化工原理 第二章 流体输送机械
化工原理(第四版)谭天恩-第二章-流体输送机械
注意安全防护
在操作流体输送机械时,应注意安全防护 ,穿戴好防护用品,避免发生意外事故。
THANKS
感谢观看
高效节能设计
优化流体输送机械的结构和运行方式,降低能耗,提高能效比。
减少排放
采取有效的措施减少流体输送机械在运行过程中产生的污染物排放, 如采用密封性能好的机械部件、回收利用排放的余热等。
环保材料
选择对环境友好的材料和润滑剂,减少对环境的污染。
资源循环利用
对流体输送机械中的可回收利用部分进行回收再利用,减少资源浪费 。
化工原理(第四版)谭 天恩-第二章-流体 输送机械
目录
• 流体输送机械概述 • 离心泵 • 其他类型的泵 • 流体输送机械的性能比较与选用 • 流体输送机械的维护与故障处理
01
CATALOGUE
流体输送机械概述
流体输送机械的定义与分类
定义
流体输送机械是用于将流体从一 个地方输送到另一个地方的机械 设备。
05
CATALOGUE
流体输送机械的维护与故障处理
流体输送机械的日常维护与保养
定期检查
对流体输送机械进行定期检查,确保其正 常运转,包括检查泵、管道、阀门等部件
是否完好无损,润滑系统是否正常等。
清洗与清洁
定期对流体输送机械进行清洗,清除残留 物和污垢,保持机械内部的清洁,防止堵 塞和腐蚀。
更换磨损部件
流体输送机械的应用
工业生产
在化工、石油、制药等领 域,流体输送机械广泛应 用于原料、半成品和成品 的输送。
能源与环保
流体输送机械在燃煤、燃 气等能源输送以及通风、 除尘等环保领域也有广泛 应用。
城市供暖与空调
在集中供暖和空调系统中 ,流体输送机械用于将热 源或冷源输送到各个用户 。
化工原理第二章流体输送设备
化工原理-第二章-流体输送设备一、选择题1、离心泵开动以前必须充满液体是为了防止发生()。
AA. 气缚现象;B. 汽蚀现象;C. 汽化现象;D. 气浮现象。
2、离心泵最常用的调节方法是()。
BA. 改变吸入管路中阀门开度;B. 改变压出管路中阀门的开度;C. 安置回流支路,改变循环量的大小;D. 车削离心泵的叶轮。
3、离心泵的扬程,是指单位重量流体经过泵后获得的()。
BA. 包括内能在内的总能量;B. 机械能;C. 压能;D. 位能(即实际的升扬高度)。
4、离心泵的扬程是()。
DA. 实际的升扬高度;B. 泵的吸液高度;C. 液体出泵和进泵的压差换算成液柱高度D. 单位重量液体出泵和进泵的机械能差值。
5、某同学进行离心泵特性曲线测定实验,启动泵后,出水管不出水,泵进口处真空计指示真空度很高,他对故障原因作出了正确判断,排除了故障,你认为以下可能的原因中,哪一个是真正的原因()。
CA. 水温太高;B. 真空计坏了;C. 吸入管路堵塞;D. 排出管路堵塞。
6、为避免发生气蚀现象,应使离心泵内的最低压力()输送温度下液体的饱和蒸汽压。
AA. 大于;B. 小于;C. 等于。
7、流量调节,离心泵常用(),往复泵常用()。
A;CA. 出口阀B. 进口阀C. 旁路阀8、欲送润滑油到高压压缩机的气缸中,应采用()。
输送大流量,低粘度的液体应采用()。
C;AA. 离心泵;B. 往复泵;C. 齿轮泵。
9、1m3气体经风机所获得能量,称为()。
AA. 全风压;B. 静风压;C. 扬程。
10、往复泵在启动之前,必须将出口阀()。
AA. 打开;B. 关闭;C. 半开。
11、用离心泵从河中抽水,当河面水位下降时,泵提供的流量减少了,其原因是()。
CA. 发生了气缚现象;B. 泵特性曲线变了;C. 管路特性曲线变了。
12、离心泵启动前____ ,是为了防止气缚现象发生。
DA 灌水;B 放气;C 灌油;D 灌泵。
13、离心泵装置中____ 的滤网可以阻拦液体中的固体颗粒被吸入而堵塞管道和泵壳。
化工原理第二章 流体输送机械
3、适应被输送流体的特性
二、 流体输送机械的分类
输送液体——泵
1、流体根据输送介质不同
输送气体——风机或压缩机
动力式
2、根据工作原理不同 容积式
流体作用式
离心泵的外观
第一节 离心泵
一、 离心泵的工作原理和基本结构
1、离心泵的主要构造: (1)叶轮 ——叶片(+盖板)
1)叶轮
a)叶轮的作用 将电动机的机械能传给液体,使液体的动能有所提高。
一般都采用后弯叶片。2=25-30o
(4)理论流量
当离心泵确定,其β2、b2、D2一定,
当转速一定时,理论压头和流量呈直 线关系,
H A BqT
采用后弯叶片。2<90o,B>0,因此,H随q增大而减小。
3、实际压头
离心泵的实际压头与理论压头有较大的差异,原因在于流 体在通过泵的过程中存在着压头损失,它主要包括: 1)叶片间的环流 2)流体的阻力损失 3)冲击损失
H e K Bqv2 ——管路特性方程
对于气体输送系统,由于 常数 ,列伯努利方程以单位
体积为基准
HT
gZ
P
u 2 2
gH f
由于气体密度较小,位风压 gZ 一项一般可以忽略。
2、管路系统对输送机械的其他性能要求
1、结构简单,重量轻,投资费用低
2、运行可靠,操作效率高,日常操作费用低
理论压头、实际压头及各种压头损失与流量的关系为 H
q-H
实际压 头
实际压头和流量关系: H A BqT2
二、离心泵的主要性能参数和特性曲线
1、离心泵的主要性能参数
流量 q,泵单位时间实际输出的液体量,m3/s或m3/h。 压头 H,泵对单位重量流体提供的有效能量(扬程),m。 轴功率和效率p,电机输入离心泵的功率,单位W 或kW。 允许汽蚀余量 △h,泵抗气蚀性能参数,m 。
