离散型随机变量的分布列(3)
2.1.2离散型随机变量的分布列
5
0.3
解:由离散型随机变量的分布列的性质有
0.16 + a + a2 + a + 0.3 = 1
10
5
解得:a = - 9 (舍)或 a = 3
10
5
(3)设随机变量 的分布列为:P(ξ k) k ,k 1,2,3,4,5,
15
求 ① P( 1或 2) ;
② P( 1 ξ 5 ) ;
思考
抛掷一枚骰子,求所得点数及取各值的概率.
X1 2 3 4 5 6
P
1 6
1111 6666
1 6
2.1.2离散型随机 变量的分布列
知识要点
1.分布列
设离散型随机变量ξ可能取得值为
x1,x2,x3,…,
新疆 王新敞
奎屯
ξ取每一个值xi(i=1,2,…)的概率为
P(ξ= xi)=pi,则称表
ξ
x1
ξ
-1
0
1
P
0.3
Hale Waihona Puke 0.40.3ξ
1
2
3
P
0.3
0.4
0.4
3.解答题
(1)某厂生产电子元件,其产品的次品率 为5%,现从一批产品中的任意连续取出2件, 求次品数的概率分布.
解: ξ的取值分别为0、1、2
ξ =0表示抽取两件均为正品 ; ∴p(ξ=0)=C20(1-0.05)2=0.9025 .
继续解答
0.5
0.25
3. 设抽出的5张牌中包含A牌的张数为X,则X
服从超几何分布,其分布列为 P(X=i)=C4iC485-i/C525,i=0,1,2,3,4 .
因此抽出的5张牌中至少有3张A的概率为
第七节 离散型随机变量及其分布列
【解析】 由已知得 X 的所有可能取值为 0,1, 且 P(X=1)=2P(X=0), 1 由 P(X=1)+P(X=0)=1,得 P(X=0)= . 3
离散型随机变量分布列的性质 设离散型随机变量X的分布列为
X P 0 0.2 1 0.1 2 0.1 3 0.3 4 m
求随机变量η=|X-1|的分布列.
解
(1)由题意,得 X 取 3,4,5,6, 1 2 C3 5 C · C 10 5 4 5 且 P(X=3)= 3= ,P(X=4)= 3 = , C9 42 C9 21 1 3 C2 · C 5 C 1 4 5 4 P(X=5)= 3 = ,P(X=6)= 3= , C9 14 C9 21
1 .利用分布列中各概率之和为 1 可求参数的值, 此时要注意检验,以保证每个概率值均为非负数. 2.若 X是随机变量,则η=|X- 1|等仍然是随机变
量,求它的分布列可先求出相应随机变量的值,再根
据对应的概率写出分布列.
设离散型随机变量X的分布列为
X P 0 0.2 1 0.1 2 0.1 3 0.3 4 m
是二项式[(1-p)+p]n的展开式中的第k+1项.
随机变量X服从二项分布
特点: (1)每次试验只有两种结果,要么发生,要么不发 生; (2)任何一次试验中,A事件发生的概率相同,即 相互独立,互不影响试验的结果。
5. 二项分布与两点分布、超几何分布有什么区别和联系?
1.两点分布是特殊的二项分布 (1 p)
(1)由统计数据得到离散型随机变量分布列; (2)由古典概型求出离散型随机变量分布列; (3)由互斥事件、独立事件的概率求出离散型随机变 量分布列. (4)由三种分布(两点分布、超几何分布、二项分布) 求出离散型随机变量分布列。
离散型随机变量的分布列、均值与方差
离散型随机变量的分布列、均值与方差1.离散型随机变量的均值与方差 一般地,若离散型随机变量X 的分布列为(1)分布列的性质①p i ≥0,i =1,2,3,…,n . ②11=∑=ni i p(2)均值称E (X )=x 1p 1+x 2p 2+…+x i p i +…+x n p n 为随机变量X 的均值或数学期望,它反映了离散型随机变量取值的平均水平. (3)方差称D (X )=i 12))((P X E x ni i ∑=-为随机变量X 的方差,它刻画了随机变量X 与其均值E (X )的平均偏离程度,其算术平方根D (X )为随机变量X 的标准差. 2.均值与方差的性质 (1)E (aX +b )=aE (X )+b .(2)D (aX +b )=a 2D (X ).(a ,b 为常数)3.判断下列结论的正误(正确的打“√”错误的打“×”)(1)随机变量的均值是常数,样本的平均值是随机变量,它不确定.(√)(2)随机变量的方差和标准差都反映了随机变量取值偏离均值的平均程度,方差或标准差越小,则偏离变量平均程度越小.(√)(3)离散型随机变量的概率分布列中,各个概率之和可以小于1.(×) (4)离散型随机变量的各个可能值表示的事件是彼此互斥的.(√) (5)期望值就是算术平均数,与概率无关.(×)(6)随机变量的均值是常数,样本的平均值是随机变量.(×)(7)在篮球比赛中,罚球命中1次得1分,不中得0分.如果某运动员罚球命中的概率为0.7,那么他罚球1次的得分X 的均值是0.7.(√)(8)在一组数中,如果每个数都增加a ,则平均数也增加a .(√) (9)在一组数中,如果每个数都增加a ,则方差增加a 2.(×)(10)如果每个数都变为原来的a 倍,则其平均数是原来的a 倍,方差是原来的a 2倍.(√)考点一 离散型随机变量的分布列及性质[例1] (1)设X 是一个离散型随机变量,其分布列为则q 等于( )A .1B .1±22C .1-22D .1+22 解析:由分布列的性质知⎩⎪⎨⎪⎧1-2q ≥0,q 2≥0,12+1-2q +q 2=1,∴q =1-22.答案:C(2)设离散型随机变量X 的分布列为求:①2X +1的分布列; ②|X -1|的分布列. 解:由分布列的性质知:0.2+0.1+0.1+0.3+m =1,∴m =0.3. 首先列表为从而由上表得两个分布列为①2X +1的分布列为②|X -1|的分布列为[方法引航] (1)概率值均为非负数.(2)求随机变量在某个范围内的取值概率时,根据分布列,将所求范围内随机变量对应的取值概率相加即可,其依据是互斥事件的概率加法公式.1.随机变量的分布列为:其中a ,b ,c 成等差数列,若E (ξ)=13,则D (ξ)=________. 解析:由a ,b ,c 成等差数列及分布列性质得, ⎩⎪⎨⎪⎧a +b +c =1,2b =a +c ,-a +c =13,解得b =13,a =16,c =12.∴D (ξ)=16×2)311(--+13×2)310(-+12×2)311(-=59.答案:592.在本例(2)条件下,求X 2的分布列. 解:X 2的分布列为考点二 离散型随机变量的均值与方差[例2] (1)(2017·湖南益阳调研)某工厂有两条相互不影响的生产线分别生产甲、乙两种产品,产品出厂前需要对产品进行性能检测.检测得分低于80的为不合格品,只能报废回收;得分不低于80的为合格品,可以出厂,现随机抽取这两种产品各60件进行检测,检测结果统计如下:②生产一件甲种产品,若是合格品可盈利100元,若是不合格品则亏损20元;生产一件乙种产品,若是合格品可盈利90元,若是不合格品则亏损15元,在①的前提下:a .记X 为生产1件甲种产品和1件乙种产品所获得的总利润,求随机变量X 的分布列和数学期望;b .求生产5件乙种产品所获得的利润不少于300元的概率.解:①甲种产品为合格品的概率约为4560=34,乙种产品为合格品的概率约为4060=23. ②a .随机变量X 的所有取值为190,85,70,-35,且P (X =190)=34×23=12,P (X =85)=34×13=14,P (X =70)=14×23=16,P (X =-35)=14×13=112. 所以随机变量X 的分布列为所以E (X )=1902+854+706-3512=125.b .设生产的5件乙种产品中合格品有n 件,则不合格品有(5-n )件, 依题意得,90n -15(5-n )≥300,解得n ≥257,取n =4或n =5, 设“生产5件乙种产品所获得的利润不少于300元”为事件A ,则P (A )=C 454)32(13+5)32(=112243. (2)(2016·高考全国乙卷)某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X 表示2台机器三年内共需更换的易损零件数,n 表示购买2台机器的同时购买的易损零件数. ①求X 的分布列;②若要求P (X ≤n )≥0.5,确定n 的最小值;③以购买易损零件所需费用的期望值为决策依据,在n =19与n =20之中选其一,应选用哪个?解:①由柱状图并以频率代替概率可得,一台机器在三年内需更换的易损零件数为8,9,10,11的概率分别为0.2,0.4,0.2,0.2.从而P (X =16)=0.2×0.2=0.04; P (X =17)=2×0.2×0.4=0.16; P (X =18)=2×0.2×0.2+0.4×0.4=0.24; P (X =19)=2×0.2×0.2+2×0.4×0.2=0.24; P (X =20)=2×0.2×0.4+0.2×0.2=0.2;P (X =21)=2×0.2×0.2=0.08; P (X =22)=0.2×0.2=0.04. 所以X 的分布列为②由①知P (X ≤③记Y 表示2台机器在购买易损零件上所需的费用(单位:元). 当n =19时,E(Y)=19×200×0.68+(19×200+500)×0.2+(19×200+2×500)×0.08+(19×200+3×500)×0.04=4 040.当n=20时,E(Y)=20×200×0.88+(20×200+500)×0.08+(20×200+2×500)×0.04=4 080. 可知当n=19时所需费用的期望值小于当n=20时所需费用的期望值,故应选n=19.[方法引航](1)已知随机变量的分布列求它的均值、方差和标准差,可直接按定义(公式)求解;(2)已知随机变量ξ的均值、方差,求ξ的线性函数η=aξ+b的均值、方差和标准差,可直接用ξ的均值、方差的性质求解;(3)由已知条件,作出对两种方案的判断.可依据均值、方差的意义,对实际问题作出判断.某商店试销某种商品20天,获得如下数据:试销结束后(3件,当天营业结束后检查存货,若发现存量少于2件,则当天进货补充至3件,否则不进货,将频率视为概率.(1)求当天商店不进货的概率;(2)记X为第二天开始营业时该商品的件数,求X的分布列.解:(1)P(当天商店不进货)=P(当天商品销售量为0件)+P(当天商品销售量为1件)=120+520=310.(2)由题意知,X的可能取值为2,3.P(X=2)=P(当天商品销售量为1件)=520=1 4;P(X=3)=P(当天商品销售量为0件)+P(当天商品销售量为2件)+P(当天商品销售量为3件)=120+920+520=34.所以X的分布列为考点三[例3] (1)若X ~B (n ,p ),且E (X )=6,D (X )=3,则P (X =1)的值为( ) A .3·2-2 B .2-4 C .3·2-10 D .2-8解析:∵E (X )=np =6,D (X )=np (1-p )=3,∴p =12,n =12,则P (X =1)=C 112·12·11)21(=3·2-10.答案:C(2)某居民小区有两个相互独立的安全防范系统(简称系统)A 和B ,系统A 和系统B 在任意时刻发生故障的概率分别为110和p .①若在任意时刻至少有一个系统不发生故障的概率为4950,求p 的值;②设系统A 在3次相互独立的检测中不发生故障的次数为随机变量ξ,求ξ的分布列及均值E (ξ).解:①设“至少有一个系统不发生故障”为事件C ,那么 1-P (C )=1-110·p =4950,解得p =15. ②由题意,得 P (ξ=0)=3)101(=11 000,P (ξ=1)=C 132)101)(1011(-=271 000, P (ξ=2)=C 23×2)1011(-×110=2431 000,P (ξ=3)=3)1011(-=7291 000. 所以,随机变量ξ的分布列为故随机变量ξ的均值E (ξ)=0×11 000+1×271 000+2×2431 000+3×7291 000=2710. (或∵ξ~B )109,3(,∴E (ξ)=3×910=2710.)[方法引航] 如果ξ~B (n ,p ),可直接按公式E (ξ)=np ,D (ξ)=np (1-p )求解.假设某班级教室共有4扇窗户,在每天上午第三节课上课预备铃声响起时,每扇窗户或被敞开或被并闭,且概率均为0.5.记此时教室里敞开的窗户个数为X.(1)求X的分布列;(2)若此时教室里有两扇或两扇以上的窗户被关闭,班长就会将关闭的窗户全部敞开,否则维持原状不变.记每天上午第三节课上课时刻教室里敞开的窗户个数为Y,求Y的数学期望.解:(1)∵X的所有可能取值为0,1,2,3,4,X~B(4,0.5),∴P(X=0)=C044)21(=116,P(X=1)=C144)21(=14,P(X=2)=C244)21(=38,P(X=3)=C344)21(=14,P(X=4)=C444)21(=116,∴X的分布列为(2)Y的所有可能取值为3,4,则P(Y=3)=P(X=3)=1 4,P(Y=4)=1-P(Y=3)=34,∴Y的数学期望E(Y)=3×14+4×34=154.[规范答题]求离散型随机变量的期望与方差[典例](2017·山东青岛诊断)为了分流地铁高峰的压力,某市发改委通过听众会,决定实施低峰优惠票价制度.不超过22公里的地铁票价如下表:6公里的概率分别为14,13,甲、乙乘车超过6公里且不超过12公里的概率分别为12,13.(1)求甲、乙两人所付乘车费用不相同的概率;(2)设甲、乙两人所付乘车费用之和为随机变量ξ,求ξ的分布列与数学期望.[规范解答] (1)由题意可知,甲、乙乘车超过12公里且不超过22公里的概率分别为14,13.2分则甲、乙两人所付乘车费用相同的概率P 1=14×13+12×13+14×13=13.3分 所以甲、乙两人所付乘车费用不相同的概率P =1-P 1=1-13=23.4分 (2)由题意可知,ξ=6,7,8,9,10.且P (ξ=6)=14×13=112, P (ξ=7)=14×13+12×13=14.P (ξ=8)=14×13+14×13+12×13=13. P (ξ=9)=12×13+14×13=14.P (ξ=10)=14×13=112,10分 所以ξ的分布列为则E (ξ)=6×112+7×14+8×13+9×14+10×112=8.12分[规范建议] 1.分清各事件间的关系:独立事件、互斥事件、对立事件.2.求随机变量的分布列,先把随机变量所有可能值列举出来,逐个求对应的概率. 3.利用期望公式求期望值.[高考真题体验]1.(2016·高考四川卷)同时抛掷两枚质地均匀的硬币,当至少有一枚硬币正面向上时,就说这次试验成功,则在2次试验中成功次数X 的均值是________.解析:同时抛掷两枚质地均匀的硬币,至少有一枚硬币正面向上的概率为1-2)21(=34,且X ~B )43,2(,∴均值是2×34=32.答案:322.(2015·高考广东卷)已知随机变量X 服从二项分布B (n ,p ).