={1,3,5,7,9},则(∁U A)∩(∁U B)是( )A.{2,4,6,8,9} B.{2,4,6,8,9,10}C.{1,2,6,8,9,10} D.{4,6,8,10}8.(2018·全国高一课时练习)设M,P是两个非空集合,定义M与P的差集M-P={x|x∈M且x∉P},则M-(M-P)等于( )A.P B.MC .M ∩PD .M ∪P9.(2017·全国高一课时练习(文))设集合{}=2m x x >,{}=3p x x <,那么“x m ∈或x p ∈”是“x p m ∈”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件10.(2017·全国高一课时练习(文))已知:11p m x m -<<+,()():260q x x --<,且q 是p 的必要不充分条件,则实数m 的取值范围为( )A .35m <<B .35m ≤≤C .5m >或3m <D .5m >或3m ≤11.(2012·河南高二课时练习)全称命题“2104x R x x ∀∈-+≥,”的否定是 ( ) A.2104x R x x ∀∉-+<, B. 2104x R x x ∃∈-+<, C .041,2≥+-∈∃x x R x D.2104x R x x ∀∈-+<, 12.(2012·全国高二课时练习)三个数a b c ,,不全为零的充要条件是( )A.a b c ,,都不是零 B.a b c ,,中至多一个是零C.a b c ,,中只有一个为零D.a b c ,,中至少一个不是零 二、填空题13.(2018·全国高一课时练习)设全集是实数集R ,M ={x |-2≤x ≤2},N ={x |x <1},则∁R (M ∩N )=________.14.(2017·全国高一课时练习)已知集合{}|1A x x =≤,{}|B x x a =≥,且AB R =,则实数a 的取值范围是______________________ .15.(2018·全国高二课时练习)关于x 的方程m 2x 2-(m+1)x+2=0的所有根的和为2的充要条件是_____.16.(2017·全国高二课时练习)对任意实数a ,b ,c ,给出下列命题:①“a =b ”是“ac =bc ”的充要条件;②“a >b ”是“a 2>b 2”的充分条件;③“a <5”是“a <3”的必要条件;④“a +5是无理数”是“a 是无理数”的充要条件.其中真命题的序号为________.三、解答题17.(2018·全国高一课时练习)设全集为R ,集合A ={x |3≤x <7},B ={x |2<x <6},求∁R (A ∪B ),∁R (A ∩B ),(∁R A )∩B ,A ∪(∁R B ).18.(2018·全国高一课时练习)已知A ={a -1,2a 2+5a +1,a 2+1},且-2∈A ,求a 的值.19.(2018·全国高一课时练习)设集合222{|320}{|150}A x x x B x x a x a =-+==+-+-=,().(1)若{}2A B ⋂=,求实数a 的值;(2)若A B A ⋃=,求实数a 的取值范围.20.(2014·全国高一课时练习)判断下列命题是全称量词命题还是存在量词命题,并写出它们的否定:(1)p :对任意的x ∈R ,x 2+x+1=0都成立;(2)p :∃x ∈R ,x 2+2x+5>0.21.(2012·全国高二课时练习)求方程2210ax x ++=至少有一个负根的充要条件.。
2022高考数学总复习(人教A理一轮)单元质检卷一 集合与常用逻辑用语
单元质检卷一 集合与常用逻辑用语(时间:45分钟 满分:80分)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2020云南玉溪一中第一次月考,理2)已知集合A={x|x-a ≤4},B={x|x (x-3)≤0},A ∩B={x|0≤x ≤2},则a=( )A.-2B.0C.2D.4 2.命题“若α=π3,则sin α=√32”的逆否命题是( )A.若α≠π3,则sin α≠√32B.若α=π3,则sin α≠√32C.若sin α≠√32,则α≠π3D.若sin α≠√32,则α=π33.(2020全国百强名校联考,理3)设a ,b ∈R ,则“ln a>ln b ”是“ln a b >0”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件 4.(2020辽宁高三上学期检测,3)“∀x ∈R ,x+1≤3x ”的否定是( ) A.∃x ∈R ,x+1>3xB.∀x ∈R ,x+1>3xC.∀x ∈R ,x+1≥3xD.∃x ∈R ,x+1≥3x5.(2020浙江,6)已知空间中不过同一点的三条直线l ,m ,n.“l ,m ,n 共面”是“l ,m ,n 两两相交”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件6.已知命题p :∀x ∈R ,x 2-2ax+1>0;命题q :∃x ∈R ,ax 2+2≤0.若p ∨q 为假命题,则实数a 的取值范围是( ) A.[1,+∞)B.(-∞,-1]C.(-∞,-2]D.[-1,1]7.下列命题正确的是( )A.若a>b ,c>d ,则ac>bdB.若ac>bc ,则a>bC.若ac 2<b c 2,则a<bD.若a>b ,c>d ,则a-c>b-d8.若0<b<1,则“a>b 3”是“a>b ”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件9.(2020湖南百校联考,6)设集合A={y|y=x 2-4x+a },B={y|y=-sin 2x+2sin x },若A ∪B=A ,则a 的取值范围是( )A.(-∞,5]B.[1,+∞)C.(-∞,1]D.[5,+∞) 10.若关于x 的不等式(a-2)x 2+2(a-2)x-4<0对一切实数x 恒成立,则实数a 的取值范围是( ) A.(-∞,2]B.(-∞,-2)C.(-2,2)D.(-2,2] 11.已知命题p :∀x>0,e x >x+1,命题q :∃x ∈(0,+∞),ln x ≥x ,则下列命题正确的是( )A.p ∧qB.( p )∧qC.p ∧( q )D .( p )∧( q )12.(2020河南高三质检,10)若p :a<b ,q :3a -3b <5-a -5-b ,则p 是q 的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件 二、填空题:本题共4小题,每小题5分,共20分.13.已知集合A={x ∈N |y=lg(4-x )},则A 的子集个数为 .14.(2020全国百强名校联考,理14)已知集合A=x (13)x 2-x -6≤1,B={x|log 3(x+a )≥1,a ∈R },若x ∈A 是x ∈B 的必要不充分条件,则实数a 的取值范围是 .15.若命题“∀x ∈0,π3,1+tan x ≤m ”的否定是假命题,则实数m 的取值范围是 .16.已知命题p :方程x 2+2mx+1=0有两个不相等的正根;命题q :方程x 2+2(m-2)x-3m+10=0无实根,且p ∨q 为真命题,p ∧q 为假命题,则实数m 的取值范围是 .参考答案单元质检卷一 集合与常用逻辑用语1.A 由题意,A={x|x ≤4+a },B={x|0≤x ≤3},又A ∩B={x|0≤x ≤2},所以4+a=2,解得a=-2.2.C 根据互为逆否命题的两个命题的特征解答,即“若p ,则q ”的逆否命题为“若 q ,则 p ”.3.A 由题知,ln a>ln b ⇔a>b>0,ln a b >0⇒a b >1,当a ,b 同为正时,a>b ;当a ,b 同为负时,a<b ,所以“ln a>ln b ”是“ln a b >0”的充分不必要条件.