化工原理ppt-第二章流体输送机械
H
' S
p a p1
g
2022/8/12
22
二、离心泵安装高度
3.允许气蚀余量
H
' S
p a p1
g
由于HS′使用起来不便,有时引入另一表示气蚀性 能的参数,称为气蚀余量。 以NSPH表示,定义为防止气蚀发生,要求离心泵 入口处静压头与动压头之和必须大于液体在输送温 度下的饱和蒸汽压头的最小允许值。
性能曲线包括H~Q曲线、
N~Q曲线和 ~Q曲线。
2022/8/12
9
二、离心泵的性能参数与特性曲线
2.性能曲线
① H~Q特性曲线 随着流量增加,泵的压头下降,
即流量越大,泵向单位重量流体提 供的机械能越小。
② N~Q特性曲线 轴功率随着流量的增加而上升,
所以大流量输送一定对应着大的配 套电机。离心泵应在关闭出口阀的 情况下启动,这样可以使电机的启 动电流最小。
2022/8/12
24
三、离心泵的选用、安装与操作
1.离心泵类型
(1)清水泵:适用于输送清水或物 性与水相近、无腐蚀性且杂质较少的 液体。结构简单,操作容易。 (2)耐腐蚀泵:用于输送具有腐蚀 性的液体,接触液体的部件用耐腐蚀 的材料制成,要求密封可靠。 (3)油泵:输送石油产品的泵,要 求有良好的密封性。 (4)杂质泵:输送含固体颗粒的液 体、稠厚的浆液,叶轮流道宽,叶片 数少。
2022/8/12
26
三、离心泵的选用、安装与操作
3.安装与操作离心泵
(1)安装 ①安装高度不能太高,应小于允许安装高度。 ②尽量减少吸入管路阻力,以减少发生汽蚀可能性。 主要考虑:吸入管路应短而直;吸入管路直径可稍大; 吸入管路减少不必要管件;调节阀装于出口管路。 (2)操作 ①启动前应灌泵,并排气。②应在出口阀关闭情况下 启动泵。③停泵前先关闭出口阀,以免损坏叶轮。④ 经常检查轴封情况
化工原理第二章-流体输送机械
w2 w2 w2 c2小,泵内流动阻力损失小
c2 c2
c2
uuu222
前径后弯向弯叶叶叶片片片
3) 理论流量
H T
u22 g
u2ctg2 gD2b2
若离心泵的几何尺寸(b2、D2、β2)和转速n一定,则式可表示
为
表示HT∞与QT呈线性关系,该直线的斜率与叶 片形状β2有关,即 β2>90°时,B<0, HT∞随QT的增加而增大。 β2=90°时,B=0, HT∞与QT的无关。 β2<90°时,B>0, HT∞随QT的增加而减少。
Ne
轴功率 N :电机输入到泵轴的功率,由于泵提供给流 体的实际扬程小于理论扬程,故泵由电机获得的轴功并不 能全部有效地转换为流体的机械能。
N Ne
有效功率 Ne:流体从泵获得的实际功率,可直
接由泵的流量和扬程求得
Ne = HgQρ
N QH 102
电机
泵
2. 离心泵特性曲线及其换算
用20C清水测定
包括 :H~Q曲线(平坦型、陡降型、 驼峰型) N~Q曲线、 ~Q曲线
QgH
N
由图可见: Q,H ,N,
有最大值。
思考: ➢ 离心泵启动时均关闭 出口阀门,why? ➢为什么Q=0时,N0?
02
高效区
与最高效率相比, 效率下降5%~8%
设计点
3.离心泵性能的改变和换算
1)液体性质的影响 (1)密度:
思考:泵壳的主要作用是什么?
①汇集液体,并导出液体; ②能量转换装置
轴封装置:离心泵工作时是泵轴旋转而泵壳不动,泵轴与泵 壳之间的密封。
作用:防止高压液体从泵壳内沿间隙漏出,或外界空气 漏入泵内。
化工原理
第二章流体输送机械学生自测一.填空或选择1.离心泵的主要部件有、和。
2.离心泵的泵壳制成蜗壳状,其作用是。
3.离心泵的主要特性曲线包括、和三条曲线。
4.离心泵特性曲线是在一定下,用常温为介质,通过实验测定得到的。
5.离心泵启动前需要先向泵内充满被输送的液体,否则将可能发生现象。
而当离心泵的安装高度超过允许安装高度时,将可能发生现象。
6.若离心泵入口真空表读数为700mmHg,当地大气压为101.33kPa,则输送上42℃水时(饱和蒸汽压为8.2kPa)泵内发生汽蚀现象。
7.离心泵安装在一定管路上,其工作点是指。
8.若被输送的流体的粘度增高,则离心泵的压头、流量、效率、轴功率。
9.离心泵通常采用调节流量;往复泵采用调节流量。
10.离心泵允许汽蚀余量定义式为。
11.离心泵在一管路系统中工作,管路要求流量为Q e,阀门全开时管路所需压头为H e,而与相对应的泵所提供的压头为H m,则阀门关小压头损失百分数为%。
12.离心通风机的全风压是指,它的单位是。
13.离心通风机的特性曲线包括、、和四条曲线。
14.往复泵的往复次数增加时,流量,扬程。
15.齿轮泵的特点是,适宜于输送液体,而不宜于输送。
16.写出三种正位移泵的名称,即,,。
17.离心泵的效率η和流量Q的关系为()A.Q增大,η增大B.Q增大,η先增大后减小C.Q增大,η减小D.Q增大,η先减小后增大18.离心泵的轴功率N和流量Q的关系为()A.Q增大,N增大B.Q增大,N先增大后减小C.Q增大,N减小D.Q增大,N先减小后增大19.离心泵在一定管路系统下工作时,压头与被输送液体的密度无关的条件是()A. Z2-Z1=0B. ∑h f =0C. u22/2 –u12/2=0D. p2-p1=020.离心泵停止操作时宜()A.先关出口阀后停电 D.单级泵先停电,多级泵先关出口阀C.先关出口阀或先停电均可 B.先停电后关阀21.往复泵适用于()A.大流量且要求流量特别均匀的场合B.介质腐蚀性特别强的场合C.流量较小,压头较高的场合D.投资较小的场合22.在测定离心泵性能时,若将压力表装在调节阀以后,则压力表读数p2 将(),而当压力表装在调节阀以前,则压力表读数p1将(),A.随流量增大而减小B.随流量增大而增大C.随流量增大而基本不变D.随真空表读数的增大而减小23.离心泵铭牌上标出的流量和压头数值是()。
