初一数学定理公式大全

合集下载

初中数学公式定理大全(高清完整版)

初中数学公式定理大全(高清完整版)

初中数学公式定理大全(高清完整版)一、初中数学运算符号1. 加法符号:+2. 减法符号:-3. 乘法符号:x 或×4. 除法符号:÷ 或 /5. 相等符号:=6. 不等符号:≠7. 大于符号:>8. 小于符号:<9. 大于等于符号:≥10. 小于等于符号:≤11. 百分号:%二、初中数学常用公式1. 一元一次方程:ax + b = c2. 二元一次方程组:{ a1x + b1y = c1{ a2x + b2y = c23. 一元二次方程:ax² + bx + c = 04. 解一元二次方程的公式:x = [-b ± √(b²– 4ac)] / 2a5. 等差数列通项公式:an = a1 + (n - 1)d6. 等差数列求和公式:Sn = [n(a1 + an)] / 27. 等比数列通项公式:an = a1 * q^(n - 1)8. 等比数列求和公式(首项为a1,公比为q,共有n 项):Sn = a1(1 - q^n) / (1 - q)9. 相邻角互补:两个角互补,当它们的和为90度时。

10. 相邻角补角:两个角补角,当它们的和为180度时。

11. 直角三角形勾股定理:a² + b² = c²三、初中数学定理1. 同位角定理:若两条直线被一条第三条直线所截,那么同位角相等。

2. 平行线定理:如果两条直线被一条横线所截,使内侧的交角互补,则这两条直线平行。

3. 外角定理:凸多边形的任意一个外角,等于它所对的内角的和。

4. 内角和定理:凸多边形n边的内角和为(n-2)×180度。

5. 等腰三角形底角定理:等腰三角形的底角相等。

6. 直角三角形定理:直角三角形中,斜边的长度等于底边和高的平方和的平方根。

7. 正比例定理:如果a与b成正比例,那么a/b = k,k 为常数。

8. 反比例定理:如果a与b成反比例,那么a×b=k,k 为常数。

七年级数学公式大全表必背知识点

七年级数学公式大全表必背知识点

七年级数学公式大全表必背知识点一、代数1. 一元一次方程- 标准形式:ax + b = c- 解方程公式:x = (c - b) / a2. 一元一次不等式- 解不等式的方法:将不等式化为一元方程,然后解出值3. 一元二次方程- 标准形式:ax^2 + bx + c = 0- 解方程公式:x = (-b ± √(b^2 - 4ac)) / 2a4. 因式分解- 判断一个多项式是否能够因式分解的方法- 先将多项式分解为一次因式的乘积- 再判断每一个一次因式是否能够继续分解5. 公式:- (a + b)^2 = a^2 + 2ab + b^2- (a - b)^2 = a^2 - 2ab + b^2- a^2 - b^2 = (a - b)(a + b)二、几何1. 等腰三角形- 性质:两边相等,两底角相等- 面积公式:S = (底边长×高)/22. 直角三角形- 勾股定理:a^2 + b^2 = c^2- 三角函数公式:sinθ = 对边/斜边,cosθ = 邻边/斜边,tanθ = 对边/邻边3. 圆- 周长公式:C = πd,C = 2πr- 面积公式:S = πr^24. 平行四边形- 性质:对边相等,对角线互相平分- 面积公式:S = 底×高5. 三角形- 海伦公式:S = √[p(p-a)(p-b)(p-c)],其中p = (a + b + c)/2三、概率1. 事件的概率- 基本概率公式:P(A) = n(A)/n(S)- 互斥事件概率:P(A ∪ B) = P(A) + P(B)2. 条件概率- 条件概率公式:P(B|A) = P(A∩B)/P(A)四、统计1. 平均数- 算术平均数:平均数 = 总和/个数2. 中位数- 将一组数据从小到大排列,中间位置的数字就是中位数3. 众数- 一组数据中出现次数最多的数字- 众数可能有一个,也可能有多个以上便是七年级数学中常见的公式和必备知识点,希望同学们能够根据这些知识进行复习和总结,做到熟练记忆和灵活运用。

