V7-6B19E9-022;中文规格书,Datasheet资料

合集下载

DFLS220L-7;中文规格书,Datasheet资料

DFLS220L-7;中文规格书,Datasheet资料

2.0A SURFACE MOUNT SCHOTTKY BARRIER RECTIFIERPowerDI ®123Features• Guard Ring Die Construction for Transient Protection • Low Power Loss, High Efficiency• Patented Interlocking Clip Design for High Surge Current Capacity• High Current Capability and Low Forward Voltage Drop • Lead Free Finish, RoHS Compliant (Note 5) •"Green" Molding Compound (No Br, Sb)Mechanical Data• Case: PowerDI ®123 • Plastic Material: Molded Plastic, "Green" Molding Compound.UL Flammability Classification Rating 94V-0 • Moisture Sensitivity: Level 1 per J-STD-020D • Terminal Connections: Cathode Band • Terminals: Finish – Matte Tin Annealed Over Copper leadframe. Solderable per MIL-STD-202, Method 208 • Marking Information: See Page 2 • Ordering Information: See Page 2 • Weight: 0.01 grams (approximate)Maximum Ratings @T A = 25°C unless otherwise specifiedSingle phase, half wave, 60Hz, resistive or inductive load. For capacitance load, derate current by 20%.CharacteristicSymbol Value Unit Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking VoltageV RRM V RWM V R 20 V RMS Reverse Voltage V R(RMS) 14 V Average Forward CurrentI F(AV) 2.0 A Non-Repetitive Peak Forward Surge Current 8.3ms Single Half Sine-Wave Superimposed on Rated Load I FSM40AThermal CharacteristicsCharacteristicSymbol Value UnitPower Dissipation (Note 1) P D 1.67 W Power Dissipation (Note 2)P D 556 mW Thermal Resistance Junction to Ambient (Note 1) R θJA 60 °C/W Thermal Resistance Junction to Ambient (Note 2) R θJA 180 °C/W Thermal Resistance Junction to Soldering (Note 3) R θJS 10 °C/W Operating Temperature Range T J -55 to +125 °C Storage Temperature Range T STG-55 to +150 °CElectrical Characteristics @T A = 25°C unless otherwise specifiedCharacteristicSymbol Min Typ Max UnitTest ConditionReverse Breakdown Voltage (Note 4) V (BR)R 20 ⎯ ⎯ V I R = 1.0mA Forward VoltageV F ⎯ ⎯ 0.32 0.375 0.36 0.42 V I F = 1.0A I F = 2.0ALeakage Current (Note 4) I R ⎯ ⎯ 0.26 ⎯ ⎯ 1.0 mA V R = 5V, T A = 25°C V R = 20V, T A = 25°C Total CapacitanceC T ⎯ 75⎯pF V R = 10V, f = 1.0MHzNotes:1. Part mounted on 50.8mm X 50.8mm GETEK board with 25.4mm X 25.4mm copper pad, 25% anode, 75% cathode. T A = 25°C.2. Part mounted on FR-4 board with 1.8mm X 2.5mm cathode and 1.8mm X 1.2mm anode, 1 oz. copper pads. T A = 25°C.3. Theoretical R θJS calculated from the top center of the die straight down to the PCB/cathode tab solder junction.4. Short duration pulse test used to minimize self-heating effect.5. EU Directive 2002/95/EC (RoHS). All applicable RoHS exemptions applied, see EU Directive 2002/95/EC Annex Notes.Top ViewPlease click here to visit our online spice models database.I , I N S T A N T A N E O U S F O R W A R D C U R R E N T (A )F V , INSTANTANEOUS FORWARD VOLTAGE (V)Fig. 1 Typical Forward Characteristics FI , I N S T A N T A N E O U S R E V E R S E C U R R E N T (m A )V , INSTANTANEOUS REVERSE VOLTAGE (V)Fig. 2 Typical Reverse CharacteristicsRC , T O T A L C A P A C I T A N C E (p F )T V , DC REVERSE VOLTAGE (V)Fig. 3 Total Capacitance vs. Reverse VoltageROrdering Information (Note 6)Part Number CasePackaging DFLS220L-7 PowerDI ®1233000/Tape & ReelNotes: 6. For packaging details, go to our website at /datasheets/ap02007.pdf.Marking InformationDate Code KeyYear 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015Code R S T U V W X Y Z A B CMonth Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Code 1 2 3 4 5 6 7 8 9 O N D F02A = Product Type Marking Code YM = Date Code MarkingY = Year (ex: T = 2006)M = Month (ex: 9 = September) F02A Y MPackage Outline DimensionsSuggested Pad LayoutIMPORTANT NOTICEDiodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to any product herein. Diodes Incorporated does not assume any liability arising out of the application or use of any product described herein; neither does it convey any license under its patent rights, nor the rights of others. The user of products in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on our website, harmless against all damages.LIFE SUPPORTDiodes Incorporated products are not authorized for use as critical components in life support devices or systems without the expressed written approval of the President of Diodes Incorporated.PowerDI ®123Dim Min Max Typ A 3.50 3.90 3.70 B 2.60 3.00 2.80 C 1.63 1.93 1.78 D 0.93 1.000.98 E 0.85 1.25 1.00 H 0.150.250.20 L 0.550.750.65 L1 1.80 2.20 2.00 L2 0.95 1.251.10 All Dimensions in mmDimensionsValue (in mm)G 1.0 X1 2.2 X2 0.9 Y11.4 Y2 1.4HX1GX2Y2Y1分销商库存信息: DIODESDFLS220L-7。

FWFTV22G;FWFTV21G;FWFTV72G;FWFTV71G;FWFTV6G;中文规格书,Datasheet资料

FWFTV22G;FWFTV21G;FWFTV72G;FWFTV71G;FWFTV6G;中文规格书,Datasheet资料

minutes) •Salt Spray :48 hr with Nickel plating 500 hr with Olive Drab Cadmium•Fire Retardant / Low Smoke : UL94 V0 and NF F 16 101 & 1•Vibrations : 10 –500 Hz, 10 g, 3 axes : no discontinuity > 1m•Shocks : IK06 : weight of 250 g drop from 40 cm [15.75 in] on connectors (mated pair)•Humidity : 21 days, 43°C, 98% humidity •Temperature Range : -55°C / +85°CData rate400 Mbits/second over 4.5 metersMechanical•Tri-start thread coupling mechanism (MIL-DTL-38999 series III type) with anti-decoupling device•FW plug retention in the receptacle : 100 N in the axis •Mating cycles : 500 to 1500 timesCan be used with most IEEE 1394 cordset brands : No tools required!Assembly Instructions1.If a fully sealed (IP67) assembly is required: Install the white tape around the plug to cover the 4 holes of the overmolding. If there are no holes omit this step.2.Insert the black O Ring around the front face of the IEEE 1394 plug. This O Ring will ensure the seal.3.Insert the IEEE 1394 cordset into the metallic backshell.4.Insert laterally onto the cable the retention spacer (this spacer is soft so as to adapt to various overmolding styles) and slide the IEEE 1394 plug into this retention spacer.5.Insert the friction ring laterally onto the cable cordset.6.Insert the IEEE 1394 plug into the metallic circular shell. Note at this step that the main key is used for polarization. 7.Screw the backshell on the plug body. A spanner may be required to fully close the backshell to the circular shell.Important Note : The sealing of the connector is not done by theblack retention spacers which are sloted, but rather by the front face O-Ring (Fig 2).Plug AssemblyReceptacle Assembly(For Solder back-termination Styles only)To Solder your cable onto the PCB :1.Attach the 2 metallized plastic inserts around the PCB (Fig 1a & 1b).2.Insert the IEEE 1394 module from the rear of theconnector.123456721a1bRemoving Modules1.Insert the removal tool FWF ODE from the front 2.Push the module back with thumb.«6» Shell«2» Shell Square FlangeType 1 : IEEE 1394 ReceptacleType 2 : Solder6 Tined holes for solderingBack Terminations :7» Shell Jam Nut«2PE »and «7PE »Shellswith Backshell to protect the termination from dust, shocks and vibration.Backshell used with IEEE 1394Receptaclewith back-termination -(Type 1)Non sealedversionReceptacles :Panel DrillingPanel DrillingBackshell used with PCB Receptacle bactermination -(Type 2)S ealed version –IP67View of the PC Type 2version with 6 tined holefor solder terminationFrontBackPlug Cap Receptacle Capcap endSquare flange receptacle cap end Plug Cap endPanel Gasket for square flange receptacle (Thickness : 0,8 mm [.031]) : JE15分销商库存信息:AMPHENOLFWFTV22G FWFTV21G FWFTV72G FWFTV71G FWFTV6G FWFTV2PE1G FWFTV7PE1G FWFTVC2G FWFTVC6G FWFTVC7G。

TBA820M, 规格书,Datasheet 资料

TBA820M, 规格书,Datasheet 资料

®TBA820M1.2W AUDIO AMPLIFIERDESCRIPTIONThe TBA820M is a monolithic integrated audio amplifier in a 8 lead dual in-line plastic package. It is intended for use as low frequency class B power amplifier with wide range of supply voltage: 3 to 16V , in portable radios, cassette recorders and players etc. Main features are: minimum working supply voltage of 3V , low quiescent current, low number of external components, good ripple rejec-tion, no cross-over distortion, low power dissipa-tion.Output power: P o = 2W at 12V/8Ω, 1.6W at 9V/4Ωand 1.2W at 9V/8Ω.September 2003MinidipORDERING NUMBER: TBA820MSymbol ParameterValue Unit V s Supply voltage 16V I o Output peak current1.5A P tot Power dissipation at T amb = 50°C 1W T stg , T jStorage and junction temperature-40 to 150°CABSOLUTE MAXIMUM RATINGSTEST AND APPLICA TION CIRCUITSFigure 1. Circuit diagram with load connected to the supply voltageFigure 2. Circuit diagram with load connected to ground* Capacitor C6 must be used when high ripple rejection is requested.1/6Symbol ParameterValue Unit R th-j-ambThermal resistance junction-ambientmax100°C/WTHERMAL DA TA2/6PIN CONNECTION(top view)SCHEMATIC DIAGRAMSymbol ParameterTest conditionsMin.Typ.Max.Unit V s Supply voltage3 16V V o Quiescent output voltage (pin 5)4 4.55V I d Quiescent drain current 412mA I b Bias current (pin 3)0.1µAP oOutput powerd = 10%R f = 120ΩVs = 12V V s = 9V V s = 9V V s = 6V V s = 3.5V f = 1 kHz R L = 8ΩR L = 4ΩR L = 8ΩR L = 4ΩR L = 4Ω0.921.61.20.750.25W W W W W Ri Input resistance (pin 3) f = 1 kHz 5M ΩB Frequency response (-3 dB)R L = 8ΩC 5 = 1000 µF R f = 120ΩC B = 680 pF 25 to 7,000HzC B = 220 pF 25 to 20,000d Distortion P o = 500 mW R L = 8Ωf = 1 kHz R f = 33Ω 0.8%R f = 120Ω 0.4 G v Voltage gain (open loop) f = 1 kHz R L = 8Ω 75 dB G v Voltage gain (closed loop)R L = 8ΩR f = 33Ω 45dBf = 1 kHz R f = 120Ω 34 e N Input noise voltage (*) 3 µV i N Input noise current (*)0.4nAS + N N Signal to noise ratio (*)P o = 1.2W R L = 8ΩG v = 34 dBR1 = 10K Ω 80dBR1 = 50 k Ω70SVRSupply voltage rejection (test circuit of fig. 2)R L = 8Ωf (ripple) = 100 HzC6 = 47 µF R f = 120Ω42dBELECTRICAL CHARACTERISTICS (Refer to the test circuits Vs = 9V , T amb = 25 °C unless otherwise specified)(*) B = 22 Hz to 22 KHz3/64/6Figure 3. Output power vs.supply voltage Figure 4. Harmonic distortionvs. output powerFigure 5. Power dissipation and efficiency vs. outputpowerFigure 6. Maximum power dissipation (sine waveoperation)Figure 7. Suggested value of C B vs. R f Figure 8. Frequency res-ponseFigure 9. Harmonic distortion vs. frequency Figure 10. Supply voltage rejection (Fig. 2 circuit)Figure 11. Quiescent current vs. supply voltageOUTLINE AND MECHANICALDATADIM.mminch MIN.TYP .MAX.MIN.TYP .MAX.A 3.320.131a10.510.020B 1.15 1.650.0450.065b 0.3560.550.0140.022b10.2040.3040.0080.012D 10.920.430E 7.959.750.3130.384e 2.540.100e37.620.300e47.620.300F 6.60.260I 5.080.200L 3.18 3.810.1250.150Z1.520.060Minidip5/66/6Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.The ST logo is a registered trademark of STMicroelectronics.All other names are the property of their respective owners© 2003 STMicroelectronics - All rights reservedSTMicroelectronics GROUP OF COMPANIESAustralia – Belgium - Brazil - Canada - China – Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States。