化工原理之二 流体输送机械
第二章:液体输送机械在化工生产中,为了满足工艺条件的要求,常需把流体从一处送到另一处,有时还需提高流体的压强或将设备造成真空,这就需采用为流体提供能量的输送设备。
为液体提供能量的输送设备称为泵为气体提供能量的输送设备称为风机及压缩机。
它们都是化工厂最常用的通用设备,因此又称为通用机械。
为气体提供能量的输送设备称为风机及压缩机。
它们都是化工厂最常用的通用设备,因此又称为通用机械。
化工生产中被输送的流体是多种多样的,且在操作条件、输送量等方面也有较大的差别,所用的输送设备必须能满足生产上不同的要求。
化工生产又多为连续过程,如果过程骤然中断,可能会导致严重事故,因此要求输送设备在操作上安全可靠。
输送设备运行时要消耗动力,动力费用直接影响产品的成本,故要求各种输送设备能在较高的效率下运转,以减少动力消耗。
为此,必须了解流体输送设备的操作原理、主要结构与性能,以便合理地选择和使用这些通用机械。
第一节液体输送设备液体输送设备的种类很多,按照工作原理的不同,分为离心泵、往复泵、旋转泵与旋涡泵等几种。
其中,以离心泵在生产上应用最为广泛。
2-1-1离心泵一、离心泵的工作原理和主要部件(一) 离心泵的工作原理上图为一台离心泵。
它的基本部件是旋转的叶轮和固定的泵壳。
具有若干弯曲叶片的叶轮安装在泵壳内,并紧固于泵轴上,泵轴可有电动机带动旋转.泵壳中央的吸入口与吸入管路相连接,而在吸入管路底部装有底阀.侧旁的排出口与排出管路相连接,其上装有调节阀.离心泵在启动前需向壳内灌满被输送的液体,启动后泵轴带动叶轮一起旋转,迫使叶片内的液体旋转,液体在离心力的作用下从叶轮中心被抛向外缘并获得了能量,使叶轮外缘的液体静压强提高,流速增大,一般可达15~25m/s。
液体离开叶轮进入泵壳后,由于泵壳中流道逐渐加宽而使液体的流速逐渐降低,部分动能转变为静压能.于是, 具有较高的压强的液体从泵的排出口进入排出管路,输送至所需的场所。
当泵内液体从叶轮中心被抛向外缘时,在中心处形成了低压区.由于贮槽液面上方的压强大于泵吸入口处的压强,致使液体被吸进叶轮中心。
化工原理 流体输送机械
化工原理流体输送机械
流体输送机械,是化工工程中常用的一类设备,其主要功能是将液体或气体从一个地方输送到另一个地方。
常见的流体输送机械有管道、泵、阀门等。
管道是流体输送的基础设施。
管道可以分为直接埋设在地下的地下管道和架空或隧道中的地上管道。
管道的材料可以选择金属、塑料、橡胶等。
泵是常用的流体输送机械之一。
泵的工作原理是利用旋转运动或往复运动产生的压力差,将液体或气体推动到设定的位置。
泵的种类很多,常见的有离心泵、容积泵、螺杆泵等。
阀门在流体输送中起到控制流体流动的作用。
阀门可以分为手动阀、自动阀和电动阀等。
通过控制阀门的开关状态,可以调节流体的流动速度和流量。
除了上述常见的流体输送机械,还有一些其他的设备和工艺可以用于特定的流体输送需求。
例如,喷雾器可以将液体变成雾状或气雾状进行输送;干燥器可以将湿润的固体物料转化为干燥的状态进行输送。
在化工生产中,正确选择和使用流体输送机械是非常重要的。
不同的流体输送机械具有不同的工作原理和适用范围,需要根据具体的流体性质和输送要求进行选择。
同时,合理设计和布置流体输送系统,合理设置管道和阀门,也是确保流体输送稳定和安全的关键。
化工原理 第二章流体输送机械
第二章 流体输送机械离心泵特性【2-1】某离心泵用15℃的水进行性能实验,水的体积流量为540m 3/h ,泵出口压力表读数为350kPa ,泵入口真空表读数为30kPa 。
若压力表与真空表测压截面间的垂直距离为350mm ,吸入管与压出管内径分别为350mm 及310 mm ,试求泵的扬程。
解 水在15℃时./39957kg m ρ=,流量/V q m h =3540 压力表350M p kPa =,真空表30V p kPa =-(表压) 压力表与真空表测压点垂直距离00.35h m = 管径..12035031d m d m ==,流速 / ./(.)1221540360015603544V q u m s d ππ===⨯. ../.221212035156199031d u u m s d ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭扬程 222102M V p p u u Ηh ρg g--=++ ()(.)(.)....⨯--⨯-=++⨯⨯332235010301019915603599579812981....m =++=0353890078393 水柱【2-2】原来用于输送水的离心泵现改为输送密度为1400kg/m 3的水溶液,其他性质可视为与水相同。
若管路状况不变,泵前后两个开口容器的液面间的高度不变,试说明:(1)泵的压头(扬程)有无变化;(2)若在泵出口装一压力表,其读数有无变化;(3)泵的轴功率有无变化。
解 (1)液体密度增大,离心泵的压头(扬程)不变。
(见教材) (2)液体密度增大,则出口压力表读数将增大。
