SF1186K-3;中文规格书,Datasheet资料

合集下载

深圳市科特翎科技有限公司产品规格书说明书

深圳市科特翎科技有限公司产品规格书说明书

产品规格书SPECIFICATION产品名称N ame.NO:0805白光White产品型号Model.NO:KTR-0805CWD文件编号Document.NO:MQ8032版次REV.NO:K3.0描述Description:■ 2.0×1.25mm贴片发光二极管2.0×1.25mm Chip SMD ■胶体颜色Colloid Color:黄色Yellow■发光颜色Emission Color:白色White■半功率角度Viewing Angle:120°深圳市科特翎科技有限公司SHENZHEN KETERINE TECHNOLOGY CO.,LTD.编制Prepared by审核Checked by核准Approved by市场部Market Dept.客户确认CUSTOMER CONFIRMATION确认Confirmed by审核Checked by核准Approved by确认Confirmed by1.外形尺寸Dimensions单位(Units):毫米(mm)注意:所有尺寸单位为mm,如无特殊说明误差范围为±0.1mmAll dimensions area in mm tolerance is±0.1mm unless otherwise noted.2.光电特性Electrical/Optical characteristics (1)最大限度值Absolute Maximum Ratings(TA=25±5ºC)项目Item符号Symbol最大额定值Absolute Maximum Rating单位Unit正向电流Forward Current IF20mA正向峰值电流Pulse Forward Current IFP100mA反向电压Reverse Voltage VR5V功率消耗Power Dissipation PD70mW工作温度Operating Temperature Topr-40ºC To+85ºC°C贮藏温度Storage Temperature Tstg-40ºC To+85ºC°C焊接温度Soldering Temperature Tsld ReflowSoldering:260ºC For10sec. 1/10周期,0.1msec脉宽IFP Conditions:1/10Duty Cycle,0.1msec Pulse Width.(2)样品光电参数Initial Electrical/Optical Characteristics(TA=25±5ºC)符号Symbol 项目Item单位Units最小值Min.规格值Typ.最大值Max.测试条件TestConditionsVF正向电压Forward Voltage V 2.6 3.2IF=10mAIR反向电流Reverse Current uA10VR=7V2θ½发光角度Viewing Angleº120ºIF=10mAø发光强度Luminous Intensitymcd6001080IF=10mATC色温Colour Temperature k700011000IF=10mARA显色指数Color Rendering Index Ra7080IF=10mA 正向电压允许误差±0.05V Tolerance of measurement of Vf is±0.05V.亮度允许误差±10%Luminous Intensity Measurement allowance is±10%.3.特性曲线Characteristic curve4.可靠性RELIABILITY (1)测试项目及结果Test Items and Results实验项目Test Items 参考标准Reference实验条件Test Conditions时间Time样品数Quantity判据Criterion冷热冲击Thermal Shock MIL-STD-202G-40℃(30min)←→100℃(30min)循环200次200cycles220/22湿热循环Temperature And Humidity Cyclic JEITA ED-4701200203-10℃——+65℃,0%-90%RH24hrs./1cycle循环10次10cycles220/22高温储存High Temperature Storage JEITA ED-4701200201Ta=100℃1000h220/22低温储存Low Temperature Storage JEITA ED-4701200202Ta=-40℃1000h220/22高温高湿储存High Temperature High Humidity Storage JEITA ED-4701100103Ta=60℃,RH=90%1000h220/22常温寿命试验Life Test JESD22-A108D Ta=25℃IF=20mA1000h220/22高温寿命High Temperature Life Test JESD22-A108D Ta=80℃IF=20mA1000h220/22低温寿命Low Temperature Life Test JESD22-A108D Ta=-40℃IF=20mA1000h220/22耐焊接热Resistance to Soldering Heat GB/T4937,Ⅱ,2.2&2.3Tsol*=260℃10secs.2次2times220/225.注意事项Cautions(1)焊接条件Soldering Conditions本产品最多只可回焊两次,且在首次回焊后须冷却至室温之后方可进行第二次回焊。

LM334DT;LM234DT;LM334D;LM334Z;LM234Z;中文规格书,Datasheet资料

LM334DT;LM234DT;LM334D;LM334Z;LM234Z;中文规格书,Datasheet资料

May 2007 Rev 31/16LM134-LM234-LM334Three terminal adjustable current sourcesFeatures■Operates from 1V to 40V ■0.02%/V current regulation ■Programmable from 1µA to 10mA ■±3% initial accuracyDescriptionThe LM134/LM234/LM334 are 3-terminal adjustable current sources characterized by:■an operating current range of 10000: 1■an excellent current regulation■a wide dynamic voltage range of 1V t 10VThe current is determined by an external resistor without requiring other external components.Reverse voltages of up to 20V will only draw a current of several microamperes. This enables the circuit to operate as a rectifier and as a source of current in a.c. applications.For the LM134/LM234/LM334, the voltage on the control pin is 64mV at +25°C and is directlyproportional to the absolute temperature (°K). The simplest external resistor connection generates a current with approximately 0.33%/°C temperature dependence. Zero drift can be obtained by adding an additional resistor and a diode to the external circuit.Schematic diagram LM134-LM234-LM3342/161 Schematic diagramFigure 1.Schematic diagram2 Absolute maximum ratingsTable 1.Absolute maximum ratingsSymbolParameterLM134LM234LM334Unit Voltage V+ to V-ForwardReverse40203020V V ADJ -ADJ pin to V - voltage 5V I set Set current 10mA P tot Power dissipation400mW T stg Storage temperature range-65 to +150°C T operOperating free-air temperature range-55 to +125-25 to +1000 to +70°CLM134-LM234-LM334Electrical characteristics3/163 Electrical characteristicsT j = +25°C with pulse testing so that junction temperature does not change during testing(unless otherwise specified)Table 2.Electrical characteristicsParameterLM134 - LM234LM334UnitMin.Typ.Max.Min.Typ.Max.Set current error (V + = +2.5V) -(1)10µA ≤ I set ≤1mA 1mA ≤ I set ≤ 5mA 2µA ≤ I set ≤ 10µA3586812%Ratio of set current to V - current10µA ≤ I set ≤ 1mA 1mA ≤ I set ≤5mA 2µA ≤ I set ≤ 10µA 14181414231418141426Minimum operating voltage 2µA ≤ I set ≤ 100µA100µA ≤ I set ≤1mA 1mA ≤ I set ≤ 5mA0.80.910.80.91VAverage change in set current with input voltage 2µA ≤ I set ≤ 1mA+1.5V ≤ V + ≤ +5V +5V ≤ V +≤ +40V1mA ≤ I set ≤ 5mA +1.5V ≤ V +≤ +5V+5V ≤ V+ ≤ +40V 0.020.010.030.020.050.030.020.010.030.020.10.05% / VT emperature dependence of set current - (2)25µA ≤ I set ≤ 1mA0.96 TT 1.04 T 0.96 T T 1.04 TEffective shunt capacitance1515pF1.The set current is the current flowing into the V+ pin. It is determined by the following formula:I set = 67.7mV/R set (T j = +25°C)The set current error is expressed as a percent deviation from this amount.2.I set is directly proportional to absolute temperature (°K). I set at any temperature can be calculated fromI set = I o (T/T o )where I o is I set measured at To (°K).Electrical characteristicsLM134-LM234-LM3344/16Figure 2.Output impedanceFigure 3.Maximum slew rate for linearoperationI m p e d a n c e (O h m )Frequency (Hz)S l e w r a t e (V/µs )Iset (µA)Figure 4.StartupFigure 5.Transient responseTime (scale changes at each current level)Time (scale changes at each current level)Figure 6.Voltage across RsetFigure 7.Current noiseV o l t a g e (m V )Temperature (°C)C u r r e n t (p A /√H z )Frequency (Hz)LM134-LM234-LM334Electrical characteristics5/16Figure 8.Turn-on voltageFigure 9.Ratio of I set to V - currentI s e t (m A )V + to V - voltage (V)R a t i oI set (mA)Application information LM134-LM234-LM3346/164 Application information4.1 Slew rateAt slew rates above a threshold (see Figure 4 and Figure 5), the LM134, LM234, LM334 canhave a non-linear current characteristic. The slew rate at which this takes place is directly proportional to I set . At I set = 10µA, dv/dt max. = 0.01V/µs ; at I set = 1mA, dv/dt max. = 1V/µs. Slew rates of more than 1V/µs do not damage the circuit nor do they produce high currents.4.2 Thermal effectsInternal heating can have a significant effect on current regulation for an I set above 100µA.For example, each increase of 1V in the voltage across the LM134 at I set = 1mA will increase the junction temperature by ≈ 0.4°C (in still air). The output current (I set ) has a temperature coefficient of about 0.33%/°C. Thus the change in current due to the increase in temperature will be (0.4) (0.33) = 0.132%. This is a degradation of 10 : 1 in regulation versus the true electrical effects. Thermal effects should be taken into account when d.c. regulation is critical and I set is higher than 100µA.4.3 Shunt capacitanceIn certain applications, the 15pF value for the shunt capacitance should be reduced:●because of loading problems,●because of limitation of output impedance of the current source in a.c. applications.Y ou can easily reduce the capacitance by adding a FET as shown in Typical applications onpage 8.The value of this capacitance can be reduced by at least 3pF and regulation can be improved by an order of magnitude without any modifications of the d.c. characteristics (except for the minimum input voltage).4.4 NoiseThe current noise produced by LM134, LM234, and LM334 is about 4 times that of atransistor. If the LM134, LM234, LM334 is used as an active load for a transistor amplifier, the noise at the input will increase by about 12dB. In most cases this is acceptable, and a single amplifier can be built with a voltage gain higher than 2000.4.5 Lead resistanceThe sense voltage which determines the current of the LM134, LM234, LM334 is less than100mV. At this level, the thermocouple effects and the connection resistance should be reduced by locating the current setting resistor close to the device. Do not use sockets for the ICs. A contact resistance of 0.7Ω is sufficient to decrease the output current by 1% at the 1mA level.LM134-LM234-LM334Application information7/164.6 Sensing temperatureThe LM134, LM234, LM334 are excellent remote controlled temperature sensors becausetheir operation as current sources preserves their accuracy even in the case of longconnecting wires. The output current is directly proportional to the absolute temperature in Kelvin degrees according to the following equation.The calibration of the LM134, LM234, LM334 is simplified by the fact that most of the initial accuracy is due to gain limitation (slope error) and not an offset. Gain adjustment is a one point trim because the output of the device extrapolates to zero at 0°K.Figure 10.Device calibrationThis particularity of the LM134, LM234, LM334 is illustrated in the above diagram. Line abc represents the sensor current before adjustment and line a’b’c’ represents the desired output. A gain adjustment provided at T2 will move the output from b to b’ and will correct the slope at the same time so that the output at T1 and T3 will be correct. This gainadjustment can be carried out by means of R set or the load resistor used in the circuit. After adjustment, the slope error should be less than 1%. A low temperature coefficient for R set is necessary to keep this accuracy. A 33ppm/°C temperature drift of R set will give an error of 1% on the slope because the resistance follows the same temperature variations as the LM134, LM234, LM334.Three wires are required to isolate R set from the LM134, LM234, LM334. Since this solution is not recommended, metal-film resistors with a drift of less than 20ppm/°C are now available. Wirewound resistors can be used when very high stability is required.I set = 227µV/°K) (T ()R set----------------------------------------Application information LM134-LM234-LM3348/16Typical applicationsFigure 11.Basic 2-terminal current sourceFigure 12.Alternate trimming techniqueFigure 13.Terminating remote sensor forvoltage outputFigure 14.Zero temperature coefficientcurrent sourceLM134-LM234-LM334Application information9/16Figure 15.Low output impedancethermometerFigure 16.Low output impedancethermometerFigure 17.Micropower biasFigure 18.Low input voltage reference driverApplication informationLM134-LM234-LM33410/16Figure 19.In-line current limiterFigure 20.Fet cascading for low capacitance分销商库存信息:STMLM334DT LM234DT LM334D LM334Z LM234Z。

