压力容器设计-零部件及分析设计

合集下载

压力容器的常规设计和分析设计

压力容器的常规设计和分析设计
◇科技论坛◇
科 技 圈 向导
21年第 2 期 02 l
压力容器的常规设计和分析设计
高 峰 f 矿 煤 化 工 程有 限公 司 山东 兖
【 摘
兖州
22 O ) 7 1 0
要】 当前 , 分析设计 目前 已成为压 力容 器的重要设计方 法。 文首先 阐述 了压力容器分析设计与常规设计的不同。 本 然后 分析设 计中应
形 而破坏 。一次应力又分总体薄膜应力 、 一次弯 曲应力 和局部 薄膜应 力 例如承受内压圆筒 的器壁 中的环 向应力 即为 总体薄膜应力: 平封 头或 顶盖 中央部分在 内压作用下产生 的应力 即为 一次弯曲应力: 壳体 在 固定支座或接管处 由外载荷和力矩产生的应力为局部薄膜应力 : 二 是二次应力 。 二次应力是 由于容器部件的 自身约束或相邻部件 的约束 而产 生的正应 力或剪应力。它 的基本特点具有 “ 自限性 ” , 即局部屈服 和小量变形 就会使约束缓 和 、 变形协调 . 只要不反复加载 , 二次应力不 会引起容器结构破坏 : 三是峰值应力 峰值应力是 因局部结构不连续 1常规设计与分析设计 . 它具有最高 的应力值 它的基本特 过去压力容器及其部件 的设计基本上属于常规设计 . 我国现在执 或形状 突变 引起 的局部应力集 中。 自限性” 局部性”峰值 应力不会 引起容器 明显 的变形 和“ , 行 的相应的设计规范是《 钢制压力容器) i S — 9 1 常规设计的特 点具有“ ) n 0 ( G 8。 3常 规设 计 和 分 析 设 计 比较 . 点是: 简体及其部件 的应 力不 允许超过弹性范围 内的某一许用 值 如 果达到这一要求 . 为筒体或部件就是 比较可靠 的 这样做 比较简 即认 常规设计是一种简单易行的传统设计方法. 而分析设计则不 同. 它 单. 以现成 的设 计公 式及 曲线为依 据 . 多年来 一直按这样 的方 法进行 需要详尽 的应力分析报告为依据 需要近代 的分析计算 工具和实验技 设 计。 然而 , 这种方法 比较粗糙 . 许多重要因素都 未考虑进去 。以内压 术为手段, 因而提供 了充分的强度数 据对 新工艺 、 新材料 、 新结构 和新 圆筒为例 , 常规设计 时只考虑薄膜应力 , 在 至于 温差应力 、 边缘应力以 工况更具科 学性 和可靠性 分析设计提高 了许用应力. 降低了安全系 及 交变应 力引起 的疲劳等 问题均未考虑 所 以在规范 中 . 为了保证容 数 3 多年来 的实际运行表 明: O 采用分析设计的容器安全 可靠. 且具有 器 的安全可靠在设 计中就采用 了较高 的安全 系数 。最早 的安 全系数 经济 胜; 与常规设 计相 比, 可节省材料 2 %~ 0 在一定程 度上有效减 0 3 %. n 5 4 年代末改为 n 4 这样做实 际上是企 图以高 的安全系数来包罗 少制造加工量 、 : .0 =。 降低运输费用 但对 于选 材 、 制造 、 检验和验收规定 了 各 种因素 的影 响. 存在一些 问题 比常规设计更为严格的要求 下面是 常规设计与分析设计的对比 近年来 , 由于锅 炉、 石油 、 化工 等行 业 的发展 , 压力容器设计 参数 ① 比较项 目: 设计准则。 常规设计 : 弹性失效 : 只允许存在弹性变 提高. 使用条件也越来 越苛刻 . 如果 单纯依靠提高 安全系数 的办法来 分析设计 : 弹性失效 ' 塑性失效 ; j 单 允许 出现 局部 的、 可控制 的塑性变 保 证强度 . 导致设计变得不合理 。 会 为了防止这种现象 的发生 . 我们在 形 (. 1 极限载荷( 一次加载 2安定 载荷反复加载) . 。 结构型式 与材料方 面采取相应措施外 . 还必须从设计观 点和设 计方法 ② 比较项 目: 载荷 。 常规设计 : 静载荷 。 分析设计 : 静载荷 、 交变载 上加以改进和发展 目前世 界上一些先进 的国家都在运用应力分析方 荷 。 法 . 国也 于 19 年颁 布 了f 我 95 钢制压 力容器一一 分析设计 标准) B 7 ( 4 J ③ 比较项 目: 分析方法。 常规设计 : 薄膜理论 、 材料力学方法 、 简化 犯 一 9 ) 要求把零部件 中的应力较为准确地设计 出来或用应 力测试 公式加经验 系数 。分析设计 : 5. 弹性或塑性力学分析f 理论方 法、 数值方 法 测定 出来 。其次是引入 了极 限分析与安定性分析 的概念 , 对求得的 法 、 实验方法)板壳理论 。 、 应力 加以分类和加 以限制 ④ 比较项 目: 应力评定。 常规设计 : 应力不分类 、 同一 的许用应力 、 分析设计和常规设计 的主要 区别如下: 用第一强度理论 、 基本安全系数较大 。分析设计 : 力分类 、 应 用应力强 用第 基本安全系数较小。 ①分 析设计 比常规设 计在选材 、 结构 、 设计 、 制造 、 检脸和使 用等 度对各类应力进行评定 、 三强度理论 、 方 面都提 出了较高 的要求和较多的限击峰件。 ⑤ 比较项 目: 材料。 常规要求 。 分析设计 : 质、 优 延性好 、 性能稳定 ②分析设计考虑容器低循环疲劳失效 。 而常规设计并未包 括疲劳 ⑥ 比较项 目: 制造 、 检验。 常规设计 : 常规要求。 分析设计 : 整体 陛、 连续性 、 相贯处光滑过渡 、 全焊透、0 % 10 探伤 。 分 析。 ③分 析设计考虑疲劳分析时要求详细计算温差应力 . 而常规设计 分析设计方法虽然合 理而先进- 却需要进行大量 复杂的分析计 f 旦 除个 别元件外一般无此要求 算. 需要计算机 才能完成, 因而提高 了设计 费用 和时间, 以。 所 只有当设 ④ 分析设计采用最 大剪应 力理论 . 而常规设计 . 最大主应 力 计高参数 、 采用 重要的容器时才 采用这种方法 。但有些容器必须采用分析 理论 。 设计而无其 它选 择 对 一般的常规容器. 长期的实践证 明采用传 统的 ⑤ 分析设计原则上要 求对容器元 件各个部位 的应力进行详 细计 常规设计方法完全可以满足容器 的安全性。 如采用 分析设 计方法. 虽然 算 . 根据各种应力对 元件失效所起不 同的作用予 以分类 . 并 然后对 不 节省部分钢材, 却提高了设计 、 制造 费用, 实际上是不合算的。 因而美国 同类别 的应力采用不同的应力校核条件加以限制。 而常规设甘一般不 A M S E规范 同时规定 了上述两种设计准则 ’ 我国也颁 布了 G 10 19 B5— 98 计算 某些 局部应力 . 针对具体结构 引人 不 同的结构 系数 . 仅 也不对应 《 钢制压 力容器》 J 4 3 — 5 钢制压力容 器—— 分析设计标准 》 和 B 729 《 , 根 力进行分类 。 据不 同情况进行不同选择 分析设计是一个整体。 计准则的不 同. 设 要 求与之配套 的一 系列规 范和措 施也不同, 包括材料选用 、 制造工艺 、 检 2分 析 设计 中应 力分 类 及 其 应 用 . 分析设 计涉 及了各种可能失效模式 中一些 主要 的失效模式 , 计 验要求 、 程序 、 制造资格 等方面 ; 常规设计 方法 简单易行, 设 计算 设计 而 具 但 根据 所考虑 的失效模 式 比较详 细地 计算 了容器及受 压元件 的各 种应 有丰 富的使用经 验, 有时却无法解释压力容器 出现 的一些事 故 所 设计者应 根据实践 经验, 经济 通过 力 . 根据各种应力本身 的性质及对失效模 式所起的不同作用予 以分 以 常规设 计和分析设 计不能混用 , 并