(3)液体密度ρ增大,则轴功率V q gHP ρη=将增大。
【2-3】某台离心泵在转速为1450r/min 时,水的流量为18m 3/h ,扬程为20m(H 2O)。
试求:(1)泵的有效功率,水的密度为1000kg/m 3; (2)若将泵的转速调节到1250r/min 时,泵的流量与扬程将变为多少?解 (1)已知/,/V q m h H m kg m ρ===331820 1000水柱,有效功率 .e V P q gH W ρ==⨯⨯⨯=181000981209813600(2) 转速 /min 11450n r =时流量3118V q m h =/,扬程1220m H O H =柱 转速 /m i n 21250n r = 流量 ./322111250181551450V V n q q m h n ==⨯= 扬程 .2222121125020149m H O 1450n H H n ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭柱 管路特性曲线、工作点、等效率方程【2-4】用离心泵将水由敞口低位槽送往密闭高位槽,高位槽中的气相表压为98.1kPa ,两槽液位相差4m 且维持恒定。
化工原理课件第2章:流体输送
4. 当液体输送温度较高或液体沸点较低时,可能出现[Hg]为负的情况, 此时应将离心泵安装于贮槽液面以下。
化工原理——流体输送机械
2.2.6 离心泵的类型与选用 1. 类型 ① 清水泵——单级、多级、双吸 ②耐腐蚀泵——用耐腐蚀材料 ③油泵——密封良好 ④液下泵——轴封要求不高 ⑤屏蔽泵——无密封、无泄漏
qV' D' qV D
H
' e
He
D' D
2
Pa' Pa
D' D
3
——切割定律
化工原理——流体输送机械
2.2.4 离心泵的工作点与流量调节 1. 管路特性曲线
K:由管路特性决定, 一般为高度湍流,与流 量无关
化工原理——流体输送机械
管路特性的影响因素 化工原理——流体输送机械
7. 效率:有效功率与轴功率之比,即
Pe
Pa
化工原理——流体输送机械
8. 泵内的能量损失 a. 容积损失
高压液体泄漏到低压处,qV
b. 水力损失 液体内摩擦及液体与泵壳的碰撞,He c. 机械损失 轴与轴承,轴封的摩擦
化工原理——流体输送机械
轴功率:电机提供给泵轴的功率,W
Pa
Pe
H串 2 A 2BoqV2串
并联时的特性曲线为:
H并
A
Bo
qV并 2
2
H串<2H单 qV串>qV单
qV 并<2qV 单 H并>H单
化工原理——流体输送机械
化工原理(第二版)第二章
3.讨论
(1)汽蚀现象产生的原因:
①安装高度太高; ②被输送流体的温度太高,液体蒸汽压过高;
③吸入管路阻力或压头损失太高。
(2)计算出的Hgmax<0, 低于贮槽液面安装
(3) Hgmax大小~Q。 Q,则Hgmax ,保险 。
凝结局部真空 周围液体高速冲向汽泡中心
撞击叶片(水锤)
伴随现象 ①泵体振动并发出噪音
②H, Q , 严重时不送液;
③时间长久,水锤冲击和化学腐蚀,损坏叶片
安装高度 ,汽蚀 问题:如何确定Hg的上限 ——允许安装高度
2.汽蚀余量与允许安装高度
(1)三个基本概念:
①(有效)汽蚀余量ha: 泵入口处:动压头+静压头-饱和蒸汽压(液柱)
H
-------管路所需压头 he 与流量关系曲线
泵的特性曲线
• 工作点
Q
1.管路特性曲线 -------管路所需压头 he 与流量关系曲线
he
z
p
g
u 2 2g
hf
A f Q
完全湍流时, he A BQ 2
管路特性方程 H
hf
l le u2
d 2g
8 l le Q 2
2d 5g
(5)效率: = Ne/ N
<100% —— 容积损失,水力损失,机械损失
2.离心泵的性能曲线characteristic curves
H~Q N~Q ~Q
厂家实验测定产品说明书
20C清水
H,m
~Q
离心泵特性曲线
H ~Q
N
N ~Q
化工原理内容概要-第2章
《化工原理》内容提要第二章流体输送机械1. 基本概念1)离心泵的主要构件:叶轮和蜗壳2)泵的流量q v:指泵的单位时间内送出的液体体积,等于管路中的流量,这是输送任务所规定必须达到的输送量。
3)泵的压头(又称扬程)He是指泵向单位重量流体提供的能量。
4)流体输送机械的分类:动力式(叶轮式)、容积式(正位移式)、其他类型。
5)离心泵的主要构件:叶轮和蜗壳。
6)离心泵的主要性能参数:流量、扬程、效率、轴功率。
7)离心泵特性曲线:描述压头、轴功率、效率与流量关系的曲线。
8)离心泵的工作点:泵特性曲线与管路特性曲线的交点。
9)离心泵的调节:改变管路特性(阀门的开大关小,改变K值);改变泵的特性(改变D、n,调节工作点)。
10)往复泵的结构:由泵缸、活塞、活塞杆、吸入和排出单向阀(活门)构成,有电动和汽动两种驱动形式。
2. 基本原理1)离心泵的工作原理:电动机经泵轴带动叶轮旋转,叶片间的液体在离心力作用下,沿叶片间的通道从叶轮中心进口处甩向叶轮外围,以很高速度汇入泵壳;液体经泵壳将大部分动能转变为静压能,以较高压力从压出口进入排出管。
2)泵的汽蚀现象:当水泵叶轮中心进口出压力低于操作温度下被输送液体的饱和蒸汽压时,液体将发生沸腾部分汽化。
所生成的汽泡,在随液体从叶轮进口向叶轮外围流动时,因压强升高,气泡立即凝聚。
高速度冲向原空间,在冲击点处产生高频高压强冲击。