若E (X )=30,D (X )=20,则p =________.解析:因为X~B(n,p),所以E(X)=np=30,D(X)=np(1-p)=20,解得n=90,p=1 3.答案:1 33.(2016·高考全国甲卷)某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:(1)(2)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率;(3)求续保人本年度的平均保费与基本保费的比值.解:(1)设A表示事件:“一续保人本年度的保费高于基本保费”,则事件A发生当且仅当一年内出险次数大于1,故P(A)=0.2+0.2+0.1+0.05=0.55.(2)设B表示事件:“一续保人本年度的保费比基本保费高出60%”,则事件B发生当且仅当一年内出险次数大于3,故P(B)=0.1+0.05=0.15.又P(AB)=P(B),故P(B|A)=P(AB)P(A)=P(B)P(A)=0.150.55=311.因此所求概率为311.(3)记续保人本年度的保费为X元,则X的分布列为E(X)=0.85a×0.30×0.05=1.23a.因此续保人本年度的平均保费与基本保费的比值为1.23.4.(2013·高考课标全国卷Ⅱ)经销商经销某种农产品,在一个销售季度内,每售出1 t该产品获利润500元,未售出的产品,每1 t亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如下图所示.经销商为下一个销售季度购进了130 t该农产品.以X(单位:t,100≤X≤150)表示下一个销售季度内的市场需求量,T(单位:元)表示下一个销售季度内经销该农产品的利润.(1)将T 表示为X 的函数;(2)根据直方图估计利润T 不少于57 000元的概率.(3)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,并以需求量落入该区间的频率作为需求量取该区间中点值的概率(例如:若需求量X ∈[100,110),则取X =105,且X =105的概率等于需求量落入[100,110)的频率),求T 的数学期望. 解:(1)当X ∈[100,130)时,T =500X -300(130-X )=800X -39 000, 当X ∈[130,150]时,T =500×130=65 000. 所以T =⎩⎨⎧800X -39 000,100≤X <130,65 000, 130≤X ≤150.(2)由(1)知利润T 不少于57 000元当且仅当120≤X ≤150.由直方图知需求量X ∈[120,150]的频率为0.7,所以下一个销售季度内的利润T 不少于57 000元的概率的估计值为0.7. (3)依题意可得T 的分布列为所以E (T )=45 000×0.1课时规范训练 A 组 基础演练1.设随机变量ξ的分布列为P (ξ=k )=15(k =2,4,6,8,10),则D (ξ)等于( ) A .5 B .8 C .10 D .16 解析:选B.∵E (ξ)=15(2+4+6+8+10)=6, ∴D (ξ)=15[(-4)2+(-2)2+02+22+42]=8.2.已知某一随机变量X 的分布列如下,且E (X )=6.3,则a 的值为( )A.5 B .6 C .解析:选C.由分布列性质知:0.5+0.1+b =1,∴b =0.4. ∴E (X )=4×0.5+a ×0.1+9×0.4=6.3,∴a =7.3.某种种子每粒发芽的概率都为0.9,现播种了1 000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X ,则X 的数学期望为( )A .100B .200C .300D .400 解析:选B.记“不发芽的种子数为ξ”, 则ξ~B (1 000,0.1),所以E (ξ)=1 000×0.1=100, 而X =2ξ,故E (X )=E (2ξ)=2E (ξ)=200.4.如图,将一个各面都涂了油漆的正方体,切割为125个同样大小的小正方体,经过混合后,从中随机取一个小正方体,记它的油漆面数为X ,则X 的均值E (X )等于( )A.126125 B.65 C.168125 D.75解析:选B.125个小正方体中8个三面涂漆,36个两面涂漆,54个一面涂漆,27个没有涂漆,∴从中随机取一个正方体,涂漆面数X 的均值E (X )=54125×1+36125×2+8125×3=150125=65. 5.一射手对靶射击,直到第一次命中为止,每次命中的概率都为0.6,现有4颗子弹,则射击停止后剩余子弹的数目X 的期望值为( )A .2.44B .3.376C .2.376D .2.4 解析:选C.X 的所有可能取值为3,2,1,0,其分布列为∴E (X )=3×0.6+2×0.24+6.已知随机变量ξ的分布列为P (ξ=k )=12k -1,k =1,2,3,…,n ,则P (2<ξ≤5)=________. 解析:P (2<ξ≤5)=P (ξ=3)+P (ξ=4)+P (ξ=5)=14+18+116=716.答案:7 167.有一批产品,其中有12件正品和4件次品,有放回地任取3件,若X表示取到次品的件数,则D(X)=__________.解析:由题意知取到次品的概率为14,∴X~B)41,3(,∴D(X)=3×14×)411(-=916.答案:9 168.随机变量ξ的分布列如下:其中a,b,c成等差数列,则P(|ξ|d的取值范围是________.解析:因为a,b,c成等差数列,所以2b=a+c.又a+b+c=1,所以b=13.所以P(|ξ|=1)=a+c=23.又a=13-d,c=13+d,根据分布列的性质,得0≤13-d≤23,0≤13+d≤23,所以-13≤d≤13,此即公差d的取值范围.答案:23]31,31[-9.一次考试共有12道选择题,每道选择题都有4个选项,其中有且只有一个是正确的.评分标准规定:“每题只选一个选项,答对得5分,不答或答错得零分”.某考生已确定有8道题的答案是正确的,其余题中:有两道题都可判断两个选项是错误的,有一道题可以判断一个选项是错误的,还有一道题因不理解题意只好乱猜.请求出该考生:(1)得60分的概率;(2)所得分数ξ的分布列和数学期望.解:(1)设“可判断两个选项是错误的”两道题之一选对为事件A,“有一道题可以判断一个选项是错误的”选对为事件B,“有一道题不理解题意”选对为事件C,∴P(A)=12,P(B)=13,P(C)=14,∴得60分的概率为P=12×12×13×14=148.(2)ξ可能的取值为40,45,50,55,60.P(ξ=40)=12×12×23×34=18;P(ξ=45)=C12×12×12×23×34+12×12×13×34+12×12×23×14=1748;P(ξ=50)=12×12×23×34+C12×12×12×13×34+C12×12×12×23×14+12×12×13×14=1748;P(ξ=55)=C12×12×12×13×14+12×12×23×14+12×12×13×34=748;P(ξ=60)=12×12×13×14=148.ξ的分布列为E(ξ)=40×18+45×1748+50×1748+55×748+60×148=57512.10.随着人们对环境关注度的提高,绿色低碳出行越来越受到市民重视,为此某市建立了公共自行车服务系统,市民凭本人二代身份证到公共自行车服务中心办理诚信借车卡借车,初次办卡时卡内预先赠送20分,当诚信积分为0时,借车卡将自动锁定,限制借车,用户应持卡到公共自行车服务中心以1元购1个积分的形式再次激活该卡,为了鼓励市民租用公共自行车出行,同时督促市民尽快还车,方便更多的市民使用,公共自行车按每车每次的租用时间进行扣分收费,具体扣分标准如下:①租用时间不超过1小时,免费;②租用时间为1小时以上且不超过2小时,扣1分;③租用时间为2小时以上且不超过3小时,扣2分;④租用时间超过3小时,按每小时扣2分收费(不足1小时的部分按1小时计算).甲、乙两人独立出行,各租用公共自行车一次,两人租车时间都不会超过3小时,设甲、乙租用时间不超过一小时的概率分别是0.5和0.6;租用时间为1小时以上且不超过2小时的概率分别是0.4和0.2.(1)求甲、乙两人所扣积分相同的概率;(2)设甲、乙两人所扣积分之和为随机变量ξ,求ξ的分布列和数学期望.解:(1)设甲、乙所扣积分分别为x1,x2,由题意可知,P(x1=0)=0.5,P(x1=1)=0.4,P(x1=2)=1-0.5-0.4=0.1,P(x2=0)=0.6,P(x2=1)=0.2,P(x2=2)=1-0.6-0.2=0.2,所以P(x1=x2)=P(x1=x2=0)+P(x1=x2=1)+P(x1=x2=2)=0.5×0.6+0.4×0.2+0.1×0.2=0.4.(2)由题意得,变量ξ的所有取值为0,1,2,3,4.P (ξ=0)=0.5×0.6=0.3,P (ξ=1)=0.5×0.2+0.6×0.4=0.34,P (ξ=2)=0.5×0.2+0.6×0.1+0.4×0.2=0.24, P (ξ=3)=0.4×0.2+0.2×0.1=0.1, P (ξ=4)=0.1×0.2=0.02, 所以ξ的分布列为E (ξ)=0×0.3+1×0.34+2B 组 能力突破1.已知X 的分布列则在下列式子中①E (X )=-13;②D (X )=2327;③P (X =0)=13,正确的个数是( )A .0B .1C .2D .3解析:选C.由E (X )=(-1)×12+0×13+1×16=-13,故①正确.由D (X )=2)311(+-×12+2)310(+×13+2)311(+×16=59,知②不正确.由分布列知③正确.2.已知ξ的分布列如下表,若η=2ξ+2,则D (η)的值为( )A.-13B.59C.109D.209解析:选D.E (ξ)=-1×12+0×13+1×16=-13,D (ξ)=2)311(+-×12+2)310(+×13+2)311(+×16=59∴D (η)=D (2ξ+2)=4D (ξ)=209,故选D.3.已知随机变量X +η=8,若X ~B (10,0.6),则E (η)和D (η)分别是( )A .6和2.4B .2和2.4C .2和5.6D .6和5.6 解析:选B.由已知随机变量X +η=8,所以η=8-X .因此,E (η)=8-E (X )=8-10×0.6=2,D (η)=(-1)2D (X )=10×0.6×0.4=2.4.4.两封信随机投入A ,B ,C 三个空邮箱,则A 邮箱的信件数ξ的数学期望E (ξ)=________. 解析:两封信投入A ,B ,C 三个空邮箱,投法种数是32=9,A 中没有信的投法种数是2×2=4,概率为49,A 中仅有一封信的投法种数是C 12×2=4,概率为49, A 中有两封信的投法种数是1,概率为19,故A 邮箱的信件数ξ的数学期望是49×0+49×1+19×2=23. 答案:235.李先生家在H 小区,他在C 科技园区工作,从家开车到公司上班有L 1,L 2两条路线(如图),路线L 1上有A 1,A 2,A 3三个路口,各路口遇到红灯的概率均为12;路线L 2上有B 1,B 2两个路口,各路口遇到红灯的概率依次为34,35.(1)若走路线L 1,求最多遇到1次红灯的概率; (2)若走路线L 2,求遇到红灯次数X 的数学期望;(3)按照“平均遇到红灯的次数最少”的要求,请你帮助李先生分析上述两条路线中,选择哪条路线上班更好些,并说明理由.解:(1)设“走路线L 1最多遇到1次红灯”为事件A ,则P (A )=C 03×2)21(+C 13×12×2)21(=12. 所以走路线L 1最多遇到1次红灯的概率为12. (2)依题意,知X 的可能取值为0,1,2. P (X =0)=)531)(431(--=110.P (X =1)=34×)531(-+)431(-×35=920,P (X =2)=34×35=920. 随机变量X 的分布列为所以E (X )=110×0+920×1+920×2=2720.(3)设选择路线L 1遇到红灯的次数为Y ,随机变量Y 服从二项分布,即Y ~B )21,3(,所以E (Y )=3×12=32.因为E (X )<E (Y ),所以选择路线L 2上班更好.。
离散型随机变量x的分布列
§2 离散型随机变量X 的分布列(3课时) 一、目的要求1、理解离散型的随机变量的分布列的意义,会用某些简单的离散型随机变量的分布列。
2、掌握离散型随机变量的分布的两个基本性质,并会用它来解决一些简单的问题。
教学重点:(1)利用概率知识与分布列(2)利用随机变量的分布列性质求参数。
二、教学过程1、复习提问:离散型随机变量概念。
2、分布列定义:设离散型随机变量X 的取值。
12,,,(1,2,)i i a a X a P i = 随机变量取的概率为记作()i i P x a P i === (1)为随机变量X 的分布列如果随机变量X 的分布列为表(2)或(1)式,则使随机变量X 服从这一分布(列),记为1212,,,,a a X P P ⎛⎫ ⎪⎝⎭总结:任一离散型随机变量的分布列的两个简单性质: (1)0,1,2,i P i >= (2)121P P ++=试求常数C 。
(3) 3、已知随机变量X 的分布列为1(),(24)2k P X k P X ==<≤则=( )A A .316 B .14 C .116 D .5164、设离散型随机变量X 的分布列为()(1,2,,)2aP X k k N N=== ,则a= 。
2 5、设随机变量X 的分布列为1()(),1,2,3,3k P X k a k a ===则= ,若*k N ∈,则a= 。
(27213)6、设随机变量的分布列()(1,2,3,4,5)5kP X ak k ===。
(1)求常数a 的值。
(115)(2)求17132()()()1010555P X P X P X <<==+==7、有一个公用电话亭,在观察使用这个电话的人的流量时,设在某一时刻有n 个人正在使用电话或等待使用的概率为P(n),且P(n)与时间t 无关,统计得到1()(0)15()206nP n P n n ⎧⋅≤≤⎪=⎨⎪≥⎩,那么在某一时刻,这个公用电话亭里一个人也没有的概率(0)P 的值为 。
专题06 离散型随机变量及其分布列、数字特征(解析版)
