MAX5451EUD中文资料

合集下载

Murata 电源转换器 D1U54P-W-1200-12-HC4PC 用户指南说明书

 Murata 电源转换器 D1U54P-W-1200-12-HC4PC 用户指南说明书

/supportFor full details go to /rohsORDERING GUIDE Part NumberPower Output High Line AC Power Output Low Line AC Main Output Standby Output Airfl ow D1U54P-W-1200-12-HC4PC 1200W 1100W 12Vdc3.3Vdc Back to front D1U54P-W-1200-12-HA4PC 5Vdc D1U54P-W-1200-12-HC3PC 3.3Vdc Front to backD1U54P-W-1200-12-HA3PC5Vdc1 Refer to page 5 for alternate connector pinout assignment (HxxC).2Refer to page 7 for alternate input connector (HxxxKC).3The HCxxC variants are certifi ed for compliance to 80 PLUS ® Platinum effi ciency requirements.INPUT CHARACTERISTICS ParameterConditionsMin.Nom.Max.Units Input Voltage Operating Range 90115/230264Vac Input Frequency 4750/6063Hz Turn-on Input Voltage Ramp up 808589Vac Turn-off Input VoltageRamp down 657378Maximum current at Vin = 100Vac 1100W12Arms Inrush Current Cold start between 0 to 200msec 25ApkPower FactorAt 230Vac, full load 0.99Effi ciency (230Vac) excluding fan load 20% load90%50% load94100% load 91OUTPUT VOLTAGE CHARACTERISTICS NominalOutput VoltageParameter Conditions Min.Typ.Max.Units 12V Nominal Output Voltage 12VdcOutput Set Point Accuracy 50% load; Tamb =25°C -0.5+0.5%Line and Load Regulation-1.0+1.0Ripple Voltage & Noise 420MHz Bandwidth150mV p-p Output Current (230Vac)5100A Output Current (120Vac)590Load Capacitance30,000μF 3.3VSBNominal Output Voltage 3.3Vdc Output Set Point Accuracy 50% load; Tamb = 25°C -0.5+0.5%Line and Load Regulation-1.0+1.0Ripple Voltage & Noise 420MHz Bandwidth75mV p-p Output Current 3A Load Capacitance1000μF 5VSBNominal Output Voltage 5.0Vdc Output Set Point Accuracy 50% load; Tamb = 25°C -0.5+0.5%Line and Load Regulation-1.0+1.0Ripple Voltage & Noise 420MHz Bandwidth75mV p-p Output Current 03A Load Capacitance1000μF4Ripple and noise are measured with 0.1 μF of ceramic capacitance and 10 μF of tantalum capacitance on each of the power supply outputs. A short coaxial cable with 50Ω scope termination is used.FEATURES⏹1200W output power ⏹80 PLUS ® Platinum effi ciency ⏹12V main output⏹3.3V and 5V standby output⏹1U height: 2.15" x 12.65" x 1.57"⏹28 Watts per cubic inch density⏹N+1 redundancy capable,including hot plugging (up to 8 in parallel) ⏹Active current sharing on 12V main output; ORing FET ⏹Overvoltage, overcurrent, overtemperature protection ⏹Internal cooling fan (variable speed) ⏹PMBus™ / I²C interface with status indicators ⏹RoHS compliantPRODUCT OVERVIEWThe D1U54P-W-1200-12-HxxxC series are 80 PLUS ® Platinum effi ciency 1200 watt, power factor corrected front endsupplies with a 12V main output and a 3.3V (3A) or 5V (3A) standby. They have active current sharing and up to 8 supplies may be operated in parallel. The supplies may be hot plugged, they recover from overtemperature faults, and have status LEDs on their front panel in addition to logic and PMBus™ status signals. Their low profi le 1U package and >28W/cubic inch power density make them ideal for delivering reliable, effi cient power to servers, workstations,storage systems and other 12V distributed power systems.CBTest Certi fi cate and Test ReportPM/en/3d/acdc.html /en/3d/acdc.html /en/3d/acdc.html /en/3d/acdc.html /en/3d/acdc.html /en/3d/acdc.html Available now at/en/3d/acdc.htmlContact Murata Sales for availability of variants with this connector confi guration.Murata Power Solutions, Inc. makes no representation that the use of its products in the circuits described herein, or the use of other technical information contained herein, will not infringe upon existing or future patent rights. The descriptions contained herein do not imply the granting of licenses to make, use, or sell equipment constructed in accordance therewith. Specifi cations are subject to change without notice. © 2014 Murata Power Solutions, Inc.Murata Power Solutions, Inc. 11 Cabot Boulevard, Mansfi eld, MA 02048-1151 U.S.A.ISO 9001 and 14001 REGISTEREDThis product is subject to the following operating requirementsand the Life and Safety Critical Application Sales Policy: Refer to: /requirements/。

埃森545系列烟气湿度仪产品介绍最终版

埃森545系列烟气湿度仪产品介绍最终版

HMS535C 外观大机壳 传感器30C
外观小机壳
传感器35传感器
电源在铝盒内部
无按工况分类型号
电源在铝盒下面
按工况分具体型号
目录
535C和545结构尺寸比较
机壳尺寸 325 ×260(mm)
机壳尺寸 235 ×200(mm)
目录
内部图比较
HMS545
HMS535C+
目录
HMS545P便携式水分仪
HMS545W机壳为灰白色
目录
技术规范 烟气水分测量范围: 0…40vol% 准确度: ≤±2% 响应时间: ≤30S 湿度传感器: 阻容式 温度传感器: PT100铂电阻 输出信号: 4…20mA 供电电源: 220vAC(50HZ) 功耗: 25W 传感器温度: 0…80 C 变送器及控制部分: -10…+55 C 工作环境湿度: 0…100RH% 使用工况: 采用特殊工艺及DW技术 ,专用于脱硫 后未安装或未使用GGH低温高湿的场合
mm目录hms545ahms545chms545whms545d外观颜色灰白色蓝色灰白色黑色机壳尺寸mm235x200235x200235x200235x200应用行业火力发电垃圾焚烧适用工况氨法脱硫常规水分仪丌适于氨法脱流和低温高湿场合脱硫后未用ggh的低温高湿场合高温工况温度180客户选型目录针对工况丌同hms535c在线式水分仪hms545系列在线式水分仪升级hms545系列水分仪目录hms535c和hms545比较外观大机壳外观小机壳传感器30c传感器35传感器电源在铝盒内部电源在铝盒下面hms535chms545按工况分具体型号无按工况分类型号目录535c和545结构尺寸比较机壳尺寸325260mm机壳尺寸235200mm目录内部图比较hms545hms535c目录升级hms545phms545phms545p便携式水分仪目录现场存取测量校准内置充电式电池hms545p便携式烟气水分仪目录24v电源适配器重量更轻内置新品电池内部集成化hms545p升级内容目录产品亮点

max485esa中文资料

max485esa中文资料

General DescriptionThe MAX481, MAX483, MAX485, MAX487–MAX491, andMAX1487 are low-power transceivers for RS-485 and RS-422 communication. Each part contains one driver and onereceiver. The MAX483, MAX487, MAX488, and MAX489feature reduced slew-rate drivers that minimize E MI andreduce reflections caused by improperly terminated cables,thus allowing error-free data transmission up to 250kbps.The driver slew rates of the MAX481, MAX485, MAX490,MAX491, and MAX1487 are not limited, allowing them totransmit up to 2.5Mbps.These transceivers draw between 120µA and 500µA ofsupply current when unloaded or fully loaded with disableddrivers. Additionally, the MAX481, MAX483, and MAX487have a low-current shutdown mode in which they consumeonly 0.1µA. All parts operate from a single 5V supply.Drivers are short-circuit current limited and are protectedagainst excessive power dissipation by thermal shutdowncircuitry that places the driver outputs into a high-imped-ance state. The receiver input has a fail-safe feature thatguarantees a logic-high output if the input is open circuit.The MAX487 and MAX1487 feature quarter-unit-loadreceiver input impedance, allowing up to 128 MAX487/MAX1487 transceivers on the bus. Full-duplex communi-cations are obtained using the MAX488–MAX491, whilethe MAX481, MAX483, MAX485, MAX487, and MAX1487are designed for half-duplex applications.________________________Applications Low-Power RS-485 Transceivers Low-Power RS-422 Transceivers Level Translators Transceivers for EMI-Sensitive Applications Industrial-Control Local Area Networks__Next Generation Device Features o For Fault-Tolerant Applications MAX3430: ±80V Fault-Protected, Fail-Safe, 1/4Unit Load, +3.3V, RS-485 Transceiver MAX3440E–MAX3444E: ±15kV ESD-Protected,±60V Fault-Protected, 10Mbps, Fail-Safe, RS-485/J1708 Transceivers o For Space-Constrained Applications MAX3460–MAX3464: +5V, Fail-Safe, 20Mbps,Profibus RS-485/RS-422 Transceivers MAX3362: +3.3V, High-Speed, RS-485/RS-422Transceiver in a SOT23 Package MAX3280E–MAX3284E: ±15kV ESD-Protected,52Mbps, +3V to +5.5V, SOT23, RS-485/RS-422,True Fail-Safe Receivers MAX3293/MAX3294/MAX3295: 20Mbps, +3.3V,SOT23, RS-485/RS-422 Transmitters o For Multiple Transceiver Applications MAX3030E–MAX3033E: ±15kV ESD-Protected,+3.3V, Quad RS-422 Transmitters o For Fail-Safe Applications MAX3080–MAX3089: Fail-Safe, High-Speed (10Mbps), Slew-Rate-Limited RS-485/RS-422Transceiverso For Low-Voltage ApplicationsMAX3483E/MAX3485E/MAX3486E/MAX3488E/MAX3490E/MAX3491E: +3.3V Powered, ±15kVESD-Protected, 12Mbps, Slew-Rate-Limited,True RS-485/RS-422 Transceivers For pricing, delivery, and ordering information, please contact Maxim Direct at1-888-629-4642, or visit Maxim Integrated’s website at .______________________________________________________________Selection Table19-0122; Rev 10; 9/14PARTNUMBERHALF/FULL DUPLEX DATA RATE (Mbps) SLEW-RATE LIMITED LOW-POWER SHUTDOWN RECEIVER/DRIVER ENABLE QUIESCENT CURRENT (μA) NUMBER OF RECEIVERS ON BUS PIN COUNT MAX481Half 2.5No Yes Yes 300328MAX483Half 0.25Yes Yes Yes 120328MAX485Half 2.5No No Yes 300328MAX487Half 0.25Yes Yes Yes 1201288MAX488Full 0.25Yes No No 120328MAX489Full 0.25Yes No Yes 1203214MAX490Full 2.5No No No 300328MAX491Full 2.5No No Yes 3003214MAX1487 Half 2.5No No Yes 2301288Ordering Information appears at end of data sheet.找电子元器件上宇航军工MAX481/MAX483/MAX485/MAX487–MAX491/MAX1487Low-Power, Slew-Rate-LimitedRS-485/RS-422 TransceiversPackage Information For the latest package outline information and land patterns, go to . Note that a “+”, “#”, or “-”in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.16Low-Power, Slew-Rate-Limited RS-485/RS-422 TransceiversMAX481/MAX483/MAX485/MAX487–MAX491/MAX1487Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.Maxim Integrated 160 Rio Robles, San Jose, CA 95134 USA 1-408-601-100017©2014 Maxim Integrated Products, Inc.Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.。

MAX541

MAX541

MAX541是美国MAXIM公司生产的D/A转换芯片,它是低功耗(1.5mW),无缓冲电压输出,能够驱动60kv的负载,用单+5V电源工作的串行16位数模转换器。

其转换时间为1μs,输出电压变换范围为0V~VREF[16]。

下图为芯片的管脚图,并将MAX541的管脚功能列于表3-3中。

表3-3 MAX541管脚功能表
引脚号引脚名称引脚功能
1 OUT DAC 电压输出
2 AGND 模拟地
3 REF 电压参考输入,链接到外接的+2.5V参

4 CS 芯片选择,低电平有效
5 SCLK 串行时钟输入
6 DIN 串行数据输入
7 DGND 数字地
8 VDD +5V电源电压
MAX的工作原理是:模拟输出电压VOUT的输出范围由输入不同的数字代码来有规律的控制,当输入的16位数字代码全为0时,输出电压VOUT为0。

当输入的16位数字代码全为1时,输出电压约为VREF即2.5V。

于是VOUT的变化规律是,16位数字代码从0开始,每次加1,一直到全为1,对应的输出电压一直从0开始每次增加VREF*(1/65536)。

1111 1111 1111 1111 VREF*(65535/65536)
…….
…….
1000 0000 0000 0000 VREF*(32768/65536)
…….
……
0000 0000 0000 0001 VREF*(1/65536)
0000 0000 0000 0000 VREF *( 0/65536)。

Y系列(IP44)三相异步电动机(西玛电机有限公司)

Y系列(IP44)三相异步电动机(西玛电机有限公司)
2.3 3.2 4 5.6 7.2 9.4 12.6 17 24.6 31.4 37.7 44.6 59.5 72 85.4 104 141 169
西安西玛电机(集团)股份有限公司
Tel:029-86171136
XI'AN SIMO MOTOR,INC(GROUP)
Fax:029-86171116
Email:571057738@
Y90S-6 Y90L-6 Y100L-6 Y112M-6 Y132S-6 Y132M1-6 Y132M2-6 Y160M-6 Y160L-6 Y180M-6 Y200L1-6 Y200L2-6 Y225M-6 Y250M-6 Y280S-6 Y280M-6 Y315S-6 Y315M-6
西 安 西玛 电 机(集 团)股 份 有限 公 司
6.8
2.2
93.0 0.89 1.8
6.8
2.2
93.5 0.89 1.8
6.8
2.2
93.5 0.89 1.8
6.8
2.2
94.2 0.89 1.2
6.9
2.2
94.5 0.90 1.2
7.0
2.2
94.7 0.90 1.2
7.1
2.2
95.0 0.90 1.2
7.1
2.2
同步转速 1500r/min 4 级
21 24 35 45 66 75 85 116 128 182 228 246 294 395 505 566 850 965
本资料仅供用户选型使用,外形安装尺寸图以订货后提供的图纸为准。
2
型号
Y315L1-6 Y315L2-6 Y355M1-6 Y355M2-6 Y355M4-6 Y355L1-6 Y355L3-6