SF2137E;中文规格书,Datasheet资料

SF2137E;中文规格书,Datasheet资料

Electrical Characteristics Electrical ConnectionsCharacteristicSymNotes Min TypMax UnitsCenter Frequency f C869.00MHzBandwidth, 1 dB 11Bandwidth, 3 dB17Insertion Loss, 868 to 870 MHz IL2.8 4.0dB Amplitude Ripple, 868 to 870 MHz 0.21.5dB P-PAttenuation Referenced to 0 dB: 825 to 828 MHz 4047dB835 to 842 MHz 3039 891 to 894 MHz 3042 910 to 913 MHz 4047Source Impedance Z S 50ΩLoad Impedance Z L50Ω Case StyleSM3030-6 3.0 x 3.0 mm Nominal FootprintLid Symbolization, Y=year, WW=week, S=shift, Dot=pin 1 indicator 711, YWWS Standard Reel Quantity Reel Size 7 Inch 500 Pieces/Reel Reel Size 13 Inch3000 Pieces/ReelConnection TerminalsPort 12 Port 25 Case GroundAll others•Steep Roll-off Filter for 869.00 MHz Unlicensed Band •Complies with Directive 2002/95/EC (RoHS)•No Matching Required for Operation in 50Ω Environment Absolute Maximum Ratings RatingValueUnitsInput Power Level17dBm DC Voltage on any Non-ground Terminal 3V Operating Temperature Range-40 to +85°C Storage Temperature Range in Tape and Reel-40 to +85°C Maximum Soldering Profile, 5 Cycles/10 seconds Maximum265°C869.00 MHz SAW FilterSF2137E1.Unless noted otherwise, all specifications apply over the operating temperature range with filter soldered to the specified demonstration board with impedance matching to 50 Ω and measured with 50 Ω network analyzer.2.Unless noted otherwise, all frequency specifications are referenced to the nominal center frequency, fc.3.Rejection is measured as attenuation below the minimum IL point in the passband. Rejection in final user application is dependent on PCB layout and external impedance matching design. See Application Note No. 42 for details.4.The design, manufacturing process, and specifications of this filter are subject to change. and international patents may apply.6.RFM, stylized RFM logo, and RF Monolithics, Inc. are registered trademarks of RF Monolithics, Inc.PbCAUTION: Electrostatic Sensitive Device. Observe precautions for handling.Notes:6-Terminal Ceramic Surface-Mount Case3.0 X 3.0 mm Nominal FootprintSM3030-6 CaseTop View Bottom ViewCase and PCB Footprint DimensionsCase MaterialsDimensionmm Inches Min Nom MaxMin Nom Max A 2.87 3.00 3.130.1130.1180.123B 2.87 3.00 3.130.1130.1180.123C 1.12 1.25 1.380.0440.0490.054D 0.770.90 1.030.0300.0350.040E 2.67 2.80 2.930.1050.1100.115F 1.47 1.60 1.730.0580.0630.068G 0.720.850.980.0280.0330.038H 1.37 1.50 1.630.0540.0590.064I 0.470.600.730.0190.0240.029J 1.171.30 1.430.0460.0510.056K 3.200.126L 1.700.067M 1.050.041N 0.810.032O0.380.015MaterialsSolder Pad Plating 0.3 to 1.0 µm Gold over 1.27 to 8.89 µm NickelLid Plating 2.0 to 3.0 µm Nickel BodyAl 2O 3 CeramicPb FreePCB Footprint Top ViewTape and Reel Specifications“B”Quantity Per ReelInches millimeters7178500133303000COMPONENT ORIENTATION and DIMENSIONSCarrier Tape DimensionsAo 3.35 mmBo 3.35 mmKo 1.40 mmPitch8.0 mmW12.0mmTypical Solder Reflow Profile分销商库存信息: RFMSF2137E。

TESCOM中文样本

TESCOM中文样本

Cv = 1.3
• 可提供高精度的外部
PSIG
取压
• 平衡主阀设计增加了阀座寿命
26-1200 系列: 高流量
• 与上述 26-1100 类似
6,000 PSIG (414 Bar) 100-6,000 PSIG
更大的流量范围
Cv = 3.3 Cv =6.0 Cv = 12.0
0-1200, 0-1800
PSIG
铝 316 不锈钢
BB-5 系列: 袖珍型,两级减压
• 重量轻,设计紧凑
6,000 PSIG (414 Bar)
• 级间安全泄放接口
• 活塞感应,使用寿命长
• 无排放功能
0-80, 0-140,
Cv = 0.Байду номын сангаас6
0-220, 0-700,
0-1200 PSIG
• 设计紧凑
(414 Bar)
Cv = 0.24
• 挡块限制最大出口压力
• 入口及出口压力表接口为标配
• 标配无排放功能
黄铜 300 不锈钢 316 不锈钢
26-1000 多用途
26-1000 系列: 多用途
• 出口压力范围可
6,000 , 10,000 PSIG
现场调节
(414, 690 Bar)
• 多种接口选择
• 可选入口压力达
20,000 PSIG (1379 Bar)
• 大手柄设计,扭矩低
压力设定快速
• 标配带自排放功能
5-500, 5-800, 10-1500, 15-2500, 25-4000, 50-6000, 200-10,000 PSIG
Cv = 0.02 Cv = 0.06 Cv = 0.12 Cv = 0.3

TSOP34838;中文规格书,Datasheet资料

TSOP34838;中文规格书,Datasheet资料

IR Receiver Modules for Remote Control SystemsMECHANICAL DATAPinning for TSOP348.., TSOP344..:1 = OUT, 2 = GND, 3 = V SPinning for TSOP322.., TSOP324..:1 = OUT, 2 = V S , 3 = GNDFEATURES•Very low supply current•Photo detector and preamplifier in one package •Internal filter for PCM frequency •Improved shielding against EMI •Supply voltage: 2.5 V to 5.5 V•Improved immunity against ambient light •Insensitive to supply voltage ripple and noise•Material categorization: For definitions of compliance please see /doc?99912DESCRIPTIONThese products are miniaturized receivers for infrared remote control systems. A PIN diode and a preamplifier are assembled on a lead frame, the epoxy package acts as an IR filter.The demodulated output signal can be directly decoded by a microprocessor. The TSOP348.., TSOP322.. are compatible with all common IR remote control data formats. The TSOP324.., TSOP344.. are optimized to suppress almost all spurious pulses from energy saving fluorescent lamps but will also suppress some data signals.This component has not been qualified according to automotive specifications.BLOCK DIAGRAMAPPLICATION CIRCUITPARTS TABLECARRIER FREQUENCY STANDARD APPLICATIONS(AGC2)VERY NOISY ENVIRONMENTS(AGC4)PINNING1 = OUT,2 = GND,3 = V S1 = OUT,2 = V S ,3 = GND1 = OUT,2 = GND,3 = V S1 = OUT,2 = V S ,3 = GND30 kHz TSOP34830TSOP32230TSOP34430TSOP3243033 kHz TSOP34833TSOP32233TSOP34433TSOP3243336 kHz TSOP34836TSOP32236TSOP34436TSOP3243638 kHz TSOP34838TSOP32238TSOP34438TSOP3243840 kHz TSOP34840TSOP32240TSOP34440TSOP3244056 kHzTSOP34856TSOP32256TSOP34456TSOP32456Note•Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect the device reliability.TYPICAL CHARACTERISTICS (T amb = 25 °C, unless otherwise specified)Fig. 1 - Output Active Low Fig. 2 - Pulse Length and Sensitivity in Dark AmbientABSOLUTE MAXIMUM RATINGSPARAMETER TEST CONDITIONSYMBOLVALUE UNIT Supply voltage V S - 0.3 to + 6V Supply current I S 3mA Output voltage V O - 0.3 to (V S + 0.3)V Output current I O 5mA Junction temperature T j 100°C Storage temperature range T stg - 25 to + 85°C Operating temperature range T amb- 25 to + 85°C Power consumption T amb ≤ 85 °C P tot 10mW Soldering temperaturet ≤ 10 s, 1 mm from caseT sd260°CELECTRICAL AND OPTICAL CHARACTERISTICS (T amb = 25 °C, unless otherwise specified)PARAMETER TEST CONDITION SYMBOLMIN.TYP.MAX.UNIT Supply current E v = 0, V S = 3.3 V I SD 0.270.350.45mA E v = 40 klx, sunlightI SH 0.45mA Supply voltage V S 2.55.5V Transmission distance E v = 0, test signal see fig. 1,IR diode TSAL6200,I F = 250 mA d 45m Output voltage low I OSL = 0.5 mA, E e = 0.7 mW/m 2,test signal see fig. 1V OSL 100mV Minimum irradiance Pulse width tolerance:t pi - 5/f 0 < t po < t pi + 6/f 0,test signal see fig. 1E e min.0.10.25mW/m 2Maximum irradiance t pi - 5/f 0 < t po < t pi + 6/f 0,test signal see fig. 1E e max.30W/m 2DirectivityAngle of half transmissiondistanceϕ1/2± 45degE eV O V VFig. 3 - Output Function Fig. 4 - Output Pulse Diagram Fig. 5 - Frequency Dependence of Responsivity Fig. 6 - Sensitivity in Bright AmbientFig. 7 - Sensitivity vs. Supply Voltage DisturbancesFig. 8 - Sensitivity vs. Electric Field DisturbancesEV O V V OL0.00.20.40.60.81.01.20.70.9 1.1 1.3f/f 0 - Relative Frequency16925E /E - R e l. R e s p o n s i v i t y e m i n.eFig. 9 - Max. Envelope Duty Cycle vs. Burst Length Fig. 10 - Sensitivity vs. Ambient TemperatureFig. 11 - Relative Spectral Sensitivity vs. WavelengthFig. 12 - Horizontal DirectivityFig. 13 - Sensitivity vs. Supply VoltageSUITABLE DATA FORMATThese products are designed to suppress spurious output pulses due to noise or disturbance signals. Data and disturbance signals can be distinguished by the devices according to carrier frequency, burst length and envelope duty cycle. The data signal should be close to the band-pass center frequency (e.g. 38 kH z) and fulfill the conditions in the table below.When a data signal is applied to the IR receiver in the presence of a disturbance signal, the sensitivity of the receiver is reduced to insure that no spurious pulses are present at the output. Some examples of disturbance signals which are suppressed are:•DC light (e.g. from tungsten bulb or sunlight)•Continuous signals at any frequency•Strongly or weakly modulated noise from fluorescent lamps with electronic ballasts (see figure 14 or figure 15)Fig. 14 - IR Signal from Fluorescent Lampwith Low ModulationFig. 15 - IR Signal from Fluorescent Lampwith High ModulationNote•For data formats with short bursts please see the datasheet for TSOP323.., TSOP325.., TSOP343.., TSOP345..0101520Time (ms)16920I R S i g n a l50101520Time (ms)16921I R S i g n a l5TSOP322.., TSOP348..TSOP324.., TSOP344..Minimum burst length10 cycles/burst 10 cycles/burst After each burst of lengtha minimum gap time is required of10 to 70 cycles ≥ 10 cycles 10 to 35 cycles ≥ 10 cycles For bursts greater thana minimum gap time in the data stream is needed of 70 cycles > 4 x burst length35 cycles> 10 x burst lengthMaximum number of continuous short bursts/second 18001500Recommended for NEC code yes yes Recommended for RC5/RC6 code yes yes Recommended for Sony codeyes no Recommended for Thomson 56 kHz codeyes yes Recommended for Mitsubishi code (38 kHz, preburst 8 ms, 16 bit)yes no Recommended for Sharp codeyesyesSuppression of interference from fluorescent lampsMost common disturbance signals are suppressedEven extreme disturbance signals are suppressedPACKAGE DIMENSIONS in millimetersLegal Disclaimer Notice VishayDisclaimerALL PRODU CT, PRODU CT SPECIFICATIONS AND DATA ARE SU BJECT TO CHANGE WITHOU T NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively,“Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.Statements regarding the suitability of products for certain types of applications are based on Vishay’s knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer’s responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer’s technical experts. Product specifications do not expand or otherwise modify Vishay’s terms and conditions of purchase, including but not limited to the warranty expressed therein.Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk and agree to fully indemnify and hold Vishay and its distributors harmless from and against any and all claims, liabilities, expenses and damages arising or resulting in connection with such use or sale, including attorneys fees, even if such claim alleges that Vishay or its distributor was negligent regarding the design or manufacture of the part. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.Material Category PolicyVishay Intertechnology, Inc. hereb y certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant.Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.分销商库存信息: VISHAYTSOP34838。