压力容器的常规设计和分析设计

压力容器的常规设计和分析设计
劳分 析。 ( 3 ) 分析设计考 虑疲 劳分析 时要求详细计算 温差应力 , 而常规设 计 除个别元 件外 一般无 此要求
弹性失效. 弹塑性失效 设计准则
弹性析设计
应力 ; 平封头或顶盖 中央部分在 内压作 用下产生的应力 即为一次 弯曲 应力 ; 壳体 在 固定支座或接管处 由外 载荷 和力 矩产生的应力为局部 薄 膜应力 。 2 . 2二次应力
过去压力容器及其部件 的设计基本上属于常规设计 . 我 国现在执 二次应力 是 由于容器 部件的 自 身 约束或相邻部件 的约束而产 生 自限性 ” , 即局部屈服和小量 行 的相应 的设计规范是《 钢制压力容 ̄) ( c m5 o 一 9 8 ) 。 常规设计的特点 的正应力或剪 应力 。它的基本特点具有 “ 变形协调 , 只要不反 复加 载, 二次应力 不会引起 是: 筒体及其部 件的应力不允许超过 弹性 范围内的某一许用值 。如 果 变形就会使约束缓 和 、 达到这一要求 。 即认为筒体或部件就是 比较可靠的。 这样做比较 简单 , 容器结构破坏 2 . 3峰值应力 以现成 的设计 公式及 曲线 为依据 .多年来 一直按这样 的方法进行设 峰值应力是因局部结构不连续 或形 状突变引起的局部应力 集中. 计。 然而 。 这种方法 比较粗糙 , 许多重要 因素都未考虑进去 。 以内压 圆 自限性” 和“ 局部性 ” , 峰值 筒为例 . 在常规设 计时只考虑薄膜应力 , 至 于温差应 力 、 边缘应力 以及 它具有最高的应力值 。它 的基本 特点具 有“ 交 变应 力引起 的疲劳等问题 均未考虑 。所 以在规 范中 . 为了保证容器 应力不会 引起容器 明显 的变形 的安全 可靠在设计 中就采用 了较高的安全系数 最早 的安全 系数 n = 3 . 常规设计和分析设计 比较 5 . 4 0 年代末改 为 n = 4 。 这样做实 际上是企 图以高 的安全系数来包罗各 常规设计是一种简单易行 的传统设计方法, 而分析设计则不 同。 它 种 因素 的影 响 , 存在一些 问题 。 需要详尽 的应力分析报告为依据. 需要 近代 的分析计 算工具和实验技 近 年来 。 由于锅 炉、 石油 、 化工 等行业 的发 展 , 压力容器设 计参数 术 为手段, 因而提供 了充 分 的强度数 据, 对 新工艺 、 新 材料 、 新 结构 和 提高. 使用条件也越来越 苛刻 . 如果 单纯依靠提 高安全系数 的办法来 新 工况更具科学性 和可靠性 。 分析设计 提高 了许用应力 , 降低 了安 全 保证强度 . 会 导致设计变得不合理 。 为 了防止这种现象的发生 , 我们在 系数。3 O 多年来 的实际运行表 明: 采用分 析设计 的容器安全 可靠, 且 结构型式 与材料方面采取相应措施外 . 还必须从设计观 点和设计方法 具 有经济 性; 与常规设 计相 比, 可 节省材 料 2 0 %~ 3 0 %, 在 一定程 度上 上加 以改进和发展 。 目 前世界上一些先进 的国家都在运用应力分析方 有 效减少制 造加工量 、 降低运 输费用 。但 对于选 材 、 制造 、 检 验和验 法. 我 国也于 1 9 9 5 年 颁布 了f 钢 制压力容 器一一分 析设计标 准) 0 B 4 7 收规定 了 比常规设计 更为严格 的要 求 常规设计与分析设计 的对 比. 犯一 9 5 ) . 要求把零部件 中的应力较 为准确地设计 出来或用应力 测试 法 见表 1 测定出来 。其次是引入 了极限分析与安定性分析的概念 . 对求 得的应 表1 常规设计与分析设计 力加以分类和加 以限制 比较项 目 常规设计 分析设计 分析设计和常规设计的主要区别如下: ( 1 ) 分析设计 比常规设计在选 材、 结构、 设计 、 制造 、 检脸和使用等 方 面都提出了较高的要求和较多的限击 峰件 ( 2 ) 分析设计考 虑容器低循环 疲劳失效 , 而常规设计并 未包括疲

压力容器零部件设计(一)

压力容器零部件设计(一)

