大作业答案,1质点运动学09
大学物理上学习指导作业参考答案
m1
解:因绳子质量不计,所以环受到的摩擦力在数值上等于绳子张力
T
.设
m2
相对地面的加速度为
a
2
,取向上为正;m1
相对地面的加速
度为 a1(即绳子的加速度),取向下为正.
1分
解得
m1g T m1a1
T m2 g m2a2
a2 a1 a2
a1
(m1
m2 )g m1 m2
m2a2
T (2g a2 )m1m2 m1 m2
解: 设人到船之间绳的长度为 l ,此时绳与水面成 角,由图可知
l2 h2 s2
将上式对时间 t 求导,得 2l dl 2s ds dt dt
题 1-4 图
根据速度的定义,并注意到 l , s 是随 t 减少的,
∴
v绳
dl dt
ห้องสมุดไป่ตู้
v0 , v船
ds dt
即
v船
ds dt
l s
dl dt
l s
EKB=
1 2
mv
2 x
1 2
mv
2 y
1 2
ma 2 2
2分
(2) F maxi may j = ma 2 cos t i mb 2 sin t j
2分
由 A→B
Wx
0 a
Fx dx
y2=h+v2y
t2-
1 2
gt
2 2
3分 ⑤
⑥
落地时 y2 =0,可得
t2 =4 s , t2=-1 s(舍去)
故
x2=5000 m
3分
l
v0
v
m M
4、质量为 M=1.5 kg 的物体,用一根长为 l=1.25 m 的细绳悬挂在天花板 上.今有一质量为 m=10 g 的子弹以 v0=500 m/s 的水平速度射穿物体,刚穿出
大学物理大作业答案
第1章 质点运动学§1.3 用直角坐标表示位移、速度和加速度一.选择题和填空题1. (B)2. (B)3. 8 m10 m4. ()[]t t A tωβωωωββsin 2cos e22 +--()ωπ/1221+n (n = 0, 1, 2,…) 5. h 1v /(h 1-h 2)二.计算题1解: (1) 5.0/-==∆∆t x v m/s(2) v = d x /d t = 9t - 6t 2 v (2) =-6 m/s (3) S = |x (1.5)-x (1)| + |x (2)-x (1.5)| = 2.25 m2解: =a d v /d t 4=t ,d v 4=t d t⎰⎰=vv 0d 4d tt tv=2t 2 v=dx/dt=2t 2t t x txx d 2d 020⎰⎰=x 2=t 3 /3+x 0 (SI)§1.5 圆周运动的角量描述 角量与线量的关系一.选择题和填空题 1. (D) 2. (C)3. 16R t 2 4rad /s 24. -c(b -ct )2/R二.计算题1. 解: ct b t S +==d /d v c t a t ==d /d v ()R ct b a n /2+=根据题意: a t = a n 即 ()R ct b c /2+=解得 cbc R t -=§1.6 不同参考系中的速度和加速度变换定理简介一.选择题和填空题1. (C)2. (B)3. (A)4.0321=++v v v ϖϖϖ二.计算题1.解:选取如图所示的坐标系,以V ϖ表示质点的对地速度,其x 、y 方向投影为:u gy u V x x +=+=αcos 2v ,αsin 2gy V y y ==v当y =h 时,V ϖ的大小为: ()2cos 222222αgh u gh uy x ++=+=V V VV ϖ的方向与x 轴夹角为γ,ugh gh xy +==--ααγcos 2sin 2tg tg 11V V第2章 牛顿定律§2.3 牛顿运动定律的应用一.选择题和填空题 1. (C) 2. (C) 3. (E)4. l/cos 2θ5. θcos /mgθθcos sin gl二.计算题1. 解:质量为M 的物块作圆周运动的向心力,由它与平台间的摩擦力f ϖ和质量为m 的物块对它的拉力F ϖ的合力提供.当M 物块有离心趋势时,f ϖ和F ϖ的方向相同,而当M 物块有向心运动趋势时,二者的方向相反.因M 物块相对于转台静止,故有F + f max =M r max ω2 2分 F - f max =M r min ω2 2分m 物块是静止的,因而F = m g 1分 又 f max =μs M g 1分 故2.372max =+=ωμM Mgmg r s mm 2分 4.122min=-=ωμM Mg mg r s mm 2分γ v ϖ2. 解:球A 只受法向力N ϖ和重力g m ϖ,根据牛顿第二定律法向: R m mg N /cos 2v =-θ ① 1分 切向: t ma mg =θsin ② 1分由①式可得 )/cos (2R g m N v +=θ 1分 根据牛顿第三定律,球对槽压力大小同上,方向沿半径向外. 1分 由②式得 θsin g a t = 1分三.理论推导与证明题 证:小球受力如图,根据牛顿第二定律tm ma F k mg d d vv ==--t mF k mg d /)(d =--v v初始条件: t = 0, v = 0.⎰⎰=-tt F)/m k mg 00d (d v -v v∴ k F mg mkt /)e1)((/---=v第3章 功和能§3.3 动能定理一.选择题和填空题 1. (B) 2. (C)3. 1.28×104 J4. 18 J 6 m/s二.计算题1. 解:用动能定理,对物体⎰⎰+==-402402d 610d 021x x x F m )(v 3分3210x x +==168解出 v =13 m/s 2分§3.4(1)势能一.选择题和填空题1.(C)2. 20kx2021kx -gm ϖxf ϖFϖ a ϖ2021kx3. R GmM 32RGmM 3-4. 保守力的功与路径无关W = -ΔE P二.计算题1. 解:(1) 外力做的功=31 J 1分(2) 设弹力为F ′= 5.34 m/s 1分(3) 此力为保守力,因为其功的值仅与弹簧的始末态有关. 2分§3.4(2)机械能守恒定律一.选择题和填空题1. (C)2.)(mr k )2(r k -二.计算题1. (1)建立如图坐标.某一时刻桌面上全链条长为y ,则摩擦力大小为g lymf μ= 1分 摩擦力的功 ⎰⎰--==00d d a l a l f y gy lmy f W μ 2分=022a l y l mg -μ =2)(2a l lmg--μ 2分(2)以链条为对象,应用质点的动能定理 ∑W =222121v v m m -其中 ∑W = W P +W f ,v 0 = 0 1分W P =⎰la x P d =la l mg x x l mg la 2)(d 22-=⎰ 2分xyal -a⎰⎰⋅+==21d )4.388.52(d 2x x xx x xF W ρρ⎰⎰⋅=-==1212d d 21'2x x x x Wx F x F m ρρv 3分3分由上问知 la l mg W f 2)(2--=μ所以222221)(22)(v m a l l mg l a l mg =---μ 得 []21222)()(a l a l lg ---=μv 2分 2. 解:把卸料车视为质点.设弹簧被压缩的最大长度为l ,劲度系数为k .在卸料车由最高点下滑到弹簧压缩最大这一过程中,应用功能原理有h G kl h G 12121sin 2.0-=-α ① 2分对卸料车卸料后回升过程应用功能原理,可得:22221sin 2.0kl h G h G -=-α ② 2分由式①和②联立解得: 372.030sin 2.030sin 21=-︒+︒=G G 1分第4章 冲量和动量§4.2 质点系的动量定理一.选择题和填空题 1. (D) 2. (C)3. 18 N ·s二.计算题1. 解:设在某极短的时间t ∆内落在传送带B 上矿砂的质量为m ,即m=q m t ∆,这时矿砂动量的增量为(参看附图) 图1分12v v v ϖϖϖm m m -=∆)( 1212221s m kg 98.375cos 2)(-⋅⋅∆=︒-+=∆t q m m m v v v v v ϖ 2分设传送带作用在矿砂上的力为F ϖ,根据动量定理)(v ϖϖm t F ∆=∆于是 N 2.213.98/)(==∆∆=m q t m F v ϖϖ 2分方向:︒==︒∆2975θ,sin sin )(θm m 2v v ϖϖ 2分 由牛顿第三定律,矿砂作用在传送带B 上的(撞击)力与F ϖ大小相等方向相反,即等于2.21 N ,偏离竖直方向1︒,指向前下方. 