山特塔式1-3K(S) UPS说明书

山特塔式1-3K(S) UPS说明书

感谢您使用山特产品!请严格遵守本手册和机器上的所有警告及操作说明,并妥善保管本手册。

在没有阅读完所有的安全说明和操作说明以前,请不要操作本机。

严正声明监管码声明为了切实保障您的用电安全,帮助您购买到真正的山特UPS,请注意以下事项:1.认准山特注册商标:、。

2.山特电子(深圳)有限公司在中国从未以任何形式授权委托其它公司生产UPS。

3.山特所有产品机身上均贴有“电子监管码”(“电子监管码”是国家质检总局为打击假货推行的一种产品身份识别码)。

4.消费者可以通过以下途径对产品电子监管码进行查验,并可通过“中国产品质量电子监管网”平台进行投诉、举报。

查询方式:网站查询:登陆(中国产品质量电子监管网),输入监管码进行查询。

电话查询:95001111(未开通地区可拨打114)。

短信查询:将监管码发送至106695001111(移动、联通均可)。

如有疑问,可以拨打电话95001111或登陆 点击“消费者通道”进行举报投诉。

版权声明山特公司致力于技术创新,不断提供更好的产品和服务满足客户需求,对产品设计、技术规格的更新,恕不另行通知,产品以实物为准。

请到山特网站下载最新版本的产品说明书。

版权所有 ©2013-2014 山特电子(深圳)有限公司。

安全注意事项操作安全1.在使用本产品前,请仔细阅读“安全注意事项”,以确保正确和安全的使用。

并请妥善保存说明书。

2.操作时,请注意所有警示标记,并按要求进行操作。

3.避免在阳光直接照射、雨淋或在潮湿的环境使用本设备。

4.本设备不能安装在靠近热源区域,或有电暖炉、热炉等类似的设备附近。

5.放置UPS时,在其四周要留有安全距离,保证通风。

安装时,请参照说明书。

6.清洁时,请使用干燥的物品进行擦拭。

7.若遇火警,请正确使用干粉灭火器进行灭火。

若使用液体灭火器会有触电危险。

电气安全1.上电前,请确认已正确接地,并检查接线和电池极性的连接正确。

2.当UPS需要移动或重新接线时,应将交流输入电源断开,并保证UPS完全停机,否则输出端仍可能带电,有触电的危险。

KIT33810EKEVME;中文规格书,Datasheet资料

KIT33810EKEVME;中文规格书,Datasheet资料

ENGINE CONTROL33810ORDERING INFORMATIONDevice Temperature Range (T A )Package MCZ33810EK/R2-40°C to 125°C32 SOICW-EPFreescale Semiconductor, Inc. reserves the right to change the detail specifications, as may be required, to permit improvements in the design of its products.Document Number: MC33810Rev. 10.0, 4/2011Freescale Semiconductor Technical Data© Freescale Semiconductor, Inc., 2006 - 2011. All rights reserved.Automotive Engine Control ICThe 33810 is an eight channel output driver IC intended for automotive engine control applications. The IC consists of fourintegrated low side drivers and four low side gate pre-drivers. The low side drivers are suitable for driving fuel injectors, solenoids, lamps, and relays. The four gate pre-drivers can function either as ignition IGBT gate pre-drivers or as general purpose MOSFET gate pre-drivers.When configured as ignition IGBT gate pre-drivers, additional features are enabled such as spark duration, dwell time, and ignition coil current sense. When configured as a general purpose gate pre-driver, the 33810 provides external MOSFETs with short circuitprotection, inductive flyback protection and diagnostics. The device is packaged in a 32 pin (0.65mm pitch) exposed pad SOIC.Features•Designed to operate over the range of 4.5V ≤ VPWR ≤ 36V•Quad ignition IGBT or MOSFET gate pre-driver with Parallel/SPI and/or PWM control•Quad injector driver with Parallel/SPI control•Interfaces directly to MCU using 3.3V / 5.0V SPI protocol •Injector driver current limit - 4.5A max.•Independent fault protection and diagnostics •VPWR standby current 10μA max.•Pb-free packaging designated by suffix code EKVPWR VDDSI SCLK CS SO DIN0DIN3GIN0OUT EN SPKDUR NOMI MAXIOUT0OUT1OUT2OUT3GND FB0GD0FB1GD1FB2GD2FB3GD3RSP RSNMOSI SCLK MISO ETPU ETPU GPIO ETPU ETPU ETPUMCU33810V BATV BATV BAT V BATV BATV BATV BATV BATCS ETPU GIN3ETPU V DDVBATFigure 1. MC33810 Simplified Application DiagramAnalog Integrated Circuit Device Data33810INTERNAL BLOCK DIAGRAMINTERNAL BLOCK DIAGRAMGate Control Current Limit Temperature LimitShort/OpenVPWR, VDD OscillatorDIN0V2.5VPWR DIN1DIN2DIN3~50µA~50µA~50µA~50µAGIN0GIN1GIN2GIN3~50µA~50µA~50µA~50µA VDD ~50µASPKDURSO V DDSI SCLK CS~50µAV DD LOGIC CONTROLSPIOUTEN+R SlLimit VOC1–Outputs 0 to 375µAOUT1OUT2OUT3NOMIExposed PadVDD~50µAV DD Bandgap MAXI+–SPI+–+–DACDAC+−V PWR V L V CVOCGPGD Low V ClampClamp100µAGATE DRIVE CONTROLSPARK DURATIONPARALLEL CONTROLPWMCONTROLLERNOMI,MAXI DACSPARK DACUnder-voltagePOR, Over-voltage V8.0 Analog V2.5 LogicBias NOMIMAXIRSPRSNGD1GD2GD3GD0FB1FB2FB3OUT0+–SPI Open SecondaryFB0GNDINTERFACEExposed Pad~15µA~15µAOnlyGPGD Figure 2. 33810 Simplified Internal Block DiagramAnalog Integrated Circuit Device Data 33810PIN CONNECTIONSPIN CONNECTIONSGNDOUT0FB0GD0CS SCLKSI SO VDD OUTEN DIN0DIN1DIN2DIN3GD1FB1OUT11234567891011121314151632313029282726252423222120191817OUT2FB2GD2MAXI NOMI RSN RSP VPWR GIN0GIN1GIN2GIN3SPKDUR GD3FB3OUT3Figure 3. 33810 Pin ConnectionsTable 1. 33810 Pin DefinitionsA functional description of each pin can be found in the Functional Pin Description section beginning on page 15.Pin NumberPin Name Pin FunctionFormal Name Definition8VDDInputDigital Logic SupplyVoltageThe VDD input supply voltage determines the interface voltage levels between the device and the MCU, and is used to supply power to the Serial Out buffer (SO), SPKDUR buffer, MAXI, NOMI, and pull-up current source for the Chip Select (CS).6SI Input Serial Input Data The SI input pin is used to receive serial data from the MCU.5SCLK Input Serial Clock Input The SCLK input pin is used to clock in and out the serial data on the SI and SO pins, while being addressed by the CS.4CSInputChip SelectThe Chip Select input pin is an active low signal sent by the MCU to indicate that the device is being addressed. This input requires CMOS logic levels and has an internal active pull-up current source.7SO Output Serial Output DataThe SO output pin is used to transmit serial data from the device to the MCU.10, 11, 12, 13DIN0,DIN1,DIN2,DIN3InputDriver Input 0, Driver Input 1, Driver Input 2, Driver Input 3Active HIGH input control for injector outputs OUT0 - 3. The parallel input data is logically OR’d with the corresponding SPI input data registercontents. 24, 23, 22, 21GIN0,GIN1,GIN2,GIN3InputGate Driver Input 0Gate Driver Input 1Gate Driver Input 2Gate Driver Input 3These pins are the active HIGH input control for IGBT/General Purpose Gate Driver outputs 0 - 3. The parallel input data is logically OR'd with the corresponding SPI input data register contents in General Purpose Mode Only.20SPKDUR OutputSpark Duration Output This pin is the Spark Duration Output. This open drain output is low whilefeedback inputs FB0 through FB3 are above the programmed spark detection threshold. 25VPWR Input Analog Supply Voltage VPWR is the main voltage input for all internal analog bias circuitry.Exposed Pad (bottom of package)GNDGroundGroundThe exposed pad is the only ground reference for analog, digital and power ground connections. As such, it must be soldered directly to a low impedance ground plane for both electrical and thermal considerations. For more information about this package, please see application note AN2409 on the Freescale Web site, Analog Integrated Circuit Device Data33810PIN CONNECTIONS9OUTENInputOutput EnableThe Output Enable pin (OUTEN) is an active low input. When the OUTEN pin is low, the device outputs are active. The outputs are disabled when OUTEN is high.29MAXI OutputMaximum Ignition Coil CurrentThis pin is the Maximum Ignition Coil Current output flag. This output isasserted when the IGBT Collector-Emitter current exceeds the selected level of the DAC. This signal also latches off the gate pre-drive outputs when configured as a General Purpose Gate pre-Driver. The MAXIcurrent level is determined by the voltage drop across an external sense resistor connected to pins RSP and RSN. 28NOMI OutputNominal Ignition CoilCurrent This pin is the Nominal Ignition Coil Current output flag. This output is asserted when the IGBT Collector-Emitter current exceeds the level selected by the DAC.2, 15, 31, 18FB0 - FB3Input Feedback VoltageSense In IGBT ignition gate pre-driver mode, these feedback inputs monitor the IGBT's collector voltage to provide the spark duration timer control signal. 3, 14, 30,19GD0 -GD3OutputGate Drive OutputIGBT/General Purpose Gate pre-driver outputs are controlled by GIN0 - GIN3. Pull-up and pull-down current sources are used to provide acontrolled slew rate to an external IGBT or MOSFET connected as a low side driver.26RSP Input Resistor SensePositive This pin is the Positive input of a current sense amplifier. 27RSNInput Resistor Sense Negative This pin is the Negative input of a current sense amplifier. 1, 16, 32, 17OUT0 -OUT3OutputLow Side Injector Driver OutputThese pin are the Open drain low side injector driver outputs.Table 1. 