第三章通信用光器件

合集下载

第三章光纤通信器件

第三章光纤通信器件

输出 调制光 信息电信号 激光器
信息 电信号
连续
激光器 光信号
外调 制器
输出 调制光
信息电信号 0 1 0 1 0 输出调制光波
(a)直接调制
L D 输出连续光 信息电信号 0 1 0 1 0
输出调制光波 (b)外调制
直接调制是用电信号直接调制激光器的驱动电流,使输出 光随电信号变化而实现的。
光调制器是通过电压或电场的变化最终调控输 出光的折射率、吸收率、振幅或相位的器件。
F-P滤波器的传输特性
(a) 传输函数
(b) N 个信道 经波分复用后 加到滤波器 输入端的频谱图
(c) 滤波器输出频谱图
T(f )
传 1.0 输 函 0.5 数
P
in
f



f ch

f f
i1
f2
Pout f
输 出 功 率
P1 P2
FSR= f L
f
3
fs
P3
f1
f
2
f
3
f F-P
光频
输出 光纤1
出射光
光纤
微反射镜
镜面 旋转轴
输出 光纤2
控制 信号
硅衬底PLC
MEMS光开关优缺点
具有机械光开关和波导光开关的优点,却克服了 它们所固有的缺点;
采用了机械光开关的原理,但又能象波导开关那 样,集成在单片硅基上;
基于围绕微机械中枢转动的自由移动镜面。 主要开发商有美国Lucent、德克萨斯仪表公司和
光栅型解复用器
(a)普通透镜反射光栅
(b)渐变折射率透镜反射光栅
AWG型
星形耦合器
1

光纤通信(第二版)课件PPT(刘增基著)

光纤通信(第二版)课件PPT(刘增基著)

第1章 概 论
为了克服气候对激光通信的影响,人们自然想到把激光束 限制在特定的空间内传输, 因而提出了透镜波导和反射镜波导的 光波传输系统。透镜波导是在金属管内每隔一定距离安装一个 透镜,每个透镜把经传输的光束会聚到下一个透镜而实现的。 反射镜波导和透镜波导相似,是用与光束传输方向成45°角的 两个平行反射镜代替透镜而构成的。这两种波导,从理论上讲 是可行的,但在实际应用中遇到了不可克服的困难。首先,现 场施工中校准和安装十分复杂;其次,为了防止地面活动对波
由于没有找到稳定可靠和低损耗的传输介质,对光通信的 研究曾一度走入了低谷。
第1章 概 论
1.1.2 现代光纤通信 1966 年,英籍华裔学者高锟(C.K.Kao)和霍克哈姆
(C.A.Hockham)发表了关于传输介质新概念的论文,指出了利用 光纤(Optical Fiber)进行信息传输的可能性和技术途径,奠定了 现代光通信——光纤通信的基础。当时石英纤维的损耗高达 1000 dB/km以上,高锟等人指出:这样大的损耗不是石英纤维 本身固有的特性,而是由于材料中的杂质,例如过渡金属(Fe、 Cu等)离子的吸收产生的。材料本身固有的损耗基本上由瑞利 (Rayleigh)散射决定,它随波长的四次方而下降,其损耗很小。 因此有可能通过原材料的提纯制造出适合于长距离通信使用的 低损耗光纤。如果把材料中金属离子含量的比重降低到10-6以 下,就可以使光纤损耗减小到10 dB/km。再通过改进制造工艺 的热处理提高材料的均匀性,可以进一步把损耗减小到几 dB/km。这个思想和预测受到世界各国极大的重视。
十一五 普通高等教育“十一五”国家级规划教材
光 纤 通 信(第二版)
刘增基 周洋溢 胡辽林 编著
任光亮 周绮丽
西 安 电 子西科 技 大 学 出 版 社

章通信用光器件EDFA

章通信用光器件EDFA
产生光电流,这种跃迁称为受激吸收——光电检测器。
② 处于高能级E2 上的电子是不稳定的,即使没有外界的作用, 也会自发地跃迁到低能级E1 上与空穴复合,释放的能量转换为光
子辐射出去,这种跃迁称为自发辐射——发光二极管。
③ 在高能级E2上的电子,受到能量为hf12的外来光子激发时, 使电子被迫跃迁到低能级E1 上与空穴复合,同时释放出一个与激
1.激光器的物理基础
(1)光子的概念
光量子学说认为,光是由能量为hf 的光量子组成的,其中 h=6.628×10−34 J·s(焦耳·秒),称为普朗克常数,f 是光
波频率,人们将这些光量子称为光子。 当光与物质相互作用时,光子的能量作为一个整体被吸收或
发射。
11.12.2020
(教材第可5编3页辑p)pt
11.12.2020
(教材第可5编4页辑p)pt
9
3.1.1 激光器的工作原理 光纤通信
2.激光器的工作原理
激光器包括以下3个部分: • 必须有产生激光的工作物质(激活物质); • 必须有能够使工作物质处于粒子数反转分布状态的激励源 (泵浦源); • 必须有能够完成频率选择及反馈作用的光学谐振腔。 (1)产生激光的工作物质 即处于粒子数反转分布状态的工作物质,称为激活物质或增益 物质,它是产生激光的必要条件。
如设低能级上的粒子密度为N1,高能级上的粒子密度为N2,在 正常状态下, N1 > N2,总是受激吸收大于受激辐射。即在热平
衡条件下,物质不可能有光的放大作用。 要想物质产生光的放大,就必须使受激辐射大于受激吸收,即
使N2 > N1 (高能级上的电子数多于低能级上的电子数),这种
粒子数的反常态分布称为粒子(电子)数反转分布。 粒子数反转分布状态是使物质产生光放大而发光的首要条件。

光纤通信技术与实践课程标准

光纤通信技术与实践课程标准

《光纤通信技术与实践》课程标准一、课程信息课程名称:光纤通信技术与实践课程代码:学时/学分:适用专业:通信专业先修课:现代通信原理,计算机基础后续课:开课学院或教研室:通信教研室执笔:审核:(教研室主任签字)日期:审定:(学院院长签字)日期:二、课程性质与作用本课程为通信专业的一门重要的专业课。

其基本任务是通过课程的学习,让学生掌握光纤的传输理论;光缆结构与特点;无源光器件的原理与性能;光源和光检测器的工作原理与特性;光纤放大器的工作原理与结构;光纤通信系统的组成与性能指标。

并将介绍代表当今高速大容量光纤通信技术主流的波分复用光纤通信技术,以与代表未来光纤通信技术发展方向的全光光纤通信技术。

使学生对光纤通信这一在当今信息领域内高速发展并起着关键作用的技术有一较好的了解。

为进一步深造或走向社会打下一个良好的基础。

三、本课程与其它课程关系在通信课程体系中,本课程是一个培养专业技能的课程,其相关课程如下表所示:四、课程教育教学目标1.知识目标(1)掌握光纤通信系统构成与特点;(2)熟悉光纤分类与指标;(3)掌握光发射机的组成与对光源的要求;(4)熟悉光电检测器的要求。

(5)掌握光纤通信关键器件的原理与技术要求。

(6)了解光纤通信中的新技术:光波分复用、光时分复用、光放大器与全光系统(7)熟悉光波分复用、光时分复用、光放大器与全光系统。

2.能力目标(1)培养学生实际动手能力;(2)培养学生在学习过程中解决困难的能力;(3)培养学生在学习过程中的兴趣,提高工作、学习的主动性;(4)培养学生理论联系实际的工作和学习方法。

