环形跑道中的相遇追及问题教学内容

合集下载

环形跑道中的相遇追及问题

环形跑道中的相遇追及问题

第九讲:环形跑道问题教学目标:理解环形跑道问题即是一个封闭线路上的追及问题 ,通过对环形跑道问题分析,培养学生的逻辑思维能力教学重点:环形跑道问题中的数量关系及解题思路的分析教学难点:理解环形跑道问题,第一次相遇时,速度快的比速度慢的多跑一圈需要课时:2课时教学内容: ,正确将环形跑道问题转化成追及问题解题关键:环形跑道问题就是封闭路线上的追及问题,关键是要掌握从并行到下次追及的路程差恰好是一圈的长度。

例1:环形跑道的周长是800米,甲、乙两名运动员同时顺时针自起点出发,甲的速度是每分钟400米,乙的速度是每分钟375米,多少分钟后两人第一次相遇甲、乙两名运动员各跑了多少米甲、乙两名运动员各跑了多少圈思路点拨: 在环形跑道上,这是一道封闭路线上的追及问题,第一次相遇时,快的应比慢的多跑一圈,环形跑道的周长就是追及路程,已知了两人的速度,追及时间即是两人相遇的时间。

400-375=25(米) 800÷25=32(分钟)甲:400×32=12800(米) 乙:375×32=12000(米) 甲:12800÷800=16(圈) 乙:16-1=15(圈)例2 :幸福村小学有一条200米长的环形跑道,冬冬和晶晶同时从起跑线起跑,冬冬每秒钟跑6米,晶晶每秒钟跑4米,问冬冬第一次追上晶晶时两人各跑了多少米,第2次追上晶晶时两人各跑了多少圈解:①冬冬第一次追上晶晶所需要的时间:200÷(6-4)=100(秒)②冬冬第一次追上晶晶时他所跑的路程应为:6×100=600(米)③晶晶第一次被追上时所跑的路程:4×100=400(米)④冬冬第二次追上晶晶时所跑的圈数:(600×2)÷200=6(圈)⑤晶晶第2次被追上时所跑的圈数:(400×2)÷200=4(圈)练习:1、一条环形跑道长400米,小青每分钟跑260米,小兰每分钟跑210米,两人同时出发,经过多少分钟两人相遇2、两人在环形跑道上跑步,两人从同一地点出发,小明每秒跑3米,小雅每秒跑4米,反向而行,45秒后两人相遇。

环形跑道中的相遇追及问题

环形跑道中的相遇追及问题

第九讲:环形跑道问题教学目标:理解环形跑道问题即是一个封闭线路上的追及问题,通过对环形跑道问题分析,培养学生的逻辑思维能力教学重点:环形跑道问题中的数量关系及解题思路的分析教学难点:理解环形跑道问题,第一次相遇时,速度快的比速度慢的多跑一圈需要课时:2课时教学内容:,正确将环形跑道问题转化成追及问题解题关键:环形跑道问题就是封闭路线上的追及问题,关键是要掌握从并行到下次追及的路程差恰好是一圈的长度。

例1:环形跑道的周长是800米,甲、乙两名运动员同时顺时针自起点出发,甲的速度是每分钟400米,乙的速度是每分钟375米,多少分钟后两人第一次相遇?甲、乙两名运动员各跑了多少米?甲、乙两名运动员各跑了多少圈?思路点拨:在环形跑道上,这是一道封闭路线上的追及问题,第一次相遇时,快的应比慢的多跑一圈,环形跑道的周长就是追及路程,已知了两人的速度,追及时间即是两人相遇的时间。

400-375=25(米)800÷25=32(分钟)甲:400×32=12800(米)乙:375×32=12000(米)甲:12800÷800=16(圈)乙:16-1=15(圈)例2:幸福村小学有一条200米长的环形跑道,冬冬和晶晶同时从起跑线起跑,冬冬每秒钟跑6米,晶晶每秒钟跑4米,问冬冬第一次追上晶晶时两人各跑了多少米,第2次追上晶晶时两人各跑了多少圈?解:①冬冬第一次追上晶晶所需要的时间:200÷(6-4)=100(秒)②冬冬第一次追上晶晶时他所跑的路程应为:6×100=600(米)③晶晶第一次被追上时所跑的路程:4×100=400(米)④冬冬第二次追上晶晶时所跑的圈数:(600×2)÷200=6(圈)⑤晶晶第2次被追上时所跑的圈数:(400×2)÷200=4(圈)练习:1、一条环形跑道长400米,小青每分钟跑260米,小兰每分钟跑210米,两人同时出发,经过多少分钟两人相遇2、两人在环形跑道上跑步,两人从同一地点出发,小明每秒跑3米,小雅每秒跑4米,反向而行,45秒后两人相遇。

环形跑道中的相遇追及问题教学内容

环形跑道中的相遇追及问题教学内容

环形跑道中的相遇追及问题教学内容第九讲:环形跑道问题教学目标:理解环形跑道问题即是一个封闭线路上的追及问题,通过对环形跑道问题分析,培养学生的逻辑思维能力教学重点:环形跑道问题中的数量关系及解题思路的分析教学难点:理解环形跑道问题,第一次相遇时,速度快的比速度慢的多跑一圈需要课时:2课时教学内容: ,正确将环形跑道问题转化成追及问题解题关键:环形跑道问题就是封闭路线上的追及问题,关键是要掌握从并行到下次追及的路程差恰好是一圈的长度。

例1:环形跑道的周长是800米,甲、乙两名运动员同时顺时针自起点出发,甲的速度是每分钟400米,乙的速度是每分钟375米,多少分钟后两人第一次相遇?甲、乙两名运动员各跑了多少米?甲、乙两名运动员各跑了多少圈?思路点拨: 在环形跑道上,这是一道封闭路线上的追及问题,第一次相遇时,快的应比慢的多跑一圈,环形跑道的周长就是追及路程,已知了两人的速度,追及时间即是两人相遇的时间。

400-375=25(米)800÷25=32(分钟)甲:400×32=12800(米) 乙:375×32=12000(米) 甲:12800÷800=16(圈) 乙:16-1=15(圈)例2 :幸福村小学有一条200米长的环形跑道,冬冬和晶晶同时从起跑线起跑,冬冬每秒钟跑6米,晶晶每秒钟跑4米,问冬冬第一次追上晶晶时两人各跑了多少米,第2次追上晶晶时两人各跑了多少圈?解:①冬冬第一次追上晶晶所需要的时间:200÷(6-4)=100(秒)②冬冬第一次追上晶晶时他所跑的路程应为:6×100=600(米)③晶晶第一次被追上时所跑的路程:4×100=400(米)④冬冬第二次追上晶晶时所跑的圈数:(600×2)÷200=6(圈)⑤晶晶第2次被追上时所跑的圈数:(400×2)÷200=4(圈)练习:1、一条环形跑道长400米,小青每分钟跑260米,小兰每分钟跑210米,两人同时出发,经过多少分钟两人相遇2、两人在环形跑道上跑步,两人从同一地点出发,小明每秒跑3米,小雅每秒跑4米,反向而行,45秒后两人相遇。