MEMORY存储芯片MAX125CEAX+D中文规格书

MEMORY存储芯片MAX125CEAX+D中文规格书

General DescriptionThe MAX125/MAX126 are high-speed, multichannel,14-bit data-acquisition systems (DAS) with simultaneous track/holds (T/Hs). These devices contain a 14-bit, 3µs,successive-approximation analog-to-digital converter (ADC), a +2.5V reference, a buffered reference input,and a bank of four simultaneous-sampling T/H ampli-fiers that preserve the relative phase information of the sampled inputs. The MAX125/MAX126 have two multi-plexed inputs for each T/H, allowing a total of eight inputs. In addition, the converter is overvoltage tolerant to ±17V; a fault condition on any channel will not harm the I C. Available input ranges are ±5V (MAX125) and ±2.5V (MAX126).An on-board sequencer converts one to four channels per CONVST pulse. In the default mode, one T/H output (CH1A) is converted. An interrupt signal (INT ) is provided after the last conversion is complete. Convert two,three, or four channels by reprogramming the MAX125/MAX126 through the bidirectional parallel interface. Once programmed, the MAX125/MAX126continue to convert the specified number of channels per CONVST pulse until they are reprogrammed. The channels are converted sequentially, beginning with CH1. The INT signal always follows the end of the last conversion in a conversion sequence. The ADC con-verts each assigned channel in 3µs and stores the result in an internal 14x4 RAM. Upon completion of the conversions, data can be accessed by applying suc-cessive pulses to the RD pin. Four successive reads access four data words sequentially.The parallel interface’s data-access and bus-release timing specifications are compatible with most popular digital signal processors and 16-bit/32-bit microproces-sors, so the MAX125/MAX126 conversion results can be accessed without resorting to wait states.ApplicationsMultiphase Motor Control Power-Grid Synchronization Power-Factor Monitoring Digital Signal Processing Vibration and Waveform AnalysisFeatures♦Four Simultaneous-Sampling T/H Amplifiers with Two Multiplexed Inputs (eight single-ended inputs total)♦3µs Conversion Time per Channel ♦Throughput: 250ksps (1 channel)142ksps (2 channels)100ksps (3 channels)76ksps (4 channels)♦Input Range: ±5V (MAX125)±2.5V (MAX126)♦Fault-Protected Input Multiplexer (±17V)♦±5V Supplies♦Internal +2.5V or External Reference Operation ♦Programmable On-Board Sequencer ♦High-Speed Parallel DSP InterfaceMAX125/MAX126________________________________________________________________Ordering InformationTypical Operating Circuit appears at end of data sheet.Pin Configuration appears at end of data sheet.PART TEMP RANGE PIN-PACKAGEINL(LSB) MAX125CCAX 0°C to +70°C 36 SSOP ±4 MAX125CEAX -40°C to +85°C 36 SSOP ±4 MAX126CCAX 0°C to +70°C 36 SSOP ±4 MAX126CEAX-40°C to +85°C36 SSOP±4_______________Detailed DescriptionThe MAX125/MAX126 use a successive-approximation conversion technique and four simultaneous-sampling track/hold (T/H) amplifiers to convert analog signals into 14-bit digital outputs. Each T/H has two multiplexed inputs, allowing a total of eight inputs. Each T/H output is converted and stored in memory to be accessed sequentially by the parallel interface with successive read cycles. The MAX125/MAX126 internal micro-sequencer can be programmed to digitize one, two,three, or four inputs sampled simultaneously from either of the two banks of four inputs (see Figure 2).The conversion timing and control sequences are derived from a 16MH z external clock, the CONVSTM A X 125/M A X 1262x4-Channel, Simultaneous-Sampling 14-Bit DAS______________________________________________________________Pin DescriptionMAX125/MAX12614-Bit DAS_______________________________________________________________________________________Figure 2.Functional Diagram1ppm/°C (max) temperature drift. Connect an external reference at REFIN as shown in Figure 7. The minimum impedance is 7kΩfor DC currents in both normal oper-ation and shutdown. Bypass REFOUT with a 4.7µF low-ESR capacitor.Power-On Reset When power is first applied, the internal power-on-reset circuitry activates the MAX125/MAX126 with INT= high, ready to convert. The default conversion mode is Input Mux A/Single-Channel Conversion. See the Programming Modes section if other configurations are desired.After the power supplies have been stabilized, the reset time is 5µs; no conversions should be performed during this phase. At power-up, data in memory is undefined.Software Power-Down Software power-down is activated by setting bit A3 of the control word high (Table 1). It is asserted after the WR or CS rising edge, at which point the ADC immedi-ately powers down to a low quiescent-current state. AV DD drops to less than 1.5mA, and AV SS is reduced to less than 1mA. The ADC blocks and reference buffer are turned off, but the digital interface and the refer-ence remain active for fast power-up recovery. Wake up the MAX125/MAX126 by writing a control word (A0–A3, Table 1). The bidirectional interface interprets a logic zero at A3 as the start signal and powers up in the mode selected by A0, A1, and A2. The referencebuffer’s settling time and the bypass capacitor’s value dominate the power-up delay. With the recommended 4.7µF at REFOUT, the power-up delay is typically 5µs.Transfer Function The MAX125/MAX126 have bipolar input ranges. Fig-ure 8 shows the bipolar/output transfer function. Code transitions occur at successive-integer least significant bit (LSB) values. Output coding is twos-complement binary with 1LSB = 610µV for the MAX125 and 1LSB = 305µV for the MAX126.Output Demultiplexer An output demultiplexer circuit is useful for isolating data from one channel in a four-channel conversion sequence. Figure 9’s circuit uses the external 16MH z clock and the INT signal to generate four RD pulses and a latch clock to save data from the desired chan-nel. CS must be low during the four RD pulses. The channel is selected with the binary coding of two switches. A 16-bit 16373 latch simplifies layout.Motor-Control Applications Vector motor control requires monitoring of the individ-ual phase currents. In their most basic application, the MAX125/MAX126 simultaneously sample two currents (CH1A and CH2A, Figure 10) and preserve the neces-sary relative phase information. Only two of the three phase currents have to be digitized, because the third component can be mathematically derived with a coor-dinate transformation.MAX125/MAX12614-Bit DAS______________________________________________________________________________________ Figure 7.External Reference Figure 8. Bipolar Transfer FunctionMAX125/MAX1262x4-Channel, Simultaneous-Sampling14-Bit DASRevision History。

德拉埃特荷尔达PQ引导SP IP65外壳 - 无显示说明书

德拉埃特荷尔达PQ引导SP IP65外壳 - 无显示说明书

SPECIFICATIONSvG UIDEPOWER QUALITY ANALYZERThe Best Combination of Value & Technologyin a PQ Analyzer – Safe, Powerful & Intelligent!Dranetz HDPQ® Guide SPIP65 Enclosure - No DisplayDranetz HDPQ® Guide7” Color, Touch DisplayMADE IN USAG UIDE®G UIDE SPMEASURED PARAMETERS(4) Differential Voltage: 16 bit resolution0-1000Vrms, AC/DC, ±0.1 % reading, <40V ±0.5%FSIEC 61000-4-30 Class A: 60-1000Vrms, ±0.1 % of Udin, range ofRange probe dep., AC/DC, +/- 0.1% reading +/- 0.05% FSFrequency:16-25Hz, 42.5-69Hz, +/- 0.01HzCALCULATED PARAMETERSPower/Energy - 1 Second samplingReal Power (W) - P: meets 0.2S requirements, range probe dep.Apparent Power (VA) - S: meets 0.2S requirements, range probe dep.Reactive Power (var) - Q: meets 0.2S requirements, range probe dep.Power Factor (W/VA) -”true” 1 to 0 to -1Displacement PF 1 to 0 to 1Demand (in W): meets 0.2S requirements, range probe dep.Energy (in Wh): meets 0.2S requirements, range probe dep.Distortion - 200ms, 3 sec, 10 min windowsVthd: 0-100%, +/- 5% for V>=1% Vnom,V Ind Harm: DC, 2-127, +/- 5% for V>=1% VnomIthd: 0-100%, +/- 5% for I>=1% Vnom,I Ind Harm: DC, 2-63, +/- 5% for I>=1% VnomMisc.Pst - 10 minutes: 0.2-10, +/- 0.05 @ Pst=1Plt - 2 hours: 0.2-10, +/- 0.05 @ Pst=1EASE OF USE FEATURESAutomatic SetupsPre-programmed monitoring modesAnswerModules®- Sag/Dip Directivity, PF Cap, MotorDashboards - PQ, Demand & EnergySimultaneous PQ, Demand & EnergyMini ReportSTANDARDS COMPLIANCEPower QualityIEC 61000-4-30 Class A: Edition 2 (2008)IEEE 1159: 2009STANDARDS COMPLIANCE (continued) PowerIEEE 1459: 2000HarmonicsIEC 61000-4-7 Class 1: Edition 2 (2008)IEEE 519: 2014Voltage FlickerIEC 61000-4-15: Edition 2 (2010)IEEE 1453: 2011Compliance/TestingEN 50160: 2010GENERAL SPECIFICATIONSDranetz HDPQ GuideSize: (10”w x 8”h x 2.75”d), (25.4cm x 20.3cm x 7.00cm)Weight: 4.2lbs, 2kgOperating temperature: 0 to 50 deg C (32 to 122 deg F)Storage temperature: -20 to 55 deg C (-4 to 122 deg F)Humidity: 10-90% non condensing3 hours run time on full charge, 3 hours charge timeDranetz HDPQ Guide SPSize: (11”w x 6.5”h x 2.5”d), (27.9cm x 16.5cm x 6.4cm)Weight: 3.2lbs, 1.45kgOperating temperature: -10 to 50 deg C (14 to 122 deg F)Storage temperature: -40 to 85 deg C (-40 to 185 deg F)Humidity: 0-95% non condensing15 minutes run time on full charge, 3 hours charge timeClock accuracy and resolutionInternal: +/- 1 sec/day at 25deg CNTP: +/-10 msecGPS: +/-1 msecAC Adapter: 90-264(max) 50/60HzMemory size: 4GBDisplay: 7” WVGA color graphic, Icon based touch LCD, LED Backlit(Guide only)Languages: English, German, Spanish, French, Italian, Swedish, Finn-ish, Polish, Chinese (traditional and simplified), Thai, KoreanCOMMUNICATIONSEthernet, 802.11 b/g/n WirelessUSB On the GoBluetooth via USB adapterVNC remote controlAndroid® & Apple® AppI12-RevAG UIDE SG UIDE SPEasle and Wire ManagementApplicationsWhether your applic ation requires power quality monitoring, demand/energy monitoring, or both, the powerful feature set of the Dranetz HDPQ® Guide family provides you the tools need-ed to get the job done. Dranetz HDPQ Guide instruments are perfec t for applic ations suc h as PQ surveys, fault rec ording, inrush, motor testing, harmonic analysis, advanced distortion analysis, demand/energy/load studies, and much more. The HDPQ Guide and Guide SP offer the exact same measure-ment features, but in different enc losures that c an meet the needs of a wide variety of applications and work environments. The HDPQ Guide is a portable instrument with a built in 7”, Tablet like LCD display. The same local user interface is also available remotely on a PC, Tablet or Smartphone by using the built in Ethernet or Wi-Fi c ommunic ations and Dran-View 7, or a free VNC remote control App. The HDPQ Guide SP offers the same measurement capabilities and communications, but is housed in an IP65 enclosure without an LCD display, greatly expanding applications into outdoor and harsh environments along with those where an LCD display is undesirable.Advan ced PQ & Energy Capabilities!Dranetz products have a long-standing tradition of having state of the art PQ monitoring capabilities, and the Dranetz HDPQ Guide is no exc eption. HDPQ Guide meets and exc eeds the most stringent industry monitoring standards, including:Power Quality - IEC 61000-4-30 Class A, IEEE 1159Harmonics - IEC 61000-4-7, IEEE 519Voltage Flicker - IEC 61000-4-15, IEEE 1453 – Including Pinst Advanced Energy – IEEE 1459Transient CaptureThe Dranetz HDPQ Guide goes well beyond the requirements of the PQ standards by including transient capture capabilities for voltage and current, such as: transients to 32 microseconds, peak sample transients, and advanced waveshape change tran-sients that can identify changes from cycle to cycle.AnswerModules ® – Smart & Good Looking!Only available from Dranetz, AnswerModules are algorithms that automatic ally identify power quality problems and their sourc e. These diagnostic and reporting tools are based on our decades of analytic al experienc e, benc hmarking, and troubleshooting work. The HDPQ Guide has three built in AnswerModules:Sag/Dip Directivity: Automatically identifies the source of a Sag/Dip as being up stream or downstream from the moni-toring source.Capacitor Switching: Automatically identifies transients as being Power Factor correction transients.Motor Analysis: Enables the PQ p arameters that are imp ortant to motor surveys, and provides a custom dashboard for results.G®The Best Combination of Value & Technology in a PQ Analyzer - Safe, Powerful & IntelligentPower Quality instruments are no different than anything else – you get what you pay for – you just get much more from the Dranetz HDPQ ® Guide than with any other instrument in its class!The Dranetz HDPQ ® Guide SP offers the same value, but in a hardened IP65 enclosure.Safe Remote Accessibility via Dran-View ® 7, Apps and VNCDON’T RISK YOUR SAFETY! The Dranetz HDPQ Guide comes with a standard Ethernet port, built-in Wireless, and USB Bluetooth commu-nications that allow you to easily comply with today’s arc flash and other safety standards. Simply install your HDPQ Guide, close the cabinet door, and use your Tablet, Smartphone, PC, or MAC computer to remotely control monitoring and review data. Fully control your instrument remotely, and see exactly what’s on the local 7” display by using Dranview 7 or a free VNC program or App for PC, MAC, Apple and Android devices. Or, you can also use the Dranetz HDPQ App for Apple and Android devices to remotely view a real-time dashboard, scope mode, or remotely configure the instrument using automatic setups. For local access, there’s also a built-in USB port to copy data to a USB drive or directly to your computer using a Plug-N-Play connection.Dashboard Display Demand & Energy TrendEasy to Use Intuitive User InterfaceWith their innovative packaging and 7” wide screen color touch display, the Dranetz HDPQ family of instruments are the most powerful and easiest to use power monitoring instruments available. Like your tablet computer, simply useyour finger or stylus to easily navigate the intuitive, icon-based user interface. Setting up the HDPQ Guide is made easy with automatic setups that detect the cir-cuit type, voltage, etc. and configure the instrument in seconds with typical indus-try settings. For customized setups, use the manual Wizard mode that guides you step-by-step through each setup. During monitoring, real time measurements can be viewed in many ways, including a color-coded reporting Dashboard, and meter/scope/phasor/harmonics displays. Recorded data can be viewed over time by using the timeline and event list displays, and also by using compliance reports, such as EN 50160.Demand & Energy SurveysManaging energy and reducing related expenses is always of par-amount importance, and in many cases is a corporate mandate. In addition to industry-best power quality monitoring capabilities, all of the Dranetz HDPQ family products also have extensive demand and energy monitoring capabilities for both long and short duration surveys. Unlike other lesser capable instru-ments, there’s more than enough horsepower to perform complete PQ and energy surveys simultaneously – it’s your choice to survey for PQ, Energy, or both. Seeing results is easy when using the energy and demand Dashboard reports that display real time and accumulated readings in a color-coded reporting format. There’s also a billing report that includes your energy rates, including time of use. You can also upload your data to our Dran-View 7 software for viewing, reporting, and printing via PC.Reporting & AnalysisThe Dranetz HDPQ Dashboard takes the guess work out of knowing what the instru-ment has recorded. The Dashboard is a color coded alarm panel with boxes that represent different event types (Sags, Swells, Transients, THD, etc.). Each box shows the real time me-tered values for the event type, and is color coded to indicate if events of that type have been recorded.Dran-View ® 7 is our industry leading Win-dows-based software program that enables power professionals to simply and quickly visualize and analyze power monitoring data. Dran-View enhances the Dranetz HDPQ Visa instruments with its VNC remote control, down-loading, and advanced analytical capabilities. It is successfully used by thousands of customers around the world, and has become the industry leading power management software tool. Dran-View is easy to use, yet adds tremendous value and power to our Dranetz HDPQ family of instruments. Of course Dran-View can trend and list data recorded by the instrument, but it also includes a built in report writer, allows you to embed pictures, provides mathematical analy-sis tools, and even includes a rescue kit to help correct connection mistakes.Dran-View ® 7Dranetz HDPQ Live VNC & DownloadDranetz HDPQ Guide SPIP65 Enclosure - No DisplayDranetz HDPQ GuidePortable with 7” DisplayV & I Connections• 1000V CAT III (600V CAT IV)• AC/DC Differential Voltage & Current Inputs • DRANFLEX CT’s powered by the instrumentInnovative Package & Wide Screen7” color, wide screen touch display. 40% largerthan before - the largest in the industry!G UIDE SG UIDE SP。