3.素质目标(1)具备良好的工作态度、责任心。

(2)具有较强的团队意识和协作能力。

(3)具有较强的学习能力、吃苦耐劳精神。

(4)具有较强的语言表达能力和协调人际关系能力。

(5)具有认识自身发展重要性以与确立自身继续发展目标的能力。

五、课程教学内容和建议学时一:光纤通信概论(4学时)1、教学内容(1)光纤通信的发展史与现状(2)光纤通信的系统组成(3)光纤通信的特点2、教学要求(1)掌握光纤通信的定义与系统组成。

光纤通信复习

光纤通信复习

新型的G.
光纤损耗的计算: Loss= P i / P o 谱线宽 20-50nm
调制是用数字或模拟信号改变载波的幅度、频率或相位的过程。
P i — 为输入功率 即:L(km)= (Pout-Prec-Ac-Pm)/Af
发散角大,与光纤的耦合效率低 (5-10%)
P o —为输出功率
常以分贝dB来表示 Ltot 所有损耗
DWDM技术 DWDM当前水平:
目前1.6Tbit/s WDM系统已经大量商用。
100km 10.9Tbit/s(273x40Gbit/s) 50GHz S、C和L波段
100km 10.2Tbit/s(256x40Gbit/s)交替75和 50GHz ,C和L波段
CWDM技术 技术参数:
波长组合:三种,即4、8和16个 波长通路间隔:20nm 允许波长漂移±6.5nm
LD特点 : 受激辐射、相干光、谱线窄、功率高 发光面小、发散较小,与光纤耦合效率高 寿命和可靠性比LED稍低
Table - Comparison of LEDs and Lasers
Characteristic
LEDs
Lasers
Output Power
Pr=10 μW=10log(10μ W/1mW)
<0.1
光检测器和光接收机
PIN光电二极管是在掺杂浓度很高的P型、N型半导 体之间,加一层轻掺杂的N型材料,称为I(本征 层)。由于是轻掺杂,电子浓度很低,经扩散后形 成一个很宽的耗尽层。这样可以提高其响应速度和 转换效率。
PIN光电二极管的优点
提高了响应速度
提高了长波的量子效率
噪声小
APD光电二极管 雪崩光电二极管,又称APD(Avalanche

光电器件在光通信中的应用

光电器件在光通信中的应用

光电器件在光通信中的应用一、引言光通信作为一种快速、高效、节能和安全的通讯技术,在现代社会中已经得到了广泛的应用。

而光电器件作为光通信的关键组成部分,为光通信的发展作出了巨大的贡献。

本文将重点介绍光电器件在光通信中的应用。

二、光电器件的基本原理光电器件是将光信号转换成电信号或将电信号转换为光信号的器件,是光通信的关键组成部分。

主要包括发光二极管、激光器、光电探测器、光电二极管等。

激光器是一种可以将低能量的电信号转换为高能量的光信号的器件,其基本原理是通过注入电流来激发激光放大效应,产生高能量的光信号。

发光二极管(LED)同样是将电信号转换为光信号的器件。

其原理是通过PN结发生注入注出,放射能量转换为光信号。

LED具有低功耗、长寿命等优点,在室内局域网和多媒体通信中有着重要的应用。

光电二极管同样是将光信号转换为电信号的器件。

当光线照射到光电二极管上时,被吸收的光子会把电子激发出来,形成电信号,从而实现光电转换。

光电探测器主要是将光信号转换成电信号进行数据传输。

现代通讯网络中,大多数采用光电探测器作为前端光电转换器,将光信号转换成电信号,再通过数字电路进行处理和传输。

三、光电器件在光通信中的应用1、传输光通信最基本的应用就是数据传输。

光电器件具有高速、高精度和低噪声的特点,能够在光通信系统中扮演重要的角色。

其中,激光器、LED和光电探测器是传输过程中最基本的器件。

激光器是实现光纤通信的核心元器件之一。

现在的光纤通信系统中,都是采用半导体激光器来产生光信号,其可靠性和功耗都得到了较好的保障。

同时,激光器较宽的谱带宽可以传输更多的数据,实现更高的数据传输速率。

在光通信系统中,LED也被广泛采用。

LED价格较低,容易被制造和使用,可以用于室内或短距离的光通信,但容易受到周围光环境的影响,因此在近距离通信和低速通信中应用较多。

光电探测器也是光通信中不可或缺的器件。

现代通讯网络中,大多数采用光电探测器作为前端光电转换器,将光信号转换成电信号,再通过数字电路进行处理和传输。

《光纤通信》的复习要点

《光纤通信》的复习要点

《光纤通信》的复习要点《光纤通信》课程复习要点和重点浙江传媒学院陈柏年(2014年6⽉)第⼀章概述1、光纤通信:以光波作为信号载体,以光纤作为传输媒介的通信⽅式。

2、光纤通信发展历程:(1)光纤模式:从多模发展到单模;(2)⼯作波长:从短波长到长波长;(3)传输速率:从低速到⾼速;(4)光纤价格:不断下降;(5)应⽤范围:不断扩⼤。

3、光纤通信系统基本组成:(1)光纤,(2)光发送器,(3)光接收器,(4)光中继器,(5)适当的接⼝设备。

第⼆章光纤光缆⼀、光纤(Fibel)1、光纤三层结构:(1)纤芯(core),(2)包层(coating),(3)涂覆层(jacket)。

2、各类光纤的缩写和概念:SIF(突变型折射率光纤),GIF(渐变折射率光纤);DFF(⾊散平坦光纤)、DSF(⾊散移位光纤);MMF(多模光纤),SMF(单模光纤);松套光纤,紧套光纤。

⼆、光的两种传输理论(⼀)光的射线传输理论1、光纤的⼏何导光原理:光纤是利⽤光的全反射特性导光;纤芯折射率必须⼤于包层折射率,但相差不⼤。

2、突变型折射率多模光纤主要参数:★(1)光纤的临界⾓θc:只有在半锥⾓为θ≤θc的圆锥内的光束才能在光纤中传播。

★(2)数值孔径NA:⼊射媒质折射率与最⼤⼊射⾓(临界⾓)的正弦值之积。

与纤芯与包层直径⽆关,只与两者的相对折射率差有关。

它表⽰光纤接收和传输光的能⼒。

(3)光纤的时延差Δτ:时延差⼤,则造成脉冲展宽和信号畸变,影响光纤的容量,模间⾊散增⼤。

3、渐变型折射率多模光纤主要参数:(1)⾃聚焦效应:如果折射率分布恰当,有可能使不同⾓度⼊射的全部光线以同样的轴向速度在光纤中传输,同时达到光纤轴上的某点,即所有光线都有相同的空间周期。

