中考数学热点专题及答案(1)
中考数学-热点01 与圆有关的计算问题(四川成都专用)(原卷版)
热点01与圆有关的计算问题圆得计算是四川成都中考数学的必考考点,常见以选填的形式,主要是求角、长度、面积等问题,一般出现在中考的第7或8题,偶尔也会出现在A 卷填空题中,以简单题为主,但除了常规考法以外,日常练习中多注意新颖题目的考向。
【题型1与圆有关的角度问题】【例1】(2023·四川成都·统考二模)如图,BC 是O 的直径,点,A D 在O 上,若30,ADC ∠=︒则ACB ∠的度数为()A .30°B .40°C .50°D .60°【变式1-1】(2023·四川成都·统考二模)如图,正五边形ABCDE 内接于O ,连接OA AC 、,则OAC ∠的大小是()A .18︒B .24︒C .30︒D .36︒【变式1-2】(2023·四川成都·统考二模)如图,在O 中,弦AB CD ∥,若82BOD ∠=︒,则ABC ∠的度数为()A .41︒B .52︒C .68︒D .82︒【变式1-3】(2023·四川成都·统考模拟预测)如图,正六边形ABCDEF 和正方形AGDH 都内接于O ,连接BG ,则弦BG 所对圆周角的度数为()A .15︒B .30︒C .15︒或165︒D .30︒或150︒【变式1-4】(2023·四川成都·模拟预测)如图,已知正五边形ABCDE ,AB BC CD DE AE ====,A 、B 、C 、D 、E 均在O 上,连接AC ,则ACD ∠的度数是()A .72︒B .70︒C .60︒D .45︒【题型2与圆有关的长度问题】【变式2-1】(2022·四川成都则正六边形的边长为()A .3B .A .cos36r R =︒C .2tan36a r =︒【变式2-3】(2023·的外切正六边形的边长为(A .233R【题型3与圆有关的面积问题】【例3】(2023·四川成都·统考中考真题)为传承非遗文化,讲好中国故事,某地准备在一个场馆进行川剧演出.该场馆底面为一个圆形,如图所示,其半径是【变式3-1】(2021·的长为半径画圆,则图中阴影部分的面积为(A.16πB.12πA .23π【变式3-4】(2021·(建议用时:30分钟)1.(2023·四川成都·成都实外校考一模)如图,CD 是O 的直径,弦AB CD ⊥,若28CDB ∠=︒,则AOC ∠的度数为()A .28︒B .56︒C .58︒D .62︒2.(2023·四川成都·模拟预测)如图,ABC 中,3AC =,4BC =,90C ∠=︒,O 为ABC 的内切圆,与三边的切点分别为D 、E 、F ,则O 的面积为___________(结果保留π)()A .πB .2πC .3πD .4πA.22︒B.6.(2022·四川成都·模拟预测)A.5 3π9.(2022·四川成都·模拟预测)如图,已知⊙∠AOB+∠COD=180°,则弦A.610.(2022·四川成都·一模)的面积为()A.24πππ16.(2023·四川成都·统考二模)如图,已知上一点,连接点D,若P为O17.(2023·四川成都·成都七中校考三模)如图,已知18.(2023·四川成都·模拟预测)则扇形BOC的面积为19.(2021·四川成都·成都实外校考一模)则BE=.20.(2023·四川成都·校考三模)如图,多边形∠=.PAB21.(2023·四川成都·成都七中校考三模)如图,分别以边长为边长为半径作弧,三段弧所围成的图形是一个曲边三角形,内的概率为.。
专题41 几何问题(1)之动点问题【热点专题】
专题41 几何问题(1)之动点问题
数学
题型精讲
题型一:圆背景下的动态探究题 【例 1】(2020•连云港)筒车是我国古代利用水力驱动的灌溉工具,唐代陈廷章在《水 轮赋)中写道:“水能利物,轮乃曲成”.如图,半径为 3m 的筒车⊙O 按逆时针方向
每分钟转 圈,筒车与水面分别交于点 A、B 筒车的轴心 O 距离水面的高度 OC 长为 2.2m,筒车上均匀分布着若干个盛水筒.若以某个盛水筒 P 刚浮出水面时开始计算时 间.
PQ PQ2.在
Rt△POQ 中,PQ2=OP2+OQ2=(8﹣t)2+t2.由四边形 OPCQ 的面积 S=S△POQ+S△PCQ
可得出答案.
题型二:四边形动点探究 【例 3】(2021·山东中考真题)如图,已知正方形 ABCD,点 E 是 BC 边上一点,将 △ABE 沿直线 AE 折叠,点 B 落在 F 处,连接 BF 并延长,与∠DAF 的平分线相交 于点 H,与 AE,CD 分别相交于点 G,M,连接 HC (1)求证:AG=GH; (2)若 AB=3,BE=1,求点 D 到直线 BH 的距离; (3)当点 E 在 BC 边上(端点除外)运动时,∠BHC 的大小是否变化?为什么?
【分析】(1)如图 1 中,连接 OA.求出∠AOC 的度数,以及旋转速度即可解决问 题. (2)如图 2 中,盛水筒 P 浮出水面 3.4 秒后,此时∠AOP=3.4×5°=17°,过点 P 作 PD⊥OC 于 D,解直角三角形求出 CD 即可. (3)如图 3 中,连接 OP,解直角三角形求出∠POM,∠COM,可得∠POH 的度 数即可解决问题.
【例 2】(2020•苏州)如图,已知∠MON=90°,OT 是∠MON 的平分线,A 是射线 OM 上一点,OA=8cm.动点 P 从点 A 出发,以 1cm/s 的速度沿 AO 水平向左作匀速 运动,与此同时,动点 Q 从点 O 出发,也以 1cm/s 的速度沿 ON 竖直向上作匀速运 动.连接 PQ,交 OT 于点 B.经过 O、P、Q 三点作圆,交 OT 于点 C,连接 PC、 QC.设运动时间为 t(s),其中 0<t<8. (1)求 OP+OQ 的值; (2)是否存在实数 t,使得线段 OB 的长度最大?若存在,求出 t 的值;若不存在, 说明理由. (3)求四边形 OPCQ 的面积.
专题二 二次函数的综合——2023届中考数学热点题型突破(含答案)
专题二二次函数的综合——2023届中考数学热点题型突破题型1 二次函数与线段最值问题1.在平面直角坐标系中, 点B 的坐标为, 将抛物线向左平移 2 个单位长度后的顶点记为A. 若点P是x 轴上一动点, 则的最小值是( )A. 8B.C. 9D.2.如图, 抛物线与x轴正半轴交于点A, 与y 轴交于点B.(1)求直线AB的解析式及抛物线顶点坐标;(2)点P为第四象限内且在对称轴右侧抛物线上一动点, 过点 P作轴, 垂足为C,PC交AB于点D, 求的最大值, 并求出此时点P的坐标;(3)将抛物线向左平移n个单位长度得到抛物线, 若抛物线与直线AB 只有一个交点, 求n的值.3.已知:如图,二次函数与x轴交于点A,B,点A在点B左侧,交y 轴于点C,.(1)求抛物线的解析式;(2)在第一象限的抛物线上有一点D,连接AD,若,求点D坐标;(3)点P在第一象限的抛物线上,于点Q,求PQ的最大值?题型2 二次函数与图形面积问题4.如图,抛物线与x轴的两个交点坐标为、.(1)求抛物线的函数表达式;(2)矩形的顶点P,Q在x轴上(P,Q不与A,B重合),另两个顶点M,N在抛物线上(如图).①当点P在什么位置时,矩形周长最大?求这个最大值并写出点P的坐标;②判断命题“当矩形周长最大时,其面积最大”的真假,并说明理由.5.在平面直角坐标系xOy 中, 已知抛物线经过,两点. P是抛物线上一点, 且在直线AB的上方.(1)请直接写出抛物线的解析式.(2)若面积是面积的 2 倍, 求点P的坐标.(3)如图, OP交AB于点C,交AB于点D. 记,,的面积分别为,,. 判断是否存在最大值. 若存在, 求出最大值; 若不存在, 请说明理由.6.已知抛物线与x轴相交于A、B两点,与y轴交于C点,且,.(1)求抛物线的解析式;(2)点P为抛物线上位于直线BC上方的一点,连结PB、PC.①如图1,过点P作轴交BC于点D,交x轴于点E,连结OD.设的面积为,的面积为,若,求S的最大值;②如图2,已知,Q为平面内一点,若以点A、C、P、Q为顶点的四边形是以CP为边的平行四边形,求点Q的坐标.题型3 二次函数与图形判定问题7.如图,已知二次函数(b,c为常数)的图象经过点,点,顶点为点M,过点A作轴,交y轴于点D,交该二次函数图象于点B,连接BC.(1)求该二次函数的解析式及点M的坐标;(2)若将该二次函数图象向下平移m()个单位,使平移后得到的二次函数图象的顶点落在的内部(不包括的边界),求m的取值范围;(3)点P是直线AC上的动点,若点P,点C,点M所构成的三角形与相似,请直接写出所有点P的坐标(直接写出结果,不必写解答过程).8.如图, 已知点, 以点D为顶点的抛物线经过点A, 且与直线交于点B,.(1)求抛物线的表达式和点D的坐标.(2)在对称轴上存在一点M, 使得, 求出点M 的坐标.(3)已知点P 为抛物线对称轴上一点, 点Q 为平面内一点, 是否存在以P,B,C,Q为顶点的四边形是菱形的情形? 若存在, 直接写出点P 的坐标; 若不存在, 请说明理由.9.如图,已知抛物线与x轴交于点,,与y轴交于点,点D与点C关于x轴对称,点P是x轴上的一个动点,设点P的坐标为,过点P作x轴的垂线l交抛物线于点Q.(1)求抛物线的解析式;(2)当点P在线段OB上运动时,直线l交直线BD于点M,试探究m为何值时,四边形CQMD是平行四边形;(3)点P在线段AB上运动过程中,是否存在点Q,使得以点B、Q、M为顶点的三角形与相似?若存在,求出点Q的坐标;若不存在,请说明理由.答案以及解析1.答案:D解析:,平移后抛物线的解析式为,点A的坐标为.如图, 作点A关于 x轴对称的点连接交x轴于点P则此时有最小值,最小值为的长,易知,,的最小值是.2.答案: (1)(2)(3)解析: (1)对于,令, 则, 解得,,.令, 则,.设直线AB的解析式为,则解得直线AB的解析式为.抛物线顶点坐标为.(2)如图, 过点D作轴于点E, 则.,,.设点P的坐标为,则点D的坐标为,.,又,当时, 的值最大, 最大值为,此时,此时点P 的坐标为.(3)设抛物线的解析式为. 令,整理, 得,3.答案:(1)(2)(3)解析:(1)当时,,解得,,,.,,,抛物线的解析式为;(2)如图,作于E,,,设,则,,,解得,,,;(3)如图,作轴,交BC于F,则,,,,,由,可知,直线BC的解析式为,设,则,,,时,PF的最大值为,的最大值为.4.答案:(1)(2)①Р在时,矩形的周长最大,最大值为10;②命题是假命题解析:(1)解:将、代入中得,解得,抛物线的函数表达式为,(2)解:抛物线的对称轴为,设点,则,①P,Q关于对称,,则,矩形的周长为,当时,l的值最大,最大值为10,即Р在时,矩形的周长最大,最大值为10.②假命题.由①可知,当矩形周长最大时,长为3,宽为2,面积为6,当为正方形时,,解得,点Р的坐标为,点Q的坐标为,,正方形的面积;故命题是假命题.5.答案: (1)(2) 或(3) 存在,解析:(1)将,分别代入, 得解得所以抛物线的解析式为.(2)设直线AB的解析式为,将,分别代入, 得解得所以直线AB的解析式为.如图 (1), 过点P 作轴, 垂足为M,PM交AB于点N, 过点B 作, 垂足为E,所以因为,,所以.因为的面积是面积的 2 倍,所以, 所以.设,则,所以, 即,解得,,所以点P的坐标为或.(3) 存在.因为, 所以,, 所以,所以.因为,,所以.设直线AB交y轴于点F, 则.如图 (2), 过点P作轴, 垂足为H,PH交 AB于点G.因为, 所以.因为, 所以,所以,所以.设.由 (2) 可得,所以.又,所以当时, 的值最大, 最大值为.6.答案:(1)(2)见解析①6②或解析:(1)由题意,得,,此抛物线的解析式为:.(2)①由可得:设直线BC的解析式为:,则,,直线BC的解析式为:,设,则,,,当时,S的最大值为6.②在OB上截取,则,,又,,,,,运用待定系数法法可求:直线CF的解析式为:,直线BP的解析式为:,,解得或4,,,轴,ACPQ是以CP为边构成平行四边形,,点Q在x轴上,或.7.答案:(1)二次函数解析式为;点M的坐标为(2)(3),,,解析:(1)把点,点代入二次函数得,,解得,二次函数解析式为,配方得,点M的坐标为;(2)设直线AC解析式为,把点,代入得,,解得,直线AC的解析式为,如图所示,对称轴直线与两边分别交于点E、点F.把代入直线AC解析式解得,则点E坐标为,点F坐标为,,解得;(3)连接MC,作轴并延长交AC于点N,则点G坐标为,,,,把代入解得,则点N坐标为,,,,,由此可知,若点P在AC上,则,则点D与点C必为相似三角形对应点①若有,则有,,,,,,若点P在y轴右侧,作轴,,,,把代入,解得,;同理可得,若点P在y轴左侧,则把代入,解得,;②若有,则有,,,若点P在y轴右侧,把代入,解得;若点P在y轴左侧,把代入,解得;;.所有符合题意得点P坐标有4个,分别为,,,.8.答案: (1)(2)(3)存在, 点P的坐标为,, ,或解析: (1) 将代入, 得,将,分别代入, 得解得故抛物线的表达式为.抛物线的顶点D的坐标为.(2)易知抛物线的对称轴为直线, 且点A,C 关于对称轴对称.作直线AB, 交直线于点M, 则点M即为所求.令,解得,,故.设直线AB 的表达式为,将,分别代入, 得解得故直线AB 的表达式为,当时, , 故.(3)设,易得,①当时,该四边形是以BC为对角线的菱形, 则, 即, 解得,点P 的坐标为.②当时,该四边形是以PC 为对角线的菱形, 则, 即,解得, 故点P的坐标为或.③当时,该四边形是以PB为对角线的菱形, 则, 即, 解得,故点P 的坐标为或.综上可知, 点P的坐标为,,,或9.答案:(1)(2)当时,四边形CQMD是平行四边形(3)点Q的坐标为或解析:(1)设抛物线的解析式为,把点的坐标代入,得,解得抛物线的解析式为,即.(2)点D与点C关于x轴对称,点,,设直线BD的表达式为,把,代入得,,解得,直线BD的关系表达式为,设,,,,当时,四边形CQMD为平行四边形,,解得,(不合舍去),故当时,四边形CQMD是平行四边形;(3)在中,,,,当以点B、M为顶点的三角形与相似时,分三种情况:①若时,,如图1所示,当时,,即,,,,,,解得,,(不合舍去),,,,,点Q的坐标为;②若时,如图2所示,此时点P、Q与点A重合,,③由于点M在直线BD上,因此,这种情况不存在,综上所述,点Q的坐标为或.。
专题八 新定义问题__2023届中考数学热点题型突破(含答案)