1分§4.3 质点系动量守恒定律一.选择题和填空题 1. (C)2. 4.33 m/s ;30︒15︒θ1v ϖm )(v ϖm ∆ 2v ϖm与A 原先运动方向成 -30° 3.二.计算题1. 解:这个问题有两个物理过程:第一过程为木块M 沿光滑的固定斜面下滑,到达B 点时速度的大小为θsin gl 21=v 1分方向:沿斜面向下第二个过程:子弹与木块作完全非弹性碰撞.在斜面方向上,内力的分量远远大于外力,动量近似守恒,以斜面向上为正,则有V v v )(cos M m M m +=-1θ 3分Mm gl M m +-=θθsin cos 2v V 1分2. 解:(1) 因穿透时间极短,故可认为物体未离开平衡位置.因此,作用于子弹、物体系统上的外力均在竖直方向,故系统在水平方向动量守恒.令子弹穿出时物体的水平速度为v '有 m v 0 = m v +M v 'v ' = m (v 0 - v )/M =3.13 m/s 2分 T =Mg+M v 2/l =26.5 N 2分(2) s N 7.40⋅-=-=∆v v m m t f (设0v ρ方向为正方向) 2分负号表示冲量方向与0v ϖ方向相反. 2分第5章 刚体力学基础 动量矩§5.2 力矩 刚体绕定轴转动微分方程量一.选择题和填空题 1. (C) 2. (B) 3.(B)4. 6.54 rad / s 24.8 s5. 62.51.67s6. 0.25 kg ·m 2二.计算题1. 解:(1) ∵ mg -T =ma 1分TR =J β 2分 a =R β 1分 ∴ β = mgR / (mR 2+J )()R M m mgMR mR mgR +=+=222122 =81.7 rad/s 2 1分 方向垂直纸面向外. 1分211m m t F +∆22211m t F m m t F ∆∆++(2) ∵ βθωω2202-=当ω=0 时, rad 612.0220 ==βωθ 物体上升的高度h = R θ = 6.12×10-2 m 2分 (3)==βθω210.0 rad/s方向垂直纸面向外. 2分2. 解:(1) 0=ω 0+β tβ=-ω 0 / t =-0.50 rad ·s -2 2分 (2) M r =ml 2β / 12=-0.25 N ·m 2分 (3) θ10=ω 0t +21β t 2=75 rad 1分§5.3 绕定轴转动刚体的动能 动能定理一.选择题和填空题 1. (D) 2. (A) 3.(D)4. 6π rad/s 237 J5. 角动量gl mM 334二.计算题1.解:选泥团和杆为系统,在打击过程中,系统所受外力对O 轴的合力矩为零,对定轴O 的角动量守恒,设刚打击后两者一起摆起的角速度为ω,则有 1分ωJ lm lm +=v v 21210 ① 2分其中 2/l ⋅=ωv ② 1分在泥团、杆上摆过程中,选杆、泥团、地球为系统,有机械能守恒.当杆摆到最大角度θ 时有()()222121cos 121ωθJ m l g m M +=-+v ③ 3分联立解以上三式可得()()⎥⎦⎤⎢⎣⎡++-=-gl M m m M m 4331cos 221v θ 3分2.解:(1) 将转台、砝码、人看作一个系统,过程中人作的功W 等于系统动能之增量: W =∆E k =212210222204)21(214)21(21n ml J n ml J π+-π+2 4分 这里的J 0是没有砝码时系统的转动惯量.(2) 过程中无外力矩作用,系统的动量矩守恒:2π(J 0+2121ml ) n 1 = 2π (J 0+2221ml ) n 2 ∴ ()()1222212102n n n l n l m J --= 4分(3) 将J 0代入W 式,得 ()2221212l l n mn W -π= 2分T Tmga§5.4 动量矩和动量矩守恒定律一.选择题和填空题 1. (C) 2. (B) 3.(C) 4.(D)5. 031ω6. ()212mR J mr J ++ω 7. ()l m M /3460+v二.计算题1. 解:将杆与两小球视为一刚体,水平飞来小球与刚体视为一系统.由角动量守恒得 1分ωJ l m lm +-=3223200v v (逆时针为正向) ① 2分 又 22)3(2)32(lm l m J += ② 1分将②代入①得 l230v =ω 1分2. 解:(1) 设当人以速率v 沿相对圆盘转动相反的方向走动时,圆盘对地的绕轴角速度为ω,则人对与地固联的转轴的角速度为R R v v221-=-='ωωω ① 2分 人与盘视为系统,所受对转轴合外力矩为零,系统的角动量守恒. 1分设盘的质量为M ,则人的质量为M / 10,有:ωωω'⎪⎭⎫ ⎝⎛+=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+22022211021211021R M MR R M MR ② 2分 将①式代入②式得:R2120v+=ωω ③ 1分(2) 欲使盘对地静止,则式③必为零.即ω0 +2v / (21R )=0 2分 得: v =-21R ω0 / 2 1分式中负号表示人的走动方向与上一问中人走动的方向相反,即与盘的初始转动方向一致.1分3. 解:(1) 角动量守恒:ω⎪⎭⎫ ⎝⎛'+='2231l m ml l m v 2分∴l m m m ⎪⎭⎫ ⎝⎛'+'=31vω=15.4 rad ·s -1 2分(2) -M r =(231ml +2l m ')β 2分0-ω 2=2βθ 2分∴ rM l m m 23122ωθ⎪⎭⎫ ⎝⎛'+==15.4 rad 2分答案 第六章 振动§6.1-1简谐振动 振幅 周期和频率 相位1-2.BB3. 1.2 s 1分; -20.9 cm/s 2分.4. 0.05 m 2分; -0.205π(或-36.9°)2分.5. )212cos(π-πT t A 2分; )312cos(π+πT t A 2分.二计算题1. 解: (1) v m = ωA ∴ω = v m / A =1.5 s -1∴ T = 2π/ω = 4.19 s 3分(2) a m = ω2A = v m ω = 4.5×10-2m/s 2 2分(3) π=21φ x = 0.02)215.1cos(π+t (SI) 3分 2. 解:(1) 1s 10/-==m k ω 1分, 63.0/2=π=ωT s 1分(2) A = 15 cm ,在 t = 0时,x 0 = 7.5 cm ,v 0 < 0 由 2020)/(ωv +=x A 得 3.12020-=--=x A ωv m/s 2分π=-=-31)/(tg 001x ωφv 或 4π/3 2分;∵ x 0 > 0 ,∴ π=31φ(3) )3110cos(10152π+⨯=-t x (SI) 2分§6.1-2简谐运动的能量1-3:DBD4. b ,f 2分; a ,e 2分.5. 9.90×102 J 3分§9-3旋转矢量1-6:BBBBCA7. π 1分; - π /2 2分; π/3. 2分.8. 10 cm 1分; (π/6) rad/s 1分; π/3 1分. 二.计算题1. 解:旋转矢量如图所示. 图3分由振动方程可得 π21=ω,π=∆31φ 1分667.0/=∆=∆ωφt s 1分2. 解:(1) 设振动方程为 )cos(φω+=t A xx (m) ω ωπ/3π/3t = 0 t0.12 0.24 -0.12 -0.24 OA ϖA ϖ由曲线可知 A = 10 cm , t = 0,φcos 1050=-=x ,0sin 100<-=φωv 解上面两式,可得 φ = 2π/3 2分由图可知质点由位移为 x 0 = -5 cm 和v 0 < 0的状态到x = 0和 v > 0的状态所需时间t = 2 s ,代入振动方程得 )3/22cos(100π+=ω(SI) 则有2/33/22π=π+ω,∴ ω = 5 π/12 2分 故所求振动方程为:)3/212/5cos(1.0π+π=t x (SI) 1分 3. 解:依题意画出旋转矢量图3分。
大学物理上 练习册 第1章《质点运动学》答案