EP2C8Q208C8中文资料(Altera)中文数据手册「EasyDatasheet - 矽搜」

EP2C8Q208C8中文资料(Altera)中文数据手册「EasyDatasheet - 矽搜」

Cyclone II器件手册,第1卷ii内容章修订日期............................................... ............................喜关于本手册............................................... .............................十三如何触点Altera ..........................................................................................................................十三印刷约定....................................................................................................................十三第一节Cyclone II器件系列数据表修订记录.................................................................................................................................... 1-1第1章简介简介............................................................................................................................................低成本嵌入式处理解决方案............................................ ......................................低成本DSP解决方案.................................................................................................................特征...................................................................................................................................................参考文献.........................................................................................................................文档修订历史记录.................................................................................................................1–1 1–1 1–1 1–2 1–9 1–9第2章Cyclone II架构功能说明.......................................................................................................................... 2-1逻辑元件....................................................................................................................................... 2-2LE操作模式........................................................................................................................ 2-4逻辑阵列模块................................................................................................................................ 2-7LAB互连............................................................................................................................ 2-8LAB控制信号......................................................................................................................... 2-8MultiTrack互联..................................................................................................................... 2-10行互连.......................................................................................................................... 2-10列互连.................................................................................................................... 2-12设备路由............................................................................................................................... 2-15全局时钟网络和锁相环.......................................... ..................................... 2-16专用时钟管脚..................................................................................................................... 2-20双用时钟引脚.............................................................................................................. 2-20全局时钟网络................................................................................................................... 2-21全局时钟网络分布.............................................. .............................................. 2-23锁相环.................................................................................................................................................. 2-25嵌入式存储器............................................................................................................................. 2-27内存模式............................................................................................................................... 2-30时钟模式.................................................................................................................................... 2-31M4K路由接口.................................................................................................................. 2-31iii内容嵌入式乘法器........................................................................................................................乘法器模式............................................................................................................................嵌入式乘法器路由接口.............................................. .......................................I / O结构及特点....................................................................................................................外部存储器接口.......................................................................................................可编程驱动强度.....................................................................................................漏极开路输出........................................................................................................................摆率控制...........................................................................................................................总线防护持..........................................................................................................................................可编程上拉电阻............................................. .................................................. ...高级I / O标准支持............................................ .................................................. ..高速差分接口............................................. .................................................系列片上端接.........................................................................................................I / O组........................................................................................................................................多电压I / O接口.................................................................................................................2–32 2–35 2–36 2–37 2–44 2–49 2–50 2–51 2–51 2–51 2–52 2–53 2–55 2–57 2–60第3章配置与测试IEEE标准. 1149.1(JTAG)边界扫描支持........................................... ..................................构造.........................................................................................................................................操作模式...................................................................................................................................配置计划......................................................................................................................... Cyclone II自动单粒子翻转检测........................................... ...........................定制电路....................................................................................................................软件界面.............................................................................................................................文档修订历史记录.................................................................................................................3–1 3–5 3–5 3–6 3–7 3–7 3–7 3–8第4章热插拔和上电复位简介............................................................................................................................................旋风II热插拔规格............................................ ................................................设备可以在电源时会驱动.......................................... ...........................................I / O引脚防护持三态电期间...................................... ......................................在Cyclone II器件热插拔功能实现......................................... ..............上电复位电路...................................................................................................................."唤醒"时间Cyclone II器件........................................ ...............................................结论..............................................................................................................................................文档修订历史记录.................................................................................................................4–1 4–1 4–2 4–2 4–3 4–5 4–5 4–7 4–7第5章直流特性和时序规范运行条件........................................................................................................................... 5-1单端I / O标准.......................................................................................................... 5-5差分I / O标准.............................................................................................................. 5-7DC特性不同针类型............................................ ......................................... 5-11片上端接规格............................................. .............................................. 5-12能量消耗........................................................................................................................... 5-13时序规格.......................................................................................................................... 5-14预,决赛时序规范............................................. ................................ 5-14演出.................................................................................................................................... 5-15 ivCyclone II器件手册,第1卷内容内部时序...............................................................................................................................Cyclone II时钟时序参数............................................. ..............................................时钟网络偏移加法器.......................................................................................................IOE可编程延迟.............................................................................................................不同I默认容性负载/ O标准......................................... .................I / O延迟.......................................................................................................................................最大输入和输出时钟频率............................................ ........................................高速I / O时序规格........................................... ............................................外部存储器接口规范.............................................. ....................................JTAG时序规范..........................................................................................................PLL时序规范............................................................................................................占空比失真.........................................................................................................................DCD测量技术............................................... .................................................. ..参考文献.......................................................................................................................文档修订历史记录...............................................................................................................5–18 5–23 5–29 5–30 5–31 5–33 5–46 5–55 5–63 5–64 5–66 5–67 5–68 5–74 5–74第6章参考和订购信息软体..................................................................................................................................................器件引脚输出.....................................................................................................................................订购信息...........................................................................................................................文档修订历史记录.................................................................................................................6–1 6–1 6–1 6–2第二节.时钟管理修订记录.................................................................................................................................... 6-1第7章锁相环在Cyclone II器件简介............................................................................................................................................ 7-1Cyclone II PLL硬件概述............................................. .................................................. ... 7-2PLL参考时钟产生.............................................. .................................................. ... 7-6时钟反馈模式....................................................................................................................... 7-10正常模式.................................................................................................................................. 7-10零延迟缓冲器模式................................................................................................................ 7-11无补偿模式............................................................................................................... 7-12源同步模式........................................................................................................... 7-13硬件特性.............................................................................................................................. 7-14时钟倍频和科.............................................. .................................................. .. 7-14可编程占空比........................................................................................................... 7-15移相实施.............................................. .................................................. .... 7-16控制信号................................................................................................................................ 7-17手动时钟切换............................................................................................................. 7-20时钟................................................................................................................................................ 7-21全局时钟网络................................................................................................................... 7-21时钟控制模块....................................................................................................................... 7-24全局时钟网络时钟源产生............................................ .......................... 7-26全局时钟网络掉电............................................. .............................................. 7-28vCyclone II器件手册,第1卷。

GP1S196HCZSF;GP1S196HCZ0F;中文规格书,Datasheet资料

GP1S196HCZSF;GP1S196HCZ0F;中文规格书,Datasheet资料

GP1S196HCZ0F GP1S196HCZSF Gap : 1.1mm, Slit : 0.3mm Phototransistor Output, Compact Transmissive Photointerrupter■DescriptionGP1S196HCZ0F is a compact-package, photo-tran-sistor output, transmissive photointerrupter, with oppos-ing emitter and detector in a molding that provides non-contact sensing. The compact package series is a result of unique technology combing transfer and injection molding.This device is half the size of the rest of the parts in this family.■Features1. Transmissive with phototransistor output2. Highlights :• Compact Size• Low Profi le• Narrow Gap• Through-hole : GP1S196HCZ0F• SMT : GP1S196HCZSF3. Key Parameters :• Gap Width : 1.1mm• Slit Width (detector side): 0.3mm• Package : 3.1×2×2.7mm4. Lead free and RoHS directive compliant■Agency approvals/Compliance1. Compliant with RoHS directive■Applications1. General purpose detection of object presence or mo-tion.2. Example : printer, lens control for cameraNotice The content of data sheet is subject to change without prior notice.In the absence of confi rmation by device specifi cation sheets, SHARP takes no responsibility for any defects that may occur in equipment using any SHARP■Internal Connection Diagram■Outline Dimensions(Unit : mm)Plating material : SnCu (Cu : TYP . 2%)Top viewAnode Collector Emitter CathodeCountry of originJapan■Absolute Maximum Ratings■Electro-optical Characteristics (T a=25˚C )Parameter Symbol Rating UnitInput Forward current I F30mA Reverse voltage V R6V Power dissipation P75mWOutput Collector-emitter voltage V CEO35V Emitter-collector voltage V ECO6V Collector current I C20mA Collector power dissipation P C75mWTotal power dissipation P tot100mWOperating temperature T opr−25 to +85˚CStorage temperature T stg−40 to +100˚C∗1Soldering temperature Tsol260˚C∗1 For 3s or less(T a=25˚C ) Parameter Symbol Condition MIN.TYP.MAX.UnitInput Forward voltage V F I F=20mA− 1.2 1.4V Reverse current I R V R=3V−−10μAOutput Collector dark current I CEO V CE=20V−−100nATransfer charac-teristics Collector current I C V CE=5V, I F=5mA100−400μA Collector-emitter saturation voltage V CE(sat)I F=10mA, I C=40μA−−0.4VResponse timeRise time t rV CE=5V, I C=100μA, R L=1kΩ−50150μs Fall time t f−50150(GP1S196HCZ0F)Fig.5 Collector Current vs. Collector- emitter VoltageFig.6 Relative Collector Current vs.Ambient TemperatureFig.3 Forward Current vs. ForwardVoltageFig.4 Collector Current vs. Forward Current101001F o r w a r d c u r r e n t I F (m A )Forward voltage V F (V)Forward current I F (mA)11.10.90.80.70.60.50.40.30.20.1C o l l e c t o r c u r r e n t I C (m A )21.61.20.80.4C o l l e c t o r c u r r e n t I C (m A )Collector-emitter voltage V CE (V)R e l a t i v e c o l l e c to r c u r r e n t (%)Ambient temperature T a (C)0130120110100908070605040302010Fig.1 Forward Current vs. Ambient TemperatureFig.2 Power Dissipation vs. Ambient Temperature0605040302010 25025*********F o r w a r d c u r r e n t I F (m A )Ambient temperature T a (˚C) 060408010012020P o w e r d i s s i p a t i o n P , P c , P t o t (m W )Ambient temperature T a (˚C)7515Fig.7 Collector-emitter Saturation Votage vs. Ambient TemperatureFig.8 Collector Dark Current vs. Ambient TemperatureFig.9 Response Time vs. Load ResistanceFig.10 Test Circuit for Response TimeFig.11 Relative Collector Current vs. Shield Distance (1)Fig.12 Relative Collector Current vs. Shield Distance (1)C o l l e c t o r -e m i t t e r s a t u r a t i o n v o l t a g e V C E (s a t ) (V )Ambient temperature T a (˚C)0.20.180.160.140.120.10.080.060.040.11 000101100R e s p o n s e t i m e (μs )Load resistance R L (k Ω)10 1010 910 710 610 8C o l l e c t o r d a r k c u r r e n t I C E O (A )Ambient temperature T a (˚C)R e l a t i v e c o l l e c t o r c u r r e n t (%)100203040506090100708000.511.52Shield moving distance L (mm)R e l a t i v e co l l e c t o r c u r r e n t (%)100203040506090100708000.511.52Shield moving distance L (mm)Remarks : Please be aware that all data in the graph are just for reference and not for guarantee.■Design Considerations ●Design guide1) Prevention of detection errorTo prevent photointerrupter from faulty operation caused by external light, do not set the detecting face to the external light.2) Position of opaque boardOpaque board shall be installed at place 1.4mm or more from the top of elements.(Example)This product is not designed against irradiation and incorporates non-coherent IRED.●DegradationIn general, the emission of the IRED used in photointerrupter will degrade over time.In the case of long term operation, please take the general IRED degradation (50% degradation over 5 years) into the design consideration.●Recommended Foot Print (Only for GP1S196HCZSF)1.4mm or more●PartsThis product is assembled using the below parts.• Photodetector (qty. : 1)Category Material Maximum Sensitivitywavelength (nm)Sensitivitywavelength (nm)Response time (μs)Phototransistor Silicon (Si)930700 to 1 20020• Photo emitter (qty. : 1)Category Material Maximum light emittingwavelength (nm)I/O Frequency (MHz)Infrared emitting diode(non-coherent)Gallium arsenide (GaAs)9500.3 • MaterialCase Lead frame Lead frame platingBlack polyphernylenesulfi de resin (UL94 V-0)42Alloy SnCu plating■Manufacturing Guidelines●Storage and management after open (Only for GP1S196HCZSF)Storage conditionStorage temp.: 5 to 30˚C, Storage humidity : 70%RH or less at regular packaging.Treatment after opening the moisture-proof packageAfter opening, you should mount the products while keeping them on the condition of 5 to 25˚C and 70%RH or less in humidity within 4 days.After opening the bag once even if the prolonged storage is necessary, you should mount the products within two weeks.And when you store the rest of products you should put into a DRY BOX. Otherwise after the rest of products and silicagel are sealed up again, you should keep them under the condition of 5 to 30˚C and 70%RH or less in humidity.Baking before mountingWhen the above-mentioned storage method could not be executed, please process the baking treatment before mounting the products.However the baking treatment is permitted within one time.Recommended condition : 125˚C, 16 to 24 hours∗Do not process the baking treatment with the product wrapped. When the baking treatment processing, you should move the products to a metallic tray or fi x temporarily the products to substrate.●Soldering MethodRefl ow Soldering (Only for GP1S196HCZSF) :Refl ow soldering should follow the temperature profi le shown below.Soldering should not exceed the curve of temperature profi le and time.Please solder within one time.MAX200˚CMAX160˚C25˚CFlow Soldering:Soldering should be completed below 260˚C and within 3 s.Please solder within one time.Soldering area is 0.3mm or more away from the bottom of housing.Please take care not to let any external force exert on lead pins.Please don't do soldering with preheating, and please don't do soldering by refl ow.Other noticePlease test the soldering method in actual condition and make sure the soldering works fine, since the impact on the junction between the device and PCB varies depending on the cooling and soldering conditions.●Cleaning instructionsSolvent cleaning :Solvent temperature should be 45˚C or below. Immersion time should be 3 minutes or less.Ultrasonic cleaning :Do not execute ultrasonic cleaning.Recommended solvent materials :Ethyl alcohol, Methyl alcohol and Isopropyl alcohol.●Presence of ODCThis product shall not contain the following materials.And they are not used in the production process for this product.Regulation substances : CFCs, Halon, Carbon tetrachloride, 1.1.1-Trichloroethane (Methylchloroform)Specifi c brominated fl ame retardants such as the PBBOs and PBBs are not used in this product at all.This product shall not contain the following materials banned in the RoHS Directive (2002/95/EC).•Lead, Mercury, Cadmium, Hexavalent chromium, Polybrominated biphenyls (PBB), Polybrominateddiphenyl ethers (PBDE).■Package specifi cation●Sleeve package1. Through-hole (GP1S196HCZ0F)Package materialsSleeve : PolycarbonateStopper : Styrene-ElastomerPackage methodMAX. 200 pcs. of products shall be packaged in a sleeve. Both ends shall be closed by tabbed and tabless stoppers.MAX. 50 sleeves in one case.2. SMT Gullwing (GP1S196HCZSF)Package materialsSleeve : PolycarbonateStopper : Styrene-ElastomerAluminium laminated Bag : Nylon, Polyphernylene, AluminiumPackage methodMAX. 200 pcs. of products shall be packaged in a sleeve. Both ends shall be closed by tabbed and tabless stoppers.MAX. 50 sleeves with silicagel are enclosed in aluminium laminated bag. After sealing up the bag, it encased in one case.分销商库存信息:SHARP-MICROELECTRONICSGP1S196HCZSF GP1S196HCZ0F。