专题八新定义问题——2023届中考数学热点题型突破1.对任意两个实数a,b定义两种运算:并且定义运算顺序仍然是先做括号内的,例如,,,那么等于( )A. B.3 C.6 D.2.我们知道, 如果直角三角形的三边的长都是正整数, 这样的三个正整数就叫做一组勾股数. 定义: 如果一个正整数m能表示为两个正整数a,b的平方和, 即, 那么称m 为广义勾股数. 下面的结论:① 7 不是广义勾股数;②13 是广义勾股数;③两个广义勾股数的和是广义勾股数;④两个广义勾股数的积是广义勾股数;⑤若,,, 其中x,y,z,m,n 均为正整数, 则x,y,z 为一组勾股数;⑥一个正奇数 (除 1 外) 与两个和等于此正奇数的平方的连续正整数是一组勾股数.正确的是( )A.①②⑤⑥B.①③④⑤C.②④⑥D.②④⑤⑥3.对x,y定义一种新运算T,规定:(其中a,b均为非零常数),这里等式右边是通常的四则运算,例如:,若,,则结论正确的个数为( )(1),;(2)若,则;(3)若,m,n均取整数,则或或;(4)若,当n取s,t时,m对应的值为c,d,当时,;(5)若对任意有理数x,y都成立(这里和T均有意义),则A.2个B.3个C.4个D.5个4.阅读材料:定义:如果一个数的平方等于,记为,这个数i叫做虚数单位,把形如为实数)的数叫做复数,其中a叫这个复数的实部,b叫这个复数的虚部.它的加、减、乘法运算与整式的加、减、乘法运算类似:例如计算:;;;.根据以上信息,完成下面的计算:__________.5.定义:在平面直角坐标系xOy中,如果将点绕点旋转得到点Q,那么称线段PQ为“拓展带”,点Q为点P的“拓展带”.(1)当时,点的“拓展带”坐标为__________.(2)如果,当点的“拓展带”N在函数的图象上时,t的值为__________.6.新定义:在平面直角坐标系中,对于点和点,若满足时,;时,,则称点是点的限变点.例如:点的限变点是,则点的限变点是____________.若点在二次函数的图象上,则当时,其限变点的纵坐标的取值范围是____________.7.阅读以下材料:指数与对数之间有密切的联系,它们之间可以互化.对数的定义:一般地,若(且),那么x叫做以a为底N的对数,记作,比如指数式可以转化为对数式,对数式,可以转化为指数式.我们根据对数的定义可得到对数的一个性质:(,,,),理由如下:设,,则,,,由对数的定义得又,.请解决以下问题:(1)将指数式转化为对数式__________;(2)求证:(,,,);(3)拓展运用:计算__________.8.定义如果一个正整数等于两个连续偶数的平方差, 那么称这个正整数为 “奇巧数”.发现数28,32,36 中, 是 “奇巧数” 的是探究已知正奇数的 4 倍一定是 “奇巧数”, 设一个正奇数为 (n为正整数), 请你论证这个结论.9.已知一个三位自然数N, 若满足十位数字与个位数字之和减去百位数字为 0 , 则称这个数为“雪花数”, 并把其十位数字与个位数字的乘积记为. 定义为 “雪花数”, m,n为常数),已知,. 例如: 945,,945是 “雪花数”, ,634,,634不是 “雪花数”.(1)请填空: 817 _______“雪花数”, 527______ “雪花数” (填“是”或“不是”);(2)求出常数m,n的值;(3)已知s 是个位数字不为 1 的 “雪花数”, 其十位数字为, 个位数字为b, 将s的个位数字移到十位上,十位数字移到百位上, 百位数字移到个位上, 得到一个新数, 若s 与的差能被17整除, 求出所有满足条件的s及由这些s两两组合形成的P 的值.答案以及解析1.答案:A解析:,故选A.2.答案:A解析:7 不能表示为两个正整数的平方和, 7不是广义勾股数,故结论①正确., 13是广义勾股数,故结论②正确. 两个广义勾股数的和不一定是广义勾股数, 如 5 和 10 是广义勾股数, 但是它们的和 15 不是广义勾股数, 故结论③错误 . 两个广义勾股数的积不一定是广义勾股数, 如 2 和 2 是广义勾股数, 但,4 不是广义勾股数, 故结论④错误. , 即. 又x,y,z均为正整数, 故结论⑤正确. 设正奇数为 (k为正整数), 2 个连续正整数为p,, 由题意得,,,. 又,p,都是正整数, 结论⑥正确. 综上, 正确结论有①②⑤⑥.故选 A.3.答案:C解析:由题意可知,,,即,解得,故(1)正确;,;,,则;故(2)正确m,n均取整数,,的取值为,,,1,2,4;当,即时,;当,即时,;当,即时,;当,即时,;当,即时,;当,即时,;故(3)不正确,,,,当时,;故(4)正确;,,,,,,对任意有理数x,y都成立(这里和均有意义),则故(5)正确故选C4.答案:解析:.5.答案:①.②.2解析:(1)根据“拓展带”的定义,互为“拓展带”的两点关于点成中心对称,互为“拓展带”的两点的横坐标互为相反数,纵坐标的平均数等于t,点的“拓展带”坐标为.(2)根据“拓展带”的定义,点M和点N关于点成中心对称,设N点坐标为,则,,解得,,在函数的图象上,,解得.6.答案:①.②.解析:,,,点的限变点是,点在二次函数的图象上,当时,,,当时,,当时,,综上,当时,其限变点的纵坐标n'的取值范围是,故答案为:,.7.答案:(1)(2)证明见解析(3)2解析:(1)解:根据指数与对数关系得:.故答案为:;(2)解:设,,则,,,..(3)解:.故答案为:2.8.答案:见解析解析:发现 28,36,,32不是两个连续偶数的平方差,28,36 是“奇巧数”.探究正奇数的 4 倍为.总能表示为两个连续偶数的平方差,正奇数的 4 倍一定是“奇巧数”.9.答案: (1) 是,不是(2)(3)见解析解析:817,, 817 是“雪花数”;527,,527不是 “雪花数”.(2),,,①,,,,②联立①②得解得(3) 由 “雪花数” 的定义可知, 由题意可知, s与的差能被 17 整除,能被 17 整除,为 17 的倍数.s为“雪花数”, 且个位数字不为 1 ,,且,,34,51,68 或 85 .若, 则不符合题意;若, 则符合题意;若, 则符合题意;若, 则此时, 不符合题意;若, 则此时, 不符合题意.综上可得或 615 .。
热点四 文娱活动——2023届中考数学热点聚焦(含答案)
热点四 文娱活动——2023届中考数学热点聚焦1.某校组织社团活动,小明和小刚从“数学社团”“航模社团”文艺社团”三个社团中,随机选择一个社团参加活动则两人恰好选择同一个社团的概率是( )A.B.C.D.2.2023年1月2日,第十八届中国(深圳)国际文化产业博览交易会落下帷幕,深圳文化产业增加值突破2600亿元,深圳以其独具特色的工业底座和科技内涵为城市塑造了精神坐标,沉淀着独有的文化记忆.2600亿用科学计数法表示为( )A.B.C.D.3.某学校开展了以“我的航天梦”为主题的演讲比赛活动,决赛中5名同学的成绩(单位:分)分别为92,93,90,93,88,则这组数据的中位数和众数分别是( )A.92,93B.92,90C.88,92D.90,884.为增强学生的环保意识,共建绿色文明校园,某学校组织“废纸宝宝旅行记”活动,经统计,七年级5个班级一周回收废纸情况如下表:班级一班二班三班四班五班废纸重量(kg )4.54.45.13.35.7则每个班级回收废纸的平均重量为( )A.5kgB.4.8kgC.4.6kgD.4.5kg5.某校团支部组织部分共青团员开展学雷锋志愿者服务活动,每个志愿者都可以从以下三个项目中任选一项参加:①敬老院做义工;②文化广场地面保洁;③路口文明岗值勤.则小明和小慧选择参加同一项目的概率是( )A.B.C.D.6.某班级开展“共建书香校园”读书活动,统计了1至7月份该班同学每月阅读课外书的本数,并绘制出如图所示的折线统计图.则下列说法正确的是( )A.从2月到6月,阅读课外书的本数逐月下降B.从1月到7月,每月阅读课外书本数的最大值比最小值多45C.每月阅读课外书本数的众数是45D.每月阅读课外书本数的中位数是587.某校开展岗位体验劳动教育活动,设置了“安全小卫士”“环卫小卫士”“图书管理小卫士”“宿舍管理小卫士”共四个岗位,每个岗位体验人数不限且每位同学只能从中随机选择一个岗位进行体验、甲、乙两名同学都参加了此项活动,则这两名同学恰好在同一岗位体验的概率为( )A. B. C. D.8.某班拟开展“坚持阅读,打卡30天”活动,原计划打卡30次,打卡表格设计为5行6列.为了让学生能养成更好的阅读习惯,老师决定打卡次数再增加26次,同时为了美观,打卡表格要求增加的行数和列数相同.设增加了x行,根据题意,所列方程正确的是( )A. B.C. D.9.某学校开展了“党在我心中”手抄报作品征集活动,先从中随机抽取了部分作品,按A,B,C,D四个等级进行评价,然后根据统计结果绘制了如下两幅不完整的统计图.那么,此次抽取的作品中,等级为B的作品有__________份.10.宜宾东楼始建于唐代,重建于宜宾建城2200周年之际的2018年,新建成的东楼(如图(1))成为长江首城会客厅、旅游休闲目的地、文化地标打卡地.某数学小组为测量东楼的高度,在梯步A处(如图(2))测得楼顶D的仰角为,沿坡比为的斜坡AB前行25米到达平台B处,测得楼顶D的仰角为,求东楼的高度DE.(结果精确到1米.参考数据:,)11.某校九年级学生小丽,小强和小红到某商场参加了社会实践活动,在活动中他们参与了某商品的销售工作,已知该商品的进价为40元/件,售价为60元/件,下面是他们在活动结束后的对话:小丽:我发现此商品如果按60元/件销售,每星期可卖出300件.小强:我发现在售价60元/件的基础上调整价格,每涨价1元,每星期比小丽所调查的销售量300件要少卖出10件.小红:我发现在售价60元/件的基础上调整价格,每降价1元,每星期比小丽所调查的销售量300件要多卖出20件.(1)若设每件涨价x元,则每星期实际可卖出__________件,每星期售出商品的利润(元)与x的关系式为__________,x的取值范围是__________.(2)若设每件降价a元,则每星期售出商品的利润(元)与a的关系式为__________.(3)在涨价情况下,如何定价才能使每星期售出商品的利润最大?最大利润是多少?12.为了传承中华优秀传统文化,增强文化自信,某中学举办了以“争做时代先锋少年”为主题的演讲比赛,并为获奖的同学颁发奖品.张老师去商店购买甲、乙两种笔记本作为奖品,已知该商店甲种笔记本的单价为5元/个,乙种笔记本的单价为3元/个,张老师准备购买甲、乙两种笔记本共100个.因张老师购买的数量多,实际付款时按原价的九折付款.设张老师购买x个甲种笔记本,购买这两种笔记本所需费用为y元.(1)求y与x之间的关系式;(2)若本次购买甲种笔记本的数量不少于乙种笔记本数量的3倍,为了使所花费用最低,应如何购买?最低费用是多少元?13.【问题情境】数学活动课上,老师带领同学们开展“利用树叶的特征对树木进行分类”的实践活动.【实践发现】同学们随机收集芒果树、荔枝树的树叶各10片,通过测量得到这些树叶的长y(单位:),宽x(单位:)的数据后,分别计算长宽比,整理数据如下:12345678910芒果树叶3.8 3.7 3.5 3.4 3.84.0 3.6 4.0 3.6 4.0的长宽比荔枝树叶2.0 2.0 2.0 2.4 1.8 1.9 1.8 2.0 1.3 1.9的长宽比【实践探究】分析数据如下:平均数中位数众数方差芒果树叶的长3.74m4.00.0424宽比荔枝树叶的长1.91 1.95n0.0669宽比【问题解决】(1)上述表格中:_________,_________.(2)①A同学说:“从树叶的长宽比的方差来看,我认为芒果树叶的形状差别大.”②B同学说:“从树叶的长宽比的平均数、中位数和众数来看,我发现荔枝树叶的长约为宽的两倍.”上面两位同学的说法中,合理的是_____________(填序号).(3)现有一片长,宽的树叶,请判断这片树叶更可能来自芒果、荔枝中的哪种树,并给出你的理由.14.近日,教育部印发《义务教育课程方案和课程标准(2022年版)》,将劳动从原来的综合实践活动课程中独立出来.某中学为了让学生体验农耕劳动,开辟了一处耕种园,需要采购一批菜苗开展种植活动,据了解,市场上每捆A种菜苗的价格是菜苗基地的倍,用300元在市场上购买的A种菜苗比在菜苗基地购买的少3捆.(1)求菜苗基地每捆A种菜苗的价格.(2)菜苗基地每捆B种菜苗的价格是30元.学校决定在菜苗基地购买A,B两种菜苗共100捆,且A种菜苗的捆数不超过B种菜苗的捆数.菜苗基地为支持该校活动,对A,B两种菜苗均提供九折优惠.求本次购买最少花费多少钱.15.某学校为加强校园文化建设,准备打造校园文化墙,需要甲,乙两种石材.经市场调查,甲种石材的费用y(元)与使用面积间函数关系如图所示,乙种石材的价格为每平方米50元.(1)求y与x的函数解析式;(2)若校园文化墙面积共,其中使用甲石材,设购买两种石材的总费用为w 元,请直接写出w与x的函数解析式;(3)在(2)的前提下,若甲种石材使用面积不少于,且不超过乙种石材面积的2倍,那么应该怎么分配甲,乙两种石材的面积才能使总费用最少?最少总费用是多少元?答案以及解析1.答案:A解析:根据题意画树状图如下:由树状图可知,共有9种等可能的结果,其中小明和小刚选择同个社团的结果有3种,故所求概率为.2.答案:B解析:2600亿=260000000000,2600亿用科学记数法表示为:,故选:B.3.答案:A解析:将这组数据从小到大排列为88,90,92,93,93,故中位数是92;93出现的次数最多,故众数是93.故选A.4.答案:C解析:每个班级回收废纸的平均重量.故选C.5.答案:A解析:根据题意,列表如下,可知共有9种等可能的结果,其中小明和小慧选择参加同一项目的结果有3种,故所求概率为.小明小慧①②③①(①,①)(②,①)(③,①)②(①,②)(②,②)(③,②)③(①,③)(②,③)(③,③)6.答案:D解析:逐项分析如下,故选D.选项分析正误A 4月到5月,阅读课外书的本数上升.×B 每月阅读课外书的本数最大值是78,最小值是28,故最大值比最小值多50.×C 这7个数据中,58出现的次数最多,故众数是58.×D 将这7个数据按大小顺序排列后,中间的数是58,故中位数是58.√7.答案:A解析:本题考查用列表法或画树状图法求概率.根据题意画树状图如图所示,由树状图可知,共有16种等可能的情况,其中甲、乙两名同学恰好在同一岗位体验的情况共有4种,这两名同学恰好在同一岗位体验的概率为,故选A.8.答案:D解析:增加了x行,且增加的行数和列数相同,增加后的打卡表格有行、列.依题意得:.故选:D.9.答案:50解析:由条形统计图及扇形统计图可知所抽取作品的总份数为(份),等级为B的作品份数为(份).10.答案:40米解析:在中,,米,设米,则米,由,得,解得,米,米.设米,则米,米,在中,,则米.米,在中,,则,米,,解得,(米).答:东楼的高度DE约为40米.11.答案:(1),,,且x为整数(2)(3)商品的定价为65元时,销售利润最大,最大为6250元解析:(1)进价为40元/件,按60元/件销售,每星期可卖出300件,每涨价1元,每星期比销售量300件要少卖出10件,设每件涨价元,现在每件的销售价格为:元,销售量为:件,每件的利润为元,,即,,则,,且x为整数,故答案为:,,,且x为整数.(2)解:进价为40元/件,按60元/件销售,每星期可卖出300件,每降价1元,每星期比销售量300件要多卖出20件,设每件降价元,现在销售价为:,销售量为:件,每件的利润为:元,,即,故答案为:.(3)解:由(1)可知,,(x为整数),,当时,商品的利润最大,最大利润,商品的定价为65元时,销售利润最大,最大为6250元.12.答案:(1)(2)购买75个甲种笔记本、25个乙种笔记本,所花费用最低,最低费用是405元解析:(1)张老师购买x个甲种笔记本,则购买个乙种笔记本,.即y与x之间的关系式为.(2)甲种笔记本的数量不少于乙种笔记本数量的3倍,,解得.在中,,y随x的增大而增大,时,y最小,最小值为,此时,答:购买75个甲种笔记本、25个乙种笔记本,所花费用最低,最低费用是405元. 13.(1)答案:3.75;2.0解析:把芒果树叶的长宽比按照从小到大的顺序排列为3.4,3.5,3.6,3.6,3.7,3.8,3.8,4.0,4.0,4.0,第5,6位的数分别为3.7,3.8,中位数为,;荔枝树叶的长宽比数据中,2.0出现了4次,出现的次数最多,众数是2.0,.(2)答案:②解析:从树叶的长宽比的方差来看,芒果树叶的长宽比的方差较小,所以芒果树叶的形状差别较小;从树叶的长宽比的平均数、中位数和众数来看,荔枝树叶的长约为宽的两倍.(3)答案:这片树叶更可能来自荔枝树.理由见解析解析:这片树叶更可能来自荔枝树.理由如下:,结合两种树叶的长宽比的平均数、中位数和众数,可知这片树叶更可能来自荔枝树.14.答案:(1)20元(2)2250元解析:(1)设菜苗基地每捆A种菜苗的价格为x元,根据题意,得,解得,经检验,是原方程的解.答:菜苗基地每捆A种菜苗的价格为20元.(2)设购买A种菜苗a捆,则购买B种菜苗捆,根据题意,得,解得.设本次购买花费w元,则.,w随a的增大而减小,当时,w有最小值,.答:本次购买最少花费2250元.15.答案:(1)(2)(3)甲种石材400,乙种石材200时,总费用最少,最少总费用为37000元.解析:(1)当时,设,过,,,解得,;当时,设,过,,,解得,,综上y与x的函数解析式为;(2)解:由题意,得:当时,;当时,,故w与x的函数解析式为;(3)解:设甲种石材为,则乙种石材,,,由(2)可知,,w随a的增大而减小,当a=400时,w最小,最小值为,此时,,答:甲种石材400,乙种石材200时,总费用最少,最少总费用为37000元.。
最新中考数学总复习第一部分数与代数 第二章 方程与不等式 热点专题 方程与不等式应用专题
400 x
=
x5-12400,解得
x=200,
经检验,x=200 是所列分式方程的解,且符合题意.
答:该旅行社到洪洞大槐树的原来门市报价是每人 200 元.
返回
数学
(2)设平均每次的降价率为y,根据题意得200(1-y)2=128, 解得y1=0.2=20%,y2=1.8(不合题意,舍去). 答:平均每次降价的百分率为20%.
返回
数学
(3)方案1所需资金为1.5×5+0.5×5=10(万元); 方案2所需资金为1.5×6+0.5×4=11(万元); 方案3所需资金为1.5×7+0.5×3=12(万元). ∵10<11<12,∴购买方案1所需资金最少,最少资金是10万元.
返回
数学
6.(2021黔南州模拟)在2020年新冠肺炎疫情期间,某中学响应 政府“停课不停学”的号召,充分利用网络资源进行网上学习, 九年级(1)班的全体同学在自主完成学习任务的同时,彼此关 怀,全班每两个同学都通过一次电话,互相勉励,共同提高,如果 该班共有48名同学,若每两名同学之间仅通过一次电话,那么 全班同学共通过多少次电话呢?我们可以用下面的方式来解 决问题.
返回
数学
(3)在(2)的条件下,哪种购买方案需要的资金最少,最少资金是
多少?
解:(1)设购进 1 件甲种农机具需要 x 万元,1 件乙种农机具需要 y
万元,依题意得
2x+y=3.5 ,解得
x=1.5 .