(完整版)初中数学常用公式和定理大全

(完整版)初中数学常用公式和定理大全

初中数学常用公式定理1、整数(包括:正整数、0、负整数)和分数(包括:有限小数和无限环循小数)都是有理数.如:-3,,0.231,0.737373…,,.无限不环循小数叫做无理数.如:π,-,0.1010010001…(两个1之间依次多1个0).有理数和无理数统称为实数.2、绝对值:a≥0丨a丨=a;a≤0丨a丨=-a.如:丨-丨=;丨3.14-π丨=π-3.14.3、一个近似数,从左边笫一个不是0的数字起,到最末一个数字止,所有的数字,都叫做这个近似数的有效数字.如:0.05972精确到0.001得0.060,结果有两个有效数字6,0.4、把一个数写成±a×10n的形式(其中1≤a<10,n是整数),这种记数法叫做科学记数法.如:-40700=-4.07×105,0.000043=4.3×10-5.5、乘法公式(反过来就是因式分解的公式):①(a+b)(a-b)=a2-b2.②(a±b)2=a2±2ab+b2.③(a+b)(a2-ab+b2)=a3+b3.④(a-b)(a2+ab+b2)=a3-b3;a2+b2=(a+b)2-2ab,(a-b)2=(a+b)2-4ab.6、幂的运算性质:①a m×a n=a m+n.②a m÷a n=a m-n.③(a m)n=a mn.④(ab)n=a n b n.⑤()n=n.⑥a-n=1na,特别:()-n=()n.⑦a0=1(a≠0).如:a3×a2=a5,a6÷a2=a4,(a3)2=a6,(3a3)3=27a9,(-3)-1=-,5-2==,()-2=()2=,(-3.14)º=1,(-)0=1.7、二次根式:①()2=a(a≥0),②=丨a丨,③=×,④=(a>0,b≥0).如:①(3)2=45.②=6.③a<0时,=-a.④的平方根=4的平方根=±2.(平方根、立方根、算术平方根的概念)8、一元二次方程:对于方程:ax2+bx+c=0:①求根公式是x=242b b aca-±-,其中△=b2-4ac叫做根的判别式.当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.注意:当△≥0时,方程有实数根.②若方程有两个实数根x1和x2,并且二次三项式ax2+bx+c可分解为a(x-x1)(x-x2).③以a和b为根的一元二次方程是x2-(a+b)x+ab=0.9、一次函数y=kx+b(k≠0)的图象是一条直线(b是直线与y轴的交点的纵坐标即一次函数在y轴上的截距).当k>0时,y随x的增大而增大(直线从左向右上升);当k<0时,y随x的增大而减小(直线从左向右下降).特别:当b=0时,y=kx(k≠0)又叫做正比例函数(y与x成正比例),图象必过原点.10、反比例函数y=(k≠0)的图象叫做双曲线.当k>0时,双曲线在一、三象限(在每一象限内,从左向右降);当k<0时,双曲线在二、四象限(在每一象限内,从左向右上升).因此,它的增减性与一次函数相反.11、统计初步:(1)概念:①所要考察的对象的全体叫做总体,其中每一个考察对象叫做个体.从总体中抽取的一部份个体叫做总体的一个样本,样本中个体的数目叫做样本容量.②在一组数据中,出现次数最多的数(有时不止一个),叫做这组数据的众数.③将一组数据按大小顺序排列,把处在最中间的一个数(或两个数的平均数)叫做这组数据的中位数. (2)公式:设有n 个数x 1,x 2,…,x n ,那么: ①平均数为:12......nx x x xn;②极差:用一组数据的最大值减去最小值所得的差来反映这组数据的变化范围,用这种方法得到的差称为极差,即:极差=最大值-最小值; ③方差:数据1x 、2x ……, n x 的方差为2s ,则2s =222121.....nx xx xx xn标准差:方差的算术平方根.数据1x 、2x ……, n x 的标准差s ,则s =222121.....nx xx xx xn一组数据的方差越大,这组数据的波动越大,越不稳定。

初一初所有数学公式

初一初所有数学公式

初一初所有数学公式数学公式1、正弦定理:三角形的两条相邻的边的长度都满足正弦定理,即:a/sin A = b/sin B = c/sin C2、余弦定理:三角形的两条相邻边的长度都满足余弦定理,即:a^2=b^2+c^2-2bc*cosA3、勾股定理:三角形的三条边都满足勾股定理,即:a^2+b^2=c^24、角平分线定理:所围四边形中,对角线的两条边的中点都满足角平分线定理,即:AB+BC=AC5、三角形统计定理:在三角形内任意点,B、C、D满足三角形统计定理,即:a AB+b BC+c CD=360°6、三角形四边形性质定理:在任意图形中,其内任意一个四边形,满足三角形四边形性质定理,即:四边形的对角相等。

7、正方形性质定理:长方形内所有边长都相等,满足正方形性质定理,即:对角长相等,且两个对角的中点就是中心。

8、平面空间三条边的定理:三角形的三条边都满足平面空间三条边的定理,即:a*b=c^29、梯形定理:对于任意三点构成的梯形,其内任意一点满足梯形定理,即:同侧两边的大边等于另一侧的差边之和。

10、勾股边长定理:对于一个等腰三角形,其内任意一点满足勾股边长定理,即:二边之和等于斜边的平方。

11、自然斜率定理:对于一条直线,其内任意一点满足自然斜率定理,即:该直线上所有点都具有相同的斜率。

12、极点定理:对于一个抛物线,其内任意一点满足极点定理,即:抛物线的形状取决与它的极点的值(x及y坐标的大小)。

13、椭圆定理:对于一个椭圆,其内任意一点满足椭圆定理,即:椭圆的长轴rao= 椭圆的短轴2a和对角线2c 的差值之和。

14、正比定理:对于两个线段,其内任意一点满足正比定理,即:两个獭段的长度比例相同。

初一数学定理公式大全

初一数学定理公式大全

定义定理一、算术方面1.加法交换律:两数相加交换加数的位置,和不变。

2.加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。

3.乘法交换律:两数相乘,交换因数的位置,积不变。

4.乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。

5.乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。

如:(2+4)×5=2×5+4×5。

6.除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。

0除以任何不是0的数都得0。

7.等式:等号左边的数值与等号右边的数值相等的式子叫做等式。

等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。

8.方程式:含有未知数的等式叫方程式。

9.一元一次方程式:含有一个未知数,并且未知数的次数是一次的等式叫做一元一次方程式。

学会一元一次方程式的例法及计算。

即例出代有χ的算式并计算。

10.分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。

11.分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。

异分母的分数相加减,先通分,然后再加减。

12.分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。

异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。

13.分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。

14.分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。

15.分数除以整数(0除外),等于分数乘以这个整数的倒数。

16.真分数:分子比分母小的分数叫做真分数。

17.假分数:分子比分母大或者分子和分母相等的分数叫做假分数。

假分数大于或等于1。

18.带分数:把假分数写成整数和真分数的形式,叫做带分数。

19.分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。

初一初中数学常用公式与定理

初一初中数学常用公式与定理

初一初中数学常用公式与定理数学作为一门基础学科,在初一和初中阶段,对于学生的发展至关重要。

掌握数学常用公式与定理,不仅可以提高数学分析和解决问题的能力,还有助于培养逻辑思维和数学思维能力。

下面是一些初一和初中数学常用的公式与定理以及它们的应用。

1. 代数运算公式代数运算是数学的基础,掌握一些常用的代数运算公式对于解决复杂的代数问题非常有帮助。

下面是一些常用的代数运算公式:1.1 加法和减法公式加法公式:(a+b)^2 = a^2 + 2ab + b^2减法公式:(a-b)^2 = a^2 - 2ab + b^21.2 乘法公式(a+b)(a-b) = a^2 - b^21.3 平方差公式(a+b)^2 - (a-b)^2 = 4ab2. 几何定理几何是数学的重要分支之一,许多几何定理可以帮助我们理解图形的性质和解决几何问题。