当气泡的凝结发生在叶轮表面时,气泡周围液体在高压作用下如细小的高频水锤撞击叶片,加之气泡中可能带有氧气等对金属材料发生化学腐蚀作用,将导致叶片过早损坏。
3)离心泵的选用原则:①根据被输送液体的性质确定泵的类型;②确定输送系统的流量和所需压头;③根据所需流量和压头确定泵的型号。
4)往复泵的工作原理:活塞往复运动,在泵缸中造成容积的变化并形成负压和正压,完成一次吸入和排出。
5)气体输送的特点:气体的密度相对液体很小,①动力消耗大;②气体输送机械体积一般都很庞大;③输送机械内部气体压力变化的同时,体积和温度也将随之发生变化。
化工原理第二章流体输送机械
作用
存放叶轮 汇集流体 能量转化: 能量转化:是一个 转能装置
导轮:叶轮与泵壳之间,固定不动而带有叶片. 导轮:叶轮与泵壳之间,固定不动而带有叶片. 使高速液体流过时能均匀而平和地将动能转变为静压能, 使高速液体流过时能均匀而平和地将动能转变为静压能,以 减小能量损失. 减小能量损失.
③轴封装置: 轴封装置: 泵轴与泵壳之间的密封称为轴封. 泵轴与泵壳之间的密封称为轴封. 作用: 作用:防止高压液体漏出或分界空气漏入泵内 填料密封: 填料密封: 盘根: 盘根:为浸油或涂石墨的石棉绳 机械密封: 机械密封: 适合于密封要求较高的场合. 适合于密封要求较高的场合. 优点:密封性能好,使用寿命长,轴不易磨损,功耗小. 优点:密封性能好,使用寿命长,轴不易磨损,功耗小. 缺点:加工程度高,结构复杂,安装要求高,价格高. 缺点:加工程度高,结构复杂,安装要求高,价格高.
第二章 流体输送机械
第一节:概述: 第一节:概述:
流体输送机械驱动流体通过多种设备,将流体从一处送到他处, 流体输送机械驱动流体通过多种设备,将流体从一处送到他处,无论 是提高其位置或是使其压力升高或只需克服沿路的阻力, 是提高其位置或是使其压力升高或只需克服沿路的阻力,都可以通过向流 体提供机械能的方法来实现. 体提供机械能的方法来实现. 流体从输送机械取得机械能后, 直接表现是净压头的增大. 流体从输送机械取得机械能后,其直接表现是净压头的增大.新增的 净压头在输送过程中再转变为其它压头或消耗克服流动阻力,所以, 净压头在输送过程中再转变为其它压头或消耗克服流动阻力,所以,流体 输送就是向流体作功并提高其机械能. 输送就是向流体作功并提高其机械能. 学习本章的目的: 学习本章的目的: 了解设备结构,性能, 了解设备结构,性能,操作原理 了解功率消耗计算(生产中功耗是个重点指标) 了解功率消耗计算(生产中功耗是个重点指标) 通过学习后能合理地选用
化工原理-第二章-流体输送机械PPT课件
Vmh
(4)轴功率N
离心泵的轴功率N可直接用效率来计算:
流体密度,kg/ m3
泵的效率
N HQg /
泵的轴功率,W 泵的压头,m
泵的流量,m3/s
一般小型离心泵的效率50~70%,大型离心泵效率可达90% 。
2、离心泵特性曲线(Characteristic curves)
由于离心泵的各种损失难 以定量计算,使得离心泵的特
性曲线H~Q、N~Q、η~Q
的关系只能靠实验测定,在泵 出厂时列于产品样本中以供参 考。右图所示为4B20型离心泵
在 转 速n= 2900r/min 时 的特
性曲线。若泵的型号或转速不 同,则特性曲线将不同。借助 离心泵的特性曲线可以较完整 地了解一台离心泵的性能,供 合理选用和指导操作。
H/m NkW
u2
D2n
60
根据装置角β2的大小,叶片形状可分为三种:
w2
c2
2
2
u2
w2
c2
2
2
u2
w2 2
c2 2 u2
(a)
(a)β2< 90o为后弯 叶片,cotβ2 >0, HT∞ <u22 /g
(b) (b)β2= 90o为径向 叶片,cotβ2 =0 , HT∞ =u22 /g
(c) (c) β2 > 90o为前 弯叶片,cotβ2 <0,HT∞ > u22 /g
c2r
c2' r
u2
u2'
Q n Qn
H ( n)2 Hn
N H Qg ( n )3 N HQg n
不同转速下的速度三角形
比例定律
(4)叶轮直径D2对特性曲线的影响
化工原理-2章流体输送机械——总结
e、平衡孔 ——闭式或半闭式叶轮
后盖板与泵壳之间空腔液 体的压强较吸入口侧高
→轴向推力 →磨损 如何 解决? 平衡孔
平衡孔
F
平衡孔可以有效地减小轴向推力,但同时也降低了泵的效率。
2.2.2 离心泵的特性曲线 泵内造成功率损失的原因:
①阻力损失(水力损失) ——产生的摩擦阻力和局部阻力导致的损失。 ②流量损失(容积损失)
标准规定,离心泵实际汽蚀余量要比必须汽蚀余量大0.5m以上。
NPSH = (NPSH)r + 0.5
三、允许安装高度[Hg]
最大允许安装高度为:
2.2.5离心泵的类型与选用
一、离心泵的类型
按叶轮数目分类:单级、多级; 按吸液方式分类:单吸、双吸; 按输送液体性质分类:清水泵、耐腐蚀泵、油泵、杂质泵; 1) 清水泵---化工生产中最常用的泵型 (IS型、D型、Sh型) IS型-单级、单吸; 以IS100-80-125为例: IS—国际标准单级单吸清水离心泵; 100—吸入管内径,mm; 80—排出管内径,mm; 125—叶轮直径,mm
P 2 H Kqv g
1—低阻管路系统 2—高阻管路系统
由图得:需向流体提供的能量高于提高流体势能和克服 管道的阻力损失,其中阻力损失跟流体流量有 关。
(2)流体输送机械的压头(扬程)和流量
①扬程和升举高度是否相同?