亿维自动化 X系列BD扩展板使用说明书

亿维自动化 X系列BD扩展板使用说明书

3.4. X-2AO-BD 产品说明书 ............................................................................................................ 19
3.4.1. 产品概述 ............................................................................................................................ 19
2.1.4. 模拟量 BD 扩展板地址对照表........................................................................................... 7
3. BD 扩展板详细参数..................................................................................................................................... 9
服务热线:4000 300 890
3.1.4. 安装及接线图 .................................................................................................................... 10
3.1.5. 应用说明 .............................................................................................................................11

AO4459中文资料

AO4459中文资料

AO4459中⽂资料SymbolTyp Max 33406275R θJL 1824Maximum Junction-to-Lead CSteady-State°C/WThermal Characteristics ParameterUnits Maximum Junction-to-AmbientAt ≤ 10s R θJA °C/W Maximum Junction-to-Ambient ASteady-State °C/W AO4459AO4459SymbolMin TypMaxUnits BV DSS -30V -1T J =55°C-5I GSS ±100nA V GS(th)-1.5-1.85-2.5V I D(ON)-30A 3846T J =125°C53685872m ?g FS 11S V SD -0.78-1V I S-3.5A C iss 668830pF C oss 126pF C rss 92pF R g69?Q g (10V)12.716nC Q g (4.5V) 6.4nC Q gs 2nC Q gd 4nC t D(on)7.7ns t r 6.8ns t D(off)20ns t f 10ns t rr 2230ns Q rr15nCTHIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN,FUNCTIONS AND RELIABILITY WITHOUT NOTICE.DYNAMIC PARAMETERS Maximum Body-Diode Continuous CurrentGate resistanceV GS =0V, V DS =0V, f=1MHzV GS =0V, V DS =-15V, f=1MHz Input Capacitance Output Capacitance Turn-On Rise Time Turn-Off DelayTime V GS =-10V, V DS =-15V, R L =2.5?, R GEN =3?Turn-Off Fall TimeTurn-On DelayTime SWITCHING PARAMETERSTotal Gate Charge (4.5V)Gate Source Charge Gate Drain Charge Total Gate Charge (10V)V GS =-10V, V DS =-15V, I D =-6.5Am ?V GS =-4.5V, I D =-5AI S =-1A,V GS =0V V DS =-5V, I D =-6.5AR DS(ON)Static Drain-Source On-ResistanceForward TransconductanceDiode Forward VoltageI DSS µA Gate Threshold Voltage V DS =V GS I D =-250µA V DS =-24V, V GS =0VV DS =0V, V GS =±20V Zero Gate Voltage Drain Current Gate-Body leakage current Electrical Characteristics (T J =25°C unless otherwise noted)STATIC PARAMETERS ParameterConditions Body Diode Reverse Recovery Time Body Diode Reverse Recovery ChargeI F =-6.5A, dI/dt=100A/µsDrain-Source Breakdown Voltage On state drain currentI D =-250µA, V GS =0V V GS =-10V, V DS =-5V V GS =-10V, I D =-6.5AReverse Transfer Capacitance I F =-6.5A, dI/dt=100A/µs A: The value of R θJA is measured with the device mounted on 1in 2FR-4 board with 2oz. Copper, in a still air environment with T A =25°C. The value in any a given application depends on the user's specific board design. The current rating is based on the t ≤ 10s thermal resistance rating.B: Repetitive rating, pulse width limited by junction temperature.C. The R θJA is the sum of the thermal impedence from junction to lead R θJL and lead to ambient.D. The static characteristics in Figures 1 to 6 are obtained using < 300µs pulses, duty cycle 0.5% max.E. These tests are performed with the device mounted on 1 in 2FR-4 board with 2oz. Copper, in a still air environment with T A =25°C. The SOA curve provides a single pulse rating. Rev0 Sept 2006AO4459AO4459。