下面是一些初一和初中常用的几何定理以及它们的应用:2.1 皮亚诺定理皮亚诺定理表明,在一个平面上的n个点中,任意两点之间的连线的条数等于C(n, 2),即C(n, 2) = n(n-1)/2。

这个定理可以应用于计算几何图形中的线段数量。

2.2 正弦定理正弦定理表明,在一个三角形ABC中,三个内角A、B、C的正弦值与对边a、b、c之间的关系为:sinA/a = sinB/b = sinC/c。

这个定理可以帮助我们计算三角形的边长或角度。

2.3 余弦定理余弦定理表明,在一个三角形ABC中,三个内角A、B、C的余弦值与对边a、b、c之间的关系为:cosA = (b^2 + c^2 - a^2)/(2bc)。

这个定理可以帮助我们计算三角形的边长或角度。

3. 概率与统计概率与统计是数学中的实用工具,在解决排列组合、概率等问题时起着重要作用。

下面是一些初一和初中常用的概率与统计公式:3.1 排列公式排列公式表示从n个不同元素中选取r个元素进行排列的总数,表示为P(n, r) = n!/(n-r)!。

初中数学必背公式及定理

初中数学必背公式及定理

初中数学必背公式及定理数学是一门重要的学科,也是一门需要掌握公式和定理的学科。

初中数学中的公式和定理是学习数学的基础,掌握了这些公式和定理,能够更好地解题和理解数学知识。

下面是初中数学必背的公式和定理。

一、代数中的公式1. 二次方程的求根公式:对于一元二次方程ax²+bx+c=0,其根可以通过以下公式求得:x = (-b ± √(b²-4ac))/(2a)2. 平方差公式:(a±b)² = a²±2ab+b²3. 二次完全平方公式:a²+2ab+b²=(a+b)²4. 立方差公式:(a±b)³=a³±3a²b+3ab²±b³5.平方根的乘法公式:√a*√b=√(a*b)二、几何中的公式1.矩形的周长和面积:对于矩形,其周长C=2(l+w),面积S=l*w,其中l表示矩形的长度,w表示矩形的宽度。

