人教版八年级上册第十五章《分式》单元检测卷(有答案)
人教版初中数学八年级上册第十五章《分式》测试题(含答案)
=1- + - + - +…+ -
=1-
= ;
(2)①∵ + =
= ,
∴ ,
解得 .
∴A和B的值分别是 和- ;
②∵ = • - •
= •( - )- ( - )
∴原式= • - • + • - • +…+ • - •
= • - •
= -
= .
故 且 .
故答案为 且 .
18.解:(1)去分母得:2x﹣5=3(2x﹣1),解得:x=﹣ ,
经检验x=﹣ 是分式方程的解;
所以原方程的解是x=﹣ ;
(2)去分母得:2x﹣1﹣x+1=0,解得:x=0,
经检验x=0是增根,所以分式方程无解.
19解:设 ,则 , , .
所以 .
20解:原式=[ + ]÷ =( + )•x=x﹣1+x﹣2=2x﹣3
10.计算(a2)3+a2·a3-a2÷a-3的结果是( )
A.2a5-aB.2a5- C.a5D.a6
11.已知关于x的分式方程 =1的解是负数,则m的取值范围是( )
A.m≤3B.m≤3且m≠2C.m<3D.m<3且m≠2
12.施工队要铺设1000米的管道,因在中考期间需停工2天,每天要比原计划多施工30米才能按时完成任务.设原计划每天施工x米,所列方程正确的是( )
八年级上册《第15章分式》单元同步测验卷
一、单选题
1.代数式 中的x取值范围是( )
A.x B.x C.x D.
2.下列各式:2个C.3个D.4个
3.若分式 中的x和y都扩大10倍,那么分式的值()
人教版八年级上册数学第15章《分式》单元测试卷(含答案解析)
人教版八年级上册数学第15章《分式》单元测试卷一.选择题(共10小题,满分30分)1.下列式子中,属于分式的是()A.B.C.D.2.分式的值是零,则x的值为()A.3B.﹣3C.3或﹣3D.03.已知某新型感冒病毒的直径约为0.000002022米,将0.000002022用科学记数法表示为()A.2.022×10﹣5B.0.2022×10﹣5C.2.022×10﹣6D.20.22×10﹣74.计算的结果是()A.B.C.D.5.在①x2﹣x+,②﹣3=a+4,③+5x=6,④=1中,其中关于x的分式方程的个数为()A.1B.2C.3D.46.如果把分式中的x、y的值都扩大2倍,那么分式的值()A.扩大2倍B.扩大4倍C.扩大6倍D.不变7.若将分式与通分,则分式的分子应变为()A.6m2﹣6mn B.6m﹣6nC.2(m﹣n)D.2(m﹣n)(m+n)8.分式,的最简公分母是()A.a B.ab C.3a2b2D.3a3b39.计算结果等于2的是()A.|﹣2|B.﹣|2|C.2﹣1D.(﹣2)0 10.已知,则的值是()A.66B.64C.62D.60二.填空题(共10小题,满分30分)11.分式的最简公分母是.12.要使分式有意义,则分式中的字母b满足条件.13.若表示一个整数,则整数x可取的个数有个.14.约分:=.15.方程的解是.16.若解分式方程产生增根,则m=.17.用漫灌方式给绿地浇水,a天用水10吨,改用喷灌方式后,10吨水可以比原来多用5天,那么喷灌比漫灌平均每天节约用水吨.18.已知若x﹣=3,则x2+=.19.将分式化为最简分式,所得结果是.20.扶贫工作小组对果农进行精准扶贫,帮助果农将一种有机生态水果拓宽了市场.与去年相比,今年这种水果的产量增加了1000千克,每千克的平均批发价比去年降低了1元,批发销售总额比去年增加了20%.已知去年这种水果批发销售总额为10000元,则这种水果今年每千克的平均批发价是元.三.解答题(共7小题,满分90分)21.神舟十三号飞船搭载实验项目中,四川省农科院生物技术研究所共有a粒水稻种子,每粒种子质量大约0.0000325千克;甘肃省天水市元帅系苹果的b粒干燥种粒,每粒种子质量大约0.002275千克,参与航天搭载诱变选育.(1)用科学记数法表示上述两个数.(2)若参与航天搭载这两包种子的质量相等,求的值.(3)若这两包种子的质量总和为1.04千克,水稻种子粒数是苹果种子粒数10倍,求a,b的值.22.若式子无意义,求代数式(y+x)(y﹣x)+x2的值.23.下列分式中,哪些是最简分式?,,;,,,.24.(1)计算:;(2)解不等式组:.25.若关于x 的方程有增根,求实数m的值.26.一船在河流上游A港顺流而下直达B港,用一个小时将货物装船后返航,已知船在静水中的速度是50千米/时,A、B两地距离为150千米,则该船从A港出发到返回A港共用了7.25小时,如果设水流速度是x千米/时,那么x应满足怎样的方程?27.阅读理解材料:为了研究分式与分母x的变化关系,小明制作了表格,并得到如下数据:x…﹣4﹣3﹣2﹣101234…10.50.0.25……﹣0.25﹣0.﹣0.5﹣1无意义从表格数据观察,当x>0时,随着x 的增大,的值随之减小,并无限接近0;当x<0时,随着x 的增大,的值也随之减小.材料2:对于一个分子、分母都是多项式的分式,当分母的次数高于分子的次数时,我们把这个分式叫做真分式.当分母的次数不低于分子的次数时,我们把这个分式叫做假分式.有时候,需要把一个假分式化成整式和真分式的代数和,像这种恒等变形,称为将分式化为部分分式.如:.根据上述材料完成下列问题:(1)当x>0时,随着x的增大,1+的值(增大或减小);当x<0时,随着x的增大,的值(增大或减小);(2)当x>1时,随着x的增大,的值无限接近一个数,请求出这个数;(3)当0≤x≤2时,求代数式值的范围.。
人教版八年级数学上册 第15章 分式 单元检测试题(有答案)
第15章 分式 单元检测试题(满分120分;时间:120分钟)真情提示:亲爱的同学,欢迎你参加本次考试,祝你答题成功!题号 一 二 三 总分 得分一、 选择题 (本题共计 10 小题 ,每题 3 分 ,共计30分 , ) 1. 计算1x−2+2x+2+44−x 2的结果是( )A.3x+2B.3x−2C.3x+2x 2−4D.3x−10x 2−42. 化简(1+1a−1)÷aa 2−2a+1的结果是( ) A.a +1 B.a =0 C.a >4 D.a −13. 若分式x+2x−2有意义,则x 的取值范围是( ) A.x ≥2 B.x >2 C.x ≠2 D.x ≠−24. 若分式1x−3有意义,则x 的取值范围是( ) A.x >3 B.x ≠3 C.x ≠0 D.x ≠−35. 若代数式 a+1a−1在实数范围内有意义,则实数a 的取值范围是( ) A.a ≥1 B.a ≠1C.a <1D.a =−16. 分式1a 2−b 2和1a+b 的最简公分母是( )A.a +bB.a −bC.a 2−b 2D.a 2+b 27. 如果把分式aba+2b中的a 、b 都扩大3倍,那么分式的值一定( )A.是原来的1倍B.是原来的3倍C.是原来的6倍D.不变8. 如果把3x−2y5x+7y 中的x ,y 都扩大10倍,则分式的值( ) A.扩大10倍 B.不变C.由x ,y 的值确定D.缩小到原来的1109. (x −1+y −1)−1=( ) A.x =y B.1x+yC.xyx+yD.x+yxy10. 设3x−2y x+y=2,则(3x+2y)2−(x−3y)2(4x−y)2−(2x+2y)2=( ) A.3925B.−3925C.3920D.−3920二、 填空题 (本题共计 10 小题 ,每题 3 分 ,共计30分 , )11. 下列4个分式:①a+3a 2+3;②x−yx 2−y 2;③m2m 2n ;④2m+1,中最简分式有________个.12. m+2m−1,5m+2的最简公分母是________,通分的结果为________.13. 在下列方程:①23x 2=1、②2π−x 2=1、③23x=x 、④1x−2+3=x−1x−2、⑤1x=0中,分式方程的个数有________.14. 分式32(x+1),2x5(1−x),1−2xx 2−1的最简公分母是________.15. 若方程2x−3=1x−k的根为正数,则k 的取值范围是________.16. 如果把分式2a a+b 中的a ,b 都扩大2倍,那么分式的值________.17. 当x ________时,分式x 2−4x+2无意义.若分式|a|−2(a−2)(a+3)的值为0,则a =________.18. 给定一列分式x 3y ,−x 5y 2,x 7y 3,−x 9y 4,…,则第n 个分式为:________.19. 当x ________时,分式2x−32x+3有意义;当x ________时,分式|x|−1x 2+2x+1的值为零.20. 如果对任意实数x ,等式:(1−2x)10=a 0+a 1x +a 2x 2+a 3x 3+...+a 10x 10都成立,那么(a 0+a 1)+(a 0+a 2)+(a 0+a 3)+...+(a 0+a 10)=________.(用数字作答) 三、 解答题 (本题共计 6 小题 ,共计60分 , ) 21. 解分式方程:x 2+1x−2xx 2+1+1=0.22. 化简: (1)2x x−2−2x+3(2)x+yxy−y 2⋅x 2−y 2x 2+2xy+y 2.23. 已知ab =56,bc=43,求a+bb−c的值.24. 甲地到乙地原来每隔45m要安装一根电线杆,加上两端的两根一共有53根电线杆.现在改成每隔60m安装一根电线杆,除两端两根不需移动外,中途还有多少根不必移动?25. 为改善生态环境,防止水土流失,某村计划在荒坡上种树.由于青年志愿者的支援,每天比原计划多种25%,结果提前5天完成任务,原计划多少天种完树?26. 甲乙两人分别从距目的地6千米和10千米的两地同时出发,甲乙的速度比是3:4,结果甲比乙提前20分钟到达目的地,求甲、乙两人的速度.参考答案一、选择题(本题共计10 小题,每题 3 分,共计30分)1.【答案】A【解答】解:原式=x+2+2(x−2)−4(x+2)(x−2)=3(x−2) (x+2)(x−2)=3x+2,故选A 2.【答案】D【解答】解:原式=a−1+1a−1×(a−1)2a=a−1.故选D.3.【答案】C【解答】解:由题意得:x−2≠0,解得:x≠2,故选:C.4.【答案】B【解答】解:∵ 分式1x−3有意义,∵ x−3≠0,∵ x≠3.故选B.5.【答案】B【解答】解:根据题意得,a−1≠0,解得a≠1.故选B.6.【答案】C【解答】解:因为a2−b2=(a−b)(a+b),所以分式1a2−b2和1a+b的最简公分母是a2−b2,故选:C.7.【答案】B【解答】解:根据题意得3a×3b 3a+2×3b =9ab3(a+2b)=3aba+2b,∵ 分式的值是原来的3倍.故选B.8.【答案】B【解答】解:分别用10x和10y去代换原分式中的x和y,得3x−2y5x+7y =30x−20y50x+70y=10(3x−2y)10(5x+7y)=3x−2y5x+7y,则分式的值不变.故选B.9.【答案】C【解答】解:原式=(1x +1y )−1=(x+y xy )−1=xyx+y .故选C . 10. 【答案】 A 【解答】 解:3x−2y x+y=2,∵ 3x −2y =2x +2y , ∵ x =4y , ∵ 原式=(12y+2y)2−(4y−3y)2(16y−y)2−(8y+2y)2=3925.故选A .二、 填空题 (本题共计 10 小题 ,每题 3 分 ,共计30分 ) 11.【答案】2【解答】解:①a+3a 2+3是最简分式;②x−yx 2−y 2=x−y(x+y)(x−y)=1x+y ,不是最简分式; ③m2m n =12mn ,不是最简分式; ④2m+1是最简分式;最简分式有①④,共2个; 故答案为:2. 12. 【答案】 (m −1)(m +2),(m+2)2(m−1)(m+2),5(m−1)(m−1)(m+2)【解答】解:设边形有n 条, 解得n8.180∘8−2)1080∘, 故C . 13.【答案】3【解答】解:分式方程有:③④⑤,故答案为3.14.【答案】10(x+1)(x−1)【解答】解:2,5,1的最小公倍数是10,三个分式的公因式是(x+1)(x−1).所以最简公分母是:10(x+1)(x−1).15.【答案】k>32且k≠3【解答】解:去分母得,2(x−k)=x−3,解得x=2k−3,因为方程是正数根,所以2k−3>0,解得k>32,又因为原式是分式方程,所以x≠3且x−k≠0,即k≠3.故k的取值范围是k>32且k≠3.16.【答案】不变【解答】解:依题意,原式变为:2×2a2a+2b =2aa+b,因此分式的值不变.故答案为不变.17.【答案】=−2,−2【解答】解:∵ 分式x 2−4x+2无意义,∵ x+2=0,解得x=−2.∵ 分式|a|−2(a−2)(a+3)的值为0,∵ {|a|−2=0(a−2)(a+3)≠0,解得a=−2.故答案为:=−2,−2.18.【答案】(−1)n+1x2n+1 y n【解答】解:分子的x的指数是2n+1,分母y的指数是n,式子的符号是(−1)n+1,∵ 第n个分式为:(−1)n+1x 2n+1y n.19.【答案】≠−32,1【解答】解:由分式2x−32x+3有意义,得2x+3≠0,解得x≠−32,由分式|x|−1x2+2x+1的值为零得|x|−1=0且x2+2x+1≠0.解得x=1.故答案为:≠−32,1.20.【答案】10【解答】解:由题意可知:当x=0时,(1−2x)10=1=a0+a1x+a2x2+a3x3+...+a10x10=a0.当x=1时,(1−2x)10=1=a0+a1x+a2x2+a3x3+...+a10x10=a0+a1+ a2+...+a9+a10.所以(a0+a1)+(a0+a2)+(a0+a3)+...+(a0+a10)=a0+a1+a2+...+a9+a10+9a0=1+9=10.故答案为:10.三、解答题(本题共计6 小题,每题10 分,共计60分)21.【答案】解:令y=x 2+1x,∵ 原方程转化为:y−2y+1=0,方程两边同乘y得:y2+y−2=0,解得:y1=−2,y2=1,经检验:y1=−2,y2=1,是方程y−2y+1=0的解,当y=−2时,即x 2+1x=−2,解得:x=−1,经检验,x=−1是方程的解;当y=1时,即x 2+1x=1,此时方程无解;∵ 分式方程:x2+1x −2xx+1+1=0的解为:x=1.【解答】解:令y=x 2+1x,∵ 原方程转化为:y−2y+1=0,方程两边同乘y得:y2+y−2=0,解得:y1=−2,y2=1,经检验:y1=−2,y2=1,是方程y−2y+1=0的解,当y=−2时,即x 2+1x=−2,解得:x=−1,经检验,x=−1是方程的解;当y=1时,即x 2+1x=1,此时方程无解;∵ 分式方程:x2+1x −2xx2+1+1=0的解为:x=1.22.解:(1)原式=2x(x+3)−2(x−2)(x−2)(x+3)=2x2+4x+4(x−2)(x+3);(2)原式=x+yy(x−y)×(x+y)(x−y)(x+y)2=1y.【解答】解:(1)原式=2x(x+3)−2(x−2)(x−2)(x+3)=2x2+4x+4(x−2)(x+3);(2)原式=x+yy(x−y)×(x+y)(x−y)(x+y)2=1y.23.【答案】解:由ab =56,bc=43,得a=56b,c=34b.a+b b−c =56b+bb−34b=11614=223.【解答】解:由ab =56,bc=43,得a=56b,c=34b.a+b b−c =56b+bb−34b=11614=223.24.【答案】解:由题意得:甲地到乙地距离为:45×(53−1)=2340(m),∵ 45与60的最小公倍数为180,∵ 2340÷180=13,∵ 除两端两根不需移动外,中途还有13−1=12根不必移动.【解答】解:由题意得:甲地到乙地距离为:45×(53−1)=2340(m),∵ 45与60的最小公倍数为180,∵ 2340÷180=13,∵ 除两端两根不需移动外,中途还有13−1=12根不必移动.25.解:设原计划x天种完树,一共种y棵数,则yx−5=yx×(1+25%),解得x=25,经检验,x=25是原方程的根,答:原计划25天种完树.【解答】解:设原计划x天种完树,一共种y棵数,则yx−5=yx×(1+25%),解得x=25,经检验,x=25是原方程的根,答:原计划25天种完树.26.【答案】解:设甲的速度为3x千米/时,则乙的速度为4x千米/时.根据题意,得63x +13=104x,解得x=1.5.经检验,x=1.5是原方程的根.所以甲的速度为3x=4.5千米/时,乙的速度为4x=6千米/时.【解答】解:设甲的速度为3x千米/时,则乙的速度为4x千米/时.根据题意,得63x +13=104x,解得x=1.5.经检验,x=1.5是原方程的根.所以甲的速度为3x=4.5千米/时,乙的速度为4x=6千米/时.。
人教版八年级数学上册第十五章《分式》单元测试题(含答案)
人教版八年级数学上册第十五章《分式》单元测试题考试时间:120分钟 满分:120分一、选择题(共9小题,每小题3分,共27分) 1.使分式2x x +有意义的x 的取值范围是( )A .2x ≠B .2x ≠-C .2x >-D .2x <2.在式子xx y x y x x c b a xy a 232109,87,65,43,2,1,+++π中,分式个数有( )A .2个B .3个C .4个D .5个3.下列等式:○111++=a b a b ,○2am bm a b =,○3a b am bm =,○4ab a ab =2,○522a b a b =,○61-=-+-b a b a ,○71111-+=-+b b ab ab ,○8yx y x y x +=--122从左到右变形正确的个数有( ) A .3个 B .4个 C .5个 D .6个4. 如果2a b=,则2222a ab b a b -++= ( )A .45B . 1C . 35 D . 25. 计算a b a b b a a +⎛⎫-÷⎪⎝⎭的结果为( ) A .a b b- B .a b b+ C .a b a- D .a ba+6.已知0322=++b ab a (a ≠0,b ≠0),( )A. 3B. −3C. abb a 22+ D. 无法确定8.甲、乙两人两次到某粮店去买大米,两次的大米价格分别为每斤a 元和b 元(a>b),甲每次买100斤大米,乙每次买100元的大米,那么比较甲乙两次买的大米平均价格,结果是( )A.甲比乙便宜B. 乙比甲便宜C.甲与乙相同D.都有可能 9.关于x 的方程11ax =+的解是负数,则a 的取值范围是( ) A.1a < B.1≤a C.1a <且0a ≠ D.1≤a 或0a ≠二、填空题(共9小题,每小题3分,共27分) 10.若分式033=--x x ,则x 的值为 .11.若要使x x x 有意义,则0234⎪⎪⎭⎫⎝⎛+-满足的条件是 .12.华为Mate40系列智能机搭载着麒麟9000,5nm 制程芯片,集成了153亿个集成电路.1nm=0.0000001cm ,那么5nm 用科学记数法表示为 米. 13.已知关于x 的方程4333k x x x-+=--有增根,则k = . 14.当42=---=x ax bx x 无意义,当时,分式时,分式的值为0,则a+b= . 15.已知113x y -=,则代数式21422x xy y x xy y----的值为 . 16.已知152=-x x ,那么221x x+= .17.已知x ,y ,z 满足x z z y x +=-=532,则zy y x 25+-= .18.已知)0(4112222≠+=+ab b a b a ,则代数式20222021)()(ba ab -的值为 .三、解答题(共9个大题,共66分) 19.计算:(每题4分,共8分)(1)111112122+-⋅-+÷+--x x x x x x x (2))1521(122---+÷-+x x x x x20.解方程(每题4分,共8分) (1)x x x --=--21321 (2)9631322--=-++x x x21.(6分)已知325102--=++b a a ,求代数式42()b a b -·32232a ab a b b +-÷222b a ab b -+的值.22. (6分)先化简:1441132++-÷⎪⎭⎫ ⎝⎛+-+a a a a a 并从0,-1,2中选一个合适的数作为a 的值求值.23.(7分)的取值范围的解是正数,求的方程已知关于m x x x x m x x x 112)12)(1(124-+=+--+.24.(7分)若关于x 的方程233x k x x =+--无解,求k 的值.25. (8分)中秋节是我国的传统节日,人们素有吃月饼的习俗.某超市节前购进了甲、乙两种畅销口味的月饼.已知购进甲种月饼的金额是1200元,购进乙种月饼的金额是600元,购进甲种月饼的数量比乙种月饼的数量多50个,甲种月饼每个的单价是乙种月饼每个单价的1.5倍.(1)求甲、乙两种月饼的每个的单价分别是多少元?(2)为满足消费者需求,该超市准备再次购进甲、乙两种月饼共200个,若总金额不超过1100元.问最多购进多少个甲种月饼?26.