环形跑道中的相遇追及问题

环形跑道中的相遇追及问题

第九讲:环形跑道问题教学目标:理解环形跑道问题即是一个封闭线路上的追及问题 ,通过对环形跑道问题分析,培养学生的逻辑思维能力教学重点:环形跑道问题中的数量关系及解题思路的分析教学难点:理解环形跑道问题,第一次相遇时,速度快的比速度慢的多跑一圈需要课时:2课时教学内容: ,正确将环形跑道问题转化成追及问题解题关键:环形跑道问题就是封闭路线上的追及问题,关键是要掌握从并行到下次追及的路程差恰好是一圈的长度。

例1:环形跑道的周长是800米,甲、乙两名运动员同时顺时针自起点出发,甲的速度是每分钟400米,乙的速度是每分钟375米,多少分钟后两人第一次相遇?甲、乙两名运动员各跑了多少米?甲、乙两名运动员各跑了多少圈?思路点拨: 在环形跑道上,这是一道封闭路线上的追及问题,第一次相遇时,快的应比慢的多跑一圈,环形跑道的周长就是追及路程,已知了两人的速度,追及时间即是两人相遇的时间。

400-375=25(米) 800÷25=32(分钟)甲:400×32=12800(米) 乙:375×32=12000(米) 甲:12800÷800=16(圈) 乙:16-1=15(圈)例2 :幸福村小学有一条200米长的环形跑道,冬冬和晶晶同时从起跑线起跑,冬冬每秒钟跑6米,晶晶每秒钟跑4米,问冬冬第一次追上晶晶时两人各跑了多少米,第2次追上晶晶时两人各跑了多少圈?解:①冬冬第一次追上晶晶所需要的时间:200÷(6-4)=100(秒)②冬冬第一次追上晶晶时他所跑的路程应为:6×100=600(米)③晶晶第一次被追上时所跑的路程:4×100=400(米)④冬冬第二次追上晶晶时所跑的圈数:(600×2)÷200=6(圈)⑤晶晶第2次被追上时所跑的圈数:(400×2)÷200=4(圈)练习:1、一条环形跑道长400米,小青每分钟跑260米,小兰每分钟跑210米,两人同时出发,经过多少分钟两人相遇2、两人在环形跑道上跑步,两人从同一地点出发,小明每秒跑3米,小雅每秒跑4米,反向而行,45秒后两人相遇。

环形跑道中的相遇追及问题

环形跑道中的相遇追及问题
第九讲:
环形跑道问题
教学目标:
理解环形跑道问题即是一个封闭线路上的追及问题,通过对环形跑道问题分 析,培养学生的逻辑思维能力
教学重点:
环形跑道问题中的数量关系及解题思路的分析
教学难点:
理解环形跑道问题,第一次相遇时,速度快的比速度慢的多跑一圈需要课 时:2课时
教学内容:
,正确将环形跑道问题转化成追及问题
解题关键:
环形跑道问题就是封闭路线上的追及问题,关键是要掌握从并行到下次追 及的路程差恰好是一圈的长度。
例1:环形跑道的周长是800米,甲、乙两名运动员同时顺时针自起点出 发,甲的速度是每分钟400米,乙的速度是每分钟375米,多少分钟后两人第 一次相遇?甲、乙两名运动员各跑了多少米?甲、乙两名运动员各跑了多少 圈?
5、"光明小学有一条长为200米的环形跑道,小明和小红同时从起跑线起 跑,小明每秒跑6米,小红每秒跑4米,小明第一次追上小红时两人各跑了多 少米?
6、"甲乙两人沿运动场的跑道跑步,甲每分钟跑290米,乙每分钟跑270
米,跑道一圈长400米,如果两人同时从起跑线上#34;林玲在450米长的环形跑道上跑一圈,已知他前一半时间每秒跑5米,后一半时间每秒跑4米,那么他后一半路程跑了多少秒?
作业:
1、两名运动员在湖周围环形跑道上练习长跑,甲每分钟跑250米,乙每分钟 跑200米,两人同时同地同向出发,经过45分钟甲追上乙,如果两人同时同地反向 出发,经过多少分钟两人相遇?
4冬冬第二次追上晶晶时所跑的圈数:
(600X2-20=6(圈)
5晶晶第2次被追上时所跑的圈数:
(400X2-20=4(圈)
练习:
1、一条环形跑道长400米,小青每分钟跑260米,小兰每分钟跑210米, 两人同时出发,经过多少分钟两人相遇

六年级数学精讲 环形跑道问题

六年级数学精讲  环形跑道问题

1、 掌握如下两个关系: (1)环形跑道问题同一地点出发,如果是相向而行,则每合走一圈相遇一次(2)环形跑道问题同一地点出发,如果是同向而行,则每追上一圈相遇一次2、遇见多人多次相遇、追及能够借助线段图进行分析3、用比例解、数论等知识解环形跑道问题本讲中的行程问题是特殊场地行程问题之一。

是多人(一般至少两人)多次相遇或追及的过程解决多人多次相遇与追击问题的关键是看我们是否能够准确的对题目中所描述的每一个行程状态作出正确合理的线段图进行分析。

一、在做出线段图后,反复的在每一段路程上利用:路程和=相遇时间×速度和路程差=追及时间×速度差二、解环形跑道问题的一般方法:环形跑道问题,从同一地点出发,如果是相向而行,则每合走一圈相遇一次;如果是同向而行,则每追上一圈相遇一次.这个等量关系往往成为我们解决问题的关键。

环线型同一出发点直径两端 同向:路程差nS nS +0.5S 相对(反向):路程和 nS nS-0.5S【例 1】 一个圆形操场跑道的周长是500米,两个学生同时同地背向而行.黄莺每分钟走66米,麻雀每分钟走59米.经过几分钟才能相遇?【解析】 黄莺和麻雀每分钟共行6659125+=(千米),那么周长跑道里有几个125米,就需要几分钟,即500(6659)5001254÷+=÷=(分钟).知识精讲 教学目标环形跑道问题和小王同时从同一点出发,同一方向跑步,小张跑多少圈后才能第一次追上小王?【解析】 ⑴两人相遇,也就是合起来跑了一个周长的行程.小张的速度是5001200300÷-=(米/分).⑵在环形的跑道上,小张要追上小王,就是小张比小王多跑一圈(一个周长),因此需要的时间是:500(300200)5÷-=(分).3005500 3⨯÷=(圈).【例 2】 (2008年第八届“春蕾杯”小学数学邀请赛决赛)上海小学有一长300米长的环形跑道,小亚和小胖同时从起跑线起跑,小亚每秒钟跑6米,小胖每秒钟跑4米,(1)小亚第一次追上小胖时两人各跑了多少米?(2)小亚第二次追上小胖两人各跑了多少圈?【解析】 第一次追上时,小亚多跑了一圈,所以需要300(64)150÷-=秒,小亚跑了6150900⨯=(米)。