x+3y=3
y=0.5
答:购进 1 件甲种农机具需要 1.5 万元,1 件乙种农机具需要 0.5
返回
数学
用点A1,A2,A3,…,A48分别表示第1名同学、第2名同学、第3名 同学、…、第48名同学,把该班级人数x与通电话次数y之间 的关系用如图所示的模型表示:
九年级数学总复习课件:第4部分 中考热点题型 第3章 阅读理解判断说理题(1)
阅读理解判断说理题(1)
例题分析 新方法的阅读理解
例1、阅读材料:为解方程(x2-1)2-5(x2-1) +4=0,将(x2-1)看作一个整体y,则原方 程可化为y2-5y+4=0,解得y1=1,y2=4。 当y=1时,x2-1=1,∴ x2=2,∴ x= 2; 当y=4时,x2-1=4,∴ x2=5,∴ x= 5; ∴原方程的解为x1= 2, x2= 2 ,x3=
结论吗? logaM + logaN= ≠1,M>0,N>0);
(a>0且a
(4)根据幂运算法则:an·am=an+m 以及对
数的含义证明上述结论。
重点知识
新知识的阅读理解: 通过阅读,学习、理解新的数学
知识,并将所学运用到解题中。
巩固练习
2、如图,菱形、矩形与正方形的形状 有差异,我们将菱形、矩形与正方形的 接近程度称为“接近度”。我们在研究“ 近度”时,应保证形似图形的“接近度” 相等。
m°n°
ቤተ መጻሕፍቲ ባይዱ
a b
巩固练习
2、(1)设菱形相邻两个内角的度数分别 为m°和n°,将菱形的“接近度”定义为 |m-n|,于是|m-n|越小,菱形越接近于正 方形。
①若菱形的一个内角为70° ,则该菱形
的“接近度”等于 ;
②当菱形的“接近度”等于 时,菱形
是正方形。
m°n°
a b
巩固练习
2、(2)设矩形相邻两边长分别为a和b(a≤ b),将矩形的“接近度”定义为|a-b|,于是 |a-b|越小,矩形越接近于正方形。 你认为这种说法是否合理?若不合理, 给出矩形的“接近度”的一个合理定义。
例2、阅读下列材料,并解决后面的问 题: 材料:一般地,n个相同的因数a相乘: a·a·…·a记为an。如23=8,此时,3叫做 以2为底8的对数,记为log28(即log28=3)。
北师大版中考数学复习:中点问题常考热点 专项练习题汇编(Word版,含答案)
北师大版中考数学复习:中点问题常考热点专项练习题汇编一.选择题1.如图,在正方形ABCD中,点E是边BC的中点,连接AE、DE,分别交BD、AC于点P、Q,过点P作PF⊥AE交CB的延长线于F,下列结论正确的有:()①AP=FP,②AE=AO,③若四边形OPEQ的面积为4,则该正方形ABCD的面积为36,④CE•EF=EQ•DE.A.4个B.3个C.2个D.1个2.如图,矩形ABCD中,AB=2,AD=2,动点P从点A出发向终点D运动,连BP,并过点C作CH⊥BP,垂足为H.①△ABP∽△HCB;②AH的最小值为﹣;③在运动过程中,BP扫过的面积始终等于CH扫过的面积;④在运动过程中,点H的运动路径的长为π,其中正确的有个()个.A.1B.2C.3D.43.如图,在矩形ABCD中,E,F分别为边BC,CD的中点,线段AE,AF与对角线BD分别交于点G,H.设矩形ABCD的面积为S,则以下4个结论中:①AG:GE=2:1;②BG:GH:HD=1:1:1;③S1+S2+S3=S;④S2:S4:S6=1:2:4.正确的结论有()A.1个B.2个C.3个D.4个4.如图,在△ABC中,D是AC边上的中点,连接BD,把△BDC沿BD翻折,得到△BDC',DC′与AB交于点E,连接AC',若AD=AC′=2,BD=3,则点D到BC′的距离为()A.B.C.D.5.如图,在正方形ABCD中,E、F分别为BC、CD的中点,连接AE,BF交于点G,将△BCF沿BF对折,得到△BPF,延长FP交BA延长线于点Q,下列结论正确的个数是()①AE⊥BF;②S△BCF=5S△BGE;③QB=QF;④tan∠BQP=.A.1B.2C.3D.46.正方形ABCD中,对角线AC、BD相交于点O,DE平分∠ADO交AC于点E,把△ADE 沿AD翻折,得到△ADE′,点F是DE的中点,连接AF,BF,E′F.若AE=.下列结论:①AD垂直平分EE′,②tan∠ADE=﹣1,③C△ADE﹣C△ODE=2﹣1,④S四边形AEFB=,其中结论正确的个数是()A.4个B.3个C.2个D.1个7.如图,在矩形ABCD中,E是AD边的中点,BE⊥AC,垂足为点F,连接DF,分析下列四个结论:①△AEF∽△CAB;②CF=2AF;③DF=DC;④S△ABC=2S△ABF.其中正确的结论有()A.4个B.3个C.2个D.1个8.如图,正方形ABCD的边CD与正方形CGFE的边CE重合,O是EG的中点,∠EGC 的平分线GH过点D,交BE于H,连接OH、FH、EG与FH交于M,对于下面四个结论:①GH⊥BE;②HO BG;③S正方形ABCD:S正方形ECGF=9﹣4:4;④EM:MG =1:(1+),其中正确的结论有()A.1个B.2个C.3个D.4个9.如图,正方形ABCD中,P为对角线上的点,PB=AB,连PC,作CE⊥CP交AP的延长线于E,AE交CD于F,交BC的延长线于G,则下列结论:①E为FG的中点;②FG2=4CF•CD;③AD=DE;④CF=2DF.其中正确的个数是()A.1个B.2个C.3个D.4个二.填空题10.如图,Rt△ABC中,AC⊥BC,AD平分∠BAC交BC于点D,DE⊥AD交AB于点E,M为AE的中点,BF⊥BC交CM的延长线于点F,BD=2,CD=1.下列结论:①∠AED =∠ADC,②=,③BF=2AC,④BE=DE.其中结论正确的个数有.11.如图,在Rt△ABC中,∠C=90°,∠B=30°,AC=4,BC=4,点D是BC的中点,点E是边AB上一动点,沿DE所在直线把△BDE翻折到△B′DE的位置,B′D交AB于点F,若△AB′F为直角三角形,则AE的长为.12.已知:△ABC中,D为BC的中点,E为AB上一点,且BE=AB,F为AC上一点,且CF=AC,EF交AD于P,则EP:PF=.13.如图,在正方形ABCD中,AB=8,AC与BD交于点O,N是AO的中点,点M在BC 边上,且BM=6.P为对角线BD上一点,则PM﹣PN的最大值为.14.如图,正方形ABCD的边CD与正方形CGFE的边CE重合,O是EG的中点,∠EGC 的平分线GH过点D,交BE于H,连接OH、FH、EG与FH交于M,对于下面四个结论:①GH⊥BE;②HO BG;③点H不在正方形CGFE的外接圆上;④△GBE∽△GMF.其中正确的结论有.15.如图,正方形ABCD中,F为AB上一点,E是BC延长线上一点,且AF=EC,连接EF,DE,DF,M是FE中点,连接MC,设FE与DC相交于点N.则4个结论:①DN=DG;②△BFG∽△EDG∽△BDE;③CM垂直BD;④若MC=,则BF=2;正确的结论有.16.如图,四边形ABCD中,AB=AD,∠DAB=90°,AC与BD交于点H,AE⊥BC于点E,AE交BD于点G,点F是BD的中点,连接EF,若HG=10,GB=6,tan∠ACB=1,则下列结论:①∠DAC=∠CBD;②DH+GB=HG;③4AH=5HC;④EC﹣EB=EF;其中正确结论序号是.17.如图,在Rt△ACB中,∠ACB=90°,AC=BC=3,CD=1,CH⊥BD于H,点O是AB中点,连接OH,则OH=.18.如图,在边长为4的正方形ABCD中,P是BC边上一动点(不含B、C两点),将△ABP沿直线AP翻折,点B落在点E处;在CD上有一点M,使得将△CMP沿直线MP 翻折后,点C落在直线PE上的点F处,直线PE交CD于点N,连接MA,NA.则以下结论中正确的有(写出所有正确结论的序号)①△CMP∽△BP A;②四边形AMCB的面积最大值为10;③当P为BC中点时,AE为线段NP的中垂线;④线段AM的最小值为2;⑤当△ABP≌△ADN时,BP=4﹣4.三.解答题19.在矩形ABCD中,AB=12cm,BC=16cm,EF分别是AB、BD的中点,连接EF,点P 从点E出发沿EF方向匀速运动,速度为1cm/s.同时,点Q从点D出发,沿DB方向匀速运动,速度为2cm/s,当点P停止运动时,点Q也停止运动,连接PQ.设运动时间为t(0<t<8)s.解答下列问题:(1)如图①,求证:△BEF∽△DCB;(2)如图②,过点Q作QG⊥AB,垂足为G,若四边形EPQG为矩形,t=;(3)当△PQF为等腰三角形时,请直接写出t的值.20.如图①,在Rt△ABC中,∠ABC=90°,AB=BC,延长CA至点E,作DE⊥CE交BA 的延长线于点D,连接CD,点F为CD的中点,连接EF,BF.(1)直接写出线段EF和BF之间的数量关系为;(2)将△ADE绕点A顺时针旋转到图②的位置,猜想EF和BF之间的关系,并加以证明;(3)若AC=3,AE=2,将△ADE绕点A顺时针旋转,当A,E,B共线时,请直接写出EF的长.参考答案一.选择题1.解:连接AF.∵PF⊥AE,∴∠APF=∠ABF=90°,∴A,P,B,F四点共圆,∴∠AFP=∠ABP=45°,∴∠P AF=∠PF A=45°,∴AP=FP,故①正确,设BE=EC=a,则AE=a,OA=OC=OB=OD=a,∴,即AE=AO,故②正确,根据对称性可知,△OPE≌△OQE,∴S△OEQ=S四边形OPEQ=2,∵OB=OD,BE=EC,∴CD=2OE,OE∥CD,∴,△OEQ∽△CDQ,∴S△ODQ=4,S△CDQ=8,∴S△CDO=12,∴S正方形ABCD=48,故③错误,∵∠EPF=∠DCE=90°,∠PEF=∠DEC,∴△EPF∽△ECD,∴,∵EQ=PE,∴CE•EF=EQ•DE,故④正确,故选:B.2.解:①∵四边形ABCD是矩形,∴∠BAP=90°,AD∥BC,∴∠APB=∠HBC.∵CH⊥BP,∴∠BHC=90°.∴∠BAP=∠CHB=90°.∴△ABP∽△HCB.∴①的结论正确;②如下图,点H的运动轨迹是以BC的中点为圆心,AB为半径的圆弧,设BC的中点为O,∵AH+HO≥AO,∴当A,H,O在一条直线上时,AH最小.∵BC=2,∴OB=BC=.∴AO==,∴AH的最小值=AO﹣OB=﹣,∴②的结论正确;③BP扫过的面积=.∵点H的运动轨迹是以BC的中点为圆心,AB为半径的圆弧,∴CH扫过的面积为S扇形OBH+S△OHC.∵CD=2,BC=2,∴tan∠DBC=,∴∠DBC=30°,∴∠HOC=2∠DBC=60°,∴∠BOH=120°.∴CH扫过的面积为S扇形OBH+S△OHC=+××=π+,∴③的结论错误;④∵点H的运动轨迹是以BC的中点为圆心,AB为半径的圆弧,∴点H的运动路径的长为:=.∴④的结论错误;综上,正确的结论有:①②,故选:B.3.解:①∵四边形ABCD是矩形,∴AD=BC,AD∥BC,∵E是BC的中点,∴BE=BC,∵AD∥BE,∴==2,即AG:GE=2:1;故①正确;②∵AD∥BE,∴,∴BG=BD,同理得:DH=BD,∴BG=GH=HD,∴BG:GH:HD=1:1:1;故②正确;③∵AD∥BE,∴△BEG∽△DAG,∴=,∵BG=GH=HD,∴S5=S3=S4,设S1=x,则S5=S3=S4=2x,∴S=12x,同理可得:S2=x,∴S1+S2+S3=x+x+2x=4x=S;故③正确;④由③知:S6=6x﹣x﹣x=4x,∴S2:S4:S6=1:2:4,故④正确;所以本题的4个结论都正确;故选:D.4.解:如图,连接CC',交BD于点M,过点D作DH⊥BC'于点H,∵AD=AC′=2,D是AC边上的中点,∴DC=AD=2,由翻折知,△BDC≌△BDC',BD垂直平分CC',∴DC=DC'=2,BC=BC',CM=C'M,∴AD=AC′=DC'=2,∴△ADC'为等边三角形,∴∠ADC'=∠AC'D=∠C'AC=60°,∵DC=DC',∴∠DCC'=∠DC'C=×60°=30°,在Rt△C'DM中,∠DC'C=30°,DC'=2,∴DM=1,C'M=DM=,∴BM=BD﹣DM=3﹣1=2,在Rt△BMC'中,BC'===,∵S△BDC'=BC'•DH=BD•CM,∴DH=3×,∴DH=,故选:B.5.解:∵E,F分别是正方形ABCD边BC,CD的中点,∴CF=BE,在△ABE和△BCF中,,∴Rt△ABE≌Rt△BCF(SAS),∴∠BAE=∠CBF,又∵∠BAE+∠BEA=90°,∴∠CBF+∠BEA=90°,∴∠BGE=90°,∴AE⊥BF,故①正确;∵∠BGE=∠BCF,∠GBE=∠CBF,∴△BGE∽△BCF,∵BE=BC,BF=BC,∴BE:BF=1:,∴△BGE的面积:△BCF的面积=1:5,∴S△BCF=5S△BGE,故②正确.根据题意得,FP=FC,∠PFB=∠BFC,∠FPB=90°∵CD∥AB,∴∠CFB=∠ABF,∴∠ABF=∠PFB,∴QF=QB,故③正确;∵QF=QB,PF=1,则PB=2,在Rt△BPQ中,设QB=x,∴x2=(x﹣1)2+4,∴x=,∴QB=,PQ===,∴tan∠BQP==,故④错误;故选:C.6.解:如图,连接EB、EE′,作EM⊥AB于M,EE′交AD于N.∵四边形ABCD是正方形,∴AB=BC=CD=DA,AC⊥BD,AO=OB=OD=OC,∠DAC=∠CAB=∠DAE′=45°,根据对称性,△ADE≌△ADE′≌△ABE,∴DE=DE′,AE=AE′,∴AD垂直平分EE′,故①正确,∴EN=NE′,∵∠NAE=∠NEA=∠MAE=∠MEA=45°,AE=,∴AM=EM=EN=AN=1,∵ED平分∠ADO,EN⊥DA,EO⊥DB,∴EN=EO=1,AO=DO=+1,∴tan∠ADE=tan∠ODE==﹣1,故②正确,∴AB=AD=AO=2+,∴C△ADE﹣C△ODE=AD+AE﹣DO﹣EO=,故③错误,∴S△AEB=S△AED=×1×(2+)=1+,S△BDE=S△ADB﹣2S△AEB=1+,∵DF=EF,∴S△EFB=,∴S四边形AEFB=S△AEB+S△BEF=,故④错误,故选:C.7.解:如图,过D作DM∥BE交AC于N,交BC于M,∵四边形ABCD是矩形,∴AD∥BC,∠ABC=90°,AD=BC,∴∠EAC=∠ACB,∵BE⊥AC于点F,∴∠ABC=∠AFE=90°,∴△AEF∽△CAB,故①正确;∵AD∥BC,∴△AEF∽△CBF,∴=,∵AE=AD=BC,∴=,∴CF=2AF,故②正确;∵DE∥BM,BE∥DM,∴四边形BMDE是平行四边形,∴BM=DE=BC,∴BM=CM,CN=NF,∵BE⊥AC于点F,DM∥BE,∴DN⊥CF,∴DN垂直平分CF,∴DF=DC,故③正确;∵CF=2AF,∴S△ABC=3S△ABF.∴④不正确;其中正确的结论有3个,故选:B.8.解:∵四边形ABCD是正方形,∴BC=DC,∠BCE=90°,同理可得CE=CG,∠DCG=90°,在△BCE和△DCG中,,∴△BCE≌△DCG(SAS),∴∠BEC=∠DGC,∵∠EDH=∠CDG,∠DGC+∠CDG=90°,∴∠EDH+∠BEC=90°,∴∠EHD=90°,即HG⊥BE,故①正确;在△BGH和△EGH中,,∴△BGH≌△EGH(ASA),∴BH=EH,又∵O是EG的中点,∴HO=BG,且HO∥BG,故②正确;设EC和OH相交于点N.设HN=a,则BC=2a,设正方形ECGF的边长是2b,则NC=b,CD=2a,∵OH∥BC,∴△DHN∽△DGC,∴=,即=,即a2+2ab﹣b2=0,解得:a=b=(﹣1+)b,或a=(﹣1﹣)b(舍去),则=﹣1;则S正方形ABCD:S正方形ECGF=(﹣1)2=3﹣2,故③错误;∵EF∥OH,∴△EFM∽△OMH,∴==,∴=,=,∴===,故④正确.故选:C.9.解:①如图:正方形ABCD中BA=BC,∠ABP=∠CBP,BP=BP,∴△ABP≌△CBP,那么∠1=∠2,在直角三角形ABG中∠1与∠G互余,∠PCE=90°,那么∠2与∠5互余,∴∠5=∠G,∴EC=EG.在直角三角形FCG中∠3与∠G互余,∠4与∠5也互余,而∠5=∠G,∴∠3=∠4,∴EC=EF,从而得出EG=EF,即E为FG的中点.∴①正确.③∵AB=BC,∠ABD=∠CBD,BP=BP,∴△ABP≌△CBP,∴∠1=∠2,∵AB∥CD,∴∠1=∠DF A,∵AB=BP,∴∠1=∠BP A,∵∠DPF=∠APB,∵EF=CE,∴∠3=∠4,∴∠4=∠DPE,∴D、P、C、E四点共圆,∴∠DEA=∠DCP,∵∠1+∠DAP=90°,∠2+∠DCP=90°,∴∠DAP=∠DCP=∠DEA,∴AD=DE,∴③正确,②∵∠3=∠4,AD=DE(③已求证),∴△CEF∽△CDE,∴=,即CE2=CF•CD,∵∠3=∠4,∴CE=EF,∵E为FG的中点.∴FG=2CE,即CE=FG,∴=CF•CD,即FG2=4CF•CD,∴②正确.④∵四边形ABCD是正方形,∴△PDF∽△PBA,∴==,∴=,∴=,即CF=DF,∴④错误,综上所述,正确的由①②③.故选:C.二.填空题(共9小题)10.解:①∠AED=90°﹣∠EAD,∠ADC=90°﹣∠DAC,∵AD平分∠CAB,∴∠EAD=∠DAC,∴∠AED=∠ADC,故①正确;②∵∠EAD=∠DAC,∠ADE=∠ACD=90°,∴△ADE∽△ACD,∴,∵AC的值未知,故②不一定正确;③连接DM,∵MD为斜边AE的中线,∴DM=MA,∴∠MDA=∠MAD=∠DAC,∴DM∥BF∥AC,∴,∴,∴BF=2AC,故③正确;④由③知,,∵,∴DM∥AC,DM⊥BC,∴∠MDA=DAC=DAM,∵∠ADE=90°,∴DM=MA=ME,∵BM=2AM,∴BE=EM,∴ED=BE,故④正确,故答案为:3个.11.解:①如图1中,当∠AFB′=90°时.在Rt△ABC中,∵∠B=30°,AC=4,∴AB=2AC=8,∵BD=CD,∴BD=CD=BC=2,由折叠的性质得:∠BFD=90°,B'E=BE,∴∠BDF=60°,∴∠EDB=∠EDF=30°,∴∠B=∠EDB=30°,∴BE=DE=B'E,∵∠C=∠BFD=90°,∠DBF=∠ABC=90°,∴△BDF∽△BAC,∴,即=,解得:BF=3,设BE=DE=x,在Rt△EDF中,DE=2EF,∴x=2(3﹣x),解得:x=2,∴AE=8﹣2=6.②如图2中,当∠AB′F=90°时,作EH⊥AB′交AB′的延长线于H.设AE=x.∵AD=AD,CD=DB′,∴Rt△ADC≌Rt△ADB′(HL),∴AC=AB′=4,∵∠AB′E=∠AB′F+∠EB′F=90°+30°=120°,∴∠EB′H=60°,在Rt△EHB′中,B′H=B′E=(8﹣x),EH=B′H=(8﹣x),在Rt△AEH中,∵EH2+AH2=AE2,∴[(8﹣x)]2+[4+(8﹣x)]2=x2,解得:x=,综上所述,满足条件的AE的值为6或.故答案为:6或.12.解:∵BE=AB,CF=AC,∴则=,=,分别作EE1,FF1平行于BC且与AD交于E1、F1两点.则EE1∥FF1,∴△EE1P∽△FF1P,=,==,==,又BD=CD,∴=,∴==,故答案为:.13.解:如图所示,以BD为对称轴作N的对称点N',连接MN′并延长交BD于P,连NP,根据轴对称性质可知,PN=PN',∴PM﹣PN=PM﹣PN'≤MN',当P,M,N'三点共线时,取“=”,∵正方形边长为8,∴AC=AB=,∵O为AC中点,∴AO=OC=,∵N为OA中点,∴ON=,∴ON'=CN'=,∴AN'=,∵BM=6,∴CM=AB﹣BM=8﹣6=2,∴==,∴PM∥AB∥CD,∠CMN'=90°,∵∠N'CM=45°,∴△N'CM为等腰直角三角形,∴CM=MN'=2,即PM﹣PN的最大值为2,故答案为:2.14.解:①如图,∵四边形ABCD和四边形CGFE是正方形,∴BC=CD,CE=CG,∠BCE=∠DCG,在△BCE和△DCG中,,∴△BCE≌△DCG(SAS),∴∠BEC=∠BGH,∵∠BGH+∠CDG=90°,∠CDG=∠HDE,∴∠BEC+∠HDE=90°,∴GH⊥BE,故①正确;②∵GH是∠EGC的平分线,∴∠BGH=∠EGH,在△BGH和△EGH中,,∴△BGH≌△EGH(ASA),∴BH=EH,又∵O是EG的中点,∴HO是△EBG的中位线,∴OH∥BG,HO=BG,故②正确;③由①得△EHG是直角三角形,∵O为EG的中点,∴OH=OG=OE,∴点H在正方形CGFE的外接圆上,故③错误;④如图2,连接CF,由③可得点H在正方形CGFE的外接圆上,∴∠HFC=∠CGH,∵∠HFC+∠FMG=90°,∠CGH+∠GBE=90°,∴∠FMG=∠GBE,又∵∠EGB=∠FGM=45°,∴△GBE∽△GMF,故④正确;故答案为:①②④.15.解:正方形ABCD中,AD=CD,在△ADF和△CDE中,,∴△ADF≌△CDE(SAS),∴∠ADF=∠CDE,DE=DF,∴∠EDF=∠FDC+∠CDE=∠FDC+∠ADF=∠ADC=90°,∴∠DEF=45°,∵∠DGN=45°+∠FDG,∠DNG=45°+∠CDE,∠FDG≠∠CDE,∴∠DGN≠∠DNG,∴DN≠DH,判断出①错误;∵△DEF是等腰直角三角形,∵∠ABD=∠DEF=45°,∠BGF=∠EGD(对顶角相等),∴△BFG∽△EDG,∵∠DBE=∠DEF=45°,∠BDE=∠EDG,∴△EDG∽△BDE,∴△BFG∽△EDG∽△BDE,故②正确;连接BM、DM.∵△AFD≌△CED,∴∠FDA=∠EDC,DF=DE,∴∠FDE=∠ADC=90°,∵M是EF的中点,∴MD=EF,∵BM=EF,∴MD=MB,在△DCM与△BCM中,,∴△DCM≌△BCM(SSS),∴∠BCM=∠DCM,∴CM在正方形ABCD的角平分线AC上,∴MC垂直平分BD;故③正确;过点M作MH⊥BC于H,则∠MCH=45°,∵MC=,∴MH=×=1,∵M是EF的中点,BF⊥BC,MH⊥BC,∴MH是△BEF的中位线,∴BF=2MH=2,故④正确;综上所述,正确的结论有②③④.故答案是:②③④.16.解:①以BD中点F为圆心,BD为直径可以作出△ABC的外接圆,∵tan∠ACB=45°,∴∠ACB=∠ADB=45°,∴A、B、C、D四点共圆,∴∠DAC=∠CBD,故①正确;②∵△ABH∽△GDA,∴AB2=BH•DG,即AB2=16×(10+DH),叉∵BD=AB,即16+DH=AB,解得DH=8,∵DH+GB=8+6=14≠10,∴DG+GB≠HG,故②错误;③∵△AHG∽△BHA,∴AH2=BH•HG=160,∴AH=4,根据相交弦定理:AH•HC=BH•DH,∴HC=,∴4AH=5HC,故③正确;④∵BD=BH+DH=24,△ABD为等腰直角三角形,∴AB=12,∵AC=AH+HC=,且△AEC是等腰直角三角形,∴AE=CE=,根据勾股定理可得,BE=,∴CE﹣BE=,由△ABH∽△DCH,得CD=,而FN=CD=,BF=12,由勾股定理可得,BN=,BE=,∴EN=BN﹣BE=,EF=,∴CE﹣EB=EF,故④正确.综上,正确的结论是①③④.故答案为:①③④.17.解:在BD上截取BE=CH,连接CO,OE,∵∠ACB=90°,CH⊥BD,∵AC=BC=3,CD=1,∴BD=,∴△CDH∽△BDC,∴,∴CH=,∵△ACB是等腰直角三角形,点O是AB中点,∴AO=OB=OC,∠A=∠ACO=∠BCO=∠ABC=45°,∴∠OCH+∠DCH=45°,∠ABD+∠DBC=45°,∵∠DCH=∠CBD,∴∠OCH=∠ABD,在△CHO与△BEO中,,∴△CHO≌△BEO,∴OE=OH,∠BOE=∠HOC,∵OC⊥BO,∴∠EOH=90°,即△HOE是等腰直角三角形,∵EH=BD﹣DH﹣CH=﹣﹣=,∴OH=EH×=,故答案为:.18.解:∵∠APB=∠APE,∠MPC=∠MPN,∵∠CPN+∠NPB=180°,∴2∠NPM+2∠APE=180°,∴∠MPN+∠APE=90°,∴∠APM=90°,∵∠CPM+∠APB=90°,∠APB+∠P AB=90°,∴∠CPM=∠P AB,∵四边形ABCD是正方形,∴AB=CB=DC=AD=4,∠C=∠B=90°,∴△CMP∽△BP A.故①正确,设PB=x,则CP=4﹣x,∵△CMP∽△BP A,∴=,∴CM=x(4﹣x),∴S四边形AMCB=[4+x(4﹣x)]×4=﹣x2+2x+8=﹣(x﹣2)2+10,∴x=2时,四边形AMCB面积最大值为10,故②正确,当PB=PC=PE=2时,由折叠知,AE=AB=AD,∠AEP=∠B=90°,∴∠AEN=90°=∠D,∵AN=AN,∴Rt△ADN≌Rt△AEN(HL),∴DN=EN,设ND=NE=y,在Rt△PCN中,(y+2)2=(4﹣y)2+22解得y=,∴NE≠EP,故③错误,作MG⊥AB于G,∴MG=AD=4,根据勾股定理得:AM==,∴AG最小时AM最小,∵AG=AB﹣BG=AB﹣CM=4﹣x(4﹣x)=(x﹣2)2+3,∴x=2时,AG最小值=3,∴AM最小值==5,故④错误.∵△ABP≌△ADN时,∴△ABP≌△ADN≌△AEN≌△AEP,∴∠P AB=∠DAN=22.5°,在AB上取一点K使得AK=PK,设PB=z,∴∠KP A=∠KAP=22.5°∵∠PKB=∠KP A+∠KAP=45°,∴∠BPK=∠BKP=45°,∴PB=BK=z,AK=PK=z,∴z+z=4,∴z=4﹣4,∴PB=4﹣4,故⑤正确.故答案为①②⑤.三.解答题(共22小题)19.(1)证明:∵四边形ABCD是矩形,∴AB∥CD,AD∥BC,∴∠EBF==∠CDB,∵E、F分别是AB、BD的中点,∴EF是△ABD的中位线,∴EF∥AD,∴EF∥BC,∴∠EFB=∠CBD,∴△BEF∽△DCB;(2)当四边形EPQG为矩形时,如图所示,在矩形ABCD中,AB=12cm,BC=16cm,∴BD=20cm,AD=BC=16cm,∵E、F分别是AB、BD的中点,∴BF=DF=10cm,EF=AD=×16=8m,∴QF=(2t﹣10)cm,PF=(8﹣t)cm,∵四边形EPQG是矩形,∴PQ∥BE,∴△QPF∽△BEF,∴,∴,解得:t=,∴当t=时,四边形EPQG为矩形,故答案为;(3)当点Q在DF上,PF=QF,如图所示,∵PF=(8﹣t)cm,QF=(10﹣2t)cm,∴8﹣t=10﹣2t,解得:t=2,当点Q在BF上,PF=QF,如图所示,∵PF=(8﹣t)cm,QF=(2t﹣10)cm,∴8﹣t=2t﹣10,∴t=6,当点Q在BF上,PQ=QF,如图所示,过点Q作QG⊥EF于点G,则GQ∥BE,∴△QGF∽△BEF,∴,∵PQ=QF,∴GF=PF=(8﹣t),∴,∴t=,当点Q在BF上,PQ=PF,如图所示,过点P作PM⊥BF于点M,则∠PMF=∠BEF=90°,∵∠PFM=∠BFE,∴△PFM∽△BFE,∴,∵PQ=PF,∴MF=QF=(2t﹣10),∴,∴t=,综上所述,t=2或6或或时,△PQF是等腰三角形.20.解:(1)如图①中,结论:EF=BF.理由:∵DE⊥CE,∴∠CED=90°,∵∠CBD=90°,CF=DF,∴BF=CD,EF=CD,∴EF=BF.故答案为:EF=BF.(2)如图②中,结论:EF=BF,EF⊥BF.理由:过点C作CT∥DE交EF的延长线于点T,连接BT,ET,延长DE交BC于点J,设AB交DJ于点K.∵CT∥DE,∴∠CTF=∠DEF,∵∠CFT=∠DFE,CF=DF,∴△CFT≌△DFE(AAS),∴FT=EF,CT=DE,∵CT∥DJ,∴∠TCB=∠DJB,∵∠AEK=∠JBK=90°,∠AKE=∠JKB,∴∠EAK=∠BJK,∴∠BCT=∠BAE,∵AE=DE,CT=DE,∴CT=AE,∵CB=AB,∴△BCT≌△BAE(SAS),∴BT=BE,∠CBT=∠ABE,∴∠TBE=ABC=90°,∴△EBT是等腰直角三角形,∵FT=EF,∴BF⊥EF,BF=EF.(3)如图③﹣1中,当点E在BA的延长线上时,∵AB=BC,AC=3,∠ABC=90°,∴AB=AC=3,∵AE=2,∴BE=5,∵△BFE是等腰直角三角形,∴EF=AE=如图③﹣2中,当点E在线段AB上时,同法可得EF=,综上所述,满足条件的EF的长为或.。
