双导体棒在磁场中运动问题解析

合集下载

电磁感应中的双金属棒运动分析

电磁感应中的双金属棒运动分析

【电磁感应中的双金属棒运动分析】电磁感应现象中的双金属棒问题一般可以分为四种情况,具体分析如下。

一、两棒都只在安培力作用下运动的双金属棒问题。

1、两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为L 。

导轨上面横放着两根导体棒a 和b ,构成矩形回路,如图1所示.两根导体棒的质量皆为m ,电阻皆为R ,回路中其余部分的电阻可不计.在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B .设两导体棒均可沿导轨无摩擦地滑行.开始时,棒b 静止,棒a 有指向棒b 的初速度v 0.若两导体棒在运动中始终不接触,求:(1)在运动中产生的焦耳热最多是多少.(2)当a 棒的速度变为初速度的3/4时,b 棒的加速度是多少? 分析:(1)a 、b 两棒产生电动势和受力情况如图2所示。

a 、b 两棒分别在安培力作用下做变减速运动和变加速运动,最终达到共同速度,开始匀速运动。

由于安培力是变化的,故不能用功能关系克安W Q =求焦耳热;由于电流是变化的,故也不能用焦耳定律求解。

在从初始至两棒达到速度相同的过程中,由于两棒所受安培力等大反向,故总动量守恒,有mv mv20=根据能量守恒,整个过程中产生的总热量2022041)2(2121mvvm mvQ =-=(2)设a 棒的速度变为初速度的3/4时,b 棒的速度为v 1,则由动量守恒可知10043mv v mmv+=由于两棒产生的感应电动势方向相同,所以回路中的感应电动势1043BLv v BLE -=,感应电流为 RE I 2=此时棒所受的安培力 I B L F =, 所以b 棒的加速度为 mF a =由以上各式,可得 mRv L B a 4022=2、如图所示,水平面上固定有平行导轨,磁感应强度为B 的匀强磁场方向竖直向下。

同种合金做的导体棒ab 、cd 横截面积之比为2∶1,长度和导轨的宽均为L ,ab 的质量为m ,电阻为r ,开始时ab 、cd 都垂直于导轨静止,不计摩擦。

导体棒在磁场中运动问题-精品资料

导体棒在磁场中运动问题-精品资料

导体棒在磁场中运动问题【问题概述】导体棒问题不纯属电磁学问题,它常涉及到力学和热学。

往往一道试题包含多个知识点的综合应用,处理这类问题必须熟练掌握相关的知识和规律,还要求有较高的分析能力、逻辑推断能力,以及综合运用知识解决问题的能力等。

导体棒问题既是高中物理教学的重要内容,又是高考的重点和热点问题。

1.通电导体棒在磁场中运动:通电导体棒在磁场中,只要导体棒与磁场不平行,磁场对导体棒就有安培力的作用,其安培力的方向可以用左手定则来判断,大小可运用公式F = BIL sin θ来计算,若导体棒所在处的磁感应强度不是恒定的,一般将其分成若干小段,先求每段所受的力再求它们的矢量和。

由于安培力具有力的共性,可以在空间和时间上进行积累,可以使物体产生加速度,可以和其它力相平衡。

说明基本图v – t 能量导体棒以初速度v 0向右开始运动,定值电阻为R ,其它电阻不计。

动能 → 焦耳热导体棒受向右的恒力F 从静止开始向右运动,定值电阻为R ,其它电阻不计。

外力机械能→ 动能+ 焦耳热导体棒1以初速度v 0向右开始运动,两棒电阻分别为R 1和R 2,质量分别为m 1和m 2,其它电阻不计。

动能1变化→ 动能2变化 + 焦耳热导体棒1受恒力F 从静止开始向右运动,两棒电阻分别为R 1和R 2,质量分别为m 1和m 2,其它电阻不计。

外力机械能→ 动能1 + 动能2 + 焦耳热如图1所示,在竖直向下磁感强度为B 的匀强磁场中,有两根水平放置相距为L 且足够长的平行金属导轨AB 、CD ,导轨AC 端连接一阻值为R 的电阻,一根垂直于导轨放置的金属棒ab ,质量为m ,不计导轨和金属棒的电阻及它们间的摩擦。

若用恒力F 水平向右拉棒运动⑴.电路特点:金属棒ab 切割磁感线,产生感应电动势相当于电源,b 为电源正极。

当ab 棒速度为v 时,其产 生感应电动势E =BLv 。

⑵.ab 棒的受力及运动情况:棒ab 在恒力F 作用下向 右加速运动,切割磁感线,产生感应电动势,并形成感应电 流,电流方向由a →b ,从而使ab 棒受到向左的安培力F 安, 对ab 棒进行受力分析如图2所示:竖直方向:重力G 和支持力N 平衡。

导体棒在磁场中的运动分析

导体棒在磁场中的运动分析

高考试题中的导体棒在磁场中的运动综合分析高考试题中导体棒在磁场中的运动既是重点乂是难点,历年高考中都有体 现,现简单举例说明导体棒在磁场中运动问题与力学、能量、图像、函数的结合 的试题的解答、希望引起重视。

一、直接考查导体棒切割磁感线和恒定电流综合的问题1、 (05,辽宇,34)如图1所示,两根相距为/的平行直导轨ab 、cd 、b 、d 间连有一固泄电阻R ,导轨电阻可忽略不计。

MN 为放在ab 和cd 上的一导体杆,与ab 垂直,英电阻 也为R 。

整个装宜处于匀强磁场中,磁感应强度的大小为B,磁场方向垂宜于导轨所在平面 (指向图中纸而内)。

现对MN 施力使它沿导轨方向以速度v (如图)做匀速运动。

令U 表 示MN 两端电压的大小,则( )A. U =-vBi 流过固左电阻R 的感应电流由b 到d2B. U=-vBl,流过固立电阻R 的感应电流由d 到b 2c. U = vBk 流过固左电阻R 的感应电流由b 到d D. U = vBk 流过固泄电阻R 的感应电流由d 到b该题考查了 E=BLV 和闭合电路的欧姆定律,重点是分清楚内外电路以及谁是电 源,该题即可以顺利解答。