06离散型随机变量及其分布列、数字特征知识点1随机变量(1)定义:一般地,对于随机试验样本空间Ω中的每个样本点ω,都有唯一的实数X(ω)与之对应,我们称X为随机变量.随机变量的取值X(ω)随着随机试验结果ω的变化而变化.(2)离散型随机变量:可能取值为有限个或可以一一列举的随机变量称之为离散型随机变量.(2)表示:随机变量通常用大写英文字母表示,例如X,Y,Z;随机变量的取值用小写英文字母表示,例如x,y,z.知识点2离散型随机变量的分布列的定义(1)定义:一般地,设离散型随机变量X的可能取值为x1,x2,…,x i,…,x n,我们称X取每一个值x i 的概率P(X=x i)=p i,i=1,2,…,n为X的概率分布列,简称分布列.(2)表示方法:①表格;②概率分布图.知识点3离散型随机变量的分布列的性质(1)p i ≥0,i =1,2,…,n ;(2)p 1+p 2+…+p n =1.知识点4离散型随机变量的均值与方差一般地,若离散型随机变量X 的分布列如下表所示,X x 1x 2…x n Pp 1p 2…p n(1)均值:称E (X )=x 1p 1+x 2p 2+…+x i p i +…+x n p n =i ii 1nx P =∑为随机变量X 的均值或数学期望,数学期望简称期望.(2)方差:称D (X )=(x 1-E (X ))2p 1+(x 2-E (X ))2p 2+…+(x n -E (X ))2p n =i 1n=∑(x i -E (X ))2p i 为随机变量X的方差,有时也记为Var (X ),并称D (X )为随机变量X 的标准差,记为σ(X ).(3)均值的意义:均值是随机变量可能取值关于取值概率的加权平均数,它综合了随机变量的取值和取值的概率,反映了随机变量取值的平均水平.(4)方差和标准差的意义:随机变量的方差和标准差都可以度量随机变量取值与其均值E (X )的偏离程度,反映了随机变量取值的离散程度.方差或标准差越小,随机变量的取值越集中;方差或标准差越大,随机变量的取值越分散.知识点5均值与方差的性质若Y =aX +b ,其中X 是随机变量,a ,b 是常数,随机变量X 的均值是E (X ),方差是D (X ).则E (Y )=E (aX +b )=aE (X )+b ;D (Y )=D (aX +b )=a 2D (X ).(a ,b 为常数).知识点6分布列性质的两个作用(1)利用分布列中各事件概率之和为1可求参数的值.(2)随机变量ξ所取的值分别对应的事件是两两互斥的,利用这一点可以求相关事件的概率.知识点7均值与方差的四个常用性质(1)E (k )=k ,D (k )=0,其中k 为常数.(2)E (X 1+X 2)=E (X 1)+E (X 2).(3)D (X )=E (X 2)-(E (X ))2.(4)若X1,X 2相互独立,则E (X 1X 2)=E (X 1)·E (X 2).考点1离散型随机变量分布列的性质(1)求a的值;(2)求;(3)求X.【答案】(1)由分布列的性质,得++++P(X=1)=a+2a+3a+4a+5a=1,所以a=115.(2)=++P(X=1)=3×115+4×115+5×115=45.(3)X=++=115+215+315=25.【总结】离散型随机变量分布列性质的应用(1)利用“总概率之和为1”可以求相关参数的取值范围或值;(2)利用“离散型随机变量在一范围内的概率等于它取这个范围内各个值的概率之和”求某些特定事件的概率;(3)可以根据性质判断所得分布列结果是否正确.【变式1-1】设随机变量X的分布列为P(X=k)=Ck(k+1),k=1,2,3,C为常数,则P(X<3)=__________.【答案】89【解析】随机变量X的分布列为P(X=k)=Ck(k+1),k=1,2,3,∴C2+C6+C12=1,即6C+2C+C12=1,解得C=43,∴P(X<3)=P(X=1)+P(X=2)=43=89.【变式1-2】设离散型随机变量X的分布列为X01234P0.20.10.10.3m(1)求随机变量Y=2X+1的分布列;(2)求随机变量η=|X-1|的分布列;(3)求随机变量ξ=X2的分布列.【解析】(1)由分布列的性质知,0.2+0.1+0.1+0.3+m=1,得m=0.3.首先列表为:X012342X+113579从而Y=2X+1的分布列为:Y13579P0.20.10.10.30.3(2)列表为:X01234|X-1|10123∴P(η=0)=P(X=1)=0.1,P(η=1)=P(X=0)+P(X=2)=0.2+0.1=0.3,P(η=2)=P(X=3)=0.3,P(η=3)=P(X=4)=0.3.故η=|X-1|的分布列为:η0123P0.10.30.30.3(3)首先列表为:X01234X2014916从而ξ=X2的分布列为:ξ014916P0.20.10.10.30.3【变式1-3】设随机变量X的分布列如下:X12345P 112161316p则p为()A.1 6B.13C.14D.112【答案】C【解析】由分布列的性质知,112+16+13+16+p=1,∴p=1-34=14.【变式1-4】设X是一个离散型随机变量,其分布列为X-101P 121-q q-q2则q等于()A.1 B.22或-22C.1+22D.2 2【答案】D【解析】1-q+q-q2=1,1-q≤12,q-q2≤12,解得q=22.【变式1-5】(多选)设随机变量ξ的分布列为ak(k=1,2,3,4,5),则()A.a=115B.ξ=15C.ξ=215D.P(ξ=1)=310【答案】AB【解析】对于选项A,∵随机变量ξ的分布列为ak(k=1,2,3,4,5),∴P(ξ=1)=a+2a+3a+4a+5a=15a=1,解得a=115,故A正确;对于B,易知ξ3×115=15,故B正确;对于C,易知ξ=115+2×115=15,故C错误;对于D,易知P(ξ=1)=5×115=13,故D错误.【变式1-6】设X是一个离散型随机变量,其分布列为X01P9a2-a3-8a则常数a的值为()A.13B.23C.13或23D.-13或-23【答案】A【解析】≤9a 2-a ≤1,≤3-8a ≤1,a 2-a +3-8a =1,解得a =13.【变式1-7】离散型随机变量X 的概率分布列为P (X =n )=an (n +1)(n =1,2,3,4),其中a 是常数,则P X 的值为()A.23B.34C.45D.56【答案】D【解析】因为P (X =n )=a n (n +1)(n =1,2,3,4),所以a 2+a 6+a 12+a 20=1,所以a =54,所以X P (X =1)+P (X =2)=54×12+54×16=56.【变式1-8】若随机变量X 的分布列如下表,则mn 的最大值是()X 024Pm0.5n A.116B.18C.14D.12【答案】A【解析】由分布列的性质,得m +n =12,m ≥0,n ≥0,所以mn =116,当且仅当m =n =14时,等号成立.【变式1-9】随机变量X 的分布列如下:X -101Pabc其中a ,b ,c 成等差数列,则P (|X |=1)=______,公差d 的取值范围是______.【答案】23-13,13【解析】因为a ,b ,c 成等差数列,所以2b =a +c .又a +b +c =1,所以b =13,所以P (|X |=1)=a +c =23.又a =13-d ,c =13+d ,根据分布列的性质,得0≤13-d ≤23,0≤13+d ≤23,所以-13≤d ≤13.考点2求离散型随机变量的分布列【例2】双败淘汰制是一种竞赛形式,与普通的单败淘汰制输掉一场即被淘汰不同,参赛者只有在输掉两场比赛后才丧失争夺冠军的可能.在双败淘汰制的比赛中,参赛者的数量一般是2的次方数,以保证每一轮都有偶数名参赛者.第一轮通过抽签,两人一组进行对阵,胜者进入胜者组,败者进入负者组.之后的每一轮直到最后一轮之前,胜者组的选手两人一组相互对阵,胜者进入下一轮,败者则降到负者组参加本轮负者组的第二阶段对阵;负者组的第一阶段,由之前负者组的选手(不包括本轮胜者组落败的选手)两人一组相互对阵,败者被淘汰(已经败两场),胜者进入第二阶段,分别对阵在本轮由胜者组中降组下来的选手,胜者进入下一轮,败者被淘汰.最后一轮,由胜者组最终获胜的选手(此前从未败过,记为A)对阵负者组最终获胜的选手(败过一场,记为B),若A胜则A获得冠军,若B胜则双方再次对阵,胜者获得冠军.某围棋赛事采用双败淘汰制,共有甲、乙、丙等8名选手参赛.第一轮对阵双方由随机抽签产生,之后每一场对阵根据赛事规程自动产生对阵双方,每场对阵没有平局.(1)设“在第一轮对阵中,甲、乙、丙都不互为对手”为事件M,求M的概率;(2)已知甲对阵其余7名选手获胜的概率均为23,解决以下问题:①求甲恰在对阵三场后被淘汰的概率;②若甲在第一轮获胜,设甲在该项赛事的总对阵场次为随机变量ξ,求ξ的分布列.【分析】(1)先求出8人平均分成四组的方法数,再求出甲,乙,丙都不分在同一组的方法数,从而可求得答案;(2)①甲恰在对阵三场后淘汰,有两种情况:“胜,败,败”和“败,胜,败”,然后利用互斥事件的概率公式求解即可;②由题意可得ξ∈{3,4,5,6,7},然后求出各自对应的概率,从而可得ξ的分布列.【解析】(1)8人平均分成四组,共有C28C26C24C22A44种方法,其中甲,乙,丙都不分在同一组的方法数为A35,所以P(A)=A35C28C26C24C22A44=4 7.(2)①甲恰在对阵三场后淘汰,这三场的结果依次是“胜,败,败”或“败,胜,败”,故所求的概率为23×13×13+13×23×13=427.②若甲在第一轮获胜,ξ∈{3,4,5,6,7}.当ξ=3时,表示甲在接下来的两场对阵都败,即P(ξ=3)=13×13=19.当ξ=4时,有两种情况:(ⅰ)甲在接下来的3场比赛都胜,其概率为23×23×23=827;(ⅱ)甲4场对阵后被淘汰,表示甲在接下来的3场对阵1胜1败,且第4场败,概率为C12·23×13×13=427,所以P (ξ=4)=827+427=49.当ξ=5时,有两种情况:(ⅰ)甲在接下来的2场对阵都胜,第4场败,概率为23×23×13=427;(ⅱ)甲在接下来的2场对阵1胜1败,第4场胜,第5场败,概率为C12·23×13×23×13=881;所以P (ξ=5)=427+881=2081.当ξ=6时,有两种情况:(ⅰ)甲第2场胜,在接下来的3场对阵为“败,胜,胜”,其概率为23×132=881;(ⅱ)甲第2场败,在接下来的4场对阵为“胜,胜,胜,败”,其概率为133×13=8243;所以P (ξ=6)=881+8243=32243.当ξ=7时,甲在接下来的5场对阵为“败,胜,胜,胜,胜”,即P (ξ=7)=134=16243.所以ξ的分布列为:ξ34567P194920813224316243【总结】离散型随机变量分布列的求解步骤【变式2-1】为创建国家级文明城市,某城市号召出租车司机在高考期间至少进行一次“爱心送考”,该城市某出租车公司共200名司机,他们进行“爱心送考”的次数统计如图所示.(1)求该出租车公司的司机进行“爱心送考”的人均次数;(2)从这200名司机中任选两人,设这两人进行送考次数之差的绝对值为随机变量X ,求X 的分布列.【解析】(1)由统计图得200名司机中送考1次的有20人,送考2次的有100人,送考3次的有80人,∴该出租车公司的司机进行“爱心送考”的人均次数为20×1+100×2+80×3200=2.3.(2)从该公司任选两名司机,记“这两人中一人送考1次,另一人送考2次”为事件A ,“这两人中一人送考2次,另一人送考3次”为事件B ,“这两人中一人送考1次,另一人送考3次”为事件C ,“这两人送考次数相同”为事件D .由题意知X 的所有可能取值为0,1,2,则P (X =0)=P (D )=C 220+C 2100+C 280C 2200=83199,P (X =1)=P (A )+P (B )=C 120C 1100C 2200+C 1100C 180C 2200=100199.P (X =2)=P (C )=C 120C 180C 2200=16199.∴X 的分布列为:X 012P8319910019916199【变式2-2】(多选)设离散型随机变量X 的分布列为X 01234Pq0.40.10.20.2若离散型随机变量Y 满足Y =2X +1,则下列结果正确的有()A .q =0.1B .E (X )=2,D (X )=1.4C .E (X )=2,D (X )=1.8D .E (Y )=5,D (Y )=7.2【答案】ACD【解析】因为q +0.4+0.1+0.2+0.2=1,所以q =0.1,故A 正确;由已知可得E (X )=0×0.1+1×0.4+2×0.1+3×0.2+4×0.2=2,D (X )=(0-2)2×0.1+(1-2)2×0.4+(2-2)2×0.1+(3-2)2×0.2+(4-2)2×0.2=1.8,故C 正确;因为Y =2X +1,所以E (Y )=2E (X )+1=5,D (Y )=4D (X )=7.2,故D 正确.考点3求离散型随机变量的均值与方差【例3】为迎接2022年北京冬奥会,推广滑雪运动,某滑雪场开展滑雪促销活动.该滑雪场的收费标准是:滑雪时间不超过1小时免费,超过1小时的部分每小时收费标准为40元(不足1小时的部分按1小时计算).有甲、乙两人相互独立地来该滑雪场运动,设甲、乙不超过1小时离开的概率分别为14,16;1小时以上且不超过2小时离开的概率分别为12,23;两人滑雪时间都不会超过3小时.(1)求甲、乙两人所付滑雪费用相同的概率;(2)设甲、乙两人所付的滑雪费用之和为随机变量ξ(单位:元),求ξ的分布列与数学期望E (ξ),方差D (ξ).【解析】(1)两人所付费用相同,相同的费用可能为0,40,80元,两人都付0元的概率为P 1=14×16=124,两人都付40元的概率为P 2=12×23=13,两人都付80元的概率为P 3-14--16-=124.则两人所付费用相同的概率为P =P 1+P 2+P 3=124+13+124=512.(2)ξ可能取值为0,40,80,120,160,则P (ξ=0)=14×16=124,P (ξ=40)=14×23+12×16=14,P (ξ=80)=14×16+12×23+14×16=512,P (ξ=120)=12×16+14×23=14,P (ξ=160)=14×16=124.所以,随机变量ξ的分布列为ξ04080120160P1241451214124∴E (ξ)=0×124+40×14+80×512+120×14+160×124=80,D (ξ)=(0-80)2×124+(40-80)2×14+(80-80)2×512+(120-80)2×14+(160-80)2×124=40003.【总结】求离散型随机变量ξ的均值与方差的步骤(1)理解ξ的意义,写出ξ全部的可能取值;(2)求ξ取每个值的概率;(3)写出ξ的分布列;(4)由均值的定义求E (ξ),由方差的定义求D (ξ).【变式3-1】据有关权威发布某种传染病的传播途径是通过呼吸传播,若病人(患了某种传染病的人)和正常人(没患某种传染病的人)都不戴口罩而且交流时距离小于一米90%的机率被传染,若病人不戴口罩正常人戴口罩且交流时距离小于一米时60%的机率被传染,若病人戴口罩而正常人不戴口罩且交流距离小于一米时30%的机率被传染上,若病人和正常人都带口罩且交流距离大于一米时不会被传染.为此对某地经常出入某场所的人员通过抽样调查的方式对戴口罩情况做了记录如下表:男士女士戴口罩不戴口罩戴口罩不戴口罩甲地40203010乙地10304515假设某人是否戴口罩互相独立(1)求去甲地的男士带口罩的概率,用上表估计所有去甲地的人戴口罩的概率.(2)若从所有男士中选1人,从所有女士中选2人,用上表的频率估计概率,求戴口罩人数X 的分布列和期望.