MAX1501ZETE中文资料

MAX1501ZETE中文资料

General DescriptionThe MAX1501 intelligent, constant-current, constant-voltage (CCCV), temperature-regulated battery charger charges a single lithium-ion (Li+) cell or three-cell NiMH/NiCd batteries. The device integrates the current-sense resistor, PMOS pass element, and thermal-regulation circuitry, while eliminating the reverse-blocking Schottky diode to create the simplest charging solution for hand-held equipment.The MAX1501 functions as a stand-alone charger to control the charging sequence from the prequalification state through fast charge, top-off, and charge termination for single-cell Li+ or three-cell NiMH/NiCd batteries.Alternatively, the MAX1501 collaborates with a host microprocessor to determine the best charging algorithm.Proprietary thermal-regulation circuitry limits the die temperature when fast charging or while exposed to high ambient temperatures, allowing maximum charging current without damaging the charger. The MAX1501 continually supplies a regulated output voltage under no-battery conditions, allowing battery changing.The device achieves high flexibility by providing an adjustable fast-charge current, top-off current, safety timer (disabled in the MAX1501Z), and thermal-regula-tion setpoint. Other features include input power detec-tion (ACOK ) and input under-/overvoltage protection.The MAX1501 provides active-low control inputs.The MAX1501 accepts a 4.5V to 13V supply, but disables charging when the input voltage exceeds 6.5V, preventing excessive power dissipation. The MAX1501 operates over the extended temperature range (-40°C to +85°C) and is available in a compact 16-pin thermally enhanced 5mm x 5mm thin QFN package with 0.8mm profile.ApplicationsCellular and Cordless Phones PDAsDigital Cameras and MP3 Players USB AppliancesCharging Cradles and Docks Bluetooth™ EquipmentFeatures♦Stand-Alone or Microprocessor-Controlled (µP)Linear 1-Cell Li+ or 3-Cell NiMH/NiCd Battery Charger ♦No FET, Reverse-Blocking Diode, or Current-Sense Resistor Required♦ 1.4A (max) Programmable Fast-Charge Current ♦+95°C, +115°C, and +135°C ProprietaryProgrammable Die Temperature Regulation Control♦ 4.5V to 13V Input Voltage Range with Input Overvoltage (OVLO) Protection Above 6.5V♦Programmable Top-Off Current Threshold: 10%,20%, or 30% of the Fast-Charge Current ♦Charge-Current Monitor for Fuel Gauging♦Programmable Safety Timer (3, 4.5, or 6 hours)♦Input Power Detection Output (ACOK ) and Charge Enable Input (CHGEN )♦Automatic Recharge♦Digital Soft-Start Limits Inrush Current♦Charge Status Outputs for LEDs or µP InterfaceMAX1501Highly Integrated, Linear Battery Charger with Thermal Regulation for Portable Applications________________________________________________________________Maxim Integrated Products 1Ordering Information19-2800; Rev 1; 3/04For pricing, delivery, and ordering information,please contact Maxim/Dallas Direct!at 1-888-629-4642, or visit Maxim’s website at .Pin Configuration appears at end of data sheet.Typical Operating CircuitBluetooth is a trademark of Ericsson.M A X 1501Thermal Regulation for Portable Applications 2_______________________________________________________________________________________ABSOLUTE MAXIMUM RATINGSELECTRICAL CHARACTERISTICS(V IN = V INP = 5V, V BATT = 3.5V, ACOK = GLED = RLED = TEMP = TMAX/I.C. = FULLI = open, CHGEN = MODE = GND, R SETI = 2.8k Ω,C IN = 1µF, C BATT = 10µF, T A = 0°C to +85°C , unless otherwise noted. Typical values are at T A = +25°C.)Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.IN, INP, RLED , GLED to GND ................................-0.3V to +14V IN to INP................................................................-0.3V to +0.3V VL, BATT, SETI, ACOK , MODE , CHGEN , SELV,FULLI, TMAX/I.C., TEMP to GND .........................-0.3V to +6V VL to IN...................................................................-14V to +0.3VContinuous Power Dissipation (T A = +70°C)16-Pin 5mm ✕5mm Thin QFN(derate 21.3mW/°C above +70°C).............................1702mW Operating Temperature Range ...........................-40°C to +85°C Junction Temperature......................................................+150°C Storage Temperature Range.............................-65°C to +150°C Lead Temperature (soldering, 10s).................................+300°CMAX1501Thermal Regulation for Portable Applications_______________________________________________________________________________________3ELECTRICAL CHARACTERISTICS (continued)(V IN = V INP = 5V, V BATT = 3.5V, ACOK = GLED = RLED = TEMP = TMAX/I.C. = FULLI = open, CHGEN = MODE = GND, R SETI = 2.8k Ω,C IN = 1µF, C BATT = 10µF, T A = 0°C to +85°C , unless otherwise noted. Typical values are at T A = +25°C.)M A X 1501Thermal Regulation for Portable Applications 4_______________________________________________________________________________________ELECTRICAL CHARACTERISTICS(V= V = 5V, V = 3.5V, ACOK = GLED = RLED = TEMP = TMAX/I.C. = FULLI = open, CHGEN = MODE = GND, R = 2.8k Ω,MAX1501Thermal Regulation for Portable Applications_______________________________________________________________________________________5A ELECTRICAL CHARACTERISTICS (continued)(V IN = V INP = 5V, V BATT = 3.5V, ACOK = GLED = RLED = TEMP = TMAX/I.C. = FULLI = open, CHGEN = MODE = GND, R SETI = 2.8k Ω,C IN = 1µF, C BATT = 10µF, T A = -40°C to +85°C , unless otherwise noted. Typical values are at T A = +25°C.) (Note 2)Typical Operating Characteristics(V IN = V INP = 5V, ACOK = RLED = GLED = TEMP = TMAX/I.C. = FULLI = open, C BATT = 10µF, C IN = 1µF, T A = +25°C, unless otherwise noted.)SUPPLY CURRENT vs. INPUT VOLTAGEINPUT VOLTAGE (V)S U P P L Y C U R R E N T (m A )1211910345678120.51.01.52.02.53.03.54.04.55.00013DISABLE-MODE SUPPLY CURRENTvs. INPUT VOLTAGEINPUT VOLTAGE (V)D I S A B LE -M O D E S U P P L Y C U R R E N T (m A )1211910345678120.20.40.60.81.01.21.41.61.82.00013CHARGE CURRENT vs. BATTERY VOLTAGEBATTERY VOLTAGE (V)C H A R G E C U R R E N T (m A )4.03.52.5 3.01.0 1.5 2.00.55010015020025030035040045050055060000 4.5CHARGE CURRENT vs. BATTERY VOLTAGEBATTERY VOLTAGE (V)C H A R G E C U R R E N T (m A )4.54.03.0 3.51.0 1.5 2.0 2.50.55010015020025030035040045050055060005.0CHARGE CURRENT vs. INPUT VOLTAGEINPUT VOLTAGE (V)C H A R G E C U R R E N T (m A )12119103456781250100150200250300350400450500550600013CHARGE CURRENTvs. INPUT-VOLTAGE HEADROOMV IN - V BATT (V)C H A R G E C U R R E N T (m A )1.81.61.2 1.40.40.60.8 1.00.25010015020025030035040045050055060002.0M A X 1501Thermal Regulation for Portable Applications 6_______________________________________________________________________________________Typical Operating Characteristics (continued)(V IN = V INP = 5V, ACOK = RLED = GLED = TEMP = TMAX/I.C. = FULLI = open, C BATT = 10µF, C IN = 1µF, T A = +25°C, unless otherwise noted.)OUTPUT VOLTAGE vs. INPUT VOLTAGEINPUT VOLTAGE (V)O U T P U T V O L T A G E (V )1211123567894100.51.01.52.02.53.03.54.00134.084.124.104.164.144.204.184.22-4010-15356085BATTERY REGULATION VOLTAGEvs. TEMPERATURETEMPERATURE (°C)B A T T E R Y R E G U L A T I O N V O L T A G E (V)CHARGE CURRENTvs. AMBIENT TEMPERATUREAMBIENT TEMPERATURE (°C)C H A R G E C U R R E N T (m A )603510-15420440460480500520540560580600400-4085CHARGE CURRENTvs. AMBIENT TEMPERATUREAMBIENT TEMPERATURE (°C)C H A R G E C U R R E N T (m A )603510-151002003004005006007008009001000-4085MAX1501Thermal Regulation for Portable Applications_______________________________________________________________________________________7Pin DescriptionM A X 1501Thermal Regulation for Portable Applications 8_______________________________________________________________________________________Thermal Regulation for Portable Applications_______________________________________________________________________________________9M A X 1501Thermal Regulation for Portable Applications 10______________________________________________________________________________________Detailed DescriptionModes of OperationCHGEN and MODE together set the operating modes of the MAX1501. Both inputs possess internal 175k Ωpulldown resistors to GND. Table 1 describes the four operating modes of the MAX1501.MAX1501Thermal Regulation for Portable Applications______________________________________________________________________________________11Li+ Charge ModeConnect CHGEN and MODE to GND to place the MAX1501 in Li+ charging mode. The Li+ charger con-sists of a voltage-control loop, a current-control loop,and a thermal-control loop. Connect SELV to GND to set the Li+ battery voltage to 4.1V. Connect SELV to VL to set the Li+ battery voltage to 4.2V (Table 2).The MAX1501 precharges the Li+ battery with 10% of the user-programmed fast-charge current at the start of a charge cycle. A soft-start algorithm ramps up the charging current (10% steps with 20ms duration per step) to the fast-charge current when the battery volt-age reaches 2.8V. The MAX1501 enters constant-volt-age mode and decreases the charge current when the BATT voltage reaches the selected regulation voltage (4.1V or 4.2V). Set the fast-charge current with a resis-tor between SETI and GND (see the Charge-Current Selection section).The thermal-regulation loop limits the MAX1501 die temperature to the value selected by the TEMP input by reducing the charge current as necessary (see the Thermal-Regulation Selection section). This feature not only protects the MAX1501 from overheating, but also allows the charge current to be set higher without risking damage to the system.Set the top-off-current threshold with the three-state FULLI input (see the Top-Off-Current Selection section).RLED goes high impedance and GLED asserts low when the top-off-current threshold is reached. The MAX1501automatically initiates recharging when the battery volt-age drops below 95% of the voltage set by SELV. (The MAX1501Z does not time out.)NiMH/NiCd Charge ModeConnect CHGEN to GND and MODE to VL to place the MAX1501 in NiMH/NiCd charging mode. The NiMH/NiCd battery charger consists of a current-control loop, a volt-age-control loop, and a thermal-control loop. Connect SELV to GND to set the regulation voltage to 4.5V.Connect SELV to VL to set the regulation voltage to 4.95V (Table 2). When charging three NiMH/NiCd cells to 4.95V, V IN must be at least 5.25V and a µP must be used to terminate the charge sequence.Table 2. Battery Regulation VoltageFigure 4. Li+ Charge SequenceM A X 1501Thermal Regulation for Portable Applications 1210% of the user-programmed fast-charge current at the start of a charge cycle. Precharge ends and fast charge begins when the battery voltage exceeds 2.8V.Set the fast-charge current with a resistor between SETI and GND (see the Charge-Current Selection section).The MAX1501 enters constant-voltage mode and decreases the charge current when the battery voltage reaches 4.5V.The thermal-regulation loop limits the MAX1501 die temperature to the value selected by the TEMP input by reducing the charge current as necessary (see the Thermal-Regulation Selection section). This feature pro-tects the MAX1501 from overheating when supplying high charge currents, or while operating from high input voltages.Set the top-off-current threshold with the three-state FULLI input (see the Top-Off-Current Selection section).RLED goes high impedance and GLED asserts low when the top-off current threshold is reached. The MAX1501 automatically initiates recharging when the battery voltage drops below 4V. (The MAX1501Z does not time out.)No-Battery ModeConnect CHGEN and MODE to VL to place the MAX1501in no-battery mode. An external load can be connected to BATT in this mode. V BATT regulates to 4V in no-battery mode, regardless of the state of SELV.The current-control loop, voltage-control loop, and thermal-control loop all function in no-battery mode.The loop gain of the voltage-control loop decreases to ensure stability with no battery present. Connect a 10µF ceramic capacitor to BATT for stability. RLED and GLED are both high impedance in no-battery mode.ACOKThe ACOK output asserts low when V IN is present, 4.2V ≤V IN ≤6.25V, and V IN - V BATT > 100mV. The ACOK open-drain output requires an external 100k Ωpullupsupply voltage must be less than 5.5V.RLED and GLED IndicatorsRLED and GLED serve as visual indicators that power is applied as well as the charge status of a battery.RLED asserts low when a wall adapter is connected and a battery is charging, regardless of cell chemistry.GLED asserts low when power is applied and the bat-tery is fully charged. Both outputs go high-impedance in shutdown. Connect the anode of each LED to IN,and the cathode to RLED or GLED . Table 3 summa-rizes the behavior of RLED and GLED under normal operating conditions. Connect pullup resistors to the µP I/O supply when interfacing RLED and GLED with a µP’s logic inputs.Soft-StartA ten-step, soft-start algorithm activates when entering fast-charge mode. The charging current ramps up in 10% increments, 20ms per step, to the full charging current when V BATT exceeds 2.8V.Applications InformationCharge-Current SelectionProgram the charging current using an external resistor between SETI and GND. Set the charge-current resistor with the following equation:If V SETI = 1.4V, the current-control loop controls the battery charging. If V SETI < 1.4V, either the voltage-control loop or the thermal-control loop operates.Measure the charging current by monitoring V SETI and using the following equation:MAX1501Thermal Regulation for Portable Applications______________________________________________________________________________________13Thermal-Regulation SelectionSet the regulated die temperature of the MAX1501 with the TEMP three-level logic input. The MAX1501reduces the charge current to limit the die temperature to the value set by TEMP. The MAX1501 operates nor-mally while the thermal loop is active. An active thermal loop does not indicate a fault condition. TEMP allows the MAX1501 to maximize the charge current while pro-viding protection against excessive power dissipation.Connect TEMP to GND to regulate the die temperature at +95°C. Leave TEMP floating to regulate the die tem-perature at +115°C. Connect TEMP to VL to regulate the die temperature at +135°C.Top-Off-Current SelectionSet the top-off-current threshold in the Li+ and NiMH/NiCd charge modes with the FULLI three-level logic input. The top-off-current threshold determines when RLED turns off and GLED turns on, indicating the charge status of the battery.Connect FULLI to GND to set the top-off-current thresh-old to 10% of the fast-charge current. Connect FULLI to VL to set the top-off-current threshold to 20% of the fast-charge current. Leave FULLI floating to set the top-off-current threshold to 30% of the fast-charge current.Charge-Timer Selection (MAX1501 Only)Set the maximum charging time with the TMAX three-level logic input. TMAX limits the duration of charging to protect the battery from overcharging. Connect TMAX to GND to set the maximum charging time to 3 hours.Leave TMAX floating to set the maximum charging timeto 4.5 hours. Connect TMAX to VL to set the maximum charging time to 6 hours.Capacitor SelectionConnect a ceramic capacitor from BATT to GND for proper stability. Use a 10µF X5R ceramic capacitor for most applications.Connect IN and INP together and bypass to GND with a 1µF ceramic capacitor. Use a larger input bypass capacitor for high input voltages or high charging cur-rents to reduce supply noise.Thermal ConsiderationsThe MAX1501 is available in a thermally enhanced thin QFN package with exposed paddle. Connect the exposed paddle of the MAX1501 to a large copper ground plane to provide a thermal contact between the device and the circuit board. The exposed paddle transfers heat away from the device, allowing the MAX1501 to charge the battery with maximum current,while minimizing the increase in die temperature.Application CircuitsFigure 5 shows the MAX1501 as a stand-alone Li+ bat-tery charger. The 2.8k Ωresistor connected to SETI sets a charging current of 500mA.Figure 6 shows the MAX1501 as a µP-based Li+ battery charger. Drive CHGEN low to charge the battery. Drive CHGEN high to disable the charger. Connect a 100k Ωpullup resistor from ACOK to the logic supply voltage of the µP to detect the presence of an input supply. The logic supply voltage must be less than 5.5V.Figure 5. Stand-Alone Li+ Battery ChargerFigure 6. µP-Based Li+ Battery ChargerM A X 1501Thermal Regulation for Portable Applications 14______________________________________________________________________________________Figure 7 shows the MAX1501 as a stand-alone NiMH/NiCd battery charger. Connecting SELV to GND sets the charge termination voltage to 4.5V.Figure 8 shows the MAX1501 as a µP-based NiMH/NiCd battery charger. Connecting SELV to VL sets the charge regulation voltage at 4.95V. Connect a 100k Ωpullup resistor from ACOK to the logic supply voltage of the µP. The logic supply voltage must be less than 5.5V.Figure 9 shows the MAX1501 as a µP-based single Li+ or 3-cell NiMH/NiCd charger. The states of MODE and CHGEN set the operating mode of the MAX1501 (Table 1).Connect a 100k Ωpullup resistor from ACOK to the logic supply voltage of the µP. The logic supply voltage must be less than 5.5V.Figure 10 shows the MAX1501 as an accurate current-limited low-dropout linear regulator with input overvolt-age protection (no-battery mode). The output voltage regulates to 4V, regardless of the state of SELV.Connect MODE to VL to enable the linear regulator.Connect MODE to GND to put the device into shut-down. R SETI sets the maximum output current.Figure 7. Stand-Alone 3-Cell NiMH or NiCd Battery ChargerFigure 8. µP-Based NiMH or NiCd Battery ChargeFigure 9. µP-Based Single Li+/3-Cell NiMH/NiCd Battery ChargerLow-Dropout Linear RegulatorMAX1501Thermal Regulation for Portable Applications______________________________________________________________________________________15Figure 11 shows a circuit that adds temperature protec-tion to the battery. Install the thermistor as close to the battery as possible to ensure accurate temperature mea-surement. The output of this circuit is logic high when the battery temperature is less than 0°C and greater than +50°C. Driving CHGEN high disables the charger.Layout and BypassingConnect IN and INP together as close to the device as possible and bypass with a 1µF ceramic capacitor.Bypass BATT to GND with a 10µF ceramic capacitor.Provide a large copper GND plane to allow the exposed paddle to sink heat away from the device. Connect the battery to BATT as close to the device as possible to provide the most accurate battery voltage sensing.Make all high-current traces short and wide to minimize voltage drops.Chip InformationTRANSISTOR COUNT: 5717PROCESS: BiCMOSFigure 11. Battery Temperature ProtectionPin ConfigurationM A X 1501Thermal Regulation for Portable Applicationsimplied. Maxim reserves the right to change the circuitry and specifications without notice at any time.16____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600©2004 Maxim Integrated ProductsPrinted USAis a registered trademark of Maxim Integrated Products.Package Information(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,go to /packages .)。

松下空调壁挂式代表产品及简单介绍

松下空调壁挂式代表产品及简单介绍

松下空调2014年壁挂式新产品简单介绍松下空调2014年壁挂式新产品共六大系列,分别为2014怡岚、2014怡迅、2014怡能、2014怡睿、2014怡炫及2014怡众。

一、松下空调2014怡岚系列1、产品定位和核心技术产品定位:松下旗舰机王核心技术●松下原装直流变频压缩机只需一键,直流变频压缩机以惊人的速度实现迅速制冷暖。

大功率送风,让室内温度大幅度提升,更加舒适宜人。

●无级正弦波变频技术提高了压缩机频率以及转速,让制冷暖效率大大提升。

由先进的无级正弦波变频技术作为调控器,松下原装直流变频压缩机实现高效制冷暖、运转平稳、节能省电、静音宜人的优势。

●大口径贯流风扇松下空调舒适气流调控技术,将叶片之间的位置进行等量位移,提高了送风量,实现了节能、大风量的大口径贯流风扇,并通过调控叶片推动气流的音量,实现了静音性。

●Nanoe-G纳米离子通过先进的nanoe-G释放器,通过电晕放电从释放器针式电极处产生纳米负离子,随着空调吹出的气流,将"nanoe-g"送到室内各个角落对空气中的PM2.5、细菌等进行捕捉,高效实现除菌、除尘、抑菌等效果。