NB7L86MMNEVB;中文规格书,Datasheet资料

NB7L86MMNEVB;中文规格书,Datasheet资料

NB7L86MMNEVBNB7L86M Evaluation Board User's ManualDescriptionThis document describes the NB7L86M evaluation board (see Figure 1) and the appropriate lab test setups. It should be used in conjunction with the NB7L86M data sheet which contains full technical details on the device specification and operation. This evaluation board is offered as a convenience for the customers interested in performing their own engineering characterization and performance assessment of the NB7L86M.Board Lay−upThe board is implemented in two layers and provides a high bandwidth 50 W controlled impedance environment for higher performance. The first layer or primary trace layer is 5 mils thick Rogers RO6002 material, which is engineered to have equal electrical length on all signal traces from the NB7L86M device to the sense output. The second layer is 32 mils thick copper ground plane.What Measurements Can You Expect to Make?With this evaluation board, the following measurements could be performed in single–ended (1) or differential modes of operation:•Jitter•Frequency Performance•Output Rise and Fall Time•V CMR (Input Common Mode Range)•Eye Pattern Generation•Gain / Return LossThis Evaluation Board Manual Contains:•Information on NB7L86MMNEVB Evaluation Board •Appropriate Lab Setup•Bill of MaterialsFigure 1. Evaluation Board Layout and PhotoEVAL BOARD USER’S MANUALTable 1. BASIC EQUIPMENT NEEDEDDescription Example Equipment (Note 1)Qty Power Supply with 2 outputs HP6624A1 Oscilloscope TDS8000 with 08E01 Sampling Module1 Differential Signal Generator HP 8133A, Advantest D31861 High speed cables with SMA Storm, Semflex8 Power Supply cables with clips4 1.Listed equipment used to generate example measurements within this document.FOUR STEP SETUP PROCESSStep 1: Power SuppliesThe NB7L86MM is powered by 2.5 V or 3.3 V power supplies. For straightforward lab setup operation negative voltages are recommended to enable the 50 W internal impedance of the oscilloscope to be used as a termination for the CML signals (V CC = 0.0 V, V EE = $2.5 V or −3.3 V and GND = 0.0 V).The power is supplied to the board via individual clip connectors labeled V CC and GND.Step 2: Connect Input signalsTerminationCML outputs need to be terminated to V CC via a 50 W resistor. The input pins contain internal 50 W resistors (VT pins). For CML inputs, the VT pins are typically tied to V CC. For Differential mode (3.3 V and 2.5 V Operation) Step 2a: Connect the differential output of the generator to the differential input of the device (Dx and DBx).Step 3: Setup Input SignalStep 3a: Set V oltage Amplitude on Generator to 400 mV NOTE:The amplitude can be varied from 150 mV to 900 mV and still be able to produce about400 mV outputStep 3b: Set voltage offset on generator to be 0 V (or −200 mV for a CML Input).•Square Wave Clock Signal (50% Duty Cycle) or PRBS •Frequency Range DC to 12 GHzStep 4: Connect Output signalsConnect outputs of the device (Q2, Q2) to the oscilloscope. The oscilloscope must contain a 50 W resistor to groundTIME DOMAIN SETUP FOR THE AND/NAND FUNCTIONFigure 2. NB7L86M Board Setup − Time Domain (AND/NAND Function)Step 1: Connect Power1a. Connect the following supplies to the evaluation board via surface mount clips.Table 2. POWER SUPPLY SUMMARY TABLE3.3 V Setup 2.5 V SetupV CC = 0 V V CC = 0 VGND = 0 V GND = 0 VV EE = −3.3 V V EE = −2.5 VStep 2: Connect the InputsFor Differential Mode (3.3 V and 2.5 V operation)2a: Connect the differential outputs of the generator to the differential inputs of the device (D1/D1 and SEL/SEL).2b: Connect the DO input to −2.0 V.2c: Connect the DO input to V CC.2d: Connect the generator trigger to the oscilloscope trigger.Step 3: Setup Input Signal3a: Set the signal generator amplitude to 400 mV. Note that the signal generator amplitude can vary from 75 mV to 900 mV to produce a 400 mV DUT output.3b: Set the signal generator offset to −200 mV (the center of a nominal CML output). Note that the V CMR (Input Common Mode Range) allows the signal generator offset to vary as long as V CM is within the V CMR range. Refer to the device data sheet for further information.3c: Set the generator output for a square wave clock signal with a 50% duty cycle, or for a PRBS data signal.Step 4: Connect Output Signals4a: Connect the outputs of the evaluation board (Q, Q) to the oscilloscope. The oscilloscope sampling head must have internal 50 W termination to ground.NOTE:Where a single output is being used, theunconnected output for the pair must beterminated to V CC through a 50 W resistor forbest operation. Unused pairs may be leftunconnected. Since V CC = 0 V, a standard 50 WSMA termination is recommended.Figure 3. NB7L86M Board Setup − Time Domain (OR/NOR Function)Step 1: Connect Power1a: Connect the following supplies to the evaluation board via surface mount clips.Table 3. POWER SUPPLY SUMMARY TABLE3.3 V Setup 2.5 V SetupV CC = 0 V V CC = 0 VGND = 0 V GND = 0 VV EE = −3.3 V V EE = −2.5 VStep 2: Connect the InputsFor Differential Mode (3.3 V and 2.5 V operation)2a: Connect the differential outputs of the generator to the differential inputs of the device (D0/D0 and SEL/SEL).2a: Connect the D1 input to −2.0 V.2b: Connect the D1 input to V CC.2e: Connect the generator trigger to the oscilloscope trigger.Step 3: Setup Input Signal3a: Set the signal generator amplitude to 400 mV. Note that the signal generator amplitude can vary from 75 mV to 900 mV to produce a 400 mV DUT output.3b: Set the signal generator offset to −200 mV (the center of a nominal CML output). Note that the V CMR (Input Common Mode Range) allows the signal generator offset to vary as long as V CM is within the V CMR range. Refer to the device data sheet for further information.3c: Set the generator output for a square wave clock signal with a 50% duty cycle, or for a PRBS data signal.Step 4: Connect Output Signals4a: Connect the outputs of the evaluation board (Q, Q) to the oscilloscope. The oscilloscope sampling head must have internal 50 W termination to ground.NOTE:Where a single output is being used, theunconnected output for the pair must beterminated to V CC through a 50 W resistor forbest operation. Unused pairs may be leftunconnected. Since V CC = 0 V, a standard 50 WSMA termination is recommended.Figure 4. NB7L86M Board Setup − Time Domain (XOR/XNOR Function)Step 1: Connect Power1a: Connect the following supplies to the evaluation board via surface mount clipsTable 4. POWER SUPPLY SUMMARY TABLE3.3 V Setup 2.5 V SetupV CC = 0 V V CC = 0 VGND = 0 V GND = 0 VV EE = −3.3 V V EE = −2.5 VStep 2: Connect the InputsFor Differential Mode (3.3 V and 2.5 V operation)2a: Connect the differential outputs of the generator to the differential inputs of the device (OUT OUT to SEL/SEL; OUT1/OUT1 to DO&D1/D0&D1 respectively).Step 2e: Connect the generator trigger to the oscilloscope trigger.Step 3: Setup Input Signal3a: Set the signal generator amplitude to 400 mV. Note that the signal generator amplitude can vary from 75 mV to 900 mV to produce a 400 mV DUT output.3b: Set the signal generator offset to −200 mV (the center of a nominal CML output). Note that the V CMR (Input Common Mode Range) allows the signal generator offset to vary as long as V CM is within the V CMR range. Refer to the device data sheet for further information.3c: Set the generator output for a square wave clock signal with a 50% duty cycle, or for a PRBS data signal.Step 4: Connect Output Signals4a: Connect the outputs of the evaluation board (Q, Q) to the oscilloscope. The oscilloscope sampling head must have internal 50 W termination to ground.NOTE:Where a single output is being used, theunconnected output for the pair must beterminated to V CC through a 50 W resistor forbest operation. Unused pairs may be leftunconnected. Since V CC = 0 V, a standard 50 WSMA termination is recommended.Step 1: Connect Power1a: Connect the following supplies to the evaluation board via surface mount clips.Table 5. POWER SUPPLY SUMMARY TABLE3.3 V Setup 2.5 V SetupV CC = 0 V V CC = 0 VGND = 0 V GND = 0 VV EE = −3.3 V V EE = −2.5 VStep 2: Connect the InputsFor Differential Mode (3.3 V and 2.5 V operation)2a: Connect the differential outputs of the generator to the differential inputs of the device (D1/D1).2b: Connect the D0 input to −2.0 V and the D0 input to V CC.Connect the SEL input to V CC and the SEL input to −2.0 V.Connect the generator trigger to the oscilloscope trigger.Step 3: Setup Input Signal3a: Set the signal generator amplitude to 400 mV. Note that the signal generator amplitude can vary from 75 mV to 900 mV to produce a 400 mV DUT output.3b: Set the signal generator offset to −200 mV (the center of a nominal CmL output). Note that the V CMR (Input Common Mode Range) allows the signal generator offset to vary as long as V CM is within the V CMR range. Refer to the device data sheet for further information.3c: Set the generator output for a square wave clock signal with a 50% duty cycle, or for a PRBS data signal.Step 4: Connect Output Signals4a: Connect the outputs of the evaluation board (Q, Q) to the oscilloscope. The oscilloscope sampling head must have internal 50 W termination to ground.NOTE:Where a single output is being used, theunconnected output for the pair must beterminated to V CC through a 50 W resistor forbest operation. Unused pairs may be leftunconnected. Since V CC = 0 V, a standard 50 WSMA termination is recommended.MORE INFORMATION ABOUT EVALUATION BOARDDesign Considerations for >10 GHz operationWhile the NB7L86M is specified to operate at 12 GHz,this evaluation board is designed to support operating frequencies up to 20 GHz.The following considerations played a key role to ensure this evaluation board achieves high −end microwave performance:•Optimal SMA connector launch•Minimal insertion loss and signal dispersion •Accurate Transmission line matching (50 W )•Distributed effects while bypassing and noise filteringV EESurface Mount ClipSURFACE MOUNT CLIPRosenberger SMA Rosenberger SMARosenberger SMA Rosenberger SMAFigure 6. Evaluation Board SchematicRosenberger SMA Rosenberger SMAR o s e R o s eTable 6. BILL OF MATERIALSPart No Qty DescriptionManufacturer Web Address NB7L86MMN 1Differential Smart Gate with CML OutputON Semiconductor 32K243−40ME38Gold plated connector Rosenberger http://www.rosenberger.de 50164Test Point− AnvilKeystoneCO6BLBB2X5UX or C0603C104K4RAC32 MHz – 30 GHz capacitor 0603 0.1 m F $ 10%Dielectric Laboratories Kemet**Components are available through most distributors, i.e. , .Table 7. BOARD MATERIALMaterial Thickness Rogers 6002 5.0 mil Copper Plating32 milFigure 7. Board Stack −up 1.37 milFigure 8. Layout Mask for NB7L86MPIN 1Figure 9. Insertion LossSTART 1 GHzSTOP 12 GHz1 GHz/NOTE:The insertion loss curve can be used to calibrate out board loss if testing under small signal conditions..ADDITIONAL EVALUATION BOARD INFORMATIONIn all cases, the most up−to−date information can be found on our website.•Sample orders for devices and boards•New Product updates•Literature download/order•IBIS and Spice models ReferencesNB7L86M/D, Data Sheet.AND8077/D, Application Note, GigaComm t (SiGe) SPICE Modeling Kit.AND8075/D, Application Note, Board Mounting Considerations for the FCBGA Packages.ORDERING INFORMATIONDevice Package Shipping†NB7L86MMN QFN−16123 Units/RailNB7L86MMNG QFN−16(Pb−Free)123 Units/RailNB7L86MMNR2QFN−163000 Tape & ReelNB7L86MMNR2G QFN−16(Pb−Free)3000 Tape & ReelNB7L86MMNEVB N/A N/A†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.PACKAGE DIMENSIONS16 PIN QFN MN SUFFIX CASE 485G −01ISSUE BNOTES:1.DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.2.CONTROLLING DIMENSION: MILLIMETERS.3.DIMENSION b APPLIES TO PLATEDTERMINAL AND IS MEASURED BETWEEN 0.25 AND 0.30 MM FROM TERMINAL.4.COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS.5.L max CONDITION CAN NOT VIOLATE 0.2 MM MINIMUM SPACING BETWEEN LEAD TIP AND FLAGDIM MIN MAX MILLIMETERS A 0.80 1.00A10.000.05A30.20 REF b 0.180.30D 3.00 BSC D2 1.65 1.85E 3.00 BSC E2 1.65 1.85e 0.50 BSC K 0.20−−−L0.300.50*For additional information on our Pb −Free strategy and solderingdetails, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.SOLDERING FOOTPRINT*ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.PUBLICATION ORDERING INFORMATION分销商库存信息: ONSEMINB7L86MMNEVB。