2、(04,全国,19) 一直升飞机停在南半球的地磁极上空。

该处地磁场的方向竖直向上,磁 感应强度为&直升飞机螺旋桨叶片的长度为/,螺旋桨转动的频率为厶顺着地磁场的方向 看螺旋桨,螺旋桨按顺时针方向转动。

螺旋桨叶片的近轴端为a,远轴端为b,如图所示。

如果忽略a 到转轴中心线的距离,用£表示每个叶片中的感应电动势,则A. £ =町阴,且a 点电势低于b 点电势B. £=2町卩8,且a 点电势低于b 点电势C. £ =町卩3,且a 点电势高于b 点电势D. £=2叮卩&且a 点电势高于b 点电势该题考查了右手定则的应用,实质是导体棒切 割磁感线方向的判断。

b M aN3、(08,山东,22)两根足够长的光滑导轨竖直放巻,间距为L ,底端接阻值为R的电阻。

电磁感应中的双棒运动问题高中物理专题

电磁感应中的双棒运动问题高中物理专题

电磁感应中的双棒运动问题高中物理专题第9课时电磁感应中的双棒运动问题一、分析要点:1、分析每个棒的受力,棒运动时安培力F :R vL B BIL F 22,F 与速度有关;2、分析清楚每个棒的运动状态→服从规律(牛顿定律、能量观点、动量观点);3、找出两棒之间的受力关系、速度关系、加速度关系、能量关系等。

二、例题分析:1、两棒一静一动:【例1】如图所示,两根足够长的光滑金属导轨MN 、PQ 间距为l=0.5m ,其电阻不计,两导轨及其构成的平面均与水平面成30°角。

完全相同的两金属棒ab 、cd 分别垂直导轨放置,每棒两端都与导轨始终有良好接触,已知两棒的质量均为0.02kg ,电阻均为R=0.1Ω,整个装置处在垂直于导轨平面向上的匀强磁场中,磁感应强度为B=0.2T ,棒ab 在平行于导轨向上的力F 作用下,沿导轨向上匀速运动,而棒cd 恰好能保持静止。

取g=10m/s 2,问:(1)通过cd 棒的电流I 是多少,方向如何?(2)棒ab 受到的力F 多大?(3)棒cd 每产生Q=0.1J 的热量,力F 做的功W 是多少?2、两棒不受力都运动:满足动量守恒,分析最终状态:【例2】如图所示,两根足够长的平行金属导轨固定于同一水平面内,导轨间的距离为L ,导轨上平行放置两根导体棒ab 和cd ,构成矩形回路。

已知两根导体棒的质量均为m 、电阻均为R ,其它电阻忽略不计,整个导轨处于竖直向上的匀强磁场中,磁感应强度为B ,导体棒均可沿导轨无摩擦的滑行。

开始时,导体棒cd 静止、ab 有水平向右的初速度v 0,两导体棒在运动中始终不接触。

求:(1)开始时,导体棒ab 中电流的大小和方向?(2)cd 最大加速度?(3)棒cd 的最大速度?(4)在运动过程中产生的焦耳热?(5)棒cd 产生的热量?(6)当ab 棒速度变为43v 0时,cd 棒加速度的大小?(7)两棒距离减小的最大值?3、一杆在外力作用下做加速运动,另一杆在安培力作用下做加速运动,最终两杆以同样加速度做匀加速直线运动。

磁场中的双棒问题研究

磁场中的双棒问题研究

电磁感应现象中的“双棒”问题研究黄陂一中 姜付锦“双棒”是电磁感应现象中的一个很重要的模型,因为这个模型所涉及的物理知识有动量、能量、牛顿运动学等高中力学中的主干知识。

笔者试着对这个模型进行了如下的分析与归纳,有不当的地方请各位同仁批评指正。

一、分类1.按棒的长度可分为两类:等宽与不等宽(即一长一短) 2.按启动方式可分为三类:冲量型、恒定外力型、恒定功率型 3.按棒所处轨道的位置可分为三类:水平类、倾斜类、竖直类4.按棒稳定后的状态可分为三类:静止类、匀速直线运动类、匀加速直线运动类 二、规律(仅讨论水平导轨,且导棒的材料相同) 1.等长“双棒”两棒质量均为m ,长度均为L ,电阻均为R ,两间距足够大,所处磁场的磁感应强度为B(1)导轨光滑①冲量型:给棒1一个水平向右的速度0v ,则最终稳定后两棒均匀速直线运动,且速度均为122v v v ==,系统的动量守恒,动能损失204k mv E Q ==,两棒从相对运动到相对静止,相对滑动的距离为022mv s B L =。

v t -图象如下: 01020304050607080900.51V1i V2it i②恒定外力型:对棒1施加一个恒定外力F ,则最终稳定后,两棒均作匀加速直线运动,且两棒的加速度相等2F a m =,两棒的速度之差为一定值1222FRv v v B L=-=,两棒速度之和与时间成正比12Fv v t m+=。

v t -图象如下: 0102030405060708090204060V1i V2it i2 1③恒定功率型:以恒定功率作用在棒1上,则最终两棒的速度趋于无穷大,而两棒的速度差将趋于零,此时对应的外力为无穷小(零),v t -图象如下010203040506070102030V1i V2it i(2)导轨粗糙①冲量型:给棒1初速度0v ,则两棒的运动类型有如下三种情况:10当2202B L v mg Rμ≤时,则只有棒1运动,最终速度减小为零,棒2始终不动,v t -图象如下: 02468101250100V1it i20当2202B L v mg Rμ>时,两棒一起运动,棒2先不动后加速最后减速,棒1一直减速运动,最后均静止。