(2)光纤的时延差Δτ:⽐突变型光纤要⼩,减⼩脉冲展宽,增加传输带宽。

(⼆)光纤波动传输理论★1、光纤模式:⼀个满⾜电磁场⽅程和边界条件的电磁场结构。

表⽰光纤中电磁场(传导模)沿光纤横截⾯的场形分布和沿光纤纵向的传播速度。

光纤通信用光器件介绍

光纤通信用光器件介绍

光纤通信用光器件介绍光纤通信是利用光纤传输光信号进行通信的技术,其核心是通过光器件来发射、接收和调制光信号。

光器件是光纤通信系统中非常重要的组成部分,能够直接影响到通信系统的性能和稳定性。

在这篇文章中,我将介绍几种常见的光器件,并介绍它们的工作原理和应用。

第一种光器件是光纤激光器。

光纤激光器是一种能够发射强聚焦、单一波长、狭谱宽的光信号的器件。

它的工作原理是通过激光材料受到光电势驱动而产生的受激辐射来产生光信号。

光纤激光器具有很高的光输出功率和较窄的光谱特性,使其在长距离传输和高速通信中具有很大的优势。

第二种光器件是光纤调制器。

光纤调制器是一种能够改变光信号的特征以传输信息的器件。

它的工作原理是通过改变光的相位、幅度或频率,来调制光信号传递的信息。

光纤调制器在光纤通信中广泛应用于多种信号调制技术,如振幅调制、频率调制和相移键控等。

第三种光器件是光纤增益器。

光纤增益器是一种能够增强光信号的器件。

它通过将光信号输入到光纤中,通过光放大的原理来增强信号的强度。

光纤增益器在光纤通信系统中被广泛应用于信号放大和信号传输的中继,使得信号能够在长距离的传输中保持高强度和低损耗。

第四种光器件是光纤光栅。

光纤光栅是一种能够选择性反射或散射特定波长的光信号的器件。

它的工作原理是通过将光纤中的折射率周期性改变,产生布拉格衍射,从而实现对特定波长的光信号选择性反射或散射。

光纤光栅在光纤通信中被广泛应用于波长选择多路复用和分光分集等技术中。

第五种光器件是光纤检测器。

光纤检测器是一种能够接收光信号并转换为电信号的器件。

它的工作原理是通过光电效应将光信号转化为电信号。

光纤检测器在光纤通信系统中被广泛应用于光信号的接收和调制等过程中。

除了上述介绍的几种光器件外,还有许多其他类型的光器件,在光纤通信系统中起到了各种不同的作用。

例如,光纤散射器用于分配光信号,光纤滤波器用于调制光信号波长,光纤耦合器用于将多个光纤连接在一起等等。

这些光器件为光纤通信提供了更多的灵活性和多样性,使得通信系统能够更好地适应不同的需求和环境。

光纤通信期末复习题

光纤通信期末复习题

光纤通信期末复习题第一章绪论简答:光纤通信的发展方向第二章光纤和光缆填空1.目前光纤通信的长波波长低损耗工作窗口是1.31μm 和。

2.光纤中的传输信号由于受到光纤的和色散的影响,使得信号的幅度受到衰减,波形出现失真。

3.阶跃型单模光纤的截止波长λc=___________。

4.目前光纤通信三个实用的低损耗工作窗口是0.85 μm,1.55 μm 和___________。

5.在阶跃型光纤中,归一化频率V的定义式为。

6.按照折射率分布规律,光纤可以分为、和单模光纤等。

7.光纤的色散主要有材料色散、、。

8.单模光纤只传输一种模式,纤芯直径较,通常在4μm~10μm 范围内。

多模光纤可传输多种模式,纤芯直径较,典型尺寸为50μm 左右。

9.光纤特性包括它的结构特性、光学特性及传输特性。

结构特性主要指光纤的几何尺寸;光学特性包括、数值孔径等;传输特性主要是及特性。

10.按射线理论,阶跃型光纤中光射线主要有_________和___________两类。

判断1.光纤中要求纤芯的折射率应该小于包层的折射率。

2.当光纤参数确定后,只有工作波长小于截止波长时,光纤才能实现单模传输3.光纤的数值孔径与入射光波长有关。

4.弱导光纤中纤芯折射率n1和包层折射率n2的关系是n1>>n2。

5.目前通信用光纤主要是用高纯度的玻璃材料制成的。

6.光纤中光能量主要在纤芯内传输,包层为光的传输提供反射面和光隔离。

7.光纤单模传输时,应该保证归一化频率V大于归一化截止频率V c。

8.光纤中传输的模式数由归一化频率决定,当归一化频率确定后,光纤中所传输的模式数和模式分布也就确定了。

()9..单模光纤中存在模间色散,多模光纤中不存在模间色散。

()10..在单模光纤传输中,实际传输信号的频谱宽度取决于两个因素,一是半导体激光器发射的光的固有频谱宽度,二是电信号调制造成的频谱展宽。

()11.改变光纤的折射率分布和剖面结构参数,可以改变波导色散的值,从而在所希望的波长上实现零色散。

光纤通信用光器件介绍

光纤通信用光器件介绍

• FP: Fabry-Perot, 法布里-珀罗激光二极管
• DFB: Distributed Feedback Laser, 分布反馈式激光二极管
• VCSEL: Vertical Cavity Surface Emitting Laser, 垂直腔面发射激光器
• PIN: Positive Intrinsic Negative, 同质PN结光电二极管
光纤通信用光器件介绍
主要内容
• 光纤通信系统 • 缩略语 • LD的基本工作原理及其关键性能指标 • TOSA分类及其基本结构 • TOSA生产工艺 • TOSA测试原理 • PD的基本工作原理及其关键性能指标 • ROSA的分类及基本结构 • ROSA的生产工艺 • ROSA测试原理 • TOSA/ROSA常见问题 • BOSA - 单纤双向应用
有源区 (增益介质)
反射镜面 (解理面)
R1
Z=0
注入电流
有源区 (增益介质)
P
激光发射
N
反射镜面
(解理面)
R2
Z=L
2011-3-27
10
LD基本工作原理-激光产生的基本条件(4)
• 阈值条件:
¾ 由于谐振腔中存在损耗及通过反射镜子的光辐射,受激辐射产生的光 子将不断消耗。只有当增益等于或超过总损耗时,才能建立起稳定的 振荡,这一临界增益称为阈值增益。为达到阈值增益所需的注入电流 称为阈值电流。
• E2入射光 hf = E2 - E1
E1
E2

E1
•受激辐射光
hf = E2 - E1
受激辐射产生的过程
2011-3-27
增益/损耗
f1
f0
f2 频率(Hz)