(3)上表中男士不戴口罩记为“ξ=0”,戴口罩记为“ξ=1”,确定男士戴口罩的方差为Dξ,和女士不戴口罩记为“η=0”,戴口罩记为“η=1”确定女士戴口罩的方差为Dη.比较Dξ和Dη的大小,并说明理由.【解析】(1)设“去甲地的男士带口罩”为事件M ,则P (M )=4040+20=23,设“去甲地的人戴口罩”为事件N ,则P (N )=40+3040+20+30+10=710,(2)设“男士带口罩”为事件A ,则P (A )=40+1040+20+10+30=12,设“女士带口罩”为事件B ,则P (B )=30+4530+10+45+15=34,所有男士中选1人,从所有女士中选2人,戴口罩人数X =0,1,2,3,P (X =0)=12×14×14=132,P (X =1)=12×14×14+12×34×14+12×14×34=732,P (X =2)=12×34×14+12×14×34+12×34×34=1532,P (X =3)=12×34×34=932分布列为:X123P1327321532932E (X )=0×132+1×732+2×1532+3×932=2(3)E (ξ)=0×12+1×12=12,D (ξ)=(0-12)2×12+(1-12)2×12=14,E (η)=0×14+1×34=34,D (η)=(0-34)2×14+(1-34)2×34=316.100名男士中有50人戴口罩,50人不戴口罩,100名女士中有75人戴口罩,25人不戴口罩,从数据分布可看出来女士戴口罩的集中程度要好于男士,所以其方差偏小.【变式3-2】已知X 的分布列为X -101P121316设Y =2X +3,则E (Y )的值为()A .73B .4C .-1D .1【答案】A【解析】∵E (X )=-12+16=-13,∴E (Y )=E (2X +3)=2E (X )+3=-23+3=73.【变式3-3】已知离散型随机变量X 的分布列为X 012P0.51-2qq 2则常数q =________.【答案】1-22【解析】由分布列的性质得0.5+1-2q +q 2=1,解得q =1-22或q =1+22(舍去).【变式3-4】设随机变量X 的分布列为P (X =k )=a k,k =1,2,3,则a 的值为__________.【答案】2713【解析】因为随机变量X 的分布列为P (X =k )=a k,k =1,2,3,所以根据分布列的性质有a ·13+a 2+a 3=1,所以a +19+=a ×1327=1,所以a =2713.【变式3-5】已知随机变量X 的分布列如下:X -101P121316若Y =2X +3,则E (Y )的值为________.【答案】73【解析】E (X )=-12+16=-13,则E (Y )=E (2X +3)=2E (X )+3=-23+3=73.【变式3-6】若随机变量X 满足P (X =c )=1,其中c 为常数,则D (X )的值为________.【答案】0【解析】因为P (X =c )=1,所以E (X )=c ×1=c ,所以D (X )=(c -c )2×1=0.【变式3-7】(2022·昆明模拟)从1,2,3,4,5这组数据中,随机取出三个不同的数,用X 表示取出的数字的最小数,则随机变量X 的均值E (X )等于()A.32B.53C.74D.95【答案】A【解析】由题意知,X 的可能取值为1,2,3,而随机取3个数的取法有C 35种,当X =1时,取法有C 24种,即P (X =1)=C 24C 35=35;当X =2时,取法有C 23种,即P (X =2)=C 23C 35=310;当X =3时,取法有C22种,即P (X =3)=C 22C 35=110;∴E (X )=1×35+2×310+3×110=32.【变式3-8】已知随机变量X ,Y 满足Y =2X +1,且随机变量X 的分布列如下:X 012P1613a则随机变量Y 的方差D (Y )等于()A.59B.209C.43D.299【答案】B【解析】由分布列的性质,得a =1-16-13=12,所以E (X )=0×16+1×13+2×12=43,所以D (X )×16+×13+×12=59,又Y =2X +1,所以D (Y )=4D (X )=209.【变式3-9】已知m ,n 为正常数,离散型随机变量X 的分布列如表:X -101Pm14n若随机变量X 的均值E (X )=712,则mn =________,P (X ≤0)=________.【答案】11813【解析】+n +14=1,-m =712,=112,=23,所以mn =118,P (X ≤0)=m +14=13.【变式3-10】(2022·邯郸模拟)小张经常在某网上购物平台消费,该平台实行会员积分制度,每个月根据会员当月购买实物商品和虚拟商品(充话费等)的金额分别进行积分,详细积分规则以及小张每个月在该平台消费不同金额的概率如下面的表1和表2所示,并假设购买实物商品和购买虚拟商品相互独立.表1购买实物商品(元)(0,100)[100,500)[500,1000)积分246概率141214表2购买虚拟商品(元)(0,20)[20,50)[50,100)[100,200)积分1234概率13141416(1)求小张一个月购买实物商品和虚拟商品均不低于100元的概率;(2)求小张一个月积分不低于8分的概率;(3)若某个月小张购买了实物商品和虚拟商品,消费均低于100元,求他这个月的积分X 的分布列与均值.【解析】(1)小张一个月购买实物商品不低于100元的概率为12+14=34,购买虚拟商品不低于100元的概率为16,因此所求概率为34×16=18.(2)根据条件,积分不低于8分有两种情况:①购买实物商品积分为6分,购买虚拟商品的积分为2,3,4分;②购买实物商品积分为4分,购买虚拟商品的积分为4分,故小张一个月积分不低于8分的概率为14×+12×16=14.(3)由条件可知X 的可能取值为3,4,5.P (X =3)=1313+14+14=25,P (X =4)=P (X =5)=1413+14+14=310,即X 的分布列如下:X 345P25310310E (X )=3×25+4×310+5×310=3910.考点4均值与方差在决策中的作用【例4】2021年3月5日李克强总理在政府作报告中特别指出:扎实做好碳达峰,碳中和各项工作,制定2030年前碳排放达峰行动方案,优化产业结构和能源结构.某环保机器制造商为响应号召,对一次购买2台机器的客户推出了两种超过机器保修期后5年内的延保维修方案:方案一:交纳延保金5000元,在延保的5年内可免费维修2次,超过2次每次收取维修费1000元;方案二:交纳延保金6230元,在延保的5年内可免费维修4次,超过4次每次收取维修费t 元;制造商为制定收取标准,为此搜集并整理了200台这种机器超过保修期后5年内维修的次数,统计得到下表:维修次数0123机器台数20408060以这200台机器维修次数的频率代替1台机器维修次数发生的概率,记X 表示2台机器超过保修期后5年内共需维修的次数.(1)求X 的分布列;(2)以所需延保金与维修费用之和的均值为决策依据,为使选择方案二对客户更合算,应把t 定在什么范围?【分析】(1)由题设描述确定2台机器超过保修期后5年内共需维修的次数的可能值,并确定对应的基本事件,进而求各可能值的概率,写出分布列.(2)根据(1)所得分布列,由各方案的费用与维修次数的关系写出费用的分布列,并求期望,通过期望值的大小关系求参数的范围.【解析】(1)由题意得,X =0,1,2,3,4,5,6,P (X =0)=110×110=1100,P (X =1)=110×15×2=125,P (X =2)=110×25×2+15×15=325,P (X =3)=110×310×2+15×25×2=1150,P (X =4)=310×15×2+25×25=725,P (X =5)=310×25×2=625,P (X =6)=310×310=9100,∴X 的分布列为X 0123456P110012532511507256259100(2)选择方案一:所需费用为Y 1元,则X ≤2时,Y 1=5000,X =3时,Y 1=6000;X =4时,Y 1=7000;X =5时,Y 5=8000,X =6时,Y 1=9000,∴Y 1的分布列为Y 150006000700080009000P1710011507256259100E (Y 1)=5000×17100+6000×1150+7000×725+8000×625+9000×9100=6860,选择方案二:所需费用为Y 2元,则X ≤4时,Y 2=6230;X =5时,Y 2=6230+t ;X =6时,Y 2=6230+2t ,则Y 2的分布列为Y 262306230+t 6230+2t P671006259100E (Y 2)=6230×67100+(6230+t )×625+(6230+2t )×9100=6230+21t50,要使选择方案二对客户更合算,则E (Y 2)<E (Y 1),∴6230+21t50<6860,解得t <1500,即t 的取值范围为[0,1500).【总结】利用均值、方差进行决策的2个方略(1)当均值不同时,两个随机变量取值的水平可见分歧,可对问题作出判断.(2)若两随机变量均值相同或相差不大,则可通过分析两变量的方差来研究随机变量的离散程度或者稳定程度,进而进行决策.【变式4-1】直播带货是扶贫助农的一种新模式,这种模式是利用主流媒体的公信力,聚合销售主播的力量助力打通农产品产销链条,切实助力贫困地区农民脱贫增收.某贫困地区有统计数据显示,2020年该地利用网络直播形式销售农产品的销售主播年龄等级分布如图1所示,一周内使用直播销售的频率分布扇形图如图2所示.若将销售主播按照年龄分为“年轻人”(20岁~39岁)和“非年轻人”(19岁及以下或者40岁及以上)两类,将一周内使用的次数为6次或6次以上的称为“经常使用直播销售用户”,使用次数为5次或不足5次的称为“不常使用直播销售用户”,则“经常使用直播销售用户”中有56是“年轻人”.(1)现对该地相关居民进行“经常使用网络直播销售与年龄关系”的调查,采用随机抽样的方法,抽取一个容量为200的样本,请你根据图表中的数据,完成2×2列联表,并根据列联表判断是否有85%的把握认为经常使用网络直播销售与年龄有关?使用直播销售情况与年龄列联表年轻人非年轻人合计经常使用直播销售用户不常使用直播销售用户合计(2)某投资公司在2021年年初准备将1000万元投资到“销售该地区农产品”的项目上,现有两种销售方案供选择:方案一:线下销售.根据市场调研,利用传统的线下销售,到年底可能获利30%,可能亏损15%,也可能不赔不赚,且这三种情况发生的概率分别为710,15,110;方案二:线上直播销售.根据市场调研,利用线上直播销售,到年底可能获利50%,可能亏损30%,也可能不赔不赚,且这三种情况发生的概率分别为35,310,110.针对以上两种销售方案,请你从期望和方差的角度为投资公司选择一个合理的方案,并说明理由.参考数据:独立性检验临界值表α0.150.100.0500.0250.010x α2.0722.7063.8415.0246.635其中,χ2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ),n =a +b +c +d .【解析】(1)由图1知,“年轻人”占比为45.5%+34.5%=80%,即有200×80%=160(人),“非年轻人”有200-160=40(人),由图2知,“经常使用直播销售用户”占比为30.1%+19.2%+10.7%=60%,即有200×60%=120(人),“不常使用直播销售用户”有200-120=80(人).“经常使用直播销售用户的年轻人”有120×56=100(人),“经常使用直播销售用户的非年轻人”有120-100=20(人).∴补全的列联表如下:年轻人非年轻人合计经常使用直播销售用户10020120不常使用直播销售用户602080合计16040200于是a =100,b =20,c =60,d =20.∴χ2=200×(100×20-60×20)2120×80×160×40=2512≈2.083>2.072,即有85%的把握认为经常使用网络直播销售与年龄有关.(2)若按方案一,设获利X 1万元,则X 1可取的值为300,-150,0,X 1的分布列为:X 1300-1500p71015110E (X 1)=300×710+(-150)×15+0×110=180(万元),D(X1)=(300-180)2×710+(-150-180)2×15+(0-180)2×110=1202×710+3302×15+1802×110=35100若按方案二,设获利X2万元,则X2可取的值为500,-300,0,X2的分布列为:X2500-3000p 35310110E(X2)=500×35+(-300)×310+0×110=210(万元),D(X2)=(500-210)2×35+(-300-210)2×310+(0-210)2×110=2902×35+5102×310+2102×110=132900∵E(X1)<E(X2),D(X1)<D(X2),由方案二的均值要比方案一的均值大,从获利角度来看方案二更大,故选方案二.由方案二的方差要比方案一的方差大得多,从稳定性方面看方案一线下销售更稳妥,故选方案一.【变式4-2】某班体育课组织篮球投篮考核,考核分为定点投篮与三步上篮两个项目.每个学生在每个项目投篮5次,以规范动作投中3次为考核合格,定点投篮考核合格得4分,否则得0分;三步上篮考核合格得6分,否则得0分.现将该班学生分为两组,一组先进行定点投篮考核,一组先进行三步上篮考核,若先考核的项目不合格,则无需进行下一个项目,直接判定为考核不合格;若先考核的项目合格,则进入下一个项目进行考核,无论第二个项目考核是否合格都结束考核.已知小明定点投篮考核合格的概率为0.8,三步上篮考核合格的概率为0.7,且每个项目考核合格的概率与考核次序无关.(1)若小明先进行定点投篮考核,记X为小明的累计得分,求X的分布列;(2)为使累计得分的均值最大,小明应选择先进行哪个项目的考核?并说明理由.【解析】(1)由已知可得,X的所有可能取值为0,4,10,则P(X=0)=1-0.8=0.2,P(X=4)=0.8×(1-0.7)=0.24,P(X=10)=0.8×0.7=0.56,所以X的分布列为X0410P0.20.240.56(2)小明应选择先进行定点投篮考核,理由如下:由(1)可知小明先进行定点投篮考核,累计得分的均值为E(X)=0×0.2+4×0.24+10×0.56=6.56,若小明先进行三步上篮考核,记Y为小明的累计得分,则Y的所有可能取值为0,6,10,P(Y=0)=1-0.7=0.3,P (Y =6)=0.7×(1-0.8)=0.14,P (Y =10)=0.7×0.8=0.56,则Y 的均值为E (Y )=0×0.3+6×0.14+10×0.56=6.44,因为E (X )>E (Y ),所以为使累计得分的均值最大,小明应选择先进行定点投篮考核.