导体棒在磁场中运动问题(精)

导体棒在磁场中运动问题(精)

yθ o xb ca d I F BI E导体棒在磁场中运动问题【问题概述】导体棒问题不纯属电磁学问题,它常涉及到力学和热学。

往往一道试题包含多个知识点的综合应用,处理这类问题必须熟练掌握相关的知识和规律,还要求有较高的分析能力、逻辑推断能力,以及综合运用知识解决问题的能力等。

导体棒问题既是高中物理教学的重要内容,又是高考的重点和热点问题。

1.通电导体棒在磁场中运动:通电导体棒在磁场中,只要导体棒与磁场不平行,磁场对导体棒就有安培力的作用,其安培力的方向可以用左手定则来判断,大小可运用公式F = BIL sin θ来计算,若导体棒所在处的磁感应强度不是恒定的,一般将其分成若干小段,先求每段所受的力再求它们的矢量和。

由于安培力具有力的共性,可以在空间和时间上进行积累,可以使物体产生加速度,可以和其它力相平衡。

〖例1〗如图所示在倾角为300的光滑斜面上垂直放置一根长为L ,质量为m ,的通电直导体棒,棒内电流方向垂直纸面向外,电流大小为I ,以水平向右为x 轴正方向,竖直向上为y 轴正方向建立直角坐标系,若所加磁场限定在xoy 平面内,试确定以下三种情况下磁场的磁感应强度B 。

⑴ 若要求所加的匀强磁场对导体棒的安培力方向水平向左,使导体棒在斜面上保持静止。

⑵ 若使导体棒在斜面上静止,求磁感应强度B 的最小值。

⑶ 试确定能使导体棒在斜面上保持静止的匀强磁场的所有可能方向。

〖拓展1〗物理学家法拉第在研究电磁学时,亲手做过许多实验。

如图所示的就是著名的电磁旋转实验。

它的现象是:如果载流导线附近只有磁铁的一个极,磁铁就会围绕导线旋转;反之,载流导线也会围绕单独的某一磁极旋转,这一装置实际上就是最早的电动机。

图中的a 是可动磁铁(上端为N 极),b 是固定导线,c 是可动导线,d 是固定磁铁(上端为N 极),图中黑色部分表示汞,下部接在电源上,则从上向下俯视时a 、c 的旋转情况是( )A .a 顺时针,c 顺时针B .a 逆时针,c 逆时针C .a 逆时针,c 顺时针D .a 顺时针,c 逆时针〖例2〗电磁炮是一种理想的兵器,它的主要原理如右图所示,利用这种装置可以把质量为2.0g 的弹体(包括金属杆EF 的质量)加速到6km/s ,若这种装置的轨道宽为2m ,长为100m ,轨道摩擦不计,求轨道间所加匀强磁场的磁感应强度为多大,磁场力的最大功率是多少?〖拓展2〗质量为m ,长为L 的金属棒MN ,通过柔软金属丝挂于a 、b 两点,ab 点间电压为U ,电容为C 的电容器与a 、b 相连,整个装置处于竖直向上的匀强磁场B 中,接通S ,电容器瞬间放电后又断开S ,试求MN 能摆起的最大高度是多少?2.导体棒在磁场中运动产生感应电动势:导体棒在磁场中运动时,通常由于导体棒切割磁感应线而产生一定的感应电动势,如果电路闭合将在该闭合电路中形成一定强度的感应电流,将其它形式的能转化成电能,该过程中产生的感应电动势大小遵循法拉第电磁感应定律E = Blv sin θ,方向满足右手定则。

导体棒在磁场中运动问题(精)

导体棒在磁场中运动问题(精)

yθ o xb ca d I F BI E导体棒在磁场中运动问题【问题概述】导体棒问题不纯属电磁学问题,它常涉及到力学和热学。

往往一道试题包含多个知识点的综合应用,处理这类问题必须熟练掌握相关的知识和规律,还要求有较高的分析能力、逻辑推断能力,以及综合运用知识解决问题的能力等。

导体棒问题既是高中物理教学的重要内容,又是高考的重点和热点问题。

1.通电导体棒在磁场中运动:通电导体棒在磁场中,只要导体棒与磁场不平行,磁场对导体棒就有安培力的作用,其安培力的方向可以用左手定则来判断,大小可运用公式F = BIL sin θ来计算,若导体棒所在处的磁感应强度不是恒定的,一般将其分成若干小段,先求每段所受的力再求它们的矢量和。

由于安培力具有力的共性,可以在空间和时间上进行积累,可以使物体产生加速度,可以和其它力相平衡。

〖例1〗如图所示在倾角为300的光滑斜面上垂直放置一根长为L ,质量为m ,的通电直导体棒,棒内电流方向垂直纸面向外,电流大小为I ,以水平向右为x 轴正方向,竖直向上为y 轴正方向建立直角坐标系,若所加磁场限定在xoy 平面内,试确定以下三种情况下磁场的磁感应强度B 。