光纤通信复习重点

光纤通信复习重点

光纤通信复习重点题型:填空、选择、判断30’、问答40’、计算30’第一章概论光纤通信的优点☆☆1)容许频带很宽,传输容量很大2)损耗很小,中继距离很长,且误码率很小3)重量轻,体积小4)抗电磁干扰性能好5)泄露小,保密性能好6)节约金属材料,有利于资源合理使用光纤通信系统的基本组成作用:1)信息源:把用户信息转换为原始电信号,这种信号称为基带信号2)电发射机:把信息源传递过来的模拟信号转换成数字信号PCM3)光发射机:把输入电信号转换为光信号,并用耦合技术吧光信号最大限度地注入光纤线路;4)光纤线路:把来自光发射机的光信号,以尽可能小的失真和衰减传输到光接收机; 5)光接收机:把从光纤线路输出、产生畸变和衰减的微弱光信号转换为电信号,并经其后的电接收机放大和处理后恢复成基带电信号;光接收机由光检测器、放大器和相关电路组成,光检测器是光接收机的核心;光接收机最重要的特性参数数灵敏度;6)电接收机:把接收的电信号转换为基带信号,最后由信息宿恢复用户信息;说明:光发射机之前和光接收机之后的电信号段,光纤通信所用的技术和设备和电缆通信相同,不同的只是由光发射机、光纤线路和光接收机所组成的基本光纤传输系统代替了电缆传输;注:计算题3个,全来自第二第三章的课后习题第二章光纤和光缆光纤结构光纤是由中心的纤芯和外围的包层同轴组成的圆柱形细丝;相对折射率差典型值△=n1-n2/n1,△越大,把光能量束缚在纤芯的能力越强,但信息传输容量确越小光纤类型三种基本类型图突变型多模光纤:纤芯折射率为n1保持不变,到包层突然变为n2;这种光纤一般纤芯直径2a=50~80 μm,光线以折线形状沿纤芯中心轴线方向传播,特点是信号畸变大;渐变型多模光纤:纤芯中心折射率最大为n1,沿径向r向外围逐渐变小,直到包层变为n2;这种光纤一般纤芯直径2a为50μm,光线以正弦形状沿纤芯中心轴线方向传播,特点是信号畸变小;单模光纤:折射率分布和突变型光纤相似,纤芯直径只有8~10 μm,光线以直线形状沿纤芯中心轴线方向传播;因为这种光纤只能传输一个模式两个偏振态简并,所以称为单模光纤,其信号畸变很小;光纤传输原理 展宽 衰减的原因 1)突变型多模光纤2)数值孔径:定义临界角θc 的正弦为数值孔径NANA 表示光纤接收和传输光的能力,NA 或θc 越大,光纤接收光的能力越强,从光源到光纤的耦合效率越高;对于无损耗光纤,在θc 内的入射光都能在光纤中传输;NA 越大,纤芯对光能量的束缚越强,光纤抗弯曲性能越好;但NA 越大经光纤传输后产生的信号畸变越大,因而限制了信息传输容量; 时间延迟:这种时间延迟差在时域产生脉冲展宽,或称为信号畸变;由此可见,突变型多模光纤的信号畸变是由于不同入射角的光线经光纤传输后,其时间延迟不同而产生的; 3)渐变型多模光纤 渐变型多模光纤具有能减小脉冲展宽、增加带宽的优点; 自聚焦效应:不同入射角相应的光线,虽然经历的路程不同,但是最终都会聚在同一点上;渐变型多模光纤具有自聚焦效应,不仅不同入射角相应的光线会聚在同一点上,而且这些光线的时间延迟也近似相等; 光纤传输的波动理论 单模光纤的模式特性 1单模条件和截止波长传输模式数目随V 值的增加而增多;当V 值减小时,不断发生模式截止,模式数目逐渐减少;特别值得注意的是当V<时,只有HE11LP01一个模式存在,其余模式全部截止;HE11称为基模,由两个偏振态简并而成;由此得到单模传输条件为可以看到,对于给定的光纤n1、n2和a 确定,存在一个临界波长λc,当λ<λc 时,是多模传输,当λ>λc 时,是单模传输,这个临界波长λc 称为截止波长; 2)光强分布和模场半径通常认为单模光纤基模 HE11的电磁场分布近似为高斯分布 Ψr=Aexp式中,A 为场的幅度,r 为径向坐标,w0为高斯分布1/e 点的半宽度,称为模场半径; 3)双折射把两个偏振模传输常数的差βx-βy 定义为双折射Δβ, 通常用归一化双折射β来表示∆≈-=212212n n n NA ∆≈==∆cL n NA c n L c n L c 12121)(22θτ405.222221≤-n n a λπ])([2w r -ββββββ)(y x -=∆=式中, =βx+βy/2为两个传输常数的平均值;把两个正交偏振模的相位差达到2π的光纤长度定义为拍长Lb= 光纤传输特性损耗和色散是光纤最重要的传输特性;损耗限制系统的传输距离,色散则限制系统的传输容量;☆☆☆☆☆三种色散模式色散是由于不同模式的传播时间不同而产生的,它取决于光纤的折射率分布,并和光纤材料折射率的波长特性有关;材料色散是由于光纤的折射率随波长而改变,以及模式内部不同波长成分的光实际光源不是纯单色光,其传播时间不同而产生的;这种色散取决于光纤材料折射率的波长特性和光源的谱线宽度;波导色散是由于波导结构参数与波长有关而产生的,它取决于波导尺寸和纤芯与包层的相对折射率差;说明:色散对光纤传输系统的影响,在时域和频域的表示方法不同;从频域上看,色散限制了传输信号的带宽;从时域上看,色散引起信号脉冲的展宽; 理想的单模光纤没有模式色散,只有材料色散和波导色散;材料色散和波导色散总称为色度色散,常简称为色散,它是传播时间随波长变化的产生的;光纤损耗光纤的损耗在很大程度上决定了系统的传输距离;在最一般的条件下,在光纤内传输的光功率P 随距离z 的变化,可以用 表示;α是损耗系数;吸收损耗:由SiO 2材料引起的固有吸收和由杂质引起的吸收产生的;散射损耗:主要由材料微观密度不均匀引起的瑞利散射和由光纤结构缺陷引起; 光纤总损耗α与波长λ的关系可以表示为: α= +B+CW λ+IR λ+UV λA 为瑞利散射系数,B 为结构缺陷散射产生的损耗,CW λ、IR λ和UV λ分别为杂质吸收、红外吸收和紫外吸收产生的损耗; 第三章 通信用光器件 光源光源是光发射机的关键器件,其功能是把电信号转换为光信号;半导体激光器是向半ββ∆2apdz dp -=4λA导体PN 节注入电流,实现粒子数反转分布,产生受激辐射,在利用谐振腔的正反馈,实现光放大而产恒激光震荡的;工作原理:半导体激光器是向半导体PN 结注入电流实现粒子数翻转分布,产生受激辐射,实现光放大,在利用谐振腔的正反馈而产生激光振荡的;基本结构:结构中间有一层厚~ μm 的窄带隙P 型半导体,称为有源层;两侧分别为宽带隙的P 型和N 型半导体, 称为限制层;三层半导体置于基片衬底上,前后两个晶体解理面作为反射镜构成法布里 - 珀罗FP 谐振腔; 三种跃迁:受激吸收:处于低能级E1的电子,在入射光作用下,它会吸收光子的能量跃迁到高能级E2上;自发辐射:在高能级E2的电子是不稳定的,即使没有外界的作用,也会自动地跃迁到低能级E1上与空穴复合,释放的能量转换为光子辐射出去;受激辐射:在高能级E2的电子,受到入射光的作用,被迫跃迁到低能级E1上与空穴复合,释放的能量产生光辐射; 能级跃迁:电子在E1和E2两个能级之间跃迁,吸收的光子能量或辐射的光子能量都要满足波尔条件,即 E2-E1=hf 12,其中 h=×10-34J ·s,为普朗克常数,f 12为吸收或辐射的光子频率; 受激辐射和自发辐射光的区别:它们的特点很不相同;受激辐射光的频率、相位、偏振态和传播方向与入射光相同,这种光称为相干光;自发辐射光是由大量不同激发态的电子自发跃迁产生的,其频率和方向分布在一定范围内,相位和偏振态是混乱的,这种光称为非相干光; 粒子数分布:低能级E1和处于高能级E2E2>E1的原子数分别为N1和N2;当系统处于热平衡状态时,存在下面的分布)12(exp 12kTE E N N --=k=10-23为玻尔兹曼常数,T 为热力学温度 N1>N2,即受激吸收大于受激辐射;当光通过这种物质时,光强按指数衰减, 这种物质称为吸收物质;正常状态N2>N1,即受激辐射大于受激吸收,当光通过这种物质时,会产生放大作用,这种物质称为激活物质;粒子数反转分布 