第1章 质点运动学一、选择题1(D),2(B ),3(D),4(D),5(B),6(D),7(D),8(E),9(B),10(B), 二、填空题(1). sin 2t A ωω,()ωπ+1221n (n = 0,1,… ), (1). 8 m ,10 m. (2). 23 m/s.(3). 16Rt 2 ,4 rad /s 2(5). 4t 3-3t 2 (rad/s),12t 2-6t (m/s 2). (6).331ct ,2ct ,c 2t 4/R . (7). 2.24 m/s 2,104o(8). )5c o s 5s i n (50j t i t+-m/s ,0,圆.(4). 02121v v +=kt(5). h 1v /(h 1-h 2)三、计算题1. 有一质点沿x 轴作直线运动,t 时刻的坐标为x = 4.5 t 2 – 2 t 3 (SI) .试求:(1) 第2秒内的平均速度; (2) 第2秒末的瞬时速度; (3) 第2秒内的路程.解:(1) 5.0/-==∆∆t x v m/s(2) v = d x /d t = 9t - 6t 2, v (2) =-6 m/s. (3) S = |x (1.5)-x (1)| + |x (2)-x (1.5)| = 2.25 m.2. (1) 对于在xy 平面内,以原点O 为圆心作匀速圆周运动的质点,试用半径r 、角速度ω和单位矢量i 、j表示其t 时刻的位置矢量.已知在t = 0时,y = 0, x = r , 角速度ω 如图所示;(2)由(1)导出速度 v 与加速度 a的矢量表示 式;(3) 试证加速度指向圆心.解:(1) j t r i t r j y i x rsin cos ωω+=+=(2) j t r i t r trcos sin d d ωωωω+-==vj t r i t r ta sin cos d d 22ωωωω--==v (3) ()r j t r i t r asin cos 22ωωωω-=+-=这说明 a 与 r方向相反,即a 指向圆心 。
大学物理规范作业上册答案全
a 16 2m / s
2
7
2.一艘行驶的快艇,在发动机关闭后,有一个与它的速
度方向相反的加速度,其大小与它的速度平方成正
比, 后行驶速度与行驶距离的关系。 解: 作一个变量代换
dv kv 2 ,式中k为正常数,求快艇在关闭发动机 dt
dv dv dx dv a kv v dt dx dt dx dv dv 得 : kv 到 kdx v dx
0.5tdt 3J 2 或 v2 5i 2 j , v4 5i 4 j 1 2 2 A Ek m(v4 v2 ) 3 J 2
4
18
2. 竖直悬挂的轻弹簧下端挂一质量为m的物体后弹簧伸 长y0且处于平衡。若以物体的平衡位置为坐标原点,相 应状态为弹性势能和重力势能的零点,则物体在坐标为 y时系统弹性势能与重力势能之和是【 D 】 m gy mgy2 m gy0 m gy2 0 mgy m gy (A) (B) (C) 2 (D) 2 2 y0 2y
m 1 AG dAG L gydy m gL 32 4 L 1 A外 AG mgL 32
0
m dAG gydy L
22
三、计算题 2 1.一质点在力 F 2 y i 3xj (SI)的作用下,从原点0 出发,分别沿折线路径0ab和直线路径0b运动到b点,
小不变,受到向心力作用,力的方向时刻变化
物体运动一周后,速度方向和大小不变,动量
变化量为0,冲量为0
11
二、填空题 1 .一物体质量为10 kg,受到方向不变的力F=30+40t (SI)作用,在开始的两秒内,此力冲量的大小等于 ________;若物体的初速度为10m·-1,方向与力方 s 140kg.m/s 24m/s 向相同,则在t =2s时物体速度的大小等于________。
大学物理课后习题答案(上)
1、26t i dt r d v+==,j i v 61+= ,j i tr r v 261331+=-=-∆ , j v v a 24131331=--=-2、0202212110v Kt v Ktdt v dv t Kv dt dv t v v +=⇒-⎰=⎰⇒-= 所以选(C ) 3、因为位移00==v r ∆,又因为,v 0≠∆0≠a 。
所以选(B )4、选(C )5、(1)由,mva Fv P ==dt dv a = ,所以:dt dv mv P =,⎰⎰=vtmvdv Pdt 0积分得:mPtv 2=(2)因为m Pt dtdx v 2==,即:dt m Ptdx tx ⎰⎰=002,有:2398t mP x = 练习二 质点运动学 (二)1、平抛的运动方程为2021gt y tv x ==,两边求导数有:gtv v v y x ==0,那么2220t g v v +=,222022t g v tg dt dv a t +==,=-=22t n a g a 2220tg v gv +。
2、 2241442s /m .a ;s /m .a n n ==3、 (B )4、(A )1、0232332223x kt x ;tk )t (a ;)k s (t +=== 2、0321`=++v v v 3、(B ) 4、(C )练习四 质点动力学(一)1、m x ;i v 912==2、(A )3、(C )4、(A )练习五 质点动力学(二)1、m'm muv )m 'm (v V +-+-=002、(A )3、(B )4、(C )5、(1)Ns v v m I v s m v t t v 16)(,3,/19,38304042=-===+-= (2)J mv mv A 17621212024=-=练习六、质点动力学(三)1、J 9002、)R R R R (m Gm A E 2121-=3、(B )4、(D )5、)(21222B A m -ω练习七 质点动力学(四)1、)m m (l Gm v 212212+=2、动量、动能、功3、(B )4、(B )练习八 刚体绕定轴的转动(一)1、πωω806000.,.解:(1)摩擦力矩为恒力矩,轮子作匀变速转动 因为00120180ωωωββωω..t -=-=⇒+=;同理有00260ωβωω.t =+=。
大学物理规范作业解答(全)
2.一小环可在半径为R的大圆环上无摩擦地滑动,而 大圆环能以其竖直直径为轴转动,如图所示。当圆 环以恒定角速度ω 转动,小环偏离圆环转轴而且相 对圆环静止时,小环所在处圆环半径偏离竖直方向 的角度θ B ( 为 ) (A) θ =π /2 (B)θ =arccos(g/Rω 2) (C)θ =arccos(Rω 2 / g)(D)须由小珠质量决定 解:环受力N的方向指向圆心,mg向下, 法向加速度在水平面内 N sin θ = ma n = ml ω2 N N cos θ = mg 由于 l=Rsinθ
大学物理规范作业
总(02)
牛顿运动定律 动量 角动量
一、选择题 1.站在电梯内的一个人,看到用细线连结的质量不同 的两个物体跨过电梯内的一个无摩擦的定滑轮而处于 “平衡”状态。由此,他断定电梯作加速运动,其加 速度为: (B) A)大小为g,方向向上; B)大小为g,方向向下; C)大小为g/2,方向向上;D)大小为g/2,方向向下; 分析:电梯中的观察者发现两个物体处于“失重”状 态,绳中张力为零。 两个物体只能相对地面作加速运动,并且加速度 一定为g,方向向下。 am地 am梯 a梯地 g 0 a梯地
an g
2 v0 x
an
a
v 曲率圆的半径一质点作直线运动,某时刻的瞬时速度为 v 2(m s )
,瞬时加速度为 a 2(m s 2 ) 。 则一秒后质点的 速度: (A) 等于零
1
(B)等于 2(m s 1 )
(C)等于 2(m s ) (D)不能确定
1
(D)
分析: 只告诉该时刻的瞬时加速度,并不知道加速度的 变化规律,所以一秒后质点的速度无法确定。
(完整版)大学物理01质点运动学习题解答
第一章 质点运动学一 选择题1. 下列说法中,正确的是:( )A. 一物体若具有恒定的速率,则没有变化的速度;B. 一物体具有恒定的速度,但仍有变化的速率;C. 一物体具有恒定的加速度,则其速度不可能为零;D. 一物体具有沿x 轴正方向的加速度而有沿x 轴负方向的速度。