扬程-能量概念;非升举高度 升举高度-泵将流体从低位升至高位 时,两液面间的高度差。
2.3.1往复泵的作用原理和类型
(1)作用原理
如图所示为曲柄连杆机构带动的往复
泵,它主要由泵缸、活柱(或活塞)和活 门组成。活柱在外力推动下作往复运动, 由此改变泵缸内的容积和压强,交替地打 开和关闭吸入、压出活门,达到输送液体 的目的。由此可见,往复泵是通过活柱的 往复运动直接以压强能的形式向液体提供
流体输送设备
第二章 流体输送设备§1 概述 2-1 流体输送概述气体的输送和压缩,主要用鼓风机和压缩机。
液体的输送,主要用离心泵、漩涡泵、往复泵。
固体的输送,特别是粉粒状固体,可采用流态化的方法,使气-固两相形成液体状物流,然后输送,即气力输送。
流体输送在化工中用处十分广泛,有化工厂的地方,就有流体输送。
流体输送机械主要分为三大类:(1)离心式。
靠离心力作用于流体,达到输送物料的目的。
有离心泵、多级离心泵、离心鼓风机、离心通风机、离心压缩机等。
(2)正位移式。
靠机械推动流体,达到输送流体的目的。
有往复泵、齿轮泵、螺杆泵、罗茨风机、水环式真空泵、往复真空泵、气动隔膜泵、往复压缩机等。
(3)离心-正位移式。
既有离心力作用,又有机械推动作用的流体输送机械。
有漩涡泵、轴流泵、轴流风机。
象喷射泵属于流体作用输送机械。
本章主要研究连续输送机械的原理、结构及设计选型。
§2 离心泵及其计算 2-2 离心泵构造及原理若将某池子热水送至高m 10的凉水塔,倘若外界不提供机械能,水能自动由低处向高处流吗?显然是不能的,如图2-1所示,我们在池面与凉水塔液面列柏努利方程得:图2-1 流体输送示意图f e h gu g p z h g u g p z +++=+++2222222111ρρ∵00211===p p z ,(表压),01012==u m z ,,若泵未有开动,则:0=e h代入上式得: gud l le 21010000022⎪⎭⎫ ⎝⎛++++=+++λ∴dl l gu e++⨯-=λ121022 2u 为虚数 此计算说明,泵不开动,热水就不可能流向凉水架,就需要外界提供机械能量。
能对流体提供机械能量的机器,称为流体输送机械。
离心泵是重要的输送液体的机械之一。
如图2-2 所示,离心泵主要由叶轮和泵壳所组成。
图2-2 离心泵构造示意图先将液体注满泵壳,叶轮高速旋转,将液体甩向叶轮外缘,产生高的动压头⎪⎪⎭⎫⎝⎛g u 22,由于泵壳液体通道设计成截面逐渐扩大的形状,高速流体逐渐减速,由动压头转变为静压头⎪⎪⎭⎫ ⎝⎛g P ρ,即流体出泵壳时,表现为具有高压的液体。
化工原理第二章第一节(第三版)
hf1 2
J/kg
气体具有可压缩性,在输送和压缩过程中,体积减小温度 上升,故气体输送机械与液体输送机械有较大差异。
泵:液体输送机械。
风机及压缩机:气体输送机械。
因为流体种类的多样性,故有不同类型、不同尺寸的气体和
液体输送机械。
离心式
输送机械的分类 (据作用原理)
往复式 旋转式 流体动力作用式
泵工作时,工作点应位于高效区。
例2-2 P73
若其中qV单位改为m3/h,即qV’——m3/h 。因1m3/s=3600m3/h, 即qV’=3600qV ,代入原式,
H
20
11930
qV 3600
2
20
9.205
10 4 qV 2
(式中qV’单位为m3/h)
(三)、流量调节
pM pV
g
u22 u12 2g
Hf
注意:pM——压力表读 数,Pa pV——真空表读数,Pa ∑Hf一般可忽略。
3、功率与效率
①轴功率P :泵轴所需的功率,即泵轴从电动机得到的功率,
②有效功率Pe :单位时间液体从泵得到的有效能量,
泵在运转过程中存在着种种损失,使输入泵的功率(轴功 率 P)比有效功率高。
*20*
允许汽蚀余量= hmin 0.3
不发生汽蚀时的汽蚀余量的最小值,列于泵性能表中。 只要汽蚀余量大于允许汽蚀余量,则不发生汽蚀。
hf hf
h 1
pv
g
u12
u12
2g
22g
pp00
gg
pv
h g
p1 p1
何潮洪化工原理第二章:流体输送机械
r2
c2r c2
c2u b2
思考:与 H 有关的因素有哪些?分别是怎 样的关系? 讨论: ( 1 ) H 与流量 Q 、叶轮转速 、叶 轮的尺寸和构造(r2、b2、2)有关; ( 2 )叶轮直径越大、转速越大, 则H越大;
1
浙江大学《化工原理》电子教案/第二章
w2
2 2
2
c2
c2r
对于输送酸、碱的离心泵,密封要求比较严,多 用机械密封。
浙江大学《化工原理》电子教案/第二章
10/73
三.离心泵的主要性能参数及特Fra bibliotek曲线 转 速 ----n,单位r.p.s或r.p.m 流 量 ----Q,m3/s或m3/h,可在输出端测量 ,又称扬程,泵对单位重量流 压 头 ----H 体提供的有效能量,m。 =h 离心泵的主要性能参数 e 轴 功 率 效 率 允 许 汽 蚀 余 量
一、离心泵的构造和工作原理
2、离心泵的工作原理
思考: 流体在泵内都获得了哪几种能量? 其中哪种能量占主导地位? 请点击观看动画
答案:动能和静压能,其中静压能占主导
思考:泵启动前为什么要灌满液体?