DMN5L06VK-7;DMN5L06VAK-7;中文规格书,Datasheet资料

DMN5L06VK-7;DMN5L06VAK-7;中文规格书,Datasheet资料
http://onDeocicum.ceonmt n/umber: DS30769 Rev. 10 - 2
1
3 of 6
VGS, GATE SOURCE VOLTAGE (V) Fig. 6 Static Drain-Source On-Resistance
Packaging 3,000/Tape & Reel 10,000/Tape & Reel 3,000/Tape & Reel 10,000/Tape & Reel 3,000/Tape & Reel 10,000/Tape & Reel
1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS) & 2011/65/EU (RoHS 2) compliant. 2. See for more information about Diodes Incorporated’s definitions of Halogen- and Antimony-free, "Green" and Lead-free. 3. Halogen- and Antimony-free "Green” products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and
VGS(th)
0.49



RDS (ON)




ID(ON)
0.5
1.4
|Yfs|

AD7606BSTZ-RL;AD7606BSTZ;AD7606BSTZ-4RL;AD7606BSTZ-6RL;AD7606BSTZ-4;中文规格书,Datasheet资料

AD7606BSTZ-RL;AD7606BSTZ;AD7606BSTZ-4RL;AD7606BSTZ-6RL;AD7606BSTZ-4;中文规格书,Datasheet资料

8-/6-/4-Channel DAS with 16-Bit, BipolarInput, Simultaneous Sampling ADCData SheetAD7606/AD7606-6/AD7606-4Rev. CInformation furnished by Analog Devices is believed to be accurate and reliable. However , no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. T rademarks and registered trademarks are the property of their respective owners.One Technology Way, P.O. Box 9106, Norwood, M A 02062-9106, U.S.A. Tel: 781.329.4700 Fax: 781.461.3113 ©2010–2012 Analog Devices, Inc. All rights reserved.FEATURES8/6/4 simultaneously sampled inputsTrue bipolar analog input ranges: ±10 V, ±5 V Single 5 V analog supply and 2.3 V to 5 V V DRIVE Fully integrated data acquisition solution Analog input clamp protectionInput buffer with 1 MΩ analog input impedance Second-order antialiasing analog filterOn-chip accurate reference and reference buffer 16-bit ADC with 200 kSPS on all channels Oversampling capability with digital filter Flexible parallel/serial interfaceSPI/QSPI™/MICROWIRE™/DSP compatible Performance7 kV ESD rating on analog input channels 95.5 dB SNR, −107 dB THD ±0.5 LSB INL, ±0.5 LSB DNL Low power: 100 mW Standby mode: 25 mW 64-lead LQFP packageAPPLICATIONSPower-line monitoring and protection systems Multiphase motor controlInstrumentation and control systems Multiaxis positioning systems Data acquisition systems (DAS)Table 1. High Resolution, Bipolar Input, Simultaneous Sampling DAS SolutionsResolution Single-Ended Inputs TrueDifferential Inputs Number of SimultaneousSampling Channels 18 Bits AD7608 AD7609 8 16 Bits AD7606 8 AD7606-6 6AD7606-4 4 14 BitsAD76078FUNCTIONAL BLOCK DIAGRAM08479-001Figure 1.AD7606/AD7606-6/AD7606-4Data SheetRev. C | Page 2 of 36TABLE OF CONTENTSFeatures .............................................................................................. 1 Applications ....................................................................................... 1 Functional Block Diagram .............................................................. 1 Revision History ............................................................................... 2 General Description ......................................................................... 3 Specifications ..................................................................................... 4 Timing Specifications .................................................................. 7 Absolute Maximum Ratings .......................................................... 11 Thermal Resistance .................................................................... 11 ESD Caution ................................................................................ 11 Pin Configurations and Function Descriptions ......................... 12 Typical Performance Characteristics ........................................... 17 Terminology .................................................................................... 21 Theory of Operation ...................................................................... 22 Converter Details........................................................................ 22 Analog Input ............................................................................... 22 ADC Transfer Function ............................................................. 23 Internal/External Reference ...................................................... 24 Typical Connection Diagram ................................................... 25 Power-Down Modes .................................................................. 25 Conversion Control ................................................................... 26 Digital Interface .............................................................................. 27 Parallel Interface (PAR /SER/BYTE SEL = 0) .......................... 27 Parallel Byte (PAR /SER/BYTE SEL = 1, DB15 = 1) ............... 27 Serial Interface (PAR /SER/BYTE SEL = 1) ............................. 27 Reading During Conversion ..................................................... 28 Digital Filter ................................................................................ 29 Layout Guidelines....................................................................... 32 Outline Dimensions ....................................................................... 34 Ordering Guide .. (34)REVISION HISTORY1/12—Rev. B to Rev. CChanges to Analog Input Ranges Section ................................... 22 10/11—Rev. A to Rev. BChanges to Input High Voltage (V INH ) and Input Low Voltage(V INL ) Parameters and Endnote 6, Table 2 ..................................... 4 Changes to Table 3 ............................................................................ 7 Changes to Table 4 .......................................................................... 11 Changes to Pin 32 Description, Table 6 ....................................... 13 Changes to Analog Input Clamp Protection Section ................. 22 Changes to Typical Connection Diagram Section ..................... 25 8/10—Rev. 0 to Rev. AChanges to Note 1, Table 2 .............................................................. 6 5/10—Revision 0: Initial VersionData SheetAD7606/AD7606-6/AD7606-4Rev. C | Page 3 of 36GENERAL DESCRIPTIONThe AD76061/AD7606-6/AD7606-4 are 16-bit, simultaneous sampling, analog-to-digital data acquisition systems (DAS) with eight, six, and four channels, respectively. Each part contains analog input clamp protection, a second-order antialiasing filter, a track-and-hold amplifier, a 16-bit charge redistribution successive approximation analog-to-digital converter (ADC), a flexible digital filter, a 2.5 V reference and reference buffer, and high speed serial and parallel interfaces.The AD7606/AD7606-6/AD7606-4 operate from a single 5 V supply and can accommodate ±10 V and ±5 V true bipolar input signals while sampling at throughput rates up to 200 kSPS for all channels. The input clamp protection circuitry can tolerate voltages up to ±16.5 V . The AD7606 has 1 MΩ analog input impedance regardless of sampling frequency. The single supply operation, on-chip filtering, and high input impedance eliminate the need for driver op amps and external bipolar supplies. The AD7606/AD7606-6/AD7606-4 antialiasing filter has a 3 dB cutoff frequency of 22 kHz and provides 40 dB antialias rejection when sampling at 200 kSPS. The flexible digital filter is pin driven, yields improvements in SNR, and reduces the 3 dB bandwidth.1Patent pending.AD7606/AD7606-6/AD7606-4 Data Sheet SPECIFICATIONSV REF = 2.5 V external/internal, A V CC = 4.75 V to 5.25 V, V DRIVE = 2.3 V to 5.25 V, f SAMPLE = 200 kSPS, T A = T MIN to T MAX, unless otherwise noted.1 Table 2.Parameter Test Conditions/Comments Min Typ Max Unit DYNAMIC PERFORMANCE f IN = 1 kHz sine wave unless otherwise notedSignal-to-Noise Ratio (SNR)2, 3Oversampling by 16; ±10 V range; f IN = 130 Hz 94 95.5 dBOversampling by 16; ±5 V range; f IN = 130 Hz 93 94.5 dBNo oversampling; ±10 V Range 88.5 90 dBNo oversampling; ±5 V range 87.5 89 dB Signal-to-(Noise + Distortion) (SINAD)2No oversampling; ±10 V range 88 90 dBNo oversampling; ±5 V range 87 89 dB Dynamic Range No oversampling; ±10 V range 90.5 dBNo oversampling; ±5 V range 90 dB Total Harmonic Distortion (THD)2−107 −95 dB Peak Harmonic or Spurious Noise (SFDR)2−108 dB Intermodulation Distortion (IMD)2fa = 1 kHz, fb = 1.1 kHzSecond-Order Terms −110 dB Third-Order Terms −106 dB Channel-to-Channel Isolation2f IN on unselected channels up to 160 kHz −95 dB ANALOG INPUT FILTERFull Power Bandwidth −3 dB, ±10 V range 23 kHz−3 dB, ±5 V range 15 kHz−0.1 dB, ±10 V range 10 kHz−0.1 dB, ±5 V range 5 kHzt GROUP DELAY±10 V Range 11 µs±5 V Range 15 µsDC ACCURACYResolution No missing codes 16 Bits Differential Nonlinearity2±0.5 ±0.99 LSB4 Integral Nonlinearity2±0.5 ±2 LSB Total Unadjusted Error (TUE) ±10 V range ±6 LSB±5 V range ±12 LSB Positive Full-Scale Error2, 5External reference ±8 ±32 LSBInternal reference ±8 LSB Positive Full-Scale Error Drift External reference ±2 ppm/°CInternal reference ±7 ppm/°C Positive Full-Scale Error Matching2±10 V range 5 32 LSB±5 V range 16 40 LSB Bipolar Zero Code Error2,6±10 V range ±1 ±6 LSB± 5 V range ±3 ±12 LSB Bipolar Zero Code Error Drift ±10 V range 10 µV/°C± 5 V range 5 µV/°C Bipolar Zero Code Error Matching2±10 V range 1 8 LSB±5 V range 6 22 LSB Negative Full-Scale Error2, 5External reference ±8 ±32 LSBInternal reference ±8 LSB Negative Full-Scale Error Drift External reference ±4 ppm/°CInternal reference ±8 ppm/°C Negative Full-Scale Error Matching2±10 V range 5 32 LSB±5 V range 16 40 LSBRev. C | Page 4 of 36Data SheetAD7606/AD7606-6/AD7606-4Rev. C | Page 5 of 36ParameterTest Conditions/Comments Min Typ Max Unit ANALOG INPUTInput Voltage Ranges RANGE = 1 ±10 VRANGE = 0±5 V Analog Input Current 10 V; see Figure 31 5.4 µA5 V; see Figure 31 2.5 µA Input Capacitance 75 pF Input ImpedanceSee the Analog Input section 1 MΩ REFERENCE INPUT/OUTPUTReference Input Voltage Range See the ADC Transfer Function section 2.475 2.5 2.525 V DC Leakage Current±1 µA Input Capacitance 7REF SELECT = 1 7.5 pF Reference Output Voltage REFIN/REFOUT2.49/ 2.505V Reference Temperature Coefficient ±10 ppm/°C LOGIC INPUTSInput High Voltage (V INH ) 0.7 × V DRIVEV Input Low Voltage (V INL ) 0.3 × V DRIVE V Input Current (I IN )±2 µA Input Capacitance (C IN )7 5 pF LOGIC OUTPUTSOutput High Voltage (V OH ) I SOURCE = 100 µA V DRIVE − 0.2 V Output Low Voltage (V OL )I SINK = 100 µA 0.2 V Floating-State Leakage Current ±1 ±20 µA Floating-State Output Capacitance 75 pF Output Coding Twos complement CONVERSION RATEConversion TimeAll eight channels included; see Table 3 4 µs Track-and-Hold Acquisition Time1 µs Throughput Rate Per channel, all eight channels included 200 kSPS POWER REQUIREMENTS AV CC 4.75 5.25 V V DRIVE2.3 5.25 V I TOTALDigital inputs = 0 V or V DRIVE Normal Mode (Static) AD7606 16 22 mA AD7606-6 14 20 mAAD7606-412 17 mA Normal Mode (Operational)8 f SAMPLE = 200 kSPS AD7606 20 27 mA AD7606-6 18 24 mAAD7606-4 15 21 mA Standby Mode 5 8 mA Shutdown Mode 2 6 µAAD7606/AD7606-6/AD7606-4Data SheetRev. C | Page 6 of 36ParameterTest Conditions/Comments Min Typ Max Unit Power DissipationNormal Mode (Static)AD760680 115.5 mW Normal Mode (Operational)8 f SAMPLE = 200 kSPS AD7606 100 142 mW AD7606-6 90 126 mWAD7606-4 75 111 mW Standby Mode 25 42 mW Shutdown Mode1031.5µW1Temperature range for the B version is −40°C to +85°C. The AD7606 is operational up to 125°C with throughput rates ≤ 160 kSPS, and the SNR typically reduces by 0.7 dB at 125°C. 2See the Terminology section. 3This specification applies when reading during a conversion or after a conversion. If reading during a conversion in parallel mode with V DRIVE = 5 V, SNR typically reduces by 1.5 dB and THD by 3 dB. 4LSB means least significant bit. With ±5 V input range, 1 LSB = 152.58 µV. With ±10 V input range, 1 LSB = 305.175 µV. 5These specifications include the full temperature range variation and contribution from the internal reference buffer but do not include the error contribution from the external reference. 6Bipolar zero code error is calculated with respect to the analog input voltage. See the Analog Input Clamp Protection section. 7Sample tested during initial release to ensure compliance. 8Operational power/current figure includes contribution when running in oversampling mode.Data Sheet AD7606/AD7606-6/AD7606-4TIMING SPECIFICATIONSA V CC = 4.75 V to 5.25 V, V DRIVE = 2.3 V to 5.25 V, V REF = 2.5 V external reference/internal reference, T A = T MIN to T MAX, unless otherwise noted.1Rev. C | Page 7 of 36AD7606/AD7606-6/AD7606-4 Data SheetRev. C | Page 8 of 36Data SheetAD7606/AD7606-6/AD7606-4Rev. C | Page 9 of 361 Sample tested during initial release to ensure compliance. All input signals are specified with tR = t F = 5 ns (10% to 90% of V DRIVE ) and timed from a voltage level of 1.6 V. 2In oversampling mode, typical t CONV for the AD7606-6 and AD7606-4 can be calculated using ((N × t CONV ) + ((N − 1) × 1 µs)). N is the oversampling ratio. For the AD7606-6, t CONV = 3 µs; and for the AD7606-4, t CONV = 2 µs. 3The delay between the CONVST x signals was measured as the maximum time allowed while ensuring a <10 LSB performance matching between channel sets. 4A buffer is used on the data output pins for these measurements, which is equivalent to a load of 20 pF on the output pins.Timing Diagrams08479-002Figure 2. CONVST Timing—Reading After a Conversion08479-003Figure 3. CONVST Timing—Reading During a ConversionAD7606/AD7606-6/AD7606-4Data SheetRev. C | Page 10 of 3608479-004Figure 4. Parallel Mode, Separate CS and RD PulsesDATA:DB[15:0]FRSTDATACS AND RD08479-005Figure 5. CS and RD , Linked Parallel ModeSCLKD OUT A,D OUT BFRSTDATA08479-006Figure 6. Serial Read Operation (Channel 1)08479-007Figure 7. BYTE Mode Read Operation分销商库存信息:ANALOG-DEVICESAD7606BSTZ-RL AD7606BSTZ AD7606BSTZ-4RL AD7606BSTZ-6RL AD7606BSTZ-4AD7606BSTZ-6 EVAL-AD7606-6EDZ EVAL-AD7606EDZ EVAL-AD7606-4EDZ。