解:答案是D 。
2. 长度不变的杆AB ,其端点A 以v 0匀速沿y 轴向下滑动,B 点沿x 轴移动,则B 点的速率为:( )A . v 0 sin θB . v 0 cos θC . v 0 tan θD . v 0 / cos θ 解:答案是C 。
简要提示:设B 点的坐标为x ,A 点的坐标为y ,杆的长度为l ,则222l y x =+ 对上式两边关于时间求导:0d d 2d d 2=+t y y t x x ,因v =tx d d ,0d d v -=t y ,所以 2x v -2y v 0 = 0 即 v =v 0 y /x =v 0tan θ所以答案是C 。
3. 如图示,路灯距地面高为H ,行人身高为h ,若人以匀速v 背向路灯行走,则人头影子移动的速度u 为( ) A.v H h H - B. v h H H - C. v H h D. v hH 解:答案是B 。
v x选择题2图灯s选择题3图简要提示:设人头影子到灯杆的距离为x ,则H h x s x =-,s hH H x -=, v hH H t s h H H t x u -=-==d d d d 所以答案是B 。
4. 某质点作直线运动的运动学方程为x =3t -5t 3 + 6 (SI),则该质点作A. 匀加速直线运动,加速度沿x 轴正方向.B. 匀加速直线运动,加速度沿x 轴负方向.C. 变加速直线运动,加速度沿x 轴正方向.D. 变加速直线运动,加速度沿x 轴负方向. ( )解:答案是D5. 一物体从某一确定高度以v 0的初速度水平抛出,已知它落地时的速度为v t ,那么它的运动时间是:( ) A. g 0v v -t B. g 20v v -t C. g 202v v -t D. g2202v v -t 解:答案是C 。
大学物理学第四版1质点运动学习题答案
1 习题11-1.已知质点位矢随时间变化的函数形式为(cos sin )r =R ωt i ωt j +其中w 为常量.求:(1)质点的轨道;(2)速度和速率。
解:(1) 由(cos sin )r=R ωt i ωt j + ,知:cos x R t w =,sin y R t w =消去t 可得轨道方程:222x y R+=∴质点的轨道为圆心在(0,0)处,半径为R 的圆;(2)由d r v dt = ,有速度:sin Rcos v R t i t jw w w w =-+ 而v v =,有速率:1222[(sin )(cos )]v R t R t R w w w w w =-+=。
1-2.已知质点位矢随时间变化的函数形式为24(32)r t i t j =++ ,式中r 的单位为m ,t 的单位为s 。
求:(1)质点的轨道;(2)从0=t 到1=t s 的位移;(3)0=t 和1=t s 两时刻的速度。
解:(1)由24(32)r t i t j =++,可知24x t =,32y t=+消去t 得轨道方程为:x =2(3)y -,∴质点的轨道为抛物线。
(2)从0=t 到1=t s 的位移为:j i j j i r r r243)54()0()1(+=-+=-=D (3)由d r v dt= ,有速度:82v t i j=+ 0=t 和1=t 秒两时刻的速度为:(0)2v j = ,(1)82v i j =+ 。
1-3.已知质点位矢随时间变化的函数形式为22r t i t j =+ ,式中r 的单位为m ,t 的单位为s.求:(1)任一时刻的速度和加速度;(2)任一时刻的切向加速度和法向加速度。
解:(1)由d rv dt =,有:22v t i j =+ ,d v a dt = ,有:2a i = ;(2)而v v =,有速率:12222[(2)2]21v t t =+=+∴t dv a dt =221t t =+,利用222t n a a a =+有:22221n t a a a t =-=+。
大学物理第一章质点运动学习题解详细完整
第一章 质点运动学1–1 描写质点运动状态的物理量是 ;解:加速度是描写质点状态变化的物理量,速度是描写质点运动状态的物理量,故填“速度”;1–2 任意时刻a t =0的运动是 运动;任意时刻a n =0的运动是 运动;任意时刻a =0的运动是 运动;任意时刻a t =0,a n =常量的运动是 运动;解:匀速率;直线;匀速直线;匀速圆周;1–3 一人骑摩托车跳越一条大沟,他能以与水平成30°角,其值为30m/s 的初速从一边起跳,刚好到达另一边,则可知此沟的宽度为 )m/s 102=g ;解:此沟的宽度为m 345m 1060sin 302sin 220=︒⨯==g R θv1–4 一质点在xoy 平面内运动,运动方程为t x 2=,229t y -=,位移的单位为m,试写出s t 1=时质点的位置矢量__________;s t 2=时该质点的瞬时速度为__________,此时的瞬时加速度为__________;解:将s t 1=代入t x 2=,229t y -=得2=x m,7=y ms t 1=故时质点的位置矢量为j i r 72+=m由质点的运动方程为t x 2=,229t y -=得质点在任意时刻的速度为m/s 2d d ==t x x v ,m/s 4d d t tx y -==v s t 2=时该质点的瞬时速度为j i 82-=v m/s质点在任意时刻的加速度为0d d ==ta x x v ,2m/s 4d d -==t a y y v s t 2=时该质点的瞬时加速度为j 4-m/s 2;1–5 一质点沿x 轴正向运动,其加速度与位置的关系为x a 23+=,若在x =0处,其速度m/s 50=v ,则质点运动到x =3m 处时所具有的速度为__________;解:由x a 23+=得x xt x x t 23d d d d d d d d +===v v v v 故x x d )23(d +=v v积分得⎰⎰+=305d )23(d x x v v v则质点运动到x =3m 处时所具有的速度大小为 61=v m/s=s ;1–6 一质点作半径R =的圆周运动,其运动方程为t t 323+=θ,θ以rad 计,t 以s 计;则当t =2s 时,质点的角位置为________;角速度为_________;角加速度为_________;切向加速度为__________;法向加速度为__________;解: t =2s 时,质点的角位置为=⨯+⨯=23223θ22rad由t t 323+=θ得任意时刻的角速度大小为36d d 2+==t tθω t =2s 时角速度为 =+⨯=3262ω27rad/s任意时刻的角速度大小为t t12d d ==ωα t =2s 时角加速度为 212⨯=α=24rad/s 2t =2s 时切向加速度为=⨯⨯==2120.1t αR a 24m/s 2t =2s 时法向加速度为=⨯==22n 270.1ωR a 729m/s 2;1–7 下列各种情况中,说法错误的是 ;A .一物体具有恒定的速率,但仍有变化的速度B .一物体具有恒定的速度,但仍有变化的速率C .一物体具有加速度,而其速度可以为零D .一物体速率减小,但其加速度可以增大解:一质点有恒定的速率,但速度的方向可以发生变化,故速度可以变化;一质点具有加速度,说明其速度的变化不为零,但此时的速度可以为零;当加速度的值为负时,质点的速率减小,加速度的值可以增大,所以A 、C 和D 都是正确的,只有B 是错误的,故选B;1–8 一个质点作圆周运动时,下列说法中正确的是 ;A .切向加速度一定改变,法向加速度也改变B .切向加速度可能不变,法向加速度一定改变C .切向加速度可能不变,法向加速度不变D .切向加速度一定改变,法向加速度不变解:无论质点是作匀速圆周运动或是作变速圆周运动,法向加速度a n 都是变化的,因此至少其方向在不断变化;而切向加速度a t 是否变化,要视具体情况而定;质点作匀速圆周运动时,其切向加速度为零,保持不变;当质点作匀变速圆周运动时,a t 值为不为零的恒量,但方向变化;当质点作一般的变速圆周运动时,a t 值为不为零变量,方向同样发生变化;由此可见,应选B;1–9 一运动质点某瞬时位于位置矢量),(y x r 的端点处,对其速度大小有四种意见: 1t r d d 2t d d r 3t s d d 422d d d d ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛t y t x 下述判断正确的是 ;A .