气缚现象
请点击观看动画
7/73
浙江大学《化工原理》电子教案/第二章
二.离心泵主要构件的结构及功能
1.叶轮 请点击观看动画
2 2
c2u
2
c2
c2r
u2
c2u
Q u2 cot 2 2r2 b2
浙江大学《化工原理》电子教案/第二章
w1
1
1
u1
c1
18/73
理论压头 HQ 理论压头H 关系曲线 与流量
1 1 2 Qu2 Q 2 H u2 cot 2 r2 cot 2 g 2r2 b2 2b2 g
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
转速 n
流量 Q, 如何确定转速一定时, 泵的压头与流量之间的 关系呢? 实验测定
2013-7-30
H的计算可根据b、c两截面间的柏努利方程:
Pb ub 2 Pc uc 2 H h0 h f bc g 2g g 2g
Pc Pb uc ub H h0 h f bc g 2g
高硅铁、各种合金钢、塑料、玻璃等。
油泵 输送石油产品的泵 ,要求密封完善。
杂质泵 输送含有固体颗粒的悬浮液、稠厚的浆液等的泵 ,又细分为污水泵、砂泵、泥浆泵等 。要求不易
堵塞、易拆卸、耐磨、在构造上是叶轮流道宽、
叶片数目少。
2013-7-30
二、离心泵的基本方程式
1、离心泵基本方程式的导出
假设如下理想情况:
片是最佳形式的叶片吗
?
2013 静压头的增加: 2g 2g
2 2 2
2
c 2 c1 动压头的增加: 2g
2
2
前弯叶片,动能的提高大于静压能的提高。
由于液体的流速过大,在动能转化为静压能的实际过程 中,会有大量机械能损失,使泵的效率降低。 一般都采用后弯叶片 : ctg >0 b、r、, 则H
(2)叶轮尺寸的影响
a)属于同一系列而尺寸不同的泵,叶轮几何形状完全相 似,b2/D2保持不变,在相同转速下有,
2013-7-30
Q ' D2 ' 3 H ' D2 ' 2 N ' D2 ' 5 ( ) ( ) ( ) Q D2 N D2 H D2
b)某一尺寸的叶轮外周经过切削而使D2变小,b2/D2变大 若切削使直径D2减小的幅度在20%以内,效率可视为
2013-7-30
• 吸入口位于泵壳中央与吸入管路相连,并在吸入管底部装
一止逆阀。 • 泵壳的侧边为排出口,与排出管路相连,装有调节阀。 离心泵的工作过程: • 开泵前,先在泵内灌满要输送的液体。 • 开泵后,泵轴带动叶轮一起高速旋转产生离心力。液体在 此作用下,从叶轮中心被抛向叶轮外周,压力增高,并以 很高的速度(15-25 m/s)流入泵壳。
1)泵叶轮的叶片数目为无限多个,也就是说叶片的厚度
为无限薄,液体质点沿叶片弯曲表面流动,不发生任
何环流现象。 2)输送的是理想液体,流动中无流动阻力。
2013-7-30
Qctg 2 u2c2 cos 2 1 2 H [ r2 ] g 2 b2 g
——离心泵基本方程 r2—叶轮半径;ω —叶轮旋转角速度; Q—泵的体积流量;b2—叶片宽度; 2 —叶片装置角。 表示离心泵的理论压头与理论流量,叶轮的转
2013-7-30
• 在蜗形泵壳中由于流道的不断扩大,液体的流速减慢,使
大部分动能转化为压力能。最后液体以较高的静压强从排 出口流入排出管道。 • 泵内的液体被抛出后,叶轮的中心形成了真空,在液面压 力(大气压)与泵内压力(负压)的压差作用下,液体便
经吸入管路进入泵内,填补了被排除液体的位置。
离心泵之所以能输送液体,主要是依靠高速旋转叶轮
四.离心泵的特性曲线及其应用
1 离心泵特性曲线
离心泵的H、η 、 N都与离心泵的Q有关,它们之间
的关系由确定离心泵压头的实验来测定,实验测出的一组
关系曲线:
H~Q 、η ~Q 、 N~Q
——离心泵的特性曲线
注意:特性曲线随转速而变。 各种型号的离心泵都有本身独自的特性曲线,但形状
基本相似,具有共同的特点
论压头随叶轮的转速或直径的增加而加大。
2)离心泵的理论压头与叶片几何形状的关系
根据叶片出口端倾角β2的大小,叶片形状可分为三种:
2013-7-30
a)径向叶片(β2=90。,图a),ctgβ2=0 。泵的理论压头不
随流量QT而变化。
2013-7-30
b)后弯叶片(β2<90。,图b) ,ctgβ2>0 。泵的理论压头随流 量Q的增大而减小 c)前弯叶片(β2>90。,图c),ctgβ2<0 。泵的理论压头 随理论流量QT的增大而增大。 问题:前弯叶片产生的 理论压头最高,这类叶
2013-7-30
2013-7-30
3)轴封装置
A 轴封的作用
为了防止高压液体从泵壳内沿轴的四周而漏出,或者外界 空气漏入泵壳内。 B 轴封的分类 填料密封: 主要由填料函壳、软填料和填料压盖组 轴封装置 成,普通离心泵采用这种密封。 机械密封: 主要由装在泵轴上随之转动的动环和固 定于泵壳上的静环组成,两个环形端面 由弹簧的弹力互相贴紧而作相对运动,