如何实现粒子数反转分布:半导体激光器是向半导体PN 结注入电流,实现粒子数反转分布;发射波长:半导体激光器的发射波长取决于倒带的电子跃迁到价带时所释放的能量;这个能量近似等于禁带宽度;EgEg24.1hc ==λ不同半导体材料有不同的禁带宽度Eg,所以有不同的发射波长光谱特性:随着驱动电流的增加,纵模模数逐渐减少,谱线宽度变窄; 随着调制电流增大,纵模模数增多,光谱密度变宽; 弛张频率:弛张频率f r 是调制频率的上限,在接近f r 处,数字调制要产生弛张震荡,模拟调制要产生非线性失真;温度特性:激光器输出光功率随温度而变化有两个原因:一是激光器的阈值电流I th 随温度升高而增大,二是外微分量子效率ηd 随温度升高而减小;温度升高时,I th 增大,ηd 减小,输出光功率明显下降,达到一定温度时,激光器就不激射了;当以直流电流驱动激光器时,阈值电流随温度的变化更加严重;当对激光器进行脉冲调制时,阈值电流随温度呈指数变化,在一定温度范围内,可以表示为)ex p(00th T T I I =I 0为常数,T 为结区的热力学温度,T 0为激光器材料的特征温度 发光二极管 对应的看看就可以发光二极管LED 的工作原理与激光器LD 有所不同, LD 发射的是受激辐射光,LED 发射的是自发辐射光;发光二极管的优点:和激光器相比,发光二极管输出光功率较小,谱线宽度较宽,调制频率较低;但发光二极管性能稳定,寿命长,输出光功率线性范围宽, 而且制造工艺简单,价格低廉; 光检测器光电二极管工作原理光电效应光电效应:在PN 结界面上,由于电子和空穴的扩散运动,形成内部电场;内部电场使电子和空穴产生与扩散运动方向相反的漂移运动,最终使能带发生倾斜, 在PN 结界面附近形成耗尽层;在耗尽层,会形成光生漂移电流;在中性区会形成光生扩散电流;当与P 层和N 层连接的电路断开时,便会在两端产生电动势;说明:光生漂移电流分量和光生扩散电流分量的总和即为光生电流; 光无源器件小知识点 考小题 无计算 连接器:实现光纤与光纤之间可拆卸连接 接头:实现光纤与光纤之间的永久性连接光耦合器:把一个输入的光信号分配给多个输出,或者把多个输入的光信号复合成一个输出;分为:T 型耦合器.星型耦合器.定向耦合器.波分复用器/解复用器光隔离器:非互易器件,只允许光波向一个方向上传输,阻止光波往其他方向特别是反方向传播;环形器:有多个接口的光隔离器;外调制器:为了解决直接调制激光器会产生线性调频的问题;光开关:转换电路,实现光交换;光发射机光发射机基本组成相应的模块对光源有什么要求、电路的作用☆☆对光源的要求:简单题1号嫌疑犯1发射的光波长应和光纤低损耗“窗口”一致,即中心波长应在μm、μm和μm附近;光谱单色性要好,即谱线宽度要窄,以减小光纤色散对带宽的限制;2电/光转换效率要高,即要求在足够低的驱动电流下,有足够大而稳定的输出光功率,且线性良好;发射光束的方向性要好,即远场的辐射角要小,以利于提高光源与光纤之间的耦合效率;3允许的调制速率要高或响应速度要快,以满足系统的大传输容量的要求;4器件应能在常温下以连续波方式工作,要求温度稳定性好,可靠性高,寿命长;5此外,要求器件体积小,重量轻,安装使用方便,价格便宜;发射机的电路部分:作用:电路的设计应该以光源为依据,使输出光信号准确反映输入电信号;对调制电路和控制电路的要求:1)输出光脉冲的通断比应大于10,以保证足够的光接收信噪比;2)输出光脉冲的宽度应远大于电光延迟时间,光脉冲的上升时间、下降时间和开通延迟时间应足够短,以便在高速率调制下,输出的光脉冲能准确再现输入电脉冲的波形.3)对激光器应施加足够的偏置电流,以便抑制在较高速率调制下可能出现的张弛振荡,保证发射机正常工作;4)应采用自动功率控制APC和自动温度控制ATC,以保证输出光功率有足够的稳定性; 线路编码电路必要的原因:因为电端机输出的数字信号是适合电缆传输的双极性码,而光源不能发射负脉冲;调制特性效应小知识码型效应:当电光延迟时间td与数字调制的码元持续时间T/2为相同数量级时,会使“0”码过后的第一个“1码的脉冲宽度变窄,幅度减小,严重时可能使单个“1”码丢失,这种现象称为“码型效应”;码型效应的特点:在脉冲序列中较长的连“0”码后出现的“1”码,其脉冲明显变小,而且连“0”码数目越多,调制速率越高,这种效应越明显;可以采用“过调制”补偿方法,消除码型效应;弛张震荡:当电流脉冲注入激光器后,输出光脉冲会出现幅度逐渐衰减的震荡; 自脉动现象:某些激光器在脉冲调制甚至直流驱动下,当注入电流达到某个范围时,输出光脉冲出现持续等幅的高频振荡,这种现象叫做自脉动现象;温度对激光器输出光功率的影响主要通过阈值电流I th 和外微分量子效率ηd 产生温度升高,阈值电流增加,外微分量子效率减小,输出光脉冲幅度下降; 光接收机 ☆☆☆☆☆☆器流对光检测器的要求:1)波长相应要和光纤低损耗窗口μm,μm 和μm 兼容;2)响应度要高,在一定的接收光功率下,能产生尽可能大的光电流; 3)噪声要尽可能低,能接收微弱光信号,; 4)性能稳定,可靠性高,寿命长,功耗和体积小; 均衡的目的是:对经光纤传输、光/电转换和放大后已产生畸变的电信号进行补偿,使输出信号的波形适合于判决,以消除码间干扰减小误码率;灵敏度的定义:在保证通信质量的条件下,光接收机所需的最小平均接收光功率P min ,并以dBm 为单位;计算公式:定义公式:Pr=10lg 理想光接收机灵敏度:Pr=10lg)](10)min([3dBm w P -><λη2bnhcf基本概念:因为量子噪声是伴随光信号的随机噪声,只要有光信号输入,就有量子噪声存在; 光接收机的噪声包括光检测器的噪声量子噪声、暗电流噪声、APD 附加噪声、电阻热噪声和前置放大器的噪声; 线路编码有什么要求数字光纤通信系统对线路骂醒的主要要求是保证传输的透明性,具体要求是: 1)能限制信号带宽,减小功率谱中的高低频分量; 2)能给光接收机提供足够的定时信息;3)能提供一定的冗余度,用于平衡码流、误码监测和公务通信;但对高速光纤通信系统,应尽量减小冗余度,以免占用过大的带宽;常用的线路码型为:扰码、mBnB 码和插入码; 第四章 数字光纤通信同步数字系列SDH 帧结构 作用因素 图 简答题2号嫌疑犯字节发送顺序:由上往下发 每行先左后右1)段开销SOH 又可分为再生段开销SOH 和复接段开销LOH 2)信息载荷Payload 3)管理指针单元AU-PTRSDH 环形网的一个突出优点是“自愈”能力; 系统的性能指标 小知识点 掌握为进行系统性能研究,ITU-T 建议中提出了一个数字传输参考模型,称为假设参考连接HRX ;假设参考数字链路HRDL数字光纤通信系统的主要性能指标有:传输速率,误码率,抖动和可靠性 系统的设计往年有计算,今年没有,但有小知识点12345…9顺序数字光纤通信系统设计的主要任务是确定中继距离,一般采用最坏情况设计法来确定中继距离;在光纤传输中,中继距离不但受到光纤损耗限制,而且还受到光纤色散的限制;第七、八章讲过的一些小知识点,你大爷,哪些讲过,臣妾不知道哇1参饵光纤放大器工作波长正好与光纤的最佳波长一致,增益高、噪声系数小、频带宽,在光纤通信系统中可以作为中继放大器,前置放大器和后置放大器;2光波分复用增加了光纤的传输容量,降低了成本;3光交换目前主要有两种方式:空分交换和波分交换4目前光通信系统采用光强调制——直接检测的方式;5相干光通信在接收端采用零差检测或外差检测;6SDH技术的最大优势在于组网上,它的传送网通常采用线形、星形、树形、环形和网孔形拓扑结构;7SDH的特色之一是能利用ADM构成环形自愈网,自愈网结构分为两类:通道倒换环和复用段倒换环;8建议将光传送网分为光通道层OCH、光复用段层OMS和光传输层OTS;9WDM光网络的结点主要有两种功能,即光波长信道的分插复用功能和交叉连接功能,实现这两种功能的网络元件是:OADM和OXC;。