【变式4-3】为加快某种病毒的检测效率,某检测机构采取“k 合1检测法”,即将k 个人的拭子样本合并检测,若为阴性,则可以确定所有样本都是阴性的;若为阳性,则还需要对本组的每个人再做检测.现有100人,已知其中2人感染病毒.(1)①若采用“10合1检测法”,且两名患者在同一组,求总检测次数;②已知10人分成一组,分10组,两名感染患者在同一组的概率为111,定义随机变量X 为总检测次数,求检测次数X 的分布列和均值E (X );(2)若采用“5合1检测法”,检测次数Y 的均值为E (Y ),试比较E (X )和E (Y )的大小(直接写出结果).【解析】(1)①对每组进行检测,需要10次;再对结果为阳性的一组每个人进行检测,需要10次,所以总检测次数为20.②由题意,X 可以取20,30,P (X =20)=111,P (X =30)=1-111=1011,则X 的分布列为X 2030P1111011所以E (X )=20×111+30×1011=32011.(2)由题意,Y 可以取25,30,两名感染者在同一组的概率为P 1=C 120C 22C 398C 5100=499,不在同一组的概率为P 1=9599,则E (Y )=25×499+30×9599=295099>E (X ).【变式4-4】(2022·莆田质检)某工厂生产一种精密仪器,由第一、第二和第三工序加工而成,三道工序的加工结果相互独立,每道工序的加工结果只有A ,B 两个等级.三道工序的加工结果直接决定该仪器的产品等级:三道工序的加工结果均为A 级时,产品为一等品;第三工序的加工结果为A 级,且第一、第二工序至少有一道工序加工结果为B 级时,产品为二等品;其余均为三等品.每一道工序加工结果为A 级的概率如表一所示,一件产品的利润(单位:万元)如表二所示:表一工序第一工序第二工序第三工序概率0.50.750.8表二等级一等品二等品三等品利润2385(1)用η表示一件产品的利润,求η的分布列和均值;(2)因第一工序加工结果为A 级的概率较低,工厂计划通过增加检测成本对第一工序进行改良,假如改良过程中,每件产品检测成本增加x (0≤x ≤4)万元(即每件产品利润相应减少x 万元)时,第一工序加工结果为A 级的概率增加19x .问该改良方案对一件产品利润的均值是否会产生影响?并说明理由.【解析】(1)由题意可知,η的所有可能取值为23,8,5,产品为一等品的概率为0.5×0.75×0.8=0.3,产品为二等品的概率为(1-0.5×0.75)×0.8=0.5,产品为三等品的概率为1-0.3-0.5=0.2,所以η的分布列为η2385P0.30.50.2E (η)=23×0.3+8×0.5+5×0.2=11.9.(2)改良方案对一件产品的利润的均值不会产生影响,理由如下:在改良过程中,每件产品检测成本增加x (0≤x ≤4)万元,第一工序加工结果为A 级的概率增加19x ,设改良后一件产品的利润为ξ,则ξ的所有可能取值为23-x,8-x,5-x ,+19x 0.75×0.8=0.3+x15,二等品的概率为10.75×0.8=0.5-x15,三等品的概率为10.2,所以E (ξ)-x )-x )+0.2×(5-x )=6.9-0.3x +2315x -115x 2+4-0.5x -815x +1152+1-0.2x =11.9,因为E (ξ)=E (η),所以改良方案对一件产品的利润的均值不会产生影响.1.(多选)设离散型随机变量X 的分布列如下表:X 12345Pm0.10.2n0.3若离散型随机变量Y =-3X +1,且E (X )=3,则()A .m =0.1B .n =0.1C .E (Y )=-8D .D (Y )=-7.8【答案】BC【解析】由E (X )=1×m +2×0.1+3×0.2+4×n +5×0.3=3得m +4n =0.7,又由m +0.1+0.2+n +0.3=1得m +n =0.4,从而得m =0.3,n =0.1,故A 选项错误,B 选项正确;E (Y )=-3E (X )+1=-8,故C 选项正确;因为D (X )=0.3×(1-3)2+0.1×(2-3)2+0.1×(4-3)2+0.3×(5-3)2=2.6,所以D (Y )=(-3)2D (X )=23.4,故D 选项错误.2.已知随机变量ξ的分布列如下表,D (ξ)表示ξ的方差,则D (2ξ+1)=___________.ξ012pa1-2a14【答案】2【解析】由题意可得:a +1-2a +14=1,解得a =14,ξ012p141214所以E (ξ)=0×14+1×12+2×14=1,D (ξ)=14(0-1)2+12×(1-1)2+14×(2-1)2=12,D (2ξ+1)=22D (ξ)=2.3.京西某地到北京西站有阜石和莲石两条路,且到达西站所用时间互不影响.下表是该地区经这两条路抵达西站所用时长的频率分布表:时间(分钟)10~2020~3030~4040~5050~60莲石路(L 1)的频率0.10.20.30.20.2阜石路(L 2)0.10.40.40.1的频率若甲、乙两人分别有40分钟和50分钟的时间赶往西站(将频率视为概率)(1)甲、乙两人应如何选择各自的路径?(2)按照(1)的方案,用X表示甲、乙两人按时抵达西站的人数,求X的分布列和数学期望.【解析】(1)A i表示事件“甲选择路径L i时,40分钟内赶到火车站”,B1表示事件“乙选择路径L i时,50分钟内赶到火车站”,i=1,2,用频率估计相应的概率,则有P(A1)=0.1+0.2+0.3=0.6,P(A2)=0.1+0.4=0.5,P(A1)>P(A2),所以甲应选择路径L1;P(B1)=0.1+0.2+0.3+0.2=0.8,P(B2)=0.1+0.4+0.4=0.9,P(B1)<P(B2),所以乙应选择路径L2;(2)用A,B分别表示针对(1)的选择方案,甲,乙在各自的时间内到达火车站,由(1)知P(A)=0.6,P(B)=0.9,且A,B相互独立,X的取值是0,1,2,P(X=0)=P(A-B-)=0.1×0.4=0.04,P(X=1)=P(A-B+A B-)=0.4×0.9+0.6×0.1=0.42,P(X=2)=P(AB)=0.9×0.6=0.54,所以X的分布列为:X012P0.040.420.54E(X)=0×0.04+1×0.42+2×0.54=1.5.4.品酒师需定期接受酒味鉴别功能测试,通常采用的测试方法如下:拿出n(n∈N*且n≥4)瓶外观相同但品质不同的酒让品酒师品尝,要求其按品质优劣为它们排序;经过一段时间,等其记忆淡忘之后,再让其品尝这n瓶酒,并重新按品质优劣为它们排序.这称为一轮测试,根据一轮测试中的两次排序的偏离程度的高低为其评分.现分别以a1,a2,a3,…,a n表示第一次排序时被排在1,2,3,…,n的n种酒在第二次排序时的序号,并令X=|1-a1|+|2-a2|+|3-a3|+...+|n-a n|,则X是对两次排序的偏离程度的一种描述.下面取n=4研究,假设在品酒师仅凭随机猜测来排序的条件下,a1,a2,a3,a4等可能地为1,2,3,4的各种排列,且各轮测试相互独立.(1)直接写出X的可能取值,并求X的分布列和数学期望;(2)若某品酒师在相继进行的三轮测试中,都有X≤2,则认为该品酒师有较好的酒味鉴别功能.求出现这种现象的概率,并据此解释该测试方法的合理性.【解析】(1)X的可能取值为0,2,4,6,8P(X=0)=1A44=124,。
2.1.2 离散型随机变量的分布列
2.1.2 离散型随机变量的分布列1.离散型随机变量的分布列(1)定义:一般地,若离散型随机变量X 可能取的不同值为x 1、x 2、…、x i 、…、x n ,X 取每一个值x i (i =1,2,…,n )的概率P (X =x i )=p i ,以表格的形式表示如下:(2)表示:离散型随机变量可以用表格法、解析法、图象法表示. (3)性质:离散型随机变量的分布列具有如下性质: ①p i ≥0,i =1,2,…,n ; ②11=∑=ni ip2.两个特殊分布列 (1)两点分布列如果随机变量X 的分布列是P (X =1)为成功概率. (2)超几何分布列一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则事件{X =k }发生的概率为P (X =k )=nNkn MN k M C C C --,k =0,1,2,…,m ,其中m =min{M ,n },且n ≤N ,M ≤N ,n 、M 、N ∈N *,称分布列如果随机变量X 的分布列为超几何分布列,则称随机变量X 服从超几何分布.(3)公式P (X =k )=C k M C n -k N -MC n N的推导由于事件{X =k }表示从含有M 件次品的N 件产品中,任取n 件,其中恰有k 件次品这一随机事件,因此它的基本事件为从N 件产品中任取n 件.由于任一个基本事件是等可能出现的,并且它有nN C 个基本事件,而其中恰有k 件次品,则必有(n -k )件正品,因此事件{X =k }中含有kn M N k M C C --个基本事件,由古典概型的概率公式可知P (X =k )=C k M C n -kN -MC n N.[知识点拨]1.离散型随机变量分布列表格形式的结构特征分布列的结构为两行,第一行为随机变量的所有可能取得的值;第二行为对应于随机变量取值的事件发生的概率.看每一列,实际上是:上为“事件”,下为事件发生的概率. 2.两点分布的特点(1)两点分布中只有两个对应结果,且两个结果是对立的. (2)由对立事件的概率求法可知:P(X =0)+P(X =1)=1.3.两点分布的适用范围(1)研究只有两个结果的随机试验的概率分布规律. (2)研究某一随机事件是否发生的概率分布规律.如抽取的彩券是否中奖;买回的一件产品是否为正品;新生婴儿的性别;投篮是否命中等,都可以用两点分布列来研究.4.对超几何分布的三点说明 (1)超几何分布的模型是不放回抽样. (2)超几何分布中的参数是M ,N ,n.(3)超几何分布可解决产品中的正品和次品、盒中的白球和黑球、同学中的男和女等问题,往往由差异明显的两部分组成.题型一、离散型随机变量的分布列例1、一袋中装有6个同样大小的小球,编号分别为1、2、3、4、5、6,现从中随机取出3个球,以X 表示取出球的最大号码,求X 的分布列.[解析] 随机变量X 的可能取值为3、4、5、6.从袋中随机地取出3个球,包含的基本事件总数为C 36,事件“X =3”包含的基本事件总数为C 33;事件“X =4”包含的基本事件总数为C 23;事件“X =5”包含的基本事件总数为C 24;事件“X =6”包含的基本事件总数为C 25.从而有P (X =3)=C 33C 36=120,P (X =4)=C 23C 36=320,P (X =5)=C 24C 36=310,P (X =6)=C 25C 36=12.所以随机变量X 的分布列如下表:例[解析] 将一颗骰子连掷两次共出现6×6=36种等可能的基本事件,其最大点数ξ可能取的值为1、2、3、4、5、6.P (ξ=1)=136,ξ=2包含三个基本事件(1,2)、(2,1)、(2,2),(x ,y )表示第一枚骰子点数为x ,第二枚骰子点数为y .∴P (ξ=2)=336=112.同理可求P (ξ=3)=536,P (ξ=4)=736,P (ξ=5)=14,P (ξ=6)=1136,∴ξ的分布列为例3、设随机变量ξ的分布列为P (ξ=k )=a (13)k .(k =1,2,…,n ),求实数a 的值.[解析] 依题意,有P (ξ=1)=13a ,P (ξ=2)=(13)2a ,…,P (ξ=n )=(13)n a ,由P (ξ=1)+P (ξ=2)+…+P (ξ=n )=1知,a (13+132+…+13n )=1.则a ·13(1-13n )1-13=1.∴a =2×3n 3n -1.例4、(1)设随机变量X 的分布列P (X =i )=k2i (i =1,2,3),则P (X ≥2)=________.(2)设随机变量X 的概率分布列为,则P (|X -3|=1)=________.[答案] (1)37 (2)512题型三、两点分布例5、袋内有10个白球,5个红球,从中摸出2个球,记X =⎩⎨⎧0,两球全红;1,两球非全红.求X 的分布列.[解析] 由题设可知X 服从两点分布P (X =0)=C 25C 215=221,P (X =1)=1-P (X =0)=1921.∴X 的分布列为例6η,才能使η满足两点分布,并求其分布列.[解析] 随机变量η可以定义为:η=⎩⎨⎧1 掷出点数小于4,0 掷出点数不小于4.显然η只取0,1两个值.且P (η=1)=P (掷出点数小于4)=36=12,故η的分布列为题型四、超几何分布列例7、盒中有16个白球和4个黑球,从中任意取出3个,设ξ表示其中黑球的个数,求出ξ的分布列.(精确到0.001)[解析] ξ可能取的值为0、1、2、3,P (ξ=0)=C 04C 316C 320≈0.491,P (ξ=1)=C 14C 216C 320≈0.421,P (ξ=2)=C 24C 116C 320≈0.084,P (ξ=3)=C 34C 016C 320≈0.004.∴ξ的分布列为箱中任取(无放回,且每球取到的机会均等)3个球,记随机变量X 为取出此3球所得分数之和.求X 的分布列.[解析] 由题意得X 取3、4、5、6,且P (X =3)=C 35C 39=542;P (X =4)=C 14·C 25C 39=1021;P (X =5)=C 24·C 15C 39=514;P (X =6)=C 34C 39=121. 所以X 的分布列为题型五、综合应用例9、已知A 盒中有2个红球和2个黑球;B 盒中有2个红球和3个黑球,现从A 盒与B 盒中同时各取出一个球再放入对方盒中.(1)求A 盒中有2个红球的概率;(2)求A 盒中红球数ξ的分布列.[解析] (1)A 盒与B 盒中各取出一个球来再放入对方盒中后,A 盒中还有2个红球有下面两种情况:①互换的是红球,将该事件记为A 1,则P (A 1)=C 12·C 12C 14·C 15=15. ②互换的是黑球,将该事件记为A 2,则P (A 2)=C 12·C 13C 14·C 15=310.故A 盒中有2个红球的概率为P =P (A 1)+P (A 2)=15+310=12.(2)A 盒中红球数ξ的所有可能取值为1,2,3.而P (ξ=1)=C 12·C 13C 14·C 15=310;P (ξ=2)=12; P (ξ=3)=C 12·C 12C 14·C 15=15,因而ξ的分布列为抽签的方式随机确定各单位的演出顺序(序号为1,2,…,6),求:(1)甲、乙两单位的演出序号至少有一个为奇数的概率; (2)甲、乙两单位之间的演出单位个数X 的分布列.[解析] (1)设A 表示“甲、乙的演出序号至少有一个为奇数”,则A -表示“甲、乙的演出序号均为偶数”,由等可能性事件的概率计算公式,得P (A )=1-P (A -)=1-C 23C 26=1-15=45.