●ECONAVI节能导航利用先进的感应器技术,按"人所在的场所"和"其活动量"进行舒适和节能的运转。

通过"热源"的"动作状况"辨别“人”或“物”,避免向无人的区域送风,节省能耗;通过感应人体活动量,调整制冷制暖能力,让人体更加舒适。

APF一级能效,松下空调最高级别的节能系列。

2、颜色种类及型号颜色:产品型号:3、更多卓越功能●柔湿制冷通过优化程序,巧妙平衡室内湿度,令您的肌肤减少水分流失,让您的皮肤时刻得到细心呵护。

●压缩机预热在严冬,压缩机可有效利用“欠相加热”进行供暖,快速进入工作状态,提升制热速度,减少压缩机损耗,带来更快的舒适享受。

●优化风道设计通过改善送风性能与风道的设计,避免机器内部空气乱流,使气流均匀顺畅地吹出的同时有效降低噪音,为您带来不一样的舒适与宁静。

FP5451规格书

FP5451规格书

DUAL CHANNEL PWM CONTROL ICWITH SCP/DTC FUNCTIONGENERAL DESCRIPTIONThe FP5451, a 1-chip composed of dual open collector transistor pulse-width-modulation control circuits with two error amplifiers and dead-time comparators (DTC), the FP5451 contains a 2.5V precision voltage reference regulator, under-voltage lockout circuit (UVLO), short circuit protection circuit (SCP), applied to offer space and low cost in many applications such as the DC/DC converter and backlight inverter.Using few external components, FP5451, a high performance integrated IC, is designed for a control circuit. The circuit diagram of the typical application example is as below.FEATURESFixed Reference Voltage: 2.5V Reference Voltage Precision: 1% Output sink current up to 100mA Low quiescent supply currentWide operating voltage range: 4~40V Variable dead-time control (DTC) UVLO protection functionSCP protection function (Typ. 1.3V)SOP16 SSOP 16 PDIP 16Oscillator Frequency: Max. 500KHz Package: SOP16 / PDIP16TYPICAL APPLICATIONDual Output Switch Regulator Backlight InverterLCD MonitorFUNCTIONAL BLOCK DIAGRAMMARK VIEWPIN DESCRIPTIONNAME NO.STATUSDESCRIPTIONCT 1I Connect a Capacitor for Oscillator RT 2I Connect a Resistor for Oscillator EA1+3I Error Amplifier 1 Non-inverting Input EA1-4I Error Amplifier 1 Inverting Input FB15O Error Amplifier 1 Feedback Output DTC16I Output 1 Dead-Time Comparator OUT17O Open Collector Output 1 GND 8P IC GroundVCC9P IC Power Supply OUT210O Open Collector Output 2 DTC211I Output 2 Dead-Time Comparator FB212O Error Amplifier 2 Feedback Output EA2-13I Error Amplifier 2 Inverting Input EA2+14I Error Amplifier 2 Non-inverting Input SCP15I Short Circuit Protection Input VREF 16O2.5V Reference Voltage OutputORDER INFORMATIONPart Number Operating TemperaturePackage DescriptionFP5451P-LF -20°C¡85°CPDIP16 Tube FP5451D-LF -20°C¡85°C SOP16 Tube FP5451DR-LF -20°C¡85°C SOP16 Tape & ReelFP5451R-LF -20°C¡85°C SSOP16 Tube FP5451RR-LF-20°C¡85°CSSOP16 Tape & ReelIC DATE CODE DISTINGUISHLot NumberFOR EXAMPLE:January A (Front Half Month), B (Last Half Month) February C, DMarch E,F ------------And so onLot Number is the last two numbersFor Example:N erABSOLUTE MAXIMUM RATINGSSupply Voltage (Vcc) ---------------------------------------------------------------------------------- +40V Differential Input Voltage (V id ) ----------------------------------------------------------------------- +20V Collector Output Voltage (Vo) ------------------------------------------------------------------------ +40V Collector Output Current (Io) ------------------------------------------------------------------------ +150mA Maximum Junction Temperature (T j ) ---------------------------------------------------------------+150°C Thermal Resistance Junction to Ambient (SOP package) --------------------------------- 175°C /W (SSOP package)--------------------------------- 220¢J /W Power Dissipation SSOP16 packageTa=25¢J --------------------------------------------------------------------------------------- 450mW Ta=70¢J --------------------------------------------------------------------------------------- 250mW SOP16 packageTa=25¢J --------------------------------------------------------------------------------------- 650mW Ta=70¢J --------------------------------------------------------------------------------------- 550mW PDIP16 packageTa=25¢J ---------------------------------------------------------------------------------------1000mW Ta=70¢J -------------------------------------------------------------------------------------- 640mW Operating Temperature Range ---------------------------------------------------------------- -20°C¡85°C Storage Temperature Range ------------------------------------------------------------------ -65°C¡150°CSOP16 Lead Temperature (soldering, 10 sec) ---------------------------------------------------- +260¢J PDIP16 Lead Temperature (soldering, 20 sec) ----------------------------------------------------+260¢J260¢J 180¢J25¢J15s 60s 190s210¢J 280sDC ELECTRICAL CHARACTERISTICSElectrical characteristics over recommended operating free-air temperature range, V CC =6V,f=200kHz (unless otherwise noted) Reference sectionPARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNIT Output voltage (pin 16) V REF I O =1mA 2.45 2.5 2.55 VT A =-20¢J to 25¢J -0.1% ±1% Output voltage change withTemperature T A =25¢J to 85¢J -0.2% ±1%Input voltage regulation V REF /V REF Vcc=3.6V¡40V 2 12.5 mV Output voltage regulation V REF /V REF Io = 0.1mA to 1 mA 1 7.5 mV Short-circuit output current I SHORT V O =0 3 10 30 mAUndervoltage lockout sectionPARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITUpper threshold voltage(Vcc) V UPPER 2.72 VLower threshold voltage(Vcc) V LOW 2.6 V Hysteresis (Vcc) V HYS 80 120 mVReset threshold voltage(Vcc) V RESET I O(REF) = 0.1 mA, T A =25¢J 1.5 1.9 VShort-circuit protection control sectionPARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITInput threshold voltage (SCP) V TH T A = 25¢J 1.2 1.3 1.5 V Standby voltage (SCP) V STANDBY No pull-up 220265 300 mV Latched input voltage (SCP) V LATCH No pull-up 220 280 mV Input (source) current I SOURCE V I =0.7V, T A =25¢J -2.5-3.5 -4.5 £g A Comparator threshold voltage(FEEDBACK)V COMP(TH) 1.2 VOscillator sectionPARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITFrequency f C T =330pF,R T =10K 200 KH Z Standard deviation offrequencyf C T =330pF,R T =10K 10% Frequency change with voltage f/¡V V CC =3.6V to 40V 1%T A =-20¢J to 25¢J -0.4% ±2% Frequency change withTemperature f/¡TT A =25¢J to85¢J -0.2% ±2%Dead-time control sectionPARAMETER SYMBOL TEST CONDITIONSMIN TYP MAX UNITInput bias current (DTC) I BIAS1 g A Latch mode (source) current(DTC) I SOURCE T A =25¢J -80-200 g ALatched input voltage (DTC) V LATCH I O =40£g A2.3 V Zero duty cycle 2.05 2.25Input threshold voltage atf=10kH Z (DTC) V THMaximum duty cycle1.2 1.45VDC ELECTRICAL CHARACTERISTICS (Cont.)Error –amplifier sectionPARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITInput offset voltage V IO Vo(FEEDBACK)= 1.25V ±6 mV Input offset current I IO Vo(FEEDBACK)= 1.25V ±100 nA Input bias current I BIAS Vo(FEEDBACK)= 1.25V 160 500 nA Common-mode input voltagerangeV ICM V CC =3.6V to 40 V0.3 1.6 V Open-loop voltage amplification A VO R F =200K£ 70 80 dB Unity-gain bandwidth BW 1.5 MH Z Common-mode rejection ratio CMRR 60 80 dB Positive output voltage swing V POS Vref-0.2 V Negative output voltage swing V NEG 1 V Output (sink) current(FEEDBACK)I SINK V ID =¡0.1V,V O =1.25V1 4.0 mA Output (source) current(FEEDBACK)I SOURCE V ID =0.1V, V O = 1.25V -45 -90 g AOutput sectionPARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITCollector off-state current I OFF V O =50V 10 g A Output saturation voltage V SAT I O =10mA 0.7 1 V Short-circuit output current I SC V O =6V 150 mAPwm comparator sectionPARAMETER SYMBOL TEST CONDITIONSMINTYP MAX UNIT Zero duty cycle 2.05 2.25Input threshold voltage atf=10kHz(FEEDBACK) V THMaximum duty cycle1.21.45VTotal devicePARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNIT Standby supply current I STANDBY Off-state 1.3 1.8 mA Average supply current I AVE R T =10K 1.7 2.4 mATYPICAL CHARCTERISTICSREFERE NCE OUTPUT VOLTAGE VARIATIONV SFREE-AIR TEMPERA TUREV o (r e f )-R e f e r e n c e O u t p u t V o l t a g e V a r i a t i o n -m VTA -Free-Air Temperature -o C-25025*******Figure 5G REFERENCE OUTPUT VOLTAGE VARIATIONV SFREE-AIR TEMPERATUREV o (r e f )-R e f e r e n c e O u t p u t V o l t a g e V a r i a t i o n -m VTA -Fre e -A ir Te m p e rature -o C-25025*******Fig u r e 6GOSCILLATOR FREQUENCY VARIATIONVSFREE-AIR TEMPERATUREG f O S C - O s c i l l a t o r F r e q u e n c y V a r a t i o n - %-25025*******o CTA - Fre e -A ir Tempe r a t ure -Figure 2TRIANG LE OSCILLATOR FREQUENC YVSTIMING RESISTANCEf O S C -T r i a ng l e O s c i l l a to r F r e q u e n c y -H z1110011K4K 10K 40K 100K 400K 1MRT -Timin g Resista nce -[Fig ure 1TRIANGLE WAVEFORM SWING VOLTAGEVSTIMING CAPACITANCET ri a n g l e W a v e f o r m S w i n g V o l t a g e -VCT -Timing Capacitance -pF 12110210510310410Figure 3T r i a n g l e W av e f o r m P e r i o d -g sTRIANGLE WAVEFO RM PE RIODVSTIMING CAPACITANCECT -Timing Capacitance -pF1051010101010101010Fi g ure 4TYPICAL CHARCTERISTICS (Cont.)REFERENCE OUTPUT VOLTAGEVSSU PP LY VOLTAGEV o (r e f )-R e f e r e n c e O u t p u t V o l t a g e -V0123Vcc -Supply Voltage -V0.51.52.53.53.2532.752.52.2520-m VU n d e r v o l t a g e L o c k o u t H y s t e r s i s V o l t a g e Figure 8U d e r v o l t a g e L o c k o u t T h r e s h o l d V o l t a g e -VUNDE RVOLTAGE LOCKOUTCH ARACTERISTIC-2525507510060050040030020010050TA -Free-Ai r Temperature -o CSHOR T-CIRCUIT PROTECTIONCHARACTERISTICSR S -L a t c h R e s e t S u p p l y V o l t a g e -VC o m p a r a t o r T h re s h o l d V o l t a g e -VFigure 10TA -Free-Ai r Temperature -o C-252550751001.2512ERROR AMP MAXIMUM OUTPUTVOLTAGE SWINGV SFREQUENCYE r r o r A m p M a x i m u m O u t p u t V o l t a g e S w i n g -Vf -Frequescy -HzFigure 111K10K 100K1M 10M2.52.251.751.51.250.750.50.25123456014235UN DERVOLTAGE LOCKOUT HYSTER ES IS CHARACTER ISTICSV C E -O u t p u t C o l l e c t o r V o l t a g e -VVcc -Suppl y Voltage -VFigure 9TYPICAL CHARCTERISTICS (Cont.)1.25ERRO R AMP ERRO R AMP Fig u r e 12PROT ECTION ENA BLE TIMEVSPROTECTION ENA BLE CAPACITANC ETYPICAL CHARCTERISTICS (Cont.)De a d - Time In p u t Voltage - V0.51 1.52 2.53 3.54O u t p u t T r a n s i s t o r "O n " D u t y C y c l e - %10080706050403020100OUTPUT TRANS I S T OR ON DUTY CYCLEVSDEAD - TIME INPUT VOLTAGEFigure 13GAIN (AMPLIFIER IN UNITY-GAINCONF IGURATION)VSFREQUENCYG -G a i n -d Bf -Freq uescy -Hz-20-15-10-55101K10K 10M100K 1M Figure 16STANDBY CURRENTVSFREE -AIR TEMPERATUREo CTA -Free-Air Temperature -I c c -S u p p l y C u r r e n t -m A-25025507510011.522.533.544.55Figure 15STAN DBY CURRENTVSSU PPL Y VOLTAGEI c c (S t a n d b y )-S t a n d b y C u r r e n t -m AVcc -Supply Voltage -V010203000.250.50.7511.251.51.75240Figure 14TIMING WAVEFORMPower Supply VoltageShort-Circuit ProtectionComparator OutputProtection Enable Terminal WaveformOutput Transistor CollectorWaveformPWM Comparator Output VoltageComparator Input VoltageShort-Circuit Protection Dead-Time Input Voltage Error Amplifier Output Oscillator Triangle WaveformFP5451 Timing DiagramProtection Enable Time, tpe = (0.46 * 10E6 * Cpe) in secondsAPPLICATION NOTEQ7C1100uF/50V16VPACKAGE OUTLINESOP-16LoSYMBOLS MIN MAXA 0.053 0.069A1 0.004 0.010D 0.386 0.394E 0.150 0.157H 0.228 0.244L 0.016 0.050c X0 8NOTE:1.JEDEC OUTLINE:MS-012 AC2.DIMENSIONS “D” DOES NOT INCLUDE MOLD FLASH,PROTRUSIONS OR GATEBURRS.MOLD FLASH,PROTRUSIONS AND GATE BURRS SHALL NOT EXCEED .15mm(.0.06in) PER SIDE3.DIMENSIONS “E” DOES NOT INCLUDE INTER-LEAD FLASH,OR PROTRUSIONS.4.INTER-LEAD FLASH AND PROTRUSIONS SHALL NOT EXCEED .25mm (.0.10in) PER SIDE.PDIP-16LSYMBOLS MIN. NOR. MAX.A — — 0.210A1 0.015 — —A2 0.125 0.130 0.135D 0.735 0.755 0.775E 0.300BSC.E1 0.245 0.250 0.255L 0.115 0.130 0.150eθ 0.335 0.355 0.375c X0 7 15NOTES:1.JEDEC OUTLINE: MS-001 BB2.“D”, “E1” DIMENSIONS DO NOT INCLUDE MOLD FALSH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .010 INCH.eB IS MEASURED AT THE LEAD TIPS WITH THE LEADS UNCONSTRAINED.POINTED OR ROUNDED LEAD TIPS ARE PREFERRED TO EASE INSERTION.3.DISTANCE BETWEEN LEADS INCLUDING DAM BAR PROTRUSIONS TO BE .005 INCH MININUM.4.DATUM PLANE CONCIDENT WITH THE BOTTOM OF LEAD, WHERE LEAD EXITS BODY.SSOP-16LSYMBOLS MIN. MAX.A 0.053 0.069A1 0.004 0.010A2 0.059b 0.008 0.012b1 0.008 0.011c 0.007 0.010c1 0.007 0.009D 0.189 0.197E 0.228 0.244E1 0.150 0.157L 0.016 0.050Basice 0.025c X0 8NOTES:1.JEDEC OUTLINE:MO¡137 AB2.DIMENSIONS ”D” DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.MOLD FLASH, PROTRUSIONS AND GATE BURRS SHALL NOT EXCEED.15mm(.006in) PER SIDE3.DIMENSIONS ”E” DOES NOT INCLUDE INTER-LEAD FLASH OR PROTRUSIONS.INTER-LEAD FLASH AND PROTRUSIONS SHALL NOTEXCEED .25mm(.010in) PER SIDEPACKING SPECIFICATIONSBOX DIMENSIONTUBE INSIDE BOX AND CARTONTUBE CARTONTAPE AND REEL INSIDE BOX AND CARTON50Ta pe & Re el CartonPACKING QUANTITY SPECIFICATIONS50 EA/TUBE2500 EA / REEL50 TUBES / INSIDE BOX 4 INSIDE BOXES / CARTON4 INSIDE BOXES / CARTONLABEL SPECIFICATIONSTAPPING & REELCARTONSOP16CARRIER TAPE DIMENSIONSAPPLICATION W P E F D D 1SOP16 16.0±0.3 8.0±0.1 1.75±0.17.5±0.1 1.55+0.11.5+0.25APPLICATION P0 P 1A 0B 0 K 0 tSOP16 4.0±0.1 2.0±0.1 6.5±0.1 10.3±0.1 2.1±0.1 0.30±0.05REEL DIMENISIONSAPPLICATION MATERIAL A B C D T1 T2SOP16 PLASTIC REEL(BLUE)330±3 100±2.013.0±0.5 2.0±0.5 +0.3-0.216.4 2.5±0.5SSOP16CARRIER TAPE DIMENSIONSAPPLICATIONW P E F D D11.75±0.1 5.5±0.05 1.5+0.1 1.5+0.258.0±0.1SSOP16 12.0±0.3APPLICATION P0P1A0B0K0 t2.0±0.05 6.5±0.1 10.3±0.1 2.1±0.1 0.30±0.05SSOP16 4.0±0.1REEL DIMENISIONSAPPLICATION MATERIAL A B C D T1 T2SSOP16 PLASTIC REEL(BLUE)330 62 12.75+0.15 2.0±0.15 12.4 16.8SGS REPORTRev0.5 Apr. 11, 2005P21/FP5451。