环形跑道中的相遇问题完整版

环形跑道中的相遇问题完整版

环形跑道中的相遇问题集团标准化办公室:[VV986T-J682P28-JP266L8-68PNN]
例:一条环形跑道长400米,小青每分钟跑260米,小兰每分钟跑210米,两人同时同向出发,经过多长时间两人相遇?
环形跑道中的追击问题:环形跑道一周的长=速度差×追及时间
例:小明和小强两人在周长1200米的环形跑道上同时同地同向而行,小强每分钟跑100米,小明的速度是小强的2倍,经过多少分钟小明能追上小强?
变式训练:
1.甲和乙在300米环形跑道上跑步,两人从同一地点出发,反向而行,15秒后两人相遇。

如果同向而行,30秒后两人相遇,求甲和乙的速度?
2.(小升初)甲乙两人骑自行车从一环形公路的同一地点同时出发,背向而行。

甲行一圈要60分,在出发45分钟后两人相遇。

如果在相遇后甲立即调转方向骑行,那么两人再次相遇(追上)要()分。

3.甲和乙在周长为500米的环形跑道上跑步.甲的速度是200米/分。

(1)甲和乙同时从同一地点出发,反向跑步,1分钟后两人第一次相遇,乙的速度是多少米/分(2)甲和乙同时从同一点出发,同一方向跑步,乙跑多少圈后才能第一次追上甲
4.甲与乙绕一周长400米的环形跑道练习跑步。

在同一地点若逆向跑,40秒后相遇;若同向跑,200秒后甲首次追上乙。

现在甲距乙150米,若甲追乙,几分钟后两人第三次相遇。

环形跑道问题PPT课件

环形跑道问题PPT课件
甲总路程+乙总路程=跑道周长
同样,我们可以把他们相遇的地点作为起点来看,第二次相遇的 时候,甲乙共同又跑了一圈,甲和乙总共跑了两圈,有:
甲总路程+乙总路程=跑道周长*2 ……从而我们可以发现,每相遇一次,甲乙就共同多跑了一圈, 因此,相遇的次数就等于共同跑的圈数。
甲总路程+乙总路程=跑道周长*N
第5页/共8页
路程 速度 时间
小丽 120x 120
x
小杰 320x 320
x
小丽每分钟走120米, 两人同时由同一点同向 出发,问几分钟后,小
小杰 小丽
丽与小杰第一次相遇?
小杰跑的路程―小丽走的路程=环形跑道一周的长
解:设x分钟后,小丽与小杰第一次相遇. 320x―120x=400 解得:x=2
答:2分钟后,小丽与小杰第一次相遇。
(2)这次比赛后,小明疑惑的问爷爷:爷爷,要是我们向相 反的方向跑,没有表,你能知道我们跑了多长时间吗?爷爷笑 着说:我们就按照平时跑的速度,只要我知道我们相遇的次数, 我就知道我们能跑多少时间……你能帮小明解决这个疑惑么?
第6页/共8页
环形跑道问题——习题巩固
解:(1)设小明第三次追上爷爷时,总共用的时间为X分钟 300X-200X=400×3 X=12
二、环形跑道上的相遇问题
背向而行,在跑道的某处相遇,以相同的方式在跑道上多 次与乙相遇。我们把这种问题称为环形跑道上的相遇问题
第1页/共8页
例题 变招


例2、如下图:小杰、小 丽分别在400米环形跑 道上练习跑步与竞走, 小杰每分钟跑320米,
如果设x分钟后,小丽与小杰第一次相遇,请试着 完成下表:
第2页/共8页
例题 变招

环形跑道问题

环形跑道问题

路程和=环形跑道周长 即:每相遇一次,合走一圈
课堂复习导入:
追及 追及时间=路程差÷速度差
联旧知学新知: 直线上的追及&环形跑道的追及
乙 甲
同向出发 追及问题
路程差=环形跑道周长 即:每追上一次,多走一圈
大问题二:怎么画示意图分析数量关系?
爸爸和修远同时从同一地点出发,沿相同方向在环形跑道上跑步,
环形追及问题
同向为路程差 路程差=环形跑道周长 即:每追上一次,多走一圈
解题思路: 1.审题,判断是相遇或追及? 2.画示意图(如左图) 3.根据关系式解答
同时同地出发的多次相遇问题 n次相遇,路程和为跑道n圈, 时间为一次相遇时间×n
大问题二:怎么画示意图来分析数量关系?
环形相遇问题: 1.审题,判断是否为相遇(关键词背向出发) 2.画圆形示意跑道,选定出发点,标出方向箭头、两车(人)的速度等 3.分析相遇路程,几次相遇几圈周长? 4.根据关系式解答:相遇路程=速度和×相遇时间
环形追及问题: 1.审题,判断是否为追及(关键词同向出发) 2.画圆形示意跑道,选定出发点,标出方向箭头、两车(人)的速度等 3.分析追及路程,同地出发,追上几次多跑几圈? 4.根据关系式解答:追及路程=速度差×追及时间
环形跑道问题
1 知识结构
条件:同时同地出发(反向)
相遇问题
路程和:每相遇一次,合走一圈 同时同地出发,第n次相遇:
周期性
每次相遇路程相等,每次相

相遇时间=一圈长度÷速度和
遇时间相等。

条件:同时同地出发(同向)

追及问题

路程差:每追上一次,多走一圈 周期性

追及时间=一圈长度÷速度差

通用版小学五年级奥数《环形跑道问题》讲义(含答案)

通用版小学五年级奥数《环形跑道问题》讲义(含答案)

本讲中的行程问题是特殊场地行程问题之一。

是多人(一般至少两人)多次相遇或追及的过程解决多人多次相遇与追击问题的关键是看我们是否能够准确的对题目中所描述的每一个行程状态作出正确合理的线段图进行分析。

一、在做出线段图后,反复的在每一段路程上利用:路程和=相遇时间×速度和路程差=追及时间×速度差二、解环形跑道问题的一般方法:环形跑道问题,从同一地点出发,如果是相向而行,则每合走一圈相遇一次;如果是同向而行,则每追上一圈相遇一次.这个等量关系往往成为我们解决问题的关键。

【例 1】上海小学有一长300米长的环形跑道,小亚和小胖同时从起跑线起跑,小亚每秒钟跑6米,小胖每秒钟跑4米,(1)小亚第一次追上小胖时两人各跑了多少米?(2)小亚第二次追上小胖两人各跑了多少圈?【考点】行程问题之环形跑道 【难度】☆☆ 【题型】解答【解析】 第一次追上时,小亚多跑了一圈,所以需要300(64)150÷-=秒,小亚跑了6150900⨯=(米)。