(2)X 的所有可能值为0、1、2、3、4,且P (X =0)=5C 26=13;P (X =1)=4C 26=415;P (X =2)=3C 26=15;P (X =3)=2C 26=215;P (X =4)=1C 26=115.从而知X 的分布列为:用完后装回盒中,此时盒中旧球个数ξ是一个随机变量,求ξ的分布列.[正解] ξ的所有可能取值为3,4,5,6.P (ξ=3)=C 33C 312=1220;P (ξ=4)=C 19C 23C 312=27220;P (ξ=5)=C 29C 13C 312=2755;P (ξ=6)=C 39C 312=2155.所以ξ的分布列为例12在学校组织的足球比赛中,某班要与其他4个班级各赛一场,在这4场比赛的任意一场中,此班级每次胜、负、平的概率相等.已知当这4场比赛结束后,该班胜场多于负场.(1)求该班级胜场多于负场的所有可能的个数和; (2)若胜场次数为X ,求X 的分布列.[解析] (1)若胜一场,则其余为平,共有C 14=4种情况;若胜两场,则其余两场为一负一平或两平,共有C 24C 12+C 24=18种情况;若胜三场,则其余一场为负或平,共有C 34×2=8种情况;若胜四场,则只有一种情况.综上,共有31种情况.(2)X 的可能取值为1,2,3,4,P (X =1)=431,P (X =2)=1831,P (X =3)=831,P (X =4)=131,所以X 的分布列为课后作业1.已知随机变量X 的分布列为:P (X =k )=12k ,k =1、2、…,则P (2<X ≤4)=( )A .316B .14C .116D .516[答案] A[解析] P (2<X ≤4)=P (X =3)+P (X =4) =123+124=316. 2.已知随机变量ξ的概率分布如下:则P (ξ=10)=( A .239 B .2310 C .139D .1310[答案] C[解析] P (ξ=10)=m =1-⎝⎛⎭⎫23+232+…+239=1-23⎣⎡⎦⎤1-⎝⎛⎭⎫1391-13=139.3.已知随机变量ξ的分布列为P (ξ=i )=i2a(i =1,2,3),则P (ξ=2)=( )A .19B .16C .13D .14[答案] C[解析] 由离散型随机变量分布列的性质知12a +22a +32a =1,∴62a =1,即a =3,∴P (ξ=2)=1a =13.4.已知在10件产品中可能存在次品,从中抽取2件检查,其次品数为ξ,已知P (ξ=1)=1645,且该产品的次品率不超过40%,则这10件产品的次品率为( )A .10%B .20%C .30%D .40%[答案] B[解析] 设10件产品中有x 件次品,则P (ξ=1)=C 1x ·C 110-xC 210=x (10-x )45=1645,∴x =2或8. ∵次品率不超过40%,∴x =2, ∴次品率为210=20%.5.设随机变量ξ的概率分布为P (ξ=k )=ck +1,k =0、1、2、3,则c =________.[答案]1225[解析] c +c 2+c 3+c 4=1,∴c =1225.6.已知离散型随机变量X 的分布列P (X =k )=k15,k =1、2、3、4、5,令Y =2X -2,则P (Y >0)=________.[答案]1415[解析] 由已知Y 取值为0、2、4、6、8,且P (Y =0)=115,P (Y =2)=215,P (Y =4)=315=15,P (Y =6)=415,P (Y =8)=515.则P (Y >0)=P (Y =2)+P (Y =4)+P (Y =6)+P (Y =8)=1415. 7.某学院为了调查本校学生2015年9月“健康上网”(健康上网是指每天上网不超过两个小时)的天数情况,随机抽取了40名本校学生作为样本,统计他们在该月30天内健康上网的天数,并将所得的数据分成以下六组:[0,5],(5,10],(10,15],…,(25,30],由此画出样本的频率分布直方图,如图所示.导学号 03960365(1)根据频率分布直方图,求这40名学生中健康上网天数超过20天的人数;(2)现从这40名学生中任取2名,设Y 为取出的2名学生中健康上网天数超过20天的人数,求Y 的分布列.[解析] (1)由图可知,健康上网天数未超过20天的频率为(0.01+0.02+0.03+0.09)×5=0.15×5=0.75,所以健康上网天数超过20天的学生人数是40×(1-0.75)=40×0.25=10. (2)随机变量Y 的所有可能取值为0、1、2.P (Y =0)=C 230C 240=2952;P (Y =1)=C 110C 130C 240=513;P (Y =2)=C 210C 240=352.所以Y 的分布列为:8.将一骰子抛掷两次,所得向上的点数分别为m 和n ,则函数y =23mx 3-nx +1在[1,+∞)上为增函数的概率是( )A .12B .56C .34D .23[答案] B[解析] 由题可知,函数y =23mx 3-nx +1在[1,+∞)上单调递增,所以y ′=2mx 2-n ≥0在[1,+∞)上恒成立,所以2m ≥n ,则不满足条件的(m ,n )有(1,3),(1,4),(1,5),(1,6),(2,5),(2,6)共6种情况,所以满足条件的共有30种情况,则函数y =23mx 3-nx +1在[1,+∞)上单调递增的概率为P =3036=56,故选B .9.从6名男同学和4名女同学中随机选出3名同学参加一项竞技测试,则在选出的3名同学中,至少有一名女同学的概率是______.[答案] 56[解析] 从10名同学中选出3名同学有C 310种不同选法,在3名同学中没有女同学的选法有C 36种,∴所求概率为P =1-C 36C 310=56.10.某校2015~2016学年高二年级某班的数学课外活动小组有6名男生,4名女生,从中选出4人参加数学竞赛考试,用X 表示其中男生的人数.(1)请列出X 的分布列;(2)根据你所列的分布列求选出的4人中至少有3名男生的概率. [解析] (1)依题意得,随机变量X 服从超几何分布, ∵随机变量X 表示其中男生的人数,∴X 可能取的值为0,1,2,3,4.∴P (X =k )=C k 6·C 4-k4C 410,k =0,1,2,3,4.∴X 的分布列为:(2)即P (X ≥3)=P (X =3)+P (x =4)=821+114=1942.11.盒子中装着标有数字1、2、3、4、5的卡片各2张,从盒子中任取3张卡片,每张卡片被取出的可能性都相等,用ξ表示取出的3张卡片上的最大数字,求: (1)取出的3张卡片上的数字互不相同的概率; (2)随机变量ξ的概率分布.[解析] (1)记“一次取出的3张卡片上的数字互不相同的事件”为A ,则P (A )=C 35C 12C 12C 12C 310=23. (2)由题意ξ可能的取值为2、3、4、5,P (ξ=2)=C 22C 12+C 12C 22C 310=130, P (ξ=3)=C 24C 12+C 14C 22C 310=215,P (ξ=4)=C 26C 12+C 16C 22C 310=310, P (ξ=5)=C 28C 12+C 18C 22C 310=815.所以随机变量ξ的分布列为:。
离散型随机变量及其分布列知识点
离散型随机变量及其分布列知识点离散型随机变量及其分布列知识点离散型随机变量是指在有限个或无限个取值中,只能取其中一个数值的随机变量。
离散型随机变量可以用分布列来描述其概率分布特征。
离散型随机变量的概率分布列概率分布列是描述离散型随机变量的概率分布的表格,通常用符号P 表示。
其一般形式如下:P(X=x1)=p1P(X=x2)=p2P(X=x3)=p3…P(X=xn)=pn其中,Xi表示随机变量X的取值,pi表示随机变量X取值为Xi的概率。
离散型随机变量的特点1. 离散型随机变量只取有限或无限个取值中的一个,变化不连续。
2. 取值之间具有间隔或间距。
3. 每个取值对应一个概率,概率分布可用概率分布列来体现。
4. 概率之和为1。
离散型随机变量的常见分布1. 0-1分布0-1分布是指当进行一次伯努利试验时,事件发生的概率为p,不发生的概率为1-p的离散型随机变量的分布。
其分布列为:P(X=0)=1-pP(X=1)=p2. 二项分布二项分布是进行n次伯努利试验中,事件发生的概率为p,不发生的概率为1-p时,恰好出现k次事件发生的离散型随机变量的分布。
其分布列为:P(X=k)=C(n,k)p^k(1-p)^(n-k)其中,C(n,k)为从n中选出k个的组合数。
3. 泊松分布泊松分布是指在某个时间段内,某一事件发生的次数符合泊松定理的离散型随机变量的分布。
其分布列为:P(X=k)=λ^ke^(-λ)/k!其中,λ为这段时间内事件的平均发生次数。
总结离散型随机变量及其分布列是概率论中的重要基础概念之一,具有广泛的应用。
掌握离散型随机变量及其分布列的知识点对于深入理解概率论及其实际应用有重要意义。
离散型随机变量的分布列
离散型随机变量的分布列1.随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量. 随机变量常用希腊字母ξ、η等表示.2. 离散型随机变量:对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量. 3.连续型随机变量: 对于随机变量可能取的值,可以取某一区间内的一切值,这样的变量就叫做连续型随机变量.4.离散型随机变量与连续型随机变量的区别与联系: 离散型随机变量与连续型随机变量都是用变量表示随机试验的结果;但是离散型随机变量的结果可以按一定次序一一列出,而连续性随机变量的结果不可以一一列出. 若ξ是随机变量,b a b a ,,+=ξη是常数,则η也是随机变量. 并且不改变其属性(离散型、连续型) . 1. 分布列:设离散型随机变量ξ可能取得值为 x 1,x 2,…,x 3,…,ξ取每一个值x i (i =1,2,…)的概率为()i i P x p ξ==,则称表为随机变量ξ的概率分布,简称ξ的分布列 .2. 分布列的两个性质:任何随机事件发生的概率都满足:1)(0≤≤A P ,并且不可能事件的概率为0,必然事件的概率为1.由此你可以得出离散型随机变量的分布列都具有下面两个性质:⑴P i ≥0,i =1,2,...; ⑵P 1+P 2+ (1)对于离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率的和 .即⋅⋅⋅+=+==≥+)()()(1k k k x P x P x P ξξξ .3.两点分布列:例1.在掷一枚图钉的随机试验中,令⎧⎨⎩1,针尖向上;X =0,针尖向下.如果针尖向上的概率为p ,试写出随机变量 X 的分布列.解:根据分布列的性质,针尖向下的概率是(1p -) .于是,随机变量 X 的分布列是.两点分布列的应用非常广泛.如抽取的彩券是否中奖;买回的一件产品是否为正品;新生婴儿的性别;投篮是否命中等,都可以用两点分布列来研究.如果随机变量X 的分布列为两点分布列,就称X 服从两点分布 ( two 一point distribution),而称p =P (X = 1)为成功概率.两点分布又称0一1分布.由于只有两个可能结果的随机试验叫伯努利( Bernoulli ) 试验,所以还称这种分布为伯努利分布.()q P ==0ξ, ()p P ==1ξ,10<<p ,1=+q p .4. 超几何分布列:例 2.在含有 5 件次品的 100 件产品中,任取 3 件,试求: (1)取到的次品数X 的分布列; (2)至少取到1件次品的概率.解: (1)由于从 100 件产品中任取3 件的结果数为310C ,从100 件产品中任取3件,其中恰有k 件次品的结果数为3595kkC C -,那么从 100 件产品中任取 3 件,其中恰有 k 件次品的概率为35953100(),0,1,2,3k kC C P X k k C -===。
人教版A版高中数学选修2-3:2.1.1 离散型随机变量(3)
4.二项分布的均值: 若X~B(n,p),则EX=np
例3.一次单元测验由20个选择题构成,每个选择题有4个选 项,其中有且仅有一个选项是正确答案,每题选择正确答 案得5分,不作出选择或选错不得分,满分100分.学生甲 选对任一题的概率为0.9,学生乙则在测验中对每题都从4个 选项中随机地选择一个.求学生甲和学生乙在这次英语单 元测验中的成绩的均值.
xi
…
P
p1
p2
…
pi
…
则称 EX=x1 p1+x2 p2+…+xi pi+… 为X的均值或数 学期望,数学期望又简称为期望.
2.离散型随机变量的均值的性质: E(aX+b)=aEX+b
3.两点分布的均值: 若X服从两点分布,则EX=p
4.二项分布的均值: 若X~B(n,p),则EX=np
六、布置作业
方法二:先求解解答一个选择题的得分的均值,再 乘以20即可.
思考7:甲同学一定能得90分吗?
90分代表什么呢?
四、针对性训练
1、随机变量ξ的分布列是
ξ
1
3
5
P 0.5 0.3 0.2
(1)则Eξ= 2.4 .
(2)若η=2ξ+1,则Eη= 5.8.
2、随机变量ξ的分布列是
ξ 4 7 9 10 P 0.3 a b 0.2
Eξ=7.5,则a= 0.1 b= 0.4.
3、 一个袋子里装有大小相同的3 个红 球和2个黄球,从中有放回地取每次一个, 共取5次,则取到红球次数的期望 是 3.
五、小结巩固
掌握离散型随机变量的均值的概念、性质及计算: 1.离散型随机变量的均值 一般地,若离散型随机变量X的分布列为
X
x1
x2
离散型随机变量及其分布列 2022-2023学年新教材高中数学选择性必修第三册人教A版
探究
试验2:抛掷一枚硬币直到出现正面为止,变量Y表示需要 的抛掷次数.
解:用h表示“正面朝上”,t表示“反面朝上”, 样本空间Ω2={h,th, tth , ttth , ......} Y={1,2,3,4,5,......}
总结
在上面两个随机试验中,每个样本点都有唯一的一个实数与 之对应.变量X,Y有如下共同点:
(1)取值依赖于样本点; (2)所有可能取值是明确的.
总结
一般地,对于随机试验样本空间Ω中的每个样本点ω,都有唯 一的实数X(ω)与之对应,我们称X为随机变量(random variable). 可能取值为有限个或可以一一列举的随机变量,我们称为离散型 随机变量(discrete random variable).通常用大写英文字母表示随 机变量,例如X,Y,Z;用小写英文字母表示随机变量的取值, 例如x,y,z.
等级
不及格
及格
中等
良
优
分数
1
2
3
4
5
人数
20
50
60
40
30
从这200名学生中任意选取1人,求所选同学分数X的 分布列,以及P(X ≥ 4).
例2 某学校高二年级有200名学生,他们的体育综合测试成绩分5个 等级,每个等级对应的分数和人数如示.
等级
不及格
及格
中等
良
优
分数
1
2
3
4
5
人数
20
50
60
40
为X的概率分布列, 简称分布列.