只有1,2正确B .只有2,3正确C .只有3,4正确D .只有1,3正确 解:tr d d 表示质点到坐标原点的距离随时间的变化率,在极坐标系中为质点的径向速度,是速度矢量沿径向的分量;t d d r 表示速度矢量;t s d d 是在自然坐标系中计算速度大小的公式;22d d d d ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛t y t x 是在真角坐标系中计算速度大小的公式;故应选C;1–10 一质点在平面上运动,已知质点位置矢量的表示式为j i r 22bt at +=其中a 、b 为常量,则该质点作 ;A .匀速直线运动B .变速直线运动C .抛物线运动D .一般曲线运动解:由j i r 22bt at +=可计算出质点的速度为j i bt at 22+=v ,加速度为j i b a 22+=a ;因质点的速度变化,加速度的大小和方向都不变,故质点应作变速直线运动;故选B;1–11 一小球沿斜面向上运动,其运动方程为S =5+4t –t 2SI,则小球运动到最高点的时刻是 ;A .t =4sB .t =2sC .t =8sD .t =5s解:小球到最高点时,速度应为零;由其运动方程为S =5+4t –t 2,利用ts d d =v 得任意时刻的速度为 t 24-=v令024=-=t v ,得s 2=t故选B;1–12 如图1-1所示,小球位于距墙MO 和地面NO 等远的一点A ,在球的右边,紧靠小球有一点光源S 当小球以速度V 0水平抛出,恰好落在墙角O 处;当小球在空中运动时,在墙上就有球的影子由上向下运动,其影子中心的运动是 ;A .匀速直线运动B .匀加速直线运动,加速度小于gC .自由落体运动D .变加速运动解:设A 到墙之间距离为d ;小球经t 时间自A 运动至B;此时影子在竖直方向的位移为S ;t V x 0=, 221gt y = 根据三角形相似得d S x y //=,所以得影子位移为2/V gt x yd S == 由此可见影子在竖直方向作速度为02V g 的匀速直线运动;故选A;1–13 在相对地面静止的坐标系内,A 、B 二船都以2m/s 的速率匀速行驶,A 船沿x 轴正向,B 船沿y 轴正向;今在A 船上设置与静止坐标系方向相同的坐标系x 、y 方向单位矢量用i 、j 表示,那么在A 船上的坐标系中,B 船的速度以m/s 为单位为 ;A .j i 22+B .j i 22+-C .j i 22--D .j i 22+解:选B 船为运动物体,则B 船相对于地的速度为绝对速度j 2=v ,A 船相对于地的速度为牵连速度i 2=0v ,则在A 船的坐标系中,B 船相对于A 船的速度为相对速度v ';因v v v 0'+=,故j i 22+-='v ,因此应选B1–14 2004年1月25日,继“勇气”号之后,“机遇”号火星探测器再次成功登陆火星;在人类成功登陆火星之前,人类为了探测距离地球大约5103⨯km 的月球,也发射了一种类似四轮小车的月球探测器;它能够在自动导航系统的控制下行走,且每隔10s 向地球发射一次信号;探测器上还装着两个相同的减速器其中一个是备用的,这种减速器可提供的最大加速度为5m/s 2;某次探测器的自动导航系统出现故障,从而使探测器只能匀速前进而不再能自动避开障碍物;此时地球上的科学家必须对探测器进行人工遥控操作;下表为控制中心的显示屏的数据:图1-1y BM9:10:40 12 已知控制中心的信号发射与接收设备工作速度极快;科学家每次分析数据并输入命令最少需要3s;问: 1经过数据分析,你认为减速器是否执行了减速命令2假如你是控制中心的工作人员,应采取怎样的措施加速度需满足什么条件,才可使探测器不与障碍物相撞请计算说明;解:1设在地球和月球之间传播电磁波需时为0t ,则有s 10==c s t 月地从前两次收到的信号可知:探测器的速度为m/s 21032521=-=v 由题意可知,从发射信号到探测器收到信号并执行命令的时刻为9:10:34;控制中心第3次收到的信号是探测器在9:10:39发出的;从后两次收到的信号可知探测器的速度为m/s 2101232=-=v 可见,探测器速度未变,并未执行命令而减速;减速器出现故障;(2)应启用另一个备用减速器;再经过3s 分析数据和1s 接收时间,探测器在9:10:44执行命令,此时距前方障碍物距离s =2m;设定减速器加速度为a ,则有222≤=as v m,可得1≥a m/s 2,即只要设定加速度1≥a m/s 2,便可使探测器不与障碍物相撞;1–15 阿波罗16号是阿波罗计划中的第十次载人航天任务1972年4月16日,也是人类历史上第五次成功登月的任务;1972年4月27日成功返回;照片图1-2显示阿波罗宇航员在月球上跳跃并向人们致意;视频显示表明,宇航员在月球上空停留的时间是;已知月球的重力加速度是地球重力加速度的1/6;试计算宇航员在月球上跳起的高度;解:宇航员在月球上跳起可看成竖直上抛运动,由已知宇航员在空中停留的时间为,故宇航员从跳起最高处下落到月球表面的时间为t =,由于月球的重力加速度是地球的重力加速度的1/6,即g g 61M =,所以 m 43.0725.08.961212122M =⨯⨯⨯==t g h1–16 气球上吊一重物,以速度0v 从地面匀速竖直上升,经过时间t 重物落回地面;不计空气对物体的阻力,重物离开气球时离地面的高度为多少;解:方法一:设重物离开气球时的高度为x h ,当重物离开气球后作初速度为0v 的竖直上抛运动,选重物离开气球时的位置为坐标原点,则重物落到地面时满足图1-220021)(x x x gt h t h --=-v v 其中x h -表示向下的位移,0v x h 为匀速运动的时间,x t 为竖直上抛过程的时间,解方程得 gt t x 02v = 于是,离开气球时的离地高度可由匀速上升过程中求得,其值为)2()(000gt t t t h x x v v v -=-= 方法二:将重物的运动看成全程做匀速直线运动与离开气球后做自由落体运动的合运动;显然总位移等于零,所以0)(21200=--v v x h t g t 解得 )2(00g t t h x v v -=1–17 在篮球运动员作立定投篮时,如以出手时球的中心为坐标原点,作坐标系Oxy 如图1–3所示;设篮圈中心坐标为x ,y ,出手高度为H ,于的出手速度为0v ,试证明球的出手角度θ应满足⎥⎥⎦⎤⎢⎢⎣⎡+-±=)2(211tan 2022020v v v gx y g gx θ才能投入;证明:设出手后需用时t 入蓝,则有 θt t x x cos 0v v ==20221sin 21gt t gt t y y -=-=θv v 消去时间t ,得 θgx gx αx θgx θx y 22022022202tan 22tan cos 21tan v v v --=-= 图1-3整理得02tan tan 22022202=++-v v gx y θx θgx解之得⎥⎥⎦⎤⎢⎢⎣⎡+-±=)2(211tan 2022020v v v gx y g gx θ1–18 有一质点沿x 轴作直线运动,t 时刻的坐标为32254t t .x -=SI;试求:1第2s 内的平均速度;2第2s 末的瞬时速度;3第2s 内的路程;解:1将t =1s 代入32254t t .x -=得第1s 末的位置为m 5.225.41=-=x将t =2s 代入32254t t .x -=得第2s 末的位置为m 0.22225.4322=⨯-⨯=x则第2s 内质点的位移为0.5m 2.5m -m 0.212-==-=∆x x x第2s 内的平均速度-0.5m/s 10.5=-=∆∆=t x v 式中负号表示平均速的方向沿x 轴负方向;2质点在任意时刻的速度为269d d t t tx -==v 将s 2=t 代入上式得第2s 末的瞬时速度为 m/s 626292-=⨯-⨯=v式中负号表示瞬时速度的方向沿x 轴负方向;3由069d d 2=-==t t tx v 得质点停止运动的时刻为s 5.1=t ;由此计算得第1s 