故选A .4.A “∀x ∈R ,x+1≤3x ”的否定为“∃x ∈R ,x+1>3x ”,故选A .5.B 由条件可知,当m ,n ,l 在同一平面内时,三条直线不一定两两相交,有可能两条直线平行;或三条直线平行;反过来,当空间中不过同一点的三条直线m ,n ,l 两两相交时,如图,三个不同的交点确定一个平面,则m ,n ,l 在同一平面内,所以“m ,n ,l ”共面是“m ,n ,l 两两相交”的必要不充分条件.故选B .6.A ∵p ∨q 为假命题,∴p ,q 均为假命题,若命题p 为假命题,则Δ≥0,即4a 2-4≥0,解得a ≤-1,或a ≥1;若命题q 为假命题,则a ≥0,∴实数a 的取值范围是a ≥1,故选A .7.C 取a=2,b=1,c=-1,d=-2,可知A 错误;∵当c<0时,ac>bc ⇒a<b ,∴B 错误;∵a c 2<bc 2,∴c ≠0,又c 2>0,∴a<b ,C 正确;取a=c=2,b=d=1,可知D 错误.故选C .8.B 因为0<b<1,所以b>b 3.故“a>b 3”是“a>b ”的必要不充分条件.9.C 因为y=x 2-4x+a=(x-2)2+a-4≥a-4,所以A=[a-4,+∞).因为y=-sin 2x+2sin x=-(sin x-1)2+1,则可得y ∈[-3,1],即B=[-3,1].因为A ∪B=A ,所以B ⊆A ,则a-4≤-3,即a ≤1.10.D 不等式(a-2)x 2+2(a-2)x-4<0恒成立的条件:当a=2时,-4<0恒成立;当a ≠2时,{a <2,4(a -2)2-4(a -2)×(-4)<0,解得-2<a<2.故-2<a ≤2.故选D . 11.C 令f (x )=e x -x-1,f'(x )=e x -1,当x>0时,f'(x )>0,所以f (x )在(0,+∞)上单调递增,f (x )>f (0)=0,∴e x >x+1,p 真;令g (x )=ln x-x ,g'(x )=1x -1=1-x x ,x ∈(0,1),g'(x )>0;x ∈(1,+∞),g'(x )<0,∴g (x )max =g (1)=-1<0,所以g (x )<0,即ln x<x 在(0,+∞)上恒成立,q 假.故选C .12.C 令f (x )=3x -5-x ,则f (x )为R 上的单调递增函数,若3a -3b <5-a -5-b ,则3a -5-a <3b -5-b ,即f (a )<f (b ),所以a<b.所以p 是q 的必要条件.反之,若a<b ,则f (a )<f (b ),所以3a -5-a <3b -5-b ,即3a -3b <5-a -5-b ,所以p 是q 的充分条件.所以p 是q 的充要条件,故选C.13.16 A={x ∈N |y=lg(4-x )}={x ∈N |x<4}={0,1,2,3},则A 的子集个数为24=16.14.(-∞,0] 由13 x 2-x -6≤1可得x 2-x-6≥0,解得x ≤-2或x ≥3,由log 3(x+a )≥1可得x ≥3-a ,若x∈A 是x ∈B 的必要不充分条件,则集合B 是集合A 的真子集,所以3-a ≥3,解得a ≤0,故实数a 的取值范围是(-∞,0].15.[1+√3,+∞) 因为命题的否定是假命题,所以原命题为真命题,即不等式1+tan x ≤m 对∀x ∈0,π3恒成立,又y=1+tan x 在x ∈0,π3上单调递增,所以(1+tan x )max =1+tan π3=1+√3,即m ≥1+√3.故实数m 的取值范围是[1+√3,+∞).16.(-∞,-2]∪[-1,3) 设方程x 2+2mx+1=0的两根分别为x 1,x 2,由题意得{Δ1=4m 2-4>0,x 1+x 2=-2m >0,得m<-1,故p 为真时,m<-1. 由方程x 2+2(m-2)x-3m+10=0无实根,可知Δ2=4(m-2)2-4(-3m+10)<0,得-2<m<3,故q 为真时,-2<m<3.由p ∨q 为真命题,p ∧q 为假命题,可知命题p ,q 一真一假.当p 真q 假时,{m <-1,m ≥3或m ≤-2, 此时m ≤-2;当p 假q 真时,{m ≥-1,-2<m <3, 此时-1≤m<3.故实数m 的取值范围是(-∞,-2]∪[-1,3).内容仅供参考后记亲爱的朋友,你好!非常荣幸和你相遇,很乐意为您服务。
高考数学(人教A版理科)一轮复习真题演练集训:第一章集合与常用逻辑用语1-1Word版含答案
真题操练集训1.设会合A= { x| x2- 4x+ 3<0} ,B= { x|2 x- 3>0} ,则A∩B=() 33A. -3,-2B.-3,233C. 1,2D.2,3答案: D分析:由题意得,=,=x>3,则∩ =3, 3.应选D.A { x|1< x<3}B x2 A B22.已知会合= {1,2,3} ,= {|(x + 1)(x- 2)<0 ,∈Z} ,则∪= ()A B x x A BA.{1}B.{1,2}C.{0,1,2,3}D.{ - 1,0,1,2,3}答案: C分析:由已知可得B={ x|( x+1)(x-2)<0,x∈Z}={ x|-1<x<2,x∈Z}={0,1},∴ A∪B ={0,1,2,3} ,应选 C.3.设会合S= { x|(x-2)·(x-3)≥0}, T={ x| x>0},则 S∩ T=()A.B.( -∞, 2] ∪∪∪∪已知会合A={-2,-1,0,1,2},B={ x|( x-1)(x+2)<0},则 A∩B = ()A.{ - 1,0}B.{0,1}C.{ - 1,0,1}D.{0,1,2}答案: A分析:由题意知= {x | -2<<1} ,因此∩= { -1,0} .应选 A.B x A B5.已知会合A= { x| x2-2x-3≥0} ,B= { x| -2≤x<2} ,则A∩B= () A.B. D .,应选 A.6.设会合= {0,1,2},= {|2- 3 +2≤0} ,则∩= ()M N x x x M NA.{1}B.{2}C.{0,1}D.{1,2}答案: D分析: N={ x| x2-3x+2≤0}={ x|1≤ x≤2},又 M={0,1,2},因此 M∩ N={1,2}.课外拓展阅读会合运算问题的三种解题模板会合的基本运算包含交集、并集、补集,是历年高考必考的内容.解决会合的基本运算问题,要先明确会合中元素的特点,求出每个会合,而后理清几个会合之间的关系,最后利用列举法或借助数轴、 Venn 图等进行基本运算,进而得出结果.方法一列举法列举法就是经过列举会合中全部的元素,而后依据会合基本运算的定义求解的方法.此种方法合用于数集的有关运算以及会合的新定义运算问题,其基本的解题步骤是:(1)定元素:确立已知会合中所含的元素,利用列举法写出全部元素.(2)定运算:依据要求及新定义运算,将所求解会合的运算问题转变为会合的交集、并集与补集的基本运算问题,或转变为数的有关运算问题.(3)定结果:依据定义的运算进行求解,利用列举法写出所求会合中的全部元素.设会合 A={-1,0,1},会合 B={0,1,2,3},定义 A* B={( x, y)| x∈ A∩ B,y∈ A∪ B},则 A* B中元素的个数是()A.7B.10C.25D.52B因为 A={-1,0,1},B={0,1,2,3},因此 A∩ B={0,1}, A∪ B={-1,0,1,2,3}.由 x∈ A∩ B,可知 x 可取0,1;由 y∈ A∪ B,可知 y 可取-1,0,1,2,3.因此元素 ( x,y) 的全部结果以下表所示:y-10123x0(0 ,- 1)(0,0)(0,1)(0,2)(0,3)1(1 ,- 1)(1,0)(1,1)(1,2)(1,3)因此 A* B 中的元素共有10 个.