⑴ 若要求所加的匀强磁场对导体棒的安培力方向水平向左,使导体棒在斜面上保持静止。

⑵ 若使导体棒在斜面上静止,求磁感应强度B 的最小值。

⑶ 试确定能使导体棒在斜面上保持静止的匀强磁场的所有可能方向。

〖拓展1〗物理学家法拉第在研究电磁学时,亲手做过许多实验。

如图所示的就是著名的电磁旋转实验。

它的现象是:如果载流导线附近只有磁铁的一个极,磁铁就会围绕导线旋转;反之,载流导线也会围绕单独的某一磁极旋转,这一装置实际上就是最早的电动机。

图中的a 是可动磁铁(上端为N 极),b 是固定导线,c 是可动导线,d 是固定磁铁(上端为N 极),图中黑色部分表示汞,下部接在电源上,则从上向下俯视时a 、c 的旋转情况是( )A .a 顺时针,c 顺时针B .a 逆时针,c 逆时针C .a 逆时针,c 顺时针D .a 顺时针,c 逆时针〖例2〗电磁炮是一种理想的兵器,它的主要原理如右图所示,利用这种装置可以把质量为2.0g 的弹体(包括金属杆EF 的质量)加速到6km/s ,若这种装置的轨道宽为2m ,长为100m ,轨道摩擦不计,求轨道间所加匀强磁场的磁感应强度为多大,磁场力的最大功率是多少?〖拓展2〗质量为m ,长为L 的金属棒MN ,通过柔软金属丝挂于a 、b 两点,ab 点间电压为U ,电容为C 的电容器与a 、b 相连,整个装置处于竖直向上的匀强磁场B 中,接通S ,电容器瞬间放电后又断开S ,试求MN 能摆起的最大高度是多少?2.导体棒在磁场中运动产生感应电动势:导体棒在磁场中运动时,通常由于导体棒切割磁感应线而产生一定的感应电动势,如果电路闭合将在该闭合电路中形成一定强度的感应电流,将其它形式的能转化成电能,该过程中产生的感应电动势大小遵循法拉第电磁感应定律E = Blv sin θ,方向满足右手定则。

高考模型——电磁场中的双杆模型

高考模型——电磁场中的双杆模型

高考模型——电磁场中的双杆模型研究两根平行导体杆沿导轨垂直磁场方向运动是力电知识综合运用问题,是电磁感应部分的非常典型的习题类型,因处理这类问题涉与到力学和电学的知识点较多,综合性较强,所以是学生的一个难点,下面就这类问题的解法举例分析。

一、在竖直导轨上的“双杆滑动”问题1.等间距型如图1所示,竖直放置的两光滑平行金属导轨置于垂直导轨向里的匀强磁场中,两根质量一样的金属棒a 和b 和导轨紧密接触且可自由滑动,先固定a ,释放b ,当b 速度达到10m/s 时,再释放a ,经1s 时间a 的速度达到12m/s ,则:A 、 当va=12m/s 时,vb=18m/sB 、当va=12m/s 时,vb=22m/sC 、若导轨很长,它们最终速度必一样D 、它们最终速度不一样,但速度差恒定[解析]因先释放b ,后释放a ,所以a 、b 一开始速度是不相等的,而且b 的速度要大于a 的速度,这就使a 、b 和导轨所围的线框面积增大,使穿过这个线圈的磁通量发生变化,使线圈中有感应电流产生,利用楞次定律和安培定则判断所围线框中的感应电流的方向如图所示。

再用左手定则判断两杆所受的安培力,对两杆进行受力分析如图1。

开始两者的速度都增大,因安培力作用使a 的速度增大的快,b 的速度增大的慢,线圈所围的面积越来越小,在线圈中产生了感应电流;当二者的速度相等时,没有感应电流产生,此时的安培力也为零,所以最终它们以一样的速度都在重力作用下向下做加速度为g 的匀加速直线运动。

在释放a 后的1s 内对a 、b 使用动量定理,这里安培力是个变力,但两杆所受安培力总是大小相等、方向相反的,设在1s 内它的冲量大小都为I ,选向下的方向为正方向。

当棒先向下运动时,在和以与导轨所组成的闭合回路中产生感应电流,于是棒受到向下的安培力,棒受到向上的安培力,且二者大小相等。

释放棒后,经过时间t ,分别以和为研究对象,根据动量定理,则有:对a 有:(mg+I)·t=mv a0,对b 有:(mg - I)·t=mv b -mv b0联立二式解得:v b = 18 m/s ,正确答案为:A 、C 。

导体棒在磁场中运动问题-精品资料

导体棒在磁场中运动问题-精品资料

导体棒在磁场中运动问题【问题概述】导体棒问题不纯属电磁学问题,它常涉及到力学和热学。

往往一道试题包含多个知识点的综合应用,处理这类问题必须熟练掌握相关的知识和规律,还要求有较高的分析能力、逻辑推断能力,以及综合运用知识解决问题的能力等。

导体棒问题既是高中物理教学的重要内容,又是高考的重点和热点问题。

1.通电导体棒在磁场中运动:通电导体棒在磁场中,只要导体棒与磁场不平行,磁场对导体棒就有安培力的作用,其安培力的方向可以用左手定则来判断,大小可运用公式F = BIL sin θ来计算,若导体棒所在处的磁感应强度不是恒定的,一般将其分成若干小段,先求每段所受的力再求它们的矢量和。

由于安培力具有力的共性,可以在空间和时间上进行积累,可以使物体产生加速度,可以和其它力相平衡。

说明基本图v – t 能量导体棒以初速度v 0向右开始运动,定值电阻为R ,其它电阻不计。

动能 → 焦耳热导体棒受向右的恒力F 从静止开始向右运动,定值电阻为R ,其它电阻不计。

外力机械能→ 动能+ 焦耳热导体棒1以初速度v 0向右开始运动,两棒电阻分别为R 1和R 2,质量分别为m 1和m 2,其它电阻不计。

动能1变化→ 动能2变化 + 焦耳热导体棒1受恒力F 从静止开始向右运动,两棒电阻分别为R 1和R 2,质量分别为m 1和m 2,其它电阻不计。

外力机械能→ 动能1 + 动能2 + 焦耳热如图1所示,在竖直向下磁感强度为B 的匀强磁场中,有两根水平放置相距为L 且足够长的平行金属导轨AB 、CD ,导轨AC 端连接一阻值为R 的电阻,一根垂直于导轨放置的金属棒ab ,质量为m ,不计导轨和金属棒的电阻及它们间的摩擦。