末到末的时间内质点走过的路程为m 875.05.25.125.15.4321=-⨯-⨯=s 第末到第2s 末的时间内质点走过的路程为m 375.10.25.125.15.4322=-⨯-⨯=s则第2s 内的质点走过的路程为m 25.2375.1875.021=+=+=s s s1–19 由于空气的阻力,一个跳伞员在空中运动不是匀加速运动;一跳伞员在离开飞机到打开降落伞的这段时间内,其运动方程为)e (/k t k t c b y -+-=SI,式中b 、c 和k 是常量,y 是他离地面的高度;问:1要使运动方程有意义,b 、c 和k 的单位是什么2计算跳伞员在任意时刻的速度和加速度;解:1由量纲分析,b 的单位为m,c 的单位为m/s,k 的单位为s;2任意时刻的速度为)e 1(d d /k t c ty -+-==v 当时间足够长时其速度趋于c -;任意时刻的加速度为k t kc t a /ed d -==v 当时间足够长时其加速度趋于零;1–20 一艘正在沿直线行驶的电艇,在发动机关闭后,其加速度方向与速度方向相反,大小与速度平方成正比,即2d d v v K t-=,式中K 为常量;试证明电艇在关闭发动机后又行驶x 距离时的速度为Kx -=e 0v v 其中0v 是发动机关闭时的速度; 证明:由2d d v v K t-=得 2d d d d d d v v v v K xt x x -== 即x K d d -=vv 上式积分为⎰⎰-=x x K 0d d 0v v v v 得 Kx -=e 0v v1–21 一质点沿圆周运动,其切向加速度与法向加速度的大小恒保持相等;设θ为质点在圆周上任意两点速度1v 与2v 之间的夹角;试证:θe 12v v =;证明:因R a 2n v =,ta d d t v =,所以 t R d d 2v v =dsv v d d = 即vv d d =R s 对上式积分⎰⎰=2d d 0v v v v s R s得 12ln v v =R s 12ln v v ==R s θ 所以 θe 12v v =1–22 长为l 的细棒,在竖直平面内沿墙角下滑,上端A 下滑速度为匀速v ,如图1-4所示;当下端B 离墙角距离为xx<l 时,B 端水平速度和加速度多大解:建立如图所示的坐标系;设A 端离地高度为y ;∆AOB 为直角三角形,有222l y x =+ 方程两边对t 求导得 0d d 2d d 2=+t y y t x x所以B 端水平速度为 t y x y t x d d d d -=v xy =v x x l 22-= B 端水平方向加速度为v 222d /d d /d d d x tx y t y x t x-=232v x l -=1–23 质点作半径为m 3=R 的圆周运动,切向加速度为2t ms 3-=a ,在0=t 时质点的速度为零;试求:1s 1=t 时的速度与加速度;2第2s 内质点所通过的路程;图1-4解:1按定义ta d d t v =,得 t a d d t =v ,两端积分,并利用初始条件,可得 ⎰⎰⎰==t t t a t a 0t 0t 0d d d v v t t a 3t ==v当s 1=t 时,质点的速度为 m/s 3=v方向沿圆周的切线方向;任意时刻质点的法线加速度的大小为2222n m/s 39t Rt R a ===v 任意时刻质点加速度的大小为242n 2t m/s 99t a a a +=+=任意时刻加速度的方向,可由其与速度方向的夹角θ给出;且有22t n 33tan t t a a ===θ 当s 1=t 时有24m/s 23199=⨯+=a ,1tan =θ注意到0t >a ;所以得︒=45θ2按定义ts d d =v ,得t s d d v =,两端积分可得 ⎰⎰⎰==t t t s d 3d d v故得经t 时间后质点沿圆周走过的路程为C t s +=223 其中C 为积分常数;则第2s 内质点走过的路程为:m 5.4)123()223()1()2(22=+⨯-+⨯=-=∆C C s s s1–24 一飞机相对于空气以恒定速率v 沿正方形轨道飞行,在无风天气其运动周期为T ;若有恒定小风沿平行于正方形的一对边吹来,风速为)1(<<=k k V v ;求飞机仍沿原正方形对地轨道飞行时周期要增加多少解:依题意,设飞机沿如图1-5所示的ABCD 矩形路径运动,设矩形每边长为l ,如无风时,依题意有 vl T 4= 1 图1-5当有风时,设风的速度如图1-5所示,则飞机沿AB 运动时的速度为v v v k V +=+,飞机从A 飞到B 所花时间为vv k l t +=1 2 飞机沿CD 运动时的速度为v v v k V -=-,飞机从C 飞到D 所花时间为vv k l t -=2 3 飞机沿BC 运动和沿DA 运动所花的时间是相同的,为了使飞机沿矩形线运动,飞机相对于地的飞行速度方向应与运动路径成一夹角,使得飞机速度时的速度v 在水平方向的分量等于v k -,故飞机沿BC 运动和沿DA 运动的速度大小为222v v k -,飞机在BC 和DA 上所花的总时间为22232v v k lt -= 4综上,飞机在有风沿此矩形路径运动所花的总时间,即周期为2223212vv v v v v k l k l k l t t t T -+-++=++=' 5 利用1式,5式变为)1(4)4()1(4)11(22222k k T k k T T --≈--+='飞机在有风时的周期与无风时的周期相比,周期增加值为43)1(4)4(222T k T k k T T T T =---≈'-=∆。
大学物理课后答案第1章质点运动学习题解答
大学物理课后答案第1章质点运动学习题解答-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN2第1章质点运动学习题解答1-1 如图所示,质点自A 点沿曲线运动到B 点,A 点和B 点的矢径分别为A r 和B r 。
试在图中标出位移r ∆和路程s ∆,同时对||r ∆和r ∆的意义及它们与矢径的关系进行说明。
解:r ∆和s ∆如图所示。
||r ∆是矢径增量的模||A B r r -,即位移的大小;r ∆是矢径模的增量A B A B r r r r -=-|||| ,即矢径长度的变化量。
1-2 一质点沿y 轴作直线运动,其运动方程为32245t t y -+=(SI )。
求在计时开始的头3s 内质点的位移、平均速度、平均加速度和所通过的路程。
解:32245t t y -+=,2624t v -=,t a 12-=)(18)0()3(m y y y =-=∆)/(63s m y v =∆= )/(183)0()3(2s m v v a -=-= s t 2=时,0=v ,质点作反向运动)(46|)2()3(|)0()2(m y y y y s =-+-=∆1-3 一质点沿x 轴作直线运动,图示为其t v -曲线图。
设0=t 时,m 5=x 。
试根据t v -图画3出:(1)质点的t a -曲线图;(2)质点的t x -曲线图。
解:⎪⎩⎪⎨⎧≤≤-≤≤+≤≤+-=)106( 5.775)62( 5.215)20( 2020t t t t t t v(1)dtdv a = ,可求得: ⎪⎩⎪⎨⎧≤≤-≤≤+≤≤+-=)106( 5.775)62( 5.215)20( 2020t t t t t t v质点的t a -曲线图如右图所示(2)dt dx v = ,⎰⎰=t x vdt dx 00, 可求得:20≤≤t 时,⎰⎰+-=tx dt t dx 05)2020(, 520102+-=t t x 62≤≤t 时,⎰⎰⎰+++-=t x dt t dt t dx 2205)5.215()2020(, 3015452-+=t t x 106≤≤t 时,⎰⎰⎰⎰-++++-=tx dt t dt t dt t dx 662205)5.775()5.215()2020(, 210754152-+-=t t x4⎪⎪⎪⎩⎪⎪⎪⎨⎧≤≤-+-≤≤-+≤≤+-=∴)106( 21075415)62( 301545)20( 52010222t t t t t t t t t x质点的t x -曲线图如右图所示。
大学物理第1章 质点运动学习题解答