压力容器零部件设计(一)压力容器零部件设计压力容器是一种存储、运输和加工液体、气体或固体的设备。

压力容器不仅需要能够耐受压力、温度等因素的影响,还需要具备高度的安全保障。

零部件是构成压力容器的基础,好的压力容器零部件设计可保障压力容器的安全、寿命和性能。

缺陷分析压力容器零部件设计需要避免以下缺陷:1. 结构强度不足:压力容器工作环境的压力、温度等因素对容器本身的材质和结构有很高的要求。

设计时若结构强度不足会导致容器的爆炸等严重后果。

2. 材料选择不当:材料的选择不当可能导致零件在高压、高温等复杂环境下出现失效,进而对容器的整体安全性造成影响。

3. 缺乏必要的松弛缝:由于容器的变形,需要把材料和结构上的缺陷转化为必要的松弛缝,以避免材料和结构的锁死和破裂,也避免了过多的应力集中。

关键设计指标压力容器零部件设计需要符合以下关键设计指标:1. 固定力:压力容器需要通过零部件的固定力将所有部件固定在一起。

2. 尺寸和形状:零部件的尺寸和形状要和容器本身的尺寸和形状相匹配,保证不会出现空隙或者松动的情况。

3. 材质选取:针对不同的工作环境,压力容器零部件的选择需要合理,确保零部件的耐久性能、超压时的性能以及高温环境下的性能等都能满足要求。

4. 强度和稳定性:设计时需要遵循国家标准,零部件的强度和稳定性能够贯穿整个容器的运作寿命。

设计原则对于压力容器零部件设计,有以下几个原则:1. 材料要优先选择纯度高、强度和韧性较好的材料。

2. 控制整体重量,减小材料成本。

3. 尽可能地减少零部件数量,从而减少加工成本和组装成本。

4. 优先考虑贴近整个容器的结构,避免孤立的点,整体性较强可以提高体积利用率。

5. 通过分阶段设计来避免未来的改进成本和时间成本。

压力容器是关系到人们生命和财产安全的装备,所以对于设计要求非常高,本文阐述压力容器零部件设计的缺陷分析、关键设计指标和原则,以期为日益重要的压力容器行业提供帮助。

压力容器零部件设计---2法兰设计-53页文档资料

压力容器零部件设计---2法兰设计-53页文档资料
密封性设计 (压紧面、垫片、螺栓) 法兰标准简介 法兰强度计算方法简介
压紧面形式
密封面型式
④环连接面(梯形槽):
与椭圆型或八角型金属 垫圈配用。
特点:槽的锥面与垫圈 成线(或窄面)接触密 封。
适用:温度、压力有波 动,介质渗透性
垫片形状
垫片
平面形、O形、波形、齿形、八角形、 椭圆形等
垫片选用表(表4-10)
螺栓材料
螺栓是法兰密封连接中的重要元件,对其基本要 求是强度要高、韧性要好。
① 螺母更换比螺栓容易,且螺母价廉,所以要 求螺栓材料的强度比螺母高。
② 为避免螺栓和螺母咬死或胶合,要求螺栓材 料的硬度比螺母高HB30以上。
③ 对于t≤-20℃的螺栓,要求选用低合金钢,并 进行夏比V形缺口低温冲击试验。
2、法兰连接筒节问题
3、最高允许工作温度和压力问题
法兰当量设计压力Pe(HG20582-9) 外载荷作用下:包括轴向力F和外力矩M Pe=16M/(πDG3)+4F/(πDG2)+P
4、焊缝检验问题
5、螺栓螺母垫片搭配问题
6、选用计算问题 需要重点考虑以上问题
END
垫片类型
① 非金属垫片 常用材料:石棉橡胶板、橡胶板、聚四氟乙烯、 合成纤维、石墨等。 ② 金属垫片 常用材料:铜、铝、低碳钢、不锈钢、合金等。 ③ 组合式垫片 包括:金属包垫片;缠绕式垫片;带骨架的非金属 垫片等。
垫片选择原则 ① 要有全面的观念,综合考虑温度、压力、介质、 压紧面形式等方面要求,其中温度和压力是影响密封 的主要因素,也是选择垫片的主要依据。 ② 在保证密封的前提下,尽量选用结构简单、价格 便宜、便于安装和更换的垫片。 ③
END

压力容器分析设计标准

压力容器分析设计标准

压力容器分析设计标准
压力容器是工业生产中常见的设备,用于储存或加工压缩气体、液体或蒸汽。

由于其特殊的工作环境和功能,压力容器的设计、制造和使用需要严格遵守一系列的标准和规定,以确保其安全可靠地运行。

首先,压力容器的设计必须符合国家相关标准和规范,如《压力容器设计规范》GB150、《钢制压力容器》GB151等。

这些标准规定了压力容器的设计参数、结构要求、材料选用、焊接工艺、安全阀选型等方面的内容,确保了压力容器在设计阶段就具备了安全可靠的基础。

其次,压力容器的制造需要严格按照《压力容器制造规范》GB151中的要求进行。

制造过程中需要严格控制材料的质量、焊接工艺的可靠性、表面处理的完整性等,以确保制造出的压力容器符合设计要求,并且能够在实际工作中承受所需的压力和温度。

除了设计和制造阶段的标准要求,压力容器的安装、使用和维护也需要遵守相
应的标准和规范。

例如,在安装过程中需要保证容器的支撑结构稳固可靠,管道连接紧密无泄漏,安全阀和压力表的选型和安装符合要求。

在使用过程中需要定期进行压力测试和安全阀的调整,确保容器在正常工作范围内运行。

在维护过程中需要按照规定的周期进行检查和维护,及时发现并处理潜在的安全隐患。

总的来说,压力容器的分析设计标准涵盖了从设计、制造到使用和维护的全过程,这些标准的遵守是保证压力容器安全运行的基础。

只有严格按照标准要求进行设计、制造和使用,才能确保压力容器在工业生产中发挥应有的作用,避免因为安全隐患而导致事故发生。

因此,对于从事压力容器相关工作的人员来说,熟悉并遵守相关标准和规范是至关重要的。

压力容器的设计_ 压力容器零部件(支座及开孔)

压力容器的设计_ 压力容器零部件(支座及开孔)