414;中文规格书,Datasheet资料

414;中文规格书,Datasheet资料

/
414
DC axial compact fan
Product drawing
Web data sheet XI · Page 3 of 4 ebm-papst St. Georgen GmbH & Co. KG · Hermann-Papst-Straße 1 · D-78112 St. Georgen · Phone +49 7724 81-0 · Fax +49 7724 81-1309 · info2@ ·
Mass Dimensions Material of impeller Housing material Direction of air flow Direction of rotation Bearing Lifetime L10 at 20 °C Lifetime L10 at 60 °C Connection line Motor protection Approval
/
分销商库存信息:
EBM-PAPST 414
/
414
DC axial compact fan
Technical features
General description Particular design features: Compact fan with low power consumption. Some models suitable for use at high ambient temperatures. General features: Material: fibreglass-reinforced plastic. Impeller PA, housing PBT. Electronic commutation completely integrated. Protected against reverse polarity and locking. Connection via single strands AWG 28, TR 64, bared and tin-plated. Air exhaust over bars. Direction of rotation counter-clockwise seen on rotor. Masse: 17 g. 0.027 kg 40 x 40 x 20 mm Fiberglass-reinforced PA plastic Fiberglass-reinforced PBT plastic Air exhaust over bars Left, looking at rotor Sintec sleeve bearing 50000 h 20000 h Single strands AWG 28, TR 64, bared and tin-plated. Protected against reverse polarity and locking. VDE, CSA, UL