若用恒力F 水平向右拉棒运动⑴.电路特点:金属棒ab 切割磁感线,产生感应电动势相当于电源,b 为电源正极。

当ab 棒速度为v 时,其产 生感应电动势E =BLv 。

⑵.ab 棒的受力及运动情况:棒ab 在恒力F 作用下向 右加速运动,切割磁感线,产生感应电动势,并形成感应电 流,电流方向由a →b ,从而使ab 棒受到向左的安培力F 安, 对ab 棒进行受力分析如图2所示:竖直方向:重力G 和支持力N 平衡。

导体棒在磁场中的运动问题

导体棒在磁场中的运动问题

导体棒在磁场中的运动问题导体棒在磁场中的运动问题近十年的高考物理试卷和理科综合试卷中,电磁学的导体棒问题复现率很高,且多为分值较大的计算题。

为何导体棒问题频繁复现,原因是:导体棒问题是高中物理电磁学中常用的最典型的模型,常涉及力学和热学问题,可综合多个物理高考知识点,其特点是综合性强、类型繁多、物理过程复杂,有利于考查学生综合运用所学的知识,从多层面、多角度、全方位分析问题和解决问题的能力;导体棒问题是高考中的重点、难点、热点、焦点问题。

导体棒问题在磁场中大致可分为两类:一类是通电导体棒,使之平衡或运动;其二是导体棒运动切割磁感线生电。

运动模型可分为单导体棒和双导体棒。

(一)通电导体棒问题通电导体棒题型,一般为平衡型和运动型,对于通电导体棒平衡型,要求考生用所学的平衡条件(包含合外力为零F=∑,合力矩为零0M=∑)来解答,而对于通电导体棒的运动型,则要求考生用所学的牛顿运动定律、动量定理以及能量守恒定律结合在一起,加以分析、讨论,从而作出准确的解答。

【例8】如图3-9-8所示,相距为d 的倾角为图α的光滑平行导轨(电源的电动势E 和内阻r ,电阻R 均为己知)处于竖直向上磁感应强度为B 的匀强磁场中,一质量为m 的导体棒恰能处于平衡状态,则该磁场B 的大小为 ;当B 由竖直向上逐渐变成水平向左的过程中,为保持导体棒始终静止不动,则B 的大小应是 ,上述过程中,B 的最小值是 。

【解析】此题主要用来考查考生对物体平衡条件的理解情况,同时考查考生是否能利用矢量封闭三角形或三角函数求其极值的能力.将图3-9-8首先改画为从右向左看的侧面图,如图3-9-9所示,分析导体棒受力,并建立直角坐标系进行正交分解,也可采用共点力的合成法来做.根据题意0F =∑,即0,0x yF F ==∑∑,即:sin 0x BF F N α=-= ① cos 0yF F mg α=-= ② 由①②得:tan BFmgα=③由安培力公式:BF BId = ④由闭合电路欧姆定律EI R r=+⑤联立③④⑤并整理可得:()tan mg R r B Edα+=(2)借助于矢量封闭三角形来讨论,如图3-9-10所示在磁场由竖直向上逐渐变成水平的过程中,安培力由水平向右变成竖直向上,在此过程中,由图3-9-10看出BF 先减小后增大,最终0,BN F mg ==,因而磁感应强度B 也应先减小后增大.(3)由图3-9-10可知,当BF方向垂直于N 的方向时BF 最小,其B 最小,故:sin BFmg α=⑥而:BF BId = ⑦ EI R r =+ ⑧联立⑥⑦⑧可得:图sin Emg Bd R rα=+, 即min()sin mg R r BBdα+=【答案】()tan mg R r Edα+,先减小后增大 ()sin mg R r Bd α+点评:该题将物体的平衡条件作为重点,让考生将公式和图象有机地结合在一起,以达到简单快速解题的目的,其方法是值得提倡和借鉴的。

导体棒在磁场中运动问题

导体棒在磁场中运动问题

导体棒在磁场中运动问题【问题概述】导体棒问题不纯属电磁学问题,它常涉及到力学和热学。

往往一道试题包含多个知识点的综合应用,处理这类问题必须熟练掌握相关的知识和规律,还要求有较高的分析能力、逻辑推断能力,以及综合运用知识解决问题的能力等。

导体棒问题既是高中物理教学的重要内容,又是高考的重点和热点问题。

1.通电导体棒在磁场中运动:通电导体棒在磁场中,只要导体棒与磁场不平行,磁场对导体棒就有安培力的作用,其安培力的方向可以用左手定则来判断,大小可运用公式F= BIL sinθ来计算,若导体棒所在处的磁感应强度不是恒定的,一般将其分成若干小段,先求每段所受的力再求它们的矢量和。

由于安培力具有力的共性,可以在空间和时间上进行积累,可以使物体产生加速度,可以和其它力相平衡。

说明基本图v–t能量导体棒以初速度v0向右开始运动,定值电阻为R,其它电阻不计。

动能→焦耳热导体棒受向右的恒力F从静止开始向右运动,定值电阻为R,其它电阻不计。

外力机械能→动能+ 焦耳热导体棒1以初速度v0向右开始运动,两棒电阻分别为R1和R2,质量分别为m1和m2,其它电阻不计。

动能1变化→动能2变化+ 焦耳热导体棒1受恒力F从静止开始向右运动,两棒电阻分别为R1和R2,质量分别为m1和m2,其它电阻不计。

外力机械能→动能1 + 动能2 + 焦耳热如图1所示,在竖直向下磁感强度为B的匀强磁场中,有两根水平放置相距为L且足够长的平行金属导轨AB、CD,导轨AC端连接一阻值为R的电阻,一根垂直于导轨放置的金属棒ab,质量为m,不计导轨和金属棒的电阻及它们间的摩擦。