PMC-6510微机型保护测控装置用户说明书_V2_2_pdf

PMC-6510微机型保护测控装置用户说明书_V2_2_pdf

PMC-6510微机型保护测控装置用户说明书(版权所有,翻版必究)危险和警告本设备只能由专业人士进行安装,对于因不遵守本手册的说明所引起的故障,厂家将不承担任何责任。

本说明书仅适用于PMC-6510微机型保护测控装置。

请仔细阅读本说明书,并按照说明书的说明设置、测试和操作。

如有随机资料,请以随机资料为准。

为确保装置、人身安全,务必将装置的接地端GND可靠接地(PE)。

为防止装置损坏,严禁带电插拔装置各插件、触摸印制电路板上的芯片和器件。

请使用合格的测试仪器和设备对装置进行试验和检测。

装置如出现异常,请及时与本公司售后技术服务(400-8860-418)联系。

本装置的设置缺省密码是:0000。

本说明书版权属深圳市中电电力技术股份有限公司所有,未经书面许可,不得复制,传播或使用本文件及其内容,违犯者将要对所造成的损失负责。

深圳市中电电力技术股份有限公司保留所有版权。

我们已经检查了本手册关于描述硬件和软件保持一致的内容。

由于不可能完全消除差错,所以我们不能保证完全的一致。

本手册中的数据将定期审核,并在新一版的文件中做必要的修改,欢迎提出修改建议。

以后版本中的变动不再另行通知。

目录1 2 产品简介 (1)1.11.21.31.4 概述.............................................................................................................................1 产品特点 .....................................................................................................................1 基本功能 .....................................................................................................................1 产品使用 (2)技术指标 (2)2.12.22.32.42.52.62.72.82.92.10环境条件 .....................................................................................................................2 额定参数 .....................................................................................................................2 精度及误差 .................................................................................................................3 遥信分辨率 .................................................................................................................3 过载能力 .....................................................................................................................3 继电器输出 .................................................................................................................3 开关量输入 .................................................................................................................4 电气绝缘性能 .............................................................................................................4 机械性能 .....................................................................................................................4 电磁兼容性能 .............................................................................................................4 3 功能说明 .. (5)保护功能 (5)3.1 3.1.1速断保护...........................................................................................................5 复合电压元件...................................................................................................5 限时速断...........................................................................................................5 定时限过流.......................................................................................................5 反时限过流保护...............................................................................................6 过热保护...........................................................................................................6 过负荷保护.......................................................................................................7 起动时间过长保护...........................................................................................7 堵转保护...........................................................................................................7 充电保护...........................................................................................................8 零序过流保护(I 、II 段) ....................................................................................8 负序过流保护...................................................................................................8 过压保护...........................................................................................................9 3.1.23.1.33.1.43.1.53.1.63.1.73.1.83.1.93.1.103.1.113.1.123.1.133.1.14 低压保护 (9)3.1.163.1.173.1.183.1.193.1.20电容器差压保护...............................................................................................9 绝缘监视.........................................................................................................10 TV 断线 ...........................................................................................................10 跳闸回路监视.................................................................................................10 重要遥信处理.................................................................................................10 3.2 测量监视功能 .. (11)3.2.1测量.................................................................................................................11 遥信功能 (11)3.2.2 3.33.43.5 控制功能 ...................................................................................................................11 通讯功能 ...................................................................................................................12 记录功能 . (12)3.5.1事件记录.........................................................................................................12 故障录波记录. (12)3.5.2 4 操作使用说明 (13)4.14.24.34.44.5 按键操作 ...................................................................................................................13 LED 灯显示................................................................................................................13 默认显示页面 ...........................................................................................................14 显示结构 ...................................................................................................................15 画面详细说明 .. (15)4.5.1数据查询.........................................................................................................15 定值查询.........................................................................................................17 事件记录.........................................................................................................18 参数设置.........................................................................................................20 装置维护.........................................................................................................23 装置信息.........................................................................................................25 定值清单 (25)4.5.24.5.34.5.44.5.54.5.64.5.7 5 安装调试说明 (30)安装 (30)5.1 5.1.1装置安装图.....................................................................................................30 背板端子布置.................................................................................................31 端子排总体布置.............................................................................................31 模拟量输入.....................................................................................................31 工作电源 (31)5.1.25.1.35.1.45.1.55.1.7 通信接线 (32)5.2 5.3 5.4 5.5 5.6 开出继电器的应用 (32)开关量输入的应用 (32)通电试验 (32)模拟试验 (32)常见问题及处理方法 (33)6 7 接线原理图 (34)6.16.26.3装置接线原理图 (34)电流、电压典型接线图 (35)RS-485通信接线示例图 (40)售后服务承诺 (41)7.17.27.3装置升级 (41)质保范围 (41)售后联系方式 (41)1产品简介1.1概述PMC-6510微机型保护测控装置(以下简称PMC-6510)是在消化吸收国内外先进技术的基础上设计开发的用于110kV及以下电压等级的保护测控一体化装置。

MAX5481

MAX5481

Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
6 5
2 W
3 L DIN(U/D) 10
4 N.C. SPI/UD 9 8 7 VSS N.C. N.C. N.C.
TQFN
*SEE FUNCTIONAL DIAGRAM
Gain and Offset Adjustment LCD Contrast Adjustment Pressure Sensors
Pin Configurations continued at end of data sheet. Selector Guide appears at end of data sheet. SPI is a trademark of Motorola, Inc. 1
________________________________________________________________ Maxim Integrated Products

Maxi-Power 150 T4F 电源生成器零件手册说明书

Maxi-Power 150 T4F 电源生成器零件手册说明书

Parts ManualMAXI-POWER™ 150 T4FCopyright © 2019 AllmandHoldrege, NE, USA 68949 All rights reserved.Part No.: 116705Revision: AenTABLE OF CONTENTS1.0 TRAILER PARTS GROUPTrailer Axle, Jack, and Coupler ....................................................................(1.1) Front Enclosure Panels ..................................................................................(1.2) Left Enclosure Panels and Doors ..................................................................(1.3) Right Enclosure Panels and Doors ...............................................................(1.4) Rear Enclosure Panels ...................................................................................(1.5) Top Enclosure Panels ....................................................................................(1.6) Door Panel Urethane Foam Linings ..............................................................(1.7) Cover Panel Urethane Foam Linings ...........................................................(1.8)2.0 ENGINE AND GENERATOR GROUPJohn Deere 6068HFG05 Engine and Filter Group .......................................(2.1) Engine Finger and Fan Guards .....................................................................(2.2) Engine Air Intake Group ..............................................................................(2.3) Engine Exhaust Group ...................................................................................(2.4) Engine Cooling Group ....................................................................................(2.5) Engine DEF System Group ...........................................................................(2.6) Fuel Tank and Fuel Lines ..............................................................................(2.7) Engine Mounting and Generator Assembly Group .....................................(2.8)3.0 ELECTRICAL GROUPControl Box Group .........................................................................................(3.1) Electrical Outlet Box Group ...........................................................................(3.2) Battery Cables Group ....................................................................................(3.3) Tail Lights and Tail Light Harness ..................................................................(3.4) Cam Lock Group .............................................................................................(3.5) Battery Charger, Battery Heater, and Block Heater .......................................(3.6) Maxi-Power™ 150 T4F Parts CatalogTABLE OF CONTENTS4.0 DECALSFront, Left, and Rear Side Enclosure Decals ...............................................(4.1) Right and Top Side Enclosure Decals .........................................................(4.2) Control and Outlet Box Decals ....................................................................(4.3) Trailer Interior Decals .....................................................................................(4.4)©2019 Allmand®SN 27-000100 and UP 1.1 - Trailer Axle, Jack, and CouplerTo Be Determined000000_AMaxi-Power™ 150 T4F Parts Catalog1.1SN 27-000100 and UP 1.1 - Trailer Axle, Jack, and Coupler©2019 Allmand®1.1SN 27-000100 and UP 1.2 - Front Enclosure PanelsSN 27-000100 and UP 1.2 - Front Enclosure Panels©2019 Allmand®1.2SN 27-000100 and UP 1.3 - Left Enclosure Panels and DoorsSN 27-000100 and UP 1.3 - Left Enclosure Panels and Doors©2019 Allmand®1.3SN 27-000100 and UP 1.4 - Right Enclosure Panels and DoorsSN 27-000100 and UP 1.4 - Right Enclosure Panels and Doors©2019 Allmand®SN 27-000100 and UP 1.5 - Rear Enclosure PanelsSN 27-000100 and UP 1.5 - Rear Enclosure Panels©2019 Allmand®SN 27-000100 and UP 1.6 - Top Enclosure PanelsMaxi-Power™ 150 T4F Parts CatalogSN 27-000100 and UP 1.6 - Top Enclosure Panels©2019 Allmand®SN 27-000100 and UP 1.7 - Door Panel Urethane Foam LiningsMaxi-Power™ 150 T4F Parts CatalogSN 27-000100 and UP 1.7 - Section One©2019 Allmand®SN 27-000100 and UPSN 27-000100 and UP 1.8 - Cover Panel Urethane Foam Linings©2019 Allmand®SN 27-000100 and UP 2.1 - John Deere 6068HFG05 Engine and Filter GroupMaxi-Power™ 150 T4F Parts CatalogSN 27-000100 and UP 2.1 - John Deere 6068HFG05 Engine and Filter Group©2019 Allmand®SN 27-000100 and UP 2.2 - Engine Finger and Fan GuardsMaxi-Power™ 150 T4F Parts CatalogSN 27-000100 and UP 2.2 - Engine Finger and Fan Guards©2019 Allmand®SN 27-000100 and UP 2.3 - Engine Intake GroupMaxi-Power™ 150 T4F Parts CatalogSN 27-000100 and UP 2.3 - Engine Intake Group©2019 Allmand®SN 27-000100 and UP 2.4 - Engine Exhaust GroupSN 27-000100 and UP 2.4 - Engine Exhaust Group©2019 Allmand®SN 27-000100 and UP 2.5 - Engine Cooling GroupMaxi-Power™ 150 T4F Parts CatalogSN 27-000100 and UP 2.5 - Engine Cooling Group©2019 Allmand®SN 27-000100 and UPMaxi-Power™ 150 T4F Parts CatalogSN 27-000100 and UP 2.6 - Engine DEF System Group©2019 Allmand®SN 27-000100 and UPMaxi-Power™ 150 T4F Parts CatalogSN 27-000100 and UP 2.7 - Fuel Tank and Fuel Lines©2019 Allmand®SN 27-000100 and UPMaxi-Power™ 150 T4F Parts CatalogSN 27-000100 and UP 2.8 - Engine Mounting and Generator Assembly Group©2019 Allmand®SN 27-000100 and UPMaxi-Power™ 150 T4F Parts Catalog3.1 - Control Box Group11820231719191425202426202810271110333342302934351634329215312213421578126CONTROL PANEL DETAILCHANGE DEVICESIDE DETAILCONTROL BOX INTERIOR DETAILSN 27-000100 and UP 3.1 - Control Box Group©2019 Allmand®SN 27-000100 and UPMaxi-Power™ 150 T4F Parts Catalog3.2 - Electrical Outlet Box Group192325303127262224292813824131439423943151720392116397898793TERMINAL PLATE DETAIL21065432323340363534373741111218OUTLET PANEL DETAILSN 27-000100 and UP 3.2 - Electrical Outlet Box Group©2019 Allmand®SN 27-000100 and UP 3.3 - Battery Cables GroupSN 27-000100 and UP 3.3 - Battery Cables GroupSN 27-000100 and UP 3.4 - Tail Lights and Tail Light HarnessTo Be Determined000000_ASN 27-000100 and UP 3.4 - Tail Lights and Tail Light HarnessSN 27-000100 and UP3.5 - Cam Locks Option115304_A678510348976211111312SN 27-000100 and UP 3.5 - Cam Locks OptionSN 27-000100 and UP 3.6 - Battery Charger, Battery Heater, and Block Heater (1 of 2)117427_A532126241BATTERY CHARGER INSTALL RECESSED PLUGS INSTALLSN 27-000100 and UP 3.6 - Battery Charger, Battery Heater, and Block Heater (1 of 2)SN 27-000100 and UP 3.6 - Battery Charger, Battery Heater, and Block Heater (2 of 2)SN 27-000100 and UP 4.1 - Front, Left, and Rear Side Enclosure Decals。