起到密封作用。
2013-7-30
2013-7-30
2013-7-30
3、离心泵的分类 1)按照轴上叶轮数目的多少 单级泵 轴上只有一个叶轮的离心泵,适用于出口压力 不太大的情况;
多级泵 轴上不止一个叶轮的离心泵 ,可以达到较高的
压头。离心泵的级数就是指轴上的叶轮数,我国
生产的多级离心泵一般为2~9级。
2)按叶轮上吸入口的数目 单吸泵 叶轮上只有一个吸入口,适用于输送量不大的情况。 双吸泵 叶轮上有两个吸入口,适用于输送量很大的情况。
2013-7-30
2013-7-30
2013-7-30
3)按离心泵的不同用途 水泵 输送清水和物性与水相近、无腐蚀性且杂质很 少的液体的泵 耐腐蚀泵 接触液体的部件(叶轮、泵体)用耐腐蚀材料制 成。要求:结构简单、零件容易更换、维修方便 、密封可靠、用于耐腐蚀泵的材料有:不锈钢、
2 2
其简化式为:
H Pc Pb / g
2013-7-30
3)离心泵的效率
离心泵输送液体时,通过电机的叶轮将电机的 能量传给液体。在这个过程中,不可避免的会有能 量损失,也就是说泵轴转动所做的功不能全部都为 液体所获得,通常用效率η来反映能量损失。这些 能量损失包括: (1)容积损失; (2)水力损失; (3)机械损失 泵的效率反应了这三项能量损失的总和,又称 为总效率。与泵的大小、类型、制造精密程度和所 输送液体的性质有关 。
2013-7-30
4)轴功率及有效功率
轴功率: 电机输入离心泵的功率,用N表示,单位为J/S,W或kW
有效功率:排送到管道的液体从叶轮获得的功率,用Ne表示 轴功率和有效功率之间的关系为 : 有效功率可表达为
N Ne /
N e QHg
N QHg /
轴功率可直接利用效率计算
2013-7-30
2013-7-30
三.离心泵的主要性能参数
1 离心泵的流量
指离心泵在单位时间里排到管路系统的液体 体积,一般用Q表示,单位为m3/h。又称为泵的 送液能力 。 2 离心泵的压头 泵对单位重量的液体所提供的有效能量,以 H表示,单位为m。又称为泵的扬程。
2013-7-30
离心泵的压头取决于:
泵的结构(叶轮的直径、叶片的弯曲情况等)
。一般要求操作时的效率应不低于最高效率的92%。
2013-7-30
2 液体性质的影响
1)液体密度的影响 离心泵的流量 离心泵的压头
QT 2r2b2c2 sin
与液体密度无关。
H u2c2 cos 2 / g 与液体的密度无关
H~Q曲线不因输送的液体的密度不同而变 。 泵的效率η不随输送液体的密度而变。
2 5 1
时,如汽油、柴油、
煤油等粘度的影响可不进行修正。
2013-7-30
3 转速与叶轮尺寸对离心泵性能的影响
(1)转速对离心泵特性的影响
当液体的粘度不大且泵的效率不变时,泵的流量、压头
、轴功率与转速的近似关系可表示为:
Q ' n' Q n
H' n' 2 N ' n' 3——比例定律 ( ) ( ) H n N n
速和直径、叶轮的几何形状间的关系。
2013-7-30
对于某个离心泵(即其β2、r2、b2固定),当转速ω一定时
,理论压头与理论流量之间呈线形关系,可表示为:
H A BQT
2、离心泵基本方程式的讨论
1)离心泵的理论压头与叶轮的转速和直径的关系
当叶片几何尺寸(b2,β2)与理论流量一定时,离心泵的理
•
使液体的能量发生转换,一部分动能转变为静压能。
为了减少液体直接进入蜗壳时的碰撞,在叶轮与泵壳之 间有时还装有一个固定不动的带有叶片的圆盘,称为导 轮。导轮上的叶片的弯曲方向与叶轮上叶片的弯曲方向
B. 导轮
相反,其弯曲角度正好与液体从叶轮流出的方向相适应
,引导液体在泵壳的通道内平缓的改变方向,使能量损 失减小,使动能向静压能的转换更为有效。
第 二章 流体输送机械
•离心泵的操作原理、构造与类型 •离心泵的基本方程式
•离心泵的主要性能参数
•离心泵性能的特性曲线及其应用
第 一 节 离心泵
•离心泵的工作点与流量调节 •离心泵的安装高度 •离心泵的选用、安装与操作
2013-7-30
流体输送机械:向流体作功以提高流体机械能的装置。 • 输送液体的机械通称为泵; 例如:离心泵、往复泵、旋转泵和漩涡泵。 • 输送气体的机械按不同的工况分别称为: 通风机、鼓风机、压缩机和真空泵。 本章的目的: 结合化工生产的特点,讨论各种流体输送机械的操作原
理、基本构造与性能,合理地选择其类型、尺寸规格、计
算功率消耗、正确安排在管路系统中的位置等。
2013-7-30
第一节 离心泵
一.离心泵的操作原理、构造与类型 1、操作原理
• 由若干个弯曲的叶 片组成的叶轮置于
具有蜗壳通道的泵
壳之内。 • 叶轮紧固于泵轴上 泵轴与电机相连, 可由电机带动旋转。
2013-7-30
2013-7-30
H,m
~Q