若用恒力F水平向右拉棒运动⑴.电路特点:金属棒ab切割磁感线,产生感应电动势相当于电源,b为电源正极。

当ab棒速度为v时,其产生感应电动势E=BLv。

⑵.ab棒的受力及运动情况:棒ab在恒力F作用下向右加速运动,切割磁感线,产生感应电动势,并形成感应电流,电流方向由a→b,从而使ab棒受到向左的安培力F安,对ab棒进行受力分析如图2所示:竖直方向:重力G和支持力N平衡。

导体棒在磁场运动问题分类例析

导体棒在磁场运动问题分类例析

导体棒在磁场运动问题分类例析在电磁感应现象中,导体棒在磁场中切割磁感线运动问题以其覆盖知识点多,综合性强,成为近年来高考命题的热点,试题常涉及力和运动、动量、能量,直流电路、安培力、法拉第电磁感应定律等多方面知识,解此类题的关键在于:通过对导体棒受力情况、运动情况的动态分析,弄清导体棒的终态,。

本文通过精选部分试题给予分类例析,希望能对同学们有所启发。

一、单导体棒运动类类型1:导体棒在外力作用下运动如图1所示,在竖直向下磁感强度为B 的匀强磁场中,有两根水平放置相距为L 且足够长的平行金属导轨AB 、CD ,导轨AC 端连接一阻值为R 的电阻,一根垂直于导轨放置的金属棒ab ,质量为m ,不计导轨和金属棒的电阻及它们间的摩擦。

若用恒力F 水平向右拉棒运动⑴.电路特点:金属棒ab 切割磁感线,产生感应电动 势相当于电源,b 为电源正极。

当ab 棒速度为v 时,其产生感应电动势E =BLv 。

⑵.ab 棒的受力及运动情况:棒ab 在恒力F 作用下向 右加速运动,切割磁感线,产生感应电动势,并形成感应电 流,电流方向由a →b ,从而使ab 棒受到向左的安培力F 安, 对ab 棒进行受力分析如图2所示: 竖直方向:重力G 和支持力N 平衡。

水平方向:向左的安培力F 安=22B L v R为运动的阻力随v 的增大而增大。

ab 棒受到的合外力F 合=F -22B L v R随速度v 的增大而减小。

ab 棒运动过程动态分析如下:随ab 棒速度v ↑→ 感应电动势E ↑→ 感应电流I =RE ↑→安培力F 安=BIL ↑→ F 合(= F -F 安)↓→ab 棒运动的加速度a ↓,当合外力F 合减小到零时,加速度a 减小到零,速度v 达到最大v max ,最后以v max 匀速运动。

⑶.ab 棒的加速度、速度,R 上的电功率何时最大? ab 棒受到的合外力F 合=F -22B L v R刚开始运动时,ab 棒初速度v =0,由知:此时合外力最大,加速度最大,a max =F m。

导体棒在磁场中运动问题

导体棒在磁场中运动问题

导体棒在磁场中运动问题【问题概述】导体棒问题不纯属电磁学问题,它常涉及到力学和热学。

往往一道试题包含多个知识点的综合应用,处理这类问题必须熟练掌握相关的知识和规律,还要求有较高的分析能力、逻辑推断能力,以及综合运用知识解决问题的能力等。

导体棒问题既是高中物理教学的重要内容,又是高考的重点和热点问题。

1.通电导体棒在磁场中运动:通电导体棒在磁场中,只要导体棒与磁场不平行,磁场对导体棒就有安培力的作用,其安培力的方向可以用左手定则来判断,大小可运用公式F = BIL sinθ来计算,若导体棒所在处的磁感应强度不是恒定的,一般将其分成若干小段,先求每段所受的力再求它们的矢量和。

由于安培力具有力的共性,可以在空间和时间上进行积累,可以使物体产生加速度,可以和其它力相平衡。

【基本模型】说明基本图v–t能量导体棒以初速度v0向右开始运动,定值电阻为R,其它电阻不计。

动能→焦耳热导体棒受向右的恒力F从静止开始向右运动,定值电阻为R,其它电阻不计。

外力机械能→动能+ 焦耳热导体棒1以初速度v0向右开始运动,两棒电阻分别为R1和R2,质量分别为m1和m2,其它电阻不计。

动能1变化→动能2变化 +焦耳热导体棒1受恒力F 从静止开始向右运动,两棒电阻分别为R1和R2,质量分别为m1和m2,其它电阻不计。

外力机械能→动能1 + 动能2 + 焦耳热如图1所示,在竖直向下磁感强度为B的匀强磁场中,有两根水平放置相距为L且足够长的平行金属导轨AB、CD,导轨AC端连接一阻值为R的电阻,一根垂直于导轨放置的金属棒ab,质量为m,不计导轨和金属棒的电阻及它们间的摩擦。

若用恒力F水平向右拉棒运动⑴.电路特点:金属棒ab切割磁感线,产生感应电动势相当于电源,b为电源正极。

当ab棒速度为v时,其产生感应电动势E=BLv。

⑵.ab棒的受力及运动情况:棒ab在恒力F作用下向右加速运动,切割磁感线,产生感应电动势,并形成感应电流,电流方向由a→b,从而使ab棒受到向左的安培力F安,对ab棒进行受力分析如图2所示:竖直方向:重力G和支持力N平衡。

导体棒在磁场中运动问题-精品资料

导体棒在磁场中运动问题-精品资料

导体棒在磁场中运动问题【问题概述】导体棒问题不纯属电磁学问题,它常涉及到力学和热学。

往往一道试题包含 多个知识点的综合应用,处理这类问题必须熟练掌握相关的知识和规律,还要求有较 高的分析能力、逻辑推断能力,以及综合运用知识解决问题的能力等。

导体棒问题既 是高中物理教学的重要内容,又是高考的重点和热点问题。

1.通电导体棒在磁场中运动: 通电导体棒在磁场中,只要导体棒与磁场不平行,磁场对导 体棒就有安培力的作用,其安培力的方向可以用左手定则来判断,大小可运用公式 F = BILsin 0来计算,若导体棒所在处的磁感应强度不是恒定的,一般将其分成若干小段, 先求每段所受的力再求它们的矢量和。

