SI3441BDV-T1-E3中文资料

合集下载

SI4459ADY-T1-GE3;中文规格书,Datasheet资料

SI4459ADY-T1-GE3;中文规格书,Datasheet资料

3600
1800 Crss
Coss
0.003 0 14 28 42 ID - Drain Current (A) 56 70
0 0 6 12 18 24 VDS - Drain-to-Source Voltage (V) 30
A
mJ
Maximum Power Dissipation
PD
W
Operating Junction and Storage Temperature Range
TJ, Tstg
°C
THERMAL RESISTANCE RATINGS
Parameter Maximum Junction-to-Ambienta, c Maximum Junction-to-Foot Notes: a. Surface mounted on 1" x 1" FR4 board. b. t = 10 s. c. Maximum under steady state conditions is 80 °C/W. d. Based on TC = 25 °C. Document Number: 69979 S11-1813-Rev. B, 12-Sep-11 This document is subject to change without notice. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT /doc?91000 / 1 t 10 s Steady State Symbol RthJA RthJF Typical 29 13 Maximum 35 16 Unit °C/W

杰尼斯特压力传感器产品说明书

杰尼斯特压力传感器产品说明书

0 to 50.0 inH2O 0 to 12.5 kPa PX291-050WD5V 180 PX291-050WDI 180 15 psid 1.0 bar DP41-E, DP25B-E, DP24-E
0 to 100.0 inH2O 0 to 24.9 kPa PX291-100WD5V 180 PX291-100WDI 180 15 psid 1.0 bar DP41-E, DP25B-E, DP24-E
0 to 5.0 inH2O 0 to 1.25 kPa PX291-005WD5V 180 PX291-005WDI 180 5 psid 0.34 bar DP41-E, DP25B-E, DP24-E
0 to 10.0 inH2O 0 to 2.49 kPa PX291-010WD5V 180 PX291-010WDI 180 5 psid 0.34 bar DP41-E, DP25B-E, DP24-E
are no moving parts and the transducers are virtually position insensitive. The span and zero
4.8 (0.19) DIA. 2 HOLES
COM Vsup Vout
PRESSURE LO HI
38 (1.50)
Voltage Output Models: 0 to 5 Vdc 3-wire, source or sink 3.5 mA, short circuit protected, current draw = 10 mA
Current Output Models: 4 to 20 mA, output limited to approximately 3.85 mA at low end and 25 mA at high end

三菱电机 第4代大型DIPIPM 应用手册

三菱电机 第4代大型DIPIPM 应用手册
本手册根据三菱电机(日本)的《大型 DIPIPM Ver.4 应用手册》(日文版 DPH-6414,并部分英文版 DPH-6414e)翻译而成。
三菱电机株式会社和三菱电机机电(上海)有限公司拥有本手册内所有资料的版权。 任何个人和企业在未得到书面许可的情况下,不得传播、复制、转载、出版和出售涉及本手册的任何内 容。如有违反,我们将保留追究其法律责任的权利。敬请留意。
2009 年 3 月
第 4 代大型 DIPIPM 应用手册
目录
第 1 章 产品概要 ......................................................................................................................................... 1
2.2 保护功能及其工作时序.......................................................................................................................... 9 2.2.1 短路保护......................................................................................................................................... 9 2.2.2 控制电源欠压保护(UV) ..................................................................................................... 12 2.2.............................................................................................. 13

SI3441中文资料

SI3441中文资料

–0.4
–0.8 3 60 82 77
–1.5
V mV/°C
80 110 112
mΩ
ID(on) gFS
–10 11
A S
Dynamic Characteristics
Ciss Coss Crss Input Capacitance Output Capacitance Reverse Transfer Capacitance
元器件交易网
Si3441DV
April 2001 PRELIMINARY
Si3441DV
P-Channel 2.5V Specified PowerTrench MOSFET
General Description
This P-Channel 2.5V specified MOSFET uses Fairchild’s low voltage PowerTrench process. It has been optimized for battery power management applications.
TA=25oC unless otherwise noted
Parameter
Ratings
–20 ±8
(Note 1a)
Units
V V A W °C
–3.5 –20 1.6 0.8 –55 to +150
(Note 1a) (Note 1b)
Operating and Storage Junction Temperature Range
Si3441DV Rev A (W)
元器件交易网
Si3441DV
Typical Characteristics
5 -VGS, GATE-SOURCE VOLTAGE (V) ID = -3.5A 4 -15V 3 CAPACITANCE (pF) VDS = -5V -10V 800 1000 CISS f = 1 MHz VGS = 0 V

缸型电动缸DGE系列产品说明书

缸型电动缸DGE系列产品说明书

规格
8 12 18
L3 L4 L5 L6 L7 L11 L12 L13 L14 L15 L16 T1 T2 T3 T6 T7
± 0.1
+4 ±0.1 ±0.1
30 21 15.5 52 15
4 27.5 27.5 5
9.7 3.2
7
1.1 3.4 0.7 18.8
33 24 17 64 15
4 36.5 29
訂貨代號
DGE —

— ZR


型號 DGE
直線電動缸
規格
8 12, 18 25 40 63
行程 [mm]
1 ... 650 1 ... 1000 1 ... 3000 1 ... 4000 1 ... 4500
氣壓缸功能
ZR
齒輪皮帶電動缸
左側驅動軸
LK
左側無驅動軸
1
LV
驅動軸在左側,前面
2.2
LH
-H-
訂貨實例: DGE-63-500-ZR-LV-RK-KF-GK
-H- 注意
近接感測器的插入點,位於齒 輪皮帶電動缸DGE-ZR的右側。
O上 U下 R右 L左 V前 H後
— KF — GK
2-12
Key products, GCC-TW – Subject to change – 第一版
DGE-ZR-KF,
57
52.8 19.6 22.5
7
21.6
40
M5
M6
48
64
17
86
78
71.8 26.5
32
11.5
31
62
M8
M8
78

SI4401DDY-T1-GE3;中文规格书,Datasheet资料

SI4401DDY-T1-GE3;中文规格书,Datasheet资料

0.024 V GS = 4.5 V 0.018 V GS = 10 V 0.012
C - Capacitance (pF)
3600 Ciss 2700
1800
0.006
900
Coss Crss
0 0 10 20 30 40 50
0 0 8 16 24 32 40
ID - Drain Current (A)
0.5
1.0
1.5
2.0
VDS - Drain-to-Source Voltage (V)
VGS - Gate-to-Source Voltage (V)
Output Characteristics
0.030 4500
Transfer Characteristics
RDS(on) - On-Resistance (Ω)
50 V GS = 10 V thru 5 V 40
ID - Drain Current (A)
10
V GS = 4 V
ID - Drain Current (A)
8
30
6
20
4 T C = 25 °C 2
10 V GS = 3 V 0 0.0
T C = 125 °C 0 T C = - 55 °C 0 1 2 3 4
• Halogen-free According to IEC 61249-2-21 Definition • TrenchFET® Power MOSFET • 100 % Rg Tested • 100 % UIS Tested • Compliant to RoHS Directive 2002/95/EC
Si4401DDY
Vishay Siliconix