(8分)若关于x 的分式方程42212-=-+x m x x 的解也是不等式组⎪⎩⎪⎨⎧-≤-->-8)3(2221x x x x 的解,求m 的取值范围.27.(8分)某县为了落实中央的“强基惠民工程”,计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若乙队单独施工,则完成工程所需天数是规定天数的1.5倍.如果由甲、乙队先合做15天,那么余下的工程由甲队单独完成还需5天. (1)这项工程的规定时间是多少天?(2)已知甲队每天的施工费用为6500元,乙队每天的施工费用为3500元.为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙队合做来完成.则该工程施工费用是多少?参 考 答 案一、选择题(共9小题,每小题3分,共27分) 1.使分式2x x +有意义的x 的取值范围是( B )A .2x ≠B .2x ≠-C .2x >-D .2x <2.在式子xx y x y x x c b a xy a 232109,87,65,43,2,1,+++π中,分式个数有( C )A .2个B .3个C .4个D .5个3.下列等式:○111++=a b a b ,○2am bm a b =,○3a b am bm =,○4ab a ab =2,○522a b a b =,○61-=-+-b a b a ,○71111-+=-+b b ab ab ,○8yx y x y x +=--122从左到右变形正确的个数有( B ) A .3个 B .4个 C .5个 D .6个6. 如果2a b=,则2222a ab b a b -++= ( C )A .45B . 1C . 35 D . 27. 计算a b a b b a a +⎛⎫-÷⎪⎝⎭的结果为( A ) A .a b b- B .a b b+ C .a b a- D .a ba+6.已知0322=++b ab a (a ≠0,b ≠0),( B )A. 3B. −3C. abb a 22+ D. 无法确定8.甲、乙两人两次到某粮店去买大米,两次的大米价格分别为每斤a 元和b 元(a>b),甲每次买100斤大米,乙每次买100元的大米,那么比较甲乙两次买的大米平均价格,结果是( B )A.甲比乙便宜B. 乙比甲便宜C.甲与乙相同D.都有可能 9.关于x 的方程11ax =+的解是负数,则a 的取值范围是( C ) A.1a < B.1≤a C.1a <且0a ≠ D.1≤a 或0a ≠ 三、填空题(共9小题,每小题3分,共27分) 10.若分式033=--x x ,则x 的值为 3-=x .11.若要使x x x 有意义,则0234⎪⎪⎭⎫⎝⎛+-满足的条件是 32≠±≠x x 且 .12.华为Mate40系列智能机搭载着麒麟9000,5nm 制程芯片,集成了153亿个集成电路.1nm=0.0000001cm ,那么5nm 用科学记数法表示为 7105-⨯ 米. 13.已知关于x 的方程4333k x x x-+=--有增根,则k = 1 . 14.当42=---=x ax bx x 无意义,当时,分式时,分式的值为0,则a+b= 2 . 15.已知113x y -=,则代数式21422x xy y x xy y----的值为 4 . 16.已知152=-x x ,那么221x x+= 27 .17.已知x ,y ,z 满足x z z y x +=-=532,则zy y x 25+-= 31 .18.已知)0(4112222≠+=+ab b a b a ,则代数式20222021)()(ba ab -的值为 0或-2 .三、解答题(共66分) 19.计算:(每题4分,共8分)(1)111112122+-⋅-+÷+--x x x x x x x (2))1521(122---+÷-+x x x x x 【解答】(1)11+--x x (2)21-x20.解方程(每题4分,共8分) (1)x x x --=--21321 (2)9631322--=-++x x x【解答】(1)3=x (2)3=x 是原分式方程的增根,原分式方程无解21.(6分)已知325102--=++b a a ,求代数式42()b a b -·32232a ab a b b +-÷222b a ab b -+的值.【解答∵】325102--=++b a a ∴03)5(2=-++b a∴3,5=-=b a原式=ba ab --2当3,5=-=b a 时 原式=845-22.(6分)先化简:1441132++-÷⎪⎭⎫ ⎝⎛+-+a a a a a 并从0,-1,2中选一个合适的数作为a 的值求值. 【解答】原式=22)2(11)2)(2(2-+-=-+⋅+-+-a a a a a a a当0=a 时原式=12020=-+-23.(7分)的取值范围。
人教版八年级数学上册第十五章《分式》单元测试题(含答案)
人教版八年级数学上册第十五章《分式》单元测试题(含答案)一、选择题(每小题3分,共24分)1.在式子x y 3,πa ,13+x ,31+x ,a a 2中,分式有( ) A .1个 B .2个 C .3个 D .4个2.分式32+x x 无意义的条件是( ) A .x≠—3 B . x=-3 C .x=0 D .x=33.下列各分式中与分式ba a --的值相等是( ) A .b a a -- B .b a a +- C .a b a - D .—a b a - 4.计算(2-a a —2+a a )·a a 24-的结果是( ) A . 4 B . -4 C .2a D .-2a5.分式方程2114339x x x +=-+-的解是( ) A .x=-2 B .x=2 C . x=±2 D .无解6.把分式(0)xy x y x y+≠+中的x ,y 都扩大3倍,那么分式的值( ) A .扩大为原来的3倍 B .缩小为原来的13C .扩大为原来的9倍D .不变 7.若分式34922+--x x x 的值为0,则x 的值为( ) A .3 B .3或-3 C .-3 D .08.某厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后因客户要求需提前5 天交货.设每天应多做x 件,则x 应满足的方程为 ( )A .72072054848x -=+ B .72072054848x+=+ C .720720548x -= D .72072054848x -=+ 二、填空题(每小题4分,共32分)9.当x= 时,分式22x x --值为零.10.计算.2323()a b a b --÷= .11.用科学记数法表示0.002 014= . 12.分式222439x x x x --与的最简公分母是____ ______. 13.若方程322x m x x-=--无解,则m =__________________. 14.已知a 1-b 1=21,则b a ab -的值为________________. 15.若R 1=11R +21R (R 1≠R 2),则表示R 1的式子是________________. 16.(2013年泰安)某电子元件厂准备生产4600个电子元件,甲车间独立生产一半后,由于要尽快投入市场,乙车间也加入了该电子元件的生产.若乙车间每天生产的电子元件个数是甲车间的1.3倍,结果用33天完成任务.问:甲车间每天生产电子元件多少个?在这个问题中设甲车间每天生产电子元件x 个,根据题意可得方程为________________.三、解答题(共64分)17.(14分)计算:(1)(2x -3y 2)-2÷(x -2y )3; (2)21+-x x ÷41222-+-x x x +11-x .18.(8分)先化简,再求值:211122x x x -⎛⎫-÷ ⎪++⎝⎭,其中2x =.19.(8分)解方程21124x x x -=--.20.(10分)先仔细看(1)题,再解答(2)题.(1)a 为何值时,方程 3x x -= 2 + 3a x -会产生增根? 解:方程两边乘(x-3),得x = 2(x-3)+a①.因为x=3是原方程的增根,•但却是方程①的解,所以将x=3代入①,得3=2×(3-3)+a ,所以a=3.(2)当m 为何值时,方程1y y --2m y y -=1y y-会产生增根?25.(12分)贵港市在旧城改造过程中,需要整修一段全长2400米的道路,为了尽量减少施工对城市交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8小时完成任务,求原计划每小时修路的长度.26.(12分)荷花文化节前夕,我市对观光路工程招标时,接到甲、乙两个工程队的投标书,甲、乙施工一天的工程费用分别为1.5万元和1.1万元,市政局根据甲、乙两队的投标书测算,有三种施工方案.(1)甲队单独做这项工程刚好如期完成.(2)乙队单独做这项工程,要比规定日期多5天.(3)若甲、乙两队合作4天后,余下的工程由乙队单独做,也正好如期完成.在确保如期完成的情况下,你认为哪种方案最节省工程款,通过计算说明理由.第十五章 分式测试题参考答案一、1. C 2. B 3. C 4. B 5. B 6. A 7. C 8. D二、9.-2 10.a 4b 6 11.-2.014×10-3 12.x(x+3)(x-3) 13.114.-2 15.R 1=RR RR -22 16.333.123002300=++x x x 三、17.(1)7124yx . (2)1. 18.原式=11-x .代入x=2,得原式=1. 19.x=-23. 20.解:方程两边乘y (y-1),得y 2-m=(y-1)2.化简,得m=2y -1.因为y=0和y=1都是原方程的的增根,但却是化简后整式方程的解.故将y=0和y=1分别代入m=2y -1,得m=-1或m=1.所以m =±1.21.解:设原计划每小时修路x 米,根据题意,得8%)201(24002400=+-xx . 解得50=x .经检验.x=50是原方程的解,且符合题意.答:原计划每小时修路50米.22.解:设工程期为x 天,则甲队单独完成用x 天,乙队单独完成用(x +5)天. 根据题意,得415x x x +=+. 解得x=20.经检验,x=20是原方程的解,且符合题意.所以在不耽误工期的情况下,有方案(1)和方案(3)两种方案合乎要求.方案(1)需工程款1.5×20=30(万元),方案(3)需工程款1.5×4+1.1×20=28(万元). 故方案(3)最节省工程款且不误期.人教版八年级上册第十五章分式单元检测(含答案)一、单选题1.在5x ,38a ,2π,1x a -中,属于分式的个数为( ) A .0个B .1个C .2个D .3个 2.下列分式为最简分式的是( )A .11a a --B .235xy y xy -C .22m n n m +-D .22a b a b++ 3.下列各式中,变形不正确的是( )A .2233x x=-- B .66a a b b -=- C .3344x x y y -=- D .5533n n m m --=- 4.计算322b b 1·a a b⎛⎫⎛⎫÷ ⎪ ⎪⎝⎭⎝⎭的值为 ( ) A .222b a B .6ab 2 C .8a D .15.计算:22m-1m -1m m÷的结果是 ( ) A .m m 1+ B .1m C .m-1 D .1m-16.若111u v f+=,则用u 、v 表示f 的式子应该是( ) A .u v uv + B .uv u v + C .v u D .u v7.若234a b c ==,则2222232a bc c a ab c-+--的值是( ) A .13 B .13- C .12 D .12- 8.纳米材料多被应用于建筑、家电等行业,实际上,纳米(nm)是一种长度的度量单位:1纳米=0.000000001米,用科学记数法表示0.12纳米应为( )A.0.12×10-9米B.0.12×10-8米C.1.2×10-10米D.1.2×10-8米 9.计算20140的结果是( )A .1B .0C .2014D .﹣1 10.当m 为何值时,方程会产生增根( ) A.2 B.-1 C.3 D.-311.下列各式中,是分式方程的是( )A.x+y=5B.C.D.12.已知一汽船在顺流中航行46千米和逆流中航行34千米,共用去的时间,正好等于它在静水中航行80千米用去的时间,且水流速度是2千米/时,求汽船在静水中的速度,若设汽船在静水中速度为x 千米/时,则所列方程正确的是( ) A.+= B.+= C.=- D.=+二、填空题13.当x =_________时,分式242x x -+的值为0. 14.当x =__________时,分式3x x-无意义. 15.若a+b=1,且a ∶b=2∶5,则2a-b=____________.16.计算:(12)﹣2+(﹣2)3﹣20110=__________.三、解答题17.解方程:(1)233011x x x +-=--;(2)1433162x x -=--. 18.计算:①()223·14a aa a a ----; ②211a a a ---; ③225611x x x x x+⎛⎫-÷ ⎪--⎝⎭ 19.22322222244(82)25356a b ab b b a b b ab a b ab a ++-÷⋅---+,其中12a =-,14b =. 20.某书商去图书批发市场购买某本书,第一次用12000元购书若干本,并把该书按定价7元/本出售,很快售完,由于该书畅销,书商又去批发市场采购该书,第二次购书时,每本书批发价已比第一次提高了20%,他用15000元所购书数量比第一次多了100本. (1)求第一次购书的进价是多少元一本?第二次购进多少本书?(2)若第二次购进书后,仍按原定价7元/本售出2000本时,出现滞销,书商便以定价的n 折售完剩余的书,结果第二次共盈利100m 元(n 、m 为正整数),求相应的n 、m 的值.答案1.C 2.D 3.D 4.C 5.A 6.B 7.C 8.C 9.A10.C 11.D 12.B 13.2 14.315.-1 716.﹣517.(1)x=0;(2)23 x=.18.①11aa-+;②11a-;③-5x19.242a ba b+-+,020.(1)第一次购书的进价为5元/本,且第二次买了2500本;(2)当n=4时,m=4;当n=6时,m=11;当n=8时,m=18人教版八年级上数学第十五章分式单元测试(解析)一、选择题(每小题3分,共24分)1.若代数式在实数范围内有意义,则实数x的取值范围是( )A.x<3B.x>3C.x≠3D.x=32.下列等式成立的是( )A.+=B.=C.=D.=-3.下列运算结果为x-1的是( )A.1-B.·C.÷D.4.化简+的结果是( )A.m+nB.n-mC.m-nD.-m-n5.当x=6,y=3时,代数式·的值是( )A.2B.3C.6D.96.计算÷-的结果为( )A. B. C. D.a7.甲、乙两人同时从A地出发到B地,如果甲的速度v保持不变,而乙先用v的速度到达中点,再用2v的速度到达B地,则下列结论中正确的是( )A.甲、乙同时到达B地B.甲先到达B地C.乙先到达B地D.谁先到达B地与v有关8.(2016黑龙江龙东中考)关于x的分式方程=3的解是正数,则字母m的取值范围是( )A.m>3B.m<3C.m>-3D.m<-3二、填空题(每小题3分,共24分)9.某种电子元件的面积大约为0.000 000 69平方毫米,将0.000 000 69这个数用科学记数法表示为.10.当x= 时,分式的值为0.11.某市为治理污水,需要铺设一段全长600 m的污水排放管道.铺设120 m后,为加快施工速度,后来每天比原计划增加20 m,结果共用11天完成这一任务,求原计划每天铺设管道的长度.如果设原计划每天铺设x m管道,那么根据题意,可列方程: .12.计算:÷= .13.如图15-4-1,点A、B在数轴上,它们所对应的数分别是-4、,且点A、B到原点的距离相等,则x= .图15-4-114.甲、乙二人做某种机械零件,已知甲是技术能手,每小时比乙多做3个,甲做30个所用的时间与乙做20个所用的时间相等,那么甲每小时做个零件.15.计算(x+1)的结果是.16.若a2+5ab-b2=0,则-的值为.三、解答题(共52分)17.(4分)化简:-.18.(5分)计算:÷.19.(6分)(2016山东菏泽中考)列方程或方程组解应用题:为了响应“十三五”规划中提出的绿色环保的倡议,某校文印室提出了每个人都践行“双面打印,节约用纸”.已知打印一份资料,如果用A4厚型纸单面打印,总质量为400克,将其全部改成双面打印,用纸将减少一半;如果用A4薄型纸双面打印,这份资料的总质量为160克.已知每页薄型纸比厚型纸轻0.8克,求A4薄型纸每页的质量.(墨的质量忽略不计)20.(6分)先化简,再求值:÷·,其中a=-,b=.21.(7分)解分式方程:(1)(2016广西贵港中考)+1=-;(2)(2016湖北天门中考)=-1.22.(6分)(2015四川广元中考)先化简:÷,然后解答下列问题:(1)当x=3时,求代数式的值;(2)原代数式的值能等于-1吗?为什么?23.(8分)(2016辽宁铁岭中考)先化简,再求值:÷-,其中a=(3-)0+-.24.(10分)(2016新疆乌鲁木齐中考)某商场用24 000元购入一批空调,然后以每台3 000元的价格销售,因天气炎热,空调很快售完;商场又以52 000元的价格再次购入该种型号的空调,数量是第一次购入的2倍,但购入的单价上调了200元,每台的售价也上调了200元.(1)商场第一次购入的空调每台进价是多少元?(2)商场既要尽快售完第二次购入的空调,又要在这两次空调销售中获得的利润率不低于22%,打算将第二次购入的部分空调按每台九五折出售,最多可将多少台空调打折出售?第十五章分式答案解析满分:100分;限时:60分钟一、选择题(每小题3分,共24分)1.若代数式在实数范围内有意义,则实数x的取值范围是( )A.x<3B.x>3C.x≠3D.x=3答案 C 由分式有意义的条件得x-3≠0,解得x≠3.故选C.2.下列等式成立的是( )A.+=B.=C.=D.=-答案 C +=,所以A错误;=不成立,所以B错误;==,所以C正确;=-,所以D错误,故选C.3.下列运算结果为x-1的是( )A.1-B.·C.÷D.答案 B 选项A的运算结果为,选项B的运算结果为x-1,选项C的运算结果是,选项D的运算结果为x+1.故选B.4.化简+的结果是( )A.m+nB.n-mC.m-nD.-m-n答案 A +=-==m+n,故选A.5.当x=6,y=3时,代数式·的值是( )A.2B.3C.6D.9答案 C ·=·=.当x=6,y=3时,原式==6.6.计算÷-的结果为( )A. B. C. D.a答案 C ÷-=÷-=×-=-=,故选C.7.甲、乙两人同时从A地出发到B地,如果甲的速度v保持不变,而乙先用v的速度到达中点,再用2v的速度到达B地,则下列结论中正确的是( )A.甲、乙同时到达B地B.甲先到达B地C.乙先到达B地D.谁先到达B地与v有关答案 B 设从A地到B地的距离为2s,∵甲的速度v保持不变,∴甲所用时间为,∵乙先用v的速度到达中点,再用2v的速度到达B地,∴乙所用时间为+=+,∵s>0,v>0,∴+>,故甲先到达B地.8.(2016黑龙江龙东中考)关于x的分式方程=3的解是正数,则字母m的取值范围是( )A.m>3B.m<3C.m>-3D.m<-3答案D解分式方程,得x=-3-m,∵方程的解为正数,∴-3-m>0,解得m<-3,∵x+1≠0,∴x≠-1,∴-3-m≠-1,解得m≠-2,∴m<-3,故选D.二、填空题(每小题3分,共24分)9.某种电子元件的面积大约为0.000 000 69平方毫米,将0.000 000 69这个数用科学记数法表示为.答案 6.9×10-7解析0.000 000 69=6.9×10-7.10.当x= 时,分式的值为0.答案 2解析分式的值为0,则即所以当x=2时,原分式的值为0.11.某市为治理污水,需要铺设一段全长600 m的污水排放管道.铺设120 m后,为加快施工速度,后来每天比原计划增加20 m,结果共用11天完成这一任务,求原计划每天铺设管道的长度.如果设原计划每天铺设x m管道,那么根据题意,可列方程: .答案+=11解析根据题意,可列方程为+=11.12.计算:÷= .答案解析原式=a4b2c-2÷=a4b2c-2÷=b6c-2=.13.如图15-4-1,点A、B在数轴上,它们所对应的数分别是-4、,且点A、B到原点的距离相等,则x= .图15-4-1答案解析由题意,得=4,解得x=,经检验,x=是方程=4的解.14.甲、乙二人做某种机械零件,已知甲是技术能手,每小时比乙多做3个,甲做30个所用的时间与乙做20个所用的时间相等,那么甲每小时做个零件. 答案9解析设甲每小时做x个零件,则乙每小时做(x-3)个零件,根据题意可得=,解得x=9.经检验,x=9是方程的解,且符合题意.因此甲每小时做9个零件.15.计算(x+1)的结果是.答案x解析(x+1)=(x+1)=(x+1)=x.16.若a2+5ab-b2=0,则-的值为.答案 5解析由a2+5ab-b2=0,得b2-a2=5ab,∴-===5.三、解答题(共52分)17.