方法二数形联合法数形联合法就是利用数轴或Venn 图或平面直角坐标系中的图象表示出有关会合,而后根据图形求解会合的补集或许进行有关会合的交集、并集的基本运算.其求解的基本步骤是:(1)绘图形:依据题设条件给出的几何意义,画出与会合对应的几何图形或函数图象.(2)定地区:利用数轴、韦恩 (Venn) 图或直角坐标系中的函数图象确立会合运算所表示的平面地区.(3)求结果:依据图形确立有关运算的结果或地区所表示的几何图形的面积.若会合A={ x| y=1- | x| } ,B= { y|y= x2, x∈R},则A∩B=()A.{ x| -1≤x≤1}B.{ x| x≥0}C.{ x|0 ≤x≤1}D.?C因为会合 A 表示函数 y=1- | x| 中x的取值范围,即该函数的定义域,由 1- | x| ≥0得- 1≤x≤1,即 A={ x|-1≤ x≤1},又会合 B 表示函数 y=x2在定义域R上的值域,由 x2≥0得 B={ y| y≥0},因此联合数轴,以下图暗影部分,可得A∩ B={ x|0≤ x≤1}.方法三特值法高考对会合的基本运算的考察以选择题为主,因此我们能够利用特值法解题,即依据选项之间的显然差别,选择一些特别元素进行查验清除,进而获得正确选项.其求解的基本步骤以下:(1)辨差别:剖析各选项,鉴别各选项的差别.(2)定特别:依据选项的差别,选定一些特别的元素.(3)验清除:将特别的元素代入进行考证,清除扰乱项.(4)定结果:依据清除的结果确立正确的选项.A={ x|x2-2x-3>0},B={ x|2< x<4},那么会合B∩(?U A)=()已知U为全集,会合A.{ x| -1≤x≤4}B.{ x|2< x≤3}C.{ x|2 ≤x<3}D.{ x| - 1<x<4}比较选项―→ 抛同求异―→ 定特值―→ 查验清除―→ 定结果B1,4能否属于该会合; B 项与 C 项的差别在于 2 与3A 项与 D 项的不一样之处在于元素-能否属于该会合.0?B,因此0?B∩(?U A) ,A,D 与 B,C 的差别可经过查验0 能否属于该会合来判断.因为故可清除A, D;因为 2?B,因此 2?B∩(?U A) ,故可清除C.概括总结用特值法求解会合运算问题的重点在于依据各选项的差别灵巧选择适合的特别元素,而后依据特别元素与各会合的关系查验其能否知足运算,进而清除选项.忽略空集是任何会合的子集勿忘空集和会合自己.因为 ?是任何会合的子集,是任何非空会合的真子集,任何会合的自己是该会合的子集,因此在进队列举时千万不要忘掉.已知会合 A={ x| x2- x-12≤0}, B={ x|2 m-1<x<m+1},且 A∩ B= B,则实数 m的取值范围为()A.C.由x2-x-12≤0,得( x+ 3)( x-4) ≤0,即- 3≤x≤4,因此 A={ x|-3≤ x≤4}.又 A∩ B= B,因此 B? A,-3≤2m- 1,因此m+1≤4,解得- 1≤m≤3. 应选 B.会合 B 为不等式2m-1<x<m+1 的解集,但m 的取值不一样,解集也不一样.当m+1≤2m - 1 时,会合B为空集,而空集是任何会合的子集,且是任何非空会合的真子集,求解时应分B=?和 B≠?两种状况,联合数轴,议论求解.由 x2- x-12≤0,得( x+ 3)( x-4) ≤0,即- 3≤x≤4,因此A= { x| -3≤x≤4} .又 A∩ B= B,因此 B? A.(1)当 B=?时,有 m+1≤2m-1,解得 m≥2.-3≤2m- 1,(2)当 B≠?时,有 m+1≤4,2m- 1<m+ 1,解得- 1≤m<2.D综上, m的取值范围为易错提示A∪ B=B 时,在解题过程中务必注意对会合 A 进行分类当题目中出现A?B或 A∩B=A或议论,即分A=?和A≠?两种状况进行议论,并注意端点值的查验.。
高考数学一轮精品复习 A单元 集合与常用逻辑用语(含解析)-人教版高三全册数学试题
A单元集合与常用逻辑用语A1 集合及其运算1.A1[2014·卷] 已知集合A={x|x2-2x=0},B={0,1,2},则A∩B=( )A.{0} B.{0,1}C.{0,2} D.{0,1,2}1.C [解析] ∵A={0,2},∴A∩B={0,2}∩{0,1,2}={0,2}.15.A1、M1[2014·某某卷] 若集合{a,b,c,d}={1,2,3,4},且下列四个关系:①a=1;②b≠1;③c=2;④d≠4有且只有一个是正确的,则符合条件的有序数组(a,b,c,d)的个数是________.15.6 [解析] 若①正确,则②③④不正确,可得b≠1不正确,即b=1,与a=1矛盾,故①不正确;若②正确,则①③④不正确,由④不正确,得d=4;由a≠1,b≠1,c≠2,得满足条件的有序数组为a=3,b=2,c=1,d=4或a=2,b=3,c=1,d=4.若③正确,则①②④不正确,由④不正确,得d=4;由②不正确,得b=1,则满足条件的有序数组为a=3,b=1,c=2,d=4;若④正确,则①②③不正确,由②不正确,得b=1,由a≠1,c≠2,d≠4,得满足条件的有序数组为a=2,b=1,c=4,d=3或a=3,b=1,c=4,d=2或a=4,b=1,c=3,d=2;综上所述,满足条件的有序数组的个数为6.1.A1[2014·某某卷] 已知集合M={-1,0,1},N={0,1,2,},则M∪N=( )A.{0,1} B.{-1,0,2}C.{-1,0,1,2} D.{-1,0,1}1.C [解析] 本题考查集合的运算.因为M={-1,0,1},N={0,1,2},所以M∪N ={-1,0,1,2}.3.A1 A2[2014·某某卷] U为全集,A,B是集合,则“存在集合C使得A⊆C,B⊆∁U C”是“A∩B=∅”的( )A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件3.C [解析] 若存在集合C使得A⊆C,B⊆∁U C,则可以推出A∩B=∅;若A∩B=∅,由维思图可知,一定存在C=A,满足A⊆C,B⊆∁U C,故“存在集合C使得A⊆C,B⊆∁U C”是“A∩B=∅”的充要条件.故选C.1.A1[2014·某某卷] 已知全集U=R,A={x|x≤0},B={x|x≥1},则集合∁U(A∪B)=( )A.{x|x≥0} B.{x|x≤1}C.{x|0≤x≤1} D.{x|0<x<1}1.D [解析] 由题意可知,A∪B={x|x≤0或x≥1},所以∁U(A∪B)={x|0<x<1}.2.A1、E3[2014·全国卷] 设集合M={x|x2-3x-4<0},N={x|0≤x≤5},则M∩N=( )A.(0,4] B.[0,4)C.[-1,0) D.(-1,0]2.B [解析] 因为M={x|x2-3x-4<0}={x|-1<x<4},N={x|0≤x≤5},所以M∩N ={x|-1<x<4}∩{0≤x≤5}={x|0≤x<4}.1.A1[2014·新课标全国卷Ⅰ] 已知集合A={x|x2-2x-3≥0},B={x|-2≤x<2},则A∩B=( )A.[-2,-1] B.[-1,2)B.[-1,1] D.[1,2)1.A [解析] 集合A=(-∞,-1]∪[3,+∞),所以A∩B=[-2,-1].1.A1[2014·新课标全国卷Ⅱ] 设集合M={0,1,2},N={x|x2-3x+2≤0},则M∩N =( )A.{1} B.{2} C.{0,1} D.{1,2}1.D [解析] 集合N=[1,2],故M∩N={1,2}.2.A1,B6[2014·某某卷] 设集合A={x||x-1|<2},B={y|y=2x,x∈[0,2]},则A∩B=( )A.[0,2] B.(1,3) C.[1,3) D.(1,4)2.C [解析] 根据已知得,集合A={x|-1<x<3},B={y|1≤y≤4},所以A∩B={x|1≤x<3}.