小胖跑了4150600⨯=(米);第一次追上时,小胖跑了2圈,小亚跑了3圈,所以第二次追上时,例题精讲知识框架环形跑道小胖跑4圈,小亚跑6圈。

【答案】小胖跑4圈,小亚跑6圈【巩固】幸福村小学有一条200米长的环形跑道,冬冬和晶晶同时从起跑线起跑,冬冬每秒钟跑6米,晶晶每秒钟跑4米,问冬冬第一次追上晶晶时两人各跑了多少米,第2次追上晶晶时两人各跑了多少圈?【考点】行程问题之环形跑道【难度】☆☆【题型】解答【解析】这是一道封闭路线上的追及问题,冬冬与晶晶两人同时同地起跑,方向一致.因此,当冬冬第一次追上晶晶时,他比晶晶多跑的路程恰是环形跑道的一个周长(200米),又知道了冬冬和晶晶的速度,于是,根据追及问题的基本关系就可求出追及时间以及他们各自所走的路程.①冬冬第一次追上晶晶所需要的时间:20064100()(秒)÷-=②冬冬第一次追上晶晶时他所跑的路程应为:6100600⨯=(米)③晶晶第一次被追上时所跑的路程:4100400⨯=(米)④冬冬第二次追上晶晶时所跑的圈数:60022006()(圈)⨯÷=⑤晶晶第2次被追上时所跑的圈数:40022004()(圈)⨯÷=【答案】4圈【例 2】两名运动员在湖的周围环形道上练习长跑.甲每分钟跑250米,乙每分钟跑200米,两人同时同地同向出发,经过45分钟甲追上乙;如果两人同时同地反向出发,经过多少分钟两人相遇?【考点】行程问题之环形跑道【难度】☆☆【题型】解答【解析】在封闭的环形道上同向运动属追及问题,反向运动属相遇问题.同地出发,其实追及路程或相隔距离就是环形道一周的长.这道题的解题关键就是先求出环形道一周的长度.环形道一周的长度可根据两人同向出发,45分钟后甲追上乙,由追及问题,两人速度差为:25020050-=(米/分),所以路程差为:50452250⨯=(米),即环形道一圈的长度为2250米.所以反向出发的相遇时间为:22502502005()(分钟).÷+=【答案】5分钟【巩固】在400米的环形跑道上,甲、乙两人同时同地起跑,如果同向而行3分20秒相遇,如果背向而行40秒相遇,已知甲比乙快,求甲、乙的速度各是多少?【考点】行程问题之环形跑道【难度】☆☆【题型】解答【解析】甲乙的速度和为:4004010÷=(米/秒),甲乙的速度差为:4002002÷=(米/秒),甲的速度为:-÷=()(米/秒).+÷=10226()(米/秒),乙的速度为:10224【答案】4米/秒【例 3】周老师和王老师沿着学校的环形林荫道散步,王老师每分钟走55米,周老师每分钟走65米。

小四数学第10讲:环形跑道(教师版)

小四数学第10讲:环形跑道(教师版)

第10讲环形跑道图形推理1.环形跑道——追及问题。

同时同地同向而行,甲、乙双方在同一环形跑道,以不同的速度,乙何时能够追上甲。

(甲的速度<乙的速度)等量关系:追上1次,甲所用时间=乙所用时间;甲的路程+1个环形跑道的长度=乙的路程。

追上n次,甲所用时间=乙所用时间;甲的路程+n个环形跑道的长度=乙的路程。

2.环形跑道——相遇问题。

同时同地相向而行,甲、乙双方在同一环形跑道,以一定的速度,甲、乙双方何时相遇。

(甲、乙速度可以相同,也可以不同)等量关系:相遇1次,甲所用时间=乙所用时间;甲的路程+乙的路程=1个环形跑道的长度。

相遇n次,甲所用时间=乙所用时间;甲的路程+乙的路程=n个环形跑道的长度。

3.经典公式。

路程=速度×时间同时同地出发:反向每相遇一次,合走一圈路程和=速度和×相遇时间同向每追上一次,多走一圈路程差=速度差×追及时间第一,环形跑道问题中,对速度、时间、路程之间关系的处理;第二,多次追及、相遇问题的处理;第三,不同地点出发问题的处理;第四,利用线段图加强对问题的理解。

在《四驱兄弟》中,星马烈和星马豪两兄弟分别从土屋博士那里得到一辆极光1号赛车,和一辆极光2号赛车,极光1号赛车的速度是20米/秒,极光2号赛车的速度是18米/秒。

他们准备在一个长度为1000米的环形跑道上进行比赛,他们同时同地出发,极光1号多久之后能够再次遇上极光2号?【解析】极光1号的速度是20米/秒,极光2号的速度是18米/秒,极光1号每秒钟比极光2号多跑2米,因为赛道长是1000米,所以当极光1号比极光2号多跑1000米时,便可以从后面追上极光2号。

因为1000米里面有多少个2米,就是需要多少时间。

【答案】1000÷(20-18)=500(秒)。

例1.一个圆形跑道的周长是500米,两个学生同时同地背向而行,黄英每分钟走66米,欣欣每分钟走59米,经过几分钟才能相遇?考点:环形跑道相遇问题分析:此题属于环形跑道问题中的相遇问题,同时同地背向而行,也可以理解为她们二人在一条长为500米的线段两端,相向而行,用路程除以她们的速度之和就是所需要的时间。

环形跑道中的相遇追及问题

环形跑道中的相遇追及问题

第九讲:环形跑道问题教学目标:理解环形跑道问题即是一个封闭线路上的追及问题 ,通过对环形跑道问题分析,培养学生的逻辑思维能力教学重点:环形跑道问题中的数量关系及解题思路的分析教学难点:理解环形跑道问题,第一次相遇时,速度快的比速度慢的多跑一圈需要课时:2课时教学内容: ,正确将环形跑道问题转化成追及问题解题关键:环形跑道问题就是封闭路线上的追及问题,关键是要掌握从并行到下次追及的路程差恰好是一圈的长度。

例1:环形跑道的周长是800米,甲、乙两名运动员同时顺时针自起点出发,甲的速度是每分钟400米,乙的速度是每分钟375米,多少分钟后两人第一次相遇?甲、乙两名运动员各跑了多少米?甲、乙两名运动员各跑了多少圈?思路点拨: 在环形跑道上,这是一道封闭路线上的追及问题,第一次相遇时,快的应比慢的多跑一圈,环形跑道的周长就是追及路程,已知了两人的速度,追及时间即是两人相遇的时间。

400-375=25(米) 800÷25=32(分钟)甲:400×32=12800(米) 乙:375×32=12000(米) 甲:12800÷800=16(圈)乙:16-1=15(圈)例2 :幸福村小学有一条200米长的环形跑道,冬冬和晶晶同时从起跑线起跑,冬冬每秒钟跑6米,晶晶每秒钟跑4米,问冬冬第一次追上晶晶时两人各跑了多少米,第2次追上晶晶时两人各跑了多少圈?解:①冬冬第一次追上晶晶所需要的时间:200÷(6-4)=100(秒)②冬冬第一次追上晶晶时他所跑的路程应为:6×100=600(米)③晶晶第一次被追上时所跑的路程:4×100=400(米)④冬冬第二次追上晶晶时所跑的圈数:(600×2)÷200=6(圈)⑤晶晶第2次被追上时所跑的圈数:(400×2)÷200=4(圈)练习:1、一条环形跑道长400米,小青每分钟跑260米,小兰每分钟跑210米,两人同时出发,经过多少分钟两人相遇2、两人在环形跑道上跑步,两人从同一地点出发,小明每秒跑3米,小雅每秒跑4米,反向而行,45秒后两人相遇。