NB7L216MNR2G;NB7L216MNG;NB7L216MN;NB7L216MNR2;NB7L216MNEVB;中文规格书,Datasheet资料

NB7L216MNR2G;NB7L216MNG;NB7L216MN;NB7L216MNR2;NB7L216MNEVB;中文规格书,Datasheet资料

NB7L2162.5V/3.3V, 12Gb/s Multi Level Clock/Data Input to RSECL, High GainReceiver/Buffer/Translator with Internal TerminationDescriptionThe NB7L216 is a differential receiver/driver with high gain output targeted for high frequency applications. The device is functionally equivalent to the NBSG16 but with much higher gain output. This highly versatile device provides 35 dB of gain up to 7 GHz.Inputs incorporate internal 50 W termination resistors and accept Negative ECL (NECL), Positive ECL (PECL), LVTTL, LVCMOS, CML, or LVDS. Outputs are Reduced Swing ECL (RSECL), 400 mV. The V BB pin is an internally generated voltage supply available to this device only. V BB is used as a reference voltage for single−ended NECL or PECL inputs. For all single−ended input conditions, the unused complementary differential input should be connected to V BB as a switching reference voltage. V BB may also rebias AC coupled inputs. When used, decouple V BB via a 0.01 m F capacitor and limitcurrent sourcing or sinking to 0.5 mA. When not used, V BB output should be left open.Application notes, models and support documentation are available at .Features•High Gain of 35 dB from DC to 7 GHz Typical•High IIP3: 0 dBm Typical•20 mV Minimum Input V oltage Swing•Maximum Input Clock Frequency up to 8.5 GHz •Maximum Input Data Rate up to 12 Gb/s Typical•<0.5 ps of RMS Clock Jitter•<9 ps of Data Dependent Jitter•120 ps Typical Propagation Delay•30 ps Typical Rise and Fall Times•RSPECL Output with Operating Range: V CC = 2.375 V to 3.465 V with V EE = 0 V•RSNECL Output with RSNECL or NECL Inputs with Operating Range: V CC = 0 V with V EE = −2.375 V to −3.465 V •RSECL Output Level (400 mV Peak−to−Peak Output),•50 W Internal Input Termination Resistors (Temperature−Coefficient of < 6.38 m W/°C)•V BB – ECL Reference V oltage Output•Pb−Free Packages are AvailableQQ QFN−16MN SUFFIXCASE 485GMARKING DIAGRAM**For additional marking information, refer toApplication Note AND8002/D.A= Assembly LocationL= Wafer LotY= YearW= Work WeekG= Pb−Free PackageSee detailed ordering and shipping information in the package dimensions section on page 10 of this data sheet.ORDERING INFORMATIONFigure 1. Functional Block DiagramTIME (17 ps/div)Figure 2. Typical Output Waveform at12 Gb/s with PRBS 223−1 (V INPP= 400 mV,Input Signal DDJ = 12 ps)VOLTAGE(6mV/div)Device DDJ = 3 ps(Note: Microdot may be in either location)1EEVTD D D VTDFigure 3. QFN −16 Pinout (Top View)EE EE EETable 1. PIN DESCRIPTIONPin Name I/O Description1VTD −Internal 50 W termination pin. See Table 7. Note 12DLVPECL, CML,LVCMOS, LVDS,LVTTL Input Inverted differential input. Note 1.3D LVPECL, CML,LVCMOS, LVDS,LVTTL InputNoninverted differential input. Note 1.4VTD −Internal 50 W termination pin. See Table 7. Note 1.15V BB −Internally generated ECL reference voltage supply.5, 6, 7, 8, 13, 14, 16V EE −Negative supply voltage. All V EE pins must be externally connected to power supply to guarantee proper operation.9, 12V CC −Positive supply voltage. All V CC pins must be externally connected to power supply to guarantee proper operation10Q RSECL Output Noninverted differential output. Typically receiver terminated with 50 W resistor to V TT = V CC − 2.0 V.11Q RSECL OutputInverted differential output. Typically receiver terminated with 50 W resistor to V TT = V CC − 2.0 V.−EP−Exposed pad (EP). Thermally exposed pad on the package bottom must be attached to a heat sinking conduit. It is recommended to connect the EP to the lower potential, V EE .1.In the differential configuration when the input termination pins (VTD, VTD) are connected to a common termination voltage and if no signal is applied on D/D input then the device will be susceptible to self −oscillation.Table 2. ATTRIBUTESCharacteristics ValueESD Protection Human Body ModelMachine ModelCharged Device Model > 500 V > 10 V > 4 kVMoisture Sensitivity (Note 2)Pb Pkg Pb−Free PkgQFN−16Level 1Level 1Flammability Rating Oxygen Index: 28 to 34UL 94 V−0 @ 0.125 inTransistor Count164Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test.2.For additional information, see Application Note AND8003/D.Table 3. MAXIMUM RATINGS (Note 3)Symbol Parameter Condition 1Condition 2Rating Unit V CC Positive Power Supply V EE = 0 V 3.6V V EE Negative Power Supply V CC = 0 V−3.6VV I Positive InputNegative Input V EE = 0 VV CC = 0 VV I = V CCV I = V EE3.6−3.6VVV INPP Differential Input Voltage|D − D| 2.8VI IN Input Current Through R T(50 W Resistor)StaticSurge 4580mAmAI OUT Output Current ContinuousSurge 2550mAmAI BB V BB Sink/Source± 0.5mA T A Operating Temperature Range−40 to +85°C T stg Storage Temperature Range−65 to +150°Cq JA Thermal Resistance (Junction−to−Ambient) (Note 4)0 lfpm500 lfpmQFN−16QFN−164235°C/W°C/Wq JC Thermal Resistance (Junction−to−Case)1S2P (Note 4)QFN−164°C/WT sol Wave Solder PbPb−Free 265265°CStresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.3.Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously.If stress limits are exceeded device functional operation is not implied, damage may occur and reliability may be affected.4.JEDEC standard multilayer board − 1S2P (1 signal, 2 power) with 8 filled thermal vias under exposed pad.Table 4. DC CHARACTERISTICS, CLOCK INPUTS, RSECL OUTPUTS V CC = 2.375 V to 3.465 V, V EE = 0 VSymbol Characteristic−40 5C25 5C85 5CUnit Min Typ Max Min Typ Max Min Typ MaxI EE Power Supply Current (VTD/VTDopen)273527352735mAV OH Output HIGH Voltage(Note 5 and 6)V CC−1040V CC−980V CC−940V CC−1000V CC−950V CC−900V CC–950V CC−900V CC−850mVV OL Output LOW Voltage(Note 5 and 6)V CC−1520V CC−1430V CC−1320V CC−1470V CC−1370V CC−1270V CC–1440V CC−1340V CC−1240mVDIFFERENTIAL INPUT DRIVEN SINGLE−ENDED (see Figures 14 and 16)V TH Input Threshold Reference Voltage Range (Note 7 and 8)1100V CC−101100V CC−101100V CC−10mVV IH Single−ended Input HIGH Voltage (Note 8)V th+10V CC V th+ 10V CC V th+10V CC mVV IL Single−ended Input LOW Voltage (Note 8)V EE V th−10V EE V th−10V EE V th−10mVDIFFERENTIAL INPUTS DRIVEN DIFFERENTIALLY (see Figures 15 and 17)V IHD Differential Input HIGH Voltage(Note 9)1105V CC1105V CC1105V CC mVV ILD Differential Input LOW Voltage(Note 9)V EE V CC−10V EE V CC−10V EE V CC−10mVV CMR Input Common Mode Range(Differential Configuration,Note 9 and 10)1100V CC−51100V CC–51100V CC–5mVV ID Differential Input Voltage(V IHD− V ILD)102500102500102500mV V IO Input Offset Voltage (Note 11)−50+5−50+5−50+5mVV BB Internally Generated ReferenceVoltage Supply(Only 3 V – 3.6 V Supply Load with−100 m A)V CC−1425V CC−1345V CC−1265V CC−1425V CC−1345V CC−1265V CC−1425V CC−1345V CC−1265mVI IH Input HIGH CurrentD/Db (VTD/VTD Open)020100020100020100m AI IL Input LOW CurrentD/Db (VTD/VTD Open)−251075−251075−251075m A R TIN Internal Input Termination Resistor455055455055455055WR T_Coef Internal Input Termination ResistorTemperature Coefficient6.38 6.38 6.38m W/°CNOTE:Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operatingtemperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.5.Outputs evaluated with 50 W resistors to V TT = V CC− 2.0 V for proper operation.6.Input and output parameters vary 1:1 with V CC.7.V TH is applied to the complementary input when operating in single−ended mode.8.V IH, V IL and V TH parameters must be complied simultaneously.9.V IHD, V ILD and V CMR parameters must be complied simultaneously.10.V CMR min varies 1:1 with V EE, V CMR max varies 1:1 with V CC.11. Typical standard deviation of input offset voltage is 1.76 mV.Table 5. AC CHARACTERISTICS V CC = 2.375 V to 3.465 V, V EE = 0 V; (Note 12)Symbol Characteristic−40°C25°C 85°C Unit Min Typ MaxMin Typ MaxMin Typ MaxV OUTPP Output Voltage Amplitude (@ V INPPmin )f in ≤ 7.0 GHz (See Figure 4)f in ≤ 8.5 GHz 275100380250275100380250275100380250mV f DATA Maximum Operating Data Rate 101210121012Gb/s |S21|Power Gain DC to 7 GHz 353535dB |S11|Input Return Loss @ 7 GHz −10−10−10dB |S22|Output Return Loss @ 7 GHz−5−5−5dB |S12|Reverse Isolation (Differential Configuration)−25−25−25dB IIP3Input Third Order Intercept000dBm t PLH ,t PHL Propagation Delay to Output Differential @ 1 GHz 601201806012018060120180ps t SKEW Duty Cycle Skew (Note 12)Device to Device Skew (Note 17)251020251020251020ps t JITTERRMS Random Clock Jitter f in v 8.5 GHz (Note 15)Peak −to −Peak Data Dependent Jitter (Note 16)f DATA = 3.5 Gb/s f DATA = 5.0 Gb/s f DATA = 10 Gb/s f DATA = 12 Gb/s 0.113440.579990.113440.579990.113440.57999psV INPP Input Voltage Swing/Sensitivity(Differential Configuration) (Note 14 and Figure 12)202500202500202500mV t r t fOutput Rise/Fall Times @ 0.5 GHz Q, Q(20% − 80%)304530453045psNOTE:Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuitboard with maintained airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operatingtemperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.12.Measured by forcing V INPPmin from a 50% duty cycle clock source. All loading with an external R L = 50 W to V TT =V CC − 2.0 V. Input edge rates 40 ps (20% − 80%).13.Duty cycle skew is measured between differential outputs using the deviations of the sum of Tpw − and Tpw+ @ 1 GHz.14.V INPP (MAX) cannot exceed V CC − V EE . Input voltage swing is a single −ended measurement operating in differential mode.15.Additive RMS jitter with 50% duty cycle clock signal.16.Additive peak −to −peak data dependent jitter with input NRZ data at PRBS 223−1.17.Device to device skew is measured between outputs under identical transition @ 1 GHz.Figure 4. Output Voltage Amplitude (V OUTPP ) versusInput Clock Frequency (f IN ) and Temperature (V INPP = 400 mV, V CC = 3.3 V and V EE = 0 V)INPUT CLOCK FREQUENCY (GHz)O U T P U T V O L T A G E A M P L I T U D E (m V )050100150200250300350400450500INPUT CLOCK FREQUENCY (GHz)O U T P U T V O L T A G E A M P L I T U D E (m V )Figure 5. Output Voltage Amplitude (V OUTPP ) versusInput Clock Frequency (f IN ) and Temperature (V INPP = 20 mV, V CC = 3.3 V and V EE = 0 V)TIME (66 ps/div)Figure 6. Typical Output Waveform at 2.488 Gb/s with PRBS 223−1 (V INPP = 400 mV, Input Signal DDJ = 12 ps)V O L T A G E (60 m V /d i v )TIME (54 ps/div)Figure 7. Typical Output Waveform at 3.5 Gb/s with PRBS 223−1 (V INPP = 400 mV, Input Signal DDJ = 12 ps)V O L T A G E (60 m V /d i v )V O L T A G E (60 m V /d i v )TIME (37 ps/div)Figure 8. Typical Output Waveform at 5 Gb/s with PRBS223−1 (V INPP = 400 mV, Input Signal DDJ = 12 ps)TIME (21 ps/div)Figure 9. Typical Output Waveform at 10 Gb/s with PRBS 223−1 (V INPP = 400 mV, Input Signal DDJ = 12 ps)V O L T A G E (60 m V /d i v )Device DDJ = 1 psDevice DDJ =1 psDevice DDJ =2 psDevice DDJ = 3 psFREQUENCY (GHz)G A I N (d B )0510152025303540Figure 10. Small Signal Gain – S21 Magnitude*−50−40−30−20−100G A I N (d B )FREQUENCY (GHz)Figure 11. Input and Output Reflection – S11and S22 Magnitude*246810121416246810121416*T A = +25°C, V CC = 3.3 V, V EE =0 V, P IN = −44 dBm,Z S = Z L = 50 W , input and output matching network is not included.Table 6. TYPICAL DEVICE S−PARAMETERSFrequency(Hz)S11S21S12S22dbS11|S11|íS11dbS21|S21|íS21dbS12|S12|íS12dbS22|S22|íS224.97E+08−45.20.005−88.537.272.799−33.2−72.30.001−139.1−2.50.749157.41.02E+09−30.40.030−134.737.373.145−68.4−45.80.005129.8−2.90.714154.31.51E+09−36.20.015−146.537.171.433−105.4−43.30.00798.5−2.90.717132.82.00E+09−27.40.04225.737.474.061−139.0−37.10.01491.8−3.50.666107.12.52E+09−12.30.244−27.736.264.810−179.5−29.90.03254.4−4.40.59992.13.01E+09−10.60.295−83.836.970.102144.5−26.10.0509.4−6.30.48577.33.50E+09−19.00.112−22.135.458.93399.9−28.30.03825.9−5.00.56667.94.02E+09−10.60.294−120.335.660.43773.8−24.80.058−32.6−7.60.41754.24.51E+09−10.70.291167.436.062.84341.1−22.50.075−68.3−13.90.20170.24.99E+09−9.00.35487.135.156.57614.2−25.20.055−107.2−8.70.36781.25.48E+09−10.60.29462.736.465.812−16.1−24.30.061−121.4−8.00.39850.46.01E+09−9.30.341108.235.861.327−72.8−24.50.060−125.7−8.00.397−0.96.49E+09−9.40.34059.436.264.212−119.4−21.90.080−152.4−12.50.237−27.26.98E+09−17.50.13325.534.352.039−141.5−22.70.073177.5−7.40.428−32.27.51E+09−25.60.053107.933.245.861164.6−24.40.060165.7−7.00.445−37.97.99E+09−13.70.206146.525.218.093133.6−21.50.084152.8−7.60.416−54.78.52E+09−6.70.462117.922.613.434116.2−19.40.107120.7−12.10.249−73.79.00E+09−5.20.552106.219.49.336102.0−19.00.112109.9−12.20.246−62.59.49E+09−3.70.65271.119.08.93761.1−19.40.10762.0−11.50.267−100.21.00E+10−9.70.32646.218.78.59518.6−24.00.06350.6−10.40.301−117.01.05E+10−11.00.28335.814.5 5.298−13.3−25.90.05112.9−10.80.288−172.01.10E+10−8.30.3847.212.9 4.408−9.6−29.40.03421.1−13.40.21374.01.15E+10−5.90.506−0.412.7 4.339−33.7−21.40.08536.3−21.40.085−148.61.20E+10−9.00.356−23.812.9 4.395−63.4−19.40.107−9.5−13.40.214159.51.25E+10−15.60.166−46.910.5 3.360−97.8−21.00.089−39.0−12.40.239169.21.30E+10−15.10.175−83.09.9 3.121−119.7−24.00.063−39.9−11.30.272171.61.35E+10−12.00.250−96.58.7 2.728−148.9−22.00.079−39.1−14.90.181177.81.40E+10−11.50.265−105.97.32.314−167.1−18.60.118−74.2−18.40.120140.31.45E+10−17.00.140−97.8 5.4 1.856167.6−20.10.099−107.0−15.70.16398.21.50E+10−23.40.068−108.9 4.6 1.695145.0−20.20.098−128.1−11.20.27496.1 NOTE:T A = +25°C, V CC=3.3V, V EE = 0 V, P IN = −44 dBm, Z S = Z L = 50 W, input and output matching network is not included.Figure 12. AC Reference MeasurementIH (D) − V IL (D)= V OH (Q) − V OL (Q)Figure 13. Typical Termination for Output Driver and Device Evaluation (See Application Note AND8020/D − Termination of ECL Logic Devices.)V TTV TT = V CC − 2.0 VFigure 14. Differential Input DrivenSingle −Ended Figure 15. Differential Inputs DrivenDifferentiallyFigure 16. V th Diagram Figure 17. V CMR DiagramV thILDNOTE:V EE v V IN v V CC ; V IH > V ILAPPLICATION INFORMATIONAll NB7L216 inputs can accept PECL, CML, LVTTL, LVCMOS and LVDS signal levels. The limitations for differential input signal (LVDS, PECL, or CML) are minimum input swing of 75 mV and the maximum input swing of 2500 mV . Within these conditions, the input voltage can range from V CC to 1.2 V . Examples interfaces are illustrated below in a 50 W environment (Z = 50 W ). For output termination and interface, refer to application note AND8020/D.Table 7. INTERFACING OPTIONSInterfacing OptionsConnectionsCML Connect VTD and VTD to V CC (See Figure 18)LVDS Connect VTD and VTD Together (See Figure 20)AC −COUPLED Bias VTD and VTD Inputs within Common Mode Range (V CMR ) (See Figure 19)RSECL, PECL, NECL Standard ECL Termination Techniques (See Figure 13)LVTTL, LVCMOSAn External Voltage (V THR ) should be Applied to the Unused Complementary Differential Input. Nominal V THR is 1.5 V for LVTTL and V CC / 2 for LVCMOS Inputs. This Voltage must be within the V THR Specification. (See Figure 21)EE EEFigure 18. CML to NB7L216 InterfaceFigure 19. PECL to NB7L216 InterfaceEEEEEEV CCR T5.0 V 290 W 3.3 V 150 W 2.5 V80 WRecommended R T Values*V Bias must be within common mode range limits (V CMR )EE EEFigure 20. LVDS to NB7L216 InterfaceFigure 21. LVCMOS/LVTTL to NB7L216 InterfaceORDERING INFORMATIONDevice Package Shipping†NB7L216MN QFN−16123 Units / Rail123 Units / RailNB7L216MNG QFN−16(Pb−Free)NB7L216MNR2QFN−163000 / Tape & ReelNB7L216MNR2G QFN−163000 / Tape & Reel(Pb−Free)†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel PackagingSpecifications Brochure, BRD8011/D.分销商库存信息:ONSEMINB7L216MNR2G NB7L216MNG NB7L216MN NB7L216MNR2NB7L216MNEVB。

BP6A-L;中文规格书,Datasheet资料

BP6A-L;中文规格书,Datasheet资料

BP6A – L-Series IPM Interface Circuit Reference DesignDescription: The BP6A is a complete isolated interface circuit for high power six pack L-Series IPMs. This circuit provides opto-coupled isolation for control signals and isolated power supplies for the IPM’s built-in gate drive and protection circuits. The isolated interface helps to simplify prototype development and minimize design time by allowing direct connection of the IPM to logic level control circuits.Features: • Complete three-phase isolated interface circuit with fault feedback • 2500VRMS isolation for control power and signals• Standard AMP MTA .100” Input Signal and ControlPower Connectors• Operates from a single 24VDC supply• Compact Size 3.2” x 5.5” (80mm x 140mm)Ordering Information: BP6A-L is a kit containing a bare PCB and six VLA106-24151 DC to DC converters(For use with L-Series IPMs in package D)BP6A is a bare PCB only.Note: User must supply Opto-Couplers and passive components to fully populate the BP6A (See Table 2)Applications:BP6A is designed for use with Powerex L-Series sixpack IPMs: 450A-600A 600V and 200A-450A 1200V.¾ Use Powerex VLA106-24151 DC to DCconverter for isolated control power. SeeTable 1 for requirements.Caution: Verify PCB Orientation Before Applying PowerPackage APackage BPackage CPackage D only four isolated supplies are required. Interface circuit details for分销商库存信息: POWEREXBP6A-L。