壳体开孔满足全部条件,可不另行补 强:
(1) 设计压力小于或等于2.5MPa; (2) 两相邻开孔中心的间距(对曲面间距 以弧长计算)应不小于两孔直径之和的 两倍; (3) 壳体名义壁厚大于12mm,接管公称 外径小于或等于80mm;壳体名义壁厚 小于或等于12mm ,接管公称外径小于 或等于50mm (4) 接管最小壁厚满足表4-19的要求。
设备直径大,可同时用几组液面计接管。
现有标准中有反射式玻璃板液面计、 反射式防霜液面计、透光式板式液 面计和磁性液面计。
第二节 容器支座
概述:
容器支座,支承容器重量、固定容器 位置并使容器在操作中保持稳定。 结构型式由容器自身的型式决定,分 卧式容器支座 立式容器支座 球形容器支座
一、立式容器支座
立式容器的支座主要有 耳式支座 支承式支座 裙式支座 中、小型直立容器常采用前二种, 高大的塔设备则广泛采用裙式支座。
3. 不需补强的最大开孔直径
计算壁厚考虑了焊缝系数,钢板规格,壳 体壁厚超过实际强度,最大应力值降低, 相当于容器已被整体加强。 且容器开孔总有接管相连,其接管多于实 际需要的壁厚也起补强作用。 容器材料有一定塑性储备,允许承受不是 十分过大的局部应力,所以当孔径不超 过一定数值时,可不进行补强。
第三节 容器的开孔补强
一. 容器开孔应力集中现象及其原因
容器为什么要开孔? 工艺、安装、检修的要求。 开孔后,为什么要补强? 削弱器壁的强度,出现不连续, 形成高应力集中区。
峰值应力通常较高,达到甚至超 过材料屈服极限。 局部应力较大,加之材质和制造 缺陷等, 为降低峰值应力,需要对结构开 孔部位进行补强,以保证容器 安全运行。
㈠ 耳式支座
• 简称耳座,筋板和支脚板。 广泛用在反应釜及 立式换热器等直立设备上。 简单、轻便,但局部应力较大。 当设备较大或器壁较薄应加垫板。 不锈钢制设备,用碳钢作支座,防止合 金元素流失,也需加一个不锈钢垫板。

压力容器---零部件

压力容器---零部件

江2 特点: 1.考虑支座弯矩对容器圆筒所产生的局部应力,避免筒体由于 局部应力过大有可能引起失效。局部径向弯矩包括设备自重、水 平载荷(风载荷或地震载荷)及偏心载荷所产生的弯矩。 2.提出了支座的制造要求,以保证支座的制造质量。 若容器壳体有热处理要求时, 支座垫板应在热处理前焊接在器 壁上。 3.改进了垫板结构。为改善容器的受力情况,JB/T4725-92 将 垫板四角倒圆;并在垫板中心开一通气孔,以利于焊接或热处理 时气体的排放。 ●耳式支座设计计算: 支座处容器圆筒内存在以下几种应力: (1) 内压引起的一次总 体薄膜应力 Pm; ( 2) 支座弯矩引起的一次局部薄膜应力 Pl; (3) 支座弯矩引起的一次弯曲应力 Pb; 根据应力分析的方法按照下列 原则计算: Pm≤[σ ] Pm+Pl≤1.5[σ ] Pm+Pl+Pb≤1.5[σ ] 至于组合应力,按照第三强度理论进行计算。
容器外径, 有保温层时取保温层外径; f1-风压高度变化系数; q0-10 米高度处的基本风压值;H0-容器总高度;h-水平力作用点至底板 距离;Se-偏心距;D-螺栓分布圆直径。 (2) 按 Q Q,选取相应的支座。 (3) 校核 M M ,若不符合则应选取大一号的支座或增加支 座数量。 由于支反力 Q 对容器器壁作用一外力矩 M,M=Q(l2-s1)
2.
支承式支座(JB/T4724-92)
● 支承式支座适用于下列条件的钢制立式圆筒形容器: a.公称直径 DN800~4000mm; b.圆筒长度 L 与公称直径 DN 之比 L/DN≤5; c.容器总高度 HO≤10m。 ●支承式支座多用于安装在距地坪或基础面较近的具有椭圆 形或碟形封头立式容器。 ● 支承式支座数量一般应采用三个或四个均布。 ●支承式支座型式分类: 型 A B 式 支 座 号 适 用 公 称 直 径 结 构 特 征 (mm) 1~6 DN800~3000 钢板焊制,带垫板 1~8 DN800~4000 钢管制作,带垫板

压力容器分析设计基础

压力容器分析设计基础

一、应力性质
1.薄壁容器
pr2 2T
pr2 2T
(2
r2 ) r1
应力特点:
➢ 沿壁厚均布;
➢ 平衡外载,无自限性;
➢ 外压时为压应力,需 考虑失稳。
一、应力性质
2. 厚壁容器
K
p 2
1
(1
R02 r2
)
r
K
p 2
1
(1
R02 r2
)
z
K
p 2 1
K R0 Ri
一、应力性质
2. 厚壁容器
为了分析应力的性质,将非线性分布的应力视为均 匀分布、线性分布和非线性分布的三部分的叠加。
许用应力分类 GB150-98,约27种
JB4732-95,约27种
15 制造与检验
按压力容器常规要求 比前者要求严格
制造资格 16 综合经济性
要有压力容器制造许可 证
一般结构的容器综合经 济性好
必须有相应的许可证,例如第三类 压力容器许可证
大型、复杂结构的容器综合经济性 好(用户需提供详细的设计任务书)
16MnR正火,6-100mm -20 ℃ 16MnDR正火,6-32mm, -40 ℃ 09Mn2VDR正火,6-20mm,-50 ℃ 09MnNiDR正火,6-60mm,-70 ℃
5 钢板的韧性要 20R
≥18J
求(以冲击功Akv 16MnR,15MnVR
≥20J
表示)
15MnVNR,18MnMoNbR,
2、分析设计
设计准则
塑性失效准则——只有当结构沿厚度方向全部屈服时, 结构才失效。
疲劳失效准则——一定许循环应力幅作用下的构件,只 有其循环次数超过允许的最大循环次数后,才会发生疲 劳破坏。

压力容器的设计—压力容器零部件

压力容器的设计—压力容器零部件
同; • ◎压力容器法兰—
·板卷筒体,与相联接筒体的公称直径相 同; ·无缝钢管作筒体,与相联接无缝管的公 称直径相同。
50
公称压力
公称压力——是以16Mn在200℃时的最高工作压力为依据 制定的,因此当法兰材料和工作温度不同时,最大工作压
力将降低或升高。
法兰公称压力与法兰的最大操作压力和操作温度以及法 兰材料三个因素有关。
公称压力 PN 法兰材质
Q235-A
0.6
16MnR
15MnVR
最大允许工作压力 (MPa)
-20~200℃ 300℃ 350℃
0.4
0.33 0.30
0.6
0.51 0.49
0.65
0.63 0.651
3、压力容器法兰的标记
52
压力容器法兰设计步骤:
(1)确定DN; (2)根据法兰材质、工作温度和最高工作压力,确
有一个圈座是滑动支承的。
77
㈢ 腿式支