2.三角形的周长和面积:对于三角形,其周长C=a+b+c,面积S=1/2*b*h,其中a、b、c表示三角形的三边长,h表示三角形的高。

3.圆的周长和面积:对于圆,其周长C=2πr,面积S=πr²,其中π取近似值3.14,r表示圆的半径。

4.直角三角形的勾股定理:对于直角三角形,设c为斜边,a、b为两直角边,则满足a²+b²=c²。

5.同心圆弦的等分定理:如果两条弦(或弦和直径)在同一个圆的同一边相交,那么它们所夹的弧(或弧和弦所夹的角)相等。

三、概率与统计中的公式1.事件的概率:设S为一个随机试验的样本空间,E为S的子集(即事件),则事件E的概率P(E)定义为E中的样本点数除以S中的样本点数。

2.互斥事件的概率:设A、B为两个事件,如果A和B不可能同时发生,称A和B为互斥事件,概率计算公式为P(A∪B)=P(A)+P(B)。

27条初中数学公式定理集锦

27条初中数学公式定理集锦

一、有理数1、相反数与绝对值(1)数a的相反数是-a。

若a、b互为相反数,则a+b=0;反之,若a+b=0,则a、b互为相反数.a(a>0),(2)绝对值计算∣a∣= 0(a=0),-a(a<0),a(a≧0),a(a>0),或∣a∣=或∣a∣=-a(a<0),-a(a≦0)2、两个有理数大小的比较(1)在数轴上,右边的数总比左边的数大.(2)正数大于0,负数小于0,正数大于一切负数.(3)两个负数比较,绝对值大的负数反而小.3、有理数的运算4、有理数运算律5、科学记数法把一个大于10的数记作a ×10n的形式,其中a 大于或等于1且小于10,即1 ≤| a| <10,n 是正整数.二、整式的加减1、合并同类项的法则合并同类项时,将同类项的系数相加,所得的和作为系数,字母与字母的指数不变.2、去括号法则括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项的符号都不改变;括号前面是“-”号,把括号和它前面的“-”号去掉,括号里的各项都改变符号. 3、整式的加减法则整式的加减实质就是去括号、合并同类项,若有括号,就要先去掉括号,然后再合并同类项,直到结果中没有同类项为止.三、一元一次方程1、等式的基本性质(1)如果a=b ,那么a+c=b+c ,a-c=b-c(2)如果a=b ,那么ac=bc ;如果a=b ,那么a c =bc (c ≠0)2、解一元一次方程的步骤四、几何图形初步1、直线、线段公理(1)直线公理:两点确定一条直线. (2)线段公理:两点之间,线段最短. 2、角五、相交线与平行线1.相交线与垂线2.平行线3.命题、定理、证明六、实数1、平方根和立方根2、实数的性质(1)数a的相反数是-a,这里a表示任意一个实数.(2)一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;0的绝对值是0.七、平面直角坐标系各象限内点的坐标特点P(a,b)①点在第一象限,则a>0,b>0; ②点在第二象限,则a<0,b>0;○3点在第三象限,则a<0,b<0; ④点在第四象限,则a>0,b<0 角平分线上点的特点 P(a,b)①在一、三象限的角平分线上,a=b ; ②在二、四象限的角平分线上,a=-b平面直角坐标系中对称点的坐标特点 P(a,b) ①关于x 轴对称,横坐标相同,纵坐标互为相反数,即(a,-b );○2关于y 轴对称,横坐标互为相反数, 纵坐标相同,即(-a ,b ); ○3关于坐标原点对称,横纵坐标都互为相反数,即(-a,-b ) 与坐标轴平行的直线上的点的坐标特点○1与x 轴平行的直线上的所有点的纵坐标相同; ○2与y 轴平行的直线上的所有点的横坐标相同 八、二元一次方程组a 1x+b 1y=c 1, 对于二元一次方程组a 2x+b 2y=c 2.(1) 当a 1a 2 ≠b 1b 2(a 2,b 2≠0)时,方程组有唯一解.(2) 当a 1a 2 =b 1b 2 =c 1c 2 (a 2,b 2,c 2≠0)时,方程组有无数组解.(3) 当a 1a 2 =b 1b 2 ≠c 1c 2(a2,b2,c2≠0)时,方程组无解.九、不等式与不等式组1.不等式性质性质1:不等式的两边同时加(或减)同一个数或同一个含有字母的式子,不等号的方向不变,即如果a>b ,那么a ±m>b ±m.性质2:不等式的两边同时乘(或除)同一个正数,不等号的方向不变,即如果a>b 且m>0,那么am>bm 或a m >bm.性质3:不等式的两边同时乘(或除)同一个负数,不等号的方向改变,即如果a>b 且m<0,那么am<bm 或a m <bm.2.一元一次不等式组的解集不等式组(a<b )数轴表示解集口诀x>a ,x>bx>b同大取大x<a ,x<bx<a同小取小ababa ba b十、三角形1、三角形的分类2、三角形三边关系三角形中任意两边的和大于第三边,三角形中任意两边的差小于第三边.3、三角形内角和定理三角形三个内角的和等于180°.4、直角三角形的性质与判定性质;直角三角形的两个锐角互余.判定:有两个角互余的三角形是直角三角形.5、三角形的外角性质(1)三角形的外角和为360°.(2)三角形的一个外角等于和它不相邻的两个内角的和.(3)三角形的一个外角大于和它不相邻的任何一个内角.6、多边形的内角和与外角和(1)n边形的内角和是(n-2)×180°.(2)n边形的外角和为360°.十一、全等三角形1.全等三角形角形的判定2.角平分线的性质及判定(1)性质:角的平分线上的点到角的两边的距离相等.(2)判定:角的内部到角的两边距离相等的点在角的平分线上.十二、轴对称1.轴对称和线段垂直平分线的性质及判定2.三角形的性质及判定十三、整式的乘法与因式分解1.幂的有关法则2.乘法公式3.因式分解十四、分式1.分式的基本性质分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.即 A B =A ·M B ·M ,A B = A ÷M B ÷M (其中M 是不等于0的整式) 2.分式的运算法则(1) 乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母.即b a ·d c =bdac .(2) 除法法则:分式除以分式,把除式的分子、分母 颠倒位置后,与被除式相乘.即b a ÷d c =b a ·c d =bcad.(3) 乘方法则:把分子、分母分别乘方.为正整数).(4) 加减法法则:①同分母的分式相加减,分母不变,把分子相加减.即a c ±b c =a ±bc:②异分母分式相加减,先通分,变为同分母分式,再加减.即a b ±d c =ac bc ±bd bc =ac ±bdbc.十五、二次根式十六、勾股定理1.勾股定理如果直角三角形的两条直角边长分别是a ,b,斜边长为c,那么a 2+b 2=c 2.2.勾股定理的逆定理如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么 这个三角形就是直角三角形.十七、平行四边形1.几种特殊四边形常用的判定方法2.中位线三角形的中位线平行于第三边,并且等于第三边的―半.十八、一次函数1.正比例函数的图象和性质2.—次函数的图象和性质Oxy OxyOxyOxy Oxy Oxy十九、数据的分析1. 平均数(1) 平均数: 对于n 个数n 个数的平均数. (2) 加权平均数:若n 则x 1w 1+x 2w 2+…+x n w nw 1+w 2+…+w n叫做这n 个数的加权平均数 2. 数据的波动程度(1) 极差:一组数据的最大值与最小值的差(2) 方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差,通常用s 2来表示,计算公式x 1-⎺x )2+(x 2-⎺x )2+…+(x n -⎺x )2]. (3) 标准差:样本方差的算术平方根表示样本的标准差,它也描述了数据对平均数的离散程度.公式:. 二十、一元二次方程1. 一元二次方程的解法2. —元二次方程根的判别式ax 2+bx+c=0(a ≠0) 的判别式△= b 2-4ac .(1) △>0,一元二次方程ax 2+bx+c=0(a ≠0)有两个不相等的实数根.(2) △=0,一元二次方程ax 2+bx+c=0(a ≠0)有两个相等的实数根.(3) △<0,一元二次方程ax 2+bx+c=0(a ≠0) 没有实数根.3. 一元二次方程根与系数的关系已知关于x 的一元二次方程ax 2+bx+c=0(a ≠0)的两根为x 1,x 2, 则有二十—、二次函数2. 二次函斂y=a(x-h)+k(a ≠0)的性质3. 二次函数y=ax +bx+c 的性质(1) a 的符号:由抛物线的开口方向确定 ○1开口向上○2开口向下。

七年级数学定理概念公式

七年级数学定理概念公式

在七年级数学中,有很多重要的定理、概念和公式。

下面是一些关于七年级数学的重要定理、概念和公式的介绍。

一、定理1.1平行线定理:如果两条直线与一条平行线相交,则它们之间的对应角相等。

1.2同位角定理:在两条平行线上,对应的同位角相等。

1.3内错角定理:在两条平行线上,相交的两条线所夹的角互为内错角,内错角互补。

1.4垂直角定理:两条直线相交,所成的四个角中,相互垂直的两个角互为垂直角,垂直角互为对顶角。

1.5全等三角形定理:当两个三角形的所有对应角相等且对应边的长度相等时,这两个三角形全等。

1.6直角三角形定理:在一个直角三角形中,两条直角边的平方和等于斜边的平方。

1.7三角形的内角和定理:一个三角形的三个内角的和等于180度。

1.8三角形的外角和定理:一个三角形的三个外角的和等于360度。

二、概念2.1线段:就是由两点确定的一段直线。

2.2角:由两条位于同一平面的射线共享一个端点组成。

2.3直角:一个角度为90度的角。

2.4锐角:角度小于90度的角。

2.5钝角:角度大于90度但小于180度的角。

2.6等角:角度相等的两个角。

2.7对顶角:互不相邻但有一个公共边的两个角。

2.8夹角:由两条相交的射线组成的角。

三、公式3.1周长公式:矩形的周长等于长和宽的两倍之和,即周长=2(长+宽)。

3.2面积公式:矩形的面积等于长乘宽,即面积=长×宽。

3.3三角形面积公式:三角形的面积等于底乘以高的一半,即面积=底×高÷23.4两点间距离公式:设两点A(x1,y1)和B(x2,y2)的坐标,它们之间的距离等于√((x2-x1)²+(y2-y1)²)。