光纤通信用光器件介绍

光纤通信用光器件介绍

光纤通信用光器件介绍光纤通信是一种利用光信号传输数据的通信方式。

它利用光纤作为传输介质,通过调制光信号的强度、频率或相位来传输信息。

在光纤通信系统中,光器件起着关键的作用,它们负责产生、放大、调制和检测光信号。

本文将介绍光纤通信中常用的光器件,包括光源、放大器、调制器和光检测器。

光源是光纤通信系统中的重要组成部分,负责产生光信号。

常见的光源有半导体激光器、气体激光器和光纤激光器。

半导体激光器是最常用的光源,它具有体积小、功耗低、调制速度快等优点。

气体激光器具有宽的谱带宽和高的输出功率,但体积较大。

光纤激光器结合了两者的优点,是一种理想的光信号源。

放大器是光纤通信系统中的另一个重要组成部分,用于增强光信号的功率。

光纤放大器是常用的放大器类型,它可以放大光信号而不需要将其转换为电信号。

最常见的光纤放大器是掺铒光纤放大器(EDFA),它利用掺铒光纤中的铕原子的能级跃迁来实现光信号的放大。

EDFA具有宽的增益带宽、高增益、低噪声等优点,是目前光纤通信系统中最常用的放大器。

调制器是光纤通信系统中用于调制光信号的器件。

光电调制器是常用的调制器类型,它利用光电效应或半导体材料的光学特性来实现光信号的调制。

光电调制器分为直接调制器和外调制器。

直接调制器利用半导体材料的直接带隙特性,通过改变注入电流来调制光信号的强度。

外调制器利用半导体材料的Kerr效应或电光效应来调制光信号的相位或强度。

光电调制器具有调制速度快、带宽宽、功耗低等优点。

光检测器是光纤通信系统中用于检测光信号的器件。

光电二极管是最常用的光检测器,它利用光束的能量转变为电流。

光电二极管具有高速度、高灵敏度、低噪声等优点,是目前光纤通信系统中最常用的光检测器。

其他常用的光检测器还包括光开关和光波导耦合器。

除了以上介绍的光器件,还有一些其他的光器件在光纤通信系统中扮演着重要角色。

例如,光分路器用于将光信号分成多个通道,光耦合器用于将光信号从一根光纤传输到另一根光纤,光滤波器用于选择或剔除特定波长的光信号。

光纤通信原理 第三章 光纤通信技术

光纤通信原理 第三章 光纤通信技术

图 双纤单向WDM传输
(2) 单纤双向传输。 双向WDM传输是指光通路在一根光 纤上同时向两个不同的方向传输。如图7.8所示,所用波长相 互分开, 以实现双向全双工的通信。
1 光发射机 1
光接机 1


n 光发射机 n 1′ 光接收机
复用/解复用器

n′ 光接收机
1…n
光纤 放大器
n+1…2n
光接收机 n
在接收端通过光解复用器将不同波长的信号分开,完成多路光信号 传输的任务。
反方向通过另一根光纤传输的原理与此相同。
1 光发射机
1

复用器
n 光发射机 n
1′ 光接收机 n′ 光接收机

解复用器
光纤放大器 1…n
光纤放大器 1…n
解复用器
光接收机
1

光接收机 n
复用器
1 光发射机
1′

n 光发射机
n′
如果一个区域内所有的光纤传输链路都升级为WDM传输, 我们就可以在这些WDM链路的交叉(结点)处设置以波长为单位 对光信号进行交叉连接的光交叉连接设备(OXC),或进行光上下 路的光分插复用器(OADM),则在原来由光纤链路组成的物理层 上面就会形成一个新的光层。
在这个光层中,相邻光纤链路中的波长通道可以连接起来, 形成一个跨越多个OXC和OADM的光通路,完成端到端的信息 传送,并且这种光通路可以根据需要灵活、动态地建立和释放, 这就是目前引人注目的、 新一代的WDM全光网络。
复用/解复用器 n+1
光发射机
1′

2n 光发射机
n′
图 单纤双向WDM传输
双向WDM系统在设计和应用时必须要考虑几个关键的系 统因素:

第三章-光无源器件

第三章-光无源器件
变换器(Converter):将某一型号的插头变换成另一 型号插头的器件。
裸光纤转接器(Bare Fiber Adaptor ):将裸光纤与光 源、探测器以及各类光仪表进行连接的器件。
光纤(缆)活动连接器:习惯上是指两个连接器插头加 一个转换器。
活动连接器是实现光纤与光纤之间可拆卸连 接的器件,活动连接器件是光纤通信领域 最基本、应用最广泛的无源器件,用于:
研磨抛光法
熔融拉锥法:将两根(或两根以上)除去涂覆层
的光纤以一定的方式靠拢,在高温加热下熔融, 同时向两侧拉伸,最终在加热区形成双锥体形式 的特殊波导结构。
输入臂 背向散射臂
熔融拉锥法
4直通臂 3耦合臂
下图可用来定性地表示熔融拉锥型光纤耦合器的 工作原理。入射光功率在双锥体结构的耦合区发 生功率再分配,一部分光功率从“直通臂”继续 传输,另一部分则由“耦合臂”传到另一光路。
ST型插头:由AT&T公司开发,采用带键的卡 口式锁紧结构,确保连接时准确对准。
•“Jumper cables” to connect devices and instruments
•“Adapter cables” to connect interfaces using different connector styles
光路 旋转轴
光路 旋转轴
为了减小反射光,衰减片与光轴可以倾 斜放置。
光纤
自 聚 焦 透镜
衰减 器
光衰减器的主要技术要求是: 高的衰减精度
好的衰减重复性
低的原始插损
一.光纤定向耦合器 ——简称光纤耦合器
光纤光耦合器的功能:
把一个输入的光信号功率分配给多个输 出,或把多个输入的光信号功率组合成 一个输出。这种光耦合器与波长无关。