(4分)化简:-.解析原式=-=-==1.18.(5分)计算:÷.解析原式=·=·=·=.19.(6分)(2016山东菏泽中考)列方程或方程组解应用题:为了响应“十三五”规划中提出的绿色环保的倡议,某校文印室提出了每个人都践行“双面打印,节约用纸”.已知打印一份资料,如果用A4厚型纸单面打印,总质量为400克,将其全部改成双面打印,用纸将减少一半;如果用A4薄型纸双面打印,这份资料的总质量为160克.已知每页薄型纸比厚型纸轻0.8克,求A4薄型纸每页的质量.(墨的质量忽略不计)解析设A4薄型纸每页的质量为x克,则厚型纸每页的质量为(x+0.8)克.根据题意,得×=.解得,x=3.2.经检验,x=3.2是原分式方程的根,且符合题意.答:A4薄型纸每页的质量为3.2克.20.(6分)先化简,再求值:÷·,其中a=-,b=.解析÷·=··=··=.当a=-,b=时,原式==-6.21.(7分)解分式方程:(1)(2016广西贵港中考)+1=-;(2)(2016湖北天门中考)=-1.解析(1)去分母,得x-3+x-2=-3,移项,得x+x=-3+3+2,合并同类项,得2x=2,系数化为1,得x=1,经检验,x=1为原分式方程的根,∴分式方程的解为x=1.(2)两边同时乘(x+1)(x-1),得3(x-1)=x(x+1)-(x+1)(x-1),解得x=2. 检验:当x=2时,(x+1)(x-1)=(2+1)(2-1)=3≠0,∴原方程的解为x=2.22.(6分)(2015四川广元中考)先化简:÷,然后解答下列问题:(1)当x=3时,求代数式的值;(2)原代数式的值能等于-1吗?为什么? 解析原式=·=·=.(1)当x=3时,原式=2.(2)不能.理由:如果=-1,那么x+1=-x+1,则x=0,当x=0时,原代数式中的除式=0,矛盾, ∴原代数式的值不能等于-1.23.(8分)(2016辽宁铁岭中考)先化简,再求值:÷-,其中a=(3-)0+-.解析 原式=÷- =×- =- =,∵a=(3-)0+-=1+3-1=3,∴原式===-.24.(10分)(2016新疆乌鲁木齐中考)某商场用24 000元购入一批空调,然后以每台3 000元的价格销售,因天气炎热,空调很快售完;商场又以52 000元的价格再次购入该种型号的空调,数量是第一次购入的2倍,但购入的单价上调了200元,每台的售价也上调了200元.(1)商场第一次购入的空调每台进价是多少元?(2)商场既要尽快售完第二次购入的空调,又要在这两次空调销售中获得的利润率不低于22%,打算将第二次购入的部分空调按每台九五折出售,最多可将多少台空调打折出售? 解析 (1)设第一次购入的空调每台进价是x 元,依题意,得=2×,解得x=2 400,经检验,x=2 400是原方程的解.答:第一次购入的空调每台进价为2 400元.(2)第一次购进空调的数量为24 000÷2 400=10台,总收入为3 000×10=30 000元, 第二次购进空调的数量为52 000÷(2 400+200)=20台,不妨设打折售出y 台空调, 则总收入为(3 000+200)·(20-y)+(3 000+200)·0.95y=(64 000-160y)元.两次空调销售的总利润为[30 000+(64 000-160y)]-(24 000+52 000)=(18 000-160y)元, 依题意,得18 000-160y≥(24 000+52 000)×22%,解得y≤8.答:最多可将8台空调打折出售.人教版八年级上第十五章《分式》单元检测卷(含答案)一、选择题(每题3分,共30分)1.(2019·常州)若代数式x +1x -3有意义,则实数x 的取值范围是( )A .x =-1B .x =3C .x ≠-1D .x ≠3 2.如果把xy x y+中的x 与y 都扩大10倍,那么这个代数式的值() A .不变 B .扩大20倍C .扩大10倍D .缩小为原来的110 3.计算22x y y y x x -⎛⎫÷⋅ ⎪⎝⎭的结果是() A .2x y B .y x C .2x y - D .-x4.已知a =2-2,b =1)0,c =(-1)3,则a ,b ,c 的大小关系是( )A .a >b >cB .b >a >cC .c >a >bD .b >c >a5.花粉的质量很小,一粒某种植物花粉的质量约为0.000037毫克,已知1克=1000毫克,那么0.000037毫克可以用科学记数法表示为( )A .3.7×10-5克B .3.7×10-6克C .3.7×10-7克D .3.7×10-8克6.若(244a -+12a-)⋅w =1,则w =( ) A .a +2(a ≠-2) B .-a +2(a ≠2)C .a -2(a ≠2)D .-a -2(a ≠-2)7.分式方程11x --21x +=211x -的解是( ) A .x =0 B .x =-1 C .x =±1 D .无解 8.若分式22-x 与1互为相反数,则x 的值为( ) A .2B .-2C .1D .-19.(2019·十堰)十堰即将跨入高铁时代,钢轨铺设任务也将完成.现还有6000米的钢轨需要铺设,为确保年底通车,如果实际施工时每天比原计划多铺设20米,就能提前15天完成任务.设原计划每天铺设钢轨x 米,则根据题意所列的方程是( )A.6000x -6000x +20=15 B.6000x +20-6000x =15 C.6000x -6000x -15=20 D.6000x -15-6000x=20 10.已知关于x 的方程22x m x +-=3的解是正数,则m 的取值范围为( ) A .m <-6B .m >-6C .m >-6且m ≠-4D .m ≠-4二、填空题(每题3分,共18分)11.如果分式11x x +-的值为0,那么x 的值为______. 12.某中学图书馆添置图书,用240元购进一种科普书,同时用200元购进一种文学书.由于科普书的单价比文学书的单价高出一半,因此学校所购买的文学书比科普书多4本.求文学书的单价.设这种文学书的单价为x 元,则根据题意,所列的方程是______.13.计算:(-2xy -1)-3=______.14.(2019·绥化)当a =2018时,代数式⎝⎛⎭⎫a a +1-1a +1÷a -1(a +1)2的值是________. 15.若(x -y -2)2+│xy +3│=0,则(3x x y --2x x y -)÷1y的值是. 16.(2019·齐齐哈尔)关于x 的分式方程2x -a x -1-11-x=3的解为非负数,则a 的取值范围为_____________.三、解答题(共52分)17.(12分)(1)计算1-2a b a b -+÷222244a b a ab b -++;(2) (2019·枣庄)先化简,再求值:x 2x 2-1÷⎝⎛⎭⎫1x -1+1,其中x 为整数且满足不等式组⎩⎪⎨⎪⎧x -1>1,5-2x ≥-2.18.(12分)解方程:(1)32x x ++22x -=3;(2)241x -+21x x +-=-1.19.(8分)先化简2249xx--÷(1-13x-),再从不等式2x-3<7的正整数解中选一个使原式有意义的数代入求值.20.(8分)(2019·黄冈)为了对学生进行革命传统教育,红旗中学开展了“清明节祭扫”活动.全校学生从学校同时出发,步行4000米到达烈士纪念馆.学校要求九(1)班提前到达目的地,做好活动的准备工作.行走过程中,九(1)班步行的平均速度是其他班的1.25倍,结果比其他班提前10分钟到达.分别求九(1)班、其他班步行的平均速度.21.(12分)一项工程,甲队单独做需40天完成,若乙队先做30天后,甲、乙两队一起合做20天恰好完成任务,请问:(1)乙队单独做需要多少天才能完成任务?(2)现将该工程分成两部分,甲队做其中一部分工程用了x天,乙队做另一部分工程用了y天,若x,y都是正整数,且甲队做的时间不到15天,乙队做的时间不到70天,那么两队实际各做了多少天?参考答案1.D2.A3.D4.B5.D6.D7.D8.D9.A 10.C 11.-112.45.1240200=-xx 13.-338xy 14.201915.-23 16.a ≤4且a ≠3 17.(1)-b a b+. (2)由⎩⎪⎨⎪⎧x -1>1,5-2x ≥-2得2<x ≤72. ∵x 为整数,∴x =3,∴x 2x 2-1÷⎝⎛⎭⎫1x -1+1=x 2()x +1()x -1÷1+x -1x -1=x 2()x +1()x -1×x -1x =x x +1=34. 18.(1)x =4.(2)x =31.19.答案不唯一,略20.解:设其他班步行的平均速度为x 米/分,则九(1)班步行的平均速度为1.25x 米/分.依题意,得4000x -40001.25x=10,解得x =80, 经检验,x =80是原方程的解,且符合题意,∴1.25x =100.答:九(1)班步行的平均速度为100米/分,其他班步行的平均速度为80米/分.21. (1)乙队单独做需要100天才能完成任务.(2)甲、乙两队实际分别做了14天和65天.。
人教版八年级数学上册《第十五章 分式》章节检测卷-附答案
人教版八年级数学上册《第十五章 分式》章节检测卷-附答案学校:___________班级:___________姓名:___________考号:___________知识点回顾1、分式的定义:一般地,如果A 、B 表示两个整式,并且B 中含有字母,那么式子A B叫做分式。
2、分式的基本性质:分式的分子与分母乘(或除以)同一个不等于0的整式,分式的值不变。
A A C B B C ⋅=⋅ A A C B B C÷=÷(C ≠0)。
3、分式的约分和通分:定义1:根据分式的基本性质,把一个分式的分子与分母的公因式约去,叫做分式的约分。
定义2:分子与分母没有公因式的分式,叫做最简分式。
定义3:根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分。
定义4:各分母的所有因式的最高次幂的积叫做最简公分母。
4、分式的乘除:①乘法法则:d b c a d c b a ⋅⋅=⋅。
分式乘分式,用分子的积作为积的分子,分母的积作为积的分母。
②除法法则:c b d a c d b a d c b a ⋅⋅=⋅=÷。
分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
③分式的乘方:n n n a a b b ⎛⎫= ⎪⎝⎭。
分式乘方要把分子、分母分别乘方。
④整数负指数幂:1n na a -=。
5、分式的加减:同分母分式相加减,分母不变,把分子相加减;异分母分式相加减,先通分,变为同分母的分式,再加减。
①同分母分式的加减:a b a b c c c±±=; ②异分母分式的加法:a c ad bc ad bc b d bd bd bd ±±=±=。
注:不论是分式的哪种运算,都要先进行因式分解。
练习题一、选择题1. 下列各式不是分式的是( )A .x yB .3x x+1C .x πD .x−1x2.下列分式变形从左到右一定成立的是()A.ab =a⋅ab⋅bB.ab=a+cb+cC.−ab=−abD.−a−b=−ab3.若分式2x−5有意义,则x的取值范围是()A.x≠5B.x≠0C.x=0D.x=54.分式x+1x2−x ,2x2−1,−xx2+2x+1的最简公分母是()A.(x2−x)(x+1)B.(x2−1)(x+1)2 C.x(x−1)(x+1)2D.x(x+1)25.关于x的方程x−1x−3=2+ kx−3有增根,则k的值为()A.±3 B.3 C.﹣3 D.26.在计算时,把运算符号“÷”看成了“+”,得到的计算结果是 m,则这道题正确的结果是()A.m B.1m C.m-1 D.1m−17.“五一”节期间,几名同学包租一辆面包车前去旅游,面包车的租价为180元,出发时又增加了两名同学,结果每个同学比原来少摊了3元钱车费,设实际参加游览的同学共x人,则所列方程为()A.180x −180x+2=3B.180x+2−180x=3C.180x −180x−2=3D.180x−2−180x=38.若关于x的分式方程m1−x =3x−1−2有非负实数解,且关于x的不等式组{x+1≥0x+m≤2有解,则满足条件的所有整数m的和为()A.−9B.−8C.−7D.−6二、填空题9.a2b2÷(ba)2 =10.若分式2−|x|x+2的值为零,则x的值为.11.方程x+1x =x−1x+1的解是.12.已知a、b为实数,且ab=1,设M=aa+1+bb+1,N=1a+1+1b+1则M、N的大小关系是M N(填=、>、<、≥、≤).13.若关于x 的方程4x x−2﹣5=mx 2−x 无解,则m 的值为 .三、解答题14.解方程(1)x x−2−1=1x 2−4(2)3x x+2+2x−2=315.先化简,再求值:x−3x 2−4⋅x 2+4x+4x−3−(2x−2+1),其中x =23.16.为了响应打赢“蓝天保卫战”的号召,黄老师上下班的交通方式由驾车改为骑自行车,黄老师家距离学校的路程是9千米,在相同的路线上,驾车的平均速度是骑自行车的平均速度的3倍,所以黄老师每天上班要比开车早出发20分钟,才能按原驾车的时间到达学校.(1)求黄老师驾车的平均速度;(2)据测算,黄老师的汽车在上下班行驶过程中平均每小时碳排放量约为2.4千克,按这样计算,求黄老师一天(按一个往返计算)可以减少的碳排放量.17.某商场计划购进一批篮球和足球,其中篮球的单价比足球的单价多30元,已知用360元购进的足球和用480元购进的篮球数量相等.(1)篮球和足球的单价各是多少元?(2)若篮球售价为每个150元,足球售价为每个110元,商场售出足球的数量比篮球数量的三分之一还多10个,且获利超过1300元,问篮球最少要卖多少个?参考答案1.C2.C3.A4.C5.D6.A7.D8.D9.a410.211.x=−1312.=13.﹣4或114.(1)解:方程两边同乘以(x+2)(x−2)去分母得:x(x+2)−(x+2)(x−2)=1解得:x=−32经检验:当x=−32时(x+2)(x−2)≠0所以原分式方程的解为x=−32.(2)解:方程;两边同乘以(x+2)(x−2)去分母得:3x(x−2)+2(x+2)=3(x−2)(x+2)整理得:−4x=−16解得:x=4经检验:当x=4时(x+2)(x−2)≠0所以原分式方程的解为:x=4。
人教版八年级数学上册 第15章 分式 单元检测试题(有答案)
第15章 分式 单元检测试题 (满分120分;时间:120分钟) 真情提示:亲爱的同学,欢迎你参加本次考试,祝你答题成功! 题号一 二 三 总分 得分一、 选择题 (本题共计 10 小题 ,每题 3 分 ,共计30分 , )1. 下列说法中,正确的是( )A.−53是分式B.2x 2−x+35是分式C.x 2x 2+3是分式D.x 3−12x 是分式2. 分式x+2y 3xy 中x 和y 同时扩大10倍,那么分式的值( )A.不变B.扩大10倍C.缩小10倍D.缩小100倍3. 使分式13x−1有意义的x 的取值范围是( )A.x <13B.x ≠−13C.x ≠13D.x >134. 代数式(x−y x+y −x+y x−y )÷2xx 2y−y 3的值的大小( )A.只与x 的取值有关B.只与y 的取值有关C.与x ,y 的取值都有关D.与x ,y 的取值都无关 5. 若x ,y 的值均扩大为原来的2倍,则下列分式的值不变的是( )A.3x 2yB.3x 2y 2C.3x 22yD.3x 32y 26. 计算(a a−b −b a−b )÷1a+b 的结果是( ) A.a −bB.a +bC.abD.a 2−b 2 7. 若y =92,则2x+612y ÷x+312y 2的结果为( )A.6B.9C.92D.8148. 把分式2x 2x+y 中的x ,y 都扩大两倍,那么分式的值( )A.扩大两倍B.不变C.不能确定D.缩小两倍9. 若有意义,那么的取值范围是( ) A.x >2B.x <3C.x ≠3且x ≠4D.x ≠3或x ≠210. 分式m 2−2m+11−m 2约分后等于( ) A.m−11−m B.1−m 1+m C.−1−m 1+m D.1−m二、 填空题 (本题共计 10 小题 ,每题 3 分 ,共计30分 , )11.m+2m−1,5m+2的最简公分母是________,通分的结果为________.12. b 2a ,a 2b 2,14ab 的最简公分母为________.13. 在下列方程:①23x 2=1、②2π−x 2=1、③23x =x 、④1x−2+3=x−1x−2、⑤1x =0中,分式方程的个数有________.14. 已知x =2是分式方程3x−1=m x+2的根,则实数m =________.15. 如果(1−3x)5=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5,那么|a 1|+|a 2|+|a 3|+|a 4|+|a 5|的值为________.16. 当x =________时,分式|x|−2x 2−2x 的值为零.17. 如果x 是负整数,并且分式2x+1的值也是负整数,写出符合条件的x 的值________.18. 当y =x +13时,(1y −1x )xy x 2−2xy+y 2的值是________.19. 分式方程2x+5x−2=−1的解为________.20. 如果对任意实数x ,等式:(1−2x)10=a 0+a 1x +a 2x 2+a 3x 3+...+a 10x 10都成立,那么(a 0+a 1)+(a 0+a 2)+(a 0+a 3)+...+(a 0+a 10)=________.(用数字作答)三、 解答题 (本题共计 6 小题 ,共计60分 , )21. 计算:x 2+3x −4x x 2+3=3.22. 已知y =3xy +x ,求代数式2x+3xy−2y x−2xy−y 的值.23. (1)若分式方程xx−5=2−m5−x有增根,试求m的值.(2)当x为何值时,分式3−x2−x 的值比分式1x−2的值大3.24. 计算与化简:(1)6a3b⋅−3b2a2;(2)(−2xy−2)−4;(3)x2−2xy+y2x2+x ⋅x+1x2−y2;(4)3aa2−b2+1a+b.25. 某口罩生产厂在春节期间接到紧急任务,要求几天内生产出70万只口罩,为了战胜疫情,口罩厂工人愿意奉献自己的休息时间来完成这项任务,厂长决定开足全厂口罩生产线进行生产,结果每天比原来多生产3万只,而且提前了3天完成了任务,问原来要求几天完成这项紧急任务?26. A,B两地间的距离为15千米,甲从A地出发步行前往B地,20分钟后,乙从B地出发骑车前往A地,且乙骑车比甲步行每小时多走10千米.乙到达A地后停留40分钟,然后骑车按原路原速返冋,结果甲、乙两人同时到达B地.请你就“甲从A地到B地步行所用时间,或“甲步行的速度”提出一个用分式方程解决的问题,并写出解题过程.参考答案一、 选择题 (本题共计 10 小题 ,每题 3 分 ,共计30分 )1.【答案】C【解答】解:A 、B 和D 中的分母中均不含有字母,因此它们是整式,而不是分式.C 分母中含有字母,因此是分式.故选C .2.【答案】C【解答】解:分式x+2y 3xy 中x 和y 同时扩大10倍,原分式变形为10x+20y 3⋅10x⋅10y =110⋅x+2y 3xy ,即分式的值为原来的10分之一.故选C .3.【答案】C【解答】解:由题意得:3x −1≠0,解得:x ≠13.故选C .4.【答案】B【解答】解:原式=(x−y)2−(x+y)2(x+y)(x−y)÷2x y(x+y)(x−y)=−4xy (x +y)(x −y)×y(x +y)(x −y)2x=−2y 2.故选B .5.【答案】A【解答】解:3×2x 2×2y =3x 2y ,分式的值不变;3×2x2×(2y )2=12×3x 2y 2,分式的值改变; 3×(2x )22×2y=2×3x 22y ,分式的值改变; 3×(2x )32×(2y )2=2×3x 32y 2,分式的值改变. 故选A .6.【答案】B【解答】解:原式=a−b a−b ⋅(a +b)=a +b . 故选B 7.【答案】B【解答】解:2x+612y ÷x+312y 2=2(x +3)12y ×12y 2x +3=2y ,当y =92时,原式=2×92=9, 故选B .8.【答案】A【解答】解:将2x 、2y 分别替换x 、y 得:2×(2x)22x+2y =2×2x 2x+y ,较原式扩大了两倍.故选A . 9.【答案】C【解答】根据题意知:{x −3≠02x −8≠0, ∴ x ≥3且x ≠4故选:C .10.【答案】B【解答】解:原式=(m−1)2(1−m)(1+m),=(m−1)2−(m−1)(m+1), =1−m 1+m .故选B .二、 填空题 (本题共计 10 小题 ,每题 3 分 ,共计30分 )11.【答案】(m −1)(m +2),(m+2)2(m−1)(m+2),5(m−1)(m−1)(m+2)【解答】解:设边形有n 条,解得n8.180∘8−2)1080∘,故C .12.