MMSZ4xxxT1G系列和SZMMSZ4xxxT1G系列零点电阻电源器件的商品说明书

MMSZ4xxxT1G系列和SZMMSZ4xxxT1G系列零点电阻电源器件的商品说明书

MMSZ4686T1G MMSZ4686T1G.MMSZ4xxxT1G Series, SZMMSZ4xxxT1G Series Zener Voltage Regulators 500 mW, Low I ZT SOD−123 Surface MountThree complete series of Zener diodes are offered in the convenient, surface mount plastic SOD−123 package. These devices provide a convenient alternative to the leadless 34−package style.Features•500 mW Rating on FR−4 or FR−5 Board•Wide Zener Reverse V oltage Range − 1.8 V to 43 V•Low Reverse Current (I ZT) − 50 m A•Package Designed for Optimal Automated Board Assembly •Small Package Size for High Density Applications•ESD Rating of Class 3 (>16 kV) per Human Body Model•SZ Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC−Q101 Qualified and PPAP Capable•These Devices are Pb−Free and are RoHS Compliant*Mechanical Characteristics:CASE:V oid-free, transfer-molded, thermosetting plastic case FINISH:Corrosion resistant finish, easily solderableMAXIMUM CASE TEMPERATURE FOR SOLDERING PURPOSES: 260°C for 10 SecondsPOLARITY:Cathode indicated by polarity band FLAMMABILITY RATING:UL 94 V−0MAXIMUM RATINGSRating Symbol Max Units Total Power Dissipation on FR−5 Board,(Note 1) @ T L = 75°CDerated above 75°C P D5006.7mWmW/°CThermal Resistance, (Note 2) Junction−to−Ambient R q JA340°C/WThermal Resistance, (Note 2) Junction−to−Lead R q JL150°C/WJunction and Storage Temperature Range T J, T stg−55 to+150°CStresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.1.FR−5 = 3.5 X 1.5 inches, using the minimum recommended footprint.2.Thermal Resistance measurement obtained via infrared Scan Method.*For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.Cathode AnodeSee specific marking information in the device marking column of the Electrical Characteristics table on page 3 of this data sheet.DEVICE MARKING INFORMATIONSOD−123CASE 425STYLE 1Device Package Shipping†ORDERING INFORMATIONMARKING DIAGRAM†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our T ape and Reel Packaging Specifications Brochure, BRD8011/D.MMSZ4xxxT1G SOD−123(Pb−Free)3,000 /Tape & ReelMMSZ4xxxT3G SOD−123(Pb−Free)10,000 /Tape & Reel xx= Device Code (Refer to page 3)M= Date CodeG= Pb−Free Package(Note: Microdot may be in either location)1SZMMSZ4xxxT1G SOD−123(Pb−Free)3,000 /Tape & ReelSZMMSZ4xxxT3G SOD−123(Pb−Free)10,000 /Tape & ReelELECTRICAL CHARACTERISTICS (T A = 25°C unless otherwise noted, V F = 0.9 V Max. @ I F = 10 mA)Symbol ParameterV Z Reverse Zener Voltage @ I ZTI ZT Reverse CurrentI R Reverse Leakage Current @ V RVR Reverse VoltageI F Forward CurrentV F Forward Voltage @ I FProduct parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.ELECTRICAL CHARACTERISTICS (T A = 25°C unless otherwise noted, V F = 0.9 V Max. @ I F = 10 mA)Device*DeviceMarkingZener Voltage (Note 3)Leakage CurrentV Z (Volts)@ I ZT I R @ V RMin Nom Max m A m A VoltsMMSZ4678T1G CC 1.71 1.8 1.89507.51 MMSZ4679T1G CD 1.90 2.0 2.105051 MMSZ4680T1G CE 2.09 2.2 2.315041 MMSZ4681T1G CF 2.28 2.4 2.525021 MMSZ4682T1G CH 2.565 2.7 2.8355011 MMSZ4683T1G CJ 2.85 3.0 3.15500.81 MMSZ4684T1G CK 3.13 3.3 3.47507.5 1.5 MMSZ4685T1G CM 3.42 3.6 3.78507.52 MMSZ4686T1G CN 3.70 3.9 4.105052 MMSZ4687T1G CP 4.09 4.3 4.525042 SZMMSZ4687T1G CG6 4.09 4.3 4.525042 MMSZ4688T1G CT 4.47 4.7 4.9450103 MMSZ4689T1G CU 4.85 5.1 5.3650103 MMSZ4690T1G/T3G CV 5.32 5.6 5.8850104 MMSZ4691T1G CA 5.89 6.2 6.5150105 MMSZ4692T1G CX 6.46 6.87.145010 5.1 MMSZ4693T1G CY7.137.57.885010 5.7 MMSZ4694T1G CZ7.798.28.61501 6.2 MMSZ4695T1G DC8.278.79.14501 6.6 MMSZ4696T1G DD8.659.19.56501 6.9 MMSZ4697T1G DE9.501010.505017.6 MMSZ4698T1G DF10.451111.55500.058.4 MMSZ4699T1G DH11.401212.60500.059.1 MMSZ4700T1G DJ12.351313.65500.059.8 MMSZ4701T1G DK13.301414.70500.0510.6 MMSZ4702T1G DM14.251515.75500.0511.4 MMSZ4703T1G†DN15.201616.80500.0512.1 MMSZ4704T1G DP16.151717.85500.0512.9 MMSZ4705T1G DT17.101818.90500.0513.6 MMSZ4706T1G DU18.051919.95500.0514.4 MMSZ4707T1G DV19.002021.00500.0115.2 MMSZ4708T1G DA20.902223.10500.0116.7 MMSZ4709T1G DX22.802425.20500.0118.2 MMSZ4710T1G DY23.752526.25500.0119.0 MMSZ4711T1G†EA25.652728.35500.0120.4 MMSZ4712T1G EC26.602829.40500.0121.2 MMSZ4713T1G ED28.503031.50500.0122.8 MMSZ4714T1G EE31.353334.65500.0125.0 MMSZ4715T1G EF34.203637.80500.0127.3 MMSZ4716T1G EH37.053940.95500.0129.6 MMSZ4717T1G EJ40.854345.15500.0132.6 3.Nominal Zener voltage is measured with the device junction in thermal equilibrium at T L = 30°C ±1°C.*Include SZ-prefix devices where applicable.†MMSZ4703 and MMSZ4711 Not Available in 10,000/Tape & ReelTYPICAL CHARACTERISTICSV Z , T E M P E R A T U R E C O E F F I C I E N T (m V /C )°θV Z , NOMINAL ZENER VOLTAGE (V)Figure 1. Temperature Coefficients (Temperature Range −55°C to +150°C)V Z , T E M P E R A T U R E C O E F F I C I E N T (m V /C )°θ100101V Z , NOMINAL ZENER VOLTAGE (V)Figure 2. Temperature Coefficients (Temperature Range −55°C to +150°C)1.21.00.80.60.40.20T, TEMPERATURE (5C)Figure 3. Steady State Power Derating P p k, P E A K S U R G E P O W E R (W A T T S )PW, PULSE WIDTH (ms)Figure 4. Maximum Nonrepetitive Surge PowerP D , P O W E R D I S S I P A T I O N (W A T T S )V Z , NOMINAL ZENER VOLTAGEFigure 5. Effect of Zener Voltage onZener ImpedanceZ Z T , D Y N A M I C I M P E D A N C E ()ΩTYPICAL CHARACTERISTICSC , C A P A C I T A N C E (p F )V Z , NOMINAL ZENER VOLTAGE (V)Figure 6. Typical Capacitance 1000100101V Z , ZENER VOLTAGE (V)1001010.10.01I Z , Z EN E R C U R R E N T (m A )V Z , ZENER VOLTAGE (V)1001010.10.01I R , L E A K A G E C U R R E N T (A )μV Z , NOMINAL ZENER VOLTAGE (V)Figure 7. Typical Leakage Current10001001010.10.010.0010.00010.00001I Z , Z E N E R C U R R E N T (m A )Figure 8. Zener Voltage versus Zener Current(V Z Up to 12 V)Figure 9. Zener Voltage versus Zener Current(12 V to 91 V)SOD−123CASE 425−04ISSUE GDATE 07 OCT 2009SCALE 5:1NOTES:1.DIMENSIONING AND TOLERANCING PER ANSIY14.5M, 1982.2.CONTROLLING DIMENSION: INCH.DIM MIN NOM MAXMILLIMETERSINCHESA0.94 1.17 1.350.037A10.000.050.100.000b0.510.610.710.020c1.600.150.055D 1.40 1.80E 2.54 2.69 2.840.100---3.680.140L0.253.860.0100.0460.0020.0240.0630.1060.1450.0530.0040.0280.0710.1120.152MIN NOM MAX3.56H E---------0.006------------GENERICMARKING DIAGRAM**For additional information on our Pb−Free strategy and solderingdetails, please download the ON Semiconductor Soldering andMounting Techniques Reference Manual, SOLDERRM/D.SOLDERING FOOTPRINT**This information is generic. Please refer to device datasheet for actual part marking. Pb−Free indicator, “G” ormicrodot “ G”, may or may not be present.XXX= Specific Device CodeM= Date CodeG= Pb−Free Package1STYLE 1:PIN 1. CATHODE2. ANODE0.910.036ǒmminchesǓSCALE 10:1------q001010°°°°(Note: Microdot may be in either location) MECHANICAL CASE OUTLINEPACKAGE DIMENSIONSON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor theON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor’s product/patent coverage may be accessed at ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.PUBLICATION ORDERING INFORMATIONTECHNICAL SUPPORTNorth American Technical Support:Voice Mail: 1 800−282−9855 Toll Free USA/Canada Phone: 011 421 33 790 2910LITERATURE FULFILLMENT :Email Requests to:*******************ON Semiconductor Website: Europe, Middle East and Africa Technical Support:Phone: 00421 33 790 2910For additional information, please contact your local Sales RepresentativeMMSZ4686T1G MMSZ4686T1G.。