环形跑道中的相遇追及问题 (2)

环形跑道中的相遇追及问题 (2)

第九讲:环形跑道问题教学目标:理解环形跑道问题即是一个封闭线路上的追及问题,通过对环形跑道问题分析,培养学生的逻辑思维能力教学重点:环形跑道问题中的数量关系及解题思路的分析教学难点:理解环形跑道问题,第一次相遇时,速度快的比速度慢的多跑一圈需要课时:2课时教学内容:,正确将环形跑道问题转化成追及问题解题关键:环形跑道问题就是封闭路线上的追及问题,关键是要掌握从并行到下次追及的路程差恰好是一圈的长度。

例1:环形跑道的周长是800米,甲、乙两名运动员同时顺时针自起点出发,甲的速度是每分钟400米,乙的速度是每分钟375米,多少分钟后两人第一次相遇?甲、乙两名运动员各跑了多少米?甲、乙两名运动员各跑了多少圈?思路点拨:在环形跑道上,这是一道封闭路线上的追及问题,第一次相遇时,快的应比慢的多跑一圈,环形跑道的周长就是追及路程,已知了两人的速度,追及时间即是两人相遇的时间。

400-375=25(米)800÷25=32(分钟)甲:400×32=12800(米)乙:375×32=12000(米)甲:12800÷800=16(圈)乙:16-1=15(圈)例2:幸福村小学有一条200米长的环形跑道,冬冬和晶晶同时从起跑线起跑,冬冬每秒钟跑6米,晶晶每秒钟跑4米,问冬冬第一次追上晶晶时两人各跑了多少米,第2次追上晶晶时两人各跑了多少圈?解:①冬冬第一次追上晶晶所需要的时间:200÷(6-4)=100(秒)②冬冬第一次追上晶晶时他所跑的路程应为:6×100=600(米)③晶晶第一次被追上时所跑的路程:4×100=400(米)④冬冬第二次追上晶晶时所跑的圈数:(600×2)÷200=6(圈)⑤晶晶第2次被追上时所跑的圈数:(400×2)÷200=4(圈)练习:1、一条环形跑道长400米,小青每分钟跑260米,小兰每分钟跑210米,两人同时出发,经过多少分钟两人相遇2、两人在环形跑道上跑步,两人从同一地点出发,小明每秒跑3米,小雅每秒跑4米,反向而行,45秒后两人相遇。