【答案】4ab 2【解答】解:第一个分式的分母为2a ;第二个分式的分母为2b 2;第三个分式的分母为4ab ;因此它们的最简公分母为:4×a ×b ×b =4ab 2.13.【答案】3【解答】解:分式方程有:③④⑤,故答案为3.14.【答案】12【解答】解:将x=2代入方程得:32−1=m2+2,解得:m=12,故答案为:12.15.【答案】1023【解答】解法一:∴ (1−3x)5=a0+a1x+a2x2+a3x3+a4x4+a5x5其中a0>0,a2>0,a4>0,a1<0,a3<0,a5<0∴ |a0|+|a1|+|a2|+|a3|+|a4|+|a5|=a0−a1+a2−a3+a4−a5将x=−1代入原等式两端得[1−3×(−1)]5=a0+a1⋅(−1)+a2⋅(−1)2+a3⋅(−1)3+a4⋅(−1)4+a5⋅(−1)5即1024=a0−a1+a2−a3+a4−a5、∴ |a0|+|a1|+|a2|+|a3|+|a4|+|a5|=1024−a0=1023解法二:将(1−3x)5用乘法分式逐项展开,得(1−3x)5=1−15x+90x2−270x3+405x4−243x5∴ |a1|+|a2|+|a3|+|a4|+|a5|=90+270+405+243=102316.【答案】−2【解答】解:由题意可得:|x|−2=0且x2−2x≠0,解得x=−2,故答案为:−2.17.【答案】−2或−3【解答】解:当x=−2时,原式=−2;当x=−3时,原式=−1;则x的值为−2或−3.故答案为:−2或−318.【答案】−3【解答】解:原式=x−yxy ⋅xy (x−y)2=1x−y,当y=x+13时,原式=1x−x−13=−3.故答案为:−3.19.【答案】x=−1【解答】解:2x+5x−2=−1,去分母,得2x+5=−x+2,移项,合并同类项得3x=−3,解得x=−1.检验:当x=−1时,x−2≠0故原方程的解为x=−1.故答案为:x=−1.20.【答案】10【解答】解:由题意可知:当x=0时,(1−2x)10=1=a0+a1x+a2x2+a3x3+...+a10x10=a0.当x=1时,(1−2x)10=1=a0+a1x+a2x2+a3x3+...+a10x10=a0+a1+ a2+...+a9+a10.所以(a0+a1)+(a0+a2)+(a0+a3)+...+(a0+a10)=a0+a1+a2+...+a9+a10+9a0=1+9=10.故答案为:10.三、解答题(本题共计6 小题,每题10 分,共计60分)21.【答案】解:设x 2+3x=a,则原方程化为:a−4a=3,解得:a=−4或1,当a=−4时,x 2+3x=−4,x2−4x+3=0,解得:x1=3,x2=1,当a=1时,x 2+3x=1,x2−x+3=0,△=(−1)2−4×1×3<0,所以此时方程无解,检验:当x1=3,x2=1时,分母x(x2+3)≠0,所以都是原方程的解,即原方程的解为x1=3,x2=1.【解答】解:设x 2+3x=a,则原方程化为:a−4a=3,解得:a=−4或1,当a=−4时,x 2+3x=−4,x2−4x+3=0,解得:x1=3,x2=1,当a=1时,x 2+3x=1,x2−x+3=0,△=(−1)2−4×1×3<0,所以此时方程无解,检验:当x1=3,x2=1时,分母x(x2+3)≠0,所以都是原方程的解,即原方程的解为x1=3,x2=1.22.【答案】解:因为y=3xy+x,所以x−y=−3xy,当x−y=−3xy时,2x+3xy−2y x−2xy−y =2(x−y)+3xy(x−y)−2xy=2(−3xy)+3xy −3xy−2xy =35. 【解答】解:因为y =3xy +x ,所以x −y =−3xy ,当x −y =−3xy 时,2x +3xy −2y x −2xy −y =2(x −y)+3xy (x −y)−2xy=2(−3xy)+3xy −3xy−2xy =35. 23.【答案】解:(1)方程两边都乘以(x −5),得x =2(x −5)+m .化简,得m =−x +10.分式方程的增根是x =5,把x =5代入方程得m =−5+10=5;(2)分式3−x 2−x 的值比分式1x−2的值大3,得 3−x 2−x −1x−2=3.方程得两边都乘以(x −2),得x −3−1=3(x −2).解得x =1,检验:把x =1代入x −5≠0,x =1是原分式方程的解,当x =1时,分式3−x 2−x 的值比分式1x−2的值大3.【解答】解:(1)方程两边都乘以(x −5),得x =2(x −5)+m .化简,得m =−x +10.分式方程的增根是x =5,把x =5代入方程得m =−5+10=5;(2)分式3−x 2−x 的值比分式1x−2的值大3,得 3−x 2−x −1x−2=3.方程得两边都乘以(x −2),得x −3−1=3(x −2).解得x =1,检验:把x=1代入x−5≠0,x=1是原分式方程的解,当x=1时,分式3−x2−x 的值比分式1x−2的值大3.24.【答案】解:(1)原式=−9ab2.(2)原式=(−2xy2)−4=(−y22x)4=y816x4.(3)原式=(x−y)2x(x+1)⋅x+1 (x+y)(x−y)=x−yx(x+y).(4)解:原式=3a(a+b)(a−b)+1a+b=3a(a+b)(a−b)+(a−b)(a+b)(a−b)=4a−b(a+b)(a−b).【解答】解:(1)原式=−9ab2.(2)原式=(−2xy2)−4=(−y22x)4=y816x4.(3)原式=(x−y)2x(x+1)⋅x+1 (x+y)(x−y)=x−yx(x+y).(4)解:原式=3a(a+b)(a−b)+1a+b=3a(a+b)(a−b)+(a−b)(a+b)(a−b)=4a−b(a+b)(a−b).25.【答案】解:设原来每天生产x万只口罩,据题意得:70 x −70x+3=3,解之得:x=7,负值舍去,经检验:x=7既适合方程,又适合题意,70 x =707=10,答:原来要求10天完成生产任务.【解答】解:设原来每天生产x万只口罩,据题意得:70 x −70x+3=3,解之得:x=7,负值舍去,经检验:x=7既适合方程,又适合题意,70 x =707=10,答:原来要求10天完成生产任务.26.【答案】解:问题:设甲从A地到B地步行所用时间为x小时,由题意得:30x−1=15x+10化简得:2x2−5x−3=0,解得:x1=3,x2=−12,经检验知x=3符合题意,∴ x=3,∴ 甲从A地到B地步行所用时间为3小时.【解答】解:问题:设甲从A地到B地步行所用时间为x小时,由题意得:30x−1=15x+10化简得:2x2−5x−3=0,解得:x1=3,x2=−12,经检验知x=3符合题意,∴ x=3,∴ 甲从A地到B地步行所用时间为3小时.。
人教版 八年级上册第15章《分式》单元检测卷 含答案
人教版八年级上册第15章《分式》单元检测卷满分100分姓名:___________班级:___________学号:___________题号一二三总分得分一.选择题(共10小题,满分30分,每小题3分)1.下列各式:①;②;③;④;⑤;⑥,其中分式有()A.3个B.4个C.5个D.6个2.(﹣2)﹣3=()A.6B.8C.﹣D.3.若分式的值为0,则x的值为()A.﹣1B.0C.2D.不能确定4.新冠状病毒直径为100纳米通常依附在飞沫或一些粉尘等颗粒上,正确佩戴N95口罩就能够有效吸附和阻挡病毒进入呼吸系统,已知1纳米=10﹣9米,用科学记数法将100纳米用单位米表示为()A.1×10﹣9米B.1×10﹣11米C.1×10﹣10米D.1×10﹣7米5.下列分式中,是最简分式的是()A.B.C.D.6.看把分式中的x和y都扩大为原来的3倍,那么分式的值()A.变为原来的3倍B.不变C.变为原来的D.交为原来的7.当分式﹣与﹣经过计算后的结果是﹣时,则它们进行的运算是()A.分式的加法B.分式的减法C.分式的乘法D.分式的除法8.若=2,则的值为()A.B.C.D.9.若方程=2+有增根,则a的值为()A.a=﹣4B.a=4C.a=3D.a=210.某服装制造厂要在开学前赶制3000套校服,为了尽快完成任务,厂领导合理调配人力使每天完成的校服比原计划多20%,结果提前4天完成任务.问:原计划每天能完成多少套校服?设原来每天完成校服x套,则可列出方程()A.+=4B.﹣=4C.=+4D.=4+二.填空题(共6小题,满分24分,每小题4分)11.要使式子有意义,则x的取值范围为.12.分式和的最简公分母是.13.方程(x﹣1)﹣1=2的解是.14.关于x的分式方程无解,则k的值为.15.某超市第一次用3000元购进某种干果销售,第二次又调拨9000元购进该种干果,但第二次的进价比第一次进价提高了20%,购进干果数量是第一次的2倍还多300千克,如果超市先按每千克9元的价格出售,当大部分干果售出后,最后的600千克按原售价的7折售完.超市两次销售这种干果共盈利元.16.已知,则=.三.解答题(共7小题,满分46分)17.(6分)(1)通分:;(2)通分:,.18.(6分)计算:(1)()2÷()2•;(2)(+x+2)÷.19.(6分)解方程:(1)=;(2)=0.20.(6分)先化简,再求值:,其中x=﹣.21.(7分)某中学为了创设“书香校园”,准备购买A,B两种书架,用于放置图书.在购买时发现,A种书架的单价比B种书架的单价多20元,用600元购买A种书架的个数与用480元购买B种书架的个数相同.(1)求A,B两种书架的单价各是多少元?(2)学校准备购买A,B两种书架共15个,且购买的总费用不超过1400元,求最多可以购买多少个A种书架?22.(7分)阅读材料:小学时,我们学习过假分数和带分数的互化.我们可以将一个假分数化为带分数,如:1=1+=+=;我们也可以将一个带分数化为假分数,如:==+=2+=2.初二(1)班学生小杨同学根据学习分数的方法,在学习分式这一章时,对分式进行了探究:1+=+==,==+=2+根据探究过程,小杨同学说,我可以根据这一探究过程可以分析分式整数解的问题,同学们,你们能吗?请你帮小杨同学解答下列问题:(1)当x为整数时,若也为整数,求满足条件的所有x的值;(2)当x为整数时,若也为整数,求满足条件的所有x的绝对值之和.23.(8分)已知分式A=(a+1﹣)÷(1)化简这个分式(2)把分式A化简结果的分子与分母同时加上3后得到分式B,问:当a>2时,分式B 的值较原来分式A的值是变大了还是变小了?试说明理由.(3)若A的值是整数,且a也为整数,求出所有符合条件a的值参考答案一.选择题(共10小题,满分30分,每小题3分)1.解:分式有:;②;④;⑤;⑥,共有4个.故选:B.2.解:(﹣2)﹣3==﹣.故选:C.3.解:∵分式的值为0,∴x﹣2=0且x+1≠0,解得:x=2.故选:C.4.解:100纳米=100×10﹣9米=1×10﹣7米,故选:D.5.解:A、该分式的分子、分母中含有公因式(m﹣1),它不是最简分式,故本选项不符合题意.B、该分式的分子、分母都不能再分解,且不能约分,是最简分式,故本选项符合题意.C、该分式的分子、分母中含有公因式y,它不是最简分式,故本选项不符合题意.D、该分式的分子、分母中含有公因式m,它不是最简分式,故本选项不符合题意.故选:B.6.解:原式====×,所以把分式中的x和y都扩大为原来的3倍,那么分式的值变为原来的.故选:C.7.解:∵(﹣)+(﹣)=(﹣)+(﹣)=﹣(+)=﹣,∴进行的是分式的加法运算,故选:A.8.解:因为=2,得a=2b.所以=====.故选:B.9.解:去分母得:x=2(x﹣4)+a,由分式方程有增根,得到x﹣4=0,即x=4,把x=4代入整式方程得:a=4.故选:B.10.解:设原来每天完成校服x套,则实际每天完成校服(1+20%)x套,依题意,得:=4+.故选:D.二.填空题(共6小题,满分24分,每小题4分)11.解:由题意得,x﹣2020≠0,解得x≠2020,故答案为:x≠2020.12.解:分式和的最简公分母是4x2y2.故答案为:4x2y2.13.解:将原方程式转化为整式方程为:﹣2x+3=0,解得:x=,经检验x=是原分式方程的解;故答案为:x=.14.解:去分母得:2(x+1)+kx=3(x﹣1),去括号得:2x+2+kx=3x﹣3,整理得:(k﹣1)x=﹣5,当k﹣1=0,即k=1时,方程无解;当k﹣1≠0,即k≠1时,解得:x=﹣,由分式方程无解,得到x=1或x=﹣1,把x=1代入得:k=﹣4;把x=﹣1代入得:k=6,综上,k的值为﹣4,1,6.故答案为:﹣4,1,6.15.解:设第一次购进干果的单价为x元/千克,则第二次购进干果的单价为1.2x元/千克,根据题意得:2×+300=,解得:x=5,经检验,x=5是原方程的解,∴==600,==1500.1500×9+600×9×0.7﹣3000﹣9000=5280(元).答:超市两次销售这种干果共盈利5280元.故答案为:5280.16.解:设=k,则x=2k,y=3k,z=4k,则===.故答案为.三.解答题(共7小题,满分46分)17.解:(1)=,=;(2)=,=.18.解:(1)原式=••=;(2)原式=•[﹣]=﹣•=﹣2(x+3)=﹣2x﹣6.19.解:(1)方程两边同乘2(4+x),得2(3﹣x)=4+x,解得x=,当x=时,2(4+x)≠0,∴x=是原方程的解.(2)方程两边同乘x2﹣1,得x﹣1+2=0解得x=﹣1,当x=﹣1时,x2﹣1=0,∴x=﹣1 是方程的增根,∴原方程无解.20.解:原式=•=﹣,当x=﹣时,原式=﹣=.21.解:(1)设B种书架的单价为x元,根据题意,得.解得x=80.经检验:x=80是原分式方程的解.∴x+20=100.答:购买A种书架需要100元,B种书架需要80元.(2)设准备购买m个A种书架,根据题意,得100m+80(15﹣m)≤1400.解得m≤10.答:最多可购买10个A种书架.22.解:(1)==2+,∵x为整数,分式也是整数,∴x﹣2为1的约数,∴x﹣2=1或x﹣2=﹣1,∴x=3或1;(2)==2(x﹣1)+7+,∵x为整数,分式也是整数,∴x﹣1为8的约数,∴x﹣1=1、﹣1、2、﹣2、4、﹣4、8、﹣8,∴x=2、0、3、﹣1、5、﹣3、9、﹣7;∴满足条件的所有x的绝对值之和为30.23.解:(1)A=×=.(2)A=,B=,A﹣B=﹣==.∵a>2,∴A﹣B>0,∴A>B.答:分式B的值较原来分式A的值是变小了.(3)A=是整数,a也是整数,∴a=0时,A=﹣1;a=3时,A=5;a=4时,A=3;a=6时,A=2;a=﹣2时,A=0.答:所有符合条件的a的值为0、3、4、6、﹣2.。
人教版八年级数学上册第十五章 分式 单元检测(含答案)
第十五章分式一、单选题1.在5x,38a,2π,1xa-中,属于分式的个数为()A.0个B.1个C.2个D.3个2.下列分式为最简分式的是()A.11aa--B.235xy yxy-C.22m nn m+-D.22a ba b++3.下列各式中,变形不正确的是()A.2233x x=--B.66a ab b-=-C.3344x xy y-=-D.5533n nm m--=-4.计算322b b1·a a b⎛⎫⎛⎫÷⎪ ⎪⎝⎭⎝⎭的值为( )A.222baB.6ab2C.8aD.15.计算:22m-1m-1m m÷的结果是( )A.mm1+B.1mC.m-1 D.1m-16.若111u v f+=,则用u、v表示f的式子应该是()A.u vuv+B.uvu v+C.vuD.uv7.若234a b c ==,则2222232a bc c a ab c-+--的值是( ) A .13B .13-C .12D .12-8.纳米材料多被应用于建筑、家电等行业,实际上,纳米(nm)是一种长度的度量单位:1纳米=0.000000001米,用科学记数法表示0.12纳米应为( ) A.0.12×10-9米B.0.12×10-8米C.1.2×10-10米D.1.2×10-8米9.计算20140的结果是( ) A .1B .0C .2014D .﹣110.当m 为何值时,方程会产生增根( )A.2B.-1C.3D.-311.下列各式中,是分式方程的是( ) A.x+y=5B.C.D.12.已知一汽船在顺流中航行46千米和逆流中航行34千米,共用去的时间,正好等于它在静水中航行80千米用去的时间,且水流速度是2千米/时,求汽船在静水中的速度,若设汽船在静水中速度为x 千米/时,则所列方程正确的是( )A.+=B.+=C. =-D.=+二、填空题13.当x =_________时,分式242x x -+的值为0.14.当x =__________时,分式3xx-无意义. 15.若a+b=1,且a ∶b=2∶5,则2a-b=____________. 16.计算:(12)﹣2+(﹣2)3﹣20110=__________.三、解答题 17.解方程:(1)233011x x x +-=--;(2)1433162x x -=--. 18.计算:①()223·14a aa a a ----; ②211a a a ---; ③225611x x x x x+⎛⎫-÷ ⎪--⎝⎭19.22322222244(82)25356a b ab b ba b b ab a b ab a++-÷⋅---+,其中12a =-,14b =. 20.某书商去图书批发市场购买某本书,第一次用12000元购书若干本,并把该书按定价7元/本出售,很快售完,由于该书畅销,书商又去批发市场采购该书,第二次购书时,每本书批发价已比第一次提高了20%,他用15000元所购书数量比第一次多了100本.(1)求第一次购书的进价是多少元一本?第二次购进多少本书?(2)若第二次购进书后,仍按原定价7元/本售出2000本时,出现滞销,书商便以定价的n 折售完剩余的书,结果第二次共盈利100m 元(n 、m 为正整数),求相应的n 、m 的值.答案1.C 2.D 3.D 4.C 5.A 6.B 7.C 8.C 9.A 10.C 11.D12.B 13.2 14.315.-1 716.﹣517.(1)x=0;(2)23 x=.18.①11aa-+;②11a-;③-5x19.242a ba b+-+,020.(1)第一次购书的进价为5元/本,且第二次买了2500本;(2)当n=4时,m=4;当n=6时,m=11;当n=8时,m=18。
人教版八年级数学上《第15章分式》单元测试含答案解析