由于安培力具有力的共性, 可以在空间和时间上进行积累,可以使物体产生加速度,可以和其它力相平衡。

势相当于电源,b 为电源正极。

当ab 棒速度为v 时,其产 生感应电动势E= BLv 。

⑵.ab 棒的受力及运动情况:棒 ab 在恒力F 作用下向 右加速运动,切割磁感线,产生感应电动势,并形成感应电 流,电流方向由a-b,从而使ab 棒受到向左的安培力 F 安, 对ab 棒进行受力分析如图 2所示:竖直方向:重力 G 和支持力N 平衡。

水平方向:向左的安培力 B 212VF 安=且”为运动的阻力R随v 的增大而增大。

F安说明 基本图 v - t能量导体棒以初速度vo 向右 开始运动,定值电阻为 R,其它电阻不计。

1 X X X K ]* M /翼 /N x M x x K Tx X X 同 F动能一焦耳热导体棒受1可右的恒力 F 从静止开始向右运动, 定值电阻为R,其它电 阻不计。

[真置X 岚冥J M M M X X— T 尸外力机械能一动能 +焦耳热导体棒1以初速度vo 向 右开始运动,两棒电阻 分力1J 为R 和R,质里:分 别为m 和m2,其它电阻 不计。

.二. * 'K K 翼M 算 2 x x x 厚』 X M K * XX1H -7*吗动能1变化一动能2变化+焦耳热导体棒1受恒力F 从静 止开始向右运动,两棒 电阻分别为R 和F2,质 量分别为m 和m,其它 电阻不计。

电磁感应中双棒问题

电磁感应中双棒问题

Im
Blv0 R1 R2
值 最小电流 当v2=v1时: I=0
3.两棒的运动情况特点
v0
安培力大小:FB
BIl
B2l 2( v2 v1 R1 R2
)
1
2
两棒的相对速度变小,感应电流变小,安培力变小.
棒1做加速度变小的加速运动
棒2做加速度变小的减速运动
v
最终两棒具有共同速度
v0
v共
O
t
4.两个规律
mgR(1 cos60) 1 mv2 解得: v gR
2
进入磁场区瞬间,回路中电流强度I为
I
E
Bl gR
2r r 3r
(2)设ab棒与cd棒所受安培力的大小为F,安培力作用时间为 t,ab 棒在安培力作用下做减速运动,cd棒在安培力作用下做 加速运动,当两棒速度达到相同速度v’时,电路中电流为零,安 培力为零,cd达到最大速度.
mbv0 (mb mc )v
解得c棒的最大速度为:
v
mb mb mc
v0
1 2
v0
5m
s
B
N M
c
b
5.几种变化:
(1)初速度的提供方式不同 (2)磁场方向与导轨不垂直
m
B
M
m
FB
h
v0
1
2
(3)两棒都有初速度
v1
v2
1
2
(4)两棒位于不同B1 O2 d
例2:如图所示,两根间距为l的光滑金属导轨(不计电 阻),由一段圆弧部分与一段无限长的水平段部分组 成.其水平段加有竖直向下方向的匀强磁场,其磁感 应强度为B,导轨水平段上静止放置一金属棒cd,质 量为2m,电阻为2r.另一质量为m,电阻为r的金属棒 ab,从圆弧段M处由静止释放下滑至N处进入水平段, 圆弧段MN半径为R,所对圆心角为60°,求:

导体棒在磁场中的运动问题

导体棒在磁场中的运动问题

导体棒在磁场中的运动问题KcosFH导体棒在磁场中的运动问 题 近十年的高考物理试卷和 理科综合试卷中,电磁学的 导体棒问题复现率很高, 多为分值较大的计算题。

何导体棒问题频繁复现, 因是:导体棒问题是高中物 理电磁学中常用的最典型 的模型,常涉及力学和热学 问题,可综合多个物理高考 知识点,其特点是综合性 强、类型繁多、物理过程复 杂,有利于考查学生综合运 用所学的知识,从多层面、 多角度、全方位分析问题和 解决问题的能力;导体棒问 题是高考中的重点、难点、 热点、焦点问题。

导体棒问题在磁场中大致 可分为两类:一类是通电导 体棒,使之平衡或运动;其 二是导体棒运动切割磁感 线生电。

运动模型可分为单 导体棒和双导体棒。

(一)通电导体棒问题 通电导体棒题型,一般 为平衡型和运动型,对 于通电导体棒平衡型, 要求考生用所学的平衡 条件(包含合外力为零F °,合力矩为零来解答,而对于通电导 体棒的运动型,则要求 考生用所学的牛顿运动 定律、动量定理以及能 量守恒定律结合在 起,加以分析、讨论, 从而作出准确的解答。

【例8】如图 3-9-8所示,相 距为d 的倾角为图*0, FyF BmgsinF B BId的光滑平行导轨(电源的电动势E和内阻r,电阻R均为己知)处于竖直向上磁感应强度为B的匀强磁场中,一质量为m的导体棒恰能处于平衡状态,则该磁场B的大小为;当B由竖直向上逐渐变成水平向左的过程中,为保持导体棒始终静止不动,则B的大小应是,上述过程中,B的最小值是。