环形追及相遇问题

环形追及相遇问题

环形追及相遇问题在环形运动中,常常会遇到追及和相遇的问题。

这类问题涉及到时间、距离和速度的关系,以及相对速度和相对距离的问题。

下面将分别对这些问题进行详细讨论。

1.相遇问题在环形运动中,两个物体或点相遇时,它们在相同时间点处于相同的位置。

这类问题通常需要考虑两个物体的相对速度和相对距离。

2.追及问题在环形运动中,一个物体或点在另一个物体或点之后运动,并尝试追上它。

这类问题需要考虑两个物体的相对速度和相对距离,以及它们之间的时间差。

3.多次相遇和追及问题在环形运动中,两个物体或点可能会多次相遇或追及。

这类问题需要考虑到每次相遇或追及的时间、距离和速度的关系,以及相对速度和相对距离的变化。

4.复杂环形路径问题在复杂环形路径问题中,物体或点可能沿着复杂的路径移动。

这类问题需要考虑物体的运动轨迹、速度和加速度,以及路径上的不同点之间的相对距离和相对速度。

5.相对速度和相对距离问题在环形运动中,相对速度和相对距离是解决追及和相遇问题的关键。

物体或点的相对速度取决于它们的速度差和相对位置,相对距离则是它们在相同时间点所行进的路程之差。

6.时间、距离和速度的关系问题在环形运动中,时间、距离和速度之间存在密切的关系。

物体或点在相同时间内行进的距离越远,其速度越快。

因此,解决环形追及和相遇问题时,需要考虑到时间、距离和速度之间的关系。

7.直线和圆相结合的问题在某些环形追及和相遇问题中,直线和圆相结合。

这类问题需要考虑直线和圆之间的联系,例如切线、割线等概念。

通过利用圆的性质和直线的性质来解决这类问题。

8.多边形路径问题在某些环形追及和相遇问题中,物体或点沿着多边形的路径移动。

这类问题需要考虑多边形的性质、边长、角度等因素,以及物体或点在每个顶点的速度和加速度变化。

9.复杂的相对速度变化问题在某些环形追及和相遇问题中,物体的相对速度随着时间发生变化。

这类问题需要考虑物体的加速度、速度差和相对位置的变化,以及它们之间的时间差。

环形跑道问题

环形跑道问题

环形跑道问题一、学习目标1.认识环形跑道问题;2.会用环形跑道模型解决实际问题.二、知识点讲解认识环形跑道问题环形跑道问题定义环形跑道问题特殊场地行程问题之一.是多人(一般至少两人)多次相遇或追及的过程解决多人多次相遇与追击问题的关键是看我们是否能够准确的对题目中所描述的每一个行程状态作出正确合理的线段图进行分析.环形跑道问题的含义1.从同一地点出发,如果是相向而行,则每相遇一次合走一圈(每隔第一次相遇时间就相遇一次);第几次相遇就合走几圈;2.从同一地点出发,如果是同向而行,则每多跑一圈就追上一次(每隔第一次追及时间就追上一次),第几次追上就多跑几圈.环形跑道问题的等量关系1.同向而行的等量关系:乙程-甲程=跑道长;2.背向而行的等量关系:乙程+甲程=跑道长.在做出线段图后,反复的在每一段路程上利用路程和=相遇时间×速度和路程差=追及时间×速度差解环形跑道问题的一般方法环形跑道问题,从同一地点出发,如果是相向而行,则每合走一圈相遇一次;如果是同向而行,则每追上一圈相遇一次.这个等量关系往往成为我们解决问题的关键.解题方法1.审题:①看题目有几个人或物参与;②看题目时间:“再过多长时间”就是从此时开始计时,“多长时间后"就是从开始计时;③看地点是指是同地还是两地甚至更多.④看方向是同向、背向还是相向;⑤看事件指的是结果是相遇还是追及,相遇问题中一个重要的环节是确定相遇地点,准确找到相遇地点对我们解题有很大帮助.一些是题目中直接给出在哪里相遇,有些则需要我们自己根据两人速度来判断.追及问题中一个重要环节就是确定追上地点,从而找到路程差,比如“用10秒钟快比慢多跑100米"我们立刻知道快慢的速度差,这个是追及问题经常用到的,通过路程差求速度差;2.简单题利用公式;3.复杂题,尤其是多人多次相遇,一定要画路径图,即怎么走的线路画出来.相遇问题就找路程和,追及问题就找路程差.典型例题、认识环形跑道问题1.题干:在300米的环形跑道上,如果同向而跑快者2分30秒追上慢者,如果背向而跑两者半分钟相遇,求两人的速度.个人分析:环形跑道问题的解题思路是_______.答案:解:注意如果题目没有第几次追上或相遇,都默认为是第一次追上或相遇.“第几次追上就多跑几圈”,快者第一次追上慢者,就是比慢者多跑一圈,即用2分30秒比慢者多跑300米,那么快比慢1秒钟多跑(速度差):300÷150=2米“第几次相遇就合跑几圈”,第一次相遇就合跑一圈,即用半分钟合跑300米,1秒钟两人合跑(速度和):300÷30=10米慢者:(10-2)÷2=4米/秒快者:4+2=6米/秒答:快者的速度是6米/秒;慢者的速度是4米/秒.解题方法1.审题:①看题目有几个人或物参与;②看题目时间:“再过多长时间”就是从此时开始计时,“多长时间后"就是从开始计时;③看地点是指是同地还是两地甚至更多.④看方向是同向、背向还是相向;⑤看事件指的是结果是相遇还是追及,相遇问题中一个重要的环节是确定相遇地点,准确找到相遇地点对我们解题有很大帮助.一些是题目中直接给出在哪里相遇,有些则需要我们自己根据两人速度来判断.追及问题中一个重要环节就是确定追上地点,从而找到路程差,比如“用10秒钟快比慢多跑100米"我们立刻知道快慢的速度差,这个是追及问题经常用到的,通过路程差求速度差.错因分析:______A.没有理解清楚定义B.看错条件了C.题目没读懂改正方法:___________________1.题干:甲、乙两人同时从400米的环形路跑道的一点A背向出发,8分钟后两人第三次相遇.已知甲每秒钟比乙每秒钟多行0.1米,两人第三次相遇的地点与A点沿跑道上的最短距离是?个人分析:环形跑道问题的解题思路是_______.答案:解:甲、乙两人三次相遇,共行了三个全程即是3╳400=1200(米)根据题意,甲乙两人的速度和为1200/8=150(米/分)因为甲乙两人的每分速度差为0.1╳60=6(米/分)所以甲的速度为(150+6)/2=78(米/分)甲8分钟行的路程为78╳8=624(米)离开原点624-400=224米因为224>400/2所以400-224=176(米)答:两人第三次相遇的地点与A点沿跑道上的最短距离是176米.解题方法1.审题:①看题目有几个人或物参与;②看题目时间:“再过多长时间”就是从此时开始计时,“多长时间后"就是从开始计时;③看地点是指是同地还是两地甚至更多.④看方向是同向、背向还是相向;⑤看事件指的是结果是相遇还是追及,相遇问题中一个重要的环节是确定相遇地点,准确找到相遇地点对我们解题有很大帮助.一些是题目中直接给出在哪里相遇,有些则需要我们自己根据两人速度来判断.追及问题中一个重要环节就是确定追上地点,从而找到路程差,比如“用10秒钟快比慢多跑100米"我们立刻知道快慢的速度差,这个是追及问题经常用到的,通过路程差求速度差.错因分析:______A.没有理解清楚定义B.看错条件了C.题目没读懂改正方法:___________________环形跑道问题分类同一地点出发我们在同一地点出发的基础上再根据运动方向可分为:同向和反向.1.同向如果出发地相同,若“同向”,快车从一开始就将会领先与慢车,直到快车比慢车多跑一圈时,他们才会产生出发后的第一次相遇.此时他们路程间的等量关系式为:一个周长=快车的路程-慢车的路程在相遇点再次出发,则又重复一开始的“同时同地同向而行”,唯一不同的是再次相遇地点不同罢了(出发地点不同).所以从第一次相遇到第二次相遇快车依然要比慢车多跑一圈.第二次相遇时快车需要比慢车多跑了两个周长.这样一直下去,我们可以得到一个等量关系式:快慢车的路程差=周长的n倍(n为相遇的次数)2.反向如果出发地相同,若“反向”当快车与慢车相遇时,快车与慢车正好共行完一个周长.此时他们路程间的等量关系式为:一个周长=快车的路程+慢车的路程.模仿“同向”的思路,将相遇点当作再次出发的起点.一直重复下去,我们可以推得一个等量关系式:快慢车的路程和=周长的n倍(n为相遇的次数)不同地点出发如果出发点不同,则需要通过观察示意图再进行判断.但是这一个不同也仅仅是在分析第一次相遇时有所区别.一旦相遇后,后面的过程则又可以视作同一地点出发.小结在环形跑道问题中,我们最好用不同颜色的笔画出各自行进的轨迹.1.环形跑道问题按出发地点分可分为:相同地点出发与不同地点出发2.同一地点出发,我们会得到一个数量关系:快慢车的路程差=周长的n倍(n为相遇的次数)反向我们会得到另外一个数量关系:快慢车的路程和=周长的n倍(n为相遇的次数)3.环形跑道问题的关键是通过示意图理解题目意思.典型例题、环形跑道应用题1.题干:绕湖环行一周是2700米,小张、小王、小李从同一地点出发绕湖行走,小张与小王同向,小李沿他们的反方向行走.小张的速度是135米/分,小王的速度是90米/分,小李的速度是45米/分.当小张和小李相遇后,小张马上转身反向而行,不久于小王相遇,问出发后多少分钟小张与小王相遇?个人分析:环形跑道应用题解题思路是_______.答案:解:先算出小张与小李的相遇时间:2700÷(135+45)=15(分钟)此刻小张与小王的路程差:(135-90)×15=675(米)张、王的路程差就是转身后他们的路程和:675÷(135+90)=3(分钟)3+15=18(分钟)答:出发18分钟后小张与小王相遇.解析:同一地点出发我们在同一地点出发的基础上再根据运动方向可分为:同向和反向.1.同向如果出发地相同,若“同向”,快车从一开始就将会领先与慢车,直到快车比慢车多跑一圈时,他们才会产生出发后的第一次相遇.此时他们路程间的等量关系式为:一个周长=快车的路程-慢车的路程在相遇点再次出发,则又重复一开始的“同时同地同向而行”,唯一不同的是再次相遇地点不同罢了(出发地点不同).所以从第一次相遇到第二次相遇快车依然要比慢车多跑一圈.第二次相遇时快车需要比慢车多跑了两个周长.这样一直下去,我们可以得到一个等量关系式:快慢车的路程差=周长的n倍(n为相遇的次数)2.反向如果出发地相同,若“反向”当快车与慢车相遇时,快车与慢车正好共行完一个周长.此时他们路程间的等量关系式为:一个周长=快车的路程+慢车的路程.模仿“同向”的思路,将相遇点当作再次出发的起点.一直重复下去,我们可以推得一个等量关系式:快慢车的路程和=周长的n倍(n为相遇的次数)错因分析:______A.没有理解清楚定义B.看错条件了C.题目没读懂改正方法:___________________练习1.题干:一个运动场的环形跑道,周长500米,甲、乙两人同时同地出发,如果相背而行,5分钟相遇一次,如果同向而行,50分钟相遇一次,甲比乙走得快,问甲、乙两人每分钟各走多少米?个人分析:环形跑道问题解题方法是_______.答案:解:背向:路程和=1个周长.同向:路程差=1个周长.在借由路程和与路程差的公式得到速度和:500÷5=100(米/分)速度差:500÷50=10(米/分)在借由和差问题的公式较大数=(和+差)÷2较小数=(和-差)÷2题中已告知甲比乙走快,所以甲的速度:(100+10)÷2=55(米/分)乙的速度:(100-10)÷2=45(米/分)答:甲每分钟走55米,乙每分钟走45米.解析:根据题干意思以及一元一次方程的定义来计算.错因分析:______A.没有理解清楚定义B.看错条件了C.题目没读懂改正方法:___________________。