《第15章分式》一、选择题1.下列各式中,分式的个数为();A.5个B.4个C.3个D.2个2.下列各式正确的是()A. =﹣B. =﹣C. =﹣D. =﹣3.下列分式是最简分式的是()A.B.C.D.4.将分式中的x、y的值同时扩大2倍,则分式的值()A.扩大2倍 B.缩小到原来的C.保持不变 D.无法确定5.若分式的值为零,那么x的值为()A.x=1或x=﹣1 B.x=1 C.x=﹣1 D.x=06.下列计算正确的是()A.2÷2﹣1=﹣1 B.C.(﹣2x﹣2)﹣3=6x6D.7.为了实现街巷硬化工程高质量“全覆盖”,我省今年1﹣4月公路建设累计投资92.7亿元,该数据用科学记数法可表示为()A.0.927×1010B.92.7×109C.9.27×1011D.9.27×1098.运动会上,初二(3)班啦啦队,买了两种价格的雪糕,其中甲种雪糕共花费40元,乙种雪糕共花费30元,甲种雪糕比乙种雪糕多20根.乙种雪糕价格是甲种雪糕价格的1.5倍,若设甲种雪糕的价格为x 元,根据题意可列方程为()A.B.C.D.9.某厂接受为四川灾区生产活动板房的任务,计划在30天内完成,若每天多生产6套,则25天完成且还多生产10套,问原计划每天生产多少套板房?设原计划每天生产x套,列方程式是()A.B.C.D.10.分式方程的解为()A.x=1 B.x=﹣3 C.x=3 D.x=﹣1二、填空题11.若分式的值为零,则x=______.当x=______时,分式的值为0.12.某红外线遥控器发出的红外线波长为0.00000094m,用科学记数法表示这个数是______m.13.计算: =______.14.,,的最简公分母为______.15.已知3m=4n≠0,则=______.16.若解分式方程产生增根,则m=______.17.当x=______时,分式无意义;当x______时,分式有意义.18.将下列分式约分:(1)=______;(2)=______;(3)=______.19.在5月汛期,重庆某沿江村庄因洪水而沦为弧岛.当时洪水流速为10千米/时,张师傅奉命用冲锋舟去救援,他发现沿洪水顺流以最大速度航行2千米所用时间,与以最大速度逆流航行1.2千米所用时间相等.请你计算出该冲锋舟在静水中的最大航速为______千米/时.20.要使分式有意义,则x应满足的条件是______.三、解答题21.计算(1)(2)(3)1﹣(4).22.解方程(1)(2)(3)(4).23.“先化简,再求值:,其中,x=﹣3”.小玲做题时把“x=﹣3”错抄成了“x=3”,但她的计算结果也是正确的,请你解释这是怎么回事?24.先化简下列分式,再选一个你认为合适的数字代入并求代数式的值.七、应用题25.甲、乙两地相距50km,A骑自行车从甲地到乙地,出发3小时20分钟后,B骑摩托车也从甲地去乙地.已知B的速度是A的速度的3倍,结果两人同时到达乙地.求A、B两人的速度.26.一辆汽车开往距离出发地180千米的目的地,出发后第一小时内按原计划的速度匀速行驶,一小时后以原来速度的1.5倍匀速行驶,并比原计划提前40分到达目的地.求前一小时的行驶速度.27.为了提高产品的附加值,某公司计划将研发生产的1200件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两间工厂了解情况,获得如下信息:信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天;信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍.根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品?28.某一工程,在工程招标时,接到甲,乙两个工程队的投标书.施工一天,需付甲工程队工程款1.2万元,乙工程队工程款0.5万元.工程领导小组根据甲,乙两队的投标书测算,有如下方案:(1)甲队单独完成这项工程刚好如期完成;(2)乙队单独完成这项工程要比规定日期多用6天;(3)若甲,乙两队合做3天,余下的工程由乙队单独做也正好如期完成.试问:在不耽误工期的前提下,你觉得哪一种施工方案最节省工程款?请说明理由.《第15章分式》参考答案与试题解析一、选择题1.下列各式中,分式的个数为();A.5个B.4个C.3个D.2个【考点】分式的定义.【分析】判断分式的依据是分式的定义,主要是看代数式的分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.分式不含等号.【解答】解:,, x+y,的分母中均不含有字母,因此它们是整式,而不是分式.含有等号,不是分式.,﹣,分母中含有字母,因此是分式.故选C.【点评】本题考查了分式的定义:如果A、B表示两个整式,并且B中含有字母,那么式子叫做分式,A 叫做分式的分子,B叫做分式的分母.注意分式不含等号,也不含不等号.2.下列各式正确的是()A. =﹣B. =﹣C. =﹣D. =﹣【考点】分式的基本性质.【分析】根据分式的分子分母同乘或同除以同一个整式(0除外)分式的值不变,可得答案.【解答】解:A,故A错误;B,故B正确;C ,故C错误;D,故D错误;故选:B.【点评】本题考查了分式的性质,分式的分子分母同乘或同除以同一个整式(0除外)分式的值不变,注意分式的分子分母都乘或都除以同一个整式(0除外),不能遗漏.3.下列分式是最简分式的是()A.B.C.D.【考点】最简分式.【分析】要判断分式是否是最简分式,只需判断它能否化简,不能化简的即为最简分式.【解答】解:A、=﹣1;B、=;C、分子、分母中不含公因式,不能化简,故为最简分式;D、=.故选:C.【点评】本题考查最简分式,是简单的基础题.4.将分式中的x、y的值同时扩大2倍,则分式的值()A.扩大2倍 B.缩小到原来的C.保持不变 D.无法确定【考点】分式的基本性质.【分析】根据已知得出=,求出后判断即可.【解答】解:将分式中的x、y的值同时扩大2倍为=,即分式的值扩大2倍,故选A.【点评】本题考查了分式的基本性质的应用,主要考查学生的理解能力和辨析能力.5.若分式的值为零,那么x的值为()A.x=1或x=﹣1 B.x=1 C.x=﹣1 D.x=0【考点】分式的值为零的条件.【分析】分式的值为零:分子等于零,且分母不等于零.【解答】解:依题意,得x2﹣1=0,且x+1≠0,解得x=1.故选:B.【点评】本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.6.下列计算正确的是()A.2÷2﹣1=﹣1 B.C.(﹣2x﹣2)﹣3=6x6D.【考点】负整数指数幂.【分析】根据同底数幂的除法、幂的乘方、合并同类项法则结合负整数指数幂的计算公式可得答案.【解答】解:A、2÷2﹣1=4,故此选项错误;B、2x﹣3÷4x﹣4=,故此选项错误;C、(﹣2x﹣2)﹣3=﹣x6,故此选项错误;D、3x﹣2+4x﹣2=,故此选项正确;故选:D.【点评】本题主要考查了负指数幂的运算.负整数指数为正整数指数的倒数.7.为了实现街巷硬化工程高质量“全覆盖”,我省今年1﹣4月公路建设累计投资92.7亿元,该数据用科学记数法可表示为()A.0.927×1010B.92.7×109C.9.27×1011D.9.27×109【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将92.7亿=9270000000用科学记数法表示为:9.27×109.故选:D.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.8.运动会上,初二(3)班啦啦队,买了两种价格的雪糕,其中甲种雪糕共花费40元,乙种雪糕共花费30元,甲种雪糕比乙种雪糕多20根.乙种雪糕价格是甲种雪糕价格的1.5倍,若设甲种雪糕的价格为x 元,根据题意可列方程为()A.B.C.D.【考点】由实际问题抽象出分式方程.【专题】压轴题.【分析】若设甲种雪糕的价格为x元,根据等量关系“甲种雪糕比乙种雪糕多20根”可列方程求解.【解答】解:设甲种雪糕的价格为x元,则甲种雪糕的根数:;乙种雪糕的根数:.可得方程:﹣=20.故选B.【点评】考查了由实际问题抽象出分式方程,应用题中一般有三个量,求一个量,明显的有一个量,一定是根据另一量来列等量关系的.本题分析题意,找到合适的等量关系是解决问题的关键.9.某厂接受为四川灾区生产活动板房的任务,计划在30天内完成,若每天多生产6套,则25天完成且还多生产10套,问原计划每天生产多少套板房?设原计划每天生产x套,列方程式是()A.B.C.D.【考点】由实际问题抽象出分式方程.【分析】设原计划每天生产x套,先求出实际25天完成的套数,再求出实际的工作效率=,最后依据工作时间=工作总量÷工作效率解答.【解答】解:由分析可得列方程式是: =25.故选B.【点评】此题主要考查工作时间、工作效率、工作总量三者之间的数量关系,解答时要注意从问题出发,找出已知条件与所求问题之间的关系,再已知条件回到问题即可解决问题.10.分式方程的解为()A.x=1 B.x=﹣3 C.x=3 D.x=﹣1【考点】解分式方程.【专题】方程思想.【分析】观察可得最简公分母是(x﹣3)(x﹣1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【解答】解:方程的两边同乘(x﹣3)(x﹣1),得x(x﹣1)=(x﹣3)(x+1),x2﹣x=x2﹣2x﹣3,解得x=﹣3.检验:把x=﹣3代入(x﹣3)(x﹣1)=24≠0.∴原方程的解为:x=﹣3.故选B.【点评】考查了解分式方程,注意:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.二、填空题11.若分式的值为零,则x= ﹣3 .当x= ﹣3 时,分式的值为0.【考点】分式的值为零的条件.【分析】分式的值为0的条件是:(1)分子为0;(2)分母不为0.两个条件需同时具备,缺一不可.据此可以解答本题.【解答】解:由题意可得|x|﹣3=0且x﹣3≠0,解得x=﹣3.由题意可得x2﹣9=0且x﹣3≠0,解得x=﹣3.故答案为:﹣3;﹣3.【点评】考查了分式的值为零的条件,由于该类型的题易忽略分母不为0这个条件,所以常以这个知识点来命题.12.某红外线遥控器发出的红外线波长为0.00000094m,用科学记数法表示这个数是9.4×10﹣7m.【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00000094=9.4×10﹣7;故答案为:9.4×10﹣7.【点评】本题考查了用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.13.计算: = .【考点】分式的乘除法.【专题】计算题.【分析】原式利用除法法则变形,约分即可得到结果.【解答】解:原式=•=.故答案为:【点评】此题考查了分式的乘除法,熟练掌握运算法则是解本题的关键.14.,,的最简公分母为6x2y2.【考点】最简公分母.【分析】确定最简公分母的方法是:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母.【解答】解:,,的分母分别是2xy、3x2、6xy2,故最简公分母为6x2y2.故答案为6x2y2.【点评】本题考查了最简公分母的定义及确定方法,通分的关键是准确求出各个分式中分母的最简公分母,确定最简公分母的方法一定要掌握.15.已知3m=4n≠0,则= .【考点】分式的化简求值.【分析】首先化简分式,再进一步用n表示m,代入求得数值即可.【解答】解:∵3m=4n≠0,∴,∴原式======.故答案为:.【点评】此题考查分式的化简求值,注意先化简,再代入求值.16.若解分式方程产生增根,则m= ﹣5 .【考点】分式方程的增根.【专题】计算题.【分析】分式方程去分母后转化为整式方程,由分式方程无解得到x=﹣4,代入整式方程即可求出m的值.【解答】解:方程去分母得:x﹣1=m,由题意将x=﹣4代入方程得:﹣4﹣1=m,解得:m=﹣5.故答案为:﹣5.【点评】此题考查了分式方程的增根,分式方程的增根即为最简公分母为0时x的值.17.当x= 1 时,分式无意义;当x ≠±3 时,分式有意义.【考点】分式有意义的条件.【分析】根据分式无意义,分母等于0列式计算即可得解;根据分式有意义,分母不等于0列式计算即可得解.【解答】解:由题意得,x﹣1=0,解得x=1;x2﹣9≠0,解得x≠±3.故答案为:1;≠±3.【点评】本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.18.将下列分式约分:(1)= ;(2)= ;(3)= 1 .【考点】约分.【分析】根据约分的定义,把分子分母同时约去它们的公因式,即可得出答案.【解答】解:(1)=;(2)=﹣;(3)==1;故答案为:,﹣,1.【点评】此题主要考查了分式的约分,关键是正确的找出分子分母的公因式.19.在5月汛期,重庆某沿江村庄因洪水而沦为弧岛.当时洪水流速为10千米/时,张师傅奉命用冲锋舟去救援,他发现沿洪水顺流以最大速度航行2千米所用时间,与以最大速度逆流航行1.2千米所用时间相等.请你计算出该冲锋舟在静水中的最大航速为40 千米/时.【考点】分式方程的应用.【专题】行程问题.【分析】设该冲锋舟在静水中的最大航速为x千米/时.等量关系:洪水顺流以最大速度航行2千米所用时间与以最大速度逆流航行1.2千米所用时间相等,根据等量关系列式.【解答】解:设该冲锋舟在静水中的最大航速为x千米/时.根据题意,得,即2(x﹣10)=1.2(x+10),解得x=40.经检验,x=40是原方程的根.所以该冲锋舟在静水中的最大航速为40千米/时.故答案为:40.【点评】此题中用到的公式有:路程=速度×时间,顺流速=静水速+水流速,逆流速=静水速﹣水流速.20.要使分式有意义,则x应满足的条件是x≠﹣1,x≠2 .【考点】分式有意义的条件.【分析】根据分式有意义,分母不等于0列式计算即可得解.【解答】解:由题意得,(x+1)(x﹣2)≠0,解得x≠﹣1,x≠2.故答案为:x≠﹣1,x≠2.【点评】本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.三、解答题21.计算(1)(2)(3)1﹣(4).【考点】分式的混合运算.【专题】计算题.【分析】(1)原式通分并利用同分母分式的减法法则计算即可得到结果;(2)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果;(3)原式第二项利用除法法则变形,约分后,两项通分并利用同分母分式的减法法则计算即可得到结果;(4)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.【解答】解:(1)原式==;(2)原式=÷=•=;(3)原式=1﹣•=1﹣==﹣;(4)原式=﹣÷=﹣•=﹣.【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.22.解方程(1)(2)(3)(4).【考点】解分式方程.【专题】计算题.【分析】各分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)去分母得:1+2x﹣6=x﹣4,解得:x=1,经检验x=1是分式方程的解;(2)去分母得:4+(x+3)(x+2)=(x﹣1)(x﹣2),去括号得:4+x2+5x+6=x2﹣3x+2,移项合并得:8x=﹣8,解得:x=﹣1,经检验x=﹣1是分式方程的解;(3)去分母得:x(x+2)+2=x2﹣4,去括号得:x2+2x+2=x2﹣4,移项合并得:2x=﹣6,解得:x=﹣3,经检验x=﹣3是分式方程的解;(4)去分母得:7(x﹣1)+x+1=6x,去括号得:7x﹣7+x+1=6x,移项合并得:2x=6,解得:x=3,经检验x=3是分式方程的解.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.23.“先化简,再求值:,其中,x=﹣3”.小玲做题时把“x=﹣3”错抄成了“x=3”,但她的计算结果也是正确的,请你解释这是怎么回事?【考点】分式的化简求值.【分析】先根据分式混合运算的法则把原式进行化简,再把x=﹣3与x=3代入进行计算即可.【解答】解:原式=(+)•(x+2)(x﹣2)=•(x+2)(x﹣2)=x2+4,∵(﹣3)2+4=32+4=9+4,∴她的计算结果也是正确的.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.24.先化简下列分式,再选一个你认为合适的数字代入并求代数式的值.【考点】分式的化简求值.【分析】先根据分式混合运算的法则把原式进行化简,再选取合适的x的值代入进行计算即可.【解答】解:原式=[﹣]•=•=•=,当x=1时,原式==.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.七、应用题25.甲、乙两地相距50km,A骑自行车从甲地到乙地,出发3小时20分钟后,B骑摩托车也从甲地去乙地.已知B的速度是A的速度的3倍,结果两人同时到达乙地.求A、B两人的速度.【考点】分式方程的应用.【专题】应用题.【分析】本题中有两个相等关系:“B的速度是A的速度的3倍”以及“B比A少用3小时20分钟”;根据等量关系可列方程.【解答】解:设A的速度为xkm/时,则B的速度为3xkm/时.根据题意得方程:.解得:x=10.经检验:x=10是原方程的根.∴3x=30.答:A,B两人的速度分别为10km/时、30km/时.【点评】利用分式方程解应用题时,一般题目中会有两个相等关系,这时要根据题目所要解决的问题,选择其中的一个相等关系作为列方程的依据,而另一个则用来设未知数.26.一辆汽车开往距离出发地180千米的目的地,出发后第一小时内按原计划的速度匀速行驶,一小时后以原来速度的1.5倍匀速行驶,并比原计划提前40分到达目的地.求前一小时的行驶速度.【考点】分式方程的应用.【分析】用到的关系式为:路程=速度×时间.由题意可知:加速后用的时间+40分钟+1小时=原计划用的时间.注意加速后行驶的路程为180千米﹣前一小时按原计划行驶的路程.【解答】解:设前一个小时的平均行驶速度为x千米/时.依题意得:1++=,3x+2(180﹣x)+2x=3×180,3x+360﹣2x+2x=540,3x=180,x=60.经检验:x=60是分式方程的解.答:前一个小时的平均行驶速度为60千米/时.【点评】本题考查了列分式方程解应用题,与所有列方程解应用题一样,重点在于准确地找出相等关系,这是列方程的依据.27.为了提高产品的附加值,某公司计划将研发生产的1200件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两间工厂了解情况,获得如下信息:信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天;信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍.根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品?【考点】分式方程的应用.【专题】工程问题;压轴题.【分析】如果设甲工厂每天加工x件产品,那么根据乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍,可知乙工厂每天加工1.5x件产品.然后根据等量关系:甲工厂单独加工完成这批产品的天数﹣乙工厂单独加工完成这批产品的天数=10列出方程.【解答】解:设甲工厂每天加工x件产品,则乙工厂每天加工1.5x件产品,依题意得﹣=10,解得:x=40.经检验:x=40是原方程的根,且符合题意.所以1.5x=60.答:甲工厂每天加工40件产品,乙工厂每天加工60件产品.【点评】本题考查了分式方程在实际生产生活中的应用.理解题意找出题中的等量关系,列出方程是解题的关键.注意分式方程一定要验根.28.某一工程,在工程招标时,接到甲,乙两个工程队的投标书.施工一天,需付甲工程队工程款1.2万元,乙工程队工程款0.5万元.工程领导小组根据甲,乙两队的投标书测算,有如下方案:(1)甲队单独完成这项工程刚好如期完成;(2)乙队单独完成这项工程要比规定日期多用6天;(3)若甲,乙两队合做3天,余下的工程由乙队单独做也正好如期完成.试问:在不耽误工期的前提下,你觉得哪一种施工方案最节省工程款?请说明理由.【考点】分式方程的应用.【专题】方案型.【分析】关键描述语为:“甲,乙两队合做3天,余下的工程由乙队单独做也正好如期完成”;说明甲队实际工作了3天,乙队工作了x天完成任务,工作量=工作时间×工作效率等量关系为:甲3天的工作量+乙规定日期的工作量=1列方程.再看费用情况:方案(1)、(3)不耽误工期,符合要求,可以求费用,方案(2)显然不符合要求.【解答】解:设规定日期为x天.由题意得++=1,.3(x+6)+x2=x(x+6),3x=18,解之得:x=6.经检验:x=6是原方程的根.方案(1):1.2×6=7.2(万元);方案(2)比规定日期多用6天,显然不符合要求;方案(3):1.2×3+0.5×6=6.6(万元).∵7.2>6.6,∴在不耽误工期的前提下,选第三种施工方案最节省工程款.【点评】找到合适的等量关系是解决问题的关键.在既有工程任务,又有工程费用的情况下.先考虑完成工程任务,再考虑工程费用.。
八年级数学上册《第十五章分式》单元测试卷-附答案(人教版)