《光纤通信概论》PPT课件

《光纤通信概论》PPT课件

光源:
(1)1960年美国人梅曼(Maiman)发明了第一台红宝石激光器 (2)氦—氖(He - Ne)激光器
(3)二氧化碳(CO2)激光器
激光具有波谱宽度窄,方向性极好, 亮度极高,以及频率和 相位较一致的良好特性。是一种理想的光载波。激光器的发明 和应用, 使沉睡了80年的光通信进入一个崭新的阶段。
(1)1976 年,美国在亚特兰大(Atlanta)进行了世界上第一个 实用光纤通信系统的现场试验,系统采用GaAlAs激光器作光源, 多模光纤作传输介质,速率为44.7 Mb/s,传输距离约10 km。
(2)1983年敷设了纵贯日本南北的光缆长途干线,全长3400 km, 初期传输速率为400 Mb/s,后来扩容到1.6 Gb/s。
光纤通信
h
1
主要内容:
第一章 概论 第二章 光纤和光缆 第三章 通信用光器件 第四章 光端机 第五章 数字光纤通信系统 第六章 光纤通信新技术
h
2
什么叫通信? 什么叫光纤通信?
利用光纤传输光波信号的通信方式。
h
3
第1章概论
1·1 光纤通信发展的历史和现状 1·2 1·3 光纤通信系统的基本组成
二、光源研制的发展
(1)1970 年,美国贝尔实验室、日本电气公司(NEC)和前 苏联先后研制成功室温下连续振荡的镓铝砷(GaAlAs)双异质 结半导体激光器(短波长)。寿命只有几个小时。
(2)1973 年,半导体激光器寿命达到7000小时。
(3)1977 年,贝尔实验室研制的半导体激光器寿命达到10 万小时(约11.4年),外推寿命达到100万小时,完全满足实 用化的要求。
h
6
传输介质的探索:
美国麻省理工学院利用He - Ne激光器和CO2激光器进 行了大气激光通信试验。实验证明:通过大气的传播承载 信息的光波,实现点对点的通信是可行的。但是通信的距 离和稳定性都受到极大的限制,体现在以下两个方面:

光纤通信系统与光器件光器件

光纤通信系统与光器件光器件

三、多层介质膜滤波器TFF
Multilayer Dielectric Thin-Film Filter 多层介质膜:通过某一波长,阻止其它波长
Thin-Film resonant Multicavity Filter (TFMF) 薄膜多共振腔滤波器
TFMF的传输特性: 腔越多滤波器顶越平
边缘越陡
Output 1 /2+L+ /2= L+ Output 2 /2+L- /2= L
L=2neff L /=k
k为奇数 k为偶数
Output 1 Output 2
五、体光栅滤波器
在Si衬底上沉积环氧树脂后制造成光栅。多波长信号经光纤 输入和普通透镜或棒透镜聚焦在反射光栅上,反射光栅将各 波长分开,然后经透镜将各个波长的光聚焦在各自的光纤。
光衰减器—Attenuator
根据工作原理分类:
横向位移型光衰减器
位移型光衰减器
纵向位移型光衰减器
光衰 减器
直接镀膜型光衰减器 (吸收模或反射模型)
衰减片型光衰减器
液晶型光衰减器
光衰 减器
固定光 衰减器
可变光 衰减器
尾纤式固定光衰减器
转\变换器式 固定光衰减器
SC—FC型、 FC— ST型、 SC—ST型、
对输入信号 进行分路的 3dB耦合器
长度相差L的两根波 导,用来在两臂间产 生与波长有关的相移
在输出端将 信号复合的 3dB耦合器
通过分裂输入光束以及在一条通路上引进一个相移,重组 的信号将在一个输出端产生相加性干涉,而在另一个输出 端产生相消性干涉,信号最后只会在一个输出端口出现。
Input 1
反射中 2neff 光栅
心波长
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

温度特性
对于线性良好的激光器,输出光功率特性 如下式和下图所示。 激光器输出光功率随温 度而变化有两个原因: 一是激光器的阈值电
流率ηd减Iηdth随小随,温温输度度出升升光高高功而而率减增明小大显。,下温二降度是,升外达高微到时分一,量定I子th温增效度大,
当以直流电流驱动激光器时,阈值电流随 温度的变化更加严重。当对激光器进行脉冲调 制时,阈值电流随温度呈指数变化,在一定温 度范围内,可以表示为
结构,可调谐光纤激光器的调谐通常使用可调
谐滤波器来实现。可调谐激光器不仅可以用作 DWDM系统的光源,还可以用作分组交换器 件、接入波长路由器等,在光通信中具有非常
大的应用潜力,最终将会代替目前通信市场上 占主流地位的固定波长激光器。
• 可调谐DFB激光器一般是通过温度来实现波长 调谐,但随着调谐温度的上升,会使激光器的 有效输出功率下降,所以单个DFB激光器的调 谐范围受到限制,大约5nm左右,这远不能满 足光通信中对波长调谐范围的要求。为了扩大 DFB激光器的调谐范围,组合多个DFB激光器 形成DFB阵列是一种有效的方法。北电网络等 人报导了他们将三个DFB串联而成的可覆盖 34个ITU标准信道(50GHz信道间隔)的可 调谐激光器模块。美国Santur公司等人也研 制出了由12个DFB并联形成的DFB阵列。
I
th=I0
T exp(
T0
• 常规的激光器都是禁带宽度决定波长,因此要 用不同的材料来获得不同的波长。
量子阱激光器QW
• 半导体激光器的结构可以分为同质结和 异质结。同质结只有一个简单的PN结, P区和N区都采用同一种半导体材料。异 质结由不同材料,例如GaAs和GaALAs 构成的PN结--异质结。
• 量子阱激光器采用双异质结结构。有源层的 厚度在0.1~0.2微米左右,当有源层的厚度小 到某一数值时,就会出现所谓的量子阱效应, 即有源层与两边相邻的能带不连续,在有源层 的异质结上出现导带和价带的突变,这样窄带 隙的有源区为导带中的电子和价带中的空穴创 造了一个势能阱,将载流子限制在很薄的有源 区内,使有源区内的粒子数反转浓度非常高, 这是受激辐射发光的必要条件。
即平行于PN结平面的宽度w和垂直于结平面的 厚度t所决定,并称为激光器的横模。由图可 以看出,平行于结平面的谐振腔宽度w由宽变
窄,场图呈现出由多横模变为单横模;垂直于
结平面的谐振腔厚度t很薄,这个方向的场图
总是单横模。
GaAlAs-DH条形激光器的近场和远场图样
下图为典型半导体激光器的远场辐射特性,图中θ‖和θ⊥ 反射点,当光照射在反射点上将产生周期性的 反射。
• 激光器的输出波长:=2nA/m,其中A为两 反射点间的距离。
三电极DBR-LD结构示意图
单片分布反馈激光器DFB
• 用布喇格反射原理制成的另一种激光器是DFB • DFB激光器和DBR激光器结构不同,DFB的光栅和有
• 腔体积减小使得其自发辐射因子较普通端面发射激光 器高几个数量级,这导致许多物理特性大为改善,
• 可以在片测试,极大降低了开发成本 • 出光方向垂直衬底,可实现高密度二维面阵的集成, • 最吸引人的是它的制造工艺与发光二级管LED兼容,
大规模制造的成本很低。
VCSEL的研究水平及应用
• 650~670nm波段 • 这个波段的VCSEL可应用在基于塑料光纤的数据通信
阱有源区,氧化
层有助于形成良
好的电流及光场
限制结构,电流 由P、N电极注 入,光由箭头方 向发出。
VCSEL的特点
• VCSEL与传统边发射激光器不同的结构带来了许多优 势:
• 小的发射角和圆形对成的远、近场分布使其与光纤的 耦合效率大大提高,现已证实其与多模光纤的耦合效 率竟能大于90%,
• VCSEL的光腔长度极短,导致其纵模间距拉大,可在 较宽的温度范围内实现单纵模工作,动态调制频率高,
成本低、易于集成和批量生产,因此是 一种比较有前途的通信用可调谐光源。
• 可调谐外腔半导体激光器ECDL是一种新型可 调谐光源,由于它大功率输出时可以具有超宽 带的可调谐范围(超过100nm),因而成为新 一代光源的研究热点。ECDL通常由外部镜面 或光栅与半导体激光二极管构成谐振腔,有单
边结构和双边结构之分,外部镜面或光栅的调 节目前一般结合使用MEMS技术,因此具有较 好的调谐精度和波长调谐速度。
PPthdehf(IIth)
• 式中,P和I分别为激光器的输出光功率 和 hf驱和动e分电别流为,光Pt子h和能I量th分和别电为子相电应荷的。阈激值光, 器的光功率特性通常用P-I曲线表示,图
3.10是典型激光器的光功率特性曲线。
当 当 率II随<>II驱tthh动时时电激,流光 发的器 出增发 的加出 是而的 受增是 激加自辐。发射辐光射,光光;功
半导体激光器的主要特性
发射波长和光谱特性
波长特性
• 半导体激光器的发射波长取决于导带的电子跃 迁到价带时所释放的能量,这个能量近似等于
禁带宽度Eg(eV),我们可以得出