环形跑道教案 Microsoft Word 文档

环形跑道教案 Microsoft Word 文档

环形跑道上的追及与相遇教学目标:1.让学生进一步认识相遇问题求路程应用题的数量关系,能正确解答相遇问题求路程应用题及类似的工作问题的应用题。

2.帮助学生认识一些稍复杂的相遇问题求路程应用题的数量关系,并能正确解答,提高学生解答应用题的能力。

3.让学生明白相遇问题和追及问题是行程问题的两个重要的类型。

相遇问题是指两个物体在行进过程中相向而行,然后在途中某点相遇的行程问题。

其主要数量关系式为:总路程=速度和×相遇时间追及问题是指两个物体在行进过程中同向而行,快行者从后面追上慢行者的行程问题。

其主要数量关系式为:路程差=速度差×追及时间教学过程:一、引入:环形跑道的周长是400米,如果甲、乙两人从同一起点同时背向出发,2分钟后第一次相遇,已知甲的速度是120米/分钟,则乙的速度是多少?他们两人共跑了多少米?相遇问题:(从同一地点背向而行,直至相遇)速度和×相遇时间=环形跑道的周长。

如果甲、乙两人从同一起点同时同向出发,则几分钟第一次相遇?追及问题:(从同一地点同向而行,直至又追上)速度差×追及时间=环形跑道的周长。

二、新授:(第一小组):我昨天在操场上跑步的时候想到这样一个问题,现在还没解出来,请同学们和我一起来解好吗?(出示ppt)甲、乙两人同时从400米的环形路跑道的一点A背向出发,8分钟后两人第三次相遇。

已知甲每秒钟比乙每秒钟多行0.1米,两人第三次相遇的地点与A 点沿跑道上的最短距离是()。

A.166米B.176米C.224米D.234米(下面同学分小组解答,并派代表来板演):可能出现的结果有:第一种方法:甲、乙两人三次相遇,共行了三个全程,即是3×400=1200(米)。

根据题意,甲乙两人的速度和为1200÷8=150(米/分),因为甲乙两人的每分速度差为0.1×60=6(米/分),所以甲的速度为(150+6)÷2=78(米/分),甲8分钟行的路程为78×8=624(米),离开原点624-400=224米,因为224>400/2,所以400-224=176(米)即为答案。

第七讲 环形跑道问题

第七讲 环形跑道问题

第七讲环形跑道问题暑期我们已学过基本的相遇、追及问题,并在火车问题那一讲也进一步掌握了相遇和追及的基本公式。

今天,在此基础之上,我们继续学习这些基本公式在环形跑道问题上的应用。

一、知识点总结1、相遇问题:题型特点:甲、乙两人同时从同地反向出发。

解题规律:两人相遇时一起走一圈(跑道周长)。

之后每见面一次,就一起走1圈;见面n次,两人一起走n个周长。

2、追及问题:题型特点:甲、乙两人同时从同地同向出发。

解题规律:开始出发时由于速度不同两人之间的距离会越来越远,之后快的会追上慢的,此时快的人比慢的人多走1圈(路程差为跑道周长)。

之后每追上一次,就多走1圈;追上n次,快的就比慢的多走n个周长。

3、本讲需要处理的问题:a、环形跑道中速度、时间、路程之间的关系处理。

(例1、2、3)b、多次追及问题的处理。

(例4、5)c、不同地点出发的追及问题。

(例6)二、例题分析速度、时间、路程之间的关系例1、分析:跑道周长为300米。

根据环形跑道中相遇和追及的基本解题规律我们可以知道:“每2分30秒追上”可求出两人的速度差;“每半分钟相遇”可求出两人的速度和。

最后可根据速度的和差问题求出各自速度。

解答:速度差:300÷150=2(米/秒)速度和:300÷30=10(米/秒)甲速:(10+2)÷2=6(米/秒)乙速:(10-2)÷2=4(米/秒)提高练习:(1)在环形跑道上,两人在一处背靠背站好,然后开始跑,每隔4分钟相遇一次;如果两人从同地同向同时跑,每隔20分钟追上一次,已知环形跑道的周长是1600米,那么两人的速度分别是多少?提示:同例1.答案:240、160(2)在300米的环形跑道上,甲、乙两人同时同地起跑,如果同向而跑75秒可追上;如果背向而跑半分钟相遇,求两人的速度各是多少?提示:同例1.答案:7、3(3)两名运动员在湖周围的环形跑道上练习长跑,涛涛每分钟跑250米,昊昊每分钟跑200 米,两人同时同地同向出发,经过45分钟涛涛追上昊昊;如果两人同时同地反向出发,经过多少分钟两人相遇?提示:想求出跑道周长即可。

五年级 数学 人教版 追及问题和环形跑道【精编版】

五年级 数学 人教版 追及问题和环形跑道【精编版】

追及问题和环形跑道问题辅导教案第6讲追及问题和环形跑道问题☆☆☆重点讲解知识点一、追及问题公式:路程差=速度差×追及时间.【例1】下午放学时,弟弟以每分钟40米的速度步行回家.5分钟后,哥哥以每分钟60米的速度也从学校步行回家,哥哥出发后,经过几分钟可以追上弟弟?(假定从学校到家有足够远,即哥哥追上弟弟时,仍没有回到家).【例2】甲、乙二人练习跑步,若甲让乙先跑10米,则甲跑5秒钟可追上乙;若甲让乙先跑2秒钟,则甲跑4秒钟就能追上乙.问:甲、乙二人的速度各是多少?【巩固提升】1、某人沿着一条与铁路平行的笔直的小路由西向东行走,这时有一列长520米的火车从背后开来,此人在行进中测出整列火车通过的时间为42秒,而在这段时间内,他行走了68米,则这列火车的速度是多少?2、幸福村小学有一条200米长的环形跑道,冬冬和晶晶同时从起跑线起跑,冬冬每秒钟跑6米,晶晶每秒钟跑4米,问冬冬第一次追上晶晶时两人各跑了多少米,第2次追上晶晶时两人各跑了多少圈?知识点二、环形跑道经典公式:路程=速度×时间同一地点出发:反向每相遇一次,合走一圈路程和=速度和×相遇时间同向每追上一次,多走一圈路程差=速度差×追及时间1、基础环形跑道【例1】5、甲、乙两架飞机同时从一个机场起飞,向同一方向飞行,甲机每小时行300千米,乙机每小时行340千米,飞行4小时后它们相隔多少千米?这时候甲机提高速度用2小时追上乙机,甲机每小时要飞行多少千米?【例2】佳佳和海海在周长为400米的环形跑道上进行万米长跑。