33810 Pin Definitions (continued)A functional description of each pin can be found in the Functional Pin Description section beginning on page 15.Pin NumberPin Name Pin FunctionFormal Name DefinitionAnalog Integrated Circuit Device Data 33810ELECTRICAL CHARACTERISTICSMAXIMUM RATINGSELECTRICAL CHARACTERISTICSMAXIMUM RATINGSTable 2. Maximum RatingsAll voltages are with respect to ground unless otherwise noted.RatingsSymbolValueUnitELECTRICAL RATINGS VPWR Supply Voltage (1)V PWR -1.5 to 45V DC VDD Supply Voltage (1)V DD -0.3 to 7.0V DC SPI Interface and Logic Input Voltage (CS , SI, SO, SCLK, OUTEN, DIN0 - DIN3, GIN0 - GIN3, SPKDUR, NOMI, MAXI, RSP,RSN)V IL V IH -0.3 to VDDV DCIGBT/General Purpose Gate Pre-driver Drain Voltage (V FB0 to V FB3)V FB -1.5 to 60V DC Injector Output Voltage (OUTx)V OUTX -1.5 to 60V DC General Purpose Gate Pre-driver Output Voltage (GDx)V GDx -0.3 to 10V DC Output Clamp Energy (OUT0 to OUT3)(Single Pulse)T JUNCTION = 150°C, I OUT = 1.5 AE CLAMP100mJOutput Clamp Energy (OUT0 to OUT3)(Continuous Pulse)T JUNCTION = 125°C, I OUT = 1.0 A (Max Injector frequency is 70 Hz)E CLAMP100mJOutput Continuous Current (OUT0 to OUT3)T JUNCTION = 150°CI OSSSS2.0AMaximum Voltage for RSN and RSP inputs V RSX -0.3 - VDDV DC Frequency of SPI Operation (VDD = 5.0 V)–6.0MHz ESD Voltage (2), (3)Human Body Model (HBM) Machine Model (MM)Charge Device Model (CDM)V ESD1V ESD2V ESD3±2000±200±750VTHERMAL RATINGS Operating Temperature Ambient Junction2CaseT A T J T C -40 to 125-40 to 150-40 to 125°CStorage TemperatureT STG -55 to 150°CPower Dissipation (T A = 25°C)P D 1.7WPeak Package flow Temperature During Solder Mounting DWB Suffix EW SuffixT SOLDER240245°CThermal Resistance Junction-to-Ambient Junction- to-Lead Junction-to-FlagR θJA R θJL R θJC 758.01.2°C/WAnalog Integrated Circuit Device Data33810ELECTRICAL CHARACTERISTICSSTATIC ELECTRICAL CHARACTERISTICSSTATIC ELECTRICAL CHARACTERISTICSNotes1.Exceeding these limits may cause malfunction or permanent damage to the device.2.ESD data available upon request.3.ESD testing is performed in accordance with the Human Body Model (HBM) (AEC-Q100-002), the Machine Model (MM) (AEC-Q100-003), and the Charge Device Model (CDM), Robotic (AEC-Q100-011).Table 3. Static Electrical CharacteristicsCharacteristics noted under conditions of 3.0 V ≤ VDD ≤ 5.5 V, 6.0 V ≤ VPWR ≤ 32 V, -40°C ≤ TC ≤ 125°C, and calibrated timers, unless otherwise noted. Where typical values reflect the parameter’s approx. average value with VPWR = 13 V, TA = 25°C.CharacteristicSymbolMinTypMaxUnitPOWER INPUT (VDD, VPWR)Supply Voltage (4)Fully OperationalFull Parameter Specification V PWR (FO ) 4.56.0–3632V Supply CurrentAll Outputs Disabled (Normal Mode)I VPWR (ON )–10.014.0mASleep State Supply Current (Must have V DD ≤ 0.8 V for sleep state), V PWR = 32 VI VPWR (SS)–1530μAV PWR Over-voltage Shutdown Threshold Voltage (5)V PWR(OV)36.53942V V PWR Over-voltage Shutdown Hysteresis Voltage V PWR(OV-HYS)0.5 1.5 3.0V V PWR Under-voltage Shutdown Threshold Voltage (6)V PWR(UV) 3.0 4.0 4.4V V PWR Under-voltage Shutdown Hysteresis VoltageV PWR(UV-HYS)100200300mV V PWR Low Operating Voltage (Low-voltage reported via the SPI)(7)V PWR(LOV)5.3–8.99V VDD Supply Voltage V DD 3.0–5.5V VDD Supply CurrentStatic Condition and does not include VDD current out of device I VDD–– 1.0mAVDD Supply Under-voltage (Sleep State) Threshold Voltage (8) V DD(UV)0.82.52.8VINJECTOR DRIVER OUTPUTS (OUT 0:3)Drain-to-Source ON ResistanceI OUT = 1.0 A, T J = 125°C, VPWR = 13 V I OUT = 1.0 A, T J = 25°C, VPWR = 13 V I OUT = 1.0 A, T J = -40°C, VPWR = 13 V R DS (ON)––––0.2–0.3––ΩOutput Self Limiting CurrentI OUT (LIM) 3.0–6.0AOutput Fault Detection Voltage Threshold (9)Outputs Programmed OFF (Open Load)Outputs Programmed ON (Short to Battery)V OUT(FLT-TH)2.02.53.0VOutput OFF Open Load Detection Current V DRAIN = 18 V, Outputs Programmed OFF V DRAIN = 32 V, Outputs Programmed OFF (-40°C)I (OFF)OCO4075115115μAOutput ON Open Load Detection CurrentCurrent less then specification value considered openI (ON)OCO20100200mA Table 2. Maximum Ratings (continued)All voltages are with respect to ground unless otherwise noted.RatingsSymbolValueUnitAnalog Integrated Circuit Device Data 33810ELECTRICAL CHARACTERISTICSSTATIC ELECTRICAL CHARACTERISTICSNotes4.These parameters are guaranteed by design, but not production tested. Fully operational means driver outputs will toggle as expectedwith input toggling. SPI is guaranteed to be operational when VPWR > 4.5 V. SPI may not report correctly when VPWR < 4.5 V.5.Over-voltage thresholds minimum and maximum include hysteresis.6.Under-voltage thresholds minimum and maximum include hysteresis.7.Device is functional provided T J is less than 150°C. Some table parameters may be out of specification.8.Device in Sleep State, returns from sleep state with power on reset.9.Output fault detection thresholds with outputs programmed OFF. Output fault detect thresholds are the same for output open and shorts.Table 3. Static Electrical CharacteristicsCharacteristics noted under conditions of 3.0 V ≤ VDD ≤ 5.5 V, 6.0 V ≤ VPWR ≤ 32 V, -40°C ≤ TC ≤ 125°C, and calibrated timers, unless otherwise noted. Where typical values reflect the parameter’s approx. average value with VPWR = 13 V, TA = 25°C.CharacteristicSymbolMinTypMaxUnitAnalog Integrated Circuit Device Data33810ELECTRICAL CHARACTERISTICSSTATIC ELECTRICAL CHARACTERISTICSINJECTOR DRIVER OUTPUTS (OUT 0:3) (Continued)Output Clamp Voltage 1I D = 20 mAV OC1485358VOutput Leakage CurrentVDD = 5.0 V, V DRAIN = 24 V, Open Load Detection Current DisabledVDD = 5.0 V, V DRAIN = V OC - 1.0 V, Open Load Detection Current Disabled VDD = 0 V, V DRAIN = 24 V, Sleep State I OUT (LKG)––––––20300010μAOver-temperature Shutdown (10)T LIM 155–185°C Over-temperature Shutdown Hysteresis (10)T LIM (HYS)5.01015°CIGNITION (IGBT) GATE DRIVER PARAMETERS (GD 0:3 FB0:3)Gate Driver Output Voltage I GD = 500 μA I GD = -500 μAV GS (ON)V GS (OFF) 4.807.00.3759.00.5VSleep Mode Gate to Source Resistor R GS (PULLDOWN)100200300K ΩSleep Mode FBx pin Leakage Current VDD = 0 V, V FBx = 24 V,I FBX (LKG)––1.0μAFeedback Sense Current (FBx Input Current)FBx = 32 V, Outputs Programmed OFF I FBX(FLT-SNS)1.0μAGate Drive Source Current (1 ≤ V GD ≤ 3)I GATEDRIVE 650780950μA Gate Drive Turn Off ResistanceR DS(ON)500–1000ΩSOFT SHUTDOWN FUNCTION (VOLTAGES REFERENCED TO IGBT COLLECTOR)Low Voltage Flyback ClampDriver Command Off, Soft Shutdown Enabled, GDx = 2.0 V V LVC VPWR +9.0VPWR +11VPWR + 13V Spark Duration Comparator Threshold (referenced to IC Ground Tab)Rising Edge Relative to VPWRV TH-RISE182124VSpark Duration Comparator Threshold (referenced to IC Ground Tab)(11)Falling Edge Relative to VPWR, Default = 5.5 V Assuming ideal external 10:1 voltage divider. Voltage measured at high end of divider, not at pin. Tolerance of divider not includedV TH-FALL 1.24.97.49.92.755.58.211.003.66.19.112.1VOpen Secondary Comparator Threshold (referenced from primary to Rising Edge Relative to GND. No hysteresis with 10:1 voltage divider.V TH-RISE11.5–15.5VCURRENT SENSE COMPARATOR (RSP, RSN)NOMI Trip Threshold Accuracy - Steady State Condition 3.0 A across 0.02 Ω (RSP - RSN = 60 mV) 10.75 A across 0.04 Ω (RSP - RSN = 430 mV)NOMI TRIPTA-10–10%Table 3. Static Electrical CharacteristicsCharacteristics noted under conditions of 3.0 V ≤ VDD ≤ 5.5 V, 6.0 V ≤ VPWR ≤ 32 V, -40°C ≤ TC ≤ 125°C, and calibrated timers, unless otherwise noted. Where typical values reflect the parameter’s approx. average value with VPWR = 13 V, TA = 25°C.CharacteristicSymbol Min Typ Max UnitAnalog Integrated Circuit Device Data 33810ELECTRICAL CHARACTERISTICSSTATIC ELECTRICAL CHARACTERISTICSNotes10.This parameter is guaranteed by design, however is not production tested.11.Assuming Ideal external 10:1 Voltage Divider. Tolerance of 10:1 Voltage Divider is not included. Voltage is measured on the High Endof Divider - not at the pin. 10:1 N.3.A 10:1 Voltage Divider is produced using two resistors with a 9:1 resistance ratio by the basic formula:Where R2 = 9XR1VOUT VIN -----------------R1R1R2+----------------------=CURRENT SENSE COMPARATOR (RSP, RSN) (CONTINUED)MAXI Trip Threshold AccuracySteady State Condition6.0 A across 0.02 Ω (RSP - RSN = 120 mV) 21 A across 0.04 Ω (RSP - RSN = 840 mV)MAXI TRIPTA-7.5–7.5%MAXI Trip Point During Overlapping Dwell MAXI TRIPOD -35–+35 %Input Bias Current RSP and RSNI BIASRSX-50–50µAComparator Hysteresis Voltage NOMI MAXINOMI HYS MAXII HYS 4040––7070% of VTInput Voltage Range (Maximum voltage between RSN and RSP)(12)VCMVR CMVR 0.0– 2.0V Ground Offset Voltage Range (12)Maximum offset between RSN pin and IC Ground (Exposed Pad)VGND OVR-0.3–0.3V GENERAL PURPOSE GATE DRIVER PARAMETERS (GD 0:3)Gate Drive Sink and Source Current I GD1.02.05mAGate Drive Output Voltage I GD = 1.0 mA I GD = -1.0 mAV GS (ON)V GS (OFF) 4.80.07.00.29.00.5V V Short to Battery Fault Detection Voltage ThresholdV DD = 5.0 V, Outputs Programmed ONProgrammable from 0.5 to 3.0 V in 0.5 V increments. (Table 14)V DS(FLT-TH)-35%+35%VOpen Fault Detection Voltage Threshold (referenced to IC ground tab)V DD = 5.0 V, Outputs Programmed OFF V DS(FLT-TH)2.02.53.0VOutput OFF Open Load Detection Current FBx = 18 V, Outputs Programmed OFF I FBX(FLT-SNS)5075120μAOutput Clamp VoltageDriver Command Off, Clamp Enabled, V GATE = 2.0 V V OC485358VDIGITAL INTERFACEInput Logic High-voltage Thresholds V IH 0.7 x V DD –V DD + 0.3V Input Logic Low-voltage Thresholds V IL GND - 0.3–0.2 x V DDV Input Logic-voltage Hysteresis V HYS 100–400mV Input Logic Capacitance C IN ––20pF Sleep Mode Input Logic Current V DD = 0 VI LOGIC_SS-10–10μATable 3. Static Electrical CharacteristicsCharacteristics noted under conditions of 3.0 V ≤ VDD ≤ 5.5 V, 6.0 V ≤ VPWR ≤ 32 V, -40°C ≤ TC ≤ 125°C, and calibrated timers, unless otherwise noted. Where typical values reflect the parameter’s approx. average value with VPWR = 13 V, TA = 25°C.CharacteristicSymbolMinTypMaxUnitAnalog Integrated Circuit Device Data33810ELECTRICAL CHARACTERISTICSSTATIC ELECTRICAL CHARACTERISTICSInput Logic Pull-down Current 0.8 to 5.0 V (DIN X and GIN X )I LOGIC_PD3050100μANotes12.This parameter is guaranteed by design, however it is not production tested.Table 3. Static Electrical CharacteristicsCharacteristics noted under conditions of 3.0 V ≤ VDD ≤ 5.5 V, 6.0 V ≤ VPWR ≤ 32 V, -40°C ≤ TC ≤ 125°C, and calibrated timers, unless otherwise noted. Where typical values reflect the parameter’s approx. average value with VPWR = 13 V, TA = 25°C.CharacteristicSymbolMinTypMaxUnit分销商库存信息: FREESCALEKIT33810EKEVME。