3.5等差数列求和公式:等差数列的前n项和等于首项与末项的和乘以项数的一半,即Sn=(a1+an)×n÷2,其中Sn表示前n项的和,a1表示首项,an表示末项。

这里只是列举了一些七年级数学中的重要定理、概念和公式,当然还有很多其他的定理、概念和公式需要学习和掌握。

初一数学定理、概念、公式

初一数学定理、概念、公式

一、有理数(一)有理数1、有理数的分类:按有理数的定义分类:正整数整数零有理数负整数正分数按有理数的性质符号分类:正整数正有理数正分数有理数0分数负整数负整数负有理数负分数2、正数和负数用来表示拥有相反意义的数。

(二)数轴1、定义:规定了原点、正方向和单位长度的直线叫做数轴。

2、数轴的三因素是:原点、正方向、单位长度。

(三)相反数1、定义:只有符号不一样的两个数互为相反数。

2、几何定义:在数轴上分别位于原点的两旁,到原点的距离相等的两个点所表示的数,叫做互为相反数。

3、代数定义:只有符号不一样的两个数叫做互为相反数,0 的相反数是0。

(四)绝对值1、定义:在数轴上表示数 a 的点与原点的距离叫做数 a 的绝对值。

2、几何定义:一个数a的绝对值就是数轴上表示数 a 的点与原点的距离。

3、代数定义:一个正数的绝对值是它自己,一个负数的绝对值是它的相反数,是 0。

0 的绝对值即关于任何有理数a,都有 |a| =a (a> 0),0( a= 0)– a(a< 0)4、绝对值的计算规律:(1)互为相反数的两个数的绝对值相等.(2)若 |a| = |b|, 则 a = b 或 a =- b.(3)若 |a|+|b| =0,则 |a| = 0,且 |b| = 0.有关结论:(1) 0 的相反数是它自己。

(2)非负数的绝对值是它自己。

(3)非正数的绝对值是它的相反数。

(4)绝对值最小的数是 0。

(5)互为相反数的两个数的绝对值相等。

(6)任何数的绝对值都是它的正数或0,即 |a| ≥ 0。

(五)倒数1、定义:乘积为“1”的两个数互为倒数。

2、求法:颠倒这个数的分子和分母。

13、a( a≠ 0)的倒数是 a .有理数的运算一、有理数的加法法例:1、同号两数相加,取同样的符号,并把绝对值相加;2、绝对值不等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。

3、一个数同零相加,仍得这个数;4、两个互为相反数的两个数相加得0。

初一数学知识点公式定理大全

初一数学知识点公式定理大全

初一数学知识点公式定理大全以下是初一数学常见的知识点、公式和定理:
1. 整数的四则运算:
- 加法:a + b = b + a
- 减法:a - b ≠ b - a
- 乘法:a × b = b × a
- 除法:a ÷ b ≠ b ÷ a
2. 分数的四则运算:
- 加法:a/b + c/d = (ad + bc) / bd
- 减法:a/b - c/d = (ad - bc) / bd
- 乘法:a/b × c/d = ac / bd
- 除法:(a/b) ÷ (c/d) = ad / bc
3. 小数与分数之间的互相转换:
- 小数转分数:如0.25 = 25/100 = 1/4
- 分数转小数:如3/5 = 0.6
4. 比例与比例的应用:
- 比例关系:a:b = c:d,表示a与b的比例等于c与d的比例
- 等比例:当两个比例相等时,称为等比例
- 比例的性质:比例的两个对角线乘积相等,即ad = bc
5. 百分数与百分比:
- 百分数表示:百分数 = 实际数值/总数值× 100%
- 百分比的应用:如计算折扣、利率、增长率等
6. 一元一次方程:
- 方程的定义:含有未知数的等式称为方程
- 解方程:求出方程中未知数的值
- 解一元一次方程:如ax + b = 0,则x = -b/a
7. 图形的知识:
- 直线、射线、线段的概念
- 平行线与垂直线的性质
- 四边形:矩形、正方形、长方形、平行四边形、梯形、菱形等基本性质以上是初一数学常见的知识点、公式和定理,希望对你有帮助!。

从初一到高三的数学公式、定理

从初一到高三的数学公式、定理

从初一到高三的数学公式、定理
初一:
1. 有理数的加法法则
2. 有理数的减法法则
3. 有理数的乘法法则
4. 有理数的除法法则
5. 平方差公式:a^2 - b^2 = (a + b)(a - b)
6. 完全平方公式:a^2 + 2ab + b^2 = (a + b)^2, a^2 - 2ab + b^2 = (a - b)^2
7. 合并同类项法则
8. 去括号法则
9. 移项法则
10. 一元一次方程解法
初二:
1. 角的平分线性质
2. 等腰三角形的性质和判定
3. 等腰梯形的性质和判定
4. 直角三角形全等的判定
5. 勾股定理及其逆定理
6. 一次函数的图像和性质
7. 二次函数的图像和性质
8. 平行四边形的性质和判定
9. 多边形的内角和和外角和公式
10. 全等三角形的判定和性质
初三:
1. 锐角三角函数定义
2. 解直角三角形
3. 圆的性质和判定
4. 圆周角定理
5. 切线的判定和性质
6. 正多边形的性质和判定
7. 二次函数与一元二次方程的关系
8. 二次函数的判别式Δ=b²-4ac的求法与根的情况的判定。