中考数学热点专题:图形的平移
中考数学热点专题复习: 形的平移♦考点聚焦1.理解图形平移的根本特征.2.利用平移的根本特征解决涉及平移知识的有关问题.3.会按要求画出平移图形或进展图案设计.4.在平而直角坐标系中,点的坐标通过变化可使图形平移,掌握其中的变化规律.♦备考兵法1.判断图形的挪动是平移还是对称,关键是看方向是否发生变化,平移的方向不发生变化.2.两次平移相当于一次平移;在对称轴平行时,两次轴对称相当于一次平移;在对称轴不平行时,两次轴对称相当于一次旋转.3.平移的作图要注意作图的方向性和对间隔的要求.4.在平而直角坐标系中,图形平移引起的点的坐标变化规律为:横坐标左移减、右移加,纵坐标上移加、下移减,图形的平移就是整个图形同向等间隔平移.♦识记稳固1.平移:在平面内,将一个图形沿______ 挪动_______ ,这样的图形运动称为平移.2.平移的两个要素:(1) ______________ :(2) __________ •3.平移变换的根本特征:(1)平移不改变图形的______ 和______ :(2)对应线段 _____ 且 ______ :(3)对应角 _______ :⑷对应点所连的线________ 且 _______ (或在一条直线上).4.简单平移作图的步骤:(1)_____________________________ 找出平移前后的图形的一对:(2) ______________________________________________ 运用全等和尺规作图的知识,把每条线段在保持___________________________________________________________ 的条件下挪动,实现整个图形的平移.识记稳固参考答案:1.直线一定间隔2. (1)方向(2)间隔3. (1)形状大小(2)平行相等〔3)相等(4) 平行相等4. (1)对应点(2)平行且相等♦典例解析例1 (2021,江苏泰州)二次函数y=x2+4x+3的图象可以由二次函数y==x2的图象平移而得到,以下平移正确的选项是0A.先向左平移2个单位长度,再向上平移1个单位长度B.先向左平移2个单位长度,再向下平移1个单位长度C.先向右平移2个单位长度,D.先向右平移2个单位长度, 再向上平移1个单位长度再向下平移1个单位长度解析Vy=x2的顶点坐标为(0, 0).而y=x2+4x+3= (x+2) 2-1,顶点坐标是(-2,-1).答案B例2 (2021,湖北武汉)(1)点(0, 1)向下平移2个单______ ,直线y=2x+l向下平移2个单位后的解析式是_______ :(2)直线y=2x+l向右平移2个单位后的解析式是________ :(3)如图,点C为直线y二x上在第一象限内一点,直线交x轴于点B,将直线AB沿射线0C方向平移3 V2个单位,析式.解析门)(0, -1) y=2x-l (2) y=2x-3(3)由题知点A平移到点E,点B移到点F,且AE,方向成45°的角.如图,作FM丄x轴于点设FM二BM二a,由勾股左理知BM2+MF2=BF2, 位后的坐标是a2+a2= (3 迈)2,• • a—3 ♦2 2•••点F坐标为(丄,3)・2同理点E坐标为〔3, 4).设直线EF的解析式为y=kx+b,易得】k + b = 3、< 23k+b = 4.k =2、b = -24Xy=2x+l交y轴于点A,r 求平移后直线的解•••平移后的解析式为y=2x-2.例3抛物线y=x2+4x+m (m为常数)经过点(0, 4).(1)求m的值;(2)将该抛物线先向右,再向下平移得到另一条抛物线,这条平移后的抛物线满足下述两个条件:它的对称轴(设为直线LJ与平移前的抛物线的对称轴(设为直线LJ关于y轴对称:它所对应的函数的最小值为-8.①试求平移后的抛物线所对应的函数关系式;②试问在平移后的抛物线上是否存在着点P,使得以3为半径的OP既与x轴相切,又与直线L相交?假设存在, 恳求岀点P的坐标,并求岀直线被OP所截得的弦AB的长度:假设不存在,请说明理由.解析(1)将(0, 4)代入y=x2+4x+m 中,得:0+0+m=4, .\m=4.(2)①抛物线的函数关系式为y=x2+4x+4,配方得y= (x+2)2,其对称轴为Li: x=-2,那么L?:X=2.又•••平移后的抛物线的函数的最小值为-8,・•・平移后的抛物线所对应的函数关系式为:尸(x-2)二8,即y=x2-4x-4.②假设存在,那么点P到x轴的间隔为3, .•.点P的纵坐标为3或-3,当纵坐标为 3 时,・X2-4X-4=3,解得X]=2+JTT, X2=2- VTT ,•・・、/T7>3, ・・・0P不与直线L2相交,舍去.当纵坐标为-3 时,x2-4x-4=-3,解得xi=2+\/5 , X2=2-J了,V>/5<3, A0P 与直线L:相交,AB二2X 丁32-(点尸二4.点拨初中阶段的平移主要表如今几何图形的变换和平而直角坐标系中图形的运动变换,函数图象的平移规律也要熟记(参见5. 1和5. 4).♦中考热身1.(2021,广东深圳)将二次函数y二才的图象向右平移1个单位,再向上平移2个单位后,得到的图形的函数表达式是()A. y= (x-1)2+2B. y= (x+1)2+2C. y= (x-1)2-2D. y= (x+1)2-22.(2021,贵州贵阳)如图,在12X6的网格图中(每个小正方形的边长为1个单位),0A的半径为1, 0B的半径为2,要使0A与静止的OB相切,那么0A由图示位置需向右平移 _________ 个单位.3.(2021, ±海)如图,将直线0P向下平移3个单位,所得直线的函数解析式为 __________ ・4.(2O2L湖南郴州)如图,先将AABC向下平移4个单位得到△再以直线L为对称轴将△ AiBiCi作轴反射(轴对称)得到△ A2B2C2,请在所给的方格纸中依次作岀厶AjBiCi和△A J B?C2・♦迎考精练一、根底过关训练1.以下各组图形,可经平移变换,由一个图形得到另一个图形的是0△△ □口D= 0A B C D2.在平面内,将一个图形沿某个方向挪动一泄间隔,这样的图形变换称为平移.如图,将网格中的三条线段沿网格线的方向(程度或垂直)平移后组成一个首尾依次相接的三角形,至少需要挪动()A. 12 格B. 11 格C. 9 格D. 8 格(第2题)3・如图,直线y 二少x+JJ 与x 轴,y 轴分别交于点A, B,圆心P 的坐标为(1, 0) , 0P 与y 轴相切于点0,3假设将OP 沿x 轴向左挪动,当OP 与该直线相交时,横坐标为整数的点P 有 ____________ 个.4.如图,有一条小船,假设把小船平移,使点A 平移得到点B,请你在图中画出平移后的小船;假设该小船先 从点A航行到达岸边L 的点P 处补给后.再航行到点B.假设要求航程最短,试在图中画岀点P 的位宜・假 如每一小格的长度为10米,求出这个最短的路程.(结果保存准确值)二.才能提升训练5. 如图,等腰直角AABC 的直角边长与正方形MNPQ 的边长均为20 一直线上,开场时点A 与点N 重合.让AABC 以每秒2厘米的速度 与点M 重合,那么重叠局部而积y (厘米)与时间t (秒)之间的6. 将两块大小一样含30°的直角三角板叠放在一起,使得它们的斜边AB 重合,直角边不重合,AB 二8, BC 二AD 二4,AC 与BD 相交于点E,连结CD.(1) ___________________________ 填空:如图1,AC 二 ______________ , BD 二 ,四边形ABCD 是 梯形: (2) 请写出图中所有的相似三角形(不含全等三角形)(3) 如图2,假设以AB 所在直线为x 轴,过点A 重合于AB 的直线为y 轴建立如下图的直角坐标系,保持AABD 不动,将AABC 向x 轴的正方向平移到AFGH 的位置,FH 与BD 相交于点P,设AF=t, AFBP 的而积为S,求S 与t 之间的函数关系式,并写出t 的取值范用.图1中考热身参考答案1. A 2・ 2, 4, 6, 8 3・ y=2x-3C M A N厘米,AC 与MN 在同 向左运动,最终点A 函数关系式为I4.解:如图迎考精练 根底过关训练 1. A 2・ C 3・ 34.解:平移后的小船如下图,A'与A 关于直线L 成轴对称,连结A' B 与L 相交于点P,那么点P 为所求.如图,0A' =70 米,0B=70 米,PA+PB 二PA' +PB 二A' B= y[/CO 2 +OB 1 = ^702 +7O 2 =70>/2 (米), 所以最短路程是70米.才能提升训练5. y 二](20-2t) ' (OWtWlO)26. 解:(1) 4* 4>/3 等腰 (2)共有9对相似三角形.©ADCE> A ABE 与 ZkACD 或 ABDC 两两相似,分别是:△DCEs/XABE, △DCEs^ACD, ②厶ABD^AEAD, AABD^AEBC. (2 对) ③ 'BAC S AEAD, ABAC^AEBC ・(2 对)•••一共有9对相似三角形. ***(5对)又VZ1=Z2=3O G , A ZPFB=Z2=30° , AFP=BP.过点P作PK丄FB于点K,那么FK二BK二丄FB・2VAF=t, AB二8, AFB=8-t, BK=- (8-t),2 在RtABPK 中,PK二BK・tanG二丄(8-t)・ tan30° =— (8-t),2 6S Z.EBP= — FB-PK=—18-t) ■——〔8-t:.2 2 6・・・S与t之间的函数关系式为S二習(t-8)=.即s笔匸半+¥屈t的取值范用为0Wt〈8・。
中考数学专题复习一元二次方程组的综合题含答案解析
中考数学专题复习一元二次方程组的综合题含答案解析一、一元二次方程1.随着经济收入的不断提高以及汽车业的快速发展,家用汽车已越来越多地进入普通家庭,汽车消费成为新亮点.抽样调查显示,截止2008年底全市汽车拥有量为14.4万辆.已知2006年底全市汽车拥有量为10万辆.(1)求2006年底至2008年底我市汽车拥有量的年平均增长率;(2)为保护城市环境,要求我市到2010年底汽车拥有量不超过15.464万辆,据估计从2008年底起,此后每年报废的汽车数量是上年底汽车拥有量的10%,那么每年新增汽车数量最多不超过多少辆?(假定每年新增汽车数量相同)【答案】详见解析【解析】试题分析:(1)主要考查增长率问题,一般用增长后的量=增长前的量×(1+增长率)解决问题;(2)参照增长率问题的一般规律,表示出2010年的汽车拥有量,然后根据关键语列出不等式来判断正确的解.试题解析:(1)设年平均增长率为x ,根据题意得:10(1+x )2=14.4,解得x=﹣2.2(不合题意舍去)x=0.2,答:年平均增长率为20%;(2)设每年新增汽车数量最多不超过y 万辆,根据题意得:2009年底汽车数量为14.4×90%+y ,2010年底汽车数量为(14.4×90%+y )×90%+y ,∴(14.4×90%+y )×90%+y≤15.464,∴y≤2.答:每年新增汽车数量最多不超过2万辆.考点:一元二次方程—增长率的问题2.关于x 的方程x 2﹣2(k ﹣1)x +k 2=0有两个实数根x 1、x 2.(1)求k 的取值范围;(2)若x 1+x 2=1﹣x 1x 2,求k 的值.【答案】(1)12k ≤;(2)3k = 【解析】试题分析:(1)方程有两个实数根,可得240b ac ∆=-≥,代入可解出k 的取值范围; (2)由韦达定理可知,()2121221,x x k x x k +=-=,列出等式,可得出k 的值. 试题解析:(1)∵Δ=4(k -1)2-4k 2≥0,∴-8k +4≥0,∴k ≤12; (2)∵x 1+x 2=2(k -1),x 1x 2=k 2,∴2(k -1)=1-k 2,∴k1=1,k2=-3.∵k≤12,∴k=-3.3.如图,在△ABC中,AB=6cm,BC=7cm,∠ABC=30°,点P从A点出发,以1cm/s的速度向B点移动,点Q从B点出发,以2cm/s的速度向C点移动.如果P、Q两点同时出发,经过几秒后△PBQ的面积等于4cm2?【答案】经过2秒后△PBQ的面积等于4cm2.【解析】【分析】作出辅助线,过点Q作QE⊥PB于E,即可得出S△PQB=12×PB×QE,有P、Q点的移动速度,设时间为t秒时,可以得出PB、QE关于t的表达式,代入面积公式,即可得出答案.【详解】解:如图,过点Q作QE⊥PB于E,则∠QEB=90°.∵∠ABC=30°,∴2QE=QB.∴S△PQB=12•PB•QE.设经过t秒后△PBQ的面积等于4cm2,则PB=6﹣t,QB=2t,QE=t.根据题意,12•(6﹣t)•t=4.t2﹣6t+8=0.t2=2,t2=4.当t=4时,2t=8,8>7,不合题意舍去,取t=2.答:经过2秒后△PBQ的面积等于4cm2.【点睛】本题考查了一元二次方程的运用,注意对所求的值进行检验,对于不合适的值舍去.4.机械加工需用油进行润滑以减小摩擦,某企业加工一台设备润滑用油量为90kg,用油的重复利用率为60%,按此计算,加工一台设备的实际耗油量为36kg,为了倡导低碳,减少油耗,该企业的甲、乙两个车间都组织了人员为减少实际油耗量进行攻关.(1)甲车间通过技术革新后,加工一台设备润滑油用油量下降到70kg,用油的重复利用率仍然为60%,问甲车间技术革新后,加工一台设备的实际油耗量是多少千克?(2)乙车间通过技术革新后,不仅降低了润滑油用油量,同时也提高了用油的重复利用率,并且发现在技术革新前的基础上,润滑用油量每减少1kg,用油的重复利用率将增加1.6%,例如润滑用油量为89kg时,用油的重复利用率为61.6%.①润滑用油量为80kg,用油量的重复利用率为多少?②已知乙车间技术革新后实际耗油量下降到12kg,问加工一台设备的润滑用油量是多少千克?用油的重复利用率是多少?【答案】(1)28(2)①76%②75,84%【解析】试题分析:(1)直接利用加工一台设备润滑油用油量下降到70kg,用油的重复利用率仍然为60%,进而得出答案;(2)①利用润滑用油量每减少1kg,用油的重复利用率将增加1.6%,进而求出答案;②首先表示出用油的重复利用率,进而利用乙车间技术革新后实际耗油量下降到12kg,得出等式求出答案.试题解析:(1)根据题意可得:70×(1﹣60%)=28(kg);(2)①60%+1.6%(90﹣80)=76%;②设润滑用油量是x千克,则x{1﹣[60%+1.6%(90﹣x)]}=12,整理得:x2﹣65x﹣750=0,(x﹣75)(x+10)=0,解得:x1=75,x2=﹣10(舍去),60%+1.6%(90﹣x)=84%,答:设备的润滑用油量是75千克,用油的重复利用率是84%.考点:一元二次方程的应用5.解方程:233230 2121x xx x⎛⎫⎛⎫--=⎪ ⎪--⎝⎭⎝⎭.【答案】x=15或x=1【解析】【分析】设321xyx=-,则原方程变形为y2-2y-3=0, 解这个一元二次方程求y,再求x.【详解】解:设321xyx=-,则原方程变形为y2-2y-3=0.解这个方程,得y 1=-1,y 2=3, ∴3121x x =--或3321x x =-. 解得x=15或x=1. 经检验:x=15或x=1都是原方程的解. ∴原方程的解是x=15或x=1. 【点睛】考查了还原法解分式方程,用换元法解一些复杂的分式方程是比较简单的一种方法,根据方程特点设出相应未知数,解方程能够使问题简单化,注意求出方程解后要验根.6.有一个人患了流感,经过两轮传染后共有36人患了流感.(1)求每轮传染中平均一个人传染了几个人?(2)如果不及时控制,第三轮将又有多少人被传染?【答案】(1)5;(2)180【解析】【分析】(1)设平均一人传染了x 人,根据有一人患了流感,经过两轮传染后共有36人患了流感,列方程求解即可;(2)根据每轮传染中平均一个人传染的人数和经过两轮传染后的人数,列出算式求解即可.【详解】(1)设每轮传染中平均一个人传染了x 个人,根据题意得:x+1+(x+1)x =36,解得:x =5或x =﹣7(舍去).答:每轮传染中平均一个人传染了5个人;(2)根据题意得:5×36=180(个),答:第三轮将又有180人被传染.【点睛】本题考查一元二次方程的应用,解题的关键是能根据题意找到等量关系并列方程.7.小王经营的网店专门销售某种品牌的一种保温杯,成本为30元/只,每天销售量y(只)与销售单价x (元)之间的关系式为y =﹣10x+700(40≤x≤55),求当销售单价为多少元时,每天获得的利润最大?最大利润是多少元?【答案】当销售单价为50元时,每天获得的利润最大,利润的最大值为4000元【解析】【分析】表示出一件的利润为(x ﹣30),根据总利润=单件利润乘以销售数量,整理成顶点式即可解题.【详解】设每天获得的利润为w 元,根据题意得:w =(x ﹣30)y =(x ﹣30)(﹣10x+700)=﹣10x 2+1000x ﹣21000=﹣10(x ﹣50)2+4000.∵a =﹣10<0,∴当x =50时,w 取最大值,最大值为4000.答:当销售单价为50元时,每天获得的利润最大,利润的最大值为4000元.【点睛】本题考查了一元二次函数的实际应用,中等难度,熟悉函数的性质是解题关键.8.用适当的方法解下列一元二次方程:(1)2x 2+4x -1=0;(2)(y +2)2-(3y -1)2=0.【答案】(1)x 1=-1+2x 2=-1-22)y 1=-14,y 2=32. 【解析】试题分析:(1)根据方程的特点,利用公式法解一元二次方程即可;(2)根据因式分解法,利用平方差公式因式分解,然后再根据乘积为0的方程的解法求解即可.试题解析:(1)∵a=2,b=4,c=-1∴△=b 2-4ac=16+8=24>0∴1=-∴x 1=-1,x 2=-1 (2)(y +2)2-(3y -1)2=0[(y+2)+(3y-1)][ (y+2)-(3y-1)]=0即4y+1=0或-2y+3=0解得y 1=-14,y 2=32. 9.关于x 的一元二次方程()22210x k x k +-+=有两个不等实根1x ,2x .(1)求实数k 的取值范围;(2)若方程两实根1x ,2x 满足121210x x x x ++-=,求k 的值.【答案】(1) k <14;(2) k=0. 【解析】【分析】(1)根据一元二次方程的根的判别式得出△>0,求出不等式的解集即可;(2)根据根与系数的关系得出x 1+x 2=-(2k-1)=1-2k ,x 1•x 2=k 2,代入x 1+x 2+x 1x 2-1=0,即可求出k 值.【详解】解:(1)∵关于x 的一元二次方程x 2+(2k-1)x+k 2=0有两个不等实根x 1,x 2, ∴△=(2k-1)2-4×1×k 2=-4k+1>0,解得:k <14, 即实数k 的取值范围是k <14; (2)由根与系数的关系得:x 1+x 2=-(2k-1)=1-2k ,x 1•x 2=k 2,∵x 1+x 2+x 1x 2-1=0,∴1-2k+k 2-1=0,∴k 2-2k=0∴k=0或2,∵由(1)知当k=2方程没有实数根,∴k=2不合题意,舍去,∴k=0.【点睛】本题考查了解一元二次方程根的判别式和根与系数的关系等知识点,能熟记根的判别式和根与系数的关系的内容是解此题的关键,注意用根与系数的关系解题时要考虑根的判别式,以防错解.10.已知:如图,在Rt ABC ∆中,90C ∠=︒,8AC =cm ,6BC =cm.直线PE 从B 点出发,以2 cm/s 的速度向点A 方向运动,并始终与BC 平行,与线段AC 交于点E .同时,点F 从C 点出发,以1cm/s 的速度沿CB 向点B 运动,设运动时间为t (s) (05t <<) .(1)当t 为何值时,四边形PFCE 是矩形?(2)当ABC ∆面积是PEF ∆的面积的5倍时,求出t 的值;【答案】(1)3011t =;(2)55t ±= 【解析】【分析】(1)首先根据勾股定理计算AB 的长,再根据相似比例表示PE 的长度,再结合矩形的性质即可求得t 的值.(2)根据面积相等列出方程,求解即可.【详解】解:(1)在Rt ABC ∆中,90,8,6C AC BC ︒∠===Q ,10AB ∴===102//,,1068PA PE AE t PE AE PE BC AB BC AC -∴==∴==Q 34(102),(102)55PE t AE t ∴=-=-,当PE CF =时,四边形PECF 是矩形, 3(102)5t t ∴-= 解得3011t = (2)由题意22424116825552t t =+=⨯⨯⨯整理得2t 550t -+=,解得t =52t ∴=,ABC ∆面积是PEF ∆的面积的5倍。
中考数学 专题01 实数的有关概念及运算(原卷版)
归纳 4:科学记数法与近似数 基础知识归纳:根据科学记数法的定义,科学记数法的表示形式为 a×10n,其中 1≤|a|<10,n 为整数, 表示时关键要正确确定 a 的值以及 n 的值. 基本方法归纳:利用科学记数法表示一个数,在确定 n 的值时,看该数是大于或等于 1 还是小于 1.当该 数大于或等于 1 时,n 为它的整数位数减 1;当该数小于 1 时,-n 为它第一个有效数字前 0 的个数(含小
中考数学复习资料
的克数记为负数,下面检测过的四个排球,在其上方标注了检测结果,其中质量最接近标准的一个是 ( )A.B.Fra bibliotek C.D.