简称支腿
连接处造成严重的局部应力, 只适用于小型设备
难,榫易损坏。
注意:应使固定在设备上的 法兰为槽面,可拆下部分的法
兰为榫面。
榫槽型压紧面
29
锥形压紧面
通常用于高压密封,其缺 点是需要的尺寸精度和表 面粗糙度要求高。须与透 镜垫片配合,常用于高压管
道。
锥形压紧面
30
梯形槽压紧面
槽底不起密封作用,是槽的 内外锥面与垫片接触成梯形, 形成密封的,与椭圆或八角
凝土制的基础上。
66
㈡ 支承式支座
用钢管、角钢、 槽钢制作,或 用数块钢板焊 成,
型式、结构、 尺寸及材料 JB/T 4724-92 《支承式支 座》。

压力容器零部件的结构和计算

压力容器零部件的结构和计算

压力容器零部件的结构和计算压力容器是一种用于储存或输送压力介质的设备,常见于化工、石油、能源等行业。

其零部件的结构和计算对于保证容器的安全性至关重要。

以下将详细介绍压力容器零部件的结构和计算。

一、压力容器零部件的结构压力容器主要由以下几个零部件构成:1.容器壳体:容器壳体是压力容器的主要结构部件,其承受着内外压力的作用。

常见的容器壳体有圆筒形、球形、圆锥形等,其材料一般选用常见的钢材,如碳钢、不锈钢等。

2.端头:端头位于容器壳体的两端,主要用于封闭容器。

常见的端头形式有平头、球头、封头等,其选用材料需满足与容器壳体相同的强度和耐压性。

3.支撑和支承部件:为了保证容器的稳定性和安全性,常常需要为压力容器配置相应的支撑和支承部件,如支撑脚、支座、支撑架等。

这些部件需要具备足够的强度和稳定性,以承受容器自身的重量和外界荷载。

4.进出口连接件:压力容器通常需要进行介质的进出,因此需要配置进出口连接件。

这些连接件包括法兰、焊接接头、螺纹接头等。

其连接方式和材料的选择需要根据介质的性质和工艺要求来确定,以保证连接的可靠性和密封性。

5.安全附件:为了保证压力容器的安全运行,常常需要配置相应的安全附件,如安全阀、压力表、液位计等。

这些附件能够监测和调节容器内部的压力和液位,一旦超出规定的范围,能够及时发出警报或采取相应的措施。

二、压力容器零部件的计算为了确保压力容器的安全性和符合设计要求,需要进行相应的计算和验证。

以下是几个常见的压力容器零部件计算方法:1.容器壳体厚度的计算:容器壳体的厚度需要满足强度和稳定性的需求。

常见的计算方法有:应力平衡法、弯曲试验法、有限元分析法等。

这些方法能够计算得出合理的壳体厚度,以保证容器在内外压力作用下不发生失稳或破裂。

2.端头厚度的计算:端头的厚度计算方法与壳体类似,需要考虑内压和外压的作用。

根据不同的端头类型和几何形状,可以采用不同的计算公式和方法计算出合理的端头厚度。

3.进出口连接件的计算:进出口连接件的计算需要考虑连接件与容器壁的强度和密封性。

过程设备设计-压力容器零部件设计

过程设备设计-压力容器零部件设计
第五章 压力容器零部件 设计
一、密封机理及其分类
1.密封机理
2 密封分类
3.影响法兰密封的主要因素
(1)螺栓预紧力
(2)垫片性能
(3) 压紧面的质量
(4) 法兰刚度
(5) 操作条件
二、螺栓法兰连接设计 1. 螺栓法兰连接的密封设计
四、开孔和开孔补强设计
五、支座和检查孔
支座

1、补强结构
(2)、开孔补强的设计准则
(3)容许不另行补强的最大开孔直径
(4) 等面积补强计算
(5)接管的方位
例题:
某容器DN=1200,设计压力2.5Mpa,设计温
度100℃, 在非标准椭圆端盖(DN1200X12, 形状系数,16MnR)中心接一个 108X6的 平齐式接管(10号无缝钢管),开孔不在焊 缝上。试确定此开孔是否需要补强,补强圈 厚度若干?(端盖的壁厚附加量 C=3mm, 钢 管的壁厚附加量C=2mm)

压力容器零部件设计

压力容器零部件设计

压⼒容器零部件设计压⼒容器零部件设计⼀、压⼒容器的封头设计平板形封头带折边锥形封头⽆折边锥形封头锥形封头⽆折边球形封头头带折边球形(碟形)封半椭球(椭圆形)封头半球形封头凸形封头封头椭圆形封头的最⼩厚度标准椭圆形封头:δe≥0.15%Di ⾮标准椭圆形封头:δe≥0.30%Di内压碟形封头e i e t W C t i C MR P P R MP δφδσφσδ5.0][2][5.0][2+=-=最⼤允许⼯作压⼒:壁厚:碟形封头的最⼩厚度标准碟形封头:δe≥0.15%Di ⾮标准碟形封头:δe≥0.30%Di(1)受内压(凹⾯受压)球冠形端封头封头的计算厚度按式(7-6)计算:式中:Q ——系数,由GB150图7—5查取。

(2)受外压(凸⾯受压)球冠形端封头封头的计算厚度按下列两种⽅法确定,取其较⼤值:a) 按球形封头计算公式确定的外压球壳厚度;b) 按式(7-6)计算得到的厚度。

(3)两侧受压的球冠形中间封头(3.1)当不能保证在任何情况下封头两侧的压⼒都同时作⽤时,封头计算厚度应分别按下列两种情况计算,取较⼤值:(3.2)当能够保证在任何情况下封头两侧的压⼒同时作⽤时,可以按封头两侧的压⼒差进⾏计算:在任何情况下,与球冠形封头连接的圆筒厚度应不⼩于封头厚度。

否则,应在封头与圆筒间设置加强段过渡连接。

圆筒加强段的厚度应与封头等厚;端封头⼀侧或中间封头两侧的加强段长度L 均应不⼩于2c t i c p D P -=φσδ][2Q δ0.5DiGB/T25198-2010压⼒容器封头⼏点变化⼆、法兰设计螺栓法兰连接结构及密封设计垫⽚选择原则①要有全⾯的观念,综合考虑温度、压⼒、介质、压紧⾯形式等⽅⾯要求,其中温度和压⼒是影响密封的主要因素,也是选择垫⽚的主要依据。