佳佳的速度是40米/分,海海的速度是60米/分。

⑴佳和海海同时从同一地点出发反向跑步,两人几分钟后第一次相遇?再过几分钟后两人第二次相遇?⑵佳佳和海海同时从同一地点出发,同一方向跑步,海海跑几分钟能第一次追上佳佳?再过几分钟能第二次追上佳佳?【例2】在300米的环形跑道上,佳佳和海海同时同地起跑,如果同向而跑2分30秒相遇,如果背向而跑则半分钟相遇,求两人的速度各是多少?【变式练习】1、佳佳、海海两人骑自行车从环形公路上同一地点同时出发,背向而行。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第九讲:环形跑道问题
教学目标:理解环形跑道问题即是一个封闭线路上的追及问题 ,通过对环形跑道
问题分析,培养学生的逻辑思维能力
教学重点:环形跑道问题中的数量关系及解题思路的分析
教学难点:理解环形跑道问题,第一次相遇时,速度快的比速度慢的多跑一圈
需要课时:2课时
教学内容: ,正确将环形跑道问题转化成追及问题
解题关键:环形跑道问题就是封闭路线上的追及问题,关键是要掌握从并行到下
次追及的路程差恰好是一圈的长度。

例1:环形跑道的周长是800米,甲、乙两名运动员同时顺时针自起点出发,甲
的速度是每分钟400米,乙的速度是每分钟375米,多少分钟后两人第一次相遇?甲、乙两名运动员各跑了多少米?甲、乙两名运动员各跑了多少圈?
思路点拨: 在环形跑道上,这是一道封闭路线上的追及问题,第一次相遇时,快
的应比慢的多跑一圈,环形跑道的周长就是追及路程,已知了两人的速度,追及
时间即是两人相遇的时间。

400-375=25(米) 800÷25=32(分钟)
甲:400×32=12800(米) 乙:375×32=12000(米) 甲:12800÷800=16(圈) 乙:16-1=15(圈)
例2 :幸福村小学有一条200米长的环形跑道,冬冬和晶晶同时从起跑线起跑,
冬冬每秒钟跑6米,晶晶每秒钟跑4米,问冬冬第一次追上晶晶时两人各跑了多
少米,第2次追上晶晶时两人各跑了多少圈?
解:①冬冬第一次追上晶晶所需要的时间:200÷(6-4)=100(秒)②冬
冬第一次追上晶晶时他所跑的路程应为:6×100=600(米)③晶晶第一次被
追上时所跑的路程:4×100=400(米)
④冬冬第二次追上晶晶时所跑的圈数:(600×2)÷200=6(圈)
⑤晶晶第2次被追上时所跑的圈数:(400×2)÷200=4(圈)
练习:
1、一条环形跑道长400米,小青每分钟跑260米,小兰每分钟跑210米,两人同时出发,经过多少分钟两人相遇
2、两人在环形跑道上跑步,两人从同一地点出发,小明每秒跑3米,小雅每秒跑4米,反向而行,45秒后两人相遇。

如果同向而行,几秒后两人再次相遇
3、林玲在450米长的环形跑道上跑一圈,已知他前一半时间每秒跑5米,后一半时间每秒跑4米,那么他后一半路程跑了多少秒?
作业:
1、两名运动员在湖周围环形跑道上练习长跑,甲每分钟跑250米,乙每分钟跑
200米,两人同时同地同向出发,经过45分钟甲追上乙,如果两人同时同地反向出发,经过多少分钟两人相遇?
2、甲乙两人在周长400米的环形跑道上竞走,已知乙的速度是平均每分钟80米,甲的速度是乙的1.25倍,乙在甲前100米,问多少分钟后,甲可以追上乙?
3、一条环形跑道长为400米,小明每分钟跑300米,小红每分钟跑250米,两人同时同地同向出发,,经过多长时间,小明第一次追上小红?
4、甲乙两人绕周长为1000米的环形跑道广场竞走,已知甲每分钟走125米,乙的速度是甲的2倍,现在甲在乙后面250米,乙追上甲需要多少分钟?
5、光明小学有一条长为200米的环形跑道,小明和小红同时从起跑线起跑,小明每秒跑6米,小红每秒跑4米,小明第一次追上小红时两人各跑了多少米?
6、甲乙两人沿运动场的跑道跑步,甲每分钟跑290米,乙每分钟跑270米,跑道一圈长400米,如果两人同时从起跑线上同方向跑。

那么,经过甲经过多长时间才能第一次追上乙?
环形跑道中的相遇问题:环形跑道一周的长=速度和×相遇时间
例:一条环形跑道长400米,小青每分钟跑260米,小兰每分钟跑210米,两人同时同向出发,经过多长时间两人相遇?
环形跑道中的追击问题:环形跑道一周的长= 速度差×追及时间
例:小明和小强两人在周长1200米的环形跑道上同时同地同向而行,小强每分钟跑100米,小明的速度是小强的2倍,经过多少分钟小明能追上小强?
变式训练:
1.甲和乙在300米环形跑道上跑步,两人从同一地点出发,反向而行,15秒后两人相遇。

如果同向而行,30秒后两人相遇,求甲和乙的速度?
2.(小升初)甲乙两人骑自行车从一环形公路的同一地点同时出发,背向而行。

甲行一圈要60分,在出发45分钟后两人相遇。

如果在相遇后甲立即调转方向骑行,
那么两人再次相遇(追上)要()分。

3.甲和乙在周长为500米的环形跑道上跑步.甲的速度是200米/分。

(1)甲和乙同时从同一地点出发,反向跑步,1分钟后两人第一次相遇,乙的速度是多少米/分?(2)甲和乙同时从同一点出发,同一方向跑步,乙跑多少圈后才能第一次追上甲?
4.甲与乙绕一周长400米的环形跑道练习跑步。

在同一地点若逆向跑,40秒后相遇;若同向跑,200秒后甲首次追上乙。

现在甲距乙150米,若甲追乙,几分钟后两人第三次相遇?。

相关文档
最新文档