M57962CL-01;中文规格书,Datasheet资料

M57962CL-01;中文规格书,Datasheet资料

1Gate DriverM57962CL-01Powerex, Inc., 200 Hillis Street, Youngwood, Pennsylvania 15697-1800 (724) 925-7272Hybrid Integrated Circuit For Driving IGBT ModulesDescription:M57962CL-01 is a hybridintegrated circuit designed for driving n-channel IGBT modules in any gate amplifier application. This device operates as an isolation amplifier for these modules and provides the required electrical isolation between the input and output with an opto-coupler. Short circuit protection is provided by a built in desaturation detector. A fault signal is provided if the short circuit protection is activated.Features:□Electrical Isolation betweeninput and output with opto-couplers.(V iso = 2500V RMS for 1 min.)□Two supply drive topology □Built in short circuit protectioncircuit with a pin for fault output □Variable fall time on activity ofshort circuit protection□TTL compatible input interface Application:To drive IGBT modules for inverter,AC Servo systems, UPS, CVCF inverter, and welding applications.Recommended Modules:V CES = 600V Series(up to 800A Class)V CES = 1200V Series(up to 400A Class)/Powerex, Inc., 200 Hillis Street, Youngwood, Pennsylvania 15697-1800 (724) 925-7272M57962CL-01Hybrid IC for IGBT Gate DriverAbsolute Maximum Ratings, T a =25°C unless otherwise specifiedItem Symbol Test Conditions Limit Units Supply Voltage V CC DC 18VoltsV EE DC-15Volts Input Voltage V I Applied between: 13 – 14-1 ~ 7Volts Output Voltage V O Output Voltage “H”V CC Volts Output Current I OHP Pulse Width 2µs, f ≤ 20kHz -5AmperesI OLP Pulse Width 2µs, f ≤ 20kHz5Amperes Isolation Voltage V RMS Sinewave Voltage 60Hz, 1 min.2500Volts Case T emperature T c85°C Operating Temperature T opg-20 ~ 60°C Storage Temperature t stg-25 ~ 100°C Fault Output Current I FO Applied 8 pin20mA Input Voltage V R1Applied 1 pin50Volts2/Powerex, Inc., 200 Hillis Street, Youngwood, Pennsylvania 15697-1800 (724) 925-7272M57962CL-01Hybrid IC for IGBT Gate DriverElectrical Characteristics, T a = 25°C, V CC = 15V, V EE = -10V unless otherwise specifiedCharacteristics Symbol Test Conditions Min.Typ.Max.UnitsSupply Voltage V CC Recommended Range14 15—VoltsV EE Recommended Range -7—-10Volts Pull-up Voltage on Input Side V IN Recommended Range 4.75 5.00 5.25Volts“H” Input Current I IH Recommended Range15.21619mASwitching Frequency f Recommended Range——20kHzGate Resistor R G Recommended Range2——Ω“H” Input Current I IH V IN = 5V—16—mA“H” Output Voltage V OH1314—Volts“L” Output Voltage V OL-8-9—Volts“L-H” Propagation Time t PLH I IH = 16mA—0.5 1.0µs“L-H” Rise Time t r I IH = 16mA—0.6 1.0µs“H-L” Propagation Time t PHL I IH = 16mA—0.8 1.3µs“H-L” Fall Time t f I IH = 16mA—0.4 1.0µsTimer t timer Between start and cancel 1.0— 2.0ms(under input sign “L”)Fault Output Current I FO Applied 8 pin, R = 4.7kΩ— 5.0—mAControlled Time Detect Short Circuit 1t trip1Pin1: 15V and more, Pin 2 : Open— 2.6—µsControlled Time Detect Short Circuit 2*t trip2Pin1: 15V and more,— 3.0—µsPin 2 – 4 : 1000pF (Connective Capacitance)SC Voltage V SC SC Detect Voltage15——Volts*Length of wiring of condenser controlled time detect short circuit is within 5cm from 2 and 4 pin coming and going.3/4M57962CL-01Hybrid IC for IGBT Gate DriverPowerex, Inc., 200 Hillis Street, Youngwood, Pennsylvania 15697-1800 (724) 925-7272AMBIENT TEMPERATURE, T a , (°C) P R O P A G A T I O N D E L A Y T I M E "L -H ", t P L H , (µs ) P R O P A G A T I O N D E L A Y T I M E "H -L ", t P H L , (µs )PROPAGATION DELAY TIME VS. AMBIENT TEMPERATURE CHARACTERISTICS (TYPICAL)1.62040601.21.41.00.60.80.20.4080INPUT SIGNAL VOLTAGE, V I , (VOLTS) P R O P A G A T I O N D E L A Y T I M E "L -H ", t P L H , (µs ) P R O P A G A T I O N D E L A Y T I M E "H -L ", t P H L , (µs )PROPAGATION DELAY TIME VS. SIGNAL VOLTAGE CHARACTERISTICS (TYPICAL)1.634561.21.41.00.60.80.20.407AMBIENT TEMPERATURE, T a , (°C)C O N T R O L L ED T I ME D E T E C T S H O R T C I R C U I T , t t r i p 1, t t r i p 2, (µs )CONTROLLED TIME DETECT VS. AMBIENT TEMPERATURE CHARACTERISTICS (TYPICAL)802040606753412080CONNECTIVE CAPACITANCE, C trip , (pF)PIN: 2 4C O N T R O L L ED T I ME D E T E C T S H O R T C I R C U I T , t t r i p , (µs )CONTROLLED TIME DETECT VS. CONNECTIVE CAPACITANCECHARACTERISTICS (TYPICAL)80200040006000675341208000AMBIENT TEMPERATURE, T a , (°C)P O W E R D I S S I P A T I O N , P D , (W A T T S )POWER DISSIPATION VS. AMBIENT TEMPERATURE(MAXIMUM RATING)020*******3412010000.020.040.080.06503040102000.1SUPPLY VOLTAGE, V CC , (VOLTS)APPLIED BETWEEN: 4 6D I S S I P A T IO N C U R R E N T , (m A )DISSIPATION CURRENT VS. SUPPLY VOLTAGE INPUT SIGNAL "L" (TYPICAL)FA L L T I M E O F S H O R T C I R C U I T , t 1, t 2, (µs )SLOW SHUTDOWN SPEED (t 1, t2) VS. C S01020C S (µF)304025205101550V pin 1V GE/分销商库存信息: POWEREXM57962CL-01。

Honeywell MICRO SWITCH V7系列高级微型基本开关数据手册说明书

Honeywell MICRO SWITCH V7系列高级微型基本开关数据手册说明书

V7-1A17D8-048V7-1C17D8-207V7-1C17E9V7-1C27E9V7-1S17D8 V7-2B17D8-201V7-5F17D8V7-6B19D8-057V7-1A17D8-057V7-7B19E9MICRO SWITCH™Premium Miniature Basic Switches Datasheet2What makes our switches better?Certified with CSA, ENEC, and UL for global acceptability Reliable snap-spring mechanism with more than 60 years ofproven service Available with pin plungers, integral levers (fitted two posi-tions), or auxiliary levers to meet equipment requirements Electrical ratings from 0.1 A up to 25 A fordesign flexibility in one package sizeMICRO SWITCH™ V7 SeriesPremium Miniature Basic SwitchesHoneywell’s MICRO SWITCH™ V7 miniature switches are designed for long term-reliability in a rugged switchpackaged with a thermoplastic housing. These switches may be installed in a wide range of applications from simple or precision on/off limits, presence/absence sensing, or embedded in pressure or temperature assemblies.The V7 switch is available as a pin plunger style or with optional integral or auxiliary levers to actuate the switch and offer versatility in the application. The switch requires as little as 0,15 Newtons [approximately ½ ounce] to operate for extremely sensitive applications or an operating force of almost 4 Newtons [14 ounces] where higher forces are required. The V7 switch can reliably control logic level electrical loads from less than 0.1 A to power duty switching up to 25 A. Agency certifications for the MICRO SWITCH™ V7 switches are provided through CSA, ENEC, and UL for global use around the world.COST OPTIMIZATION • RELIABILITYPERFORMANCE • GLOBAL ACCEPTANCEBig performance in a small package.3Features and BenefitsACTUATION ON TIMEMICRO SWITCH™ V7 Series basic switches operate with forces as low as 15 g and carry options to increase to 397 g, and can thereby easily accommodate different actuator mechanisms.RELIABLE PERFORMANCE IN HARSH CONDITIONSSwitches feature industry-leading temperature ranges of -40 °C to 175 °C [-40 °F to 347 °F] to allow for years of reliable performance in harsh conditions.LONG LIFE CYCLE RATINGThe long life cycle rating (up to 10,000,000 cycles ) reduces the need to replace switches over the life of OEM platform applications, therefore reducing total system cost.DESIGN FLEXIBILITYAvailable with pin plungers, integral levers (fitted 2 positions), and auxiliary levers to meet a variety of equipment requirements, MICRO SWITCH™ V7 Series switches also boast electrical ratings from 0.1 A up to 25 A for design flexibility in one package size.Global acceptance: UL, CSA, ENECVENDING MACHINE MOTORSSwitch controls motors or solenoids in vending machines for dispensing of product.MICROWAVE DOOR INTERLOCKSwitch in door interlock of microwave that disconnects power if door opened.OVEN CLEANING LATCHSwitch in door latch for oven clean operation.PRESSURE SWITCH ASSEMBLYPressure switch senses incoming water pressure for power washer.Potential Applications4V7 SeriesPRODUCT NOMENCLATUREV7Switch Type 1Operating Force1Termination Style(Inches)5Electric ratings “W” x “X” only used with “A” Mounting Construction and vice versa 6European ENEC rating requires Mounting Construction code “9” or “0”Electrical Rating 3,6CV7 Series Miniature Circuitry CodeMounting/Construction 4,61Use only if this switch has a special feature.Could be any number.Special Designator7D8Lever Style 2North Europe ——MICRO SWITCH™ Premium Miniature Basic Switches1 Incandescent lamp rating2 XX(Y) - XX = max. rated resistive value in amps, and (Y) = max. rated inductive value in amps3 European ENEC rating requires Mounting Construction code “9” or “0”. See page four, Mounting Construction column5BZ/BA Type[0.87 in]*3,1 mm mtg holes[0.81 in]** 177 °C [350 °F]78V7 SeriesAVAILABLE TERMINALS Quick Connect (QC)D8 Terminals: 0.187 in wide x 0.020 in thick.E8 Terminals: 0.187 in wide x 0.020 in thick.E9 Terminals: 0.250 in wide x 0.032 in thick.Printed Circuit Board (PO2)These terminals interface with snap-on receptacles and other components from AMPMODU interconnection system.MICRO SWITCH™ Premium Miniature Basic SwitchesThis Honeywell datasheet supports the following MICRO SWITCH™ V7 Series Basic Switch ListingsV7-1C17D8-002 V7-1C37D855-002 V7-6C18D8-002 V7-1C27D855-002 V7-1C33D855-002 V7-1C39D8-002 V7-1C17E9-002V7-6C28E9-002V7-1B17D8-022 V7-1B19D8-022 V7-1C17D8-022 V7-3S17E9-022V7-6B19E9-022V7-1S17D8-022V7-2B17D8-022 V7-3S17D8-022V7-1B29P07-022 V7-1C18E9-022V7-3E17E9-022V7-2B27D8-022 V7-2S17D8-022V7-9W1AE9-022 V7-1Z19E9-022V7-2B17D8-048 V7-1V19E9-048V7-1C17D8-048 V7-1X2AD8-048 V7-9W1AE9-048 V7-1B17D8-048 V7-3S17D8-048V7-9W2AE9-048 V7-7B17D8-048 V7-1A17D8-048V7-2B29E9-048V7-2B19E9-048V7-6C18D8-048 V7-1B27D8-048 V71A17D8048V7-1C17D8-201 V7-7B17D8-201 V7-1C13D8-201 V7-2B17D8-201 V7-1C17E9-201V7-2S17D8-201V7-6B19E9-201V7-1S17D8-201V7-7B17D862-201 V7-1D19D8-201 V7-3A17D8-201V7-1D10E9-201V7-1V17D8-201V7-1C17D8-207V7-1B17D8-207V7-2B17D8-207V7-1C17E9-207V7-2A17D8-207V7-1V19E9-207V7-1B10E9-207V7-1A27D8-207V7-7D17D8-207V7-2S17D8-207V7-1S17D8-207V7-1C17D8-263V7-1B17D8-263V7-6C17D8-263V7-1Z10E9-263V7-1S17D8-263V7-1C27E9-263V7-1V29E9-263V7-3E19E9-263V71Z10E9-263V7-7B19D8-263V7-1S18D8-263V7-1B37D8-263V7-3A17D8-263V7-1B178-263V7-1A27D8-636V7-1C17D8V7-2B17D8V7-1V39E9V7-1Z19E9V7-1B37D8V7-2S17D8V7-1C17E9V7-1C37D8V7-1Z29E9V7-3E17D8V7-5F17D8V7-7B17D8V7-1S17D8V7-1V19E9V7-3E17E9V7-1Z20E9V7-4A17D8V7-5F27E9V7-1Y39E9V7-1V29E9V7-1D10D8V7-2B17E9V7-6C17D8V7-4S17D8V7-1Y19E9V7-1C27E9V71Z10E9V7-1B17D8V7-6B19D8V7-1C18D8V7-1A17D8V7-2B29D8V7-5D17E9V7-3A17D8V7-4S37D8V7-7B19E9V7-1Z10E9V7-2A17E9V7-5F27D8V7-3S17E9V7-1S10D8V7-1Z39E9V7-2B27E9V7-3E19E9V7-1A17P02V7-4S27D8V7-7B27D8V7-1Z13E9V7-1Z30E9V7-2A27D8V7-7A19D8V7-2B37E9V7-1C29D8V7-1C13E9V7-3A18D8V7-9W2AE9V7-4A18E9V7-9W1AE9V7-1A28D8V7-1B19E9V7-1K29E9V7-2B17-D8V7-3E10E8V7-6C37E9-036V7-1C27D94V7-1C17D8-295V7-1C29D7V7-1Z13E993V7-1V19E9-269V7-6C13D8-132V7-6B19D8-057V7-2B17D8-162V7-4A29E8-424V7-1C17D844V7-1B17D8-122V7-1C17D844-429V7-7A19D8-374V7-4A17D8-407V7-5F17D8-289V7-6C17D8-057V7-2B29D8-384V7-1X1AD8-304V7-6C17D8-162V7-1A23E9-172V7-1X2AD9C2V7-1C27E9-292V7-2S17E9-420V7-1C17D8-294V7-7B17D8-073V7-3S17D8-148V7-7C19D8-640V7-1V19E994-403V7-1A17D8-057V7-1E17D8-366V7-5F17D8-336V7-1C17E9-292V7-6A17D8-057V7-2E17E9-420V7-6C17D8-439V7-1X1AD9C1V7-7B10D8-274V7-7B19D8-426V7-3E17D8-148V7-1A28D882V7-7B29D883V7-7B17D8-481V7-2E17E9-366V7-1C29E7V7-1S19D8-369V7-7B19D8-640V7-7B17D8-140V7-1X2AE9-292V7-1Z13E987V7-1X2AD8-294V7-6B19D8-672V7-7B29E9-053V7-1V20E94V7-1B19D8-36915PA177-V715PA2609V7 SeriesADDITIONAL INFORMATIONThe following associated literature is available on the Honeywell web site at :• Product installation instructions• Product range guide• Product nomenclature tree• Product application-specific information– Application note: Electronic sensors and electromechanicalswitches in valves and flow meters– Application note: Electronic sensors and MICRO SWITCH ™switches in industrial air compressors– Application note: Sensors and switches for HVAC/Rapplications– Application note: Sensors and switches in oil rig applications– Application note: Sensors and switches in sanitary valves– Application note: Sensors and switches for valve monitors and valve indicators– Application note: Treadmill equipment– Application note: V7 available terminals– Technical bulletin: Applying precision switches– Technical bulletin: Low energy switch guideWARRANTY/REMEDYHoneywell warrants goods of its manufacture as being free of defective materials and faulty workmanship. Honeywell’s standard product warranty applies unless agreed to otherwise by Honeywell in writing; please refer to your order acknowledgement or consult your local sales office for specific warranty details. If warranted goods are returned to Honeywell during the period of coverage, Honeywell will repair or replace, at its option, without charge those items it finds defective. The foregoing is buyer’s sole remedy and is in lieu of all other warranties, expressed or implied, including those of merchantability and fitness for a particu-lar purpose. In no event shall Honeywell be liable for conse-quential, special, or indirect damages.While we provide application assistance personally, through our literature and the Honeywell website, it is up to the customer to determine the suitability of the product in the application. Specifications may change without notice. The information we supply is believed to be accurate and reliable as of this printing. However, we assume no responsibility for its use.004987-2-EN IL50 GLO January 2015Copyright © 2015 Honeywell International Inc. All rights reserved.Sensing and Control Honeywell1985 Douglas Drive North Golden Valley, MN 55422 Find out moreHoneywell serves its customers through a worldwide network of sales offices, representatives and distributors. For application assistance, current specifications, pricing or name of the nearest Authorized Distributor, contact your local sales office.To learn more about Honeywell’s sensing and control products, call +1-815-235-6847 or 1-800-537-6945,visit , or e-mail inquiries to *********************V7-1B17D8-048-S V7-7D17D8-207V7-1A17D8-057V7-1A17D8-048V7-1C17D8-207V7-1C17E9V7-1C27E9V7-1S17D8 V7-2B17D8-201V7-5F17D8V7-6B19D8-057V7-1A17D8-057V7-7B19E9。