3.(2019 内蒙古通辽市,第 1 题,3 分) 1 的相反数是( ) 2019
A.2019 B. 1 C.﹣2019 D. 1
( )
A.5×106 B.107 C.5×107 D.108 14.(2019 重庆 A,第 8 题,4 分)按如图所示的运算程序,能使输出 y 值为 1 的是( )
A.m=1,n=1 B.m=1,n=0 C.m=1,n=2 D.m=2,n=1
归纳 5:实数的混合运算 基础知识归纳:实数混合运算时,将运算分为三级,加减为一级运算,乘除为二级运算,乘方为三级运 算.同级运算时,从左到右依次进行;不是同级的混合运算,先算乘方,再算乘除,而后才算加减;运算 中如有括号时,先做括号内的运算,按小括号、中括号、大括号的顺序进行 基本方法归纳:实数的混合运算经常涉及到零指数幂、负整数指数幂、特殊角的三角函数值、绝对值的化 简、二次根式等内容,要熟练掌握这些知识. 注意问题归纳:实数的混合运算经常以选择、填空和解答的形式出现,是中考是热点,也是比较容易出错 的地方,在解答此类问题时要注意基本性质和运算的顺序.
专题一 反比例函数的综合——2023届中考数学热点题型突破(含答案)
专题一反比例函数的综合——2023届中考数学热点题型突破题型1 反比例函数与一次函数图象交点问题1.已知正比例函数与反比例函数的图象交于A、B两点,若点,则点B的坐标为( )A. B. C. D.2.如图,在平面直角坐标系中,点,点B与点A关于直线对称,过点B 作反比例函数的图像.(1)____________;(2)若对于直线,总有y随x的增大而增大,设直线与双曲线交点的横坐标为t,则t的取值范围是___________.3.如图, 一次函数的图象与反比例函数的图象相交于A,B两点, 其中点A的坐标为, 点B 的坐标为.(1)根据图象, 直接写出满足的x的取值范围;(2)求这两个函数的表达式;(3)点P在线段AB上, 连接OA,OB,OP, 恰有, 求点P 的坐标.题型2 反比例函数与一次函数图形面积问题4.如图,P是反比例函数的图象上一点,过点P分别作x轴,y轴的平行线,交反比例函数的图象于点M,N,则的面积为( )A.1B.1.2C.2D.2.45.如图, 一次函数的图象与x轴和y轴分别交于点A 和点B, 与反比例函数的图象在第一象限内交于点C,轴, 轴, 垂足分别为点D,E. 当矩形ODCE与的面积相等时, k的值为___________.6.如图,在平面直角坐标系中,一次函数y=kx+b(k≠0)与反比例函数(m≠0)的图象相交于A,B两点,过点A作AD⊥x轴于点D, y=mxAO=5,,B点的坐标为(―6,n)(1)求一次函数和反比例函数的表达式;(2)求△AOB的面积;(3)P是y轴上一点,且△AOP是等腰三角形,请直接写出所有符合条件的P点坐标.题型3 反比例函数与几何图形结合7.如图, 点A在双曲线上, 连接 AO并延长, 交双曲线于点C. 以AC为对角线作菱形ABCD, 点B,D在反比例函数的图象上, 且, 则k的值是( )A. B. C. D. -18.如图,已知,在矩形AOBC中,,,分别以OB、OA所在直线为x轴和y轴,建立如图所示的平面直角坐标系,F是边BC上的一个动点(不与B、C重合),过F点的反比例函数的图象与AC边交于点E,将沿EF对折后,C点恰好落在OB上的点D处,则k的值为___________.9.如图, 在平面直角坐标系中, 直线与反比例函数的图象交于点,, 过点 A作交反比例函数图象于另一点D, 过点B作交反比例函数图象于另一点C, 连接CD.(1)求直线AB的解析式;(2)判断四边形 ABCD的形状, 并说明理由.答案以及解析1.答案:A解析:把点代入,得,又正比例函数与反比例函数交点关于原点对称,则.2.答案:(1)12(2)解析:(1)点,点B与点A关于点线对称,,将代入,解得,.(2)对于直线,总有y随x的增大而增大,,,当时,,直线过定点,把代入,得,解得,故.3.答案: (1) 或.(2)(3)解析: (1) 由题图可知, 当或时, 一次函数的图象在反比例函数的图象的上方,当或时, 满足.(2) 点在反比例函数的图象上, , 解得,故反比例函数的表达式为.点在反比例函数的图象上, ,点B的坐标为.将点 A,B的坐标分别代入, 得解得故一次函数的表达式为.(3)设直线与x 轴交于点C, 当时, ,,点C的坐标为.,.,.点P在线段AB上,设点P 的坐标为.,,解得,,故点P的坐标为.4.答案:A解析:设,则,,,,的面积为:.故选:A.5.答案:2解析:对于一次函数, 当时, , 当时, ,即, 故.结合反比例函数中的几何意义, 可知.,, 解得,(舍去).6.答案:(1)(2)9(3)P点坐标为:(0,8)或(0,5)或(0,―5)或(0,258)..解析:(1)(1)AO=5,AD=3,设:OD=3a,AD=4a,则AD=5a=5,解得:a=1,故点A(3,4),则m=3×4=12,故反比例函数的表达式为:y=12x,故B(―6,―2),将点A,B的坐标代入一次函数表达式y=kx+b得:,解得:k=23b=2,故一次函数的表达式为:y=23x+2;(2)设一次函数交y轴于点M(0,2),△AOB的面积;(3)设点,而点A ,O 的坐标分别为:,,AP 2=9+(m ―4)2,,PO 2=m 2,当时,解得:或0(舍去0);当时,同理可得:;当时,同理可得:m =258;综上,P 点坐标为:或或或(0,258)..7.答案:C解析:如图, 过点A 作 轴于点F ,过点B 作 轴于点E , 则,四边形 ABCD 是菱 形, ,. 又,,,,. 反比例函数的图象位于第二、四象限,,.8.答案:解析:解:如图,过点E 作轴于点M ,将沿EF 对折后,C 点恰好落在OB 上的D 点处,,,,,而,,,;又,,,,;,而,,在中,,即,解得,故答案为.9.答案: (1)(2)四边形ABCD是矩形,理由见解析解析:(1)点在反比例函数的图象上,,反比例函数的解析式为.点在反比例函数的图象上,,点.将,分别代入, 得解得直线AB的解析式为.(2) 四边形ABCD是矩形.理由如下:, 直线AB的解析式为, 易知可设直线AD的解析式为.将代入, 得,,直线AD的解析式为.令, 解得,,点,.由, 点, 易得直线BC的解析式为,令, 解得,,点,,.又,四边形ABCD 是平行四边形.又,四边形ABCD 是矩形.。
2023中考数学热点重点难点类型一 实数混合运算(专题训练)(解析版)
题型一计算类型一实数混合运算1.计算:()2022192sin30-︒. 【答案】3【分析】分别计算负数的偶次幂、二次根式、特殊角的正弦值,再进行加减即可.【详解】解:()20221192sin 3013213132-︒=+-⨯=+-=. 【点睛】本题考查负数的偶次幂、二次根式化简以及特殊角的三角函数值,属于基础题,正确计算是解题的关键.2.计算:021(3)3624--π--+. 【答案】7【分析】利用零指数幂的运算法则,绝对值的意义,二次根式的化简及负整数指数幂的运算法则计算即可. 【详解】解:原式111644=-++7= 【点睛】本题考查零指数幂的运算法则,绝对值的意义,二次根式的化简及负整数指数幂的运算法则,熟练掌握实数的运算法则是解答此类问题的关键.3.计算:01(10)1620222⎛⎫-⨯- ⎪⎝⎭. 【答案】2【分析】根据有理数的乘法,二次根式的性质,零指数的计算法则求解即可.【详解】解:原式541=-+=2.【点睛】本题主要考查了有理数的乘法,二次根式的性质,零指数,熟知相关计算法则是解题的关键.4.计算:0(2022)2tan 45|2|9--︒+-【答案】4【分析】根据零指数幂,正切三角函数值,绝对值的化简,算术平方根的定义计算求值即可;【详解】解:原式12123=-⨯++1223=-++4=;【点睛】本题考查了实数的混合运算,掌握特殊角的三角函数值是解题关键.5.()()0212 3.143tan 60132π---︒++-. 【答案】14【分析】根据二次根式的化简,零指数幂的定义,特殊角的三角函数值,绝对值的性质以及负整数指数幂的运算法则分别化简后再进行实数的加减法运算. 0212 3.143tan 6013())2(π---︒+-123133314=-+14=. 【点睛】此题考查实数的运算法则,正确掌握二次根式的化简,零指数幂的定义,特殊角的三角函数值,绝对值的性质以及负整数指数幂的运算法则是解题的关键.6.计算:20(2)|325(33)-+- 3【分析】分别计算有理数的乘方、绝对值、二次根式及零指数幂,再进行加减即可. 【详解】解:原式43513=++【点睛】本题考查有理数的乘方,绝对值和二次根式的化简及零指数幂的性质,属于基础题,正确运算是解题的关键.要熟练掌握:任何一个不等于零的数的零次幂都等于1,2a a =. 7.计算:011322452-+︒--. 【答案】2【分析】根据零指数幂、负整数指数幂、特殊角三角函数、绝对值的性质化简即可.【详解】原式=1211222+=2. 【点睛】本题考查了实数的运算,熟练掌握运算法则是解题的关键.8.019(2022)2--+. 【答案】52【分析】根据求一个数的算术平方根、零指数和负整数指数幂的运算法则进行运算,即可求得. 019(2022)2--+1312=-+ 52=. 【点睛】本题考查了求一个数的算术平方根、零指数和负整数指数幂的运算法则,熟练掌握和运用各运算法则是解决本题的关键.9.计算:201(2)2sin 602π-⎛⎫-+-- ⎪⎝⎭︒. 【答案】53【分析】先计算零指数幂、负指数幂、锐角三角函数值,再计算二次根式的乘法和加减法.【详解】解:201(2)2sin 602π-⎛⎫-+-- ⎪⎝⎭︒=1+4-33 【点睛】此题考查了零指数幂、负指数幂、锐角三角函数值,解题的关键是熟练掌握零指数幂、负指数幂、锐角三角函数值的计算法则.10.计算:015(3)|67⎛⎫⨯-+- ⎪⎝⎭. 【答案】166-【分析】先算绝对值、算术平方根,零指数幂,再算乘法和加减法,即可求解. 【详解】解:015(3)|67⎛⎫⨯-+- ⎪⎝⎭1561=-166=-【点睛】本题主要考查实数的混合运算,掌握零指数幂和运算法则是解题的关键. 11.计算:(()2623+⨯-.【答案】0【分析】先算乘方,再算乘法和减法,即可.【详解】()26(6)62366=+-=+--=⨯ 【点睛】本题考查实数的混合运算,关键是掌握2()a a =.12.2324 【答案】6-【分析】根据二次根式的混合运算进行计算即可求解. 【详解】解:原式66=6=【点睛】本题考查了次根式的混合运算,正确的计算是解题的关键.13.计算:213sin30845 2-︒︒⎛⎫-+⎪⎝⎭【答案】1【分析】根据零次幂,负整指数幂,特殊角的三角函数值,二次根式的性质进行计算即可求解.【详解】解:原式=121422-⨯+1=.【点睛】本题考查了实数的混合运算,掌握零次幂,负整指数幂,特殊角的三角函数值,二次根式的性质是解题的关键.14.计算:2sin60°﹣32|+(π10012(﹣12)﹣2.【答案】3【分析】代入特殊角的三角函数值,按照实数的混合运算法则计算即可得答案.【详解】解:2sin60°﹣32|+(π10012+(﹣12)﹣233-333-3=3.【点睛】本题考查特殊角的三角函数值、零指数幂、负整数指数幂及二次根式的性质与化简,熟练掌握实数的混合运算法则,熟记特殊角的三角函数值是解题关键.15.计算:12022125(1)3-⎛⎫+-⎪⎝⎭.5【分析】根据负整数指数幂、乘方、绝对值的性质化简后计算即可.【详解】解:12022 125(1)3-⎛⎫+--⎪⎝⎭3521=-5【点睛】本题考查实数的混合运算,解题的关键是根据负整数指数幂、绝对值的性质化简.16.124sin 3032︒; 3【分析】先化简二次根式,把特殊角三角函数值代入,并求绝对值,再计算乘法,最后合并同类二次根式即可; 【解析】解:原式1234232=⨯+3【点睛】本题考查实数的混合运算,分式的混合运算,熟练掌握实数混合运算法则,熟记特殊角的三角函数值.17.计算:2022032tan 45(1)3)π--︒+--.【答案】1【分析】根据特殊角的三角函数值,零指数幂,实数的运算,有理数的乘方,绝对值等计算法则求解即可. 【详解】解:2022032tan 45(1)(3)π--︒+--32111=-⨯+-3211=-+-1=.【点睛】本题考查了特殊角的三角函数值,零指数幂,实数的运算,有理数的乘方,绝对值,准确熟练地化简各式是解题的关键.18.计算:201tan 452(3)(21)2(6)23-︒-++-+⨯-. 【答案】6【分析】原式分别利用乘方,特殊角的三角函数值,零指数幂,负整数指数幂,乘法法则分别计算,再作加减法. 【详解】解:201tan 452(3)(21)2(6)23-︒-++-+⨯- =1191422++-- =6【点睛】此题考查了实数的混合运算,熟练掌握运算法则是解本题的关键.19.计算:()20211+84sin 45+2-︒-.【答案】1【分析】利用乘方的意义,二次根式的化简,特殊角的函数值,绝对值的化简,化简后合并计算即可 【详解】解:原式2122422=-+⨯+ 122222=-+1=.【点睛】本题考查了二次根式的化简,特殊角的三角函数值,绝对值的化简等知识,熟练运用各自的运算法则化简是解题的关键.20.23862--.【答案】4. 38=2,-6=6,计算出结果.【详解】解:原式2644=+-=故答案为:4.【点睛】本题主要考查了实数的混合运算,关键是开三次方与绝对值的计算.21.计算:()043897⨯-+-. 【答案】-6;.【分析】直接利用有理数乘法法则以及绝对值的性质、二次根式的性质、零指数幂的性质分别化简得出答案;【详解】解:()043897⨯-+-- 12831=-+-+6=-;【点睛】此题主要考查了实数运算的混合运算,正确掌握相关运算法则是解题关键. 22.025|7|(23)--+.【答案】1-【分析】利用算术平方根、绝对值的性质、零指数幂分别计算各项即可求解.【详解】解:原式5711=-+=-.【点睛】本题考查实数的混合运算,掌握算术平方根、绝对值的性质、零指数幂是解题的关键.23.计算:0|2021|(3)4-+-.【答案】2020【分析】先计算绝对值、零指数幂和算术平方根,最后计算加减即可; 【详解】解:0|2021|(3)4-+--202112=+-,2020=.【点睛】本题主要考查实数的混合运算,解题的关键是掌握实数的混合运算顺序及相关运算法则.24.计算:011(2021)()2cos 452π--+-︒. 【答案】32【分析】先进行零指数幂和负整数指数幂,余弦函数值计算,再计算二次根式的乘法,合并同类项即可. 【详解】解:011(2021)()2cos 452π--+-︒, 21222=+-⨯, 32=-【点睛】本题主要考查零指数幂和负整数指数幂,特殊角三角函数值,掌握零指数幂和负整数指数幂的运算法则,特殊角锐角三角函数值是解题的关键.25.计算:()101tan 60233122-⎛⎫-+︒-+- ⎪⎝⎭π【答案】-3【分析】分别利用负整指数幂,特殊角的三角函数值,绝对值,零指数幂,二次根式的性质化简,再进行计算即可.【详解】解:()101tan 60233122-⎛⎫-+︒-+- ⎪⎝⎭π ()=2+3233-+1-2=2323123-- =3-【点睛】本题考查了负整指数幂,特殊角的三角函数值,绝对值,零指数幂,二次根式的化简等知识点,熟悉相关性质是解题的关键.26.计算:()03.1427134sin 60π-+︒.【答案】0【分析】分别化简各数,再作加减法.【详解】解:()03.1427134sin 60π-+︒ =31333142-+⨯ =1333123-+=0【点睛】本题考查了实数的混合运算,特殊角的三角函数值,解题的关键是掌握运算法则.27.计算:()2012sin 602020233π-︒⎛⎫+-+-+ ⎪⎝⎭ 【答案】12【解析】【分析】分别根据特殊锐角三角函数值、零指数幂、负指数幂和实数性质化简各式,再计算即可.【详解】解:原式3291232=⨯+++-3123=-12=.【点睛】本题考查了特殊锐角三角函数值、零指数幂、负指数幂和实数的有关性质,解答关键是根据相关法则进行计算.28.计算:55cos60°28﹣(﹣22)0. 【答案】0【解析】【分析】先去绝对值符号、代入三角函数值、化简二次根式、计算零指数幂,再计算乘法,最后计算加减可得;【详解】 解:原式=1235252212 =35521-=0;【点睛】本题主要考查实数的混合运算,解题的关键是掌握绝对值性质、二次根式的性质、零指数幂的规定、熟记三角函数值及分式的混合运算顺序和运算法则.29.计算:0(23)(23)tan 60(23)π-++︒-- 3.【解析】【分析】先计算平方差公式、特殊角的正切函数值、零指数幂,再计算实数的混合运算即可.【详解】 原式2223)31=-+ 4331=-+3=【点睛】本题考查了平方差公式、特殊角的正切函数值、零指数幂等知识点,熟记各运算法则是解题关键.30.()220201272603232cos -⎛⎫--+ ⎪⎝⎭; 36.【解析】【分析】根据算术平方根、特殊角三角函数值、负整数指数评价的人意义以及绝对值的意义进行计算即可;【详解】 ()220201272603232cos -⎛⎫--+ ⎪⎝⎭ 3314323=---36=-;【点睛】本题考查了实数的混合运算,二次根式的加减法,解答此题的关键是熟练掌握运算法则. 31.计算:120201(1)|132sin602-︒⎛⎫-+-+- ⎪⎝+⎭. 【答案】2【解析】【分析】分别利用零指数幂、负指数幂的性质,绝对值的性质和特殊角的三角函数值分别化简即可.【详解】 解:原式=)3123122++-⨯ =12313++=2【点睛】此题主要考查了根式运算,指数计算,绝对值,三角函数值等知识点,正确应用记住它们的化简规则是解题关键.32.计算:2cos 45(2020)|22π︒︒+-+-.【答案】3【解析】【分析】根据特殊角的三角函数值,零指数幂运算及去绝对值法则进行计算即可.【详解】 解:2cos 45(2020)|22π︒︒+-+-=2×22+1+22 2+1+22=3.【点睛】本题考查零次幂的性质、特殊角的三角函数值,绝对值性质实数的运算,熟练掌握计算法则是正确计算的前提.33.计算:11()18|2|6sin 453---︒【答案】5【解析】【分析】分别计算负整数指数幂,算术平方根,绝对值,锐角三角函数,再合并即可得到答案.【详解】解:原式=2332262+-⨯ 332232=+-5.=【点睛】本题考查的是负整数指数幂,算术平方根,绝对值,锐角三角函数,以及合并同类二次根式,掌握以上的知识是解题的关键.34.计算:0|122sin 45(2020)︒--+-;【答案】0;【解析】【分析】根据实数的混合运算法则计算即可;【详解】解:原式221212-⨯+ =0;【点睛】本题考查了实数的混合运算,以及特殊角的三角函数值,解题的关键是掌握运算法则.35.计算:10311345( 3.14)273π-⎛⎫+︒+- ⎪⎝⎭3【解析】【分析】根据负整数指数幂,绝对值的性质,零指数幂,立方根,特殊角的三角函数值进行计算即可【详解】10311345( 3.14)273π-⎛⎫+︒+-- ⎪⎝⎭3|131|13=++-33113=++-3=【点睛】本题考查了负整数指数幂,绝对值的性质,零指数幂,立方根,特殊角的三角函数值,熟知以上计算是解题的关键.36.计算:101()2cos 4512(31)3--+--【答案】1【解析】 【分析】根据负整指数幂的性质,特殊角的三角函数值,绝对值,零指数幂的性质,直接计算即可.【详解】 101()2cos 4512(31)3--+-- 2322211=-⨯- 22131=--1=.【点睛】 本题主要考查了实数的混合运算,包含零指数幂,负整数指数幂,绝对值及特殊角的余弦值等,灵活运用是解题关键.37.计算:0131202082-⎛⎫︒- ⎪⎝⎭. 