八年级数学上册《第十五章分式》单元测试卷-附答案(人教版)姓名 班级 学号 成绩一、选择题:(本题共8小题,每小题5分,共40分.) 1.下列运算结果为1x - 的是( )A .11x -B .211x x x x -⋅+ C .11x xx x +÷- D .2211x x x +++2.某工厂接到加工600件衣服的订单,预计每天做25件,正好按时完成,后因客户要求提前 3 天交货,工人则需要提高每天的工作效率,设工人每天应多做 x 件,依题意列方程正确的是( )A .60060032525x -=+ B .60060032525x -=+ C .600600325x-= D .600600325x+= 3.下列计算正确的是( )A .623a a a=B .()325a a =C .22()()a ba b a b a b +=+++ D .0113⎛⎫-= ⎪⎝⎭4.某校学生去距离学校12km 的博物馆参观,一部分学生骑自行车先走,过了20min 后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,汽车的速度是( ). A .0.2km /min B .0.3km /min C .0.4km /min D .0.6km /min5.若 13b a =, 则 ba a += ( ) A .13 B .23 C .43 D .536.若关于x 的分式方程 11a x +- ﹣ 1xx- =0有增根,则a 的值是( )A .a =﹣1B .a =1C .a =﹣2D .a =27.已知关于 x 的分式方程3102112kx x x-+=-- 有解,则 k 的取值范围为( ) A .2k ≠- B .6k ≠- C .2k ≠- 且 6k ≠- D .2k <- 且 6k ≠-8.若整数a 使关于x 的分式方程1133x a x x-+=--的解为非负整数,且使关于y 的不等式组()53232y yy y a +⎧≤⎪⎨⎪->-⎩至多有3个整数解,则符合条件的所有整数a 的和为( ) A .24 B .12 C .6 D .4二、填空题:(本题共5小题,每小题3分,共15分.)9.计算:23193x xx x +--=-- . 10.若关于 x 的分式方程223111m x x x -=+-- 无解,则 m = . 11.已知x 2﹣4x ﹣5=0,则分式 265xx x -- 的值是 .13.小王读到关于京唐城际铁路的新闻报道后,搜集该线路的相关信息制作了下表,表中两个区间段(线路的一部分)运行时相应所用的时间1t 比2t 约少0.09h ,那么可列出关于v 的方程为 .12.观察下列等式:第1个等式:x 1= 11111323⎛⎫=- ⎪⨯⎝⎭ ;第2个等式:x 2= 111135235⎛⎫=- ⎪⨯⎝⎭; 第3个等式:x 3=111157257⎛⎫=- ⎪⨯⎝⎭ ;第4个等式:x 4= 111179279⎛⎫=- ⎪⨯⎝⎭; 则x l +x 2+x 3+…+x 10= .三、解答题:(本题共5题,共45分)14.计算:(1)32422. a b c bc c ab a ⎛⎫⎛⎫⎛⎫÷ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭;(2)221144424x x x x x -+-+-+ .15.先化简,再求值:222222x y x xy y x y x y x y x y ⎛⎫--+--÷ ⎪+-+⎝⎭,其中101(2023).2x y -⎛⎫==- ⎪⎝⎭,16.先化简:22214244x x x x x x x x ---⎛⎫-÷⎪+++⎝⎭,其中x 是不等式()⎪⎩⎪⎨⎧+++322123x x xx <>的整数解,选取你认为合适的x 的值代入求值.17.某书店老板去图书批发市场购买某种图书.第一次用1200元购书若干本,并按该书定价7元出售,很快售完.由于该书畅销,第二次购书时,每本书的批发价已比第一次提高了20%,他用1500元所购该书数量比第一次多10本.当按定价售出200本时,出现滞销,便以定价的4折售完剩余的书.试问该老板这两次售书总体上是赔钱了,还是赚钱了(不考虑其它因素)?若赔钱,赔多少?若赚钱,赚多少?18.今年,长沙开始推广垃圾分类,分类垃圾桶成为我们生活中的必备工具.某学校开学初购进 A 型和 B 型两种分类垃圾桶,购买 A 型垃圾桶花费了2500元,购买 B 型垃圾桶花费了2000元,且购买 A 型垃圾桶数量是购买 B 型垃圾桶数量的2倍,已知购买一个 B 型垃圾桶比购买一个 A 型垃圾桶多花30元.(1)求购买一个 A 型垃圾桶、B 型垃圾桶各需多少元?(2)由于实际需要,学校决定再次购买分类垃圾桶,已知此次购进 A 型和 B 型两种分类垃圾桶的数量一共为50个,恰逢市场对这两种垃圾桶的售价进行调整, A 型垃圾桶售价比第一次购买时提高了8%, B 型垃圾桶按第一次购买时售价的9折出售,如果此次购买 A 型和 B 型这两种垃圾桶的总费用不超过3240元,那么此次最多可购买多少个 B 型垃圾桶?参考答案:1.B 2.B 3.D 4.D 5.C 6.C 7.C 8.B9.3x x - 10.32- 或 211.212.47.8870.0967v v +=13.102114.(1)解: 32422. a b c bc c ab a ⎛⎫⎛⎫⎛⎫÷ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭= 634443224a b c b c c a b a -⋅÷= 634432244a b c a c a b b c -⋅⋅=﹣ 833a b c;(2)解:221144424x x x x x -+-+-+ = 21(2)x - ﹣ 1(2)(2)2(2)x x x x ++-+= 222(2)2(2)(2)2(2)(2)x x x x x x +--+-+- = 22282(2)(2)x x x x -+++-=()()()()224222x x x x -+-+-=242(2)xx -- .15.解:原式()()()22x y x y x y x y x y x y x y ⎡⎤--+=-⋅⎢⎥++--⎢⎥⎣⎦=2x y x y x yx y x y x y ⎛⎫--+-⋅⎪++-⎝⎭=x x y x y x y +⋅+-=x x y- 1012(2023)12x y -⎛⎫===-= ⎪⎝⎭,∴原式=2221=-. 16.解:22214244x x x x x x x x ---⎛⎫-÷⎪+++⎝⎭()()221242x x xx x x x ⎡⎤--=-⋅⎢⎥+-+⎢⎥⎣⎦ ()()2224242x x x x x x x x x ⎡⎤--=-⋅⎢⎥+-+⎢⎥⎣⎦()()2442x xx x x -=⋅--+()212x =-+{3(x +2)>x ①x +12<x +23②解不等式①得:3x >-解不等式②得:1x <∴不等式组的解集为31x -<< ∴不等式组的整数解为210--,, ∵分式要有意义 ∴{x ≠0(x +2)2≠0 ∴0x ≠且2x ≠- ∴当=1x -时,原式()21112=-=--+.17.解:设第一次购书的单价为x 元∵第二次每本书的批发价已比第一次提高了20% ∴第二次购书的单价为1.2x 元.根据题意得: ()1200150010120%x x +=+ .解得:x=5.经检验,x=5是原方程的解.所以第一次购书为1200÷5=240(本). 第二次购书为240+10=250(本).第一次赚钱为240×(7﹣5)=480(元).第二次赚钱为200×(7﹣5×1.2)+50×(7×0.4﹣5×1.2)=40(元). 所以两次共赚钱480+40=520(元).答:该老板两次售书总体上是赚钱了,共赚了520元18.(1)解:设购买一个 A 型垃圾桶需 x 元,则购买一个 B 型垃圾桶需 (30)x + 元.由题意得:25002000230x x =⨯+ . 解得: 50x = .经检验 50x = 是原分式方程的解. ∴3080x += .答:购买一个 A 型垃圾桶、 B 型垃圾桶分别需要50元和80元.(2)解:设此次购买 a 个 B 型垃圾桶,则购进 A 型垃圾桶 (50)a - 个 由题意得: 50(18%)(50)800.93240a a ⨯+-+⨯≤ . 解得 30a ≤ . ∵a 是整数∴a 最大为30.答:此次最多可购买30个 B 型垃圾桶。
八年级数学上册《第十五章 分式》单元测试卷附答案-人教版
八年级数学上册《第十五章 分式》单元测试卷附答案-人教版学校:___________班级:___________姓名:___________考号:___________一、选择题1.若分式xx+1的值等于0,则x 的取值可以是( ) A .0 B .−1C .x ≠−1D .12.计算x−1x ÷1−x x 2的结果是( )A .x 2B .−x 2C .xD .−x3.下列各式从左到右的变形中,正确的是( ) A .x 2+y 2x 2y 2=x+y xyB .yx =y 2x 2 C .a+b a−b =a 2−b 2(a−b)2D .−a+b a=−a+b a4.若实数m ,n 满足2m −3n =0,且mn ≠0,则mn −nm 的值为( ) A .−136B .−56C .136D .565.将(14)−1,(−3)0,(−4)2这三个数按从小到大的顺序排列,正确的结果是( ) A .(−3)0<(14)−1<(−4)2 B .(14)−1<(−3)0<(−4)2 C .(−4)2<(−3)0<(14)−1 D .(−3)0<(−4)2<(14)−16.下列计算正确的是( ) A .1a +1b =1a+b B .1a ÷1b =1ab C .a 2−b 2a−b =a −bD .aa−b −ba−b =17.已知实数a 、b 满足a +b =0,且ab ≠0,则ba +ab 的值为( ) A .-2B .-1C .1D .28.2022年,新型冠状肺炎病毒奥密克戎变异毒株影响全球,各国感染人数持续攀升,该企业决定增加甲、乙两个厂房生产N95型医用口罩,甲厂房每天生产的数量是乙厂房每天生产数量的2倍;两厂房各加工6000箱N95型医用口罩,甲厂房比乙厂房少用5天.设乙厂房每天生产x 箱N95型医用口罩.根据题意可列方程为( )A.6000x+2−6000x=5B.60002x−6000x=5C.6000x −6000x+2=5D.6000x−60002x=59.若关于x的分式方程x+3x−5=2−m5−x无解,则m的值为()A.4 B.5 C.6 D.8 二、填空题10.约分:3a(a+b)6a2=.11.计算(12)−1+(−3)0=.12.要使分式xx−7有意义,则x的取值范围是.13.计算:6x 2y ⋅yx=.14.甲、乙两个服装厂加工一批校服,甲厂每天加工的数量是乙厂每天加工数量的1.5倍,两厂各加工600套校服,甲厂比乙厂少用2天,设乙厂每天加工x套校服,则可列方程为.三、解答题15.计算:(a+1a−1+1−aa+1)⋅a+1a.16.解分式方程:2xx+2−xx−1=1.17.先化简,再求值:1−x2−1x2+2x+1÷x−1x,其中x=√5−1.18.若关于x的分式方程2x+ax−1+x−5x−1=2的解为正数,求正整数a的值.19.某中学为配合开展“垃圾分类进校园”活动,新购买了一批不同型号的垃圾桶,学校先用2400元购买了一批给班级使用的小号垃圾桶,再用3200元购买了一批放在户外使用的大号垃圾桶,已知一个大号垃圾桶的价格是小号垃圾桶的4倍.且大号垃圾桶购买的数量比小号垃圾桶少50个,求一个小号垃圾桶的价格.20.某工程队修建一条1800米的道路,由于施工过程中采用了新技术,所以工作效率提高了20%,结果提前3天完成任务.(1)求这个工程队原计划每天修建道路多少米?(2)这项工程,如果要求工程队提前6天完成任务,那么这个工程队实际每天修建道路多少米?参考答案 1.A 2.D 3.C 4.D 5.A 6.D 7.A 8.D 9.D 10.a+b2a 11.3 12.x ≠7 13.6x 14.600x −6001.5x=215.解:原式=[(a+1)2(a−1)(a+1)−(a−1)2(a−1)(a+1)]⋅a+1a=[(a 2+2a+1)−(a 2−2a+1)(a−1)(a+1)]⋅a+1a=4a(a−1)(a+1)⋅a+1a=4a−1.16.解:方程两边同乘最简公分母(x +2)(x −1) ,得: 2x(x −1)−x(x +2)=(x +2)(x −1) 解得:x =25检验:当x =25时 (x +2)(x −1)≠0. 所以x =25是原方程的解. 17.解:1−x 2−1x 2+2x+1÷x−1x=1−(x+1)(x−1)(x+1)2⋅xx−1=1−xx+1 =x+1−x x+1=1x +1当x =√5−1时,原式=√5−1+1=√5=√55. 18.解:原方程可化为:2x +a +x −5=2(x −1) ∴x =3−a . ∵原方程的解为正数∴3−a >0 ∴a <3 ∵x −1≠0 ∴x ≠1 ∴3−a ≠1 ∴a ≠2∴a 的取值范围为a <3且a ≠2 ∴正整数a 的值为1.19.解:设一个小号垃圾桶的价格为x 元,则:一个大号垃圾桶的价格是4x 元 由题意,得:32004x+50=2400x解得:x =32经检验:x =32是原方程的解; ∴一个小号垃圾桶的价格为32元.20.(1)解:设这个工程队原计划每天修建道路x 米 根据题意,有:1800x−3=1800x×(1+20%)解得:x =100经检验,x =100是原方程的根答:这个工程队原计划每天修建道路100米;(2)解:设这个工程队实际每天修建道路y 米,且这个工程队原计划每天修建道路100米 根据题意,有:(1800100−6)×y =1800解得:y=150答:这个工程队实际每天修建道路150米.。
人教版八年级上第十五章《分式》单元检测卷(含答案)
人教版八年级上第十五章《分式》单元检测卷(含答案)一、选择题(每题3分,共30分)1.(2019·常州)若代数式x +1x -3有意义,则实数x 的取值范围是( ) A .x =-1B .x =3C .x ≠-1D .x ≠3 2.如果把xy x y+中的x 与y 都扩大10倍,那么这个代数式的值() A .不变 B .扩大20倍C .扩大10倍D .缩小为原来的110 3.计算22x y y y x x -⎛⎫÷⋅ ⎪⎝⎭的结果是() A .2x y B .y x C .2x y - D .-x4.已知a =2-2,b =1)0,c =(-1)3,则a ,b ,c 的大小关系是( )A .a >b >cB .b >a >cC .c >a >bD .b >c >a5.花粉的质量很小,一粒某种植物花粉的质量约为0.000037毫克,已知1克=1000毫克,那么0.000037毫克可以用科学记数法表示为( )A .3.7×10-5克B .3.7×10-6克C .3.7×10-7克D .3.7×10-8克6.若(244a -+12a-)⋅w =1,则w =( ) A .a +2(a ≠-2) B .-a +2(a ≠2)C .a -2(a ≠2)D .-a -2(a ≠-2)7.分式方程11x --21x +=211x -的解是( ) A .x =0 B .x =-1 C .x =±1 D .无解 8.若分式22-x 与1互为相反数,则x 的值为( ) A .2B .-2C .1D .-19.(2019·十堰)十堰即将跨入高铁时代,钢轨铺设任务也将完成.现还有6000米的钢轨需要铺设,为确保年底通车,如果实际施工时每天比原计划多铺设20米,就能提前15天完成任务.设原计划每天铺设钢轨x 米,则根据题意所列的方程是( )A.6000x -6000x +20=15 B.6000x +20-6000x =15 C.6000x -6000x -15=20 D.6000x -15-6000x =2010.已知关于x 的方程22x m x +-=3的解是正数,则m 的取值范围为( ) A .m <-6B .m >-6C .m >-6且m ≠-4D .m ≠-4二、填空题(每题3分,共18分)11.如果分式11x x +-的值为0,那么x 的值为______. 12.某中学图书馆添置图书,用240元购进一种科普书,同时用200元购进一种文学书.由于科普书的单价比文学书的单价高出一半,因此学校所购买的文学书比科普书多4本.求文学书的单价.设这种文学书的单价为x 元,则根据题意,所列的方程是______.13.计算:(-2xy -1)-3=______.14.(2019·绥化)当a =2018时,代数式⎝⎛⎭⎫a a +1-1a +1÷a -1(a +1)2的值是________. 15.若(x -y -2)2+│xy +3│=0,则(3x x y --2x x y -)÷1y的值是. 16.(2019·齐齐哈尔)关于x 的分式方程2x -a x -1-11-x=3的解为非负数,则a 的取值范围为_____________.三、解答题(共52分)17.(12分)(1)计算1-2a b a b -+÷222244a b a ab b -++;(2) (2019·枣庄)先化简,再求值:x 2x 2-1÷⎝⎛⎭⎫1x -1+1,其中x 为整数且满足不等式组⎩⎪⎨⎪⎧x -1>1,5-2x ≥-2.18.(12分)解方程:(1)32x x ++22x -=3;(2)24 1x-+21xx+-=-1.19.(8分)先化简2249xx--÷(1-13x-),再从不等式2x-3<7的正整数解中选一个使原式有意义的数代入求值.20.(8分)(2019·黄冈)为了对学生进行革命传统教育,红旗中学开展了“清明节祭扫”活动.全校学生从学校同时出发,步行4000米到达烈士纪念馆.学校要求九(1)班提前到达目的地,做好活动的准备工作.行走过程中,九(1)班步行的平均速度是其他班的1.25倍,结果比其他班提前10分钟到达.分别求九(1)班、其他班步行的平均速度.21.(12分)一项工程,甲队单独做需40天完成,若乙队先做30天后,甲、乙两队一起合做20天恰好完成任务,请问:(1)乙队单独做需要多少天才能完成任务?(2)现将该工程分成两部分,甲队做其中一部分工程用了x天,乙队做另一部分工程用了y天,若x,y都是正整数,且甲队做的时间不到15天,乙队做的时间不到70天,那么两队实际各做了多少天?参考答案1.D2.A3.D4.B5.D6.D7.D8.D9.A 10.C 11.-112.45.1240200=-xx 13.-338xy 14.201915.-23 16.a ≤4且a ≠3 17.(1)-b a b+. (2)由⎩⎪⎨⎪⎧x -1>1,5-2x ≥-2得2<x ≤72. ∵x 为整数,∴x =3,∴x 2x 2-1÷⎝⎛⎭⎫1x -1+1=x 2()x +1()x -1÷1+x -1x -1=x 2()x +1()x -1×x -1x =x x +1=34. 18.(1)x =4.(2)x =31.19.答案不唯一,略20.解:设其他班步行的平均速度为x 米/分,则九(1)班步行的平均速度为1.25x 米/分.依题意,得4000x -40001.25x=10,解得x =80, 经检验,x =80是原方程的解,且符合题意,∴1.25x =100.答:九(1)班步行的平均速度为100米/分,其他班步行的平均速度为80米/分.21. (1)乙队单独做需要100天才能完成任务.(2)甲、乙两队实际分别做了14天和65天.人教版八年级数学(上册)第15章分式单元检测卷(附带答案)一.选择题(共12小题,满分36分,每小题3分)1.(3分)在代数式x,,﹣,,中,分式的个数有()A.1个B.2个C.3个D.4个2.(3分)下列分式的值,可以为零的是()A.B.C.D.3.(3分)使分式的值等于0的x的值是()A.x=﹣或x=B.x=﹣C.x=D.x=或x=﹣4.(3分)下列等式中不一定成立的是()A.B.C.D.5.(3分)化简的结果是()A.B.C.D.6.(3分)若将分式中的x,y的值变为原来的100倍,则此分式的值()A.不变B.是原来的100倍C.是原来的200倍D.是原来的7.(3分)分式,的最简公分母是()A.a B.b C.ab D.a2b 8.(3分)在分式,,中,最简分式有()A.0个B.1个C.2个D.3个9.(3分)若表示一个整数,则整数n可取值的个数是()A.6B.5C.4D.3个10.(3分)把分式方程去分母可得()A.3x﹣5)﹣(x﹣5)(x﹣3)+1=0B.3x﹣5+(x+5)(x﹣3)+(x+5)(x﹣5)=0C.3(x﹣5)﹣(x+5)(x﹣3)+(x+5)(x﹣5)=(x+5)(x﹣5)D.3(x﹣5)﹣(x+5)(x﹣3)+(x+5)(x﹣5)=011.(3分)下列计算正确的是()A.÷﹣÷=B.÷(﹣)=2yC.÷(1﹣)=1D.(1﹣)÷=112.(3分)从甲地到乙地有两条同样长的路,一条是平路,另一条的是上山,是下山,如果上山的速度为平路速度的,平路速度是下山速度的,那么从甲地到乙地()A.走山路快B.走平路快C.走山路与平路一样快D.哪个快不能确定二.填空题(共6小题,满分24分,每小题4分)13.(4分)当x时,的值是零.14.(4分)当时,分式没有意义.15.(4分)计算:+=.16.(4分)若分式的值为负数,则x的取值范围是.17.(4分)如果2<a<3,则的值是.18.(4分)某校师生到距离学校15千米的工地参加义务劳动,一部分人骑自行车,出发40分钟后,其余的人乘汽车出发,结果同时到达.已知汽车的速度是自行车的3倍,设骑自行车的人的速度是x千米/时.则可得方程.三.解答题(共8小题,满分60分)19.(8分)计算:(1)(2)20.(8分)解方程:(1)1﹣=(2)﹣=.21.(6分)一汽船顺流航行46千米和逆流航行34千米的时间和恰好等于它在静水中航行80千米的时间,已知水流速度是2千米/时,求汽船在静水中航行的速度.22.(6分)已知关于x的方程有增根,则k为多少?23.(6分)已知=2,求代数式的值.24.(8分)列分式方程解应用题:“六一”儿童节前,某玩具商店根据市场调查,用2 500元购进一批儿童玩具,上市后很快脱销,接着又用4 500元购进第二批这种玩具,所购数量是第一批数量的1.5倍,但每套进价多了10元.①求第一批玩具每套的进价是多少元?②如果这两批玩具每套售价相同,且全部售完后总利润不低于25%,那么每套售价至少是多少元?25.(9分)已知:x2+1=4x(x≠0),求①x2②(x﹣)2③x4+.26.(9分)在社会主义新农村建设中,某乡镇决定对一段公路进行改造.已知这项工程中甲工程队单独做需要40天完成;如果由乙工程队先单独做10天,那么剩下的工程还需要两队合做20天才能完成.(1)求乙工程队单独完成这项工程所需的天数;(2)求两队合做完成这项工程所需的天数;(3)甲工程队独做一天需1000元,乙工程队独做一天需600元,这项工程要求在30天内完成,请你设计方案,你的方案中哪种最省钱?人教版八年级数学上册第15章分式单元检测参考答案一.选择题(共12小题,满分36分,每小题3分)1.B.2.D.3.C.4.C.5.D.6.B.7.C.8.B.9.A.10.D.11.C.12.C.二.填空题(共6小题,满分24分,每小题4分)13.=4.14.x=4.15..16.x<.17.﹣1.18.﹣=.三.解答题(共8小题,满分60分)19.解:(1)原式=×=1;(2)原式=++=+=.20.解:(1)去分母得:x2﹣25﹣x﹣5=x2﹣5x,解得:x=,经检验x=是分式方程的解;(2)去分母得:3x+3﹣2x+2=1,解得:x=﹣4,经检验x=﹣4是分式方程的解.21.