深圳旻泰电子科技有限公司产品规格书说明书

深圳旻泰电子科技有限公司产品规格书说明书

出厂签章:承认签章:TEL:86-755-27926188FAX:86-755-29128535深 圳 市 旻 泰 电 子 科 技 有 限 公 司SHENZHEN MINTAI ELECTRONIC TECHNOLOGY CO.,LTD承 认 书APPROVED SHEET敬请确认此规格书内所有项目,并签名和盖章后传给我司,以作我司产品制作依据和存档之用,多谢合作!Please confirm all the items of specification, and return to us with signature and stamp. It will be basis of our production and record.Thanks your cooperation advance!在文件到期前一个月如果双方都对此文件都没有异议,此文件将自动延续有效期1年If both sides have no dissidence in one month before the maturity of the Approved. It will be considered valid automatically for a one year period.地址:深圳市西乡银田工业区西发C区雍启科技园7栋2楼客户名称Customer领跑页 码Page number1/10深 圳 市 旻 泰 电 子 科 技 有 限 公 司SHENZHEN MINTAI ELECTRONIC TECHNOLOGY CO.,LTD日期DATE文件有效期限Approved date 有限期限为1年Period of validity 1 year判定judgement 研发R&D 工程PIE QA 品质批准Approved签名Signature 签名Signature 日期DATE文 件 受 控 号Controled NO. 文 件 版 别Revision NO.A0部门DepartmentR&D编制RegisteredR&D审核CheckedQA复核Re-checkedR&D批准Approved主 要 器 件Main configuration IC:R5460N208AFMOS:AO8814*2+10K NTC PCB工艺与尺寸PCB technology and size绿油/白字/喷锡/55*7.5*0.6mm文 件 编 号Document NO. 客 户 名 称Customer 领跑客 户 型 号Customer Model 2S-2004-2MOS 项 目 名 称Document NO.A0CA014送样次数:第1次送样日期 :2018/8/22产 品 类 别Product Category 双节锂电保护板深 圳 市 旻 泰 电 子 科 技 有 限 公 司SHENZHEN MINTAI ELECTRONIC TECHNOLOGY CO.,LTD客户型号Customer Model2S-2004-2MOS版 本 RevisionNO.A0项目名称Document NO.A0CA014文件受控号Controled NO.0实施日期Issued date2018/8/229、包装运输指引PACKING AND SHIPPING GUIDEPAGE10客户名称Customer 领跑页 码Page number 2/107、零部件图PART MECHANICAL DRAWINGPAGE88、IC、MOS丝印说明PAGE95、材料清单PARTS LISTPAGE66、PCB Layout PAGE73、焊盘定义PAD DEFINITIONPAGE44、电气原理图CIRCUIT DIAGRAMPAGE5目录CONTENTS1、修订履历MODIFIED LISTPAGE22、技术规格SPECIFICATIONSPAGE3客户型号Customer Model2S-2004-2MOS版 本 RevisionNO.A0项目名称Document NO.A0CA014文件受控号Controled NO.0实施日期Issued date2018/8/22深 圳 市 旻 泰 电 子 科 技 有 限 公 司SHENZHEN MINTAI ELECTRONIC TECHNOLOGY CO.,LTD深 圳 市 旻 泰 电 子 科 技 有 限 公 司SHENZHEN MINTAI ELECTRONIC TECHNOLOGY CO.,LTD2、规格SPECIFICATION2.1、适用范围:本技术规格书仅适用于2S-2004-2MOS锂电池保护板,Using scope: The specification only applies to Li-ion battery protection module,2S-2004-2MOS.项目名称Document NO.A0CA014文件受控号Controled NO.0实施日期Issued date2018/8/22客户名称Customer 领跑页 码Page number 3/10 客户型号Customer Model2S-2004-2MOS版 本 RevisionNO.A0A2018/8/18新设计张书东A0CA0141、修订履历MODIFIED LIST产品变更履历表Product Modified Record List版本Revision日期Date 标记Mark 变更内容Modified content责任人Principal 输入编号Input NO.:R5460N208AF推荐存储条件Recommendatory storage conditionTemperature range: -5~+35℃ Humidity: 0%~75%RH0V电池充电功能0V battery charge function 允许Available最大持续放电电流Max continuous discharge current4A工作温度Operating temperature -20+55℃输入电压(B+与B-间)Input voltage(B+ to B-)-0.312V最大持续充电电流Max continuous charge current 4A过放状态下静态电流Current consumption (Power down)0.1uA导通内阻Impedance 2040mΩ短路保护延迟时间Short protection delay time150300500us正常状态下静态电流Current consumption (Operation)4.08.0uA过放保护延迟时间Over discharge protection delay time89128167ms放电过流保护延迟时间Over current protection delay time 81216ms充电过流保护电流101520A过充保护延迟时间Over charge protection delay time 0.7 1.0 1.3s放电过流检测电压Over current detection voltage0.1850.2000.215V放电过流保护电流Over current protection current 101520A过放保护电压Over discharge protection voltage2.340 2.400 2.460V过放保护恢复电压Over discharge release voltage 2.925 3.000 3.075V过充保护电压Over charge protection voltage4.225 4.250 4.275V过充保护恢复电压Over charge release voltage 4.000 4.050 4.100VProtection IC:常温25℃General temperature 25℃项目item最小值Min.典型值Type value最大值Max.单位Unit2.2、环保要求Environment request 2.2、技术参数Electric Features保护IC:参数值parameter value ROHS Halogen-Free SONY-GP无要求1)恒温恒湿测试 Humidity test :+40±2℃ 90%RH 48Hours 2)高温测试 High temperature test :+55±2℃ 2Hours 3)低温测试 Low temperature test :-20±2℃ 16Hours深 圳 市 旻 泰 电 子 科 技 有 限 公 司SHENZHEN MINTAI ELECTRONIC TECHNOLOGY CO.,LTD深 圳 市 旻 泰 电 子 科 技 有 限 公 司SHENZHEN MINTAI ELECTRONIC TECHNOLOGY CO.,LTD客户名称Customer 领跑页 码Page number 5/10 客户型号Customer Model2S-2004-2MOS版 本 RevisionNO.A0BM 接第一节电芯负极1 Cell negatiove pole P-接充电输入的负极/放电输出负极charging negative pole/Battery output negative poleB-接第二节电芯负极1 Cell negatiove poleT10K NTC符号Symbol 说 明DescriptionB+接第1节电芯正极1 Cell positive pole P+充电输入的正极/放电输出正极charging in positive pole /Battery output Postive pole2.6可靠性测试RELIABILITY TEST3、焊盘说明Pad description符号Symbol 说 明Description 客户型号Customer Model2S-2004-2MOS版 本 RevisionNO.A0项目名称Document NO.A0CA014文件受控号Controled NO.0实施日期Issued date2018/8/22客户名称Customer 领跑页 码Page number 4/104、5、深 圳 市 旻 泰 电 子 科 技 有 限 公 司SHENZHEN MINTAI ELECTRONIC TECHNOLOGY CO.,LTD物料清单PARTS LIST项目名称Document NO.A0CA014文件受控号Controled NO.实施日期Issued date2018/8/22电气原理图Circuit Diagram客户名称Customer领跑页 码Page number6/10客户型号Customer Model2S-2004-2MOS版 本 RevisionNO.A0项目名称Document NO.A0CA014文件受控号Controled NO.实施日期Issued date2018/8/226. PCB Layout TOP SILKSCREEN深 圳 市 旻 泰 电 子 科 技 有 限 公 司SHENZHEN MINTAI ELECTRONIC TECHNOLOGY CO.,LTD项目名称Document NO.A0CA014文件受控号Controled NO.0实施日期Issued date2018/8/22客户名称Customer 领跑页 码Page number 7/10 客户型号Customer Model2S-2004-2MOS版 本 RevisionNO.A0PCB ASSOON MT-A0CA014-A 两层板/喷锡绿油/白字55*7.5*0.6mm1贴片MOSFETAOSAO8814TSSOP8U2,U32贴片保护IC 理光R5460N208AF SOT23-6U11贴片NTC JOINSET 0603/10KΩ/±1%/B=34350603R41贴片电阻国巨0603/1KΩ±5%/1/10W 0603R31贴片电阻国巨0603/330Ω±5%/1/10W 0603R1,R22贴片电容三星0603/0.01uF/+80%-20%/25V 0603C31数量贴片电容三星0603/0.1uF/+80%-20%/25V 0603C1,C22物料名称品 牌型号/规格封装元件编号TOP SIDE BOTTOM SILKSCREEN BOTTOM SIDE8、深 圳 市 旻 泰 电 子 科 技 有 限 公 司SHENZHEN MINTAI ELECTRONIC TECHNOLOGY CO.,LTD零部件规格---PCBSPEC--PCB Mechanical Drawing项目名称Document NO.A0CA014文件受控号Controled NO.实施日期Issued date2018/8/22客户名称Customer领跑页 码Page number8/10客户型号Customer Model2S-2004-2MOS版 本 RevisionNO.A09、深 圳 市 旻 泰 电 子 科 技 有 限 公 司SHENZHEN MINTAI ELECTRONIC TECHNOLOGY CO.,LTD包装、运输指引Packing and shipping guide 9.1包装Packing将拼板用气泡膜包好,放入防静电袋中,上下各放一层隔板,再放入小箱中,四小箱装入一大箱中。

DFK 33GP1300 技术手册说明书

DFK 33GP1300 技术手册说明书

技术细节1.要件速览 42.尺寸图 6 2.1DFK 33GP1300 带脚架适配器的C型接口 (6)2.2DFK 33GP1300 不带脚架适配器的C型接口 (7)2.3DFK 33GP1300 带脚架适配器的CS型接口 (8)2.4DFK 33GP1300 不带脚架适配器的CS型接口 (9)3.I/O 连接器 10 3.16-pin I/O 连接器 (10)3.1.1TRIGGER_IN (10)3.1.2STROBE_OUT (11)4.光谱特征 12 4.1红外截止滤波器 (12)4.2光谱灵敏度 - P1300 (12)5.相机控制 13 5.1传感器读出控制 (13)5.1.1像素格式 (13)8-Bit Bayer Raw (13)5.1.1.15.1.1.212-Bit Packed Bayer Raw (14)16-Bit Bayer Raw (14)5.1.1.35.1.1.4YUV 4:2:2 (14)5.1.1.5YUV 4:1:1 (14)5.1.2分辨率 (14)5.1.3读出模式 (15)5.1.4帧速率 (15)5.1.5局部扫描偏移 (17)5.2图像传感器控制 (18)5.2.1曝光时间 (18)5.2.2增益 (18)5.3自动曝光及增益控制 (18)5.3.1自动曝光 (19)5.3.2自动增益 (19)自动参考值 (19)5.3.35.3.4强光缩减 (19)5.3.5自动曝光限制 (20)5.3.6自动增益限制 (20)5.4触发 (21)5.4.1触发模式 (21)5.4.2触发极性 (21)5.4.3软件触发 (22)5.4.4触发脉冲计数 (22)5.4.5触发源 (22)5.4.6触发重叠 (23)5.5触发定时参数 (23)5.5.1触发延迟 (23)5.5.2触发去抖时间 (23)5.5.3触发遮罩时间 (24)5.5.4触发噪声抑制时间 (24)5.6数字I/O (24)5.6.1通用输入 (24)5.6.2通用输出 (25)5.7频闪 (25)5.7.1频闪启用 (25)5.7.2频闪极性 (26)5.7.3频闪操作 (26)5.8白平衡 (26)5.8.1自动白平衡 (26)5.8.2白平衡模式 (27)手动白平衡 (28)5.8.35.9图像处理 (29)5.9.1伽玛 (29)5.9.2查找表 (29)5.10色彩处理 (30)5.10.1色调 (31)5.10.2饱和 (31)5.10.3色彩校正矩阵 (31)5.11自动功能感兴趣的区域 (33)5.11.1自动功能ROI启用 (33)自动功能ROI预设 (34)5.11.25.11.3自动功能ROI自定义矩形 (34)5.12用户设置 (35)5.12.1用户设置选择器 (35)5.12.2加载用户设置 (35)5.12.3保存用户设置 (36)默认用户配置 (36)5.12.46.Rev i s i o n H i story 371要件速览2尺寸图2.1DFK 33GP1300 带脚架适配器的C型接口2.4DFK 33GP1300 不带脚架适配器的CS型接口3I/O 连接器3.16-pin I/O 连接器相机后视图1开极闸M OS F E T最大限制0.2A(ID)!2启动电流最低条件3.5mA!3 G:地O:输出I:输入3.1.1TR IGG ER_I NTRIGGER_IN线可用于将曝光时间的开始与外部事件同步。

2SA1215中文资料(sanken)中文数据手册「EasyDatasheet - 矽搜」

2SA1215中文资料(sanken)中文数据手册「EasyDatasheet - 矽搜」

Chopper regulator, DC motor driver, general-purpose –120
Chopper regulator, DC motor driver, general-purpose –120
Audio, seriesregulator, general-purpose
–100 –160 5000
–100 –160 5000
–100 –160 5000
–100 –160 5000
–100 –160 5000
–100 –150 5000
–100 –150 5000
–100 –150 5000
hFE max
Conditions VCE Ic (V) (A)
180 –4 –3
–150
Audio output driver, TV velocity modulation
–180
Audio, general-purpose
–150
Audio, general-purpose
–80
Audio, general-purpose
–120
Audio, general-purpose
–80
Audio, general-purpose
–120
Audio, general-purpose
–140
Audio, general-purpose
–80
Chopper regulator, switch, general-purpose
–70
Audio output driver, TV velocity modulation
VCBO Applications
(V)