②在保证密封的前提下,尽量选⽤结构简单、价格便宜、便于安装和更换的垫⽚。

螺栓是法兰密封连接中的重要元件,对其基本要求是强度要⾼、韧性要好。

压力容器零部件

压力容器零部件

容器(róngqì)法兰公称直径:指与法兰相配的筒体或封头的公称直径。
压力容器的公 称
无 钢缝 板钢 卷管 焊作 点筒 筒体 体: :外 内径 径D1i5390,201,590,302,850,40, 216000,1600,3000等
(gōngchēng)
直径公D称N:压力pN:一定温度和材料的法兰的最高工作压力。
少受冲刷和腐蚀。但是结构复杂,更换垫片困难(有小技巧:安装时在密封垫上涂石 墨),适用于易燃易爆和高度或极度危害等重要场合。 (e) 梯形压紧面(Trapezium face):适用于高温,压力较高场合,O形圈、金属垫圈— — 八角(bājiǎo)垫、椭圆垫
第二十一页,共78页。
(a)全平面 (píngmiàn)
密封面类型
全平面、突面、大凹凸面(车削) 榫槽面、小凹凸面 环连接面、O形凹面和槽面
Ra /μm
min
max
3.2
12.5
0.8
3.2
0.4
1.6
(b) 法兰密封表面加工纹路:同心圆线或螺旋线 前者(qián zhě)更好,但不易做到,绝不允许有径向划痕。 检修时一定要注意清理密封面残留物时不能有径向划痕。
第三十页,共78页。
3)法兰的类型(lèixíng) 分类方法 用途:容器法兰和管法兰; 密封面宽窄(kuānzhǎi):宽面法兰和窄面法兰; 材料:金属和非金属,前者又分钢制、铸铁和有色金属; 形状:圆形、矩形和椭圆形; 制造:整体法兰和焊接法兰
法兰的种类很多,主要用钢制圆形窄面法兰
国际标准(biāozhǔn)化组织颁布标准(biāozhǔn): ISO7005-1:1992 “金属法兰—钢法兰”,法兰类型11种 。
第七页,共78页。

压力容器设计-零部件及分析设计

压力容器设计-零部件及分析设计
2、焊接接头应尽量避开高应力区
3、尽量降低焊件刚度
焊接结构设计原则
1、尽量采用对接接头 2、尽量采用全焊透结构 3、尽量减小焊缝处的应力集中 4、便于进行无损检验
§4-4
分 析 设 计
一、分析设计和常规设计的比较
常规设计的局限性
(1)常规设计将容器承受的“最大载荷”按一次 施加的静载荷处理,不涉及容器的疲劳寿命问题, 不考虑热应力。
(2)一次局部薄膜应力强度SⅡ 限制条件:SⅡ ≤1.5KSm
(3)一次薄膜(总体或局部)加一次弯曲应力强度SⅢ 限制条件:S Ⅲ ≤1.5KSm
(4)一次加二次应力强度SⅣ 限制条件:S Ⅳ ≤3Sm
(5)峰值应力强度SⅤ 限制条件:S Ⅴ ≤Sa
Sa----由疲劳设计曲线得到的应力幅
应力强度限制条件汇总
举例:圆筒边缘处的应力及应力强度
注意:〈1〉设计载荷与工作载荷不相同时,计算SⅣ和S Ⅴ 时应采用工作载荷。 〈2〉 τxθ 、 τx z 、τ zθ 与主应力相比为小量可略去,
σx、 σθ和 σz 即为三个主应力。
四、应力强度限制
一次应力的许用值由极限分析确定
——防止韧性断裂或塑性失稳
二次应力的许用值由安定性分析确定
③将各类应力按同种分量分别叠加,得到Pm 、PL 、PL + Pb和 PL+ Pb十Q共四组应力分量,每组一般有6个。
④由每组6个应力分量,计算各自的主应力σ1 、σ2和σ3 ,取 σ1 > σ2 > σ3 。
⑤计算每组的最大主应力差: σ13= σ1 - σ3 各组的 σ13即为与Pm 、PL 、PL + Pb和PL+ Pb十Q相对应的应力强度SⅠ、SⅡ 、SⅢ和 SⅣ。

压力容器零部件设计2法兰设计

压力容器零部件设计2法兰设计

管法兰的密封面型式
平面型,凹凸型,榫槽型(同容器法兰) ,梯形槽和全平面型:
1
确定法兰类型和密封面型式、管子材料和尺寸;
2
再由工作温度,确定材料或由材料定公称压力;
5
参照各尺寸绘法兰图。
4
由型式和工作温度,确定匹配的垫片种类、材料和紧固件材料、尺寸;
3
再由公称压力,确定法兰各部分尺寸;
管法兰连接的设计步骤
3
由于操作压力不高,由表12-1(垫圈选用表)可采用平面型密封面,垫片材料选用石棉橡胶板,查JB4704-92定出尺寸。标注为:垫片1200-0.6 JB4704-92
选择标准法兰举例
法兰的各部分尺寸可从JB4701-92中查得,并可绘出法兰图。
联接螺栓为M20,共52个,材料由表12-5(法兰、螺栓、螺母、材料匹配表)查得为35 ,螺母材料为Q235-A。
包括:选择螺栓材料、确定螺栓尺寸和个数,螺栓载荷计算。
计算螺栓载荷:达到预紧密封比压和工作密封比压。
材料:根据螺栓载荷、工作温度等。一般螺栓材料比螺母材料的硬度高30HB以上。
直径和个数:连接螺栓DN≥ M12,先由标准定个数,一般为4的倍数,然后由螺栓载荷、材料的许用应力计算螺栓根径,再由此定DN。最后校核螺栓中心距。
垫圈的选择
垫圈的结构形式、材料和尺寸,标准化。 选择依据:介质的腐蚀性、操作温度和压力, 考虑价格低廉、制造容易和更换方便。 高温高压:金属垫圈 中温中压:金属与非金属组合式或非金属 中、低压:多用非金属 高真空或深冷:金属垫圈
压力容器法兰:连接筒体与封头、筒体与筒体、法兰与管板。
01
密封原理分为:

自紧密封(高压):依靠容器内介质的压力压紧密封元件,使密封面获得很大的压紧力,在密封口产生较大的密封比压,达到密封目的。

压力容器零部件的设计1封头的设计38页文档

压力容器零部件的设计1封头的设计38页文档

51、 天 下 之 事 常成 于困约 ,而败 于奢靡 。——陆 游 52、 生 命 不 等 于是呼 吸,生 命是活 动。——卢 梭
53、 伟 大 的 事 业,需 要决心 ,能力 ,组织 和责任 感。 ——易 卜 生 54、 唯 书 籍 不 朽。——乔 特
55、 为 中 华 之 崛起而 读书。 ——周 恩来
压力容器零部件设计
郑州大学化工设备设计研究所 岳希明 13838097838 3887306(办)
椭圆形封头的最小厚度
标准椭圆形封头:δe≥0.15%Di 非标准椭圆形封头:δe≥0.30%Di
内压碟形封头
壁厚:
MP C R i
2[ ]t 0 .5 PC
最大允许工作压力:
[ PW
]
2[ ]t e MR i 0 .5 Байду номын сангаасe
M 1 [3 Ri ]
4
r
r — 过渡区半径
标准碟形封头:M 1.325
碟形封头的最小厚度
标准碟形封头:δe≥0.15%Di 非标准碟形封头:δe≥0.30%Di
总结
假 1、设 n 半球e 形A封0.头12(D 5e0) 壁厚计 非 弹 算弹 性 图[P 性 阶 []P ]0 阶 段 .0B(8段 : E e3)(D 3e0: )2
D0
P[P]? 调整 n直到满足要求
2、椭圆形封头
按半球形封头计算壁厚 R0=K1D0
3、碟形封头
按半球形封头计算壁厚,R0取球面部分外半径。
4、无折边球形封头
按半球形封头计算壁厚
外压凸形封头
五、锥形封头
外压锥形封头
等效圆筒
与外压圆筒的壁厚计算方法相同
六、圆形平盖

压力容器零部件设计---1封头设计

压力容器零部件设计---1封头设计


平板形封头
α<30º
30º<α<60º
设计问题: 1球形封头与圆筒连接
椭圆形封头的最小厚度
标准椭圆形封头:δe≥0.15%Di
非标准椭圆形封头:δe≥0.30%Di
设计问题: 1椭圆形封头与法兰连接(GB150 7.6)
内压碟形封头
壁厚:
MPC Ri 2[ ]t 0.5PC
3、冷成形封头热处理的问题
GB150中10.4.2.2规定冷成形封头应进行热处理, 当制造单位确保成形后的材料性能符合设计使用要 求时,不受此限。除图样另有规定,冷成形的奥氏 体不锈钢封头可不进行热处理。
关于凸形封头的几个问题
4、封头成形的主要质量问题 (1)形状偏差要求 (间隙样板弦长和外凸内凹问题)
按半球形封头计算壁厚,R0取球面部分外半径。
4、无折边球形封头
按半球形封头计算壁厚
关于凸形封头的几个问题
1、封头成形时壁厚减薄量的问题
JB/T4746规定:按照GB150设计的封头,图样上标注了最小 厚度(设计厚度),则封头成形后实测厚度不得小于该最小 厚度;如未标最小厚度,则成形后实测厚度不小于名义厚度 减去钢板负偏差。
关于凸形封头的几个问题
2、关于拼接封头拼接接头系数φ的选取
GB150中10.8.2.2只规定了封头拼接接头应进行100%UT或 者RT检测,但未规定拼接接头系数φ是如何选取?
结论:拼接封头拼接接头系数φ的选取等同于该容器的纵 向焊接接头系数。 Φ=0.85时,RT Ⅲ级合格
Φ=1.0时, RT Ⅱ级合格
GB150中10.2.3.2规定用弦长等于封头内径3/4Di的内 样板检查,其最大间隙不得大于封头内径Di的1.25%