解:设汽船在静水中航行的速度为x千米/时,根据题意得:+=,解得:x=,经检验,x=是所列分式方程的解.答:汽船在静水中航行的速度为千米/时.22.解:∵关于x的方程有增根,∴x﹣3=0,则x=3,∵原方程可化为4x=13﹣k,将增根x=3代入得k=1.23.解:∵=2,∴xy=2(x+y),∴====﹣1.24.解:①设第一批玩具每套的进价是x元,根据题意可得:×1.5=,解得:x=50,经检验x=50是分式方程的解,符合题意.答:第一批玩具每套的进价是50元;②设每套售价是y元,×1.5=75(套).50y+75y﹣2500﹣4500≥(2500+4500)×25%,解得:y≥70,答:如果这两批玩具每套售价相同,且全部售完后总利润不低于25%,那么每套售价至少是70元.25.解:①∵x2﹣4x+1=0,∴x2=4x﹣1,∴x2+========14;②(x﹣)2=x2+﹣2=14﹣2=12;③x4+x﹣4=x4+=(x2+)2﹣2=142﹣2=194.26.解:(1)设乙工程队单独完成这项工程需要x天,根据题意得:+×(10+20)=1,解之得:x=60,经检验:x=60是原方程的解,答:乙工程队单独完成这项工程所需要的天数为60天.(2)根据题意得:1÷(+)=24.答:两队合做完成这项工程所需的天数为24天.(3)∵甲独做或乙独做在时间上均不符合,选择甲乙合作,①甲乙做的时间相同,都做24天需要的钱数为24×(1000+600)=38400(元);②甲做30天,则乙做(1﹣)÷=15天;需要的钱数为:1000×30+15×600=39000元;③乙做30天,则甲做(1﹣)÷=20天,需要的钱数为:600×30+1000×20=38000元.甲做20天,乙做30天,最省钱.人教版八年级数学上册单元检测卷:第十五章分式(含答案)一、填空题(本大题共4小题,每小题5分,满分20分)1.当x ________时,分式5x -2有意义. 2.方程400x -100=600x的解是________. 3.化简x 2-1x 2+2x +1-x -1x 2+x ÷2x的结果为________. 4.若1(2n -1)(2n +1)=a 2n -1+b 2n +1(a ,b 为常数)对任意自然数n 都成立,则a =________,b =________;计算:m =11×3+13×5+15×7+…+119×21=________. 二、选择题(本大题共10小题,每小题4分,满分40分)5.下列式子是分式的是( )A.x 5B.xx +1 C.x 6+y D.3xy π6.生物学家发现一种病毒的长度约为0.00000432毫米,数据0.00000432用科学记数法表示为( )A .0.432×10-5B .4.32×10-6C .4.32×10-7D .43.2×10-77.若分式x 2-1x -1的值为零,则x 的值为( ) A .0 B .1 C .-1 D .±18.下列计算错误的是( )A.0.2a +b 0.7a -b =2a +b 7a -bB.x 3y 2x 2y 3=x yC.a -b b -a =-1D.1c +2c =3c9.化简y 22x -y +4x 2y -2x的结果是( )A .y -2xB .-2x -yC .2x -yD .y +2x10.如果把分式2n m -n中的m 和n 都扩大到原来的2倍,那么分式的值( ) A .不变 B .扩大到原来的2倍C .缩小为原来的12D .扩大到原来的4倍 11.化简a +1a 2-2a +1÷⎝ ⎛⎭⎪⎫1+2a -1的结果是( ) A.1a 2-1 B.1a +1 C.1a -1 D.1a 2+112.若1x -1=1,则3x -1-1+x 的值为( ) A .0 B .2 C .3 D .413.速录员小明打2500个字和小刚打3000个字所用的时间相同,已知小刚每分钟比小明多打50个字,求两人的打字速度.设小刚每分钟打x 个字,根据题意列方程,正确的是( )A.2500x =3000x -50 B.2500x =3000x +50 C.2500x -50=3000x D.2500x +50=3000x14.若分式方程x x -1-1=m(x -1)(x +2)无解,则m 的值为( ) A .0或3 B .1C .1或-2D .3三、(本大题共2小题,每小题8分,满分16分)15.计算:(1)(-2016)0-2-1+⎝ ⎛⎭⎪⎫-13-2-(-3)2;(2)16×2-4-⎝ ⎛⎭⎪⎫120÷⎝ ⎛⎭⎪⎫-12-3.16.化简:(1)⎝ ⎛⎭⎪⎫1x 2-4+4x +2÷1x -2; (2)⎝ ⎛⎭⎪⎫a +1a +2÷⎝ ⎛⎭⎪⎫a -2+3a +2.四、(本大题共2小题,每小题8分,满分16分)17.先化简,再求值:⎝ ⎛⎭⎪⎫x -4x ÷x -2x 2,其中x 2+2x -1=0.18.解分式方程:(1)2x =3x +2; (2)12x -1=12-34x -2.五、(本大题共2小题,每小题10分,满分20分)19.先化简(1a -1-1a +1)÷a 2a 2-2,然后从-1、-12、1中选取一个你认为合适的数作为a 的值代入求值.20.对于两个不相等的实数a 、b ,我们规定符号Max(a ,b )表示a 、b 中的较大值,如:Max(2,4)=4,按照这个规定,求方程Max(a ,3)=2x -1x(a 为常数,且a ≠3)的解.六、(本题满分12分)21.某中学组织学生到离学校15km 的东山游玩,先遣队与大队同时出发,先遣队的速度是大队的速度的1.2倍,结果先遣队比大队早到0.5h ,先遣队的速度是多少?大队的速度是多少?七、(本题满分12分)22.某新建的商场有3000m 2的地面花岗岩需要铺设,现有甲、乙两个工程队希望承包铺设地面的工程.甲工程队平均每天比乙工程队多铺50m 2,甲工程队单独完成该工程的工期是乙工程队单独完成该工程所需工期的34.求甲、乙两个工程队完成该工程各需几天.八、(本题满分14分)23.观察下列方程的特征及其解的特点:①x +2x=-3的解为x 1=-1,x 2=-2; ②x +6x =-5的解为x 1=-2,x 2=-3;③x +12x=-7的解为x 1=-3,x 2=-4. 解答下列问题:(1)请你写出一个符合上述特征的方程为______________,其解为________________;(2)根据这类方程的特征,写出第n 个方程为________________,其解为__________________;(3)请利用(2)的结论,求关于x 的方程x +n 2+n x +3=-2(n +2)(n 为正整数)的解.参考答案1.≠2 2.x =300 3.x -12x +2 4.12 -12 10215-14:.B .B .C .A .B .A .C .D .C .A15.解:(1)原式=1-12+9-9=12.(4分) (2)原式=16×116-1÷(-8)=1+18=98.(8分) 16.解:(1)原式=1+4(x -2)(x +2)(x -2)·(x -2)=4x -7x +2.(4分) (2)原式=a 2+2a +1a +2÷a 2-4+3a +2=(a +1)2a +2·a +2(a +1)(a -1)=a +1a -1.(8分)17.解:原式=(x +2)(x -2)x ÷x -2x 2=(x +2)(x -2)x ·x 2x -2=x (x +2)=x 2+2x .(5分)当x 2+2x -1=0时,x 2+2x =1,原式=1.(8分)18.解:(1)方程两边都乘以x (x +2)得2(x +2)=3x ,解得x =4.检验:当x =4时,x (x +2)≠0.所以原分式方程的解为x =4.(4分)(2)方程两边都乘以2(2x -1)得2=2x -1-3,解得x =3.检验:当x =3时,2(2x -1)≠0.所以原分式方程的解为x =3.(8分)19.解:原式=2(a +1)(a -1)·2(a +1)(a -1)a =4a.(6分)当取a =1或-1时,原分式无意义,∴a =-12.(8分)当a =-12时,原式=-8.(10分) 20.解:当a <3时,Max(a ,3)=3,即2x -1x=3,去分母得2x -1=3x ,解得x =-1.经检验,x =-1是分式方程的解;(5分)当a >3时,Max(a ,3)=a ,即2x -1x=a ,去分母得2x -1=ax ,解得x =12-a .经检验,x =12-a是分式方程的解.(10分) 21.解:设大队的速度为x km/h ,则先遣队的速度是1.2x km/h ,(1分)根据题意得15x=151.2x+0.5,(5分)解得x =5.(8分)经检验,x =5是原方程的解.(9分)1.2x =1.2×5=6.(11分)答:先遣队的速度是6km/h ,大队的速度是5km/h.(12分)22.解:设乙工程队平均每天铺x m 2,则甲工程队平均每天铺(x +50)m 2,(1分)由题意得3000x +50=3000x ×34,(5分)解得x =150.(8分)经检验,x =150是原分式方程的解.(9分)3000x =3000150=20(天),20×34=15(天).(11分) 答:甲工程队完成该工程需15天,乙工程队完成该工程需20天.(12分)23.解:(1)x +20x=-9 x 1=-4,x 2=-5(4分) (2)x +n 2+n x=-(2n +1) x 1=-n ,x 2=-n -1(8分) (3)x +n 2+n x +3=-2(n +2),x +3+n 2+n x +3=-2(n +2)+3,(x +3)+n 2+n x +3=-(2n +1),∴x +3=-n 或x +3=-(n +1),即x 1=-n -3,x 2=-n -4.(11分)检验:当x 1=-n -3时,x +3=-n ≠0,当x 2=-n -4时,x +3=-n -1≠0,所以,原分式方程的解是x 1=-n -3,x 2=-n -4.(14分)人教版八年级上第十五章《分式》单元检测卷(含答案)(7)一、选择题(每题3分,共18分)1.下列运算错误的是( )A.()()122=-a b b a -B.1-=+--ba b a C.b a b a b a b a 321053.02.05.0-+=-+ D.ab a b b a b a +-=+- 2.若分式43+-x x 的值为0,则( ) A .3=x B .0=x C .3-=x D .4-=x3.化简aa 3,正确的结果为( ) A .a B .a 2 C .a -1 D .a -24.分式方程121+=x x 的解为( ) A. 3=x B. 2=x C. 1=x D. 1-=x5.若1-=x , 2=y ,则y x y x x 8164222---的值等于( ) A. 171- B. 171 C. 161 D. 151 6.某电子元件厂准备生产4 600个电子元件,甲车间独立生产一半后,由于要尽快投入市场,乙车间也加入了该电子元件的生产,若乙车间每天生产的电子元件个数是甲车间的1.3倍,结果用33天完成任务,问甲车间每天生产电子元件多少个?在这个问题中设甲车间每天生产电子元件x 个,根据题意可得方程为( )A .333.123002300=+x xB .333.123002300=++x x xC .333.146002300=++x x xD .333.123004600=++xx x 二、填空题(每题4分,共32分)7.在代数式2x ,1+x x ,y x +2,3x 中,是分式的是_________________.8.使式子111-+x 有意义的x 的取值范围是___________. 9.计算:=+++1212x x x _____________. 10.已知x =1是分式方程xk x 311=+的根,则实数k =_________. 11.观察下列按顺序排列的等式:a 1=311-,a 2=4121-,a 3=5131-, a 4=6141-,…,试猜想第n 个等式(n 为正整数)a n =_________. 12.对于非零的两个实数a ,b ,规定a ⊗b =a b 11-,若1⊗(x +1)=1,则x 的值为__________.13.已知k ac b b c a c b a =+=+=+,则k 的值是__________. 14.若关于x 的方程x m x x 21051-=--无解,则m =_________. 三、解答题(16题6分,19、20题每题10分,其余每题8分,共50分)15.(1)计算:a a a a a 1212+-÷⎪⎭⎫ ⎝⎛-;(2)下面是小明化简分式的过程,请仔细阅读,并解答所提出的问题.46222---+x x x )2)(2(6)2)(2()2(2-+---+-=x x x x x x ………第一步 6)22+--=x x (………………………第二步642+--=x x …………………………第三步2+=x ……………………………………第四步小明的解法从第______步开始出现错误,请写出正确的化简过程.16.从三个代数式:①222b ab a +-,②b a 33-,③22b a -中任意选择两个代数式构造分式,然后进行化简,并求当a =6,b =3时该分式的值.17.如果实数x 满足0322=-+x x ,求代数式11212+÷⎪⎪⎭⎫ ⎝⎛++x x x 的值.18.解方程:(1)14122=---x x x ;(2)xx x x x x x 22222222--=-+-+.19.烟台享有“苹果之乡”的美誉.甲、乙两超市分别用3 000元以相同的进价购进质量相同的苹果.甲超市销售方案是:将苹果按大小分类包装销售,其中大苹果400千克,以进价的2倍价格销售,剩下的小苹果以高于进价的10%的价格销售.乙超市销售方案是:不将苹果按大小分类,直接包装销售,价格按甲超市大、小两种苹果售价的平均数定价.若两超市将苹果全部售完,其中甲超市获利2 100元(其他成本不计).问:(1)苹果进价为每千克多少元?(2)乙超市获利多少元?并比较哪种销售方式更合算.20.一项工程,甲队单独做需40天完成,若乙队先做30天后,甲、乙两队一起合做20天恰好完成任务,请问:(1)乙队单独做需要多少天才能完成任务?(2)现将该工程分成两部分,甲队做其中一部分工程用了x天,乙队做另一部分工程用了y天,若x,y都是正整数,且甲队做的时间不到15天,乙队做的时间不到70天,那么两队实际各做了多少天?参考答案及点拨第十五章过关自测卷一、1.D 点拨:根据添括号法则、分式的符号变化法则、分式的基本性质逐一验证四个选项进行选择.因为()()()()12222=--=--b a b a a b b a ,所以排除A ;因为()1-=++-=++-=+--ba b a b a b a b a b a ,所以排除B ;因为()()b a b a b a b a b a b a 32105103.02.0105.03.02.05.0-+=⨯-⨯+=-+,所以排除C ;因为-=+-b a b a ab a b +-,所以应选D.2.A 点拨:分式43+-x x 的值为0的条件是分子03=-x ,分母04≠+x ,∴3=x .分式的值为0,则分式的分子为0,分母不为0.3.B 点拨:利用分式的基本性质进行约分.分式的约分,先确定公因式,然后把公因式约去.4.C 点拨:去分母化为整式方程求解,并进行检验.5.D 点拨:先化简,再求值.原式()()()()()yx y x y x y x y x y x y x x 818888882+=-+-=-++-=, 当2,1=-=y x 时,原式1512811=⨯+-=.故选D. 6.B 点拨:甲车间每天生产电子元件x 个,则乙车间每天生产电子元件 1.3x 个,甲、乙两车间每天共生产电子元件(x +1.3x )个,根据题意可得方程为333.123002300=++xx x . 二、7. 1+x x 点拨:因为3,2,2x y x x +的分母不含字母,所以它们都不是分式,而是整式;因为1+x x 的分母含有字母,所以它是分式. 8. x ≠1 点拨:分式有意义的条件是分母不为0,故1-x ≠0,所以 x ≠1.9.2 点拨:原式()2112122=++=++=x x x x . 10. 61 点拨:把x =1代入分式方程得13111k =+,所以61=k . 11.211+-n n 12.21- 点拨:根据规定,得()11111-+=+⊗x x ,所以1111=-+x ,解得21-=x .经检验,21-=x 是原分式方程的解. 13.1-或2 点拨:(1)当a ,b ,c 不相等时,由已知可得,22c ac b ab +=+①,22a ac b bc +=+②;①-②得,()a c b +-=,代入原式得1-=k ;(2)当a =b =c 时,2=k .所以1-=k 或2.14. 8- 点拨:原方程可化为()5251--=--x m x x ,方程两边都乘()52--x ,得()m x =--12,解得22--=m x ,∵方程无解,∴()052=--x ,∴5=x ,∴522=--m ,解得8-=m . 分式方程无解的情况就是出现了增根,而这个增根产生的原因就是在从分式方程转化为整式方程时方程两边都乘了个0,据此可以得出增根的值,从而可以求得未知字母的值.三、15.解:(1)原式()111122-+=-⋅-=a a a a a a . (2)二;()()()()()()()()()22222642226222246222-++=-++--=-+---+-=---+x x x x x x x x x x x x x x x x .21-=x 16.解:共有六种计算方法,分别是:(1)333222b a b a b ab a -=-+-,当a =6,b =3时,原式=1.(2)交换(1)中分式的分子和分母的位置,结果也为1.(3)33322b a b a b a +=--,当a =6,b =3时,原式=3.(4)交换(3)中分式的分子和分母的位置,结果为31.(5)22222b a b ab a -+-b a b a +-=,当a =6,b =3时,原式=31.(6)交换(5)中分式的分子和分母的位置,结果为3.点拨:任写一种即可.17.解:原式()22112222++=+⋅+++=x x x x x x ,∵0322=-+x x ,∴322=+x x ,∴原式=3+2=5. 18.解:(1)方程两边同乘()()22-+x x ,去分母得()()()2212-+=-+x x x x . 解得23-=x . 检验:当23-=x 时,()()022≠-+x x ,所以23-=x 是原分式方程的解.(2)方程两边同乘()2-x x ,去分母得()()()222222-=+-+-x x x x x ,解得21-=x . 经检验,21-=x 是原分式方程的根.19.解:(1)设苹果进价为每千克x 元.由题意,得x 400+10%21004003000=⎪⎭⎫⎝⎛-x x ,解得x =5.经检验,x =5是原方程的根.答:苹果进价为每千克5元.(2)由(1)知:每个超市苹果总量为60053000=(千克),甲超市大、小苹果售价分别为10元和5.5元. ∴乙超市获利:1650525.510600=⎪⎭⎫ ⎝⎛-+⨯(元).∵2 100>1 650, ∴甲超市的销售方式更合算.点拨:(1)由题意得等量关系“大苹果的利润+小苹果的利润=2 100元”,其中“利润=数量×每千克的利润”. 在这个问题中,涉及基本数量关系“进价=数量×每千克的进价”,据此可直接设未知数,即设苹果进价为每千克x 元,并用未知数表示出所进苹果的数量,即两超市分别购进苹果x3000千克,从而利用等量关系构建方程模型解决问题;(2)先计算乙超市的获利,再进行比较即可.20.解:(1)设乙队单独做需要z 天才能完成任务,由题意得 120140130=⨯⎪⎭⎫ ⎝⎛++z z . 解得z =100.经检验,z =100是原方程的解.答:乙队单独做需要100天才能完成任务.(2)由题意得⎪⎪⎩⎪⎪⎨⎧=+,70,15,110040<<y x y x (x ,y 都是正整数) ∴⎪⎩⎪⎨⎧-,15,7025100<<x x (x 是正整数) 解得12<x <15(x 是正整数).∴正整数x =13或14.当x =13时,x y 25100-=不是整数,应舍去;当x =14时,6525100=-=x y ,符合条件.∴甲实际做了14天,乙实际做了65天.点拨:(1)根据甲、乙的工作量的和等于工作总量,列方程求解;(2)结合已知条件分别列出不等式、等式,最后求出满足题意的解.。
八年级数学上册《第十五章 分式》单元检测卷及答案-人教版