MC9S12_datasheet中文

MC9S12_datasheet中文
目录
目录 .................................................................................................................................................. I 第一章 PWM模块 ...........................................................................................................................1 第一节 PWM模块介绍 .........................................................................................................1 第二节 PWM寄存器简介 .......................................................................2 2.1 PWME寄存器 ........................................................................................................2 2.2 PWMPOL寄存器...................................................................................................2 2.3 PWMCLK寄存器 ..................................................................

COAOB AO B19系列数显电压、电流表 说明书

COAOB AO B19系列数显电压、电流表 说明书

一、概述AOB19系列数显电压、电流表使用说明书三、技术参数二、型号定义AOB19-□□□□□1.1用途AOB194U 、AOB195U 、AOB194I 、AOB195I 系列数显仪表为新一代可编程智能电压、电流表,主要用于对电气线路中的交流或直流电压、电流进行实时测量与指示,并通过RS485接口或模拟量变送输出接口对被测电量数据进行远传。

1.2功能特点●采用模块化设计方式,全SMT 生产工艺●电压、电流测量显示范围(或互感器倍率)可自由设置●一路模拟量变送输出功能(可选),输出可任意编程设置为0~10mA 、0~20mA 、4~20mA●一路上下限报警输出或两路开关量遥控输出功能(可选),报警动作延迟时间可在0~60s 范围内任意设置●RS485通讯输出功能(可选),采用标准MODBUS-RTU 通讯规约●可同时具备一路模拟量变送、一路上下限报警和RS485通讯输出功能●两路或四路开关量输入状态检测功能(可选),配合RS485通讯实现开关状态的"遥信"与"遥测"●最大最小值查看功能:KR2;KR4K :继电器触点输出 B :模拟量变送输出RS4RS RS N :继电器触点输出+模拟量变送输出+RS485通讯接口仪表外形选择:4:单相交流信号输入5:直流信号输入安装式数字电表系列产品代号开关量输入无:无开关量输入检测功能;:两路开关量输入:四路开关量输入显示方式选择:1:数码管显示输出方式选择:X :显示仪表,无输出功能T:85通讯接口S :继电器触点输出+485通讯接口 D :模拟量变送输出+485通讯接口1:16槽形、2:42方形、3:6方形、4:46槽形、5:96×48槽形、 7:72×72方形、8:48×48方形、9:96×96方形仪表类型选择:I 表示电流表U 表示电压表信号接入方式选择:3.1交流电压表测量范围:AC 0~660V(直接测量)~(外附电压互感器,量程可测量3.2直流电压表测量范围:DC 0~660V (直接测量)3.3交流电流表测量范围:AC 0~6A(直接测量)~电流可测量3.4直流电流表测量范围:DC 0~±6A (直接测量)DC -1999~+9999A (外附*/75mV 分流器、量程可测量设定)3.5%FS 6采样速率:3.73.810.10.010.00193.10AC/85264V 50/60Hz 3.1133.12HHHH L LLL 3.13AC250V/223.14DC010mA 020mA 420mA 0.5%FS,3.153003.167环境:温度~℃,湿度≤85%RH 的无腐蚀性场合AC 09999kV */100V 在范围内任意编程设定)AC 09999A (外附*/5A 互感器,量程在范围内任意编程设定)在范围内任意编程准确度:±0.5±1个字3.约3次/s测量显示方式:平均值测量,四位LED 数码管有效值显示显示分辨力:可自由设置为、、、3.输入回路功耗:电流<0.5VA 、电压<1VA 辅助电源:DC ~辅助电源功耗:VA溢出指示:显示字符“”报警输出:上下限报警同一继电器输出,触点容量A 、DC30V/A变送输出:可自由设置为~、~或~,准确度±与信号输入及辅助电源端口之间电气隔离变送输出负载电阻:≤Ω通讯接口:RS485串行通讯,采用MODBUS_RTU 通讯规约3.1工作-1050<或“”-16槽形42方形6方形46槽形96×48槽形72×72方形48×48方形96×96方形宽9672801209648160120高96728060484880120宽9268761169245152112高92687656454576112安装开孔尺寸仪表外形高9167751159044150110深91677555444475110宽80808080100100壳体尺寸面框尺寸10080四、安装与接线4.1外形与安装开孔尺寸单位:mm4.2安装方法根据仪表外形尺寸在上表中选择对应的开孔尺寸,在安装屏面上开一个孔,仪表嵌入安装孔后将两个夹持件放入仪表壳体的夹持槽内,用手推紧即可。

纽曼之音 B19系列 说明书

纽曼之音 B19系列 说明书

纽曼之音B19 系列用户手册VM 89前言感谢您选用本公司生产的MP3数码播放器!为了使您尽快轻松自如地操作您的MP3数码播放器,我们随机配备了内容详尽的用户手册,您可以获取有关产品介绍、使用方法等方面的知识。

使用您的MP3播放器之前,请仔细阅读我们随机提供的所有资料,以便您能更好地使用该产品。

在编写本手册时我们非常认真和严谨,希望能给您提供完备可靠的信息,然而难免有错误和疏漏之处,请您给予谅解并由衷地欢迎您批评和指正。

如果您在使用该产品的过程中发现什么问题,请及时拨打我们的服务热线,感谢您的支持和合作!本公司对于因软件、硬件的误操作、产品维修、电池更换或其它意外情况所引起的个人数据资料的丢失和损坏不负任何责任,也不对由此而造成的其它间接损失负责,请随时备份您的数据资料到您的台式(笔记本)计算机上。

同时我们无法控制用户对本手册可能造成的误解,因此,本公司将不对在使用本手册过程中可能出现的意外损失负责,并不对因使用该产品而引起的第三方索赔负责。

本手册中的信息如有变更,恕不另行通知。

本手册信息受到版权保护,其任何部分未经本公司事先书面许可,不准以任何方式影印和复制。

●产品及产品颜色款式请以购买的实物为准。

●本公司保留对本手册、保修卡及其相关资料的最终解释权。

注意事项★如果长时间不使用本播放器,请务必在一个月内至少充电一次,以防止锂电因过量消耗引起的损坏。

★不要在特别热、冷、多尘或潮湿的环境中使用播放器。

★使用时不要让播放器摔落、或与硬物摩擦撞击,否则可能会导致播放器表面磨花、电池脱落或其它硬件损坏。

★在下列情况下请进行充电:☆如在正常操作中播放器电池图标为功能说明外观及按键说明3.一、电池管理①如果长时间不使用本播放器,为避免因电池过量消耗引起的损坏,请务必在一个月内对本机至少完成一次充放电,以防止锂电耗尽。

【注】内置锂电池必须定期充电。

锂电池过度消耗所导致的锂电池损坏不属于播放器质保范围。

若使用非本机专用的充电器对本机充电而导致本机出现问题同样不属于质保范围。

B19仪表技术说明书

B19仪表技术说明书

B19仪表技术说明书上海众斐电子科技有限公司一.主要参数准确度:Ⅲ级规格:(0~3000)d非线性:≤0.01%F.S系统工作电压: DC:5V分度值: 1/2/5/10/20/50 自由设定大屏幕显示接口:采样串行输出方式AD输出速度: 40次/秒(可选择10或40)(B10只有10次/秒)内部解析度:≤24万蓄电池:6V4Ah交流电源使用适配器输入:AC 120~240V输出:DC 12V/500mA二.传感器与仪表连接B11传感器连接示意图PIN 1:激励电源+(EXC+)PIN 2:激励电源-(EXC-)PIN 3:输出信号+(SIG+)PIN 4:输出信号-(SIG-)PIN 5:屏蔽线(SHIELD)B10传感器连接示意图三.串口连接示意图B11串口连接示意图(右图)2脚.RXD仪表接收信号3脚.TXD仪表发送信号5脚.地线6脚.OUT- 0~20MA的电流环负信号9脚.OUT+ 0~20MA的电流环正信号B10串口连接示意图RS232CRXD TXD信号地1 2 3 4 5 6 7 89 10 11 12 13 14 15+OUT-OUT(接大屏幕)(图3-1 ) 串行通讯和大屏幕显示输出接口信号引脚图具体的通讯协议,见附件具体的打印格式内容,见附件四.按键功能说明本仪表的按键为释放时起作用,即按下并释放后才有效.1.【模式】键,长按此键,仪表进入功能设置和参数设置状态,允许重量保持情况下,短按【模式】键,起重量保持启用和恢复的按键作用2.【打印】键,长按此键,仪表进入上下报警设置状态,短按【打印】键,则发送串口数据,另外在参数设置状态下,该键起确认作用。

3.【切换】键,短按【切换】键,仪表的称量单位在转换,另外在参数设置状态下,该键起数字切换的作用,和数字输入状态下,数字右移4.【去皮】键,短按一下,仪表去皮,在数字输入状态下,数字增加5.【置零】键,短按一下,仪表在置零范围内置零,在数字输入状态下,数字减少五.仪表功能和操作说明1.称重状态下长按【模式】键进入设置,显示第一大项”P1 UNt”。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档