压力容器零部件设计

压力容器零部件设计

压力容器零部件设计什么是压力容器?压力容器是指用来贮存或运输气体、液体及其混合物的容器,在使用时内部压力可高达几百兆帕,因此具有高度危险性和技术性。

常见的压力容器有储气瓶、锅炉、压缩空气储存罐等。

压力容器在工业生产中起着非常重要的作用,但由于其压力和温度较高,所以零部件的设计十分关键。

在设计压力容器零部件时,需要考虑各种因素,如材料、结构、强度等。

压力容器零部件的种类压力容器零部件是指组成压力容器的各个零件,包括隔离元件、连接元件、支撑元件、附属设施及安全附件等。

根据其在压力容器中的功能,可以将压力容器零部件分为以下几类:•隔离元件:主要由容器壳体、管道、泵、阀门等部件组成,用于存放和输送介质或压缩气体。

•连接元件:主要由焊接、螺栓紧固、法兰连接等部件组成,用于连接压力容器零件。

•支撑元件:主要由支架、支柱、衬垫等部件组成,对容器内部结构进行支撑和固定,保证其稳定性。

•附属设施:包括排液管、补偿器、冷却器、加热器等,用于对压力容器环境进行控制。

•安全附件:包括安全阀、减压器、检测仪表等,用于对压力容器进行安全控制。

压力容器零部件是由不同的部件组成的复杂系统,这些部件的功能、结构、材料均需要经过严格的计算和测试,只有这样才可以确保整个系统的稳定性和安全性。

压力容器零部件的设计要求在设计压力容器零部件时,需要考虑许多因素,包括材料、结构、强度等。

以下列举了压力容器零部件设计的一些基本要求:1.材料的选择:在设计压力容器零部件时,需要考虑所用材料的特性。

在选择材料时需要考虑到其机械性能、耐热性、耐腐蚀性,同时还需要考虑到铸造、锻造、焊接等工艺条件。

常用的材料有不锈钢、碳钢、铝合金等。

2.结构设计:压力容器零部件的结构必须合理,才能保证系统的正常运行。

在设计结构时,需要考虑到不同力的作用、容器的密封性以及容器与其他零部件的连接方式等。

3.强度计算:强度计算是设计压力容器零部件的一项基本工作,其目的是确保零部件在正常使用过程中不会发生松动、变形、破裂等失效现象。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、不洁净或粘性介质,易使安全阀堵塞,或使阀瓣和阀座粘结。 2、由于化学反应使容器内压力急剧增大,安全阀不能及时泄压。 3、介质为剧毒或昂贵气体,安全阀不能满足防泄漏要求。 4、腐蚀性大的介质,安全阀采用防腐材料成本高。
分类
?拉伸型
按破坏时的受力形式
??压缩型 ??弯曲型
??剪切型
?正拱型 按产品外观 ??反拱型
2、对温度的敏 感性小。
3、易受振动而 发生泄漏。
弹簧式安全阀的特点
1、结构紧凑,灵敏度高。 2、对振动不敏感。 3、高温下弹簧发生应力松
弛,弹簧力下降。
选用安全阀的基本原则—P184
爆破膜 ——断裂型的安全泄放装置
特点
1、密封性能好,能完全防止介质泄漏。 2、破裂速度快,泄压反应迅速。
适用场合
2、焊接接头应尽量避开高应力区
3、尽量降低焊件刚度
焊接结构设计原则
1、尽量采用对接接头 2、尽量采用全焊透结构 3、尽量减小焊缝处的应力集中 4、便于进行无损检验
§4-4
分 析 设 计
一、分析设计和常规设计的比较
常规设计的局限性
(1)常规设计将Байду номын сангаас器承受的“最大载荷”按一次 施加的静载荷处理,不涉及容器的疲劳寿命问题, 不考虑热应力。
③将各类应力按同种分量分别叠加,得到Pm 、PL 、PL + Pb和 PL+ Pb十Q共四组应力分量,每组一般有6个。
④由每组6个应力分量,计算各自的主应力σ1 、σ2和σ3 ,取 σ1 > σ2 > σ3 。
⑤计算每组的最大主应力差: σ13= σ1 - σ3 各组的 σ13即为与Pm 、PL 、PL + Pb和PL+ Pb十Q相对应的应力强度SⅠ、SⅡ 、SⅢ和 SⅣ。
六、支座和检查孔
? 支座
?
?耳式支座(悬挂式支座)
容器支座??????立式容器支座??????支裙腿承式式式支支支座座座(支腿)
??????卧式容器支座?????圈鞍支座式腿支座
JB/T 4725《耳式支座》 A型(短臂) A、AN B型(长臂) B 、 B N
JB/T 4724《支承式支座》 A型(钢板支柱) B型(钢管支柱)
基本特征:自限性 ① 总体结构不连续处的弯曲应力 ② 总体热应力
(三)峰值应力 F
——由局部结构不连续和局部热应力的影响而叠 加到一次加二次应力之上的应力增量
容 器 典 型 部 位 的 应 力 分 类
举例:厚壁圆筒的应力分类
举例:厚壁圆筒的应力分类
三、应力强度计算
五类基本应力强度:
一次总体薄膜应力强度 SⅠ 一次局部薄膜应力强度 SⅡ 一次薄膜 (总体或局部 )加一次弯曲应力 (PL+Pb)强度SⅢ 一次加二次应力 (PL+Pb+Q)强度SⅣ 峰值应力强度 S Ⅴ (由PL+Pb+Q+F算得)
分析设计可应用于承受各种载荷、任何结构形式的压力 容器设计,克服了常规设计的不足。
二、压力容器的应力分类
(一)一次应力 p
——平衡外加机械载荷所必须的应力 基本特征:非自限性 一次总体薄膜应力Pm
一次弯曲应力Pb 一次局部薄膜应力PL
(二)一次应力 Q
——相邻部件的约束或结构的自身约束所引起 的正应力或切应力
——防止塑性疲劳或过度塑性变形
峰值应力的许用值由疲劳分析确定
——防止大小或方向改变的载荷引起疲劳
1、设计应力强度(许用应力)
Sm
?
min
?? ? ??
?s
ns
;
?
t s
nst
;
?b
nb
?? ? ??
GB4732《钢制压力容器—分析设计标准》规定: ns= nst≥1.5, nb ≥2.6
举例:圆筒边缘处的应力及应力强度
注意:〈1〉设计载荷与工作载荷不相同时,计算SⅣ和S Ⅴ 时应采用工作载荷。 〈2〉 τxθ 、 τx z 、τ zθ 与主应力相比为小量可略去, σx、 σθ和 σz 即为三个主应力。
四、应力强度限制
一次应力的许用值由极限分析确定
——防止韧性断裂或塑性失稳
二次应力的许用值由安定性分析确定
不设检查孔的条件-----P182



作用

泄压 报警


要求

额定泄放量>安全泄放量

安全阀—— 非破坏型的安全泄放装置
分类
按加载机构
?重锤杠杆式 ??弹簧式
按阀瓣开启高度
?微启式 ??全启式
? 全封闭式 按气体排放方式 ??半封闭式
?? 开放式
?阀瓣
结构组成 ??阀座
? ?
加载机构
特点
1、结构简单, 加载恒定。
应力强度计算步骤
除峰值应力强度外,其余四类应力强度计算步骤如下:
①在所考虑的点上,选取一正交坐标系,用σx、 σθ和 σz 表示该坐标系 中的正应力,用τxθ 、 τx z 、τ zθ 表示切应力。
②计算各种载荷作用下的各应力分量,并根据定义将各组应力分量分 别归人以下的类别:一次总体薄膜应力 Pm;一次局部薄膜应力 PL;一次 弯曲应力Pb ;二次应力Q;峰值应力F。
(2)常规设计以材料力学及弹性力学中的简化模型为 基础,只将构件中平均应力限制在许用应力范围之内。
(3)常规设计规范中规定了具体的容器结构形式,无 法应用于规范中未包含的其它容器结构和载荷形式, 不利于新型设备的开发和使用。
分析设计的概念及优点
压力容器分析设计时,先进行详细的应力分析, 即通过解析法或数值方法,将各种外载荷或变形约束 产生的应力分别计算出来,然后进行应力分类,再按 不同的设计准则限制,保证容器在使用期内不发生各 种形式的失效,这就是以应力分析为基础的设计方法, 简称分析设计。
JB/T 4713《腿式支座》 A型(角钢支柱) B型(钢管支柱)
裙式支座
卧 式 容 器 支 座
JB/T 4712-92《鞍式支座》
检查孔
人孔 手孔
回转盖带颈平焊法兰人孔 (HG21517-95)
人孔
常压人孔(HG21515-95)
手孔
回转盖对焊法兰手孔 (HG21532-95)
常压手孔(HG21528-95)
??平板型
?爆破型
按破坏动作
? ?
触破型
? ?
脱落型
八、焊接结构设计
焊接接头形式
坡口形式
坡口设计原则
1、尽量减少填充金属量。 2、保证焊透,避免产生各种焊接缺陷。 3、便于施焊,改善劳动条件。 4、减少焊接变形和残余变形量。
焊接接头分类
焊接接头分类
焊接接头布置原则
1、焊接接头布置应避免交叉和密集 ● 主要受压元件上的 A、B类焊接接头应避免十字交叉 ● 几条焊缝汇集在一起时应设法避开
相关文档
最新文档