=1.24/Eg
• 不同半导体材料有不同的禁带宽度Eg,因而有 不同的发射波长。
光谱特性
• 在直流驱动下,发射光波长有一定的分布,谱 线具有明显的模式结构。这种结构的产生是因 为导带和价带都是由许多连续能级组成的有一 定宽度的能带,两个能带中不同能级之间电子 的跃迁会产生连续波长的光辐射。其中只有符 合激光振荡相位条件的波长存在。这些波长取 决于激光器纵向长度L,称之为激光器的纵模。
VCSEL的结构
• 典型的VCSEL由高反射率分布式布拉格 反射镜面、有源层和金属接触层组成。 量子阱有源层夹在n-DBR和p-DBR之 间。DBR反射镜由光学厚度为/4的高 折射率层和低折射率层交替生长而成。
VCSEL的典型示意图
• 其上下分别为分 布布拉格反射 (DBR)介质反射 镜,中间为量子
• 用这种原理做成的激光器就叫做量子阱激光器 或量子限制激光器。这种激光器还可以细分单 量子阱激光器、多量子阱激光器、量子线激光 器和量子点激光器。
量子阱激光器小结:
• 三明治的结构 • 波长由有源区厚度决定,而不是材料 • 输出功率比较高 • 寿命长,可靠性好
VCSEL 垂直腔面发射激光器
• 1979年提出VCSEL思想至今,研究单位和科学家们已 经从材料、结构、器件性能和波长范围方面做了长期 深入的研究。特别是近年来,由于人们对超长距离、 超高速、超大容量的光纤网络和高性能、低成本的光 互连网络不断提出更高要求,从而极大推动了VCSEL 的发展。虽然目前通信市场萎缩,但据美国 ElectroniCast公司最近预测,全球用于光通信的 VCSEL激光收发机的需求量在未来5年内仍将以每年 35%的速率递增,到2006年将达到20亿美元。
别为平行于结平面和垂直于结平面的辐射角,整个光束的横 截面呈椭圆形。
(a) 光强的角分布;(b) 辐射光束
转换效率和输出光功率特性
• 外微分量子效率ηd • 激光器的电/光转换效率用外微分量子效率ηd
表示,其定义是在阈值电流以上,每对复合 载流子产生的光子数
d
(PPth)/hfΔP e (IIth)/e ΔI hf
GaAlAs-DH (a) 直流驱动; (b) 300 Mb/s数字调制
• 随着驱动电流的增加,纵模模数逐渐减少,谱 线宽度变窄。这种变化是由于谐振腔对光波频
率和方向的选择,使边模消失,主模增益增加
而产生的。当驱动电流足够大时,多纵模变为
单纵模,这种激光器成为静态单纵模激光器。 图 (b)是300 Mb/s数字调制的光谱特性,由 图可见,随着调制电流增大,纵模模数增多, 光谱宽度变宽。用F-P谐振腔可以得到的是直 流驱动的静态单纵模激光器,要得
(a) 短波长GaAlAs-GaAs; (b) 长波长InGaAsP-InP
频率特性
在直接光强调制下,激光器输出
光功率P和调制信号频率f的关系为
P(f)
P(0)
[1(f/fr)2]242(f/fr)2
fr
1 2π
1 ( I0 I 1)
sp hp IthI
• 式I益th中 电和, 流I0f,分r和高别ξ掺为分杂阈别浓值称度电为的流弛L和张D偏,频置I率′=电和0,流阻低;尼掺I因′是杂子零浓,增度 的子L寿D命,,I′=τp(h0.7~0.8)Ith;τsp为有源区内的电
系统中 • 850nmVCSEL • 技术已经相当成熟,批量生产成本较低,由于其优异
的性能,850nm的VCSEL已经主宰了单通道短距离光 学互连的市场,如IEEE802.3千兆以太网1000BaseSx系列标准中就采用低成本850nmVCSEL作为光源, 用在并行传输多通道发送机模块中的一维VCSEL阵列 也有产品进入市场。 • 1300、1550nm
第三章 通信用光器件
FP Laser
• 可以发射多纵模的激光器 • 最经典的激光器
基本参数: • 主要用在850nm 1310nm • 输出功率有几个毫瓦 • 频谱宽度3~20nm • 模式间距离0.7~2nm • 相干长度1~100mm • 可以高效的耦合进光纤
单片布喇格激光器DBR
• DBR内部用布喇格光栅做反射器来获得谱线更 窄的激光。
• VCSEL发展到今天,从器件性能到覆盖波长, 从实验研究到工业应用,各方面都显示出它作 为新一代半导体光源的潜力,可以说,面发射 激光器是未来实现大规模的并行光处理所必须 的器件。作为单个器件,它本身可在极低阈值 下工作,并有单一波长,圆形的窄输出光束, 可以高速调制,若集成成二维面阵,则可实现 多波长阵列,高功率阵列,并能大量生产,而 且由于利用MEMS技术使层叠集成成为可能, 新的器件可能会不断出现,随着外延生长技术 的不断提高,对材料物理特性研究的不断深入, 以及新材料、新结构的不断应用,VCSEL定会 有辉煌的未来,成为光子信息时代的新型光源。
相关文档
最新文档