故选C.1.A1[2014·某某卷] 设集合M={x|x≥0,x∈R},N={x|x2<1,x∈R},则M∩N=( )A.[0,1] B.[0,1) C.(0,1] D.(0,1)1.B [解析] 由M={x|x≥0,x∈R},N={x|x2<1,x∈R}={x|-1<x<1,x∈R},得M∩N =[0,1).1.A1[2014·某某卷] 已知集合A={x|x2-x-2≤0},集合B为整数集,则A∩B=( ) A.{-1,0,1,2} B.{-2,-1,0,1}C.{0,1} D.{-1,0}1.A [解析] 由题意可知,集合A={x|-1≤x≤2},其中的整数有-1,0,1,2,故A∩B={-1,0,1,2},故选A.19.A1、D3、E7[2014·某某卷] 已知q和n均为给定的大于1的自然数.设集合M={0,1,2,…,q-1},集合A={x|x=x1+x2q+…+x n q n-1,x i∈M,i=1,2,…,n}.(1)当q=2,n=3时,用列举法表示集合A.(2)设s,t∈A,s=a1+a2q+…+a n q n-1,t=b1+b2q+…+b n q n-1,其中a i,b i∈M,i=1,2,…,n.证明:若a n<b n,则s<t.19.解:(1)当q=2,n=3时,M={0,1},A={x|x=x1+x2·2+x3·22,x i∈M,i=1,2,3},可得A={0,1,2,3,4,5,6,7}.(2)证明:由s,t∈A,s=a1+a2q+…+a n q n-1,t=b1+b2q+…+b n q n-1,a i,b i∈M,i =1,2,…,n及a n<b n,可得s-t=(a1-b1)+(a2-b2)q+…+(a n-1-b n-1)q n-2+(a n-b n)q n-1≤(q -1)+(q -1)q +…+(q -1)q n -2-qn -1=(q -1)(1-q n -1)1-q-q n -1=-1<0, 所以s <t .1.A1[2014·某某卷] 设全集U ={x ∈N |x ≥2},集合A ={x ∈N |x 2≥5},则∁U A =( )A .∅B .{2}C .{5}D .{2,5}1.B[解析] ∁U A ={x ∈N |2≤x <5}={2},故选B.11.A1[2014·某某卷] 设全集U ={n ∈N |1≤n ≤10},A ={1,2,3,5,8},B ={1,3,5,7,9},则(∁U A )∩B =________.11.{7,9} [解析] 由题知∁U A ={4,6,7,9,10}, ∴(∁U A )∩B ={7,9}.A2 命题及其关系、充分条件、必要条件2.A2[2014·某某卷] “x <0”是“ln(x +1)<0”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件2.B [解析] ln(x +1)<0⇔0<1+x <1⇔-1<x <0,而(-1,0)是(-∞,0)的真子集,所“x <0”是“ln(x +1)<0”的必要不充分条件.5.A2[2014·卷] 设{a n }是公比为q 的等比数列,则“q >1”是“{a n }为递增数列”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件5.D [解析] 当a 1<0,q >1时,数列{a n }递减;当a 1<0,数列{a n }递增时,0<q <1.故选D.6.A2、H4[2014·某某卷] 直线l :y =kx +1与圆O :x 2+y 2=1相交于A ,B 两点,则“k =1”是“△OAB 的面积为12”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分又不必要条件6.A [解析] 由直线l 与圆O 相交,得圆心O 到直线l 的距离d =1k 2+1<1,解得k ≠0.当k =1时,d =12,|AB |=2r 2-d 2=2,则△OAB 的面积为12×2×12=12;当k =-1时,同理可得△OAB 的面积为12,则“k =1”是“△OAB 的面积为12”的充分不必要条件.3.A1 A2[2014·某某卷] U 为全集,A ,B 是集合,则“存在集合C 使得A ⊆C ,B ⊆∁U C ”是“A ∩B =∅”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件3.C [解析] 若存在集合C 使得A ⊆C ,B ⊆∁U C ,则可以推出A ∩B =∅;若A ∩B =∅,由维思图可知,一定存在C =A ,满足A ⊆C ,B ⊆∁U C ,故“存在集合C 使得A ⊆C ,B ⊆∁U C ”是“A ∩B =∅”的充要条件.故选C.8.A2[2014·某某卷] 原命题为“若z 1,z 2互为共轭复数,则|z 1|=|z 2|”,关于其逆命题,否命题,逆否命题真假性的判断依次如下,正确的是( )A .真,假,真B .假,假,真C .真,真,假D .假,假,假 8.B [解析] 设z 1=a +b i ,z 2=a -b i ,且a ,b ∈R ,则|z 1|=|z 2|=a 2+b 2,故原命题为真,所以其否命题为假,逆否命题为真.当z 1=2+i ,z 2=-2+i 时,满足|z 1|=|z 2|,此时z 1,z 2不是共轭复数,故原命题的逆命题为假.7.A2[2014·某某卷] 设a ,b ∈R ,则“a >b ”是“a |a |>b |b |”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分又不必要条件7.C [解析] 当ab ≥0时,可得a >b 与a |a |>b |b |等价.当ab <0时,可得a >b 时a |a |>0>b |b |;反之,由a |a |>b |b |知a >0>b ,即a >b .2.L4、A2[2014·某某卷] 已知i 是虚数单位,a ,b ∈R ,得“a =b =1”是“(a +b i)2=2i ”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件2.A [解析] 由a ,b ∈R ,(a +b i)2=a 2-b 2+2ab i =2i, 得⎩⎪⎨⎪⎧a 2-b 2=0,2ab =2,所以⎩⎪⎨⎪⎧a =1,b =1或⎩⎪⎨⎪⎧a =-1,b =-1.故选A. 6.A2[2014·某某卷] 已知命题p :对任意x ∈R ,总有2x>0,q :“x >1”是“x >2”的充分不必要条件,则下列命题为真命题的是( )A .p ∧qB .綈p ∧綈qC .綈p ∧qD .p ∧綈q6.D [解析] 根据指数函数的图像可知p 为真命题.由于“x >1”是“x >2”的必要不充分条件,所以q 为假命题,所以綈q 为真命题,所以p ∧綈q 为真命题.A3 基本逻辑联结词及量词5.A3[2014·某某卷] 已知命题p :若x >y ,则-x <-y ,命题q :若x >y ,则x 2>y 2.在命题①p ∧q ;②p ∨q ;③p ∧(綈q );④(綈p )∨q 中,真命题是( )A .①③B .①④C .②③D .②④5.C [解析] 依题意可知,命题p 为真命题,命题q 为假命题.由真值表可知p ∧q 为假,p ∨q 为真,p ∧(綈q )为真,(綈p )∨q 为假.5.A3、F1[2014·某某卷] 设a ,b ,c 是非零向量,已知命题p :若a ·b =0,b ·c =0,则a ·c =0,命题q :若a ∥b ,b∥c ,则a∥c ,则下列命题中真命题是( )A .p ∨qB .p ∧qC .(綈p )∧(綈q )D .p ∨(綈q )5.A [解析] 由向量数量积的几何意义可知,命题p 为假命题;命题q 中,当b ≠0时,a ,c 一定共线,故命题q 是真命题.