集成电路英文代码对照

集成电路英文代码对照

集成电路英文代码及中文对照(一)我的文摘2009-11-21 11:32:53 阅读111 评论0 字号:大中小订阅产品名称型号规格性能说明LMLM24J 四运放(军用级)LM148J 通用四运放LM1875T 无线电控制/接收器LM224J 四运放(工业级)LM258N 分离式双电源双运放LM2901N 四电压比较器LM2904N 四运放LM301AN 通用运算放大器LM308N 单比较器LM311P 单比较器LM317L 可调三端稳压器/100mALM317T 可调三端稳压器/1.5ALM317K 可调三端稳压器/3ALM318 高速宽带运放LM324K 通用四运放LM331N V-F/F-V转换器LM336-2.5V 基准电压电路LM336 5V 基准电压电路LM337T 基准电压电路1ALM338K 可调三端稳压器5ALM339N 四比较器LM348N 四741运放LM358N 低功耗双运放LM361N 高速差动比较器LM386N 声频功率放大器LM3914N 十段点线显示驱动LM393N 低功耗低失调双比较器LM399H 精密基准源(6.9)LM723CN 可调正式负稳压器LM733CN 视频放大器LM741J 单运放LM741CN 双运放NENE521 高速双差分比较器NE5532 双运放NE5534 双运放NE555N 单运放NE555J 时基电路军品极NE556 双级型双时基电路NE564 锁相环NE565 锁相环NE567 音调译码器NE592 视频放大器OPOP07 低噪声运放OP27 超低噪声精密运放OP37 超低噪声精密运放光电耦合4N25 晶体管输出4N25MC 晶体管输出4N26 晶体管输出4N27 晶体管输出4N28 晶体管输出4N29 达林顿输出4N30 达林顿输出4N31 达林顿输出4N32 达林顿输出4N33 达林顿输出4N33MC 达林顿输出4N35 达林顿输出4N36 晶体管输出4N37 晶体管输出4N38 晶体管输出4N39 可控硅输出6N135 高速光耦晶体管输出6N136 高速光耦晶体管输出6N137 高速光耦晶体管输出6N138 达林顿输出6N139 达林顿输出MOC3020 可控硅驱动输出MOC3021 可控硅驱动输出MOC3023 可控硅驱动输出MOC3030 可控硅驱动输出MOC3040 过零触发可控硅输出MOC3041 过零触发可控硅输出MOC3061 过零触发可控硅输出MOC3081 过零触发可控硅输出TLP521-1 单光耦TLP521-2 双光耦TLP521-4 四光耦TLP621 四光耦TIL113 达林顿输出TIL117 TLL逻辑输出PC814 单光耦PC817 单光耦H11A2 晶体管输出H11D1 高压晶体管输出H11G2 电阻达林顿输出LFLF347N 宽带JFET输入四运放LF351N 宽带JFET输入运放LF353N JFET输入宽带运放LF355N JFET输入运放LF357N JFET宽带非全裣运放LF398N 采样/保持电路LF412N 低偏差飘移输入运放MCMC1377 彩色电视编码器MC1403 精密电压基准源(2.5)MC1413 周边七段驱动阵列MC1416 周边七段驱动陈列MC14409 二进制脉冲拨号器MC14433 3位半A/D转换器MC14489 多字符LED显示驱动器MC145026 编码器VD5026 编码器MC145027 译码器VD5027 译码器MC145028 译码器MC145030 编码译码器MC145106 频率合成器MC145146 4位数据总线TLTL062 低功耗JEFT输入双运放TL072 低噪声JEFTTL082TL084TL431TL494ULNULN2003 周边七段驱动陈列ULN2004 周边七段驱动陈列ULN2803 周边八段驱动陈列ULN2804 周边八段驱动陈列ICLICL7106 3位ADC/驱动LCDICL7107 3位半ADC/驱动LEDICL7109 4位半ADC/驱动LEDICL7129 4位半ADC/LCD驱动ICL7135 ADC/LCD驱动BCD输出ICL7136 3位半CMOSADC/LCD驱动ICL7218 CMOS低功耗运算放大器ICL7650 整零运放斩波ICL7652 整零运放斩波ICL7660 CMOS直流-直流转换器ICL8038 函数信号发生器ICL8049 反对数放大器CACA3140 单BIMOS运行CA3240 单BIMOS运行UCUC3842 WM电流型控制器UC3845 PWM电流型控制器DSDS12887 非易失实时时钟芯片L3845 中继接口电路SGSG3524 PWM解调调制器SG3525 PWM解调调制器20106 前置放大器MTMT8814 8x12模拟交换矩阵MT8816 8x模拟交换矩阵MT8870 综合DTMF接收器MT8870 综合DTMF接收器MT8880 综合DTMF发生接收器MIC24LC01 128x8串行EEPROM24LC02 256x8串行EEPROM24LC04 512x8串行EEPROM24LC16 2Kx8串行EEPROM93LC46 64x16串行EEPROM93LC56 256x16串行EEPROM93LC66 512x8 256x16 EEPROMPIC16C52 384x12 单片机PIC16C54 512x12 单片机PCI16C56 512x12 单片机PIC16C57 2048x12 单片机ATAT24C01 128x8串行EEPROMAT24C02 256x8串行EEPROMAT24C04 512x8串行EEPROMAT24C16 2Kx8串行EEPROMAT93C46 64x16串行EEPROMAT93C56 256x16串行EEPROMATF16V8 FLASH200门ATF20V8 FLASH300门高速ATF22V10 FLASH500门高速低电流AT28C16 2Kx8CMOS并行EEPROMAT28C17 2Kx8CMOS并行EEPROMAT28C64 8Kx8并行EEPROMAT28C256 32Kx8并行EEPROMAT28F010 128Kx8并行EEPROMA29C040 512Kx8 FLASH EEPROMHM6116 2Kx8 CMOS 静态PAMHY6264 8Kx8 CMOS 静态RAMHM6264 8Kx8 CMOS 静态RAMIS62C64 8Kx8 高速CMOS 静态RAMHY62256 32Kx8 CMOS 静态RAMHM62256 32Kx8 CMOS 静态RAMHM628128 128Kx8 CMOS 静态RAMHM628256 256Kx8 CMOS 静态RAMHM628512 512Kx8 CMOS 静态RAMHM628512 512Kx8 CMOS 静态RAM TCMTCM5087 双音调发生器MM5832 实时钟电路TCTC14433 3位半A/D转换器TC232 并行/串行接口电路TC7106 3位半ADC/LCD驱动TC7107 3位半ADC/LED驱动TC7116 3位半ADC/LCD驱动带保TC7129 4位半ADC/LCDTC7135 4位半ADC/LCD,BCD输出TC7650 整零运放斩波7575107 四差分线驱动器75174 四差分线驱动器75175 三态四差分接收器75176 差分总线接收器75188 四线驱动器75189 四线驱动器75451 双外围驱动器75452 双外围驱动器集成电路英文代码及中文对照(二)我的文摘2009-11-21 11:37:11 阅读191 评论0 字号:大中小订阅。

HT-69020NP-0, HT-69030NP-0 Duct Probe RH Transmitt

HT-69020NP-0, HT-69030NP-0 Duct Probe RH Transmitt

HT-69020NP-0, HT-69030NP-0 Duct Probe RHTransmitter Installation GuideIntroductionThe HT-69 Series Duct Probe Relative Humidity (RH)Transmitters use a highly accurate and reliable thermosetpolymer-based capacitance humidity sensor and state-of-the-art digital linearization and temperature-compensated circuitry to monitor humidity levels in a duct. The humidity sensor is encapsulated in a 60 micron HDPE filter at the end of a 9 in. (230 mm) stainless steel (S/S) probe and a compact enclosure.Figure 1: HT-69 Duct Probe RH Transmitter DimensionsFigure 2: Dimensions of the HT-69 Duct Probe RH Transmitter*241102556A*Part No. 24-11025-56 Rev. A2022-11-11MountingThe transmitter installs directly into any air duct with a minimum width or diameter of 10 in. (25.5 cm).-Select a suitable installation area in the middle of the duct wall.-To achieve the best reading, do not place in an area where air stratification may be present.-Mount the sensor at least 5 ft. (1.5 m) in either direction from elbows, dampers, filters, or other duct restrictions.-Avoid areas that expose the transmitter to vibrations or rapid temperature changes.To install the transmitter, complete the following steps:1.When you select a suitable spot, drill a 0.6 in. (15mm) to 0.75 in. (20 mm) hole for the probe.2.Slide the probe into the drilled hole until the enclosure is flush against the duct. The airflow direction is not important.3.Secure the enclosure to the duct with two No. 10 x 1 in. (25 mm) self-tapping screws (not provided).4.Tighten the screws until the enclosure is tight against the duct so that there is no movement of the enclosure. A foam gasket on the back of the enclosure provides a tight seal against any air leaks. See Step 1 in Figure 3.5.The enclosure includes a hinged cover with a latch.To open the cover, pull slightly on the latch on the right side of the enclosure. At the same time, pull on the cover as shown in Step 2 of Figure 3.6.A 0.5 in. NPT threaded connection hole is in the bottom of the enclosure. Screw the EMT or cable gland connector into the threaded connection holeuntil tight. See Step 3 in Figure 3.Note: Preferably use weatherproof EMT or cable gland fittings. The E-style enclosure includes 0.5 in. NPT to M16 thread adaptor and cable gland fitting.7.Make wire connections as shown in the wire diagram in Wiring .8.Swing the door closed until it securely latches. For added security, install the two provided screws in the integrated screw tabs. See Step 4 of Figure 3.Wiring•Deactivate the 24 VAC/DC power supply before you make all connections to the device to prevent electrical shock or equipment damage.•Use 14 AWG to 22 AWG shielded wiring for allconnections and do not locate the device wires in the same conduit with wiring that supplies inductive loads such as motors. Make all connections in accordance with national and local codes.•Pull at least 6 in. (15 cm) of wire into the enclosure,then complete the wiring connection according to the wire diagram for the applicable power supply and output signal type. See Figure 4.•Place the output switch in the required position to select the required signal output type (mA or VDC), as shown in Step 2 of Figure 4. The factory default setting is 4 mA to 20 mA.•If you select mA, no further output set up is required.If you select VOLT output as shown in Figure 5, place the voltage output switch to the required span position,that is 10 VDC = 0 VDC to 10 VDC. The factory default setting is 0 VDC to 10 VDC. See Step 1 of Figure 4.•Connect the DC positive or the AC voltage hot side to the PWR terminal. For voltage output or AC power,connect the supply common to the COM terminal.The device is reverse voltage-protected and does not operate if you connect it backwards. The device contains a half-wave power supply so the supplycommon is the same as the signal common. See Step 3of Figure 4.•The analog output is available on the OUT terminal.Check the controller Analog Input to determine the correct connection before you apply power as shown in Step 3 of Figure 4.Figure 3: Mounting the HT-69 Duct Probe RH TransmitterFigure 4: Wiring of the HT-60 Duct Probe TransmitterTechnical specificationsTable 1: HT-69020NP-0, HT-69030NP-0 Duct Probe RH Transmitter technical specificationsThe performance specifications are nominal and conform to acceptable industry standards. For application at conditions beyond these specifications, consult the local Johnson Controls office. Johnson Controls shall not be liable for damages resulting from misapplication or misuse of its products.Product warrantyThis product is covered by a limited warranty, details of which can be found at / buildingswarranty.Software termsUse of the software that is in (or constitutes) this product, or access to the cloud, or hosted services applicable to this product, if any, is subject to applicable end-user license, open-source software information, and other terms set forth at /techterms. Your use of this product constitutes an agreement to such terms. PatentsPatents: https://Single point of contactContact informationContact your local branch office: /locationsContact Johnson Controls: /contact-us© 2022 Johnson Controls. All rights reserved. All specifications and other information shown were current as of document revision and。