【答案】0【解析】【分析】依次计算零指数幂,化简立方根乘以特殊的三角函数值,最后一项利用负指数幂,最后相加减即可得出答案.【详解】解:原式11222=+⨯- 112=+-0=【点睛】此题主要考查了实数的运算以及特殊的三角函数值,熟练掌握运算法则是解题的关键.38.计算:1202138(π﹣3.14)0﹣(﹣15)-1.【答案】5【解析】【分析】算出立方根、零指数幂和负指数幂即可得到结果;【详解】解:原式=1﹣2+1+5=5.【点睛】本题主要考查了实数的运算,计算是解题的关键.39.计算:13182cos60-(-1) 2π-⎛⎫-⎪⎝⎭.【答案】0【解析】【分析】先化简各项,再作加减法,即可计算.【详解】解:原式=1 22212-++⨯-=0,故答案为:0.【点睛】此题考查实数的混合运算以及特殊角的三角函数值,关键是掌握运算法则和运算顺序.40.0 31 8312sin604⎛⎫--︒+ ⎪⎝⎭【答案】2-.【解析】【分析】先计算立方根、绝对值运算、特殊角的三角函数值、零指数幂,再计算实数的混合运算即可.【详解】原式323121-+-+= 23131=-+2=-.【点睛】本题考查了立方根、绝对值运算、特殊角的三角函数值、零指数幂等知识点,熟记各运算法则是解题关键.41.计算:()10124sin 601232π-⎛⎫---+︒- ⎪⎝⎭ 【答案】-3【解析】【分析】根据负整数指数幂、绝对值、特殊角的三角函数值、二次根式和零次幂的运算法则分别对每项进行化简,再进行加减计算即可.【详解】 解:()10124sin 601232π-⎛⎫---+︒- ⎪⎝⎭ 2223231=--+3=-【点睛】本题考查实数的混合运算、熟练掌握负整数指数幂、绝对值、特殊角的三角函数值、二次根式和零次幂的运算法则是解题的关键.42.计算:()10131012454-︒⎛⎫--++ ⎪⎝⎭ 【答案】7【解析】【分析】根据绝对值、零次幂、特殊角的三角函数值、二次根式和负整数指数幂的运算法则分别对每项进行化简,再进行加减计算即可.【详解】 解:)10131012454-︒⎛⎫--+ ⎪⎝⎭ =3114-++=7【点睛】本题考查实数的混合运算、熟练掌握绝对值、零次幂、特殊角的三角函数值、二次根式和负整数指数幂的运算法则是解题的关键.43.101313tan 30(3.14)2π-⎛⎫-︒+-+ ⎪⎝⎭【答案】2.【解析】【分析】先计算绝对值运算、特殊角的正切函数值、零指数幂、负整数指数幂,再计算实数的混合运算即可得.【详解】 原式331312=-⨯++ 31312-=+2=.【点睛】本题考查了绝对值运算、特殊角的正切函数值、零指数幂、负整数指数幂,熟记各运算法则是解题关键.44.()202 3.14219π--+ 【答案】10.【解析】【分析】先计算零指数幂、绝对值运算、算术平方根,再计算二次根式的乘法、去括号、有理数的乘方,然后计算二次根式的加减法即可得.【详解】 原式22121)3=-+2219=+10=.【点睛】本题考查了零指数幂、绝对值运算、算术平方根、二次根式的加减法与乘法等知识点,熟记各运算法则是解题关键.。
中考数学 热点专题一 数与式
热点专题一 数与式【考点聚焦】“数与式”包括有理数、实数、代数式、整式与分式四个部分.数与式渗透后面各部分内容之中,联系着所有数学知识.它是开展数学学习和研究的基础,也是中考的重要考点之一.数与式的考题一般以填空、选择或解答题的形式出现.这部分内容的考题难度不大,但涉及的基本概念和知识点较多.实数:理解有理数、无理数、数轴、相反数、倒数、绝对值、近似数、有效数字、平方根、算术平方根、立方根的概念.知道实数与数轴上的点一一对应,并会求一个数的相反数、倒数、绝对值.会用科学记数法表示一个数,能按要求用四舍五入法求一个数的近似值.能正确运用实数的运算法则进行实数的混合运算.理解实数的运算律,并能运用运算律简化运算.能运用实数的运算解决简单的问题.会用各种方法比较两个实数的大小.整式:了解整数指数幂的意义和基本性质;了解整式的概念和有关法则,会进行简单的整式加、减、乘、除运算;掌握平方差公式和完全平方公式,并了解其几何背景,会进行简单的计算;会用提公因式法、公式法进行因式分解. 分式:了解分式的概念,会利用分式的基本性质进行约分和通分,会进行简单的分式加、减、乘、除、乘方及混合运算.二次根式:了解二次根式的概念、性质及其加、减、乘、除运算法则,会用它们进行简单四则运算.代数式:理解用字母表示数的意义,能分析简单问题,并能用代数式表示,能解释简单代数式的实际背景或几何意义,会求代数式的值. 【热点透视】热点1:实数及有关概念的考查(包括有理数、数轴、相反数、绝对值)例1 (1)(2008长沙)请写出一对互为相反数的数:_________和_________. 答案不惟一,如:1和1-.点评:题型新颖.只需给出很简单的一对数即可.如:1+,1-.(2)如右图,数轴上一动点A 向左移动2个单位长度到达点B ,再向右移动5个单位长度到达点C ,若点C 表示的数为1,则点A 表示的数为( )(A )7 (B )3 (C )3- (D )2- 答案:(D )点评:考查数轴上两点之间的距离,若A 点对应a ,B 点对应b ,则AB a b =-.(3)实数2271,2π,0,3- ) (A )1 (B )2 (C )3 (D )4 答案:(D)点评:要准确的把握有理数、无理数的概念,不能片面地从形式上判断.另外,有些数能化简的,要先化简,以最简结果进行分类.如:01=3=,33-=. (1)有理数的分类和判断.(2)求一个数的相反数、绝对值和倒数.(3)利用数轴化简绝时值,或比较大小这些内容是中考的常客.对实数知识点的考查仍以基本题型为主,考查时多以填空、选择题形式出现,题目中包含若干个知识点,同时渗透数形结合思想. 热点2:科学记数法、近似数、有效数字的考查 例2 (1)(2008郴州)国家AAAA 级旅游区东江湖的蓄水量为81.2亿立方米,81.2亿这个数用科学记数法表示为_____________. 答案:98.1210⨯.(2)(2008怀化)怀化市2006年的国民生产总值约为333.9亿元,预计2007年比上一年增长10%,表示2007年怀化市的国民生产总值应是(结果保留3个有效数字)( ) (A)103.6710⨯元 (B)103.67310⨯元 (C)113.6710⨯元 (D)83.6710⨯元答案:(A ).认识和表达生活中的数据,是课标设置的主要内容之一.科学记数法、近似数、有效数字的考查是中考前两题中经常出现的题目,这类题目往往和生活相联系.热点3:实数的运算能力的考查(包括零指数幂、负整数指数幂性质的运用) 例3 (1)(2008邵阳)13--等于( ) (A )2 (B )2- (C )4 (D )4- 答案:(D ).(2)(2008永州)计算:021111sin3020072-⎛⎫⎛⎫--+ ⎪ ⎪⎝⎭⎝⎭答案:-.点评:考查实数的运算法则、方法、技巧.运算时要认真审题,确定符号,明确运算顺序,灵活运用.(3)(2007邵阳)下列各数与最接近的是( )(A )2.5 (B )2.6 (C )2.7 (D )2.8 答案:(B ).点评:考查开方和乘方是互为逆运算,不好直接估算出来,要反过来计算各数的平方. (4)(2008邵阳)小明设计了一个关于实数的运算程序如下,当输入x 的值为时,则输出的数值为________.答案:1.点评:渗透编程中框图的思想.其实就是计算:当x =21x -的值.实数的混合运算中,运算顺序和运算技巧,零指数幂和负指数幂等是中考中的热点,实数的运算主要是由二次根式、三角函数、幂等组成的混合算式的计算,一般难度不大. 热点4:整式的运算及同底数幂乘法法则、积和幂的乘方法则、乘法公式的运用的考查(包括因式分解)例4 (1)(2008常德)下列运算正确的是( )(A )236a a a =(B )22124a a--=-(C )235()a a -= (D )22223a a a --=- 答案:(D ).点评:考查幂的运算.熟练掌握幂的运算公式.不要搞混.(2)(2008株洲)若32m x y 与23n x y -是同类项,则m n +________. 答案:5.点评:同类项是所含字母相同且相同字母的次数也相同.从而,2m =,3n =. (3)(2008长沙)先化简,再求值:22()()a a b a b +-+,其中a =b =答案:化简为:22a b -,值为1.点评:一定要先化简再求值.不要直接代入求值. (4)(2007常德)分解因式:22b b -= _______. 答案:(2)b b -.点评:因式分解的一般方法,先提取公因式,然后再考虑是否能运用公式法.要注意整体代换的思想.考点主要是用代数式表示数量关系,单项式的系数、次数,多项式的项和次数,整式的运算,多项式的因式分解等内容.有时也出现与其他知识的综合题和探索型题.为此,应重视通过对特殊现象的研究而得出一般结论的方法,即数学上常用的归纳法.热点5:非负数的考查(包括a 0a ≥)、2a 的非负性.)例5 (1)(2008娄底)如果a ,b 是任意的两个实数,下列各式中的值一定是负数的是( )(A )1b -+ (B )2()a b --(C ) (D )2(1)a -+答案:(D ).点评:考查a 2a 的非负性.只有2(1)a -+不能为0,其它可以为0.(2)若10a +,求ab . 答案:4.点评:利用a 2a 的非负性,而1a +0,只有10a +=,50a b ++=,解得:1a =-,4b =-,再代入计算.a 2a 的非负性,是中学数学中一个很重要的性质.利用它们的这个性质,可以处理很多问题,应用很广.热点6:分式的意义、分式的基本性质及分式的混合运算考查例6 (1)(2006永州)当x _________时,分式22x x +-有意义. 答案:2x ≠.点评:分式有意义,分母必须不为0.即20x -≠.(2)(2007郴州)分式25m +的值为1时,m 的值是( ) (A )2m = (B )2m =- (C )3m =- (D )3m =答案:(C ).点评:让分式等于1,然后解分式方程. (3)(2008张家界)已知分式:221A x =-,11(1)11B x x x=+≠±+-.下面三个结论:①A ,B 相等;②A ,B 互为相反数;③A ,B 互为倒数.请问哪个正确?为什么?答案:②.点评:题型新颖.其实就是计算B , 再与A 进行比较.分式的考点主要是分式有意义、分式的值,分式的运算、分式的化简、求值的方法和技巧.命题形式有填空题、选择题,有关运算、化简求值的题目多以解答题的形式出现. 热点7:二次根式、最简二次根式、同类二次根式的概念,二次根式的性质及计算的考查例7 (1)(2008娄底)16的平方根是_____. 答案:±4.点评:注意平方根、算术平方根的区别.(2)(2008x 应满足的条件是( ) (A )3x ≥ (B )3x < (C )3x > (D )3x ≤ 答案:(A ).点评:被开方数必须大于或等于0,不要忘了等号.(3)(2008_______.点评:先化成最简二次根式,再合并.重点考查最简二次根式、同类二次根式的概念,以及二次根式的化简、求值.通常以填空题、选择题的形式出现,常与一元二次方程、函数等知识相联系. 热点8:探究规律,发现规律的考查例8 (1)(2008张家界)观察一列有规律的数:4,8,16,32,…,它的第2 007个数是( ) (A )20072(B )200721- (C )20082 (D )20062答案:(C ).点评:第1个数:242=;第2个数:382=;第3个数:4162=;…第2 007个数:20082.认真观察,从特殊到一般.(2)(2008常德)观察下列各式:3211= 332123+=3331236++=3333123410+++= ……猜想:333312310+++++= _________. 答案:255.点评:1+2=3,1+2+3=6,1+2+3+4=10 … ∴33321231055.121055++++=+++= .(3)(2008邵阳)观察:111122=-⨯,1112323=-⨯,1113434=-⨯将以上三个等式两边分别相加得:1111111113111223342233444++=-+-+-=-=⨯⨯⨯. ①猜想并写出:1(1)n n =+ _________.②直接写出下列各式的计算结果:111112233420062007++++=⨯⨯⨯⨯ _________. 1111122334(1)n n ++++=⨯⨯⨯+ _________. ③探究计算:111124466820062008++++⨯⨯⨯⨯ . 答案:①111n n -+;②20062007,1n n +;③10034016.点评:认真观察:111(1)1n n n n =-++.111112233420062007++++⨯⨯⨯⨯ 1111111112233420062007=-+-+-++- 12006120072007=-=.而③中原式111111111111224246268220062008⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭11111112244620062008⎛⎫=-+-++- ⎪⎝⎭11110032220084016⎛⎫=-=⎪⎝⎭. 归纳、猜想型试题是近年中考出现的新题型,其特点是:给出一组具有递进关系的数、式子、图形,或某个由简单到复杂的操作过程,或某一具体的问题情境,通过探求其变化过程中的规律,归纳或猜想出一般性的结论;有的题目还要求对结论的正确性加以验证.解答这类试题的思路是:从简单的、局部的、特殊的情形出发,通过分析、比较、提炼,发现其中的规律,进而归纳或猜想出一般性的结论. 【考题预测】1._____的倒数是112-; 0.28的相反数是_____. 2.当x _______时,分式25x x -+有意义.3x 的取值范围______.4.如下图,是一个简单的数值运算程序,当输入x 的值为1-时,则输出的数值为_________.5.3π-的绝对值是________.6.(1)数轴上表示2-和5-的两点之间的距离是_____,数轴上表示1和3-的两点之间的距离是_______.(2)数轴上表示x 和1-的两点A 和B 之间的距离是_____,如果2AB =,那么x =________.7.当代数式235x x ++的值为7时,代数式2392x x +-的值是_______. 8.如果2xa =,3ya =,则23x ya+=________.9.下列说法中,不正确的是( )(A )1-的平方是 1 (B )1-的平方根是1- (C )1-的立方是1- (D )1-的立方根是1-10的值等于( )(A )3- (B )3 (C )9 (D )9-11.如果a 是实数,那么下面说法正确的是( ) (A )a -一定是负数 (B )a 一定是正数(C )a 的倒数是 (D12 )(A(B(C(D13.下列运算中错误的是( )(A )23a a a =(B )236a b ab += (C )422a a a ÷= (D )222()ab a b -= 14.如果a b >,那么一定有( )(A )a b > (B )a b = (C )a b < (D )a b ≠153a =-的正整数a 的值有( )(A )1个 (B )2个 (C )3个 (D )4个16.计算题:(1)101(12cos302-⎛⎫++ ⎪⎝⎭;(2)2(21)(21)(21)a a a +-+-; (3)1111x x+-+; (4)26a 17.从2开始,连续的偶数相加,它们和的情况如下:2=1×2 2+4=6=2×3 2+4+6=12=3×4 2+4+6+8=20=4×5 2+4+6+8+10=30=5×6 …… 2462n ++++= __________.利用上式计算:(1)246200++++ ;(2)40+42+44+ (400)。
中考数学一元二次方程的综合热点考点难点附答案解析
一、一元二次方程 真题与模拟题分类汇编(难题易错题) 1.已知关于x 的一元二次方程x 2﹣x+a ﹣1=0. (1)当a=﹣11时,解这个方程;(2)若这个方程有两个实数根x 1,x 2,求a 的取值范围;(3)若方程两个实数根x 1,x 2满足[2+x 1(1﹣x 1)][2+x 2(1﹣x 2)]=9,求a 的值. 【答案】(1)123,4x x =-=(2)54a ≤(3)-4 【解析】分析:(1)根据一元二次方程的解法即可求出答案; (2)根据判别式即可求出a 的范围; (3)根据根与系数的关系即可求出答案.详解:(1)把a =﹣11代入方程,得x 2﹣x ﹣12=0,(x +3)(x ﹣4)=0,x +3=0或x ﹣4=0,∴x 1=﹣3,x 2=4;(2)∵方程有两个实数根12x x ,,∴△≥0,即(﹣1)2﹣4×1×(a ﹣1)≥0,解得54a ≤:; (3)∵12x x ,是方程的两个实数根,222211221122101011x x a x x a x x a x x a -+-=-+-=∴-=--=-,,,.∵[2+x 1(1﹣x 1)][2+x 2(1﹣x 2)]=9,∴221122229x x x x ⎡⎤⎡⎤+-+-=⎣⎦⎣⎦,把22112211x x a x x a -=--=-, 代入,得:[2+a ﹣1][2+a ﹣1]=9,即(1+a )2=9,解得:a =﹣4,a =2(舍去),所以a 的值为﹣4.点睛:本题考查了一元二次方程,解题的关键是熟练运用判别式以及根与系数的关系.2.图1是李晨在一次课外活动中所做的问题研究:他用硬纸片做了两个三角形,分别为△ABC 和△DEF ,其中∠B=90°,∠A=45°,BC=,∠F=90°,∠EDF=30°, EF=2.将△DEF的斜边DE 与△ABC 的斜边AC 重合在一起,并将△DEF 沿AC 方向移动.在移动过程中,D 、E 两点始终在AC 边上(移动开始时点D 与点A 重合). (1)请回答李晨的问题:若CD=10,则AD= ;(2)如图2,李晨同学连接FC ,编制了如下问题,请你回答: ①∠FCD 的最大度数为 ; ②当FC ∥AB 时,AD= ;③当以线段AD 、FC 、BC 的长度为三边长的三角形是直角三角形,且FC 为斜边时,AD= ; ④△FCD 的面积s 的取值范围是 .【答案】(1)2;(2)① 60°;②;③;④.【解析】试题分析:(1)根据等腰直角三角形的性质,求出AC的长,即可得到AD的长.(2)①当点E与点C重合时,∠FCD的角度最大,据此求解即可.②过点F作FH⊥AC于点H,应用等腰直角三角形的判定和性质,含30度角直角三角形的性质求解即可.③过点F作FH⊥AC于点H,AD=x,应用含30度角直角三角形的性质把FC用x来表示,根据勾股定理列式求解.④设AD=x,把△FCD的面积s表示为x的函数,根据x的取值范围来确定s的取值范围.试题解析:(1)∵∠B=90°,∠A=45°,BC=,∴AC=12.∵CD=10,∴AD=2.(2)①∵∠F=90°,∠EDF=30°,∴∠DEF=60°.∵当点E与点C重合时,∠FCD的角度最大,∴∠FCD的最大度数=∠DEF="60°."② 如图,过点F作FH⊥AC于点H,∵∠EDF=30°, EF=2,∴DF=. ∴DH=3,FH=.∵FC∥AB,∠A=45°,∴∠FCH="45°." ∴HC=. ∴DC=DH+HC=.∵AC=12,∴AD=.③如图,过点F作FH⊥AC于点H,设AD=x,由②知DH=3,FH=,则HC=.在Rt△CFH中,根据勾股定理,得.∵以线段AD、FC、BC的长度为三边长的三角形是直角三角形,且FC为斜边,∴,即,解得.④设AD=x,易知,即.而,当时,;当时,.∴△FCD的面积s的取值范围是.考点:1.面动平移问题;2.等腰直角三角形的判定和性质;3.平行的性质;4.含30度角直角三角形的性质;5.勾股定理;6.由实际问题列函数关系式;7.求函数值.3.关于x的方程(k-1)x2+2kx+2=0(1)求证:无论k为何值,方程总有实数根.