故p ∨q 为真命题.9.E5、A3[2014·新课标全国卷Ⅰ] 不等式组⎩⎪⎨⎪⎧x +y ≥1,x -2y ≤4的解集记为D ,有下面四个命题:p 1:∀(x ,y )∈D ,x +2y ≥-2,p 2:∃(x ,y )∈D ,x +2y ≥2, p 3:∀(x ,y )∈D ,x +2y ≤3, p 4:∃(x ,y )∈D ,x +2y ≤-1. 其中的真命题是( ) A .p 2,p 3 B .p 1,p 2 C .p 1,p 4 D .p 1,p 39.B [解析] 不等式组表示的区域D 如图中的阴影部分所示,设目标函数z =x +2y ,根据目标函数的几何意义可知,目标函数在点A (2,-1)处取得最小值,且z min =2-2=0,即x +2y 的取值X 围是[0,+∞),故命题p 1,p 2为真,命题p 3,p 4为假.A4 单元综合2.[2014·某某期末] 已知全集U =R ,集合A ={1,2,3,4,5},B =[3,+∞),则图X11中阴影部分所表示的集合为(A .{0,1,2}B .{0,1}C .{1,2}D .{1}2.C [解析] 由题意,阴影部分表示A ∩(∁U B ).因为∁U B ={x |x <3},所以A ∩(∁U B )={1,2}.4.[2014·某某十三校一联] 下列说法正确的是( )A .命题“若x 2=1,则x =1”的否命题为“若x 2=1,则x ≠1”B .命题“∃x 0∈R ,x 20+x 0-1<0”的否定是“∀x ∈R ,x 2+x -1>0” C .命题“若x =y ,则sin x =sin y ”的逆否命题为假命题 D .若“p 或q ”为真命题,则p ,q 中至少有一个为真命题4.D [解析] A 中否命题应为“若x 2≠1,则x ≠1”;B 中否定应为“∀x ∈R ,x 2+x -1≥0”;C 中原命题为真命题,故逆否命题为真命题;易知D 正确.6.[2014·某某质检] 已知集合A ={x |x >2},B ={x |x <2m },且A ⊆(∁R B ),则m 的值可以是( )A .1B .2C .3D .46.A [解析] 易知∁R B ={x |x ≥2m },要使A ⊆(∁R B ),则2m ≤2,∴m ≤1,故选A.9.[2014·某某八市联考] 已知集合M =⎩⎨⎧⎭⎬⎫(x ,y )⎪⎪⎪y -3x -2=3,N ={(x ,y )|ax +2y +a=0},且M ∩N =∅,则a =( )A .-6或-2B .-6C .2或-6D .-29.A [解析] 易知集合M 中的元素表示的是过(2,3)点且斜率为3的直线上除(2,3)点外的所有点.要使M ∩N =∅,则N 中的元素表示的是斜率为3且不过(2,3)点的直线,或过(2,3)点且斜率不为3的直线,∴-a2=3或2a +6+a =0,∴a =-6或a =-2.11.[2014·某某实验中学模拟] 已知集合A ={1,2a},B ={a ,b }.若A ∩B =⎩⎨⎧⎭⎬⎫12,则A ∪B =____________.11.{-1,12,1} [解析] ∵A ∩B =12,∴2a=12,∴a =-1,∴b =12,∴A =⎩⎨⎧⎭⎬⎫1,12,B=-1,12,∴A ∪B ={-1,12,1}.12.[2014·某某一模] “λ<0”是“数列{a n }(a n =n 2-2λn ,n ∈N *)为递增数列”的____________条件.12.充分不必要 [解析] ∵{a n }为递增数列⇔a n +1>a n ⇔2n +1-2λ>0⇔2n +1>2λ⇔3>2λ⇔λ<32,∴“λ<0”是“数列{a n }(a n =n 2-2λn ,n ∈N *)为递增数列”的充分不必要条件.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
阶段性测试题一(集合与常用逻辑用语)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
满分150分。
考试时间120分钟。
第Ⅰ卷(选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(2015·江西省三县联考)已知集合A ={x ∈R |2x -3≥0},集合B ={x ∈R |x 2-3x +2<0},则A ∩B =( )A .{x |x ≥32}B .{x |32≤x <2}C .{x |1<x <2}D .{x |32<x <2}[答案] B[解析] A ={x |x ≥32},B ={x |1<x <2},∴A ∩B ={x |32≤x <2}.2.(2015·湖北省教学合作联考)下列命题中真命题的个数是( ) (1)若命题p ,q 中有一个是假命题,则¬(p ∧q )是真命题.(2)在△ABC 中,“cos A +sin A =cos B +sin B ”是“C =90°”的必要不充分条件. (3)若C 表示复数集,则有∀x ∈C ,x 2+1≥1. A .0 B .1 C .2 D .3[答案] C[解析] (1)∵p 、q 中有一个假命题,∴p ∧q 为假命题,∴¬(p ∧q )为真命题,∴(1)正确;(2)若C =90°,则cos A =cos(90°-B )=sin B ,cos B =cos(90°-A )=sin A ,∴cos A +sin A =cos B +sin B ,但cos A +sin A =cos B +sin B 时,2sin(A +45°)=2sin(B +45°),∴满足A =B ,或A +B =90°,得不出C =90°,故(2)正确;(3)当x =i 时,有x 2+1=0,故(3)错误,选C .3.(文)(2014·文登市期中)已知集合A ={x |log 4x <1},B ={x |x ≥2},则A ∩(∁R B )=( ) A .(-∞,2) B .(0,2) C .(-∞,2] D .[2,4)[答案] B[解析] ∵A ={x |log 4x <1}={x |0<x <4},B ={x |x ≥2},∴∁R B ={x |x <2},所以A ∩(∁R B )=(0,2),故选B .(理)(2015·河南开封22校联考)已知集合A ={x |2x >12},B ={x |log 2x <1},则A ∩B =( )A .(-1,2)B .(1,2)C .(0,2)D .(-1,1)[答案] C[解析] 由2x >12得x >-1,∴A ={x |x >-1};由log 2x <1得0<x <2,∴B ={x |0<x <2},∴A ∩B ={x |0<x <2},选C .4.(2015·豫南九校联考)已知实数集R 为全集,集合A ={x |y =log 2(x -1)},B ={y |y =4x -x 2},则(∁R A )∩B =( ) A .(-∞,1] B .(0,1) C .[0,1] D .(1,2][答案] C[解析] A ={x |x >1},B ={y |0≤y ≤2},∴∁R A ={x |x ≤1},(∁R A )∩B ={x |0≤x ≤1},故选C . 5.(2014·江西临川十中期中)已知平面向量a ,b 满足|a |=1,|b |=2,a 与b 的夹角为60°,则“m =1”是“(a -m b )⊥a ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 [答案] C[解析] ∵|a |=1,|b |=2,〈a ,b 〉=60°,∴a ·b =1×2×cos60°=1,(a -m b )⊥a ⇔(a -m b )·a =0⇔|a |2-m a ·b =0⇔m =1,故选C .6.(2015·娄底市名校联考)“p 且q 是真命题”是“非p 为假命题”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 [答案] A[解析] ∵“p ∧q ”是真命题,∴p 与q 都是真命题,∴¬p 为假命题;由¬p 为假命题可知p 为真命题,但q 的真假性不知道,∴p ∧q 的真假无法判断,故选A .7.