IRMCK311TR;中文规格书,Datasheet资料

IRMCK311TR;中文规格书,Datasheet资料

Data Sheet No. PD60338IRMCK311 Dual Channel Sensorless Motor Control IC forAppliancesFeaturesMCE TM (Motion Control Engine) - Hardware based computation engine for high efficiency sinusoidal sensorless control of permanent magnet AC motor Integrated Power Factor Correction controlSupports both interior and surface permanent magnet motorsBuilt-in hardware peripheral for single shunt current feedback reconstructionNo external current or voltage sensing operational amplifier requiredDual channel three/two-phase Space Vector PWM Three-channel analog output (PWM)Embedded 8-bit high speed microcontroller (8051) for flexible I/O and man-machine controlJTAG programming port for emulation/debugger Two serial communication interface (UART)I2C/SPI serial interfaceWatchdog timer with independent analog clockThree general purpose timers/countersTwo special timers: periodic timer, capture timer Internal ‘One-Time Programmable’ (OTP) memory and internal RAM for final production usagePin compatible with IRMCF311 RAM version1.8V/3.3V CMOS Product SummaryMaximum crystal frequency 60 MHz Maximum internal clock (SYSCLK) frequency 128 MHz Maximum 8051 clock frequency 33 MHz Sensorless control computation time 11 μsec typ MCE TM computation data range 16 bit signed 8051 OTP Program memory 56K bytes MCE program and Data RAM 8K bytes GateKill latency (digital filtered) 2 μsec PWM carrier frequency counter 16 bits/ SYSCLK A/D input channels 6 A/D converter resolution 12 bits A/D converter conversion speed 2 μsec 8051 instruction execution speed 2 SYSCLK Analog output (PWM) resolution 8 bits UART baud rate (typ) 57.6K bps Number of I/O (max) 14 Package (lead-free) QFP64 Operating temperature -40°C ~ 85°CDescriptionIRMCK311 is a high performance OTP based motion control IC designed primarily for appliance applications. IRMCK311 is designed to achieve low cost and high performance control solutions for advanced inverterized appliance motor control. IRMCK311 contains two computation engines. One is Motion Control Engine (MCE TM) for sensorless control of permanent magnet motors; the other is an 8-bit high-speed microcontroller (8051). Both computation engines are integrated into one monolithic chip. The MCE TM contains a collection of control elements such as Proportional plus Integral, Vector rotator, Angle estimator, Multiply/Divide, Low loss SVPWM, Single Shunt IFB. The user can program a motion control algorithm by connecting these control elements using a graphic compiler. Key components of the sensorless control algorithms, such as the Angle Estimator, are provided as complete pre-defined control blocks implemented in hardware. A unique analog/digital circuit and algorithm to fully support single shunt current reconstruction is also provided. The 8051 microcontroller performs 2-cycle instruction execution (16MIPS at 33MHz). The MCE and 8051 microcontroller are connected via dual port RAM to process signal monitoring and command input. An advanced graphic compiler for the MCE TM is seamlessly integrated into the MATLAB/Simulink environment, while third party JTAG based emulator tools are supported for 8051 developments. IRMCK311 comes with a small QFP64 pin lead-free package.TABLE OF CONTENTS1 Overview (5)2 IRMCK311 Block Diagram and Main Functions (6)3 Pinout (8)4 Input/Output of IRMCK311 (9)4.1 8051 Peripheral Interface Group (10)4.2 Motion Peripheral Interface Group (10)4.3 Analog Interface Group (11)4.4 Power Interface Group (11)4.5 Test Interface (12)5 Application Connections (13)6 DC Characteristics (14)6.1 Absolute Maximum Ratings (14)6.2 System Clock Frequency and Power Consumption (14)6.3 Digital I/O DC Characteristics (15)6.4 PLL and Oscillator DC Characteristics (15)6.5 Analog I/O DC Characteristics (16)6.6 Under Voltage Lockout DC Characteristics (17)6.7 AREF Characteristics (17)7 AC Characteristics (18)7.1 PLL AC Characteristics (18)7.2 Analog to Digital Converter AC Characteristics (19)7.3 Op Amp AC Characteristics (19)7.4 SYNC to SVPWM and A/D Conversion AC Timing (20)7.5 GATEKILL to SVPWM AC Timing (21)7.6 Interrupt AC Timing (21)7.7 I2C AC Timing (22)7.8 SPI AC Timing (23)7.8.1 SPI Write AC timing (23)7.8.2 SPI Read AC Timing (24)7.9 UART AC Timing (25)7.10 CAPTURE Input AC Timing (26)7.11 JTAG AC Timing (27)7.12 OTP Programming Timing (28)8 I/O Structure (29)9 Pin List (32)Dimensions (35)10 Package11 Part Marking Information (36)Information (36)12 OrderingTABLE OF FIGURESFigure 1. Typical Application Block Diagram Using IRMCK311 (5)Figure 2. IRMCK311 Internal Block Diagram (6)Figure 3. IRMCK311 Pin Configuration (8)Figure 4. Input/Output of IRMCK311 (9)Figure 5. Application Connection of IRMCK311 (13)Figure 6. Clock Frequency vs. Power Consumption (14)Figure 7 Crystal oscillator circuit (18)Figure 8 Voltage droop of sample and hold (19)Figure 9 SYNC to SVPWM and A/D conversion AC Timing (20)Figure 10 GATEKILL to SVPWM AC Timing (21)Figure 11 Interrupt AC Timing (21)Figure 12 I2C AC Timing (22)Figure 13 SPI AC Timing (23)Figure 14 SPI Read AC Timing (24)Figure 15 UART AC Timing (25)Figure 16 CAPTURE Input AC Timing (26)Figure 17 JTAG AC Timing (27)Figure 18 OTP Programming Timing (28)Figure 19 All digital I/O except motor PWM output (29)Figure 20 RESET, GATEKILL I/O (29)Figure 21 Analog input (30)Figure 22 Analog operational amplifier output and AREF I/O structure (30)Figure 23 VPP programming pin I/O structure (30)Figure 24 VSS and AVSS pin structure (31)Figure 25 VDD1 and VDDCAP pin structure (31)Figure 26 XTAL0/XTAL1 pins structure (31)TABLE OF TABLESTable 1. Absolute Maximum Ratings (14)Table 2. System Clock Frequency (14)Table 3. Digital I/O DC Characteristics (15)Table 4. PLL DC Characteristics (15)Table 5. Analog I/O DC Characteristics (16)Table 6. UVcc DC Characteristics (17)Table 7. AREF DC Characteristics (17)Table 8. PLL AC Characteristics (18)Table 9. A/D Converter AC Characteristics (19)Table 10. Current Sensing OP Amp AC Characteristics (19)Table 11. SYNC AC Characteristics (20)Table 12. GATEKILL to SVPWM AC Timing (21)Table 13. Interrupt AC Timing (21)Table 14. I2C AC Timing (22)Table 15. SPI Write AC Timing (23)Table 16. SPI Read AC Timing (24)Table 17. UART AC Timing (25)Table 18. CAPTURE AC Timing (26)Table 19. JTAG AC Timing (27)Table 20. OTP Programming Timing (28)Table 21. Pin List (32)1 OverviewIRMCK311 is a new International Rectifier integrated circuit device primarily designed as a one-chip solution for complete inverter controlled appliance dual motor control applications. Unlike a traditional microcontroller or DSP, the IRMCK311 provides a built-in closed loop sensorless control algorithm using the unique Motion Control Engine (MCE TM) for permanent magnet motors. The MCE TM consists of a collection of control elements, motion peripherals, a dedicated motion control sequencer and dual port RAM to map internal signal nodes. IRMCK311 also employs a unique single shunt current reconstruction circuit to eliminate additional analog/digital circuitry and enables a direct shunt resistor interface to the IC. The sensorless control is the same for both motors with a single shunt current sensing capability. Motion control programming is achieved using a dedicated graphical compiler integrated into the MATLAB/Simulink TM development environment. Sequencing, user interface, host communication, and upper layer control tasks can be implemented in the 8051 high-speed 8-bit microcontroller. The 8051 microcontroller is equipped with a JTAG port to facilitate emulation and debugging tools. Figure 1 shows a typical application schematic using IRMCK311.IRMCK311 is intended for volume production purpose and contains 64K bytes of OTP (One Time Programming) ROM, which can be programmed through a JTAG port. For a development purpose use, IRMCF311 contains a 48k byte of RAM in place of program OTP to facilitate an application development work. Both IRMCF311 and IRMCK311 come in the same 64-pin QFP package with identical pin configuration to facilitate PC board layout and transition to mass productionFigure 1. Typical Application Block Diagram Using IRMCK3112 IRMCK311 Block Diagram and Main FunctionsM o t i o n C o n t r o l B u sFigure 2. IRMCK311 Internal Block DiagramIRMCK311 contains the following functions for sensorless AC motor control applications:• Motion Control Engine (MCE TM )o Proportional plus Integral block o Low pass filtero Differentiator and lag (high pass filter) o Ramp o Limito Angle estimate (sensorless control) o Inverse Clark transformation o Vector rotator o Bit latch o Peak detect o Transitiono Multiply-divide (signed and unsigned)o Divide (signed and unsigned)o Addero Subtractoro Comparatoro Countero Accumulatoro Switcho Shifto ATAN (arc tangent)o Function block (any curve fitting, nonlinear function)o16-bit wide Logic operations (AND, OR, XOR, NOT, NEGATE)o MCE TM program and data memory (6K byte). Note 1o MCE TM control sequencer• 8051 microcontrollero Three 16-bit timer/counterso16-bit periodic timero16-bit analog watchdog timero16-bit capture timero Up to 36 discrete I/Oso Eleven-channel 12-bit A/DFive buffered channels (0 – 1.2V input)One unbuffered channel (0 – 1.2V input)o JTAG port (4 pins)o Up to three channels of analog output (8-bit PWM)o Two UARTo I2C/SPI porto 64K byte Note 1program One-Time Programmable memoryo2K byte data RAM. Note 2Note 1: Total size of OTP memory is 64K byte, however MCE program occupiesmaximum 8K byte which will be loaded into internal RAM at a powerup/bootprocess. Therefore only 56K byte OTP memory area is usable for 8051microcontroller.Note 2: Total size of RAM is 8K byte including MCE program, MCE data, and 8051data. Different sizes can be allocated depending on applications.3 PinoutXTAL0XTAL1P1.1/RXD P1.2/TXDVDD1VSS VDD2P1.3/SYNC/SCKP1.4/CAPP 3.6/R X D 1P 3.7/T X D 1FPWMVL FPWMUL V S SV D D 2A V D DA V S SA I N 0A R E FP 2.7/A O P W M 1P 2.6/A O P W M 0CPWMUH CPWMVH CPWMWH CPWMUL CPWMVL CPWMWL CGATEKILL VDD1VSS I F B C OI F B C +I F B C -P L L V S SP L L V D DR E S E TN CT C KP 5.3/T D IP 5.2/T D OP 5.1/T M SS D A /C S 0S C L /S O -S I /V P PP 5.0/P F C G K I L LP F C P W M V S SFGATEKILL FPWMWL VAC-VAC+VACO IPFCO IPFC+IPFC-I F B F OI F B F +I F B F -P3.0/INT2/CS1C M E X TFPWMVH FPWMUHFPWMWH A I N 1P 3.2/I N T 0Figure 3. IRMCK311 Pin Configuration4 Input/Output of IRMCK311All I/O signals of IRMCK311 are shown in Figure 4. All I/O pins are 3.3V logic interface except A/D interface pins.Figure 4. Input/Output of IRMCK3114.1 8051 Peripheral Interface GroupUART InterfaceP1.1/RXD Input, Receive data to IRMCK311, can be configured as P1.1P1.2/TXD Output, Transmit data from IRMCK311, can be configured as P1.22nd channel Receive data to IRMCK311, can be configured as P3.6 P3.6/RXD1 Input,P3.7/TXD1 Output,2nd channel Transmit data from IRMCK311, can be configured as P3.7Discrete I/O InterfaceP1.3/SYNC/SCK Input/output port 1.3, can be configured as SYNC output or SPI clock P1.4/CAP Input/output port 1.4, can be configured as Capture Timer inputP3.0/INT2/CS1 Input/output port 3.0, can be configured as external interrupt 2 or SPIchip select 1P3.2/INT0 Input/output port 3.2, can be configured as external interrupt 0Analog Output InterfaceP2.6/AOPWM0 Input/output, can be configured as 8-bit PWM output 0 withprogrammable carrier frequencyP2.7/AOPWM1 Input/output, can be configured as 8-bit PWM output 1 withprogrammable carrier frequencyCrystal InterfaceXTAL0 Input, connected to crystalXTAL1 Output, connected to crystalReset InterfaceRESET Inout, system reset, needs to be pulled up to VDD1 but doesn’t requireexternal RC time constantI2C/SPI InterfaceSCL/SO-SI/VPP Output, I2C clock output, SPI SO-SII2C Data line, Chip Select 0 of SPISDA/CS0 Input/output,P3.0/INT2/CS1 Input/output port 3.0, can be configured as external interrupt 2 or SPIchip select 1P1.3/SYNC/SCK Input/output port 1.3, can be configured as SYNC output or SPI clock 4.2 Motion Peripheral Interface GroupPWMCPWMUH Output, motor 1 PWM phase U high side gate signalCPWMUL Output, motor 1 PWM phase U low side gate signalCPWMVH Output, motor 1 PWM phase V high side gate signalCPWMVL Output, motor 1 PWM phase V low side gate signalCPWMWH Output, motor 1 PWM phase W high side gate signalCPWMWL Output, motor 1 PWM phase W low side gate signalFPWMUH Output, motor 2 PWM phase U high side gate signalFPWMUL Output, motor 2 PWM phase U low side gate signal分销商库存信息: IRIRMCK311TR。