SI2306BDS中文资料

SI2306BDS中文资料

Vishay SiliconixSi2306BDSN-Channel 30-V (D-S) MOSFETFEATURES•Halogen-free Option Available •TrenchFET ® Power MOSFET •100 % R g TestedPRODUCT SUMMARYV DS (V)R DS(on) (Ω)I D (A)Q g (Typ.)300.047 at V GS = 10 V 4.0 3.00.065 at V GS = 4.5 V3.5Notes:a. Surface Mounted on FR4 board, t ≤ 5 s.b. Pulse width limited by maximum junction temperature.c. Surface Mounted on FR4 board.For SPICE model information via the Worldwide Web: /www/product/spice.htm ABSOLUTE MAXIMUM RATINGS T A = 25 °C, unless otherwise notedParameterSymbol 5 sSteady State Unit Drain-Source Voltage V DS 30VGate-Source VoltageV GS± 20Continuous Drain Current (T J = 150 °C)a, b T A = 25 °C I D 4.0 3.16AT A = 70 °C3.52.7Pulsed Drain CurrentI DM 20Continuous Source Current (Diode Conduction)a, b I S1.040.62Maximum Power Dissipationa, bT A = 25 °C P D 1.250.75W T A = 70 °C0.80.48Operating Junction and Storage T emperature RangeT J , T stg- 55 to 150°C THERMAL RESISTANCE RATINGSParameter Symbol Typical Maximum UnitMaximum Junction-to-Ambient a t ≤ 5 s R thJA 80100°C/WSteady State 130166Maximum Junction-to-Foot (Drain)Steady StateR thJF6075Vishay SiliconixSi2306BDSNotes:a. Pulse test: Pulse width ≤ 300 µs, duty cycle ≤ 2 %.Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operationSPECIFICATIONS T A = 25 °C, unless otherwise notedParameter Symbol Test Conditions LimitsUnit Min.Typ.Max.StaticDrain-Source Breakdown Voltage V (BR)DSS V GS = 0 V, I D = 250 µA 30VGate-Threshold VoltageV GS(th) V DS = V GS , I D = 250 µA 1.0 3.0Gate-Body Leakage I GSS V DS = 0 V , V GS = ± 20 V ± 100 nAZero Gate Voltage Drain CurrentI DSS V DS = 30 V , V GS = 0 V 0.5µA V DS = 30 V , V GS = 0 V , T J = 55 °C 10On-State Drain Current aI D(on) V DS ≥ 4.5 V , V GS = 10 V 6A Drain-Source On-Resistance aR DS(on) V GS = 10 V, I D = 3.5 A 0.0380.047ΩV GS = 4.5 V , I D = 2.8 A 0.0520.065Forward T ransconductance ag fs V DS = 4.5 V , I D = 2.5 A 7.0S Diode Forward Voltage V SD I S = 1.25 A, V GS = 0 V 0.8 1.2VDynamicGate Charge Q g V DS = 15 V , V GS = 5 V , I D = 2.5 A 3.0 4.5nCTotal Gate Charge Q gt V DS = 15 V , V GS = 10 V , I D = 2.5 A 69Gate-Source Charge Q gs 1.6Gate-Drain Charge Q gd 0.6Gate Resistance R g f = 1.0 MHz 2.557.5ΩInput Capacitance C iss V DS = 15 V , V GS = 0 V , f = 1 MHz 305pF Output Capacitance C oss 65Reverse Transfer Capacitance C rss 29SwitchingTurn-On Delay Time t d(on) V DD = 15 V, R L = 15 Ω I D ≅ 1 A, V GEN = 10 V , R g = 6 Ω711ns Rise Time t r 1218Turn-Off Delay Time t d(off) 1425Fall Time t f 610Reverse Recovery Time t rr I F = 1.25 A, di/dt = 100 A/µs1421Body Diode Reverse Recovery Charge Q rr 610nCVishay SiliconixSi2306BDSTYPICAL CHARACTERISTICS 25°C, unless otherwise notedGate ChargeVishay SiliconixSi2306BDSTYPICAL CHARACTERISTICS 25°C, unless otherwise notedVishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see /ppg?73234.Single Pulse PowerNormalized Thermal Transient Impedance, Junction-to-AmbientDisclaimer Legal Disclaimer NoticeVishayAll product specifications and data are subject to change without notice.Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, “Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay’s terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.Product names and markings noted herein may be trademarks of their respective owners.元器件交易网。

维沙特半导体 SOT-23 型号的单线电静电保护设备说明书

维沙特半导体 SOT-23 型号的单线电静电保护设备说明书


J0014A
SEE DETAIL A 1
12X (.100 ) [2.54]
14X ( .039) [1]
EXAMPLE BOARD LAYOUT
CDIP - 5.08 mm max height
CERAMIC DUAL IN LINE PACKAGE
(.300 ) TYP [7.62]
NOTES: A. All linear dimensions are in millimeters. B. This drawing is subject to change without notice. C. Body dimensions do not include mold flash or protrusion not to exceed 0,15. D. Falls within JEDEC MO-150
TI’s products are provided subject to TI’s Terms of Sale (/legal/termsofsale.html) or other applicable terms available either on or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products.
(R.002 ) TYP [0.05]
DETAIL A
SCALE: 15X
METAL
SOLDER MASK OPENING

英文易维达阻旋式料位计说明书

英文易维达阻旋式料位计说明书

EWDAR Damped Rotation Level ControllerThere are still more that we can offer to youSincere services to clients:With the increasing competition in the market, instruments that are accurate in measuring and free of maintenance can help to improve the production efficiency of the factories. EWDAR level control system is such a product that can substantially improve the product quality and work efficiency of your company. We are always available to supply standard products or provide tailor-made products in response to your requirement for various application of EWDAR level measuring products in such industries as power, cement, engineering machinery, casting, chemical and food processing etc. In addition to the excellent measuring technology, EWDAR will always provide high-quality services to all clients.1、Applications and characteristics:EWDAR series damped rotation level control system has wide applications in the modern industry production process and warehousing sector for level monitoring or control of the powder and grain substances in the open type vessels. With full new design concept introduced in the product and many years of successful experiences, EWDAR series damped rotation level control system features extreme low failure and unanimous positive comments from the clients of all walks of life. EWDAR series damped rotation type level control system features advanced technology, reasonable structure, reliable performance, easy and convenient use and maintenance as well as high cost performance etc; Compared with similar products in the market, EWDAR level control system has the following unique characteristics:1) All major exposed parts and components use such materials as stainless steel,aluminum alloy or high-grade engineering plastic featuring such outstanding advantages as dust-proof, moisture resistance, corrosion resistance and no pollution to environment. EWDAR may be used in severe working environment in such industries as power, cement, casting, concrete, asphalt mixing equipments, food processing, grain warehousing and industries with high produce of dust etc;2) The output shaft is equipped with overload protection device, which caneffectively avoid damages to the motors and speed reducers due to improper use or abnormal external force;3) In order to make the equipment suitable for different materials with differentspecific gravity and also for purpose of easy installation and adjusting, the equipment is provided sensitive five-gear adjusting device and two installation options as well as many monitoring vane specifications;4) ZXKHB type level control system is equipped with overheat protection device,which can ensure proper and normal working of the level control at temperature of 300℃and below. (This ability is out of reach of some capacitor type, pitchfork type and ultrasonic type level monitors);2、Working principle:The working principle of EWDAR series damped rotation type level controller isdescribed as following: Use of AC micro motor with speed reduction to drive the monitoring vane rotate at slow speed; when the level of the materials rises till the rotation of the vanes is blocked, the testing mechanism will have rotation displacement around the main shaft; this displacement will first put one micro switch in action to send signal that material is fed inside; and then the other micro switch will act to disconnect the power supply to the micro motor to stop the motor; as long as the level in the silo or container remains unchanged, this work status will be always maintained;When the material level decreases till the vanes are tested with no blockage, the testing mechanism will restore to the original state due to pull force of the spring. First one micro switch will act to switch on the power supply to the motor to make the motor run, then the other micro switch will act will send signal that material is in shortage; as long as the rotation of the vanes will not be blocked by the materials, this work status will be always maintained.3、Outline dimensions:1) Outline dimensions ( Figure 1)2) Outline dimensions (Figure 2):4、Main technical specification:5、Type selection of damped rotation type level control system:Thread connectionFlange connectionLength6、Installation guideline:Unit: mmSilo wallTailor-made dimension may be available upon client’s request!。