初中数学必背公式大全

初中数学必背公式大全

初中数学必背公式大全初中数学是学生在中学阶段必须学习的一门基础学科,而数学公式则是学习数学的重要工具。

下面将为大家详细介绍初中数学必背的公式,帮助大家更好地理解和掌握这些重要的数学知识。

一、代数公式1. 平方差公式:$(a+b)(a-b)=a^2-b^2$2. 完全平方公式:$(a+b)^2=a^2+2ab+b^2$$(a-b)^2=a^2-2ab+b^2$3. 一次方程的解:对于方程$ax+b=0$,有$x=-\frac{b}{a}$4. 二次方程的解:对于方程$ax^2+bx+c=0$,有$x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$5. 负负得正:两个负数相乘的结果是正数。

6. 负数平方等于正数:$(-a)^2=a^2$7. 数轴上的加减法:在数轴上,两个数的和等于它们在数轴上的距离的长度,两个数的差等于它们在数轴上的距离的长度。

8. 分配律:$a(b+c)=ab+ac$9. 结合律:$(a+b)+c=a+(b+c)$10. 交换律:$a+b=b+a$11. 分数的乘法:$\frac{a}{b}\times\frac{c}{d}=\frac{ac}{bd}$12. 分数的除法:$\frac{a}{b}\div\frac{c}{d}=\frac{a}{b}\times\frac{d}{c}=\frac{ad}{bc}$二、几何公式1. 直角三角形的勾股定理:直角三角形的两条直角边的平方和等于斜边的平方,即$a^2+b^2=c^2$2. 圆的面积公式:圆的面积等于半径的平方乘以π,即$S=\pi r^2$3. 三角形的面积公式:设三角形的底为b,高为h,则三角形的面积等于底乘以高的一半,即$S=\frac{1}{2}bh$4. 等腰三角形的面积公式:设等腰三角形的底为b,高为h,则等腰三角形的面积等于底乘以高的一半,即$S=\frac{1}{2}bh$5. 平行四边形的面积公式:设平行四边形的底为b,高为h,则平行四边形的面积等于底乘以高,即$S=bh$6. 立方体的体积公式:立方体的体积等于边长的立方,即$V=a^3$7. 直角三角形的正弦定理:直角三角形中,较长直角边的长度与斜边的比等于较短直角边的长度与斜边的比,即$\frac{a}{c}=\frac{b}{a}$8. 任意三角形的正弦定理:对于任意三角形ABC,有$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=2R$,其中R为三角形的外接圆半径。

初一数学所有的公式

初一数学所有的公式

初一数学所有的公式面对初一数学的学习,不少学生都有头疼的地方,最大的难点莫过于对数学公式的积累。

如果想要在学习中更好地掌握和理解数学,必须把这些数学公式积累默记,使脑海中建立起象牙塔般的数学公式库。

以下是初一数学常用的公式:1、立方体表面积公式:S=6a22、正方体体积公式:V=a33、平面直角坐标系内两点间距离公式:d=根号((x2-x1)2+(y2-y1)2)4、体积公式:V=πr2h5、重心公式:G/M1+M26、定比例公式:a:b=M1:M27、三角形面积公式:S=1/2×a×b×sinC8、等差数列求和公式:Sn=(a1+an)×n/29、等比数列求和公式:Sn=a1×(1-qn)/1-q10、勾股定理:a2+b2=c211、勾股定理求角公式:tanA=b/a12、分数加减乘除运算:(1)加法:分母相同时,分子相加;(2)减法:分母相同时,分子相减;(3)乘法:分子分母分别相乘;(4)除法:分子分母分别交换再相乘。

此外,初一数学还包括其他几种数学计算公式:1、算式化简:算式运算过程中可以利用公式潜规则实现简化,例如:(a+b)2=a2+2ab+b22、因式分解:将表达式分解成因式,例如:2a2-3ab+2b2=(2a-b)(a-2b)+2b23、三角函数:以三角函数的值来求某角的大小,例如:sin=1/2=30°4、不等式:指在算术运算中,把两个数之间的大小关系用符号表示出来,例如:a<b5、组合数学:是计算穷举法中各种取组合方式的数学研究,例如:从六个不同的数字中取出三个不同的数字,构成一个三位数,有多少种可能?答案:选出三个数字的方法有六种:(1)选择第1个数字,然后从剩下的五个数字中选择第2个数字,再从剩下的四个数字中选择第3个数字;(2)选择第2个数字,然后从剩下的五个数字中选择第1个数字,再从剩下的四个数字中选择第3个数字;.....所以要构成一个三位数,共有6×5×4=120种可能。

七年级所有的数学公式和定理

七年级所有的数学公式和定理

七年级数学主要内容包括数的性质、整数与有理数、几何图形的认识、比例与百分数、方程与不等式等等。

下面是七年级数学中常见的公式和定理:1.数的性质-互质的定义:若两个数的最大公因数为1,则称这两个数互质。

-因数与倍数的定义:若整数a除以整数b,商可整数,则称b是a的因数,a是b的倍数。

- 最大公因数和最小公倍数的性质:若a和b是任意两个正整数,则有ab = (最大公因数) × (最小公倍数)。

-分数的定义:分数通常写成两个整数a和b的比较,a叫分子,b叫分母。

2.整数与有理数-整数的按位数加减法、乘除法:按位数对齐后进行运算,根据正负数规则确定结果的符号。

-有理数的四则运算:有理数的加减法可根据正负数规则实施运算,乘除法按分数的乘积和商求解。

3.几何图形的认识-直线与线段:直线是具有相同方向和无限延伸的线段;线段是直线的有限部分。

-平行线与垂直线:平行线是在同一个平面内永不相交的线;垂直线是相交成直角的两条相交线。

-等边三角形:三条边相等的三角形。

-直角三角形和勾股定理:直角三角形是其中一条边是直角的三角形;勾股定理是指直角三角形的两条直角边平方和等于斜边平方的定理。

-三角形周长和面积公式:三角形的周长是指三边的和,面积是底边长×高÷2-平行四边形和矩形的性质:平行四边形的对边相等且平行;矩形的对边相等且平行,且四个角都是直角。