金升阳 DC DC 模块电源 K78xxM-1000R3 系列 产品说明书

金升阳 DC DC 模块电源 K78xxM-1000R3 系列 产品说明书

选型表认证产品型号输入电压(VDC)输出效率(%/Typ.)(最小Vin)/(最大Vin)@满载最大容性负载(µF)标称值(范围值)输出电压(VDC)最大输出电流(mA)UL/CE/CB (认证中)K7803M-1000R324(6-36) 3.3100090/80680K7805M-1000R324(8-36)5100093/8568012(8-27)-5-50085/81330K7809M-1000R324(13-36)9100094/89680K7812M-1000R324(16-36)12100095/9268012(8-20)-12-30088/87330K7815M-1000R324(20-36)15100096/9368012(8-18)-15-30087/88330注:当输入电压超过30VDC 时,输入端需外接22µF/50V 的电解电容,以防电压尖峰造成模块损坏。

输入特性项目工作条件Min.Typ.Max.单位空载输入电流正输出--0.31mA负输出--14反接输入禁止输入滤波器类型电容滤波输出特性项目工作条件Min.Typ.Max.单位输出电压精度满载,输入电压范围K7803M-1000R3--±2±4%其他型号--±1.5±3线性调节率满载,输入电压范围--±0.2±0.4负载调节率标称输入电压,10%-100%负载正输出--±0.4±0.6负输出--±0.4±0.8纹波&噪声*20MHz 带宽,标称输入电压,20%-100%负载--2575mVp-p 温度漂移系数100%负载----±0.03%/℃瞬态响应偏差标称输入电压,25%-50%-25%、50%-75%-50%负载阶跃变化--±60±200mV宽电压输入,非隔离稳压单路输出专利保护RoHS产品特点●效率高达96%●空载输入电流低至0.3mA●工作温度范围:-40℃to +85℃●支持负输出●短路保护●引脚与LM78xx 系列兼容●满足UL62368,EN62368,IEC62368认证(认证中)K78xxM-1000R3系列是高效率的开关稳压器,是LM78xx 系列三端线性稳压器的理想替代品。

SC1186资料

SC1186资料

PRELIMINARY - December 2, 1999DESCRIPTIONThe SC1186 combines a synchronous voltage mode controller with two low-dropout linear regulators providing most of the circuitry necessary toimplement three DC/DC converters for poweringadvanced microprocessors such as Pentium ®II & III.The SC1186 switching section features an integrated 5 bit D/A converter, latched drive output forenhanced noise immunity, pulse by pulse current limiting and logic compatible shutdown. The SC1186switching section operates at a fixed frequency of 140kHz, providing an optimum compromise between size, efficiency and cost in the intended application areas. The integrated D/A converter providesprogrammability of output voltage from 2.0V to 3.5V in 100mV increments and 1.30V to 2.05V in 50mV increments with no external components.The SC1186 linear sections are low dropout regula-tors with short circuit protection, supplying 1.5V for GTL bus and 2.5V for non-GTL I/O. The Reference voltage is made available for external linear regulators.TEL:805-498-2111 FAX:805-498-3804 WEB:FEATURES • Synchronous design, enables no heatsink solution • 95% efficiency (switching section)• 5 bit DAC for output programmability• Designed for Intel Pentium ®ll & III requirements • 1.5V, 2.5V short circuit protected linear controllers • 1.265V ± 1.5% Reference availableAPPLICATIONS• Pentium ®ll & III microprocessor supplies • Flexible motherboards• 1.3V to 3.5V microprocessor supplies •Programmable triple power suppliesORDERING INFORMATIONPart Number(1)PackageLinear VoltageTemp.Range (T J )SC1186CSW SO-24 1.5V/2.5V 0° to 125°CNote:(1) Add suffix ‘TR’ for tape and reel.PRELIMINARY - December 2, 1999Parameter Symbol Maximum Units VCC to GND V IN-0.3 to +7V PGND to GND ± 1V BST to GND-0.3 to +15V Operating Temperature Range T A 0 to +70°C Junction Temperature Range T J 0 to +125°C Storage Temperature RangeT STG -65 to +150°C Lead Temperature (Soldering) 10 seconds T L 300°C Thermal Impedance Junction to Ambient θJA 80°C/W Thermal Impedance Junction to CaseθJC25°C/WABSOLUTE MAXIMUM RATINGSELECTRICAL CHARACTERISTICSUnless specified: V CC = 4.75V to 5.25V; GND = P GND = 0V; V OSENSE = V O ; 0mV < (CS+-CS-) < 60mV; LDOV = 11.4V to 12.6V; T A = 0 to 70°CPARAMETERCONDITIONSMIN TYP MAX UNITSSwitching Section Output Voltage I O = 2A in Application Circuit See Output Voltage Table Supply Voltage VCC4.57VSupply Current VCC = 5.0V 815mA Load Regulation I O = 0.8A to 15A1%Line Regulation±0.15%Current Limit Voltage 607085mV Oscillator Frequency120140160kHz Oscillator Max Duty Cycle 9095%Peak DH Sink/Source Current BSTH-DH = 4.5V,DH-PGNDH = 3.3VDH-PGNDH = 1.5V1100A mA Peak DL Sink/Source Current BSTL-DL = 4.5V,DL-PGNDL = 3.3VDL-PGNDL = 1.5V 1100A mA Gain (A OL )VOSENSE to V O 35dB VID Source Current VIDx ≤ 2.4V 110µA VID LeakageVIDx = 5V10µA Power Good Threshold Voltage 88112%Dead Time40100ns Linear Sections Quiescent Current LDOV = 12V5mA Output Voltage LDO1 2.493 2.525 2.556V Output Voltage LDO2 1.496 1.515 1.534V Reference Voltage Iref ≤ 100µA1.246 1.265 1.284V Gain (A OL )LDOS (1,2) to GATE (1,2)90dB Load Regulation I O = 0 to 8A 0.3%Line Regulation 0.3%Output ImpedanceV GATE = 6.5V1 1.5k ΩPRELIMINARY - December 2, 1999ELECTRICAL CHARACTERISTICS (Cont.)Unless specified: V CC = 4.75V to 5.25V; GND = P GND = 0V; V OSENSE = V O ; 0mV < (CS+-CS-) < 60mV; LDOV = 11.4V to 12.6V; T A = 0 to 70°CPARAMETERCONDITIONSMIN TYP MAX UNITS LDOV Undervoltage Lockout 6.58.010V LDOEN Threshold 1.31.9V LDOEN Sink Current LDOEN = 3.3V LDOEN = 0V 0.01-200 1.0-300µA µA Overcurrent Trip Voltage% of Vo set point204060%Power-up Output Short Circuit Immunity 1560ms Output Short Circuit Glitch Immunity 0.546ms Gate Pulldown Impedance GATE(1,2)-AGND;VCC=BST=0V 80300750k ΩVOSENSE Impedance10k ΩPRELIMINARY - December 2, 1999OUTPUT VOLTAGEUnless specified: 4.75V < VCC < 5.25V; GND = PGND = 0V; VOSENSE = V O ; 0mV < (CS+-CS-) < 60mV;= 0°C < T j < 85°CStandard PARAMETER VID 43210MIN TYP MAX UNITS Output Voltage01111 1.277 1.300 1.323V01110 1.326 1.350 1.37401101 1.375 1.400 1.42501100 1.424 1.450 1.47601011 1.478 1.500 1.52301010 1.527 1.550 1.57301001 1.576 1.600 1.62401000 1.625 1.650 1.67500111 1.675 1.700 1.72600110 1.724 1.750 1.77600101 1.782 1.800 1.81800100 1.832 1.850 1.86900011 1.881 1.900 1.91900010 1.931 1.950 1.97000001 1.980 2.000 2.02000000 2.030 2.050 2.07111111 1.970 2.000 2.03011110 2.069 2.100 2.13211101 2.167 2.200 2.23311100 2.266 2.300 2.33511011 2.364 2.400 2.43611010 2.463 2.500 2.53811001 2.561 2.600 2.63911000 2.660 2.700 2.74110111 2.758 2.800 2.84210110 2.842 2.900 2.95810101 2.940 3.000 3.06010100 3.038 3.100 3.16210011 3.136 3.200 3.26410010 3.234 3.300 3.36610001 3.332 3.400 3.468100003.4303.5003.570PRELIMINARY - December 2, 1999PRELIMINARY - December 2, 1999MATERIALS LISTQty.Reference Part/Description Vendor Notes4C1,C5,C13,C180.1µF Ceramic Various6C2,C3,C14-C171500µF/6.3V SANYO MV-GX or equiv. Low ESR1C91000µF2C11,C21330µF/6.3V Various1L14µH8 Turns 16AWG on MICROMETALS T50-52D core2Q1,Q2See notes See notes FET selection requires trade-off between efficiency andcost. Absolute maximum R= 22 mΩ for Q1,Q2DS(ON)1Q3IRLML2803IR.25Ω 30V SOT23 (or equivalent)1Q4IRFZ14S IR Or equivalent1R45mΩIRC OAR-1 Series1R5 2.32kΩ, 1%, 1/8W Various1R61kΩ, 1%, 1/8W Various1R110Ω, 5%, 1/8W Various1U1SC1186CSW SEMTECHPRELIMINARY - December 2, 1999Typical Ripple, Vo=2.0V, Io=10ATransient Response Vo=2.4V, Io=300mA to 15A 2.5V Linear Short circuit output responseOutput VoltageOutput Current 5A/divPRELIMINARY - December 2, 1999LAYOUT GUIDELINESCareful attention to layout requirements are necessary for successful implementation of the SC1186 PWM controller. High currents switching at 140kHz are pre-sent in the application and their effect on ground plane voltage differentials must be understood and mini-mized.1). The high power parts of the circuit should be laid out first. A ground plane should be used, the number and position of ground plane interruptions should be such as to not unnecessarily compromise ground plane integrity. Isolated or semi-isolated areas of the ground plane may be deliberately introduced to constrain ground currents to particular areas, for example the input capacitor and bottom FET ground.2). The loop formed by the Input Capacitor(s) (Cin), the Top FET (Q1) and the Bottom FET (Q2) must be keptas small as possible. This loop contains all the high current, fast transition switching. Connections should be as wide and as short as possible to minimize loop inductance. Minimizing this loop area will a) reduce EMI, b) lower ground injection currents, resulting in electrically “cleaner” grounds for the rest of the system and c) minimize source ringing, resulting in more reli-able gate switching signals.3). The connection between the junction of Q1, Q2 and the output inductor should be a wide trace or copper region. It should be as short as practical. Since this connection has fast voltage transitions, keeping this connection short will minimize EMI. The connection between the output inductor and the sense resistor should be a wide trace or copper area, there are no fast voltage or current transitions in this connection and length is not so important, however adding unnec-essary impedance will reduce efficiency.VoutLayout diagram for the SC1186PRELIMINARY - December 2, 19995V4) The Output Capacitor(s) (Cout) should be located as close to the load as possible, fast transient load currents are supplied by Cout only, and connections between Cout and the load must be short, wide cop-per areas to minimize inductance and resistance.5) The SC1186 is best placed over a quiet ground plane area, avoid pulse currents in the Cin, Q1, Q2loop flowing in this area. PGNDH and PGNDL should be returned to the ground plane close to the package.The AGND pin should be connected to the ground side of (one of) the output capacitor(s). If this is not possible, the AGND pin may be connected to the ground path between the Output Capacitor(s) and the Cin, Q1, Q2 loop. Under no circumstances should AGND be returned to a ground inside the Cin, Q1, Q2loop.6) Vcc for the SC1186 should be supplied from the5V supply through a 10Ω resistor, the Vcc pin should be decoupled directly to AGND by a 0.1µF ceramic capacitor, trace lengths should be as short as possi-ble.7) The Current Sense resistor and the divider across it should form as small a loop as possible, the traces running back to CS+ and CS- on the SC1186 should run parallel and close to each other. The 0.1µF ca-pacitor should be mounted as close to the CS+ and CS- pins as possible.8) Ideally, the grounds for the two LDO sections should be returned to the ground side of (one of) the output capacitor(s).Currents in various parts of the power sectionPRELIMINARY - December 2, 1999COMPONENT SELECTIONSWITCHING SECTION OUTPUT CAPACITORS - Selection begins with the most critical component. Because of fast transient load current requirements in modern microprocessor core supplies, the output capacitors must supply all transient load current requirements until the current in the output inductor ramps up to the new level. Output capacitor ESR is therefore one of the most important criteria. The maximum ESR can be simply calculated from:stepcurrent Transient I excursion voltage transient Maximum V WhereI V R t t ttESR ==≤Each CapacitorTotal Technology C (µF)ESR (m Ω)Qty.Rqd.C (µF)ESR (m Ω)Low ESR Tantalum 330606200010OS-CON3302539908.3Low ESR Aluminum150044575008.8()O IN tESR V V I CR L −≤OSC INL f L 4V I RIPPLE ⋅⋅=INO)on (DS 2O COND V V cycle duty = where R I P ≈δδ⋅⋅=2IN O SW 10V I P −⋅⋅=4f )t t (V I P OSCf r IN O SW ⋅+⋅⋅=OSCIN RR RR f V Q P ⋅⋅=For example, to meet a 100mV transient limit with a10A load step, the output capacitor ESR must be less than 10m Ω. To meet this kind of ESR level, there are three available capacitor technologies.The choice of which to use is simply a cost/perfor-mance issue, with Low ESR Aluminum being the cheapest, but taking up the most space.INDUCTOR - Having decided on a suitable type and value of output capacitor, the maximum allowable value of inductor can be calculated. Too large an in-ductor will produce a slow current ramp rate and will cause the output capacitor to supply more of the tran-sient load current for longer - leading to an output volt-age sag below the ESR excursion calculated above.The maximum inductor value may be calculated from:The calculated maximum inductor value assumes 100%duty cycle, so some allowance must be made. Choosing an inductor value of 50 to 75% of the calculated maxi-mum will guarantee that the inductor current will rampfast enough to reduce the voltage dropped across the ESR at a faster rate than the capacitor sags, hence en-suring a good recovery from transient with no additional excursions.We must also be concerned with ripple current in the output inductor and a general rule of thumb has been to allow 10% of maximum output current as ripple current.Note that most of the output voltage ripple is produced by the inductor ripple current flowing in the output ca-pacitor ESR. Ripple current can be calculated from:Ripple current allowance will define the minimum per-mitted inductor value.POWER FETS - The FETs are chosen based on sev-eral criteria with probably the most important being power dissipation and power handling capability.TOP FET - The power dissipation in the top FET is a combination of conduction losses, switching losses and bottom FET body diode recovery losses.a) Conduction losses are simply calculated as:b) Switching losses can be estimated by assuming a switching time, if we assume 100ns then:or more generally,c) Body diode recovery losses are more difficult to esti-mate, but to a first approximation, it is reasonable to as-sume that the stored charge on the bottom FET body diode will be moved through the top FET as it starts to turn on. The resulting power dissipation in the top FET will be:To a first order approximation, it is convenient to only consider conduction losses to determine FET suitability.For a 5V in; 2.8V out at 14.2A requirement, typical FET losses would be:PRELIMINARY - December 2, 1999)1(R I P )on (DS 2O COND δ−⋅⋅=FET type R DS(on) (m Ω)P D (W)Package IRL3402515 1.69D 2PAK IRL220310.5 1.19D 2PAK Si4410202.26SO-8FET type R DS(on) (m Ω)P D (W)Package IRL3402515 1.33D 2PAK IRL220310.50.93D 2PAK Si4410201.77SO-8BOTTOM FET - Bottom FET losses are almost entirely due to conduction. The body diode is forced into con-duction at the beginning and end of the bottom switch conduction period, so when the FET turns on and off,there is very little voltage across it, resulting in lowswitching losses. Conduction losses for the FET can be determined by:For the example above:Each of the package types has a characteristic thermal impedance, for the TO-220 package, thermalimpedance is mostly determined by the heatsink used.For the surface mount packages on double sided FR4, 2oz printed circuit board material, thermal impedances of 40o C/W for the D 2PAK and 80oC/W for the SO-8 are readily achievable. The corresponding temperature rise is detailed below:Temperature rise (oC)FET type Top FET Bottom FET IRL3402567.653.2IRL220347.637.2Si4410180.8141.6It is apparent that single SO-8 Si4410 are not adequate for this application, but by using parallel pairs in each po-sition, power dissipation will be approximately halved and temperature rise reduced by a factor of 4.INPUT CAPACITORS - since the RMS ripple currentin the input capacitors may be as high as 50% of the output current, suitable capacitors must be chosen ac-cordingly. Also, during fast load transients, there may be restrictions on input di/dt. These restrictions require useable energy storage within the converter circuitry,either as extra output capacitance or, more usually,additional input capacitors. Choosing low ESR input capacitors will help maximize ripple rating for a given size.SHORT CIRCUIT PROTECTION - LINEARSThe Short circuit feature on the linear controllers is implemented by using the Rds(on) of the FETs. As output current increases, the regulation loop maintains the output voltage by turning the FET on more and more. Eventually, as the Rds(on) limit is reached, the FET will be unably to turn on more fully, and output voltage will start to fall. When the output voltage falls to approximately 50% of nominal, the LDO controller is latched off, setting output voltage to 0. Power must be cycled to reset the latch.To prevent false latching due to capacitor inrush cur-rents or low supply rails, the current limit latch is ini-tially disabled. It is enabled at a preset time (nominally 2mS) after both the LDOV and LDOEN rails rise above their lockout points.To be most effective, the linear FET Rds(on) should not be selected artificially low, the FET should be cho-sen so that, at maximum required current, it is almost fully turned onIf, for example, a linear supply of 1.5V at 4A is re-quired from a 3.3V ± 5% rail, max allowable Rds(on)would be.Rds(on)max = (0.95*3.3-1.5)/4 ≈ 400m ΩTo allow for temperature effects 200m Ω would be a suitable room temperature maximum, allowing a peak short circuit current of approximately 15A for a short time before shutdown.Using 1.5X Room temp R DS(ON) to allow for temperature rise.PRELIMINARY - December 2, 1999 OUTLINE DRAWINGECN99-600 9-22-99ECN99-719 12-2-99。