SI3401中文资料

SI3401中文资料

Rev. 0.9 8/07Copyright © 2007 by Silicon LaboratoriesSi3400/Si3401This information applies to a product under development. Its characteristics and specifications are subject to change without notice.Si3400Si3401F U L L Y -I N T EG R A T E D 802.3-C O M P L I A N T PD I N T E R F A C E A N D S W I T CHI N G R E G U L A T O RFeaturesApplicationsDescriptionThe Si3400 and Si3401 integrate all power management and control functions required in a Power-over-Ethernet (PoE) powered device (PD)application. The Si3400 and Si3401 convert the high voltage supplied over the 10/100/1000BASE-T Ethernet connection into a regulated, low-voltage output supply. The optimized architectures of the Si3400 and Si3401minimize the solution footprint, reduce external BOM cost, and enable the use of low-cost external components while maintaining high performance.The Si3400 and Si3401 integrate the required diode bridges and transient surge suppressors, thus enabling direct connection of ICs to the Ethernet RJ-45 connector. The switching power FET and all associated functions are also integrated. The integrated switching regulator supports isolated (flyback) and non-isolated (buck) converter topologies. The Si3400 and Si3401 support IEEE STD™ 802.3-2005 (future instances are referred to as 802.3) compliant solutions as well as pre-standard products, all in a single IC. Standard external resistors connected to the Si3400 and Si3401 provide the proper 802.3 signatures for the detection function and programming of the classification mode. Startup circuits ensure well-controlled initial operation of both the hotswap switch and the voltage regulator. The Si3400and Si3401 are available in low-profile, 20-pin, 5x 5mm QFN packages.While the Si3400 is designed for applications up to 10W, the Si3401 is optimized for higher power applications (up to approximately 15W). See also “AN313: Using the Si3400/01 in High Power Applications” for more information.IEEE 802.3 standard-compliant solution, including pre-standard (legacy) PoE supportHighly-integrated IC enables compact solution footprintsMinimal external components Integrated diode bridges and transient surge suppressor Integrated switching regulator controller with on-chip power FETIntegrated dual current-limited hotswap switchSupport non-isolated and isolated switching topologiesComprehensive protection circuitryTransient overvoltage protectionUndervoltage lockoutEarly power-loss indicator Thermal shutdown protection Foldback current limiting Programmable classification circuitLow-profile 5x 5mm 20-pin QFNPb-Free and RoHS-compliantVoice over IP telephones and adaptersWireless access points Security camerasPoint-of-sale terminals Internet appliances Network devicesHigh power applications (Si3401)1.Pin VSSA added on revisions CZand higher.2. Pin ISOSSFT added on revisionsCZ and higher. Function available on revision E silicon. For Rev CZ, or to disable this feature on Revision E, tie this pin to VDD.Ordering Information:See Ordering Guide on pagepage 17.元器件交易网Si3400/Si34012Rev. 0.9Functional Block DiagramSi3400/Si3401Rev. 0.93T A B L E O F C O N T E N TSSectionPage1. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42. Typical Application Schematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .83. Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .103.1. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .103.2. PD Hotswap Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .103.3. Switching Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .134. Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .155. Package Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .166. Ordering Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17Document Change List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18Contact Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20Si3400/Si34014Rev. 0.91. Electrical SpecificationsTable 1. Absolute Maximum Ratings (DC)1Type DescriptionRating UnitVoltageCT1 to CT2–60 to 60V SP1 to SP2–60 to 60VPOS 2–0.3 to 60HSO–0.3 to 60VSS1 or VSS2–0.3 to 60SWO–0.3 to 60PLOSS to VPOS 2–60 to 0.3RDET –0.3 to 60RCL–0.3 to 5SSFT to VPOS 2–5 to 0.3EROUT to VSS1, VSS2, or VSSA –0.3 to VDD+0.3FB to VPOS–5 to 0.3RIMAX to VSS1, VSS2, or VSSA –0.3 to VDD+0.3VSS1 to VSS2 or VSSA –0.3 to 0.3VDD to VSS1, VSS2, or VSSA–0.3 to 5CurrentRCL 0 to 100mA RDET0 to 1CT1, CT2, SP1, SP2–400 to 400VPOS 2–400 to 400HSO 0 to 400PLOSS –0.5 to 5VDD 0 to 2SWO0 to 400VSS1, VSS2, or VSSA–400 to 0Ambient TemperatureStorage –65 to 150°C Operating–40 to 85Notes:1.Unless otherwise noted, all voltages referenced to VNEG. Permanent device damage may occur if the maximum ratingsare exceeded. Functional operation should be restricted to those conditions specified in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may adversely affect device reliability.2. VPOS is equal to VPOSF and VPOSS tied together for test condition purposes.Si3400/Si3401Rev. 0.95Table 2. Absolute Maximum Ratings (Transient)1Transient surge defined in IEC60060 as a 1000V impulse of either polarity applied across CT1–CT2 or SP1–SP2. The shape of the impulse shall have a 300ns full rise time and a 50µs half fall time, with 201Ω source impedance.Type Description Rating UnitVoltageCT1 to CT2–82 to 82VSP1 to SP2–82 to 82VPOS 2–0.7 to 80HSO–0.7 to 80VSS1, VSS2, or VSSA –0.7 to 80SWO–0.7 to 80PLOSS to VPOS 2–80 to 0.7RDET–0.7 to 80CurrentCT1, CT2, SP1, SP2–5 to 5A VPOS 2–5 to 5ESD 3HBM, all pins–2 to 2kVNotes:1.Unless otherwise noted, all voltages referenced to VNEG. Permanent device damage may occur if the maximum ratingsare exceeded. Functional operation should be restricted to those conditions specified in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may adversely affect device reliability.2. VPOS is equal to VPOSF and VPOSS tied together for test condition purposes.3. For more information regarding system-level ESD tolerance, refer to “AN315: Robust Electrical Surge Immunity for PoEPDs through Integrated Protection”.Table 3. Recommended Operating ConditionsDescriptionSymbol Min Typ Max Units |CT1–CT2| or |SP1–SP2|VPORT 2.8—57V Ambient Operating TemperatureTA–402585°CNote:Unless otherwise noted, all voltages referenced to VNEG. All minimum and maximum specifications are guaranteedand apply across the recommended operating conditions. Typical values apply at nominal supply voltage and ambient temperature unless otherwise noted.Si3400/Si34016Rev. 0.9Table 4. Electrical CharacteristicsParameter Description Min Typ Max UnitVPORTDetection 2.7—11V Classification14—22UVLO Turn Off——42UVLO Turn On30—36 Transient Surge162—79Input Offset Current VPORT < 10V——10µA Diode bridge leakage VPORT=57V——25µAIPORT Classification2Class 00—4mA Class 19—12Class 217—20Class 326—30Class 436—44IPORT Operating Current336V<VPORT<57V—2 3.1mACurrent Limit4Inrush—130— mA Operating350 (Si3400)470 (Si3401)525550—mAHotswap FET On-Resistance +R SENSE36V<VPORT<57V0.5— 1.4ΩPower loss VPORT Threshold273033V Switcher Frequency—350—kHzMaximum Switcher Duty Cycle5ISOSSFT connected toVDD —50—%Switching FET On-Resistance0.3—0.86ΩRegulated Feedback @ pin FB6DC Avg.— 1.23—VRegulated Output Voltage Tolerance6Output voltage tolerance @VOUT –5—5%Notes:1.Transient surge defined in IEC60060 as a 1000V impulse of either polarity applied to CT1–CT2 or SP1–SP2. Theshape of the impulse shall have a 300ns full rise time and a 50µs half fall time with 201Ω source impedance.2. The classification currents are guaranteed only when recommended RCLASS resistors are used, as specified inTable10.3. IPORT includes full operating current of switching regulator controller.4. The PD interface includes dual-level input current limit. At turn-on, before the HSO load capacitor is charged, thecurrent limit is set at the inrush level. After the capacitor has been charged within ~1.25V of VNEG, the operating current limit is engaged. This higher current limit remains active until the UVLO lower limit has been tripped or until the hotswap switch is sufficiently current-limited to cause a foldback of the HSO voltage.5. See “AN296: Using the Si3400/01 PoE PD Controller in Isolated and Non-Isolated Designs” for more information.6. Applies to non-isolated applications only (VOUT on schematic in Figure1).Si3400/Si3401Rev. 0.97VDD accuracy @ 0.8mA 36V <VPORT <57V4.5—5.5V Softstart charging current —12—µA Thermal ShutdownJunction temperature—160—ºC Thermal Shutdown Hysteresis——25ºCTable 5. Total Power DissipationDescription ConditionMin Typ Max Units Power Dissipation VPORT =50V, V OUT =5V, 2A— 1.2—W Power Dissipation*VPORT =50V, V OUT =5V, 2A w/ diode bridges bypassed—0.7—W*Note: Silicon Laboratories recommends the on-chip diode bridges be bypassed when output power requirements are >10W(Si3401) or in thermally-constrained applications. For more information, see “AN313: Using the Si3400 and Si3401 in High Power Applications”.Table 6. Package Thermal CharacteristicsParameterSymbol Test ConditionTyp Units Thermal resistance (junction to ambient)θJAStill air; assumes a minimum of nine thermal vias are connected to a 2in 2 heat spreader plane for the package “pad” node (VNEG).44°C/WTable 4. Electrical Characteristics (Continued)ParameterDescription Min Typ Max Unit Notes:1.Transient surge defined in IEC60060 as a 1000V impulse of either polarity applied to CT1–CT2 or SP1–SP2. Theshape of the impulse shall have a 300ns full rise time and a 50µs half fall time with 201Ω source impedance.2. The classification currents are guaranteed only when recommended RCLASS resistors are used, as specified inTable 10.3. IPORT includes full operating current of switching regulator controller.4. The PD interface includes dual-level input current limit. At turn-on, before the HSO load capacitor is charged, thecurrent limit is set at the inrush level. After the capacitor has been charged within ~1.25V of VNEG, the operatingcurrent limit is engaged. This higher current limit remains active until the UVLO lower limit has been tripped or until the hotswap switch is sufficiently current-limited to cause a foldback of the HSO voltage.5. See “AN296: Using the Si3400/01 PoE PD Controller in Isolated and Non-Isolated Designs” for more information.6. Applies to non-isolated applications only (VOUT on schematic in Figure 1).Si3400/Si34018Rev. 0.92. Typical Application SchematicsFigure1.Schematic—Class 0 with Non-Isolated 5V Output**Note:This is a simplified schematic. See “AN296: Using the Si3400/01 PoE PD Controller in Isolated and Non-Isolated Designs” for more details and complete application schematics.Table 7. Component Listing—Class 0 with 5V OutputItem Type Value Toler.Rating NotesC1Capacitor15µF20%100V Switcher supply capacitor. Several paral-lel capacitors are used for lower ESR.C2Capacitor0.1µF20%100V PD input supply capacitor.C3Capacitor1000µF20%10V Switcher load capacitor - 1000µF in par-allel with and X5R 22µF for lower ESR.C4Capacitor0.1µF20%16V VDD bypass capacitor.C5Capacitor0.1µF10%16V Softstart capacitor.C6Capacitor 3.3nF10%16V Compensation capacitor.C7Capacitor150pF10%16V Compensation capacitor.R1Resistor25.5kΩ1%1/16W Detection resistor.R2Resistor7.32kΩ1%1/16W Feedback resistor divider.R3Resistor 2.87kΩ1%1/16W Feedback resistor divider.R4Resistor30.1kΩ1%1/16W Feedback compensation resistor.D1Diode100V Schottky diode; part no. PDS5100.L1Inductor33µH20% 3.5A Coilcraft part no. DO5010333.Si3400/Si3401Rev. 0.99Figure 2.Schematic—Class 1 with Isolated 5.0V Output**Note: This is a simplified schematic. See “AN296: Using the Si3400/01 PoE PD Controller in Isolated and Non-IsolatedDesigns” for more details and complete application schematics.Table 8. Components—Class 1 with Isolated 5.0V OutputItem Type Value Toler.Rating NotesC1Capacitor 15µF 20%100V Switcher supply capacitor. Several paral-lel capacitors are used for lower ESR.C2Capacitor 0.1µF 20%100V PD input supply capacitor.C3Capacitor1100µF20%10VSwitcher load capacitor. 100µF in parallel 1000µF and optional 1µH inductor for additional filtering.C4Capacitor 15nF 10%16V Feedback compensation.C5Capacitor 220nF 10%16V Feedback compensation.C7Capacitor 0.1µF 20%16V VDD bypass capacitor.C8Capacitor 1µF 20%16V Isolated mode soft start (tie ISOSSFT to VDD if this feature is not used).R1Resistor 25.5k Ω1%1/16W Detection resistor.R2Resistor 4.99k Ω1%1/16W Pull-up resistor.R3Resistor 100Ω1%1/16W Feedback compensation resistor.R4Resistor 10k Ω1%1/16W Feedback compensation resistor.R5Resistor 2.05k Ω1%1/16W Pull-up resistor.R6Resistor 36.5k Ω1%1/16W Feedback resistor divider.R7Resistor 12.1k Ω1%1/16W Feedback resistor divider.R8Resistor 127Ω1%1/16W Classification resistor.D1Diode 10A 40V Schottky diode; part no. PN PDS1040.D2Diode 1A 100V Snubber diode (1N4148)D3Diode 15V 9ASnubber diode (DFLT15A)T1Transformer 40µHCoilcraft part number FA2672 (5V).PS2911Optocoupler TLV431Voltage referenceSi3400/Si340110Rev. 0.93. Functional DescriptionThe Si3400 and Si3401 consist of two major functions: a hotswap controller/interface and a complete pulse-width-modulated switching regulator (controller and power FET).3.1. OverviewThe hotswap interfaces of the Si3400 and Si3401 provide the complete front end of an 802.3-compliant PD. The Si3400 and Si3401 also include two full diode bridges, a transient voltage surge suppressor, detection circuit, classification current source, and dual-level hotswap current limiting switch. This high level of integration enables direct connection to the RJ-45 connector, simplifies system design, and provides significant advantages for reliability and protection. The Si3400 and Si3401 require only four standard external components (detection resistor, optional classification resistor, load capacitor, and input capacitor) to create a fully 802.3-compliant interface. For more information about supporting higher-power applications, see “AN313: Using the Si3400 and Si3401 in High Power Applications” and “AN314: Power Combining Circuit for PoE for up to 18.5W Output”.The Si3400 and Si3401 integrate a complete pulse-width modulated switching regulator that includes the controller and