【解析】此题主要用来考查考生对物体平衡条件的理解情况,同时考查考生是否能利用矢量封闭三角形或三角函数求其极值的能力■将图3-9-8首先改画为从右向左看的侧面图,如图3-9-9所示,分析导体棒受力,并建立直角坐标系进行正交分解,也可采用共点力的合成法来做根据题意 F 0,即F x 即:F x F B N sin 0 F y F cos 由得:③由安培力图公式:F B Bid ④ 由闭合电路欧姆定律⑤联立③④⑤并整理可得:Bmg(R r)tanEd(2)借助于矢量圭寸闭三角形来讨论,如图3-9-10 示在磁场由竖直向上逐渐变成水平的过程中,安培力由水平向右变成竖直向上,在此过程中,由图3-9-10看出F B先减小后增大,最终N 0,F B mg,因而磁感应强度B 也应先减小后增大■(3)由图3-9-10可知,当F B 方向垂直于N的方向时F B最小,其B 最小,故:⑥而:⑧ 联立⑥⑦⑧可mg 0②mg sin B E d ,R r ?即Bm. mg^ r)sin 【答案】Ed 土增^大mg(R r)sinBd点评:该题将物体的平衡条件作为重点,让考生将公式和图象有机地结合在一起,以达到简单快速解题的目的,其方法是值得提倡和借鉴的。

对磁场中双杆模型问题的解析之欧阳美创编

对磁场中双杆模型问题的解析之欧阳美创编

1 •等间距型对磁场中双杆模型问题的解析时间:2021.01.01研究两根平行导体杆沿导轨垂直磁场方向运动是力电知识综合运用问题,是电磁感应部分的非常典型的习题类型,因处理这类问题涉及到力学和电学的知识点较多,综合性较强,所以是学生练习的一个难点,下面就这类问题的解法举例分析。

在电磁感应中,有三类重要的导轨问题:1・发电式导轨; 2.电动式导轨;3.双动式导轨。

导轨问题,不仅涉及到电磁学的基本规律,还涉及到受力分析,运动学,动量,能量等多方面的知识,以及临界问题,极值问题。

尤其是双动式导轨问题要求学生要有较高的动态分析能力电磁感应中的双动式导轨问题其实已经包含有了电动式和发电式导轨,由于这类问题中物理过程比较复杂,状态变化过程中变量比较多,关键是能抓住状态变化过程中变量“变''的特点和规律,从而确定最终的稳定状态是解题的关键,求解时注意从动量、能量的观点出发,运用相应的规律进行分析和解答。

一、在竖直导轨上的“双杆滑动”问题创作:欧阳美欧阳美创编2021.01.01 欧阳美创编如图1所示,竖直放置的两光滑平行金属导轨置于垂直导轨向里的匀强磁场中,两根质量相同的金属棒a和b和导轨紧密接触且可自由滑动,先固定a,释放b,当b速度达到10m/s 时,再释放a,经Is时间a的速度达到12m/s,则:A、当VQ二12m/s 时,vb=18m/sB、当va=12m/s 时,vb二2加/sC、若导轨很长,它们最终速度必相同D、它们最终速度不相同,但速度差恒定【解析】因先释放b,后释放a,所以a、b 一开始速度是不相等的,而且b的速度要大于a的速度,这就使a、b和导轨所围的线框面积增大,使穿过这个线圈的磁通量发生变化,使线圈中有感应电流产生,利用楞次定律和安培定则判断所围线框中的感应电流的方向如图所示。

再用左手定则判断两杆所受的安培力,对两杆进行受力分析如图lo开始两者的速度都增大,因安培力作用使a的速度增大的快,b的速度增大的慢,线圈所围的面积越来越小,在线圈中产生了感应电流;当二者的速度相等时,没有感应电流产生,此时的安培力也为零,所以最终它们以相同的速度都在重力作用下向下做加速度为g的匀加速直线运动。

对磁场中双杆模型问题的解析(更新版)

对磁场中双杆模型问题的解析(更新版)

对磁场中双杆模型问题的解析研究两根平行导体杆沿导轨垂直磁场方向运动是力电知识综合运用问题,是电磁感应部分的非常典型的习题类型,因处理这类问题涉及到力学和电学的知识点较多,综合性较强,所以是学生练习的一个难点,下面就这类问题的解法举例分析。

在电磁感应中,有三类重要的导轨问题:1.发电式导轨;2.电动式导轨;3.双动式导轨。

导轨问题,不仅涉及到电磁学的基本规律,还涉及到受力分析,运动学,动量,能量等多方面的知识,以及临界问题,极值问题。

尤其是双动式导轨问题要求学生要有较高的动态分析能力电磁感应中的双动式导轨问题其实已经包含有了电动式和发电式导轨,由于这类问题中物理过程比较复杂,状态变化过程中变量比较多,关键是能抓住状态变化过程中变量“变”的特点和规律,从而确定最终的稳定状态是解题的关键,求解时注意从动量、能量的观点出发,运用相应的规律进行分析和解答。

一、在竖直导轨上的“双杆滑动”问题如图1所示,竖直放置的两光滑平行金属导轨置于垂直导轨向里的匀强磁场中,两根质量相同的金属棒a和b和导轨紧密接触且可自由滑动,先固定a,释放b,当b速度到达10m/s时,再释放a,经1s时间a的速度到达12m/s,则:A、当va=12m/s时,vb=18m/sB、当va=12m/s时,vb=22m/sC、假设导轨很长,它们最终速度必相同D、它们最终速度不相同,但速度差恒定【解析】因先释放b,后释放a,所以a、b一开始速度是不相等的,而且b的速度要大于a 的速度,这就使a、b和导轨所围的线框面积增大,使穿过这个线圈的磁通量发生变化,使线圈中有感应电流产生,利用楞次定律和安培定则判断所围线框中的感应电流的方向如下图。

再用左手定则判断两杆所受的安培力,对两杆进行受力分析如图1。

开始两者的速度都增大,因安培力作用使a的速度增大的快,b的速度增大的慢,线圈所围的面积越来越小,在线圈中产生了感应电流;当二者的速度相等时,没有感应电流产生,此时的安培力也为零,所以最终它们以相同的速度都在重力作用下向下做加速度为g的匀加速直线运动。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档