(2)设x1,x2是方程(k-1)x2+2kx+2=0的两个根,记S=++ x1+x2,S的值能为2吗?若能,求出此时k的值.若不能,请说明理由.【答案】(1)详见解析;(2)S的值能为2,此时k的值为2.【解析】试题分析:(1)本题二次项系数为(k-1),可能为0,可能不为0,故要分情况讨论;要保证一元二次方程总有实数根,就必须使△>0恒成立;(2)欲求k的值,先把此代数式变形为两根之积或两根之和的形式,代入数值计算即可.试题解析:(1)①当k-1=0即k=1时,方程为一元一次方程2x=1,x=有一个解;②当k-1≠0即k≠1时,方程为一元二次方程,△=(2k)²-4×2(k-1)=4k²-8k+8="4(k-1)" ²+4>0方程有两不等根综合①②得不论k为何值,方程总有实根(2)∵x ₁+x ₂=,x ₁ x ₂=∴S=++ x1+x2=====2k-2=2, 解得k=2,∴当k=2时,S 的值为2 ∴S 的值能为2,此时k 的值为2.考点:一元二次方程根的判别式;根与系数的关系.4.某社区决定把一块长50m ,宽30m 的矩形空地建成居民健身广场,设计方案如图,阴影区域为绿化区(四块绿化区为大小形状都相同的矩形) ,空白区域为活动区,且四周的4个出口宽度相同,当绿化区较长边x 为何值时,活动区的面积达到21344m ?【答案】当13x m =时,活动区的面积达到21344m 【解析】 【分析】根据“活动区的面积=矩形空地面积﹣阴影区域面积”列出方程,可解答. 【详解】解:设绿化区宽为y ,则由题意得502302x y -=-.即10y x =-列方程: 50304(10)1344x x ⨯--= 解得13x =- (舍),213x =.∴当13x m =时,活动区的面积达到21344m 【点睛】本题是一元二次方程的应用题,确定等量关系是关键,本题计算量大,要细心.5.如图,在Rt ABC 中,90B =∠,10AC cm =,6BC cm =,现有两点P 、Q 的分别从点A 和点B 同时出发,沿边AB ,BC 向终点C 移动.已知点P ,Q 的速度分别为2/cm s ,1/cm s ,且当其中一点到达终点时,另一点也随之停止移动,设P ,Q 两点移动时间为xs .问是否存在这样的x ,使得四边形APQC 的面积等于216cm ?若存在,请求出此时x 的值;若不存在,请说明理由.【答案】假设不成立,四边形APQC 面积的面积不能等于216cm ,理由见解析 【解析】 【分析】根据题意,列出BQ 、PB 的表达式,再列出方程,判断根的情况. 【详解】解:∵90B ∠=,10AC =,6BC =, ∴8AB =.∴BQ x =,82PB x =-;假设存在x 的值,使得四边形APQC 的面积等于216cm , 则()1168821622x x ⨯⨯--=, 整理得:2480x x -+=, ∵1632160=-=-<,∴假设不成立,四边形APQC 面积的面积不能等于216cm . 【点睛】本题考查了一元二次方程的应用,熟练掌握方程根的判别方法、理解方程的意义是本题的解题关键.6.已知x=﹣1是关于x 的方程x 2+2ax+a 2=0的一个根,求a 的值. 【答案】1【解析】试题分析:根据一元二次方程解的定义,把x=﹣1代入x 2+2ax+a 2=0得到关于a 的一元二次方程1﹣2a+a 2=0,然后解此一元二次方程即可. 试题解析:把x=﹣1代入x 2+2ax+a 2=0得 1﹣2a+a 2=0, 解得a 1=a 2=1, 所以a 的值为1.7.设m 是不小于﹣1的实数,关于x 的方程x 2+2(m ﹣2)x+m 2﹣3m+3=0有两个不相等的实数根x 1、x 2,(1)若x 12+x 22=6,求m 值;(2)令T=121211mx mx x x +--,求T 的取值范围. 【答案】(1)m=517-;(2)0<T≤4且T≠2. 【解析】 【分析】由方程方程由两个不相等的实数根求得﹣1≤m <1,根据根与系数的关系可得x 1+x 2=4﹣2m ,x 1•x 2=m 2﹣3m+3;(1)把x 12+x 22=6化为(x 1+x 2)2﹣2x 1x 2=6,代入解方程求得m 的值,根据﹣1≤m <1对方程的解进行取舍;(2)把T 化简为2﹣2m ,结合﹣1≤m <1且m≠0即可求T 得取值范围. 【详解】∵方程由两个不相等的实数根, 所以△=[2(m ﹣2)]2﹣4(m 2﹣3m+3) =﹣4m+4>0,所以m <1,又∵m 是不小于﹣1的实数, ∴﹣1≤m <1∴x 1+x 2=﹣2(m ﹣2)=4﹣2m ,x 1•x 2=m 2﹣3m+3; (1)∵x 12+x 22=6, ∴(x 1+x 2)2﹣2x 1x 2=6,即(4﹣2m )2﹣2(m 2﹣3m+3)=6 整理,得m 2﹣5m+2=0 解得m=;∵﹣1≤m <1 所以m=. (2)T=+=====2﹣2m .∵﹣1≤m<1且m≠0所以0<2﹣2m≤4且m≠0即0<T≤4且T≠2.【点睛】本题考查了根与系数的关系、根的判别式,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.8.工人师傅用一块长为10dm,宽为6dm的矩形铁皮制作一个无盖的长方体容器,需要将四角各裁掉一个正方形.(厚度不计)求长方体底面面积为12dm2时,裁掉的正方形边长多大?【答案】裁掉的正方形的边长为2dm,底面积为12dm2.【解析】试题分析:设裁掉的正方形的边长为xdm,则制作无盖的长方体容器的长为(10-2x)dm,宽为(6-2x)dm,根据长方体底面面积为12dm2列出方程,解方程即可求得裁掉的正方形边长.试题解析:设裁掉的正方形的边长为xdm,由题意可得(10-2x)(6-2x)=12,即x2-8x+12=0,解得x=2或x=6(舍去),答:裁掉的正方形的边长为2dm,底面积为12dm2.9.某公司今年1月份的生产成本是400万元,由于改进技术,生产成本逐月下降,3月份的生产成本是361万元.假设该公司2、3、4月每个月生产成本的下降率都相同.(1)求每个月生产成本的下降率;(2)请你预测4月份该公司的生产成本.【答案】(1)每个月生产成本的下降率为5%;(2)预测4月份该公司的生产成本为342.95万元.【解析】【分析】(1)设每个月生产成本的下降率为x,根据2月份、3月份的生产成本,即可得出关于x 的一元二次方程,解之取其较小值即可得出结论;(2)由4月份该公司的生产成本=3月份该公司的生产成本×(1﹣下降率),即可得出结论.【详解】(1)设每个月生产成本的下降率为x , 根据题意得:400(1﹣x )2=361,解得:x 1=0.05=5%,x 2=1.95(不合题意,舍去). 答:每个月生产成本的下降率为5%; (2)361×(1﹣5%)=342.95(万元),答:预测4月份该公司的生产成本为342.95万元. 【点睛】本题考查了一元二次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元二次方程;(2)根据数量关系,列式计算.10.如图,在四边形 ABCD 中, AD //BC , C 90∠=︒ , BC 16=, DC 12= ,AD 21= ,动点P 从点D 出发,沿线段 DA 的方向以每秒2个单位长的速度运动;动点Q 从点 C 出发,在线段 CB 上以每秒1个单位长的速度向点 B 运动;点P ,Q 分别从点D ,C 同时出发,当点 P 运动到点 A 时,点Q 随之停止运动,设运动的时间为t 秒).(1)当 t 2=时,求 BPQ 的面积;(2)若四边形ABQP 为平行四边形,求运动时间 t . (3)当 t 为何值时,以 B 、P 、Q 为顶点的三角形是等腰三角形? 【答案】(1)S 84=;(2)t 5= ;(3)7t 2=或163. 【解析】 【分析】(1)过点P 作PM BC ⊥于M ,则PM=DC ,当t=2时,算出BQ ,求出面积即可;(2)当四边形ABQP 是平行四边形时,AP BQ =,即212t 16t -=-,解出即可;(3)以 B 、P 、Q 为顶点的三角形是等腰三角形,分三种情况,①PQ BQ =,②BP BQ =,③PB PQ =分别求出t 即可. 【详解】解 :(1)过点P 作PM BC ⊥于M ,则四边形PDCM 为矩形.∴PM DC 12==, ∵QB 16t =-, 当t=2时,则BQ=14,则1S QB PM 2=⨯=12×14×12=84; (2)当四边形ABQP 是平行四边形时,AP BQ =,即212t 16t -=-: 解得:t 5=∴当t 5=时,四边形ABQP 是平行四边形.(3)由图可知,CM=PD=2t ,CQ=t ,若以B 、P 、Q 为顶点的三角形是等腰三角形,可以分为以下三种情况:①若PQ BQ =,在Rt PMQ 中,222PQ 12t =+,由22PQ BQ =得()2221216t t +=- 解得:7t 2=; ②若BP BQ =,在Rt PMB 中,()222PB 16212t =-+,由22PB BQ ?=得()()222 1621216t t -+=- ,即2332t 1440t -+=,此时,()232431447040=--⨯⨯=-<△ , 所以此方程无解,所以BP BQ ≠ ;③若PB PQ =,由22PB PQ ?=得()2222 12162t 12t +=-+ , 得 1163t =,216t =(不合题意,舍去); 综上所述,当7t 2=或163时,以B 、P 、Q 为顶点的三角形是等腰三角形. 【点睛】本题是对四边形即可中动点问题的考查,熟练掌握动点中线段的表示、平行四边形和等腰三角形的性质及判断是解决本题的关键,难度适中.。
2011年数学中考复习用资料:最值最小值最短路线问题(中考热点专题新题型)[1]1
C最短路线问题1、在边长为2㎝的正方形ABCD 中,点Q 为BC 边的中点,点P 为对角线AC上一动点,连接PB 、PQ ,则△PBQ 周长的最小值为____________㎝(结果不取近似值). 2、如图所示,正方形ABCD 的面积为12,ABE △是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P ,使PD PE +的和最小,则这个最小值为( )A. B. C .3 D3、已知直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AD =2,BC =DC =5,点P 在BC 上移动,则当P A +PD 取最小值时,△APD 中边AP 上的高为( ) A 、17172B 、17174C 、17178D 、3 (动点,作A 关于BC 的对称点A ',连A 'D 交BC 于P ,涉及勾股定理,相似)4、已知等腰三角形ABC 的两个顶点分别是A(0,1)、B(0,3),第三个顶点C 在x 轴的正半轴上.关于y 轴对称的抛物线y =ax 2+bx +c 经过A 、D(3,-2)、P 三点,且点P 关于直线AC 的对称点在x 轴上. (1)求直线BC 的解析式;(2)求抛物线y =ax 2+bx +c 的解析式及点P 的坐标; (3)设M 是y 轴上的一个动点,求PM +CM 的取值范围.5、如图,在矩形OABC 中,已知A 、C 两点的坐标分别为(40)(02)A C ,、,,D 为OA 的中点.设点P 是AOC ∠平分线上的一个动点(不与点O 重合). (1)试证明:无论点P 运动到何处,PC 总造桥与PD 相等;(2)当点P 运动到与点B 的距离最小时,试确定过O P D 、、三点的抛物线的解析式;(3)设点E 是(2)中所确定抛物线的顶点,当点P 运动到何处时,PDE △的周长最小?求出此时点P 的坐标和PDE △的周长; (4)设点N 是矩形O A B C 的对称中心,是否存在点P ,使90CPN ∠=°?若存在,请直接写出点P 的坐标.AD EP BC6、一次函数y kx b =+的图象与x 、y 轴分别交于点A (2,0),B (0,4). (1)求该函数的解析式;(2)O 为坐标原点,设OA 、AB 的中点分别为C 、D ,P 为OB 上一动点, 求PC +PD 的最小值,并求取得最小值时P 点坐标.7、已知:抛物线的对称轴为与x 轴交于A B ,两点,与y 轴交于点C ,其中()30A -,、()02C -,.(1)求这条抛物线的函数表达式. (2)已知在对称轴上存在一点P ,使得PBC △的周长最小.请求出点P 的坐标. (3)若点D 是线段OC 上的一个动点(不与点O 、点C 重合).过点D 作DE PC ∥交x 轴于点E .连接PD 、PE .设CD 的长为m ,PDE △的面积为S .求S 与m 之间的函数关系式.试说明S 是否存在最大值,若存在,请求出最大值;若不存在,请说明理由. 8、、 如图,已知点A (-4,8)和点B (2,n )在抛物线2y ax =上.(1) 求a 的值及点B 关于x 轴对称点P 的坐标,并在x 轴上找一点Q ,使得AQ +QB 最短,求出点Q 的坐标;(2) 平移抛物线2y ax =,记平移后点A 的对应点为A ′,点B 的对应点为B ′,点C (-2,0)和点D (-4,0)是x 轴上的两个定点.① 当抛物线向左平移到某个位置时,A ′C +CB ′ 最短,求此时抛物线的函数解析式;② 当抛物线向左或向右平移时,是否存在某个位置,使四边形A ′B ′CD 的周长最短?若存在,求出此时抛物线的函数解析式;若不存在,请说明理由. 提示:第(2)问,是“饮马问题”的变式运用,涉及到抛物线左移。
专题01 实数(解析版)-热点题型归纳与最新模考题组练
专题01 实数【题型一】 科学记数法【典例分析】(2021·山东青岛·中考真题)2021年3月5 日,李克强总理在政府工作报告中指出,我国脱贫攻坚成果举世瞩目,5575万农村贫困人口实现脱贫.5575万=55750000,用科学记数法将55750000表示为( ) A .4557510⨯ B .555.7510⨯C .75.57510⨯D .80.557510⨯【答案】C【分析】根据科学记数法的定义“把一个大于10的数表示成10n a ⨯的形式(其中a 是整数位只有一位的数,即a 大于或等于1且小于10,n 是正整数),这样的记数方法叫做科学记数法”进行解答即可得. 【解析】解:755750000 5.57510=⨯,故选C .【提分秘籍】科学记数法是把一个数表示成n a 10⨯的形式,其中10||1<≤a ,n 为整数。
用科学记数法表示数时,确定a ,n 的值是关键。
①当原数的绝对值大于或等于10时,n 等于原数的整数位数减1;②当原数的绝对值小于1时,n 是负整数,它的绝对值等于原数左起第一个非零数字前所有零的个数(含小数点前的零)。
【注意】含有万、亿等单位的数,用科学记数法表示时,要先还原成原数,再用科学记数法表示,最后按要求取近似值。
【变式演练】1.(2021·山东济南·中考真题)2021年5月15日,我国“天问一号”探测器在火星成功着陆.火星具有和地球相近的环境,与地球最近时候的距离约55000000km .将数字55000000用科学记数法表示为( ) A .80.5510⨯ B .75.510⨯ C .65.510⨯ D .65510⨯【答案】B【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同. 【解析】解:将55000000用科学记数法表示为5.5×107.故选:B .2.(2021·辽宁锦州·中考真题)据相关研究,经过40min 完全黑暗后,人眼对光的敏感性达到最高点,比黑暗前增加25000倍,将数据25000用科学记数法表示为( ) A .25×103 B .2.5×104C .0.25×105D .0.25×106【答案】B【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值大于或等于10时, n 是正整数;当原数的绝对值小于1时,n 是负整数.【解析】解:将数据25000用科学记数法表示为2.5×104,故选:B .3.(2021·江苏淮安·中考真题)第七次全国人口普查结果显示,我国人口受教育水平明显提高,具有大学文化程度的人数约为218360000,将218360000用科学记数法表示为( ) A .0.21836×109 B .2.1386×107C .21.836×107D .2.1836×108【答案】D【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数;当原数的绝对值<1时,n 是负整数.【解析】解:218360000=2.1836×108,故选:D .【题型二】 平方根、立方根的概念与性质【典例分析】(2021·内蒙古·中考真题)一个正数a 的两个平方根是21b -和4b +,则a b +的立方根为_______. 【答案】2【分析】根据一个正数的平方根互为相反数,将21b -和4b +相加等于0,列出方程,解出b ,再将b 代入任意一个平方根中,进行平方运算求出这个正数a ,将a b +算出后,求立方根即可. 【解析】∵21b -和4b +是正数a 的平方根,∵2140b b -++=,解得1b =- ,将b 代入212(1)13b ,∵正数2(3)9a,∵198a b +=-+=,∵a b +382ab,故填:2.【提分秘籍】1.一个正数有两个平方根,它们互为相反数,0的平方根是0,负数没有平方根,而一个非负数的算术平方根一定不能是负数;任何数都有立方根,正数有一个正的立方根,负数有一个负的立方根,0的立方根是0。
最新九年级数学中考必考点大热点压轴题预测密卷有答案 (1)