(2015·濉溪县月考)已知向量a ,b 都是非零向量,“a |a |=-b |b |”是“a +b =0”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 [答案] B[解析] ∵a ,b 都是非零向量,a +b =0,∴a 与b 的方向相反,从而a |a |=-b |b |;但a|a |=-b|b |时,显然a 与b 方向相反,但|a |与|b |不一定相等,从而a +b =0不一定成立. 8.(文)(2015·山东滕州一中单元检测)设全集U =R ,A ={x |-x 2-3x >0},B ={x |x <-1},则图中阴影部分表示的集合为( )A .{x |x >0}B .{x |-3<x <-1}C .{x |-3<x <0}D .{x |x <-1}[答案] B[解析] 由-x 2-3x >0得-3<x <0,阴影部分表示A ∩B ={x |-3<x <-1},故选B . (理)(2014·江西都昌一中月考)已知全集U ={1,2,3,4,5,6},集合A ={2,3,4},集合B ={2,4,5},则下图中的阴影部分表示( )A .{2,4}B .{1,3}C .{5}D .{2,3,4,5}[答案] C[解析] 阴影部分在集合B 中,不在集合A 中,故阴影部分为B ∩(∁U A )={2,4,5}∩{1,5,6}={5},故选C .9.(2015·安徽示范高中联考)设a ∈R ,则“a =1”是“l 1:直线ax +y -1=0与直线l 2:x -ay -3=0垂直”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件[答案] A[解析] 当a =0时,l 1⊥l 2,当a =1时,l 1⊥l 2,∴选A .10.(文)(2015·韶关市十校联考)命题“∀x ∈R ,e x -x +1≥0”的否定是( ) A .∀x ∈R ,e x -x +1<0 B .∃x ∈R ,e x -x +1≥0 C .∀x ∈R ,e x -x +1>0 D .∃x ∈R ,e x -x +1<0[答案] D[解析] 全称命题的否定为特称命题,“≥”的否定为“<”,故选D . (理)(2015·庐江二中、巢湖四中联考)下列说法错误的是( ) A .若p :∃x ∈R ,x 2-x +1=0,则¬p :∀x ∈R ,x 2-x +1≠0 B .“sin θ=12”是“θ=30°”的充分不必要条件C .命题“若a =0,则ab =0”的否命题是“若a ≠0,则ab ≠0”D .已知p :∃x ∈R ,cos x =1,q :∀x ∈R ,x 2-x +1>0,则“p ∧(¬q )”为假命题 [答案] B[解析] 特称命题的否定为全称命题,“=”的否定为“≠”,∴A 正确;sin θ=12时,θ不一定为30°,例如θ=150°,但θ=30°时,sin θ=12,∴B 应是必要不充分条件,故B 错;C显然正确;当x =0时,cos x =1,∴p 真;对任意x ∈R ,x 2-x +1=(x -12)2+34>0,∴q 真,∴p ∧(¬q )为假,故D 正确.11.(2014·黄冈中学检测)已知集合M ={(x ,y )|y =f (x )},若对于任意(x 1,y 1)∈M ,存在(x 2,y 2)∈M ,使得x 1x 2+y 1y 2=0成立,则称集合M 是“理想集合”,则下列集合是“理想集合”的是( )A .M ={(x ,y )|y =1x }B .M ={(x ,y )|y =cos x }C .M ={(x ,y )|y =x 2-2x +2}D .M ={(x ,y )|y =log 2(x -1)}[答案] B[解析] 设A (x 1,y 1),B (x 2,y 2),则由x 1x 2+y 1y 2=0知OA ⊥OB ,由理想集合的定义知,对函数y =f (x )图象上任一点A ,在图象上存在点B ,使OA ⊥OB ,对于函数y =1x ,图象上点A (1,1),图象上不存在点B ,使OA ⊥OB ;对于函数y =x 2-2x +2图象上的点A (1,1),在其图象上也不存在点B ,使OA ⊥OB ;对于函数y =log 2(x -1)图象上的点A (2,0),在其图象上不存在点B ,使OA ⊥OB ;而对于函数y =cos x ,无论在其图象上何处取点A ,总能在其位于区间[-π2,π2]的图象上找到点B ,使OA ⊥OB ,故选B . 12.(文)(2014·河北冀州中学期中)下列命题中的真命题是( ) A .∃x ∈R ,使得sin x +cos x =32B .∀x ∈(0,+∞),e x >x +1C .∃x ∈(-∞,0),2x <3xD .∀x ∈(0,π),sin x >cos x[答案] B[解析] ∵sin x +cos x =2sin(x +π4)∈[-2,2],32>2,∴不存在x ∈R ,使sin x +cos x=32成立,故A 错;令f (x )=e x -x -1(x ≥0),则f ′(x )=e x -1,当x >0时,f ′(x )>0,∴f (x )在[0,+∞)上单调递增,又f (0)=0,∴x >0时,f (x )>0恒成立,即e x >x +1对∀x ∈(0,+∞)都成立,故B 正确;在同一坐标系内作出y =2x 与y =3x 的图象知,C 错误;当x =π4时,sin x=22=cos x ,∴D 错误,故选B . (理)(2015·重庆南开中学月考)下列叙述正确的是( )A .命题:∃x ∈R ,使x 3+sin x +2<0的否定为:∀x ∈R ,均有x 3+sin x +2<0.B .命题:“若x 2=1,则x =1或x =-1”的逆否命题为:若x ≠1或x ≠-1,则x 2≠1C .己知n ∈N ,则幂函数y =x 3n-7为偶函数,且在x ∈(0,+∞)上单调递减的充分必要条件为n =1D .函数y =log 2x +m3-x 的图象关于点(1,0)中心对称的充分必要条件为m =±1[答案] C[解析] A :命题:∃x ∈R ,使x 3+sin x +2<0的否定为:∀x ∈R ,均有x 3+sin x +2≥0,故A 错误;B :命题:若x 2=1,则x =1或x =-1的逆否命题为:若x ≠1且x ≠-1,则x 2≠1,故B 错误;C :因为幂函数y =x 3n-7在x ∈(0,+∞)上单调递减,所以3n -7<0,解得n <73,又n ∈N ,所以,n =0,1或2;又y =x 3n-7为偶函数,所以,n =1,即幂函数y =x 3n-7为偶函数,且在x ∈(0,+∞)上单调递减的充分必要条件为n =1,C 正确;D :令y =f (x )=log 2x +m3-x ,由其图象关于点(1,0)中心对称,得f (x )+f (2-x )=0,即log 2x +m 3-x +log 2(2-x )+m 3-(2-x )=log 2(x +m )(2+m -x )(3-x )(1+x )=0,(x +m )(2+m -x )(3-x )(1+x )=1,整理得:m 2+2m -3=0,解得m =1或m =-3, 当m =-3时,x +m 3-x =-1<0,y =log 2x +m 3-x 无意义,故m =1.所以,函数y =log 2x +m3-x图象关于点(1,0)中心对称的充分必要条件为m =1,D 错误.第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题4分,共16分,把正确答案填在题中横线上.) 13.