X
x1
x2
…
xi
…
xn
P
p1
p2
…
pi
专题离散型随机变量及其分布列(三)——比赛问题-讲义
专题:离散型随机变量的概率分布(三)——比赛问题一、甲乙二人进行乒乓球比赛,已知打一局比赛甲胜乙的概率是.23(1)分别计算三局两胜制和五局三胜制下,甲获胜的概率并指出比赛局数对甲乙二人的影响;(2)设随机变量X 表示三局两胜制下甲获胜的局数,求X 的分布列及期望.二、甲、乙两队各派5名选手参加围棋擂台赛,假设各队参赛选手的出场顺序确定.(1)求甲队的主将出场且甲队取得了擂台赛胜利的概率;(2)设甲队出场人数为X ,求X 的分布列及其期望.三、亚洲杯足球赛共有16支球队参赛,这16支球队先分成4个小组循环赛,每个小组4支球队,根据以往战绩先选定4支球队为种子队,分别担任A、B、C、D4个小组的种子球队,中国队没有成为种子球队.(1)求这16支球队分组的总方法数;(2)求中国队与日本队分在同一小组的概率(日本队是种子球队)(3)除4个种子球队外,中国队不希望与甲、乙、丙这3支球队分在同一组,设X表示甲、乙、丙这三支球队与中国队分在同一组的个数,求X的分布列与期望.四、6名奥运会志愿者全部参加A、B、C、D4个场馆的活动,每个场馆至少有1人参加,任意一人只能参加一个场馆的活动(1)求甲乙二人在同一场馆的概率;(2)场馆A的活动有两名志愿者参加的概率;(3)记参加场馆A活动的志愿者人数为X,求X的分布列.课后拓展练习注:此部分为老师根据本讲课程内容为大家精选的课下拓展题目,故不在课堂中讲解,请同学们课下自己练习并对照详解进行自测.题一题面:某迷宫有三个通道,进入迷宫的每个人都要经过一扇智能门.首次到达此门,系统会随机(即等可能)为你打开一个通道,若是1号通道,则需要1小时走出迷宫;若是2号、3号通道,则分别需要2小时、3小时返回智能门.再次到达智能门时,系统会随机打开一个你未到ξ过的通道,直至走完迷宫为止.令表示走出迷宫所需的时间.ξ(1)求的分布列;ξ(2)求的数学期望.题二题面:某市某房地产公司售楼部,对最近100位采用分期付款的购房者进行统计,统计结果如下表所示:付款方式分1期分2期分3期分4期分5期频数4020a10b已知分3期付款的频率为0.2,售楼部销售一套某户型的住房,顾客分1期付款,其利润为10万元;分2期、3期付款其利润都为15万元;分4期、5期付款其利润都为20万元,用表示销售一套该户型住房的利润.η(1)求上表中a ,b 的值;(2)若以频率分为概率,求事件A :“购买该户型住房的3位顾客中,至多有1位采用分3期付款”的概率P (A );(3)若以频率作为概率,求的分布列及数学期望E .ηη题三题面:某人居住在城镇的处,准备开车到单位处上班,若该地各路段发生堵车事A B 件都是相互独立的,且在同一路段发生堵车事件最多只有一次,发生堵车事件的概率如图(例如算作两个路段:路段发生堵车事件A C D →→AC 的概率为,路段发生堵车事件的概率为).15CD 18(Ⅰ)请你为其选择一条由到的最短路线(即此人只A B 选择从西向东和从南向北的路线),使得途中发生 堵车事件的概率最小;(Ⅱ)若记路线中遇到堵车次数为随机变量,求的数学期望.A C FB →→→ξξE ξACDB FE 121101415181316讲义参考答案金题精讲题一答案:(1)三局两胜制下,甲获胜的概率为;五局三胜制下,甲获胜的概率为,20276481因此,比赛局数越多对甲越有利E (X )=4427题二答案:(1)518E (X )=143题三答案:(1) 8870400 (2)14(3) X 的分布列为X 012P28552455355E (X ) =611题四答案:(1)(2)213926(3) X 的分布列X 123P1526926226E (X )=3926详解:(1)分组情况1、1、1、3;1、1、2、2总分法: 311141122463214654243223221560C C C C A C C C C A A A A ⨯⨯⨯⨯⨯⨯⨯⨯+=⨯甲乙在同一场馆的分法:11114211343214421332324240C C C C A C C C A A A ⋅⋅⋅⋅⋅⋅⋅⋅+=∴所求概率P 1=2402=156013(2)场馆A 有2人:211324213622540C C C A C A ⋅⋅⋅⋅=∴所求概率P 1=5409156026=(3)X 的可取值为1、2、3P (X =1)=113123154354362222(900151560156026C C A C C A C A A ⋅⋅⋅⋅⋅+==P (X =2)=5409156026=P (X =3)=336312021560156026C A ⋅==X 的分布列X 123P1526926226E (X )=15+18+6392626=课后拓展练习题一答案:(1) 的分布列ξξ1346p13161613(2)72详解:由已知:可以取的值有1,3,4,6.ξ,,∴1(1)3p ξ==111(3)326p ξ==⋅=111(4)326p ξ==⋅=11111(6)32323p ξ==⋅+⋅=的分布列为:∴ξξ1346p13161613的数学期望(小时).∴ξ11117134636632E ξ=⋅+⋅+⋅+⋅=题二答案:(1) (2) 20,10a b ==()0.896P A =(3) 的分布列ηη101520P 0.40.40.2E =14η详解:(1)由得0.2100a=20a =40201010010a b b ++++=∴= (2)“购买该户型住房的3位顾客中至多有1位采用了3期付款”的概率:3123()0.80.2(10.2)0.896P A C =+⨯-=(3)记分期付款的期数为,则=1,2,3,4,5.且有ξξ40(1)0.4,(2)0.2,(3)0.2100(4)0.1,(5)0.1P P P P P ξξξξξ=========== 的可能取值为:10,15,20η 且()()()()()()()()1010.415230.420450.2P P P P P P P P ηξηξξηξξ=======+=====+==故的分布列为ηη101520P0.40.40.2(万元)100.4150.4200.214E η∴=⨯+⨯+⨯=题三答案:(Ⅰ) 路线发生堵车事件的概率最小A C FB →→→ (Ⅱ) 3760E ξ=详解:(Ⅰ)由到的最短路线有条,A B 3即为:,,.A C DB →→→AC F B →→→A E F B →→→;47264()1583120P A C D B →→→=-⨯⨯=;43560()1546120P A C F B →→→=-⨯⨯=.1207565109211)(=⨯⨯-=→→→B F E A P 故路线发生堵车事件的概率最小.A C FB →→→(Ⅱ)路线中遇到堵车次数可取值为.;AC F B →→→ξ0,1,2,34331(0)5462P ξ==⨯⨯= ;135********(1)546546546120P ξ==⨯⨯+⨯⨯+⨯⨯=;11513141112(2)546546546120P ξ==⨯⨯+⨯⨯+⨯⨯=η101520P0.40.40.2. 1111(3)546120P ξ==⨯⨯=故.147121370123212012012060E ξ=⨯+⨯+⨯+⨯=。
2.1.2 离散型随机变量的分布列
23
11 32
一般地,若离散型随机变量X的所有可能取值
为x1,x2,…,xi,…, xn,X取每一个值xi(i= 1,2,…,n)的概率P(X=xi)=pi,以表格的形式
表示如下:
X x1 x2 … xi … xn P p1 p2 … pi … pn
上表称为离散型随机变量X的概率分布列,简称为X 的分布列.
P(X≥3)=P(X=3)+P(X=4)+P(X=5)
=
C C 3 53 10 3010
C140
C≈350041.0191C150
C55 30 10
C530
C350
C350
思考:若将这个游戏的中奖概率控制在55%左右,那 么应该如何设计中奖规则?
游戏规则可定为至少摸到2个红球就中奖.
【提升总结】 两点分布与超几何分布
(1)两点分布又称为0-1分布或伯努利分布,它反映 了随机试验的结果只有两种可能,如抽取的奖券是 否中奖;买回的一件产品是否为正品;一次投篮是 否命中等.在两点分布中,随机变量的取值必须是0 和1,否则就不是两点分布; (2)超几何分布列给出了一类用数字模型解决的问 题,对该类问题直接套用公式即可.但在解决相关
变量X的分布列具有上表的形式,则称随机变量X服
从超几何分布.
例3 在某年级的联欢会上设计了一个摸奖游戏, 在一个口袋中装有10个红球和20个白球,这些球除 颜色外完全相同.一次从中摸出5个球,至少摸到3 个红球就中奖,求中奖的概率.
解:设摸出红球的个数为X,则X服从超几何分布,
其中N=30,M=10,n=5.于是中奖的概率
X∈{1,2,3,4,5,6}, P(X i) 1 ,(i 1,2,3,4,5,6)
6
第十章 第五节 离散型随机变量的分布列及数字特征
(1)C 解析:D(3X-1)=9D(X),只需求 D(X)的最大值即可,根据题意 a+b
又 0≤p1≤1,∴0≤13 -d≤1,∴-23 ≤d≤13 .同理,由 0≤p3≤1,p3=d+13 , ∴-13 ≤d≤23 ,∴-13 ≤d≤13 ,即公差 d 的取值范围是-13,13 .
3.随机变量 X 的概率分布列如下:
X0
1
2
3
4
5
6
P
1 a
1 a
C16
1 a
C26
1 a
C36
1 a
为
X x1 x2 …
xi
…
xn
P p1 p2 …
pi
…
pn
则称 E(X)=x1p1+x2p2+…+xnpn 为 X 的数学期望或均值.
意义:离散型随机变量的数学期望刻画了这个离散型随机变量的平均水平.
(2)离散型随机变量的方差定义:
设离散型随机变量 X 的分布列为
X
x1
x2
…
xi
…
xn
P
p1
p2
…
X
-1
0
1
P
1 4
1 2
1 4
A.0 B.1 C.14
D.12
D 解析:E(X)=-1×14 +0×12 +1×14 =0,
则 D(X)=14 ×(-1-0)2+12 ×(0-0)2+14 ×(1-0)2=12 .
人教版数学高二选修2-3讲义离散型随机变量的分布列
2.1.2离散型随机变量的分布列1.理解取有限值的离散型随机变量及其分布列的概念与性质.2.会求出某些简单的离散型随机变量的分布列.(重点)3.理解两点分布和超几何分布及其推导过程,并能简单的运用.(难点)[基础·初探]教材整理1离散型随机变量的分布列阅读教材P46~P47例1上面倒数第二行,完成下列问题.1.定义一般地,若离散型随机变量X可能取的不同值为x1,x2,…,x i,…,x n,X 取每一个值x i(i=1,2,…,n)的概率P(X=x i)=p i,以表格的形式表示如下:X x1x2…x i…x nP p1p2…p i…p n的概率分布列,简称为的分布列.为了简单起见,也用等式P(X=x i)=p i,i=1,2,…,n表示X的分布列.2.性质(1)p i≥0,i=1,2,…,n;(2)i=1np i=1.1.判断(正确的打“√”,错误的打“×”)(1)在离散型随机变量分布列中,每一个可能值对应的概率可以为任意的实数.()(2)离散型随机变量的分布列的每个随机变量取值对应概率都相等.()(3)在离散型随机变量分布列中,所有概率之和为1.()【解析】(1)×因为在离散型随机变量分布列中每一个可能值对应随机事件的概率均在[0,1]范围内.(2)×因为分布列中的每个随机变量能代表的随机事件,并非都是等可能发生的事件.(3)√由分布列的性质可知,该说法正确.【答案】(1)×(2)×(3)√2.随机变量ξ的分布列为:则ξ【解析】P(ξ为奇数)=P(ξ=1)+P(ξ=3)+P(ξ=5)=215+845+29=2445=815.【答案】8 15教材整理2两个特殊分布阅读教材P47例1上面倒数第一行~P49,完成下列问题.1.两点分布若随机变量X并称p=P(X =1)为成功概率.2.超几何分布一般地,在含有M件次品的N件产品中,任取n件,其中恰有X件次品,则P(X=k)=C k M C n-kN-MC n N,k=0,1,2,…,m,其中m=min{}M,n,且n≤N,M≤N,n,M,N∈N*.PC 0M C n -0N -MC n NC 1M C n -1N -MC n N…C m M C n -mN -MC n N布.1.判断(正确的打“√”,错误的打“×”) (1)随机变量X 只取两个值的分布是两点分布.( )(2)新生儿的性别、投篮是否命中、买到的商品是否为正品,可用两点分布研究.( )(3)从3本物理书和5本数学书中选出3本,记选出的数学书为X 本,则X 服从超几何分布.( )【解析】 (1)× 只有随机变量取0或1的分布才是两点分布. (2)√ 根据两点分布的概念知,该说法正确.(3)√ X 的可能取值为1,2,3,可求得P (X =k )=C k 5C 3-k3C 38(k =0,1,2,3),是超几何分布.【答案】 (1)× (2)√ (3)√2.一批产品分为一、二、三级,其中一级品是二级品的两倍,三级品为二级品的一半,从这批产品中随机抽取一个检验,其级别为随机变量ξ,则P ⎝ ⎛⎭⎪⎫13≤ξ≤53=________.【解析】 设二级品有k 个,∴一级品有2k 个,三级品有k 2个,总数为7k 2个. ∴分布列为ξ 1 2 3 P472717P ⎝ ⎛⎭⎪⎫13≤ξ≤53=P (ξ=1)=47. 【答案】 473.某10人组成兴趣小组,其中有5名团员,从这10人中任选4人参加某种活动,用X表示4人中的团员人数,则P(X=3)=________.【导学号:29472048】【解析】P(X=3)=C35C15C410=521.【答案】521[小组合作型]分布列及其性质的应用设随机变量X的分布列为P(X=i)=ia(i=1,2,3,4),求:(1)P(X=1或X=2);(2)P⎝⎛⎭⎪⎫12<X<72.【精彩点拨】先由分布列的性质求a,再根据X=1或X=2,12<X<72的含义,利用分布列求概率.【自主解答】(1)∵∑i=14p i=1a+2a+3a+4a=1,∴a=10,则P(X=1或X=2)=P(X=1)+P(X=2)=110+210=310.(2)由a=10,得P⎝⎛⎭⎪⎫12<X<72=P(X=1)+P(X=2)+P(X=3)=110+210+310=35.利用分布列及其性质解题时要注意以下两个问题:(1)X的各个取值表示的事件是互斥的.(2)不仅要注意i=1np i=1,而且要注意p i≥0,i=1,2,…,n.[再练一题]1.若离散型随机变量X的分布列为:X 0 1P 4a-13a2+a求常数a【解】由分布列的性质可知:3a2+a+4a-1=1,即3a2+5a-2=0,解得a=13或a=-2,又因为4a-1>0,即a>14,故a≠-2.所以a=13,此时4a-1=13,3a2+a=23.所以随机变量X的分布列为:X 0 1P1323求离散型随机变量的分布列口袋中有6个同样大小的黑球,编号为1,2,3,4,5,6,现从中随机取出3个球,用X表示取出的最大号码,求X的分布列.【精彩点拨】X的可能取值为3,4,5,6,是离散型随机变量.