绝密★★★启用前 试卷类型:A最新九年级数学中考必考点大热点压轴题预测密卷(黑龙江牡丹江)28.(本小题满分8分)如图,ABCD 在平面直角坐标系中,6AD =,若OA 、OB 的长是关于x 的一元二次方程27120x x -+=的两个根,且OA OB >. (1)求sin ABC ∠的值.(2)若E 为x 轴上的点,且163AOE S =△,求经过D 、E 两点的直线的解析式,并判断AOE △与DAO △是否相似?(3)若点M 在平面直角坐标系内,则在直线AB 上是否存在点F ,使以A 、C 、F 、M为顶点的四边形为菱形?若存在,请直接写出F 点的坐标;若不存在,请说明理由.(黑龙江牡丹江28题解析)解:(1)解27120x x -+=得1243x x ==,OA OB >43OA OB ∴==, ··································································································· 1分在Rt AOB △中,由勾股定理有5AB =4sin 5OA ABC AB ∴∠== ··························································································· 1分 (2)∵点E 在x 轴上,163AOE S =△11623AO OE ∴⨯= 83OE ∴=880033E E ⎛⎫⎛⎫∴- ⎪ ⎪⎝⎭⎝⎭,或, ··························································································· 1分 由已知可知D (6,4)设DE y kx b =+,当803E ⎛⎫⎪⎝⎭,时有28题图46803k b k b =+⎧⎪⎨=+⎪⎩解得65165k b ⎧=⎪⎪⎨⎪=-⎪⎩∴61655DE y x =-······································································································ 1分 同理803E ⎛⎫- ⎪⎝⎭,时,6161313DE y x =+ ······································································ 1分 在AOE △中,89043AOE OA OE ∠===°,, 在AOD △中,9046OAD OA OD ∠===°,, OE OAOA OD= AOE DAO ∴△∽△ ································································································ 1分 (3)满足条件的点有四个123475224244(38)(30)1472525F F F F ⎛⎫⎛⎫----- ⎪ ⎪⎝⎭⎝⎭,;,;,;, ····································· 4分 说明:本卷中所有题目,若由其它方法得出正确结论,可参照本评分标准酌情给分.38.(黑龙江齐齐哈尔)28.(本小题满分10分) 直线364y x =-+与坐标轴分别交于A B 、两点,动点P Q 、同时从O 点出发,同时到达A 点,运动停止.点Q 沿线段OA 运动,速度为每秒1个单位长度,点P 沿路线O →B →A 运动.(1)直接写出A B 、两点的坐标;(2)设点Q 的运动时间为t 秒,OPQ △的面积为S ,求出S 与t 之间的函数关系式;(3)当485S =时,求出点P 的坐标,并直接写出以点O P Q 、、为顶点的平行四边形的第四个顶点M 的坐标.(黑龙江齐齐哈尔28题解析)(1)A (8,0)B (0,6)1分 (2)86OA OB ==, 10AB ∴=点Q 由O 到A 的时间是881=(秒) ∴点P 的速度是61028+=(单位/秒) ··· 1分 当P 在线段OB 上运动(或03t ≤≤)时,2OQ t OP t ==,2S t = ······································································································································ 1分当P 在线段BA 上运动(或38t <≤)时,6102162OQ t AP t t ==+-=-,, 如图,作PD OA ⊥于点D ,由PD AP BO AB =,得4865tPD -=, ······································ 1分 21324255S OQ PD t t ∴=⨯=-+ ························································································· 1分(自变量取值范围写对给1分,否则不给分.)(3)82455P ⎛⎫ ⎪⎝⎭, ····················································································································· 1分12382412241224555555I M M 2⎛⎫⎛⎫⎛⎫-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,,,, ·································································· 3分 注:本卷中各题,若有其它正确的解法,可酌情给分.39.(黑龙江绥化)28.(本小题满分lO分)(黑龙江绥化28题解析)(42.(湖北黄冈)20.(满分14分)如图,在平面直角坐标系xoy 中,抛物线21410189y x x =--与x 轴的交点为点B ,过点B 作x 轴的平行线BC ,交抛物线于点C ,连结AC .现有两动点P ,Q 分别从O,C 两点同时出发,点P 以每秒4个单位的速度沿OA 向终点A 移动,点Q 以每秒1个单位的速度沿CB 向点B 移动,点P 停止运动时,点Q 也同时停止运动,线段OC ,PQ 相交于点D ,过点D 作DE ∥OA ,交CA 于点E ,射线QE 交x 轴于点F .设动点P ,Q 移动的时间为t (单位:秒)(1)求A,B,C 三点的坐标和抛物线的顶点的坐标; (2)当t 为何值时,四边形PQCA 为平行四边形?请写出计算过程;(3)当0<t <92时,△PQ F 的面积是否总为定值?若是,求出此定值,若不是,请说明理由;(4)当t 为何值时,△PQF 为等腰三角形?请写出解答过程.(湖北黄冈20题解析)解:(1)21(8180)18y x x =--,令0y =得281800x x --=,()()18100x x -+=∴18x =或10x =-∴(18,0)A ;………………………1′在21410189y x x =--中,令0x =得10y =即(0,10)B -;………………2′ 由于B C ∥OA ,故点C 的纵坐标为-10,由2141010189x x -=--得8x =或0x = 即(8,10)C -且易求出顶点坐标为98(4,)9-……………………………………3′于是,(18,0),(0,10),(8,10)A B C --,顶点坐标为98(4,)9-。
热点三 运动健康——2023届中考数学热点聚焦(含答案)
热点三运动健康——2023届中考数学热点聚焦1.2022年2月4日晚,北京冬奥会在国家体育场开幕,开幕式中使用的LED地面显示系统由4万块LED屏幕组成,全场的地面线缆总长超过20千米.数据“4万”可用科学记数法表示为( )A. B. C. D.2.山东省第二十五届运动会将于2022年8月25日在日照市开幕,“全民健身与省运同行”成为日照市当前的运动主题.在下列给出的运动图片中,是轴对称图形的是( )A. B. C. D.3.某校为了解九年级女生中考体育项目的训练情况, 决定让每名九年级女生通过抽签的方式从掷实心球、立定跳远、800 米跑、1 分钟跳绳四个项目中随机选择一项进行测试,则甲、乙两名女生抽到同一个项目的概率是( )A. B. C. D.4.如图,是某班学生一周参加体育锻炼情况的折线统计图,由图可知,一周参加体育锻炼9小时的人数比锻炼11小时的人数多( )A.5人B.8人C.11人D.12人5.小明和小亮相约到汾河公园健身步道上参加健步走活动,他们同时同地出发,线路长度为8公里.已知小明的速度是小亮的1.5倍,小明比小亮提前12分钟走完全程,设小亮的速度为x km/h,则下列方程中正确的是( )A. B. C. D.6.下列说法正确的是( )A.为了解辽宁省中学生的心理健康情况,宜采用普查的方式B.商场抽奖促销,中一等奖的概率是1%,则做100次这样的游戏一定会中一等奖C.一组数据1,3,3,3,4,8的中位数和众数都是3D.若甲,乙两个射击选手平均成绩相同,且,,则应该选乙参赛7.每年的5月31日为世界无烟日,开展无烟日活动旨在提醒世人吸烟有害健康,呼吁全世界吸烟者主动放弃吸烟,全世界每年因吸烟而引发疾病死亡的人数大约为5400000人,数据5400000人用科学记数法表示为____________.8.光明学校定向越野社团为了调查初中学生的体质健康状况,随机抽查了学校若干名同学平均每天锻炼的时间,汇总如下表:平均每天锻炼时间/min20406090学生人数2431则关于这些同学的平均每天锻炼时间,下列说法错误的是( )A.众数是40 minB.抽查了10个同学C.平均数是47 minD.中位数是50 min9.根据研究,运动员未运动时,体内血乳酸浓度通常在以下;运动员进行高强度运动后,如果血乳酸浓度降到以下,运动员就基本消除了疲劳.体育科研工作者根据实验数据,绘制了一幅图象,如图所示,它反映了运动员进行高强度运动后,体内血乳酸浓度随时间变化而变化的函数关系.下列叙述正确的是( )A.运动后时,采用慢跑活动方式放松时的血乳酸浓度与采用静坐方式休息时的血乳酸浓度相同B.运动员进行高强度运动后,最高血乳酸浓度大约为C.采用慢跑活动方式放松时,运动员必须慢跑后才能基本消除疲劳D.运动员进行高强度运动后,为了更快达到消除疲劳的效果,应该采用慢跑活动方式来放松10.某班为了解同学们一周参加体育锻炼的时间,随机调查了10名同学,得到如下数据:则这10名同学一周参加体育锻炼时间的平均数是___________小时.的方式从掷实心球、立定跳远、800米跑、1分钟跳绳四个项目中随机选择一项进行测试,则甲、乙两名女生抽到同一个项目的概率是____________.12.为了全面推进素质教育,增强学生体质,丰富校园文化生活,高新区某校将举行春季特色运动会,需购买A,B两种奖品,经市场调查,若购买A种奖品3件和B种奖品2件,共需60元:若购买A种奖品1件和B种奖品3件,共需55元.(1)求A,B两种奖品的单价各是多少元;(2)运动会组委会计划购买A,B两种奖品共100件,购买费用不超过1160元,且A种奖品的数量不大于B种奖品数量的3倍,运动会组委会共有几种购买方案?(3)在第(2)问的条件下,设计出购买奖品总费用最少的方案,并求出最小总费用. 13.某学校为了增强学生体质,决定开设以下体育课外活动项目:篮球,羽毛球,乒兵球,踢健子,跳绳.为了解学生对这5项体育活动的喜欢程度,随机抽取了部分学生进行调查(每人只选一项),并将统计数据绘制成两幅不完整的统计图:根据以上信息,解答下列问题:(1)这次抽样调查的样本容量是________;(2)将条形统计图补充完整,并求出________%(3)羽毛球所对应扇形的圆心角的大小是多少度?(4)若全校有1200名学生,估计全校喜欢篮球和乒乓球的共有多少名学生?14.2022女足亚洲杯决赛中,中国女足时隔16年再次夺得亚洲杯冠军,向世界展示了中国精神和中国力量.某体育专卖店售卖各类体育用品,其中足球的成本价为80元/个,经市场调查发现,在一段时间内,月销售量y(个)与销售单价x(元)之间满足一次函数关系,当销售单价为100元时,月销售量为160个;当销售单价为110元时,月销售量为140个.(1)求月销售量y(个)与销售单价x(元)之间的函数关系式;(2)当销售单价定为90元时,该专卖店销售该足球的月利润为多少元?15.某校开展“阳光体育”活动,如图①是学生在操场玩跳长绳游戏的场景,在跳长绳的过程中,绳甩到最高处时的形状是抛物线型,如图②所示是以点O为原点建立的平面直角坐标系(甲位于点O处,乙位于x轴的D处),正在甩绳的甲,乙两名同学握绳的手分别设为A点,B点,且AB的水平距离为6米,他们到地面的距离AO与BD均为0.9米,绳子甩到最高点C处时,最高点距地面的垂直距离为1.8米.(1)请求出该抛物线的解析式;(2)跳绳者小明的身高为1.7米,当绳子甩到最高处时,求小明站在距甲同学多远时,绳子刚好过他的头顶上方;(3)经测定,多人跳长绳时,参与者同方向站立时的脚跟之间距离不小于0.4米时才能安全起跳,小明与其他3位同学一起跳绳,如果这3名同学与小明身高相同,通过计算说明他们是否可以安全起跳?答案以及解析1.答案:B解析:4万,故选C.2.答案:D解析:A.不是轴对称图形,故本选项不符合题意;B.不是轴对称图形,故本选项不符合题意;C.不是轴对称图形,故本选项不符合题意;D.是轴对称图形,故本选项符合题意.故选:D.3.答案:A解析:分别用A,B,C,D 表示掷实心球、立定跳远、800 米跑、 1 分钟跳绳这四个项目, 根据题意, 列表如下:种, 故所求概率为.4.答案:D解析:由图可知,一周参加体育锻炼时间为9小时的有16人,11小时的有4人,所以一周参加体育锻炼9小时的人数比锻炼16小时的人数多(人).故选:D.5.答案:C解析:小亮的速度为x km/h,小明的速度应为1.5x km/h,小亮走完全程的时间为h,小明走完全程的时间为h,又小明比小亮提前12分钟走完全程,12分钟h,根据随意列出方程:,故选C.6.答案:C解析:A,由于辽宁省中学生数量较多,理解其心理健康情况没有必要普查,采取抽样调查较好,因此选项A不符合题意;B,中一等奖的概率是1%,就是中一等奖的可能性为1%,并不一定100次这样的游戏一定会中奖,因此选项B不符合题意;C,一组数据1,3,3,3,4,8,处在中间位置的两个数都是3,因此中位数是3,出现次数最多的是3,因此众数也是3,因此选项C符合题意;D,若甲,乙两个射击选手的平均成绩相同,且,,由于,甲比较稳定,因此选甲参赛比较合适,所以选项D不符合题意;故选:C.7.答案:解析:5400000的整数数位有7位,故用科学记数法表示5400000时,10的指数是6,所以,故答案为.8.答案:D解析:由表格可知40 min出现了4次,出现的次数最多,故众数是40 min;抽查的人数为;平均数为;将这组数据按从小到大的顺序排列,处于中间位置的两个数据均为40 min,故中位数为40 min.故选D.9.答案:D解析:由题图可知,运动后时,采用慢跑活动方式放松时的血乳酸浓度与采用静坐方式休息时的血乳酸浓度不同,故选项A不正确;运动员进行高强度运动后,最高血乳酸浓度不超过,故选项B不正确;采用慢跑活动方式放松时,运动员慢跑约后基本消除疲劳,故选项C不正确;运动员进行高强度运动后,为了更快达到消除疲劳的效果,应该采用慢跑活动方式来放松,故选项D正确.故选D. 10.答案:6.6解析:解:由题意可得,这10名同学一周参加体育锻炼时间的平均数是:(小时),故答案为:6.6.11.答案:解析:分别用A,B,C,D表示掷实心球、立定跳远、800米跑、1分钟跳绳这四个项目,根据题意,列表如下:4种,故所求概率为.12.答案:(1)A种奖品的单价为10元,B种奖品的单价为15元.(2)运动会组委会共有8种购买方案.(3)购买75件A种奖品,25件B种奖品时,购买奖品总费用最少,最少费用为1125元.解析:(1)设A种奖品的单价为x元,B种奖品的单价为y元,依题意,得:,解得:.答:A种奖品的单价为10元,B种奖品的单价为15元.(2)设运动会组委会购进m件A种奖品,则购进件B种奖品,依题意,得:,解得:,(种).答:运动会组委会共有8种购买方案.(3),A种奖品的单价较低,当时,购买奖品总费用最少,最少费用为(元).答:购买75件A种奖品,25件B种奖品时,购买奖品总费用最少,最少费用为1125元. 13.答案:(1)50(2)图见解析,(3)(4)估计全校喜欢篮球和乒乓球的共有528名学生.解析:(1)50;(2)20;补全统计图如下:,;(3)羽毛球所对应扇形的圆心角的大小是:(4)根据题意得:1200×=528(名)答:估计全校喜欢篮球和乒乓球的共有528名学生.14.答案:(1)(2)1800元解析:(1)月销售量y(个)与销售单价x(元)之间满足一次函数关系,设月销售量y(个)与销售单价x(元)的关系式为,当销售单价为100元时,月销售量为160个,当销售单价为110元时,月销售量为140个,解得月销售量y(个)与销售单价x(元)之间的函数关系式为;(2)当时,,月利润(元).答:专卖店销售该足球的月利润为1800元.15.答案:(1)(2)小明站在距甲2米或4米时,绳子刚好过他的头顶上方.(3)他们可以安全起跳解析:(1)由题意设抛物线的解析式为,将点代入,中,得,该抛物线的解析式是.(2)将代入,解得,,小明站在距甲2米或4米时,绳子刚好过他的头顶上方.(3)他们可以安全起跳,理由如下:当时,,,可以站立跳绳的距离为米,又米,,他们可以安全起跳.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
F
E
D
C
B
A
中考数学热点专题及答案(1)
一、选择题:
1.下列关于单项式532
xy -的说法中,正确的是 ( )
(A )系数是3,次数是2 (B )系数是
5
3
,次数是2 (C )系数是53,次数是3 (D )系数是5
3
-,次数是3
2.下列四个平面图形中,不能折叠成无盖的长方体盒子的是 ( )
(A ) (B ) (C ) (D )
3.某顾客以八折的优惠价买了一件商品,比标价少付了30元,那么他购买这件商品花了( )
(A ) 70元 (B ) 120元 (C ) 150元 (D ) 300元
4.随机事件A 的频率
n
m
满足 ( ) (A ) 0=n m (B ) 1=n m (C ) 10<<n m (D ) 10≤≤n
m 5.下列正确描述旋转特征的说法是 ( ) (A ) 旋转后得到的图形与原图形形状与大小都发生变化. (B ) 旋转后得到的图形与原图形形状不变,大小发生变化. (C ) 旋转后得到的图形与原图形形状发生变化,大小不变. (D ) 旋转后得到的图形与原图形形状与大小都没有变化.
6.下列图形中,是中心对称的图形有 ( ) ①正方形 ;②长方形 ;③等边三角形; ④线段; ⑤角; ⑥平行四边形。
(A ) 5个 (B ) 2个 (C ) 3个 (D ) 4个 7.如果03=+a ,那么a 的值为 ( )
(A ) 0 (B )
3 (C ) 3- (D ) 3
3
-
8.如果2-是方程022
=+-bx x 的一个根,那么b 的值是 ( ) (A ) 1 (B ) 1- (C ) 3 (D ) 3- 9.如图,工人师傅砌门时,常用木条EF 固定矩形门框ABCD ,使其不变形,这种做法的根据
是
( )
(A )两点之间线段最短 (B )矩形的对称性 (C )矩形的四个角都是直角 (D )三角形的稳定性
(第11题) 10.小王的衣柜里有两件上衣,一件红色,一件黄色;还有三条裤子,分别是:白色、蓝色和黄色,任意取出一件上衣和一条裤子,正好都是黄色的概率为 ( )
(A ) 56 (B ) 16 (C ) 13 (D ) 1
5
11.“龟兔赛跑”讲述了这样的故事:领先的兔子看着缓慢爬行的乌龟,骄傲起来,睡了一觉。
当它醒来时,发现乌龟快到了终点,于是急忙追赶,但为时已晚,乌龟还是先到达了终点……。
用1s 、2s 分别表示乌龟和兔子所行的路程,t 为时间,则下列图象中与故事情节相吻合的是( )
(
(B
(C
(D 二、填空题:
12.若02
1
=+
a ,则=3a ; 13.已知线段AB=20cm ,直线..AB 上有一点C ,且BC=6cm , M 是线段AC 的中点,则
AM= cm ; 三、解答题:
14.某校的一间阶梯教室,第1排的座位数为12,从第2排开始,每一排都比前一排增加a 个座位。
(2)已知第15排座位数是第5排座位数的2倍,求a 的值,并计算第21排有多少个座位?
15.在平整的地面上,有若干个完全相同的棱长为10cm 的小正方体 堆成一个几何体,如图所示。
(1)这个几何体由 个小正方体组成,请画出这个几何体的三视图。
主视图 左视图 俯视图
(2)如果在这个几何体的表面喷上黄色的漆,则在所有的小正方体中,有 个正方体只有一个面是黄色,有 个正方体只有两个面是黄色,有 个正方体只有三个面是黄色。
(3分)
(3)若现在你手头还有一些相同的小正方体,如果保持俯视图和左视图不变,最多可以再
添加几个小正方体?这时如果要重新给这个几何体表面喷上红漆,需要喷漆的面积比原几何体增加还是减少了?增加或减少了多少cm 2?(4分)
中考数学热点专题(1)参考答案
一、
1. D ;2. A ;3. B ;4. C ;5. D ;6. D ;7.C ;8.D ;9.D ;10.B ;11.D ; 二、 12.8
1
-;13.7或13 ; 三、
14.(1)a 212+;a 312+;…;a n )1(12-+。
……………………6分 (2)12+14a =2)412(a + ……………………9分 解之得:2=a ……………………10分 求得当21=n 时,a n )1(12-+=12+(21-1)×2=52。
……1 15.(1)10 ……………2分 略三视图 ……………5分 (2)1、2、3 ……………8分 (3)最多可以放4个小正方体 …………9分 比原来增加了4002
cm 。
……………12分。