第1章质点运动学习题解答1-9质点运动学方程为k j e ie r t t ˆ2ˆˆ22++=- .⑴求质点轨迹;⑵求自t=-1到t=1质点的位移。
解:⑴由运动学方程可知:1,2,,22====-xy z e y e x t t ,所以,质点是在z=2平面内的第一像限的一条双曲线上运动。
⑵j e e ie e r r r ˆ)(ˆ)()1()1(2222---+-=--=∆ j i ˆ2537.7ˆ2537.7+-=。
所以,位移大小:︒==∆∆=︒==∆∆=︒=-=∆∆==+-=∆+∆=∆900arccos ||arccos z 45)22arccos(||arccos y 135)22arccos(||arccos x ,22537.72537.7)2537.7()()(||2222r zr y r x y x rγβα轴夹角与轴夹角与轴夹角与1-10⑴k t j t R it R r ˆ2ˆsin ˆcos ++= ,R 为正常数,求t=0,π/2时的速度和加速度。
⑵k t j t i t r ˆ6ˆ5.4ˆ332+-= ,求t=0,1时的速度和加速度(写出正交分解式)。
解:⑴k j t R it R dt r d v ˆ2ˆcos ˆsin /++-== j R a k i R v iR a k j R v j t R i t R dt v d a t t t t ˆ|,ˆ2ˆ|,ˆ|,ˆ2ˆ|.ˆsin ˆcos /2/2/00-=+-=-=+=∴--======ππ ⑵kt j dt v d a k t j t i dt r d v ˆ36ˆ9/,ˆ18ˆ9ˆ3/2+-==+-== ; kj a k j i v j a i v t t t t ˆ36ˆ9|,ˆ18ˆ9ˆ3|,ˆ9|,ˆ3|1100+-=+-=-====== 1-12质点直线运动的运动学方程为x=acost,a 为正常数,求质点速度和加速度,并讨论运动特点(有无周期性,运动范围,速度变化情况等)解:t a dt dv a t a dt dx v t a x x x x cos /,sin /,cos -==-=== 显然,质点随时间按余弦规律作周期性运动,运动范围:a a a a v a a x a x x ≤≤-≤≤-≤≤-,,1-13图中a 、b 和c 表示质点沿直线运动三种不同情况下的x-t 图像,试说明每种运动的特点(即速度,计时起点时质点的位置坐标,质点位于坐标原点的时刻)t(s)解:质点直线运动的速度dt dx v /=,在x-t 图像中为曲线斜率。
工科物理大作业01-质点运动学
0101 质点运动学班号 学号 姓名 成绩一、选择题(在下列各题中,均给出了4个~5个答案,其中有的只有1个是正确答案,有的则有几个是正确答案,请把正确答案的英文字母序号填在题后的括号内)1.在下列关于质点速度的表述中,不可能出现的情况是:A .一质点具有恒定的速率,但却有变化的速度;B .一质点向前的加速度减少了,其前进速度也随之减少;C .一质点加速度值恒定,而其速度方向不断改变;D .一质点具有零速度,同时具有不为零的加速度。
( B )[知识点] 速度v 与加速度a 的关系。
[分析与解答] 速度v 和加速度a 是矢量,其大小或方向中任一项的改变即表示速度或加速度在变化,且当速度与加速度间的方向呈锐角时,质点速率增加,呈钝角时速率减少。
因为质点作匀速运动时速率不变,但速度方向时时在变化,因此,A 有可能出现,抛体运动(或匀速圆周运动)就是加速度值(大小)恒定,但速度方向不断改变的情形,故C 也有可能出现。
竖直上抛运动在最高点就是速度为零,但加速度不为零的情形,故D 也有可能出现。
向前的加速度减少了,但仍为正值,此时仍然与速度同方向,故速度仍在增大,而不可能减少,故选B 。
2. 在下列关于加速度的表述中,正确的是:A .质点沿x 轴运动,若加速度a < 0,则质点必作减速运动;B .质点作圆周运动时,加速度方向总是指向圆心;C .在曲线运动中,质点的加速度必定不为零;D .质点作曲线运动时,加速度方向总是指向曲线凹的一侧;E .若质点的加速度为恒失量,则其运动轨迹必为直线;F .质点作抛物运动时,其法向加速度n a 和切向加速度τa 是不断变化的,因此,加速度22τn a a a +=也是变化的。
( C 、D )图1-2[知识点] 加速度a 及运动性质判据[分析与解答] 因为判断作直线运动的质点作加速还是减速运动的判据是看a 和v 的方向关系,即a ,v 同向为加速运动,a ,v 反向则作减速运动,而不是只看a 的正负。
1质点运动学答案
质点运动学1.一质点在平面上运动,已知质点位置矢量的表示式为(其中a、b为常量),则该质点作()A.匀速直线运动.B.变速直线运动.C.抛物线运动.D.一般曲线运动.答案:B2对于沿曲线运动的物体,以下几种说法中哪一种是正确的:()A.切向加速度必不为零.B.法向加速度必不为零(拐点处除外).C.由于速度沿切线方向,法向分速度必为零,因此法向加速度必为零.D.若物体作匀速率运动,其总加速度必为零.E.若物体的加速度为恒矢量,它一定作匀变速率运动.答案:B3.一个质点在做匀速率圆周运动时()A.切向加速度改变,法向加速度也改变.B.切向加速度不变,法向加速度改变.C.切向加速度不变,法向加速度也不变.D.切向加速度改变,法向加速度不变.答案:B4.{一质点沿x方向运动,其加速度随时间变化关系为a= 3+2t(SI),如果初始时质点的速度v0为5 m/s,则当t为3s时,质点的速度v=_________________.}答案:23m/s5.{一辆作匀加速直线运动的汽车,在6s内通过相隔60 m远的两点,已知汽车经过第二点时的速率为15m/s,则(1)汽车通过第一点时的速率v1=___________________;(2)汽车的加速度a=___________________________.}答案: m/s| m/s26.{一质点作半径为 m的圆周运动,其角位置的运动学方程为:(SI)则其切向加速度为=_____________________.}答案: m/s27.{试说明质点作何种运动时,将出现下述各种情况:(1);__________________________________(2),a n=0;__________________________________a t、a n分别表示切向加速度和法向加速度。
}答案:变速率曲线运动|变速率直线运动8.一质点沿x轴运动,其加速度为a= 4t (SI),已知t=0时,质点位于=10 m处,初速度=0,试求其位置和时间的关系式。
1质点运动学大作业
大学物理作业(一)质点运动学与牛顿运动定律班级.姓名.学号.成绩.一、选择题【 】1. 质点作曲线运动,在时刻t 质点的位矢为r ,t 至(t +Δt )时间内的位移为r∆, 路程为Δs ,位矢大小的变化量为Δr ( 或称||r∆)。
根据上述情况,则必有(A) r∆= Δs = Δr(B) r ∆≠ Δs ≠ Δr ,当Δt →0 时有r d = d s ≠ d r (C) r∆≠ Δr ≠ Δs ,当Δt →0 时有rd = d r ≠ d s (D) r ∆≠ Δs ≠ Δr ,当Δt →0 时有rd = d r = d s【 】2. 如图所示,质点作匀速圆周运动,其半径为R ,从A 点出发,经半个圆周而到达B 点,则在下列表达式中,不正确的是(A) 速度增量0=vΔ,速率增量0=v Δ (B) 速度增量jv v 2-=Δ,速率增量0=v Δ (C) 位移大小R r 2||=Δ,路程R s π=(D) 位移i R r2-=Δ,路程R s π=【 】3. 一质点作曲线运动时,r表示位置矢量,s 表示路程,τa 表示切向加速度,下列表达式中正确的是(A) a dt dv =/ (B) v dt dr =/ (C) v dt ds =/(D) τa dt v d =/【 】4. 在下列关于质点运动的表述中,不可能出现的情况是(A) 某质点具有恒定的速率,但却有变化的速度 (B) 某质点向前的加速度减小了,其前进速度也随之减小 (C) 某质点加速度值恒定,而其速度方向不断改变 (D) 某质点具有零速度,同时具有不为零的加速度xyBA Av Bv【 】5.