-二维图形的旋转轴对称图形和中心对称图形。

4.比例与百分数-比例与比例的性质:两个有理数的对等比例叫比例;比例式写作a:b=c:d,称a、d为比例的两个极限项,b、c为比例的两个中项;比例的性质有误差没有、保持比例相等等。

-百分数与百分比:百分数是指分母为100的分数;百分比指其中一事物与总体之间数量关系的百分数。

5.方程与不等式-解一元一次方程:根据等式的运算性质,将未知数移到一边,已知数移到另一边,得到等式的解。

-解一元一次不等式:根据不等式的性质,可以用移项法、合并同类项的方式求解。

初一数学常用重要公式 超全详细总结

初一数学常用重要公式 超全详细总结

初一数学常用重要公式超全详
细总结
初一数学公式大全
1、正方形:
周长=边长×4 c=4a
面积=边长×边长s=a×a
2、正方体:
表面积=棱长×棱长×6 s表=a×a×6
体积=棱长×棱长×棱长v=a×a×a
3、长方形:
周长=(长+宽)×2 c=2(a+b)
面积=长×宽 s=ab
4、长方体:
表面积(长×宽+长×高+宽×高)×2 s=2(ab+ah+bh)
体积=长×宽×高 v=abh
初一数学重要定理
1 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边
2 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合
3 推论3 等边三角形的各角都相等,并且每一个角都等于60°
4 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)
5 推论1 三个角都相等的三角形是等边三角形
6 推论 2 有一个角等于60°的等腰三角形是等边三角形
7 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半
8 直角三角形斜边上的中线等于斜边上的一半。

初一必背的数学公式

初一必背的数学公式

初一必背的数学公式
初一数学公式是学习数学的基础,也是学习数学的重要组成部分。

学习数学,
首先要掌握一些基本的数学公式,这些公式可以帮助我们更好地理解数学知识,更好地解决数学问题。

初一必背的数学公式有:
1、三角形面积公式:S=1/2ab sinC,其中a、b为三角形的两边,C为两边夹角。

2、圆的面积公式:S=πr2,其中r为圆的半径。

3、直角三角形的勾股定理:a2+b2=c2,其中a、b为直角三角形的两条直角边,c为斜边。

4、等比数列的公式:an=a1rn-1,其中a1为等比数列的第一项,r为公比,n
为项数。

5、等差数列的公式:Sn=n(a1+an)/2,其中a1为等差数列的第一项,an为等
差数列的最后一项,n为项数。

6、抛物线的顶点公式:x=-b/2a,其中a、b为抛物线的二次项系数。

7、椭圆的长轴短轴公式:a2/b2=1,其中a为椭圆的长轴,b为椭圆的短轴。

8、椭圆的面积公式:S=πab,其中a为椭圆的长轴,b为椭圆的短轴。

以上就是初一必背的数学公式,学习数学,首先要掌握这些基本的数学公式,
这样才能更好地理解数学知识,更好地解决数学问题。

只有掌握了这些基本的数学公式,才能更好地学习数学,更好地掌握数学知识。

初一数学定理公式大全

初一数学定理公式大全

初一数学定理公式大全数学是一门理性而精确的学科,既有理论的推导又有实际问题的应用。

而在初一数学学习的过程中,掌握一些基本定理和公式对于深入理解数学知识和解决数学问题至关重要。

下面将为大家整理一份初一数学定理公式大全,帮助同学们在学习中更好地掌握数学知识。

1. 整数定理- 两个整数的和、差、积仍为整数;- 偶数加偶数等于偶数,奇数加奇数等于偶数,偶数加奇数等于奇数;- 偶数乘以偶数等于偶数,奇数乘以奇数等于奇数,偶数乘以奇数等于偶数。

2. 分数定理- 任何一个正整数a都可以表示为两个互质的正整数的商;- 相同分母的两个分数相加、相减时,保持分母不变,分子相加、相减;- 分子分母都有公因式时,可约分。

3. 等式定理- 若等式两边同时加减、乘除同一个数,等式仍成立;- 若等式两边交换位置,等式仍成立;- 等式两边同乘同除一个不等于零的数,等式仍成立;- 若等式两边都开同一个次方,等式仍成立。

4. 质数定理- 除了1和本身,没有其他正因数的数称为质数;- 每一个大于1的自然数都可以唯一地分解为几个质数的乘积;- 质数的个数是无限的。

5. 平方定理- (a+b)²=a²+2ab+b²;- (a-b)²=a²-2ab+b²;- a²-b²=(a+b)(a-b)。

6. 平行线定理- 在平面上,若一条直线与另外两条直线分别相交,那么这两条直线要么平行,要么相交,并且交角互补。

7. 相似三角形定理- 两个三角形中,对应角相等,对应边成比例,则这两个三角形相似;- 三角形内部的三条高分别经过三个顶点,相交于一点,这个点到三边的距离与三角形面积成正比。

8. 勾股定理- 直角三角形中,斜边的平方等于两直角边平方和;- 已知两边的长求斜边长时,要先求出两边长度的平方和,再开平方根。

9. 三角函数定理- 正弦定理:在三角形ABC中,a/sinA = b/sinB = c/sinC;- 余弦定理:在三角形ABC中,a² = b² + c² - 2bc*cosA;- 正切定理:tanA = sinA/cosA。