power FET. The switching regulator utilizes a constant frequency pulse-width modulated controller optimized for all possible load conditions in PoE applications. The regulator integrates a low on-resistance (Ron) switching power MOSFET that minimizes power dissipation, increases overall regulator efficiency, and simplifies system design. An integrated error amplifier, precision reference, and programmable soft-start current source provide the flexibility of using a non-isolated buck regulator topology or an isolated flyback regulator topology.The Si3400 and Si3401 are designed to operate with both 802.3-compliant Power Sourcing Equipment (PSE) and pre-standard (legacy) PSEs that do not adhere to the 802.3 specified inrush current limits. The Si3400 and Si3401 are compatible with compliant and legacy PSEs because they use two levels for the hotswap current limits. By setting the initial inrush current limit to a low level, a PD based on the Si3400 or Si3401 minimizes the current drawn from either a compliant or legacy PSE during startup. After powering up, the Si3400 and Si3401 automatically switch to a higher-level current limit, thereby allowing the PD to consume up to 12.95W (the max power allowed by the 802.3 specification).The inrush current limit specified by the 802.3 standard can generate high transient power dissipation in the PD. By properly sizing the devices and implementing on-chip thermal protection, the Si3400 and Si3401 can go through multiple turn-on sequences without overheating the package or damaging the device. The switching regulator power MOSFET has been conservatively designed and sized to withstand the high peak currents created when converting a high-voltage, low-current supply into a low-voltage, high-current supply. Excessive power cycling or short circuit faults will engage the thermal overload protection to prevent the onboard power MOSFETs from exceeding their safe and reliable operating ranges.3.2. PD Hotswap ControllerThe Si3400 and Si3401 hotswap controllers change their mode of operation based on the input voltage applied to the CT1 and CT2 pins or the SP1 and SP2 pins, the 802.3-defined modes of operation, and internal controller requirements. Table9 defines the modes of operation for the hotswap interface.3.2.1. Rectification Diode Bridges andSurge SuppressorThe 802.3 specification defines the input voltage at the RJ-45 connector of the PD with no reference to polarity. In other words, the PD must be able to accept power of either polarity at each of its inputs. This requirement necessitates the use of two sets of diode bridges, one for the CT1 and CT2 pins and one for the SP1 and SP2 pins to rectify the voltage. Furthermore, the standard requires that a PD withstand a high-voltage transient surge consisting of a 1000V common-mode impulse with 300ns rise time and 50µs half fall time. Typically, the diode bridge and the surge suppressor have been implemented externally, adding cost and complexity to the PD system design.The diode bridge* and the surge suppressor have been integrated into the Si3400 and Si3401, thus reducing system cost and design complexity.*Note:Silicon Laboratories recommends that on-chip diode bridges be bypassed when >10W of output power isrequired.By integrating the diode bridges, the Si3400 and Si3401 gain access to the input side of the diode bridge. Monitoring the voltage at the input of the diode bridges instead of the voltage across the load capacitor provides the earliest indication of a power loss. This true early power loss indicator, PLOSS, provides a local microcontroller time to save states and shut down gracefully before the load capacitor discharges below the minimum 802.3-specified operating voltage of 36V. Integration of the surge suppressor enables optimization of the clamping voltage and guarantees protection of all connected circuitry.As an added benefit, the transient surge suppressor, when tripped, actively disables the hotswap interface and switching regulator, preventing downstream circuits from encountering the high-energy transients.3.2.2. DetectionIn order to identify a device as a valid PD, a PSE will apply a voltage in the range of 2.8V to 10V on the cable and look for the 25.5kΩ signature resistor. The Si3400 and Si3401 will react to voltages in this range by connecting an external 25.5kΩ resistor between VPOS and VNEG. This external resistor and internal low-leakage control circuitry create the proper signature to alert the PSE that a valid PD has been detected and is ready to have power applied. The internal hotswap switch is disabled during this time to prevent the switching regulator and attached load circuitry from generating errors in the detection signature.Since the Si3400 and Si3401 integrate the diode bridges, the IC can compensate for the voltage and resistance effects of the diode bridges. The 802.3 specification requires that the PSE use a multi-point,∆V/∆I measurement technique to remove the diode-induced dc offset from the signature resistance measurement. However, the specification does not address the diode's nonlinear resistance and the error induced in the signature resistor measurement. Since the diode's resistance appears in series with the signature resistor, the PD system must find some way of compensating for this error. In systems where the diode bridges are external, compensation is difficult and suffers from errors. Since the diode bridges are integrated in the Si3400 and Si3401, the IC can easily compensate for this error by offsetting resistance across all operating conditions and thus meeting the 802.3 requirements. An added benefit is that this function can be tested during the IC’s automated testing step, guaranteeing system compliance when used in the final PD application. For more information about supporting higher-power applications (above 12.95W), see “AN313: Using the Si3400 and Si3401 in High Power Applications” and “AN314: Power Combining Circuit for PoE for up to 18.5W Output”.3.2.3. ClassificationOnce the PSE has detected a valid PD, the PSE may classify the PD for one of five power levels or classes. A class is based on the expected power consumption of the powered device. An external resistor sets the nominal class current that can then be read by the PSE to determine the proper power requirements of the PD. When the PSE presents a fixed voltage between 15.5V and 20.5V to the PD, the Si3400 and Si3401 assert the class current from VPOS through the RCL resistor.Table 9. Hotswap Interface ModesInput Voltage (|CT1-CT2| or |SP1-SP2|)Si3400 and Si3401Mode0V to 2.7V Inactive2.7V to 11V Detection signature11V to 14V Detection turns off andinternal bias starts 14V to 22V Classification signature22V to 42V Transition region42V up to 57V Switcher operating mode(hysteresis limit based onrising input voltage)57V down to 36V Switcher operating mode(hysteresis limit based onfalling input voltage)The resistor values associated with each class are shown in Table10.The 802.3 specification limits the classification time to 75ms to limit the power dissipated in the PD. If the PSE classification period exceeds 75ms and the die temperature rises above the thermal shutdown limits, the thermal protection circuit will engage and disable the classification current source in order to protect the Si3400 and Si3401. The Si3400 and Si3401 stay in classification mode until the input voltage exceeds 22V (the upper end of its classification operation region). 3.2.4. Under Voltage LockoutThe 802.3 standard specifies the PD to turn on when the line voltage rises to 42V and for the PD to turn off when the line voltage falls to 30V. The PD must also maintain a large on-off hysteresis region to prevent wiring losses between the PSE and the PD from causing startup oscillation.The Si3400 and Si3401 incorporate an undervoltage lockout (UVLO) circuit to monitor the line voltage and determine when to apply power to the integrated switching regulator. Before the power is applied to the switching regulator, the hotswap switch output (HSO) pin is high-impedance and typically follows VPOS as the input is ramped (due to the discharged switcher supply capacitor). When the input voltage rises above the UVLO turn-on threshold, the Si3400 and Si3401 begin to turn on the internal hotswap power MOSFET. The switcher supply capacitor begins to charge up under the current limit control of the Si3400 and Si3401, and the HSO pin transitions from VPOS to VNEG. The Si3400 and Si3401 include hysteretic UVLO circuits to maintain power to the load until the input voltage falls below the UVLO turn-off threshold. Once the input voltage falls below 30V, the internal hotswap MOSFET is turned off.3.2.5. Dual Current Limit and Switcher Turn-OnThe Si3400 and Si3401 implement dual current limits. While the hotswap MOSFET is charging the switcher supply capacitor, the Si3400 and Si3401 maintain a low current limit. The switching regulator is disabled until the voltage across the hotswap MOSFET becomes sufficiently low, indicating the switcher supply capacitor is almost completely charged. When this threshold is reached, the switcher is activated, and the hotswap current limit is increased. This threshold also has hysteresis to prevent systemic oscillation as the switcher begins to draw current and the current limit is increased, which allows resistive losses in the cable to effectively decrease the input supply.The Si3400 and Si3401 stay in a high-level current limit mode until the input voltage drops below the UVLO turn-off threshold or excessive power is dissipated in the hotswap switch. This dual level current limit allows the system designer to design powered devices for use with both legacy and compliant PoE systems.An additional feature of the dual current limit circuitry is foldback current limiting in the event of a fault condition. When the current limit is switched to the higher level, 400mA of current can be drawn by the PD. Should a fault cause more than this current to be consumed, the voltage across the hotswap MOSFET will increase to clamp the maximum amount of power consumed. The power dissipated by the MOSFET can be very high under this condition. If the fault is very low impedance, the voltage across the hotswap MOSFET will continue to rise until the lower current limit level is engaged, further reducing the dissipated power. If the fault condition remains, the thermal overload protection circuitry will eventually engage and shut down the hotswap interface and switching regulator. The foldback current limiting occurs much faster than the thermal overload protection and is, therefore, necessary for comprehensive protection of the hotswap MOSFET.Table 10. Class Resistor ValuesClass Usage Power Levels Nominal ClassCurrent RCL Resistor (1%,1/16W)0Default0.44W to 12.95W< 4mA> 1.33kΩ(or open circuit) 1Optional0.44W to 3.84W10.5mA127Ω2Optional 3.84W to 6.49W18.5mA69.8Ω3Optional 6.49W to 12.95W28mA45.3Ω4Reserved Reserved40mA30.9Ω3.2.6. Power Loss IndicatorA situation can occur in which power is lost at the input of the diode bridge and the hotswap controller does not detect the fault due to the VPOS to VNEG capacitor maintaining the voltage. In such a situation, the PD can remain operational for hundreds of microseconds despite the PSE having removed the line voltage. If it is recognized early enough, the time from power loss to power failure can provide valuable time to gracefully shut down an application.Due to integration of the diode bridges, the Si3400 and Si3401 are able to instantaneously detect the removal of the line voltage and provide that early warning signal to the PD application. The PLOSS pin is an open drain output that pulls up to VPOS when a line voltage greater than 27V is applied. When the line voltage falls below 27V, the output becomes high-impedance, allowing an external pull-down resistor to change the logic state of PLOSS. The benefit of this indicator is that the powered device may include a microcontroller that can quickly save its memory or operational state before draining the supply capacitors and powering itself down. This feature can help improve overall manageability in applications, such as wireless access points.3.3. Switching RegulatorPower over Ethernet (PoE) applications fall into two broad categories, isolated and non-isolated. Non-isolated systems can be used when the powered device is self-contained and does not provide external conductors to the user or another application. Non-isolated applications include wireless access points and security cameras. In these applications, there is no explicit need for dc isolation between the switching regulator output and the hotswap interface. An isolated system must be used when the powered device interfaces with other self-powered equipment or has external conductors accessible to the user or other applications. For proper operation, the regulated output supply of the switching regulator must not have a dc electrical path to the hotswap interface or switching regulator primary side. Isolated applications include point-of-sale terminals where the user can touch the grounded metal chassis.The application determines the converter topology. An isolated application will require a flyback transformer-based switching topology while a non-isolated application can use an inductor-based buck converter topology. In the isolated case, dc isolation is achieved through a transformer in the forward path and a voltage reference plus opto-isolator in the feedback path. The application circuit shown in Figure2 is an example of such a topology. The non-isolated application in Figure1 makes use of a single inductor as the energy conversion element, and the feedback signal is directly supplied into the internal error amplifier. As can be seen from the application circuits, the isolated topology has an increased number of components, thus increasing the bill of materials (BOM) and system footprint.To optimize cost and ease implementation, each application should be evaluated for its isolated or non-isolated requirements.。