八年级数学上册《第十五章 分式》单元检测卷及答案-人教版学校:___________班级:___________姓名:___________考号:___________一、选择题:(本题共8小题,每小题5分,共40分.)1.在代数式:中,分式的个数是( )A .2B .3C .4D .52.张老师和李老师住在同一个小区,离学校3000米,某天早晨,张老师和李老师分别于7点5分、7点15分离家骑自行车上班,刚好在校门口相遇,已知李老师骑车的速度是张老师的1.2倍,为了求他们各自骑自行车的速度,设张老师骑自行车的速度是 x 米/分,则可列得方程为( ) A .30003000101.2x x-= B .3000300010601.2x x -=⨯ C .30003000101.2x x -= D .3000300010601.2x x -=⨯ 3.若 2x < ,则 22x x -- 的值为( ) A .1- B .0 C .1 D .24.把分式方程12y - -12y y--=1的两边同乘y-2,约去分母,得( ) A .1-(1-y )=1 B .1+(1-y )=1C .1-(1-y )=y-2D .1+(1-y )=y-25.“行人守法,安全过街”不仅体现了对生命的尊重,也体现了公民的文明素质,更反映了城市的文明程度.如图,官渡区森林公园路口的斑马线A B C --为横穿双向行驶车道,其中8AB BC ==米,在绿灯亮时,小官共用13秒通过AC 路段,其中通过BC 路段的速度是通过AB 路段速度的1.6倍,则小官通过AB 路段的速度是( )A .0.5米/秒B .1米/秒C .1.5米/秒D .2米/秒 6.若关于x 的分式方程23x - + 3x m x +- =2有增根,则m 的值是( ) A .m=﹣1B .m=0C .m=3D .m=0或m=3 7.若代数式22()122x M x x -+÷--的化简结果为22x +,则整式M 为( ) A .x - B .x C .1x - D .1x +8.如果关于x 的不等式组 {2(a −x)≥−x −43x+42<x +1 的解集为x <﹣2,且使关于x 的分式方程 3x x - +23a x+- =2的解为非负数的所有整数a 的个数为( ) A .7个 B .6个 C .5个D .4个二、填空题:(本题共5小题,每小题3分,共15分.)9.()0220132--⨯= . 10.已知1x ﹣1y =1x y +,则y x ﹣x y ﹣2= 11.某工人在规定时间内可加工50个零件.如果每小时多加工5个零件,那么用同样时间可加工60个零件,设原来每小时可加工x 个零件,可得方程 .12.当x= 时,分式 33x x -- 的值为零。
八年级数学上册《第十五章 分式》单元测试卷及答案(人教版)
八年级数学上册《第十五章分式》单元测试卷及答案(人教版)班级姓名学号一、单选题1.下列各式中属于最简分式的是()A.2x2x B.a+b C.12x+1D.2x−2x−12.已知分式(x−1)(x+3)(x+1)(x−3)有意义,则x的取值为()A.x≠-1 B.x≠3 C.x≠-1且x≠3 D.x≠-1或x≠3 3.下列约分正确的是()A.x6x2 =x3;B.x+yx+y=0;C.x+yx2+xy =1x;D.2xy24x2y=124.将分式x 2x+y中的x、y的值同时扩大3倍,则扩大后分式的值()A.扩大3倍B.扩大9倍C.保持不变D.缩小到原来的135.如果a+b=2,那么代数式4aa2−b2−4ba2−b2的值是()A.-2 B.2 C.−12D.126.甲、乙两个工程队共同承包某一城市美化工程,已知甲队单独完成这项工程需要30天,若由甲队先做10天,剩下的工程由甲、乙两队合作8天完成.问乙队单独完成这项工程需要多少天?若设乙队单独完成这项工程需要x天.则可列方程为A.1030+8x=1B.10+8+x=30C.1030+8(130+1x)=1D.(1−1030)+x=87.已知关于x的分式方程1−ax2−x +3x−2− 1=0有整数解,且关于x的不等式组{4x≥3(x−1)2x−x−12<a有且只有3个负整数解,则符合条件的所有整数a的个数为( )A.1 B.2 C.3 D.48.为了提升学习兴趣,数学老师采用小组竞赛的方法学习分式,要求每小组的四个同学合作完成一道分式计算题,每人只能在前一人的基础上进行一步计算,再将结果传递给下一人,最后完成计算,每做对一步得10分,从哪一步出错,后面的步骤无论对错,全部不计分.某小组计算过程如下所示,该组最终得分为()x−3 x2−1+1 1−x=x−3(x−1)(x+1)−1(x−1)………………甲=x−3(x−1)(x+1)−x+1(x−1)(x+1)………乙=x−3−(x+1)………………………丙=—2……………………………………丁A.10分B.20分C.30分D.40分二、填空题9.计算:x−yx ÷(x﹣2xy−y2x)= .10.若关于x的分式方程5x =x+2kx(x−1)﹣6x−1有增根,则k的值为11.关于x的分式方程2x+mx−3=3解为正数,则m的取值范围是.12.若关于x的方程3x +6x−1=mx+mx2−x无解,则m=。
八年级数学上册《第十五章 分式》单元检测卷附答案-人教版
八年级数学上册《第十五章 分式》单元检测卷附答案-人教版学校:___________班级:___________姓名:___________考号:___________一、选择题1.下列各式中:−3x ,5xy ,6π,1m ,x−13分式的个数是( )A .2B .3C .4D .52.分式a 2−1a 2−2a+1的值等于0,则a 的值为( )A .0B .1C .-1D .±13.下列变形正确的是( ) A .xy =x+1y+1 B .x 2+y 2x+y =x +yC .−x+y x−y =−1D .xy =yx4.下列运算正确的是( ) A .(ab)2=a 2bB .a 3÷1a =a 4 C .−x−y x−y =−1D .1a +1b =2a+b5.若a ,b 的值均扩大为原来的3倍,则下列分式的值保持不变的是( ) A .a2a+bB .a+32a+bC .a 2a+bD .a−32a−b6.如果a +b =2,那么代数式(a −b 2a)⋅aa−b 的值是( ) A .2B .−2C .1D .−17.李强同学借了一本书,共480页,要在一周借期内读完,当他读了一半时,发现平时每天要多读21页才能在借期内读完.他读了前一半时,平均每天读多少页?如果设读前一半时,平均每天读x 页,则下列方程中,正确的是( ) A .480x+480x−21=7 B .240x+240x+21=7C .240x+240x−21=7D .480x+480x+21=78.如果关于x 的方程2x+m x−1=1的解是正数,那么m 的取值范围是( )A .m >−1B .m >−1且m ≠0C .m <−1D .m <−1且m ≠−29.约分:−18xy27x 2y 2= . 10.计算:(−a 2b )2÷(−a 23b )= .11.若式子x x−3+(x ﹣4)0有意义,则实数x 的取值范围是 . 12.若关于x 的方程2x−1=axx−1+1无解,则a 的值是 . 13.已知1x +1y =3,则2x−xy+2y x−2xy+y = . 三、解答题14.计算:(x−4x−1+x)÷x−2x−1. 15.解方程: (1)2x−2=1x (2)12x−4−xx−2=12 16.先化简,再求值x 2−4x+3÷x−2x 2+6x+9,其中x =−1.17.小李从A 地出发去相距4.5千米的B 地上班,他每天出发的时间都相同.第一天步行去上班结果迟到了5分钟.第二天骑自行车去上班结果早到10分钟.已知骑自行车的速度是步行速度的1.5倍.(1)求小李步行的速度和骑自行车的速度;(2)有一天小李骑自行车出发,出发1.5千米后自行车发生故障.小李立即跑步去上班(耽误时间忽略不计)为了至少提前3分钟到达.则跑步的速度至少为多少千米每小时?18.某班组织登山活动,同学们分甲乙两组从山脚下沿着一条道路同时向山顶进发.设甲乙两组行进同一段路所用的时间之比为2:3. (1)直接写出甲乙两组行进的速度之比.(2)当甲组到达山顶时,乙组行进到山腰A 处,且A 处离出顶的路程尚有1.2千米.试问山脚离山顶的路程有多远.(3)在题(2)的基础上,设乙组从A 处继续登山,甲组再从原路下山,下山速度与上山速度相同,并且在山腰B 处与乙组相遇.请你先根据以上情景提出一个相应的问题,再给予解答.(要求:①问题的提出不得再增添其他条件;②问题的解决必须利用上述情景提供的所有已知条件.)1.A2.C3.C4.B5.A6.A7.B8.D9.−23xy10.−34b11.x≠3且x≠4 12.-1或2 13.514.解:原式=x−4+x(x−1)x−1⋅x−1 x−2=x−4+x2−xx−2=(x−2)(x+2)x−2 =x+2.15.(1)解:2x−1=1x2x=x−1x=−1检验:当x=−1时x(x−1)≠0∴原分式方程的解为x=−1.(2)解:12x−4−xx−2=1212(x−2)−xx−2=121−2x=x−2−2x−x=−2−1−3x=−3x=1检验:当x=1时2(x−2)≠0∴原分式方程的解为x=1.16.解:x2−4x+3÷x−2x2+6x+9=(x+2)(x−2)x+3×(x+3)2x−2=(x+2)(x+3)=x2+5x+6当x=−1时,原式=x2+5x+6=(−1)2+5×(−1)+6=217.(1)解:设小李步行的速度为x千米/小时,则骑自行车的速度为1.5x千米/小时由题意得: 4.5x −560= 4.51.5x+1060解得:x=6经检验,x=6是原方程的解,且符合题意则1.5x=9答:小李步行的速度为6千米/小时,则骑自行车的速度为9千米/小时;(2)解:小李骑自行车出发1.5千米所用的时间为1.5÷9=16(小时)小李每天出发的时间都相同,距离上班的时间为:4.5÷9+10÷60=23(小时)设小李跑步的速度为m千米/小时由题意得1.5+(23−1.59−360)m≥4.5,解得:m≥203答:为了至少提前3分钟到达.则跑步的速度至少为203千米/小时.18.(1)3:2.(2)解:设山脚到山顶的路程为x千米根据题意可列方程:xx−1.2=32解得:x=3.6经检验:x=3.6是原方程的解.答:山脚到山顶的路程为3.6千米.(3)解:可提问题:“B处到山顶的路程是多少千米?”设B处到山顶的路程为y( y>0)千米根据题意得:y1.2−y =32解得:y=0.72经检验:y=0.72是原方程的解.答:B处到山顶的路程是0.72千米.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十五章 分式 单元检测卷得分________ 卷后分________ 评价________一、填空题(每小题3分,共30分)1.下列各式:x3x +1,x +12,x 3+y ,2x -y x +2,x π,其中分式共有(B )A .1个B .2个C .3个D .4个2.(2016·天水)当分式(x -1)(x +2)x 2-1的值为0时,x 的值为(B )A .-1B .-2C .1D .1或23.把分式xyx 2-y2中的x ,y 的值都扩大到原来的2倍,则分式的值(A )A .不变B .扩大到原来的2倍C .扩大到原来的4倍D .缩小到原来的124.(2016·泰州)人体中红细胞的直径约为0.000 007 7 m ,将数0.000 007 7用科学记数法表示为(C ) A .77×10-5 B .0.77×10-7 C .7.7×10-6 D .7.7×10-75.若式子(a -1)0+1a +1有意义,则a 的取值范围是(A )A .a ≠1且a ≠-1B .a ≠1或a ≠-1C .a =1或-1D .a ≠0且a ≠-1 6.下列计算正确的是(B )A .(b a )2=b 2aB .a 2÷a -1=a 3 C .1x +1y =2x +y D .-x -y x -y =-17.(2016·泰安)化简a 2-4a 2+2a +1÷a 2-4a +4(a +1)2-2a -2的结果为(C ) A .a +2a -2 B .a -4a -2 C .a a -2D .a 8.(2016·凉山州)若关于x 的方程3x -2x +1=2+m x +1无解,则m 的值为(A )A .-5B .-8C .-2D .59.(2016·潍坊)若关于x 的方程x +m x -3+3m3-x =3的解为正数,则m 的取值范围是(B )A .m <92B .m <92且m ≠32C .m >-94D .m >-3410.(2016·泰安)某个加工车间共有26名工人,现要加工2 100个A 零件,1 200个B 零件,已知每人每天加工A 零件30个或B 零件20个,问怎样分工才能确保同时完成两种零件的加工任务(每人只能加工一种零件)?设安排x 人加工A 零件,由题意列方程得(A )A .2 10030x = 1 20020(26-x )B .2 100x =1 20026-xC .2 10020x = 1 20030(26-x )D .2 100x ×30=1 20026-x ×20 二、填空题(每小题3分,共24分) 11.计算:2x x +1+2x +1=2.12.(2016·泸州)分式方程4x -3-1x =0的根是x =-1.13.若x +y =1,且x ≠0,则(x +2xy +y 2x )÷x +yx 的值为1.14.已知1a +12b =3,则代数式2a -5ab +4b 4ab -3a -6b 的值为-12.15.将(3m 3n -3)3·(-mn -3)-2的结果化为只含有正整数指数幂的形式为27m 7n3.16.若解分式方程2x x -4-a4-x=0时产生增根,则a =-8.17.观察下列一组数据:32,1,710,917,1126……它们是按一定规律排列的,那么这组数的第n个数是2n +1n 2+1.(n 为正整数)18.若x -1x =4,则x 2x 4+x 2+1=119.三、解答题(共66分)19.(6分)计算:-22+(13)-2-|-9|-(π-2 016)0.解:原式=-4+9-3-1=120.(10分)化简:(1)(2016·聊城)(x +8x 2-4-2x -2)÷x -4x 2-4x +4;解:(1)原式=x +8-2(x +2)(x +2)(x -2)·(x -2)2x -4=-(x -4)(x +2)(x -2)·(x -2)2x -4=-x -2x +2(2)(2016·陕西)(x -5+16x +3)÷x -1x 2-9.原式=(x -1)2x +3(x +3)(x -3)x -1=(x -1)(x -3)=x 2-4x +321.(10分)先化简,再求值:(1)(2016·龙岩)(x +1-3x -1)·x -1x -2,其中x =2+2;原式=x 2-1-3x -1·x -1x -2=(x +2)(x -2)x -1·x -1x -2=x +2,当时2+2时,原式=2+2+2=4+2(2)(3x -1-x -1)÷x -2x 2-2+1,其中x 是不等式组⎩⎪⎨⎪⎧x -3(x -2)≥2 ①,4x -2<5x -1 ②的一个整数解. 原式=3-(x +1)(x -1)x -1·(x -1)2x -2=(x +2)(x -2)x -1·(x -1)2x -2=-(x +2)(x -1)=-x 2-x +2,解不等式组⎩⎨⎧x -3(x -2)≥2 ①,4x -2<5x -1 ②,解不等式组得-1<x ≤2,其整数解为0,1,2,由于x 不能取1和2,所以当x =0时,原式=-0-0+2=222.(10分)解下列方程: (1)(2016·乐山)1x -2-3=x -12-x;解:(1)方程两边同乘x -2,得1-3(x -2)=-(x -1),即1-3x +6=-x +1,整理得:-2x =-6,解得:x =3,检验,当x =3时,x -2≠0,则原方程的解为x =3(2)2x 2-1-1=x1-x. 将原方程两边同乘以(x 2-1),得:2-(x 2-1)=x (x -1))(x +1)1-x,3-x 2=-x(x +1),3-x 2=-x 2-x ,x =-3.经检验,x =-3不是增根;∴原方程的解是x =-323.(8分)甲、乙两位同学同时为校文化艺术节制作彩旗.已知甲每小时比乙多做5面彩旗,甲做60面彩旗与乙做50面彩旗所用时间相等,问:甲、乙每小时各做多少面彩旗?解:设乙每小时做x面彩旗,则甲每小时做(x+5)面彩旗,依题意得60x+5=50x,解得:x=25.经检验:x=25是原方程的解.x+5=25+5=30.故甲每小时做30面彩旗,乙每小时做25面彩旗24.(10分)若1(2n -1)(2n +1)=a 2n -1+b2n +1,对任意自然数n 都成立.(1)求a ,b 的值;(2)计算11×3+13×5+15×7+…+119×21的值.解:(1)1(2n -1)(2n +1)=a 2n -1+b2n +1=a (2n +1)+b (2n -1)(2n -1)(2n +1),可得2n(a +b)+a -b=1,对于任意自然数n ,2n(a +b)+a -b =1都成立,所以有⎩⎨⎧a +b =0,a -b =1,解得⎩⎨⎧a =12,b =-12(2)11×3+13×5+15×7+…+119×21=12(1-13+13-15+…+119-121)=12(1-121)=102125.(12分)山地自行车越来越受到中学生的喜爱,各种品牌相继投放市场,某车行经营的A 型车去年销售总额为5万元,今年每辆销售价比去年降低400元,若卖出的数量相同,销售总额将比去年减少20%.(1)今年A 型车每辆售价多少元?(2)该车行计划新进一批A 型车和新款B 型车共60辆,要使这批车获利不少于33 000元,A 型车至多进多少辆?A ,B 两种型号车的进货和销售价格如表:解:(1)设今年A 型车每辆售价x 元,则去年售价每辆为(x +400)元,由题意,得:50 000x +400=50 000(1-20%)x ,解得:x =1 600.经检验,x =1 600是原方程的根.答:今年A 型车每辆售价1 600元 (2)设今年新进A 型车a 辆,则B 型车(60-a)辆,由题意,得(1 600-1 100)a +(2 000-1 400)(60-a)≥33 000,解得:a ≤30,故要使这批车获利不少于33 000元,A 型车至多进30辆单元清六1.B 2.B 3.A 4.C 5.A 6.B 7.C 8.A 9.B 10.A 11.2 12.x =-1 13.1 14.-1215.27m 7n 3 16.-8 17.2n +1n 2+1 18.119 点拨:(x -1x )2=x 2-2+1x 2=16,即x 2+1x 2=18,x 2x 4+x 2+1=1x 2+1x2+1=119 19.解:原式=-4+9-3-1=1 20.解:(1)原式=x +8-2(x +2)(x +2)(x -2)·(x -2)2x -4=-(x -4)(x +2)(x -2)·(x -2)2x -4=-x -2x +2 (2)原式=(x -1)2x +3(x +3)(x -3)x -1=(x -1)(x -3)=x 2-4x +321.解:(1)原式=x 2-1-3x -1·x -1x -2=(x +2)(x -2)x -1·x -1x -2=x +2,当时2+2时,原式=2+2+2=4+2 (2)原式=3-(x +1)(x -1)x -1·(x -1)2x -2=(x +2)(x -2)x -1·(x -1)2x -2=-(x +2)(x -1)=-x 2-x +2,解不等式组⎩⎨⎧x -3(x -2)≥2 ①,4x -2<5x -1 ②,解不等式组得-1<x ≤2,其整数解为0,1,2,由于x 不能取1和2,所以当x =0时,原式=-0-0+2=222.解:(1)方程两边同乘x -2,得1-3(x -2)=-(x -1),即1-3x +6=-x +1,整理得:-2x =-6,解得:x =3,检验,当x =3时,x -2≠0,则原方程的解为x =3 (2)将原方程两边同乘以(x 2-1),得:2-(x 2-1)=x (x -1))(x +1)1-x,3-x 2=-x(x +1),3-x 2=-x 2-x ,x =-3.经检验,x =-3不是增根;∴原方程的解是x =-323.解:设乙每小时做x 面彩旗,则甲每小时做(x +5)面彩旗,依题意得60x +5=50x ,解得:x =25.经检验:x =25是原方程的解.x +5=25+5=30.故甲每小时做30面彩旗,乙每小时做25面彩旗 24.解:(1)1(2n -1)(2n +1)=a 2n -1+b2n +1=a (2n +1)+b (2n -1)(2n -1)(2n +1),可得2n(a +b)+a-b =1,对于任意自然数n ,2n(a +b)+a -b =1都成立,所以有⎩⎨⎧a +b =0,a -b =1,解得⎩⎨⎧a =12,b =-12(2)11×3+13×5+15×7+…+119×21=12(1-13+13-15+…+119-121)=12(1-121)=1021 25.解:(1)设今年A 型车每辆售价x 元,则去年售价每辆为(x +400)元,由题意,得:50 000x +400=50 000(1-20%)x ,解得:x =1 600.经检验,x =1 600是原方程的根.答:今年A 型车每辆售价1 600元 (2)设今年新进A 型车a 辆,则B 型车(60-a)辆,由题意,得(1 600-1 100)a +(2 000-1 400)(60-a)≥33 000,解得:a ≤30,故要使这批车获利不少于33 000元,A型车至多进30辆。