M54522FP中文资料

M54522FP中文资料
INPUT
IN1→ 1 IN2→ 2 IN3→ 3 IN4→ 4 IN5→ 5 IN6→ 6 IN7→ 7 IN8→ 8 GND 9 18 →O1 17 →O2 16 →O3 15 →O4 14 →O5 13 →O6 12 →O7 11 →O8 10 →COM COMMON
Aug. 1999
元器件交易网
MITSUBISHI SEMICONDUCTOR <TRANSISTOR ARRAY>
M54522P/FP
8-UNIT 400mA DARLINGTON TRANSISTOR ARRAY WITH CLAMP DIODE
ABSOLUTE MAXIMUM RATINGS
Symbol VCEO IC VI IF VR Pd Topr Tstg Parameter Collector-emitter voltage Collector current Input voltage Clamping diode forward current Clamping diode reverse voltage Power dissipation Operating temperature Storage temperature Ta = 25°C, when mounted on board
OUTPUT
FEATURES High breakdown voltage (BVCEO ≥ 40V) High-current driving (Ic(max) = 400mA) With clamping diodes Driving available with PMOS IC output Wide operating temperature range (Ta = –20 to +75°C)

MAX5431AEUB+中文资料

MAX5431AEUB+中文资料

MAX5430 toc06
DIVIDER RATIO ACCURACY (%)
±15V Digitally Programmable Precision Voltage-Dividers for PGAs
Typical Operating Characteristics
(VDD = +15V, VSS = -15V or VSS = GND, VH = 5V, VL =-5V, TA = 25°C, unless otherwise noted.) (Note 3)
CIN
5
pF
POWER REQUIREMENTS
Negative Supply CurrentµA
Positive Supply Current
IDD
35
60
µA
Positive Power-Supply Voltage
VDD
Negative Power-Supply Voltage
VSS
10.8 -15.75
15.75
V
0
V
DYNAMIC PERFORMANCE
Switching Time
tD2W, tH2W
0.3
µs
Note 1: All devices are 100% production tested at TA = +25°C. SOT23 packages are guaranteed by design from TA = TMIN to TMAX. Note 2: Gain accuracy is measured without load at pin W.
Features
♦ Four Noninverting PGA Gain Configurations: AV = 1, 2, 4, and 8

超小电源模块

超小电源模块

新品发布NEW PRODUCTS今日电子 · 2018年5月 · 外带来新的层面,例如,混光。

整合式M O S F E T额定60V,使A L8862成为可行的解决方案,可用于更高功率的输出应用。

利用Diodes公司的专有技术,M O S F E T也具备仅0.4Ω的超低R D S(O N),能在缩减外部零件需求的同时展现出高效率。

亦针对短路或开路可能造成的故障情形提供完整保护,同时包含了过热保护。

Diodes Incorporated线性LED控制器A L5814、A L5817、A L5815及AL5816线性LED控制器,为LED灯条提供可调光和可调节的驱动电流,效率高达80%以上。

A L58x x系列提供物料列表(B O M)成本低廉的解决方案,适用于商业和工业领域的各项产品应用,包括广告牌、仪器照明、家电内部照明、建筑细部照明,以及一般智能照明设备。

这些装置的输入范围为4.5~60V,无须电感,可保持良好的E M I效能,使系统整合更简单。

此外,相较于其他设计,外部功率晶体管可使内部功耗降至最低。

A L58x x系列可提供高达15m A 的电流给外部MOSFET或双极晶体管,以驱动LED灯条。

LED驱动电流由一个外部电阻配置,具有4%的参考电压准确度,以及出色的温度稳定性。

不仅如此,AL5815与AL5816装置支持PWM调光功能,A L5814与A L5817装置则同时支持模拟和PWM调光功能。

保护功能包括过温保护及输入欠压锁定。

A L5814及A L5817装置也利用VFAULT脚位提供「LED 开回路」保护功能,以及L E D 热回流保护。

A L58x x系列线性控制器提供良好的E M I效能,而广泛的工作温度范围(-40~+105℃)使其适用于恶劣环境。

Diodes Incorporated超小电源模块MAXM17532和MAXM15462超小尺寸(2.6mm×3.0mm×1.5mm)、集成式DC-DC电源模块是Maxim喜马拉雅电源方案专有组合的一部分,适用于工业、医疗健康、通信和消费市场。

Siemens SIMATIC 545 555 575系统硬件安装指南说明书

Siemens SIMATIC 545 555 575系统硬件安装指南说明书

3.9Replacing and Handling the BatteryThe 545–1105/1106 and 555–1105/1106 CPUs use a lithium battery formaintaining CPU memory contents while power is not present. The lithium battery is a primary cell; it is not rechargeable. The battery in these CPU models is accessible through the bezel door on the front of the module, as shown in Figure 3-9.When the battery indicator blinks or goes off, the battery has dropped below the voltage required to maintain memory and should be replaced. Request battery kit replacement part number PPX:2587678-8005 for the appropriate replacement battery. Refer to page 3-19 for guidelines on handling batteries.NOTE: As a good engineering practice, design your user program to monitor Status Word 01 on a cyclic basis and trigger an alarm if the battery-low bit (15) is set. Additionally, you can use the battery life specifications listed in Table A-2 to determine how often you routinely replace the battery.Figure 3-9Battery Location in –1105 and –1106 CPU ModulesLithium Battery in the 545 and 555–1105/–1106 CPUsFollow these steps to replace the battery:1.Maintain power to the CPU.2.Open the battery cover.3.Pull out the old battery and disconnect the battery connectors.4.Connect the battery connectors to the replacement battery.5.Place the new battery in the battery compartment, making sure the connecting wires are fully inserted through the holes in the compartment, and close the cover.6.Check the BATT GOOD indicator on the CPU to make sure that it lights back up to confirm that the replacement battery is good.Figure 3-10Replacing the Battery in –1105 and –1106 CPU ModulesReplacing the Battery in–1105/–1106 CPUsReplacing and Handling the Battery (continued)The 545–1103/1104 and 555–1103/1104 CPUs use a lithium coin battery for maintaining CPU memory contents while power is not present. The battery is a Panasonic BR2325, PPX:2587678–8010, or equivalent, 23 mm diameter,with a nominal capacity of 165 mAh. The lithium battery is a primary cell;it is not rechargeable. Figure 3-11 shows the location of the battery on the CPU card.Figure 3-11Battery Location on 545/555 CPU ModulesA fresh battery can typically maintain your system with power off for three months at room temperature, or a substantially shorter time at elevated temperatures. The battery indicator is illuminated as long as power is present and the battery voltage is adequate for maintaining the memory;however, the indicator does not show the amount of battery life remaining.When the battery indicator blinks or goes off, the battery has dropped below the voltage required to maintain memory and should be replaced. See page 3-20, “Replacing the Battery.”Lithium Battery in the 545 and 555–1103/–1104 CPUsIndicatorsUse the following safety instructions to minimize the risk of personal injury or fire hazard when handling lithium batteries.Lithium batteries contain flammable material. Do not open, puncture, or crush the battery case. Puncturing the battery case releases electrolyte and potentially flammable material. Exposure to electrolyte can cause throat and/or eye irritation. If the electrolyte comes in contact with your skin or eyes, flush the area thoroughly with large amounts of water.Never use a lithium battery in a completely sealed container. Containers must have a mechanism for relieving pressure if the battery is exposed to high temperature or abuse.If a lithium battery short-circuits, disconnect it immediately and move it to a well-ventilated area. Wear safety glasses and other protective gear when handling a disabled battery.Transportation of lithium batteries is regulated by the U.S. Department of Transportation. Lithium batteries must be shipped under exemption DOT –E 7502.•For international shipments, IATA Regulation 2294 applies.•Lithium batteries such as the one used in the 545 and 555 CPUs, which contains less than 0.5 grams of lithium, are not restricted in shipment,according to DOT 173.206 (f) or IATA Section X.Take precautions in storing batteries.•Do not place batteries on a metal surface; doing so could cause a potential short circuit.•Do not store batteries loosely or in dump bins. Store batteries in the original shipping container.•Store batteries in a cool, well-ventilated area with a maximum temperature of 70°C (158°F).Batteries to be discarded may contain a significant amount of unusedenergy. They must be packed for disposal and isolated electrically. Batteries must be disposed of in accordance with all local, state and federal regulations.Using and Handling BatteriesTransporting BatteriesStoring Batteries Discarding BatteriesReplacing and Handling the Battery (continued)ATTENTION: Danger of explosion if battery is incorrectly replaced. Replace only with the same or equivalent type recommended by the manufacturer .Discard used batteries according to the manufacturer’s instructions.ATTENTION: Il y a danger d’explosion s’il y a remplacement incorrect de la batterie. Remplacer uniquement avec une batterie du même type ou d’un type recommandé par le constructeur . Mettre au rebut les batteries usagées conformement aux instructions du fabricant.** Canadian standard CAN/CSA C22.2, No. 950–M89Battery changes require advance planning. For the 545–1103/1104 and 555–1103/1104 CPUs, keep the following guidelines in mind: •In order to change the lithium battery, you must power down the system.•Memory can be lost if system power is removed from the CPU for longer than twenty minutes during a battery change.•A good battery must be in place when power is restored, or else the CPU goes through a battery-bad powerup and all memory is lost.NOTE: As a safeguard, consider using SoftShop, TISOFT, or APT to save your program before you replace the battery.Follow these steps to replace the lithium battery:1.Place your process in a safe state.2.Disconnect power from the chassis.At room temperature, you have approximately twenty minutes to replace the battery after power is removed from the CPU.If the CPU detects a bad battery before power is either removed or lost (e.g., power failure), you must replace the battery before restoring power, or lose memory contents.Replacing the Battery in–1103/–1104 CPUs3.Remove the CPU from the chassis and place the CPU, component-side up, on a static-dissipative surface.The components in the CPU card can be degraded or destroyed by electrostatic discharge (ESD). Follow proper handling precautions in order to prevent ESD damage.4.Remove the battery from the socket, observing the following precautions:•Use a non-conductive implement when removing the battery from the socket. Do not allow a conductive device (for example, a metal screwdriver blade) to contact both sides of the batterysimultaneously. Since the battery is shaped like a coin, it is easy for the screwdriver blade to make contact with both rim and underside, which would cause a short.•If you pull the battery straight up from the socket, you could spring the positive contact and ruin the socket. Instead, lift the battery up to the height of the socket rim and carefully slide it out,making certain you do not bend the socket ’s positive contact.5.Slide a fresh battery into the socket, being careful to observe polarity.The battery and the socket are both marked with plus signs (+),indicating positive contacts. The positive contact is the upper contact.6.Reinstall the CPU in the chassis.7.Ensure the battery is enabled (SW9 is set to On). (See page 3-22.)8.Restore power to the chassis.3.10Setting the CPU DipswitchesDipswitches are used to set 545/555 CPU operating parameters. The dipswitches are located near the front of the CPU, behind the bezel orbattery door. See Figure 3-12. To gain access, lower the access door. With the CPU in its (normal) vertical position, dipswitches pushed to the left are On;dipswitches pushed to the right are Off.Figure 3-12545/555 CPU Dipswitch LocationSwitch 9 is used to set the back-up battery On or Off. As Figure 3-12indicates, moving the switch to the left enables the back-up battery; setting the switch to the right disables the back-up battery.NOTE: When SW9 is set to the On position, the battery LED indicates the state of the battery back-up circuit. If the battery LED is illuminated,memory contents should be maintained; if the LED is not illuminated,memory contents will not be maintained.Switch 10 is used to allow the CPU to perform an Auto Recompile during runtime. Switch 10 is shipped in the disabled (left) position. To activate this feature, set the switch to the right (enabled) position. Refer to Appendix F for more information about the Auto Recompile function.Dipswitch Location and SettingsEnabling Battery BackupEnabling the Auto Recompile FunctionSetting Baud RatesSwitches 3 through 8 are used to set baud rates for Ports 1 and 2. Switches3, 4, and 5 set Port 1 baud rates. See Table 3-3. Switches 6, 7, and 8 set Port2 baud rates. See Table 3-4.Table 3-3Port 1 Baud Rate SettingsTable 3-4Port 2 Baud Rate SettingsNOTE: The baud rates 115,200 and 57,600 are available only on the555–1105 and 555–1106 CPUs.Setting the CPU Dipswitches (continued)The 545 and 555 CPUs have two communications ports. Both ports are configured as Data Terminal Equipment (DTE).SW2 selects Port 1 as either a programming port or a printer port on a 545/555 CPU. Port 1 uses an RS-232/RS-423 signaling protocol and an RS-232 pinout arrangement with an RS-423 (+5 V) signal level extending up to 50 feet (15 m). You can use a modem to extend this distance. •Setting SW2 to the left selects Port 1 as a programming port.•Setting SW2 to the right selects Port 1 as a printer port.Figure 3-13 shows the locations of Port 1 and Port 2 on the front of the CPU.Figure 3-13545/555 CPU Port LocationsWith the 545 and 555 CPUs, your choice of cabling determines whether Port 2 functions as an RS-232/RS-423 port or as an RS-422/RS-485 port.Figure 3-13 describes the pinouts required for the various Port 2 options.If you use RS-422/RS-485 cabling, SW1 on the dipswitch allows you to select between RS-422 and RS-485. Use SW1 as follows:•Set SW1 to the left when you use RS-232 or RS-422 cabling.•Set SW1 to to the right when you use RS-485 cabling. RS-485 uses a single twisted pair to transmit and receive data between theprogramming device and the 545/555 CPU. Multiple CPUs or multiple programming devices (on this RS-485 link) are not supported and must not be used.Communications Port 1Communications Port 2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