可以利用组合数公式与古典概型概率公式求各种取值的概率.【自主解答】随机变量X的可能取值为3,4,5,6.从袋中随机取3个球,包含的基本事件总数为C36,事件“X=3”包含的基本事件总数为C33,事件“X=4”包含的基本事件总数为C11C23,事件“X=5”包含的基本事件总数为C11C24,事件“X=6”包含的基本事件总数为C11C25.从而有P(X=3)=C33C36=120,P(X=4)=C11C23C36=320,P(X=5)=C11C24C36=310,P(X=6)=C11C25C36=12,所以随机变量X的分布列为X 345 6P 120320310121.求离散型随机变量的分布列的步骤(1)找出随机变量ξ的所有可能的取值x i(i=1,2,…,n),以及ξ取每个值的意义;(2)求出取每一个值的概率P(ξ=x i)=p i;(3)列出表格.2.求离散型随机变量分布列时应注意的问题(1)确定离散型随机变量ξ的分布列的关键是要搞清ξ取每一个值对应的随机事件,进一步利用排列、组合知识求出ξ取每一个值的概率.(2)在求离散型随机变量ξ的分布列时,要充分利用分布列的性质,这样不但可以减少运算量,还可以验证分布列是否正确.[再练一题]2.将一颗骰子掷两次,求两次掷出的最大点数ξ的分布列.【解】将一颗骰子连掷两次共出现6×6=36种等可能的基本事件,其最大点数ξ可能取的值为1,2,3,4,5,6.P(ξ=1)=1 36,ξ=2包含三个基本事件(1,2),(2,1),(2,2)(其中(x,y)表示第一枚骰子点数为x,第二枚骰子点数为y),所以P(ξ=2)=336=112.同理可求得P(ξ=3)=536,P(ξ=4)=736,P(ξ=5)=14,P(ξ=6)=1136,所以ξ的分布列为ξ12345 6P 136112536736141136两点分布与超几何分布探究1利用随机变量研究一类问题,如抽取的奖券是否中奖,买回的一件产品是否为正品,新生婴儿的性别,投篮是否命中等,这些有什么共同点?【提示】这些问题的共同点是随机试验只有两个可能的结果.定义一个随机变量,使其中一个结果对应于1,另一个结果对应于0,即得到服从两点分布的随机变量.探究2只取两个不同值的随机变量是否一定服从两点分布?【提示】不一定.如随机变量X的分布列由下表给出X 2 5P 0.30.7X探究3在8个大小相同的球中,有2个黑球,6个白球,现从中取3个,求取出的球中白球个数X是否服从超几何分布?超几何分布适合解决什么样的概率问题?【提示】随机变量X服从超几何分布,超几何分布适合解决从一个总体(共有N个个体)内含有两种不同事物A(M个)、B(N—M个),任取n个,其中恰有X 个A的概率分布问题.在一次购物抽奖活动中,假设10张奖券中有一等奖奖券1张,可获价值50元的奖品,有二等奖奖券3张,每张可获价值10元的奖品,其余6张没有奖品.(1)顾客甲从10张奖券中任意抽取1张,求中奖次数X 的分布列; (2)顾客乙从10张奖券中任意抽取2张, ①求顾客乙中奖的概率;②设顾客乙获得的奖品总价值为Y 元,求Y 的分布列.【精彩点拨】 (1)从10张奖券中抽取1张,其结果有中奖和不中奖两种,故X ~(0,1).(2)从10张奖券中任意抽取2张,其中含有中奖的奖券的张数X (X =1,2)服从超几何分布.【自主解答】 (1)抽奖一次,只有中奖和不中奖两种情况,故X 的取值只有0和1两种情况.P (X =1)=C 14C 110=410=25,则P (X =0)=1-P (X =1)=1-25=35.因此X 的分布列为X 0 1 P3525(2)2张奖券中有1张中奖或2张都中奖.故所求概率P =C 14C 16+C 24C 06C 210=3045=23.②Y 的所有可能取值为0,10,20,50,60,且P (Y =0)=C 04C 26C 210=1545=13,P (Y =10)=C 13C 16C 210=1845=25,P (Y =20)=C 23C 06C 210=345=115,P (Y =50)=C 11C 16C 210=645=215,P (Y =60)=C 11C 13C 210=345=115.因此随机变量Y 的分布列为Y 010205060P 13251152151151.两点分布的几个特点(1)两点分布中只有两个对应结果,且两个结果是对立的.(2)由对立事件的概率求法可知,已知P(X=0)(或P(X=1)),便可求出P(X=1)(或P(X=0)).2.解决超几何分布问题的两个关键点(1)超几何分布是概率分布的一种形式,一定要注意公式中字母的范围及其意义,解决问题时可以直接利用公式求解,但不能机械地记忆.(2)超几何分布中,只要知道M,N,n,就可以利用公式求出X取不同k的概率P(X=k),从而求出X的分布列.[再练一题]3.老师要从10篇课文中随机抽3篇让学生背诵,规定至少要背出其中2篇才能及格.某同学只能背诵其中的6篇,试求:(1)抽到他能背诵的课文的数量的概率分布;(2)他能及格的概率.【导学号:29472049】【解】(1)设抽到他能背诵的课文的数量为X,则P(X=r)=C r6C3-r4C310(r=0,1,2,3).所以P(X=0)=C06C34C310=130,P(X=1)=C16C24C310=310,P(X=2)=C26C14C310=12,P(X=3)=C36C04C310=16.所以X的概率分布为X 012 3P 1303101216(2)他能及格的概率P (X ≥2)=P (X =2)+P (X =3) =12+16=23.1.设随机变量ξ的分布列为P (ξ=i )=a ⎝ ⎛⎭⎪⎫13i,i =1,2,3,则a 的值为( ) A .1 B.913 C.2713 D.1113【解析】 由分布列的性质可知:a ⎝ ⎛⎭⎪⎫13+19+127=1,解得a =2713. 【答案】 C2.设某项试验的成功率是失败率的2倍,用随机变量ξ描述一次试验的成功次数,则P (ξ=0)等于( )【导学号:29472050】A .0 B.13 C.12 D.23【解析】 设P (ξ=1)=p ,则P (ξ=0)=1-p . 依题意知,p =2(1-p ),解得p =23. 故P (ξ=0)=1-p =13. 【答案】 B3.设随机变量ξ的可能取值为5,6,7,…,16这12个值,且取每个值的概率均相同,则P (ξ>8)=________.【解析】 依题意有P (ξ>8)=112×8=23. 【答案】 234.从装有3个红球,2个白球的袋中随机取2个球,设其中有ξ个红球,则随机变量ξ的分布列为________.高中数学-打印版精心校对完整版【解析】 P (ξ=0)=C 03C 22C 25=110,P (ξ=1)=C 13C 12C 25=610=35,P (ξ=2)=C 23C 02C 25=310.【答案】5.从4名男生和2ξ表示所选3人中女生的人数.(1)求ξ的分布列;(2)求“所选3人中女生人数ξ≤1”的概率. 【解】 (1)ξ可能取的值为0,1,2,服从超几何分布,P (ξ=k )=C k 2·C 3-k4C 36,k =0,1,2.所以,ξ的分布列为(2)由(1)知,“所选3 P (ξ≤1)=P (ξ=0)+P (ξ=1)=45.。
离散型随机变量的分布列,期望与方差
1、随机变量:
如果随机试验的结果可以用一个变量来表示, 那么这样的变量叫做随机变量.随机变量常用 希腊字母 ξ、η 等表示.
随机变量将随机事件的结果数量化.
问题:某人射击一次,可能出现哪些结果?
若设射击命中的环数为ξ, 则ξ是一个随机变量. ξ可取0,1,2,…,10. ξ=0,表示命中0环;
(1). pi 0, i 1,2,3,
(2). p1 p2 p3 1
例1、某一射手射击所得环数的分布列如下:
ξ 4 5 6 7 8 9 10
p 0.02 0.04 0.06 0.09 0.28 0.29 0.22
求此射手“射击一次命中环数≥7”的概 率
一般地,离散型随机变量在某一范围内的概 率等于它取这个范围内各个值的概率之和。
例1.设p是 非 负 实 数, 随 机 变 量的 概 率 分 布为
0
1
2
P
1 p 2
p
1 2
则E的 最 大 值 为______,D的 最 大 值 为______
例2.A、B是 治 疗 同 一 种 疾 病 的 两种 药 , 用 若 干 实 验 组 进 行 对 比 实 验 。每 个 试 验 组 由4个 小 白 鼠 组 成 , 其 中2只 服 用A, 另2只 服 用B, 然 后 观 察 疗 效 。 若 在 一 个 试 验 组中 , 服 用A有 效 的 小 白 鼠 的 只 数 比 服 用B有 效 的 多 , 就 称 该 试 验组 为 甲 类
写出ξ的分布列. 解: 随机变量ξ的可取值为 1,2,3.
当ξ=1时,即取出的三只球中的最小号码为1,则其它
两只球只能在编号为2,3,4,5的四只球中任取两只,故
有P(ξ=1)=
离散型随机变量的分布列选修2-3
(3)将 随 机 变 量 的 值 和 对 应 的 概 率 用 表 格 表 示 出 来
试一试:
盒子中装有2个白球和2个黑球,现从盒中任取2个 球,若X表示从盒中取出的2个球中包含的黑球数, 求X的分布列.
解:X的可能取值有: 0,1,2
当 X 0时 , 表 示 取 到 的 2个 小 球 中 有 0个 黑 球 即 : P(X=0)=
C2 C4
2
2
1
1 6
1
; 4 6 2 3
当 X 1 时 , 表 示 取 到 的 2 个 小 球 中 有 1 个 黑 球 即 : P ( X 1) 1
C 2C 2 C4
2
;
同 理 P( X = 2 ) =
;
6 X的分布列为:
X P
0
1 6
1
2 3
2
1 6
3.分布列的性质 ●观察思考 观察例1和变式练习的分布列中随机变量对应的概率之 和有何特点? ●归纳概括 由上面几个例子的观察,你由此得出一般随机变量分 布列的性质?
(3 ) 分 布 列 随 机 变 量 的 取 值 可 以 一 一 列 举
(2)分布列与我们已学习的函数有何关系?
分布列就是由随机变量到概率的函数关系
2. 分布列的表示法 ●类比猜想 类比函数的几种表示法,你能猜想得出随机变量分布列 有几种表示法?请把它写在下面: ( (1) 解 析 法 ( 形 式 简 单 , 能 精 确 取 值 ) 抽 象 且 不 直 观 ) ( 简 单 , 且 直 观 )( 不 适 用 随 机 变 量 取 值 较 多 ) (2) 列 表 法 (3) 图 象 法 (直观) (不精确)
P(A)=
m n
离散型随机变量的分布列
说明:①分类依据:按离散取值还是连续取值。 ②离散型随机变量的研究内容:随机变量取什么值、取这些值的多与少、所取值的平均值、稳定性等。
3. 离散型随机变量的分布列:
设离散型随机变量 可能取的值为
且
,则
,
x1,x2,,xi,
P(xi)pi
x1 x2 …
xi
…
P
p1 p2 …
pi
…
称为随机变量 的分布列。
离散型随机变量的分布列
一、基本知识概要: 1.随机变量:随机试验的结果可以用一个变量来表示,这样的变量的随机变量,记作 ;
,
说明:若 是随机变量,
a,b
ab ,其中 是常数,则 也是随机变量。
一、基本知识概要: 2. 离散型随机变量:随机变量可能取的值,可以按一定顺序一一列出
连续型随机变量:随机变量可以取某一区间内的一切值。
说明:本题考查离散型随机变量的分布列和数学期望的概念,考查运用概率知识解决实际问题的能力。
思考讨论:
(1) =4时哪些情况?
(2)本题若改为取出后放回,如何求解?
例4、某人骑车从家到学校的途中有5个路口,假设他在各个路口遇到红灯的事件是相互独立的,且概率均 为.
1
(1)求此人在途中遇到红灯的次数 的分布列;
相应的概率都产生了变化,要具体问题具体分析。
说明:放回抽样时,抽到的次品数为独立重复试验事件,即
。
~B(3,0.8)
例2:一袋中装有5只球,编号为1,2,3,4,5,在袋中同时取3只,以 表示取出的三只球中的最小号 码,写出随机变量 的分布列。
剖析:因为在编号为1,2,3,4,5的球中,同时取3只,所以小号码可能是1或2或3,即 可以取1,2, 3。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.1离散型随机变量的分布列(3)
学习目标:1、理解随机变量的意义
2、熟练掌握随机变量分布列在具体问题中的应用
3、掌握随机变量分布列的两种特殊分布。
复习回顾:
1、离散型随机变量分布列的性质:
2、求离散型随机变量分布列的步骤:
例1、某人参加射击比赛,击中目标的概率为3
1, (1) 设ξ为他射击6次击中目标的次数,求ξ的分布列;
(2) 设η为他第一次击中目标时所需要射击的次数,求η的分布列;
(3) 若他连续射击6次,设δ为他第一次击中目标前没有击中目标的次数,求δ的分布列;
(4) 若他只有6颗子弹,若击中目标,则不再射击,否则继续射击直到子弹打光,求他射击
次数ξ的分布列。
例2、某学生在上学路上要经过4个路口,假设在各路口是否遇到红灯相互独立,遇到红灯的概率都是3
1,遇到红灯停留的时间都是2min 。
(1) 求这名学生在上学路上到第三个路口时首次遇到红灯的概率;
(2) 求这名学生在上学路上因遇到红灯停留的总时间ξ的分布列。
例3、袋中装有黑球和白球共7个,从中任取2个球都是白球的概率是7
1,现有甲乙两人从袋中轮流摸取1球,甲先取,乙后取,然后甲再取……,取后不放回,直到两人中有一人取到白球时即终止,每球在每一次被取出的机会是等可能的,用ξ表示取球终止时所需要的取球次数。
(1) 求袋中原有白球的个数
(2) 求随机变量的概率分布列
(3) 求甲取到白球的概率
例4、在一次购物抽奖活动中,假设某10张券中有一等奖1张,可获得价值50元得奖品,有二等奖3张,可获得价值10元得奖品,其余6张没有奖,某顾客从此10张券中任抽2张,求:
(1) 该顾客中奖的概率;
(2) 该顾客获得的奖品总价值ξ(元)得概率分布。
例5、 甲乙二人进行一次围棋比赛,约定先胜三局则获胜,比赛结束。
假设在
一局中甲获胜的概率是0.6,乙获胜的概率是0.4,各局比赛结果相互独
立,已知前2局中,甲、乙各胜一局。
(1) 求甲获得这次比赛胜利的概率;
(2) 设ξ表示从第3局开始到比赛结束所进行的局数,求ξ的分布列
练习:
1、某种有奖销售的饮料,瓶盖内印有“奖励一瓶”或“谢谢购买”字样,购买一瓶若其瓶盖内印有“奖励一瓶”字样即为中奖,中奖概率为6
1,甲、乙、丙三位同学每人购买了一瓶该饮料。
(1) 求甲中奖且乙、丙都未中奖的概率。
(2) 求中奖人数ξ的分布列。
2、某商 场经销某商品,根据以往资料统计,顾客采用的付款期数ξ的分布列为
元;分2期或3期付款,其利润为250元;分4期或5期付款,其利润为300元,η表示经销一件该商品的利润。
(1)求事件
A :“购买该商品的3位顾客中,至少有1位采用一期付款”的概率
P (A ); (2)求η的分布列。
3、为拉动经济增长,某市决定新建一批重点工程,分为基础设施工程、民生工程
和产业建设工程三类。
这三类工程所含项目的个数分别占总数的6
1,31,21。
现有3名工人独立地从中任选一个项目参与建设。
(1)求他们选择的项目所属类别互不相同的概率
(2)记ξ为3人中选择的项目属于基础设施工程或产业建设工程的人数,求ξ的分布列。