(2014·高州四中质量检测)已知函数f (x )=x 2+mx +1,若命题“∃x 0>0,f (x 0)<0”为真,则m 的取值范围是________.[答案] (-∞,-2)[解析] 由条件知⎩⎪⎨⎪⎧-m 2>0,m 2-4>0,∴m <-2.14.(2015·庐江二中、巢湖四中联考)已知集合A ={0,2,4},则A 的子集中含有元素2的子集共有________个.[答案] 4[解析] 含有元素2的子集有{2},{2,0},{2,4},{2,0,4},共4个. 15.(文)(2014·银川九中一模)给出下列命题: ①已知a ,b 都是正数,且a +1b +1>a b,则a <b ;②已知f ′(x )是f (x )的导函数,若∀x ∈R ,f ′(x )≥0,则f (1)<f (2)一定成立; ③命题“∃x ∈R ,使得x 2-2x +1<0”的否定是真命题; ④“x ≤1且y ≤1”是“x +y ≤2”的充要条件.其中正确命题的序号是________.(把你认为正确命题的序号都填上) [答案] ①②③[解析] ①∵a ,b 是正数,∴a +1>0,b +1>0,∵a +1b +1>ab ,∴b (a +1)>a (b +1),∴b >a ,即a <b ,∴①正确;②∵对任意x ∈R ,f ′(x )≥0,∴f (x )在R 上为增函数, ∴f (1)<f (2),∴②正确;③“∃x ∈R ,使得x 2-2x +1<0”的否定为“∀x ∈R ,x 2-2x +1≥0”,∵x ∈R 时,x 2-2x +1=(x -1)2≥0成立,∴③正确;④当x ≤1且y ≤1时,x +y ≤2成立;当x =3,y =-2时,满足x +y ≤2,∴由“x +y ≤2”推不出“x ≤1且y ≤1”,∴④错误.(理)(2014·安徽程集中学期中)以下四个命题:①在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且b sin A =a cos B ,则B =π4;②设a ,b 是两个非零向量且|a ·b |=|a ||b |,则存在实数λ,使得b =λa ;③方程sin x -x =0在实数范围内的解有且仅有一个;④a ,b ∈R 且a 3-3b >b 3-3a ,则a >b ;其中正确的是________.[答案] ①②③④[解析] ∵b sin A =a cos B ,∴sin B sin A =sin A cos B ,∵sin A ≠0,∴sin B =cos B ,∵B ∈(0,π),∴B =π4,故①正确;∵|a ·b |=||a |·|b |·cos 〈a ,b 〉|=|a |·|b |,∴|cos 〈a ,b 〉|=1,∴a 与b 同向或反向,∴存在实数λ,使b =λa ,故②正确;由于函数y =sin x 的图象与直线y =x 有且仅有一个交点,故③正确;∵(a 3-3b )-(b 3-3a )=(a 3-b 3)+3(a -b )=(a -b )(a 2+ab +b 2+3)>0,∵a 2+ab +b 2+3>0,∴a -b >0,∴a >b ,故④正确.16.(文)(2013·福建文,16)设S ,T 是R 的两个非空子集,如果存在一个从S 到T 的函数y =f (x )满足:(1)T ={f (x )|x ∈S };(2)对任意x 1,x 2∈S ,当x 1<x 2时,恒有f (x 1)<f (x 2), 那么称这两个集合“保序同构”.现给出以下3对集合: ①A =N ,B =N *;②A ={x |-1≤x ≤3},B ={x |-8≤x ≤10}; ③A ={x |0<x <1},B =R .其中,“保序同构”的集合对的序号是________.(写出所有“保序同构”的集合对的序号)[答案] ①②③[解析] 由(1)知T 是定义域为S 的函数y =f (x )的值域;由(2)知f (x )为增函数,因此对于集合A 、B ,只要能够找到一个增函数y =f (x ),其定义域为A ,值域为B 即可.对于①,A =N ,B =N *,可取f (x )=x +1,(x ∈A );对于②,A ={x |-1≤x ≤3},B ={x |-8≤x ≤10},可取f (x )=92x -72(x ∈A );对于③,A ={x |0<x <1},B =R ,可取f (x )=tan(x -12)π(x ∈A ).(理)(2015·安徽省示范高中联考)已知集合M ={(x ,y )|y =f (x )},若对任意P 1(x 1,y 1)∈M ,均不存在P 2(x 2,y 2)∈M ,使得x 1x 2+y 1y 2=0成立,则称集合M 为“好集合”,给出下列五个集合:①M ={(x ,y )|y =1x };②M ={(x ,y )|y =ln x }; ③M ={(x ,y )|y =14x 2+1};④M ={(x ,y )|(x -2)2+y 2=1}; ⑤M ={(x ,y )|x 2-2y 2=1}.其中所有“好集合”的序号是________.(写出所有正确答案的序号) [答案] ①④⑤[解析] x 1x 2+y 1y 2=0⇒OP 1→·OP 2→=0⇒OP 1→⊥OP 2→(O 为坐标原点),即OP 1⊥OP 2.若集合M 里存在两个元素P 1,P 2,使得OP 1⊥OP 2,则集合M 不是“好集合”,否则是. ①曲线y =1x 上任意两点与原点连线夹角小于90°(同一支上)或大于90°(两支上),集合M里不存在两个元素P 1,P 2,使得OP 1⊥OP 2,则集合M 是“好集合”;②如图,函数y =ln x 的图象上存在两点A ,B ,使得OA ⊥OB .所以M 不是“好集合”;③过原点的切线方程为y =±12x ,两条切线的夹角大于90°,集合M 里存在两个元素P 1,P 2,使得OP 1⊥OP 2,则集合M 不是“好集合”;④切线方程为y =±33x ,夹角为60°,集合M 里不存在两个元素P 1,P 2,使得OP 1⊥OP 2,则集合M 是“好集合”;⑤双曲线x 2-2y 2=1的渐近线方程为y =±22x ,两条渐近线的夹角小于90°,集合M 里不存在两个元素P 1,P 2,使得OP 1⊥OP 2,则集合M 是“好集合”.三、解答题(本大题共6个小题,共74分,解答应写出文字说明,证明过程或演算步骤.) 17.(本小题满分12分)(2015·重庆南开中学月考)已知集合A ={x |x 2-5x +4≤0},集合B ={x |2x 2-9x +k ≤0}.(1)求集合A .(2)若B ⊆A ,求实数k 的取值范围.[解析] (1)∵x 2-5x +4≤0,∴1≤x ≤4,∴A =[1,4]. (2)当B =∅时,Δ=81-8k <0,求得k >818.∴当B ≠∅时,2x 2-9x +k =0的两根均在[1,4]内, 设f (x )=2x 2-9x +k ,则⎩⎪⎨⎪⎧81-8k ≥0,f (1)≥0,f (4)≥0,解得7≤k ≤818.综上,k 的取值范围为[7,+∞).18.(本小题满分12分)(文)(2015·重庆南开中学月考)已知命题p :关于x 的方程x 2-mx -2=0在x ∈[0,1]有解;命题q :f (x )=log 2(x 2-2mx +12)在x ∈[1,+∞)单调递增;若¬p 为真命题,p ∨q 是真命题,求实数m 的取值范围.[解析] 设f (x )=x 2-mx -2,∵关于x 的方程x 2-mx -2=0在x ∈[0,1]有解,f (0)=-2<0,∴f (1)≥0,解得m ≤-1,由命题q 得x 2-2mx +12>0,在区间[1,+∞)上恒成立,且函数y =x 2-2mx +12,在区间[1,+∞)上单调递增,根据x 2-2mx +12>0,在区间[1,+∞)上恒成立,得m <34,由函数y =x 2-2mx +12>0,在区间[1,+∞)上单调递增,得m ≤1,∴由命题q 得:m <34, ∵¬p 为真命题,p ∨q 是真命题,得到p 假q 真, ∴m ∈(-1,34).