初中数学公式定理概括

初中数学公式定理概括

初中数学公式定理概括初中数学是数学学科的基础,它包括了许多重要的公式和定理。

这些公式和定理在学习和解题中起着重要的作用。

下面是初中数学中一些重要的公式定理的概括。

一、等差数列公式:1.等差数列的通项公式:对于等差数列 an=a1+(n-1)d,其中a1为首项,d为公差,an为第n项。

2.等差数列的求和公式:对于等差数列 Sn=(a1+an)n/2,其中Sn为前n项和。

3.等差数列的前n项和与项数的关系:Sn=(a1+an)n/2=(a1+ a1+(n-1)d)n/24.等差数列中任意三项的关系:an=a1+(n-1)d。

二、等比数列公式:1.等比数列的通项公式:对于等比数列 an=a1*r^(n-1),其中a1为首项,r为公比,an为第n项。

2.等比数列的求和公式:对于等比数列Sn=a1(1-r^n)/(1-r),其中Sn为前n项和。

3.等比数列的前n项和与项数的关系:Sn=a1(1-r^n)/(1-r)。

4.等比数列中任意两项的关系:an=a1*r^(n-1)。

三、平方差公式:1. (a+b)^2=a^2+2ab+b^22. (a-b)^2=a^2-2ab+b^23.a^2-b^2=(a+b)(a-b)。

四、勾股定理:1.勾股定理:直角三角形的一个直角边的平方等于另外两条边的平方和。

2.勾股定理的逆定理:如果一个三角形中的一些边的平方等于另外两条边的平方和,那么这个三角形一定是直角三角形。

五、平方根与立方根:1.平方根公式:对于任意非负数a和非负数x,如果x^2=a,则x为a的平方根。

2.立方根公式:对于任意实数a和非负数x,如果x^3=a,则x为a的立方根。

六、二次函数公式:1. 一元二次方程的求根公式:对于一元二次方程ax^2+bx+c=0(其中a≠0),它的解可以通过以下公式计算:x=(-b±√(b^2-4ac))/(2a)。

2. 一元二次函数的顶点坐标:对于一元二次函数y=ax^2+bx+c,它的顶点坐标为(-b/2a, -(b^2-4ac)/4a)。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

定义定理一、算术方面1.加法交换律:两数相加交换加数的位置,和不变。

2.加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。

3.乘法交换律:两数相乘,交换因数的位置,积不变。

4.乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。

5.乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。

如:(2+4)×5=2×5+4×5。

6.除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。

0除以任何不是0的数都得0。

7.等式:等号左边的数值与等号右边的数值相等的式子叫做等式。

等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。

8.方程式:含有未知数的等式叫方程式。

9.一元一次方程式:含有一个未知数,并且未知数的次数是一次的等式叫做一元一次方程式。

学会一元一次方程式的例法及计算。

即例出代有χ的算式并计算。

10.分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。

11.分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。

异分母的分数相加减,先通分,然后再加减。

12.分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。

异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。

13.分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。

14.分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。

15.分数除以整数(0除外),等于分数乘以这个整数的倒数。

16.真分数:分子比分母小的分数叫做真分数。

17.假分数:分子比分母大或者分子和分母相等的分数叫做假分数。

假分数大于或等于1。

18.带分数:把假分数写成整数和真分数的形式,叫做带分数。

19.分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。

20.一个数除以分数,等于这个数乘以分数的倒数。

21.甲数除以乙数(0除外),等于甲数乘以乙数的倒数1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理(SSS) 有三边对应相等的两个三角形全等26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论2 有一个角等于60°的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^247勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形48定理四边形的内角和等于360°49四边形的外角和等于360°50多边形内角和定理n边形的内角的和等于(n-2)×180°51推论任意多边的外角和等于360°52平行四边形性质定理1 平行四边形的对角相等53平行四边形性质定理2 平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3 平行四边形的对角线互相平分56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58平行四边形判定定理3 对角线互相平分的四边形是平行四边形59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形61矩形性质定理2 矩形的对角线相等62矩形判定定理1 有三个角是直角的四边形是矩形63矩形判定定理2 对角线相等的平行四边形是矩形64菱形性质定理1 菱形的四条边都相等65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即S=(a×b)÷267菱形判定定理1 四边都相等的四边形是菱形68菱形判定定理2 对角线互相垂直的平行四边形是菱形69正方形性质定理1 正方形的四个角都是直角,四条边都相等70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71定理1 关于中心对称的两个图形是全等的72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74等腰梯形性质定理等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77对角线相等的梯形是等腰梯形78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2 S=L×h83 (1)比例的基本性质如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d84 (2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d85 (3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86 平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87 推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88 定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90 定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91 相似三角形判定定理1 两角对应相等,两三角形相似(ASA)92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)94 判定定理3 三边对应成比例,两三角形相似(SSS)95 定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97 性质定理2 相似三角形周长的比等于相似比98 性质定理3 相似三角形面积的比等于相似比的平方99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101圆是定点的距离等于定长的点的集合102圆的内部可以看作是圆心的距离小于半径的点的集合103圆的外部可以看作是圆心的距离大于半径的点的集合圆面积=半径的平方乘以派长方形的周长=(长+宽)×2正方形的周长=边长×4长方形的面积=长×宽正方形的面积=边长×边长三角形的面积=底×高÷2平行四边形的面积=底×高梯形的面积=(上底+下底)×高÷2直径=半径×2 半径=直径÷2圆的周长=圆周率×直径=圆周率×半径×2圆的面积=圆周率×半径×半径长方体的表面积=(长×宽+长×高+宽×高)×2长方体的体积=长×宽×高正方体的表面积=棱长×棱长×6正方体的体积=棱长×棱长×棱长圆柱的侧面积=底面圆的周长×高圆柱的表面积=上下底面面积+侧面积圆柱的体积=底面积×高圆锥的体积=底面积×高÷3长方体(正方体、圆柱体)的体积=底面积×高平面图形名称符号周长C和面积S正方形a—边长C=4aS=a2长方形a和b-边长C=2(a+b)S=ab三角形a,b,c-三边长h-a边上的高s-周长的一半。

相关文档
最新文档