General DescriptionThe MAX5450–MAX5455 are a family of dual digital potentiometers that perform the same function as a mechanical potentiometer or variable resistor. The MAX5451/MAX5453/MAX5455 have two 3-terminal potentiometers and the MAX5450/MAX5452/MAX5454have two 2-terminal variable resistors. The MAX5450–MAX5455 operate from a +2.7V to +5.5V single-supply voltage and use an ultra-low supply current of 0.1µA.These devices consist of two fixed resistors each with 256 digitally-controlled wiper contacts. The conve-nient power-on reset (POR) sets the wiper to midscale position at power-up and the easy-to-use up/down interface allows glitchless switching between resistor taps. Six inputs control the 14-pin MAX5451/MAX5453/MAX5455 potentiometers. Four inputs control the 10-pin MAX5450/MAX5452/MAX5454 variable resis-tors.The MAX5450–MAX5455 are ideal for applications requiring digitally-controlled resistors. Three resistance values are available: 10k Ω, 50k Ω, and 100k Ω. An end-to-end resistor temperature coefficient of 35ppm/°C and a ratiometric temperature coefficient of 5ppm/°C make the MAX5450–MAX5455 excellent choices for adjustable gain circuit requiring low-temperature drift The MAX5450–MAX5455 are available in 10-pin µMAX ®and 14-pin TSSOP packages. Each device is guaran-teed over the extended–industrial temperature range (-40°C to +85°C).ApplicationsMechanical Potentiometer Replacement Low-Drift Programmable-Gain Amplifier (PGA)Volume Control LCD Screen Adjustment Adjustable Voltage References Adjustable Linear RegulatorsProgrammable Filters, Delays, Time Constants Impedance MatchingFeatures♦Small-Footprint Packages10-Pin µMAX (MAX5450/MAX5452/MAX5454)14-Pin TSSOP (MAX5451/MAX5453/MAX5455)♦256-Tap Positions♦Independent Up/Down Potentiometer Controls (MAX5451/MAX5453/MAX5455)♦Ultra-Low 0.1µA Supply Current ♦+2.7V to +5.5V Single-Supply Operation ♦Low 35ppm/°C End-to-End Temperature Coefficient ♦Power-On Reset Sets Wiper to Midscale (Position 127)♦Glitchless Switching Between the Resistor Taps ♦10k Ω, 50k Ω, 100k ΩResistance ValuesMAX5450–MAX5455Dual, 256-Tap, Up/Down Interface,Digital Potentiometers________________________________________________________________Maxim Integrated Products 1Pin Configurations19-1997; Rev 2; 2/06Ordering InformationFor pricing, delivery, and ordering information,please contact Maxim/Dallas Direct!at 1-888-629-4642, or visit Maxim’s website at .range.µMAX is a registered trademark of Maxim Integrated Products, Inc.M A X 5450–M A X 5455Dual, 256-Tap, Up/Down Interface,Digital PotentiometersABSOLUTE MAXIMUM RATINGSStresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.V DD to GND..............................................................-0.3V to +6V CS _, INC _, and U/D_to GND...................................-0.3V to +6V H_, L_, W_ to GND......................................-0.3V to (V DD +0.3V)Maximum Continuous Current into H_, L_, and W_............±1mA Continuous Power Dissipation (T A = +70°C)10-Pin µMAX (derate 6.94mW/°C above +70°C)..........555mW14-Pin TSSOP (derate 9.1mW/°C above +70°C)..........727mW Operating Temperature Range ...........................-40°C to +85°C Junction Temperature......................................................+150°C Storage Temperature Range.............................-65°C to +150°C Lead Temperature (soldering, 10s).................................+300°CELECTRICAL CHARACTERISTICSMAX5450–MAX5455Dual, 256-Tap, Up/Down Interface,Digital Potentiometers_______________________________________________________________________________________3Note 2:The DNL and INL are measured with the potentiometer configured as a voltage divider with H_ = V DD and L_ = GND. Thewiper terminal is unloaded and measured with an ideal voltmeter.Note 3:The DNL and INL are measured with the potentiometer configured as a variable resistor. For the 3-terminal potentiometers(MAX5451/MAX5453/MAX5455), H_ is unconnected and L_ = GND. For the 2-terminal potentiometers(MAX5450/MAX5452/MAX5454), L_ = GND. At V DD = +5V, the wiper terminal is driven with a source current of 400µA for the 10k Ωconfiguration, 80µA for the 50k Ωconfiguration, and 40µA for the 100k Ωconfiguration. At V DD = +3V,200µA/40µA/20µA for 10k Ω/50k Ω/100k Ωconfiguration, respectively.Note 4:The wiper resistance is the worst value measured by injecting the currents given in Note 3 into W_ with L_ = GND. R W _ =(V W _ - V H _) / I W _.Note 5:Device draws higher supply current when digital inputs are driven with voltages between (V DD -0.5V) and (GND + 0.5V).(See Supply Current vs. Digital Input Voltage in the Typical Operating Characteristics.)Note 6:Wiper-Settling Time is the worst case 0% to 50% rise-time measured between consecutive wiper positions. H_ = V DD , L_ =GND, and the wiper terminal is unloaded and measured with a 10pF oscilloscope probe (see Tap-To-Tap Switching Transient in the Typical Operating Characteristics ).Note 7:Digital timing is guaranteed by design.ELECTRICAL CHARACTERISTICS (continued)(V DD = +2.7V to +5.5V, V H = V DD , V L = 0; T A = T MIN to T MAX , unless otherwise noted. Typical values are at V DD = +5V, T A = +25°C,unless otherwise noted.)M A X 5450–M A X 5455Dual, 256-Tap, Up/Down Interface,Digital Potentiometers 4_______________________________________________________________________________________Typical Operating Characteristics(V DD = +5V, T A = +25°C, unless otherwise noted.)16020018024022028026030002.01.03.04.00.5 2.51.5 3.5 4.55.0WIPER VOLTAGE (V)WIPER RESISTANCE vs. WIPER VOLTAGE (10k Ω)W I P E R R E S I S T A N C E (Ω)1602001802602402202803003603403203800 1.0 1.50.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0WIPER RESISTANCE vs. WIPER VOLTAGE (50k Ω)WIPER VOLTAGE (V)W I P E R R E S I S T A N C E (Ω)1602001802602402202803003603403203800 1.0 1.50.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0WIPER RESISTANCE vs. WIPER VOLTAGE (100k Ω)WIPER VOLTAGE (V)W I P E R R E S I S T A N C E (Ω)4000214365798100649632128160192224256WIPER RESISTANCE vs. WIPER POSITION (10k Ω)M A X 5450/5 t o c 04WIPER POSITION W -T O -L R E S I S T A N C E (k Ω)10520153025354540500649632128160192224256WIPER RESISTANCE vs. WIPER POSITION (50k Ω)M A X 5450/5 t o c 05WIPER POSITION W -T O -L R E S I S T A N C E (k Ω)2010403060507090801000649632128160192224256WIPER RESISTANCE vs. WIPER POSITION (100k Ω)M A X 5450/5 t o c 06WIPER POSITIONW -T O -L R E S I S T A N C E (k Ω)-0.050.000.100.050.150.20649632128160192224256VARIABLE RESISTOR DNL vs. WIPER POSITION (10k Ω)WIPER POSITIOND N L (L S B )-0.30-0.10-0.200.100.000.200.300.400.500649632128160192224256VARIABLE RESISTOR INL vs. WIPER POSITION (MAX5451)M A X 5450/5 t o c 08WIPER POSITION I N L (L S B )-0.03-0.01-0.020.020.010.000.050.040.030.060649632128160192224256VARIABLE RESISTOR DNL vs. WIPER POSITION (50k Ω)M A X 5450/5 t o c 09WIPER POSITIOND N L (L S B )MAX5450–MAX5455Dual, 256-Tap, Up/Down Interface,Digital Potentiometers_______________________________________________________________________________________5-0.16-0.12-0.14-0.08-0.10-0.04-0.06-0.020.020.000.041281600649632192224256VARIABLE RESISTOR INL vs. WIPER POSITION (MAX5453)M A X 5450/5 t o c 10WIPER POSITIONI N L (L S B )0.040.030.020.010.000.060.050.080.070.100.110.12M A X 5450/5 t o c 11WIPER POSITION 1281600649632192224256VARIABLE RESISTOR DNL vs. WIPER POSITION (100k Ω)D N L (L S B )-0.01-0.020.09M A X 5450/5 t o c 12WIPER POSITION1281600649632192224256VARIABLE RESISTOR INL vs. WIPER POSITION (MAX5455)I N L (L S B )-0.20-0.10-0.150.00-0.050.100.050.15WIPER POSITION1281600649632192224256VOLTAGE-DIVIDER DNL vs. WIPER POSITION (10k Ω)D N L (L S B )-0.020.010.00-0.010.020.030.040.050.060.070.08M A X 5450/5 t o c 14WIPER POSITION1281600649632192224256VOLTAGE-DIVIDER INL vs. WIPER POSITION (10k Ω)I N L (L S B )-0.20-0.10-0.150.00-0.050.100.050.15M A X 5450/5 t o c 15WIPER POSITION1281600649632192224256VOLTAGE-DIVIDER DNL vs. WIPER POSITION (50k Ω)D N L (L S B )-0.020.010.00-0.010.020.030.040.050.060.070.08M A X 5450/5 t o c 16WIPER POSITION1281600649632192224256VOLTAGE-DIVIDER INL vs. WIPER POSITION (50k Ω)I N L (L S B )-0.20-0.10-0.150.00-0.050.100.050.15M A X 5450/5 t o c 17WIPER POSITION 1281600649632192224256VOLTAGE-DIVIDER DNL vs. WIPER POSITION (100k Ω)D N L (L S B )-0.020.010.00-0.010.020.030.040.050.060.070.08M A X 5450/5 t o c 18WIPER POSITION1281600649632192224256VOLTAGE-DIVIDER INL vs. WIPER POSITION (100k Ω)I N L (L S B )-0.20-0.10-0.150.00-0.050.100.050.15Typical Operating Characteristics (continued)(V DD = +5V, T A = +25°C, unless otherwise noted.)M A X 5450–M A X 5455Dual, 256-Tap, Up/Down Interface,Digital Potentiometers 6_______________________________________________________________________________________Typical Operating Characteristics (continued)(V DD = +5V, T A = +25°C, unless otherwise noted.)10.00010145SUPPLY CURRENTvs. DIGITAL INPUT VOLTAGE0.0010.010.1DIGITAL INPUT VOLTAGE (V)I D D (m A )230.20.60.40.81.0-40-30-20-1001020304050607080SUPPLY CURRENT vs. TEMPERATURETEMPERATURE (°C)S U P P L Y C U R R E N T (µA )00.40.20.80.61.21.01.4231456SUPPLY CURRENT vs. SUPPLY VOLTAGEV DD (V)I D D (µA )-0.25-0.15-0.200-0.05-0.100.150.100.050.20-4020-20406080END-TO-END RESISTANCE % CHANGEvs. TEMPERATURETEMPERATURE (°C)E N D -T O -E N D R E S I S T A N C E % C H A N G E1µs/divTAP-TO-TAP SWITCHING TRANSIENTW 10mV/divINC_5V/divMAX5455MAX5451MAX5453MAX5450–MAX5455Dual, 256-Tap, Up/Down Interface,Digital Potentiometers_______________________________________________________________________________________7M A X 5450–M A X 5455Detailed DescriptionThe MAX5450–MAX5455 contain two independent resistor arrays each with 255-resistive elements. 256-tap points are accessible to the wiper along the resistor arrays between H and L (Figure 2). Power-on reset cir-cuitry sets the wiper to midscale (position 127) at power-up.Logic inputs CS , U/D , and INC determine the wiper position of the MAX5450–MAX5455. With CS low and U/D high, a high-to-low (falling edge) transition on INC ,increments the internal counter, which increases the resistance between W and L. When both CS and U/D are low, a high-to-low INC transition decrements the internal counter, decreasing the resistance between W and L (Figure 1). The wiper performs a make-before-break transition ensuring that there is never an open circuit during a transition from one resistor tap to anoth-er. When the wiper is at either end (max/min) of the resistor array, additional transitions in the direction of the endpoint will not change the counter value (the counter will not wrap around).The MAX5450/MAX5452/MAX5454 are similar to the MAX5451/MAX5453/MAX5455 except for internal con-nections. The MAX5450/MAX5452/MAX5454 internally connect INC1to INC2, U/D1to U/D2, W1 to H1, and W2 to H2 (Figures 3 and 4). The internal connections configure the MAX5450/MAX5452/MAX5454 to be vari-able resistors.Applications InformationThe MAX5450–MAX5455 are ideal for adjustable volt-age or adjustable gain circuits where accurate adjustable resistances are required.Adjustable Current to Voltage ConverterFigure 5shows the MAX5450/MAX5452/MAX5454 with a MAX4250 low-noise op amp to fine-tune a current to voltage converter. The physical sizes of both devices minimize circuit space.Adjustable Gain AmplifierFigures 6a and 6b shows the MAX5450–MAX5455 digi-tally adjusting the gain of the MAX4493 general-pur-pose, dual supply op amp. Figure 6a shows the MAX5450/MAX5452/MAX5454 variable resistor in series with a resistor to ground to form the adjustable gain control. Figure 6b shows the MAX5451/MAX5453/MAX5455 as a 3-terminal potentiometer. In these appli-cations the low 5ppm/°C ratiometric tempco allows for a very stable adjustable gain over temperature.Adjustable Linear RegulatorIn Figure 7, the MAX5450/MAX5452/MAX5454 is shown digitally adjusting the output voltage of the MAX8866dual linear regulator. In this circuit, the MAX5450/MAX5452/MAX5454 is connected in series with a resis-tor to ground to form the adjustable feedback stage.The 8-bit MAX5450/MAX5452/MAX5454 allows precise tuning of the output voltage.Dual, 256-Tap, Up/Down Interface,Digital Potentiometers 8_______________________________________________________________________________________Figure 1. Digital Interface and Timing diagramMAX5450–MAX5455Dual, 256-Tap, Up/Down Interface,Digital Potentiometers_______________________________________________________________________________________9Figure 3. MAX5450/MAX5452/MAX5454 Simplified Functional DiagramFigure 4. MAX5451/MAX5453/MAX5455 Simplified FunctionalDiagramM A X 5450–M A X 5455Dual, 256-Tap, Up/Down Interface,Digital Potentiometers 10______________________________________________________________________________________Figure 7. Adjustable Dual Linear RegulatorFigure 6b. Potentiometer Adjustable-Gain AmplifierFigure 6a. Variable Resistor Adjustable-Gain AmplifierChip InformationTRANSISTOR COUNT: 9680PROCESS: CMOSMAX5450–MAX5455Dual, 256-Tap, Up/Down Interface,Digital Potentiometers______________________________________________________________________________________11Package InformationM A X 5450–M A X 5455Dual, 256-Tap, Up/Down Interface,Digital PotentiometersMaxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.12____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600©2006 Maxim Integrated Products Printed USA is a registered trademark of Maxim Integrated Products, Inc.Package Information (continued)。

相关文档
最新文档