∴实数m 的取值范围是(-1,34).(理)(2015·山东滕州一中检测)设命题p :函数f (x )=(a -32)x 是R 上的减函数,命题q :函数g (x )=x 2-4x +3,x ∈[0,a ]的值域为[-1,3],若“p 且q ”为假命题,“p 或q ”为真命题,求实数a 的取值范围.[解析] 命题p 真⇔0<a -32<1⇔32<a <52,命题q 真⇔2≤a ≤4,“p 且q ”为假,“p 或q ”为真,则p ,q 一真一假, 若p 真q 假,得32<a <2,若p 假q 真,得52≤a ≤4.综上所述,a 的取值范围为{a |32<a <2或52≤a ≤4}.19.(本小题满分12分)(2015·沈阳市东北育才中学一模)已知幂函数f (x )=(m -1)2xm 2-4m +2在(0,+∞)上单调递增,函数g (x )=2x -k .(1)求m 的值;(2)当x ∈[1,2]时,记f (x ),g (x )的值域分别为集合A ,B ,若A ∪B =A ,求实数k 的取值范围.[解析] (1)依题意得:(m -1)2=1,∴m =0或m =2, 当m =2时,f (x )=x-2在(0,+∞)上单调递减,与题设矛盾,舍去,∴m =0.(2)由(1)知f (x )=x 2,当x ∈[1,2]时,f (x ),g (x )单调递增,∴A =[1,4],B =[2-k,4-k ],∵A ∪B =A ,∴B ⊆A ,∴⎩⎪⎨⎪⎧2-k ≥1,4-k ≤4,∴0≤k ≤1.20.(本小题满分12分)(文)(2015·东北育才中学一模)已知函数f (x )=lg[(a 2-1)x 2+(a +1)x +1],设命题p :“f (x )的定义域为R ”;命题q :“f (x )的值域为R ”.(1)分别求命题p 、q 为真时实数a 的取值范围;(2)¬p 是q 的什么条件?请说明理由.[解析] (1)命题p 为真,即f (x )的定义域是R ,等价于(a 2-1)x 2+(a +1)x +1>0恒成立,等价于a =-1或⎩⎪⎨⎪⎧a 2-1>0,Δ=(a +1)2-4(a 2-1)<0. 解得a ≤-1或a >53,∴实数a 的取值范围为(-∞,-1]∪(53,+∞).命题q 为真,即f (x )的值域是R ,等价于u =(a 2-1)x 2+(a +1)x +1的值域⊇(0,+∞),等价于a =1或⎩⎪⎨⎪⎧a 2-1>0,Δ=(a +1)2-4(a 2-1)≥0. 解得1≤a ≤53.∴实数a 的取值范围为[1,53].(2)由(1)知,¬p :a ∈(-1,53];q :a ∈[1,53].而(-1,53] [1,53],∴¬p 是q 的必要而不充分条件.(理)(2014·马鞍山二中期中)设命题p :f (x )=2x -m 在区间(1,+∞)上是减函数;命题q :x 1,x 2是方程x 2-ax -2=0的两个实根,且不等式m 2+5m -3≥|x 1-x 2|对任意的实数a ∈[-1,1]恒成立,若(¬p )∧q 为真,试求实数m 的取值范围.[解析] 对命题p :x -m ≠0,又x ∈(1,+∞),故m ≤1,对命题q :|x 1-x 2|=(x 1+x 2)2-4x 1x 2=a 2+8对a ∈[-1,1]有a 2+8≤3, ∴m 2+5m -3≥3⇒m ≥1或m ≤-6. 若(¬p )∧q 为真,则p 假q 真,∴⎩⎪⎨⎪⎧m >1,m ≥1或m ≤-6,∴m >1. 21.(本小题满分12分)(2014·河北冀州中学期中)设集合A 为函数y =ln(-x 2-2x +8)的定义域,集合B 为函数y =x +1x +1的值域,集合C 为不等式(ax -1a )(x +4)≤0的解集.(1)求A ∩B ;(2)若C ⊆∁R A ,求a 的取值范围.[解析] (1)由于-x 2-2x +8>0,解得A =(-4,2),又y =x +1x +1=(x +1)+1x +1-1,当x +1>0时,y ≥2(x +1)·1x +1-1=1;当x +1<0时,y ≤-2(x +1)·1x +1-1=-3.∴B =(-∞,-3]∪[1,+∞), ∴A ∩B =(-4,-3]∪[1,2).(2)∵∁R A =(-∞,-4]∪[2,+∞),由(ax -1a)(x +4)≤0,知a ≠0, 当a >0时,由(ax -1a )(x +4)≤0,得C =[-4,1a 2],不满足C ⊆∁R A ; 当a <0时,由(ax -1a )(x +4)≤0,得C =(-∞,-4]∪[1a 2,+∞),欲使C ⊆∁R A ,则1a 2≥2, 解得:-22≤a <0或0<a ≤22, 又a <0,所以-22≤a <0, 综上所述,所求a 的取值范围是[-22,0). 22.(本小题满分14分)(文)(2015·湖北教学合作联考)已知集合U =R ,集合A ={x |(x -2)(x-3)<0},函数y =lg x -(a 2+2)a -x的定义域为集合B . (1)若a =12,求集合A ∩(∁U B ); (2)命题p :x ∈A ,命题q :x ∈B ,若q 是p 的必要条件,求实数a 的取值范围.[解析] (1)集合A ={x |2<x <3},因为a =12. 所以函数y =lg x -(a 2+2)a -x =lg x -9412-x ,由x -9412-x >0, 可得集合B ={x |12<x <94}. ∁U B ={x |x ≤12或x ≥94}, 故A ∩(∁U B )={x |94≤x <3}. (2)因为q 是p 的必要条件等价于p 是q 的充分条件,即A ⊆B ,由A ={x |2<x <3},而集合B 应满足x -(a 2+2)a -x>0, 因为a 2+2-a =(a -12)2+74>0, 故B ={x |a <x <a 2+2},依题意就有:⎩⎪⎨⎪⎧a ≤2a 2+2≥3, 即a ≤-1或1≤a ≤2,所以实数a 的取值范围是(-∞,-1]∪[1,2].(理)(2015·湖北省百所重点中学联考)已知函数f (x )=mx +n x 2+2(m ≠0)是定义在R 上的奇函数. (1)若m >0,求f (x )在(-m ,m )上递增的充要条件;(2)若f (x )≤sin θcos θ+cos 2θ+2-12对任意的实数θ和正实数x 恒成立,求实数m 的取值范围.[解析] (1)∵函数f (x )=mx +n x 2+2(m ≠0)是定义在R 上的奇函数.∴f (0)=0,即n 2=0, ∴n =0,∴f (x )=mx x 2+2. ∴f ′(x )=m (x 2+2)-mx ·2x (x 2+2)2=-m (x 2-2)(x 2+2)2, ∵m >0,∴-m <0,由f ′(x )>0可得x 2-2<0,解得-2<x <2,即f (x )的递增区间是(-2,2),由题意只需(-m ,m )⊆(-2,2),∴0<m ≤2,∴f (x )在(-m ,m )上递增的充要条件是0<m ≤ 2.(2)设g (x )=sin θcos θ+cos 2θ+2-12,∵f (x )≤sin θcos θ+cos 2θ+2-12对任意的实数θ和正实数x 恒成立,∴f (x )≤g (x )min 恒成立,∵g (x )=sin θcos θ+cos 2θ+2-12=12sin2θ+1+cos2θ2+2-12=12sin2θ+12cos2θ+2=22sin(2θ+π4)+2,∴g (x )min =-22+2=22,∴只需f (x )≤22,即mx x 2+2≤22, ∵x >0,∴只需m x +2x ≤22,即m ≤22(x +2x )恒成立,而22(x +2x )≥22×22=2,当且仅当x =2时取得最小值2,∴m ≤2,又m ≠0,∴实数m 的取值范围是(-∞,0)∪(0,2].。