SI3443

SI3443

Vishay SiliconixSi3443CDVP-Channel 20-V (D-S) MOSFETFEATURES•TrenchFET ® Power MOSFET •PWM Optimized •100 % R g TestedAPPLICATIONS•HDD•Asynchronous Rectification•Load Switch for Portable DevicesNotes:a.Based on T C = 25 °C.b.Surface Mounted on 1" x 1" FR4 board.c.t = 5 s.d.Maximum under Steady State conditions is 110 °C/W.PRODUCT SUMMARYV DS (V)r DS(on) (Ω)I D (A)a Q g (Typ)- 200.060 at V GS = - 4.5 V- 4.77.53 nC 0.084 at V GS = - 2.7 V - 3.90.100 at V GS = - 2.5 V- 3.4ABSOLUTE MAXIMUM RATINGS T A = 25°C, unless otherwise notedParameter Symbol LimitUnit Drain-Source Voltage V DS - 20VGate-Source Voltage V GS ± 12Continuous Drain Current (T J = 150 °C)T C = 25 °C I D - 5.97A T C = 70 °C - 4.6T A = 25 °C - 4.7b, c T A = 70 °C - 3.4b, cPulsed Drain Current I DM - 20Continuous Source-Drain Diode Current T C = 25 °C I S - 2.67T A = 25 °C - 1.71b, cMaximum Power DissipationT C = 25 °C P D 3.2W T C = 70 °C 2.05T A = 25 °C 2.0b, c T A = 70 °C 1.28b, cOperating Junction and Storage Temperature Range T J , T stg - 55 to 150°CTHERMAL RESISTANCE RATINGSParameter Symbol Typical Maximum UnitMaximum Junction-to-Ambient b, dt ≤ 5 s R thJA 5162.5°C/WMaximum Junction-to-Foot (Drain)Steady State R thJF3239Vishay SiliconixSi3443CDVNotes:a. Pulse test; pulse width ≤ 300 µs, duty cycle ≤ 2 %.b. Guaranteed by design, not subject to production testing.Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.SPECIFICATIONS T J = 25°C, unless otherwise notedParameter Symbol Test Conditions Min Typ Max UnitStaticDrain-Source Breakdown Voltage V DS V GS = 0 V , I D = - 250 µA- 20V V DS Temperature Coefficient ΔV DS /T J I D = - 250 µA- 18.8mV/°C V GS(th) T emperature Coefficient ΔV GS(th) /T J 3.25Gate-Source Threshold Voltage V GS(th)V DS = V GS , I D = - 250 µA - 0.6- 1.5V Gate-Source LeakageI GSS V DS = 0 V , V GS = ± 12 V ± 100nA Zero Gate Voltage Drain Current I DSS V DS = - 20 V, V GS = 0 V - 1µA V DS = - 20 V , V GS = 0 V , T J = 55 °C- 10On-State Drain Current aI D(on) V DS ≥ - 5 V , V GS = - 4.5 V - 20ADrain-Source On-State Resistance a r DS(on)V GS = - 4.5 V , I D = - 4.7 A 0.0500.060ΩV GS = - 2.7 V , I D = - 3.9 A 0.06920.084V GS = - 2.5 V , I D = - 3.4 A 0.0830.100Forward T ransconductance a g fs V DS = - 10 V , I D = - 4.7 A15S Dynamic bInput Capacitance C iss V DS = - 10 V, V GS = 0 V, f = 1 MHz610pFOutput CapacitanceC oss 132Reverse Transfer Capacitance C rss 105Total Gate Charge Q g V DS = - 10 V , V GS = - 5.0 V, ID = - 4.7 A 8.2612.4nC V DS = - 10 V , V GS = - 4.5 V, I D = - 4.7 A 7.5311.3Gate-Source Charge Q gs 1.53Gate-Drain Charge Q gd 2.37Gate Resistance R g f = 1 MHz8.512.75ΩTurn-on Delay Time t d(on) V DD = - 10 V , R L = 2.12 ΩI D ≅ - 4.7 A, V GEN = - 4.5 V , R g = 1 Ω2741ns Rise Timet r 5988.5Turn-Off Delay Time t d(off) 3045Fall Timet f1116.5Drain-Source Body Diode Characteristics Continuous Source-Drain Diode Current I S T C = 25 °C- 2.67A Pulse Diode Forward Current a I SM - 20Body Diode VoltageV SD I S = - 1.7 A- 0.8- 1.2V Body Diode Reverse Recovery Time t rr I F = - 1.7 A, di/dt = 100 A/µs, T J = 25 °C2030ns Body Diode Reverse Recovery Charge Q rr 913.5nC Reverse Recovery Fall Time t a 15nsReverse Recovery Rise Timet b5.1Vishay SiliconixSi3443CDVTYPICAL CHARACTERISTICS 25°C, unless otherwise notedOn-Resistance vs. Drain Current and Gate VoltageGate ChargeCapacitanceOn-Resistance vs. Junction TemperatureThreshold VoltageSafe Operating AreaVishay SiliconixSi3443CDVTYPICAL CHARACTERISTICS 25°C, unless otherwise noted* The power dissipation P D is based on T J(max) = 150 °C, using junction-to-case thermal resistance, and is more useful in settling the upper dissipation limit for cases where additional heatsinking is used. It is used to determine the current rating, when this rating falls below the package limit.Vishay SiliconixSi3443CDVTYPICAL CHARACTERISTICS 25°C, unless otherwise notedVishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for SiliconTechnology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see /ppg?74495.Normalized Thermal Transient Impedance, Junction-to-FootDisclaimer Legal Disclaimer NoticeVishayAll product specifications and data are subject to change without notice.Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, “Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay’s terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.Product names and markings noted herein may be trademarks of their respective owners.。

UPSD3354AV-24T1中文资料

UPSD3354AV-24T1中文资料
s Dual bank Flash memories
– 128 KByte or 256 KByte main Flash memory
– 32 KByte secondary Flash memory
s Content Security
– Block access to Flash memory
s Programmable Decode PLD for flexible address mapping of all memories.
– Place individual Flash and SRAM sectors on any address boundary
– Built-in page register breaks restrictive 8032 limit of 64 KByte address space
– Special register swaps Flash memory segments between 8032 “program” space and “data” space for efficient In-Application Programming
s Standalone Display Data Channel (DDC)
s Six I/O ports with up to 50 I/O pins
s 3000 gate PLD with 16 macrocells
s Supervisor functions
s In-System Programming (ISP) via JTAG
– Large 128 KByte or 256 KByte main Flash memory for application code, operating systems, or bit maps for graphic user interfaces

S1D13305中文资料

S1D13305中文资料

元器件交易网
The information of the product number change
Starting April 1, 2001, the product number will be changed as listed below. To order from April 1, 2001 please use the new product number. For further information, please contact Epson sales representative.
SDU1374#0C SDU1375#0C SDU1376#0C SDU1376BVR SDU1378#0C
• S1D1380x Series New No. Previous No.
SDU1386#0C
New No.
S5U13806P00C
S5U13503P00C S5U13504P00C S5U13505P00C S5U13506P00C
S1D13305 Series S1D13305D00A S1D13305F00A S1D13305F00B
S1D1370x Series S1D13704F00A S1D13705F00A S1D13706B00A S1D13706F00A S1D13708 Series
• S1D1350x Series Previous No.
S5U13704P00C S5U13705P00C S5U13706P00C S5U13706B32R S5U13708P00C
• S1D13A0x Series Previous No.
SDU13A3#0C SDU13A4#0C
New No.