一质点在平面上运动,已知质点位置矢量的表示式为 j bt i at r22+=(其中a 、b 为常量),则该质点作(A) 匀速直线运动 (B) 变速直线运动 (C) 抛物线运动 (D)一般曲线运动 【 】6.质点沿轨道AB 作曲线运动,速率逐渐减小,图中哪一种情况正确地表示了质点在C 处的加速度?(A) (B) (C) (D)【 】7. 质点在平面上运动,若trt r d d ,0d d=不为零,则质点作(A) 圆周运动 (B) 匀速圆周运动(C) 匀变速圆周运动 (D) 曲线运动【 】8. 质点在平面上运动,若tt d d ,0d d vv =不为零,则质点作(A) 圆周运动 (B) 匀速圆周运动 (C) 曲线运动 (D) 匀速率曲线运动【 】9. 质点沿半径为R =1m 的圆轨道做圆周运动,其角位置与时间的关系为1212+=t θ(SI ),则质点在t =1s 时,其速度和加速度的大小分别是(A) 1m/s ,1m/s 2 (B) 1m/s ,2m/s 2 (C) 1m/s ,2m/s 2 (D) 2m/s ,2m/s 2【 】10. 假设物体沿着竖直面上圆弧形轨道下沿,如图所示,轨道是光滑的,在从A 至C 的下滑过程中,下面哪个说法是正确的(A) 它的加速度大小不变,方向永远指向圆心 (B) 它的速率均匀增加(C) 它的合外力大小变化,方向永远指向圆心 (D) 轨道支持力的大小不断增加aCABaC A B aCAB a CAB【 】11.如图所示,质量为m 的物体A 用平行于斜面的细线连结置于光滑的斜面上,若斜面向左方作加速运动,当物体开始脱离斜面时,它的加速度的大小为(A) g sin θ (B) g cos θ (C) g tan θ (D) g cot θ【 】12.一段路面水平的公路,转弯处轨道半径为R ,汽车轮胎与路面间的摩擦因数为μ,要使汽车不至于发生侧向打滑,汽车在该处的行驶速率(A) 不得小于gR μ (B) 必须等于gR μ(C) 不得大于gR μ (D) 还应由汽车的质量m 决定 【 】13. 在下列关于力与运动关系的叙述中,正确的是(A) 若质点所受合力的方向不变,则一定作直线运动 (B) 若质点所受合力的大小不变,则一定作匀加速直线运动 (C) 若质点所受合力恒定,肯定不会做曲线运动(D) 若质点从静止开始,所受合力恒定,则一定作匀加速直线运动【 】14. 一个圆锥摆的摆线长为l ,摆线与竖直方向的夹角恒为θ ,如图所示.则摆锤转动的周期为(A)g l(B) gl θcos (C) g l π2 (D) gl θπcos 2 【 】15. 一个质量为1m 的物体拴在长为1L 的轻绳上,绳的另一端绑在一个水平光滑桌面上的钉子上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一次作业 质点运动学
一、选择题
⒈ D ; ⒉C,D ;⒊ CDE ; ⒋ ACDF ; ⒌ F ; 6.B ; 7.B ; 8.C ; 9.C
二、填空题
⒈ j R i R
- ;
R 2;
2
R
π ; j i υυ+ ; υ2 ; 0 。
⒉ 23t 12t 9-+- ; 6t 12- ; s /3m ; m 2- ; 6m 。
⒊ 4
192
x y -= ; j i 114+ ; j i 82- ; j i 42- 。
⒋ 3-LT ; 2021kt +υ ; 3006
1
kt t x ++υ 。
⒌ t π2 ;π2 ; 222t π ; n t e t e
2222ππ+ 。
⒍ θs i n
g -; θυc o s
2
g 。
⒎ t ππ+10 ;π ;R π ;2)10(t R ππ+。
⒏ h
lu ≥
υ。
9. 1s ; 1m
三、 问答题
1. 答:运动方程:质点空间位置随时间变化的函数。
若已知质点的运动方程,就可以获得关于该质点在任意时刻的位置、速度、加速度、轨道等。
2. 答:r
∆ 表示位矢的模,即位移的大小,它反映
了r
的大小、方向两个因素的变化,即代表t ∆间隔内运动轨迹的弦长。
r ∆表示位移大小的增量,即12r r r
-=∆,它
只反映r
的大小变化。
如图所示:
四、计算题
1. 证明:(1)由题目知:x =A 1cosωt , y =A 2sinωt , 消去t 得轨迹方程:
122
2
212=+A y A x ,此为椭圆方程。
(2)j t A i t A t r
ωωωωυcos sin d d 21+-== j t A i t A t
a ωωωωυsin cos d d 2212--==
r j t A i t A 2212
)sin cos (ωωωω-=+-=
故a 与r
反向,即加速度指向椭圆中心。
(改这个题时,要注意矢量一定要有箭头)
(3)方法一:
t =0时,x =A 1, y =0, 即位于图中P 点,经过一个时间元dt , 由x =A 1cosωt, y =A 2sinωt ,可知 x >0,y >0,
即该质点位于坐标系第一象限,故可知该质点为逆时针方
向转动(这是本题判断的关键)。
则在M 点,a 与v
夹角为钝角,表明在M 点切
向加速度t a
的方向与速度v 的方向相反。
所以,质点在通过M 点时速率会减小。
方法二:
因为 t
r
v d d
=j ωt A i ωt A cos sin 21ωω+-=
j ωt A i ωt A a
sin cos 2212ωω--=
而 v a
⋅⋅--=)sin cos (2212j ωt A i ωt A ωω)cos sin (21j ωt A i ωt A ωω+-
)(cos sin 2
2213A A ωt ωt -=ω
由题意知,此时质点在通过图中第二象限的M 点时,有
0sin >ωt ,0cos <ωt ,且21A A >,0>ω
则 0<⋅v a
即当质点运动到M 点时,a 与v 夹角为钝角,表明在M 点切向加速度t a
的方向与速度v
的方向相反。
所以,质点在通过M 点时速率会减小。
(注意:本题可能还有其它做法,但关键是要判断运动到M 点时,质点速度的方向与加速度方向的关系)
2. 解:(1) υυ
B A t a -==d d t B A d d =-υ
υ
⎰⎰=---t t B A B A B 00d )
d(1υ
υ
υ
Bt A
B A -=-υ
ln
Bt e A B A -=-υ ⇒ )1(Bt e B A
--=υ (2))1(d d Bt e B
A t y --==
υ , t e B A
y Bt d )1(d --= t
Bt
y
B e
t B A y 0
)]([(d -+=
⎰
)]1(1
[-+=
-Bt e B t B A y )1(2-+=-Bt e B
A
t B A y
(注意:改本题时,都是标量运算,不会出现矢量运算或表示的。
因为一维运动就用其分量式表示或运算,学生在这里容易乱用矢量。
)
3. 解:t
a t d d υ=(学生在这里可能会写成t a t d d υ
=,这是一个
严重的概念错误,要纠正)
R
2
υ=
n a
θυ
υ
ctg d d 2==R
t a a n t
θυυctg d d 2
⋅=R t , t R d d c t g 2
=⋅υυθ ⎰⎰=⋅t 02d d ctg 0t R υυυ
υθ,t R =-⋅υ
υυθ0)1(ctg ,t R =+-⋅)1
1(ctg 0υυθ
t
R R
00ctg -υθυυ⋅=
4.解: (1)2012
128.1gt t y y -
++= 2021.02t t y y ++= (2) y 1=y 2
即 2
02
128.1gt t y -
++=201.02t t y ++ ⇒ t =0.6s
五、附加题
解:在半径为r 处取径向宽度dr 的环带状音轨,则其长度为2πrndr ,
对应的放音时间为dt =2πrn d r/v , 全部放音时间为: ⎰
⎰=
=2
1
2R R r d r n
dt T υ
π=
min 3.69)(212
2=-R R n υ
π (2)r =0.05m 时角速度: s r a d r
/2605
.03
.1==
=
υ
ω 角加速度: dt dr r r dt d dt d 2)(υυωβ-===
,由前已知: nr
dt dr πυ2= 于是:23-3
2
2
/103.312s rad nr
dt dr
r ⨯=-=-=πυυβ。