S1-343A(344B)-V1

S1-343A(344B)-V1

(电气部分)系统型号:M50LS1-343AS1-344B 数控管螺纹车床使 用 说 明 书沈阳机床(集团)有限责任公司沈阳第一机床厂S1-343AS1-344B 数控管螺纹车床使用说明书签署单系统型号:M50L编制: 宋耿检查:标审:审核:批准:版本:Ver.2.0/2004.02电子文档:目次1电气概述 (1)1.1电气设备配置图 (1)1.2数控系统基本性能 (2)1.3电机一览表 (2)1.4机床操作面板 (3)1.4.1操作面板布置图 (3)1.4.2显示器及键盘 (3)1.4.3手摇脉冲发生器 (3)1.4.4操纵面板功能表 (4)1.5座标轴和座标系的规定 (5)1.6G指令代码表 (7)1.7M指令代码表 (8)1.8T指令代码表 (9)2机床供电 (10)2.1机床电气主要技术要求 (10)2.2机床供电前检查 (10)2.3机床送电 (10)2.4数控系统送电 (11)3机床基本操作 (12)3.1操作方式 (12)3.1.1 编辑方式 (12)3.1.2 手动数据输入 (12)3.1.3 自动操作方式 (12)3.1.4 手动连续进给 (13)3.1.5 返回参考点 (14)3.1.6 手摇脉冲×0.001,×0.01,×0.1 (14)3.2手动方式 (14)3.2.1 主电机正转、停止、反转 (14)3.2.2 主轴启动、停止、点动 (14)3.2.3 冷却液手动/自动 (15)3.2.4 卡盘操作 (15)3.2.5 定尺操作(选项) (15)3.2.6 手动选刀 (15)3.3循环启动和进给暂停 (16)3.4试运行(空运行)操作 (16)3.5机床锁住操作 (16)3.6任选程序段跳步操作 (16)3.7单程序段操作 (16)3.8机床超程限位和解除 (17)3.9程序选择停 (17)3.10倒角 (17)3.11程序保护 (17)3.12紧急停止操作 (17)4机床操作流程 (18)4.1操作流程 (18)5机床电气维护和调整 (19)1 电气概述1.1 电气设备配置图卡盘及开关 主轴电机X 轴伺服电机 Z 轴伺服电机数控系统机床操作面板配电盘液压电机冷却泵电机 X .Z 轴编码器返参考点及超程开关导轨润滑装置刀架电机 床头润滑泵电机伺服驱动单元定尺1.2数控系统基本性能1.3电机一览表1.4机床操作面板1.4.1操作面板布置图1. 显示器及键盘(见1.4.2) 3. 操作面板(见1.4.4)2. 手摇脉冲发生器(见1.4.3) 4. 急停按钮(见1.4.4)1.4.2显示器及键盘显示器即CRT,用来显示数控系统的各种信息,键盘即MDI,是系统的手动数据输入装置,由键盘组成,用来输入CNC加工程序、设置参数等。

DNP331中文资料

DNP331中文资料

At least 3.0 mm away from resin body
1) The dip soldering process shall be 2 times maximum. 2) The product shall be cooled to normal temperature before the second dipping process.
Frequency (MHz)
Pulse Forward Voltage : VFM(V)
2004.11.17
Page 6
DNP331
Through-hole IRED/φ3 Wide Distribution Type
Package Dimensions
(Unit: mm)
2004.11.17
Page 7
2004.11.17
Page 3
DNP331
Through-hole IRED/φ3 Wide Distribution Type
Technical Data
Spectral Distribution
Relative Intensity vs. Wavelength Condition : Ta = 25℃, IF = 50mA
Condition : Ta = 25℃, tw ≦ 100μs
Forward Current IF(mA)
Forward Voltage : VF(V)
Pulse Forward Current IFRM(A)
Duty Ratio
2004.11.17
Page 4
DNP331
Through-hole IRED/φ3 Wide Distribution Type
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Si3441BDVVishay SiliconixDocument Number: 72028S-40424—Rev. C, 15-Mar-041P-Channel 2.5-V (G-S) MOSFETPRODUCT SUMMARYV DS (V)r DS(on) (W )I D(A)0.090 @ V GS = −4.5 V −2.9−200.130 @ V GS = −2.5 V−2.45(4) S(3) GP-Channel MOSFETTSOP-6Top ViewOrdering Information:Si3441BDV -T1Si3441BDV -T1—E3 (Lead Free)Marking Code:B1xxxABSOLUTE MAXIMUM RATINGS (T A = 25_C UNLESS OTHERWISE NOTED)ParameterSymbol5 secs Steady StateUnitDrain-Source Voltage V DS −20Gate-Source VoltageV GS "8VT A = 25_C −2.9−2.45Continuous Drain Current (T J = 150_C)a T A = 70_CI D −2.35−1.95Pulsed Drain CurrentI DM −16AContinuous Diode Current (Diode Conduction)a I S −1.0−0.72T A = 25_C 1.250.86Maximum Power Dissipation aT A = 70_C P D 0.80.55W Operating Junction and Storage Temperature RangeT J , T stg−55 to 150_CTHERMAL RESISTANCE RATINGSParameterSymbol TypicalMaximumUnitM iJ ti t A bi t t v 5 sec 80100Maximum Junction-to-Ambient a Steady State R thJA 120145_Maximum Junction-to-Foot (Drain)Steady StateR thJF7085C/WNotesa.Surface Mounted on 1” x 1” FR4 Board.For SPICE model information via the Worldwide Web: http://www. /www/product/spice.htm.Si3441BDVVishay Siliconix2Document Number: 72028S-40424—Rev. C, 15-Mar-04SPECIFICATIONS (T J = 25_C UNLESS OTHERWISE NOTED)ParameterSymbol Test Condition Min Typ Max UnitStaticGate Threshold Voltage V GS(th)V DS = V GS , I D = −250 m A −0.45−0.85V Gate-Body LeakageI GSS V DS = 0 V, V GS = "8 V"100nA V DS = −20 V, V GS = 0 V −1Zero Gate Voltage Drain Current I DSS V DS = −20 V, V GS = 0 V, T J = 70_C−5m AOn State Drain Current D()V DS = −5 V, V GS = −4.5 V −10On-State Drain Current aI D(on)V DS = −5 V, V GS = −2.5 V −4ADrain Source On State Resistance DS()V GS = −4.5 V, I D = −3.3 A 0.0700.090Drain-Source On-State Resistance a r DS(on)V GS = −2.5 V, I D = −2.9 A 0.0980.130W Forward Transconductance a g fs V DS = −10 V, I D = −3.3 A 8.0S Diode Forward Voltage aV SDI S = −1.6 A, V GS = 0 V−0.8−1.2VDynamic bTotal Gate Charge Q g 5.28.0Gate-Source Charge Q gs V DS = −10 V, V GS = −4.5 V, I D = −3.3 A0.8nCGate-Drain Charge Q gd 1.5Turn-On Delay Time t d(on)1525Rise Timet r V 5585Turn-Off Delay Time t d(off)DD = −10 V, R L = 10 WI D ^ −1.0 A, V GEN = −4.5 V, R g = 6 W 3045nsFall Timet f 4060Source-Drain Reverse Recovery Timet rrI F = −1.6 A, di/dt = 100 A/m s 5080Notesa.Pulse test; pulse width v 300 m s, duty cycle v 2%.b.Guaranteed by design, not subject to production testing.TYPICAL CHARACTERISTICS (25_C UNLESS NOTED)0481216200.00.5 1.0 1.5 2.0 2.5 3.0 3.5 4.012345V DS − Drain-to-Source Voltage (V)− D r a i n C u r r e n t (A )I D V GS − Gate-to-Source Voltage (V)− D r a i n C u r r e n t (A )I DSi3441BDVVishay SiliconixDocument Number: 72028S-40424—Rev. C, 15-Mar-0430.00.20.40.60.81.01.21.41.6481216200.60.70.80.91.01.11.21.31.41.5−50−25025507510012515001234512345648121620V DS − Drain-to-Source Voltage (V)I D − Drain Current (A)Gate Charge− G a t e -t o -S o u r c e V o l t a g e (V )Q g − Total Gate Charge (nC)V G S On-Resistance vs. Junction TemperatureT J − Junction Temperature (_C)0.000.060.120.180.240.301234520101Source-Drain Diode Forward Voltage− O n -R e s i s t a n c e (r D S (o n )W )V SD − Source-to-Drain Voltage (V)V GS − Gate-to-Source Voltage (V)− S o u r c e C u r r e n t (A )I S r D S (o n ) − O n -R e s i i s t a n c e (N o r m a l i z e d ) 4Document Number: 72028 S-40424—Rev. C, 15-Mar-04100600Si3441BDVVishay SiliconixDocument Number: 72028S-40424—Rev. C, 15-Mar-045TYPICAL CHARACTERISTICS (25_C UNLESS NOTED)10−310−211010−110−4210.10.01Normalized Thermal Transient Impedance, Junction-to-FootSquare Wave Pulse Duration (sec)N o r m a l i z e d E f f e c t i v e T r a n s i e n t T h e r m a l I m p e d a n c eDocument Number: 91000Revision: 18-Jul-081DisclaimerLegal Disclaimer NoticeVishayAll product specifications and data are subject to change without notice.Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, “Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay’s terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.Product names and markings noted herein may be trademarks of their respective owners.元器件交易网。

相关文档
最新文档