山特产品速查手册说明书

山特产品速查手册说明书

山特产品速查手册SANTAK PRODUCT QUICK REFERENCE 全面保护用心为安全2 | 山特产品速查手册目 录Contents后备式UPSTG-E1000/500, TG1000/500, ET1100/550, K500/K1000 PRO, MT500/1000, TG-BOX 600/850, SP-BOX 在线式UPS塔式C1-3K, 塔式C6-10K, 3C 10-20K, 机架式C1-3kVA Rack, 机架式C6-10kVA Rack, 3C3 Pro (20-200kVA), 3C3 Pro ISO (15 -200kVA), 3C3 HD (20-80kVA), 3C3 HD (400-600kVA),SPU1-20K 电力行业专用 UPS, SIU 10-200K 山特工业级 UPS 灵霄系列PT 3000 (1-3kVA), PT 3000 (6-20kVA)模块式UPSARRAY 3A3 Pro 系列 (15~150kVA), ARRAY 3A3 PT 系列 (25~200kVA), ARRAY 3A3 PT 系列 (60~600kVA)蓄电池C12系列电池, G 系列胶体蓄电池, ARRAY 系列蓄电池, SBC-A 电池柜微模块灵聚2.0微模块产品系列, 灵聚 2.0 Aisle 配电机柜配电单元 (PDU)精密空调全变频小型精密空调 (7.5-20kW), 定频小型精密空调(7.5-20kW), 双轴流小型机房空调, 机房专用空调(25-100kW), 列间精密空调 (SMCRC 系列)机柜S 系列机柜移动电站3-1314-3839-4546-4950-5455-606162-7273 74-75山特后备式TG-E系列UPS⸺美观时尚的“设备守护神”。

TG-E500/1000 UPS功能强大,集智慧、安全、可靠于一身,提升消费者在产品品质、观感、质感方面的使用体验。

LGK-Ⅲ控制板说明书LGKMMA

LGK-Ⅲ控制板说明书LGKMMA

LGK-Ⅲ控制板说明书(LGK/MMA)产品简介LGK-Ⅲ制板是我公司推出的一款,经济型,等离子切割,手工焊两用板,不控制小弧,一路气阀,全数字控制、集成度高、控制线路简单,故障低、随时可升级。

特点性价比高,一台机可两用基于成熟的主回路,变压器次级手工,切割两套独立电路。

手工焊,空载VRD功能。

该板可配硬开关,软开关驱动板。

面板即主板,最大限度减少接线。

根据需要可自己设置参数:板子型号(机器型号)。

初级电流取样控制电流大小,不再用次级霍尔传感器。

初级采用双检流线圈方式。

(200T线圈不带二极管整流的用于主板控制电流,带(详细连接关系请参照系统接线图)方焊盘为插座的1脚备注:控制板上电位器功能W1:实际输出电流整定(可改变反馈负载电阻R24,对应型号调3V )2.功能介绍:2.1面板功能:2.2功能介绍:1、通过编码器进行相应的参数调节;显示:三位数码管组成的数显表;2、“按键一”切换MMA和LGK功能。

3、“按键二”切换LGK模式下的“2T”、“4T”。

4、前气时间、电流、后气时间都经过编码器,按下切换,旋转调节。

5、手工焊时,前气灯是调节引弧电流,后气灯是调节推力电流。

3.设置:同时按住编码器和按键二进入机器型号的设置,参数设置好之后按一下编码器退出设置状态,关机重新上电保存。

4.参数在LGK状态下按编码器切换LED所指参数:在MMA状态下按编码器切换LED所指参数:带高频焊机注意事项1.面板安装时,要用尼龙柱安装,编码器要与机壳绝缘。

2.弧压采样和枪线上,要加共模线圈3.控变输出到板上,要加共模线圈,尤其是双18V供电,φ30磁环绕6匝以上4.高频一定要有吸收回路,至少104电容5.高频发生器,尽量远离控制板,能用铁壳屏蔽最好6.三相进电,要加共模线圈,此处影响很大123456J312J2123J1电源地A C19VA C19V 21Q F1LGK-III控制板C 29103/2K VC 30103/2K VT?Po rtPo rt接焊枪开关12345J612J512J4181716151413546871091211323S4温度开关常闭6T1112接手工焊输出的正极接手工焊输出的负极后视图W 1调输出电流电源地A C19VA C19V 高频控制G ND驱动板给定初级电流取样200匝电磁阀A C36V A C36VA C36V 6T。

LT3SM00ED PTC 触摸传感器保护器的数据表说明书

LT3SM00ED PTC 触摸传感器保护器的数据表说明书

Product data sheetCharacteristicsLT3SM00EDPTC probe relay TeSys - LT3 with manual reset -24 V - 1 NO + 1 NCMainRange of product LT3Device short name LT3SEProduct or component type Thermistor protection units [Uc] control circuit voltage 24...48 V DC ResetManualComplementaryControl circuit voltage limits 0.8...1.25 UcContacts type and composition 1 NC + 1 NO dual voltage [Ith] conventional free air thermal current5 A for output control relay [Ui] rated insulation voltage Output control relay: 500 V AC[Ue] rated operational voltage 250 V AC 50/60 Hz for output control relay Signalling function Fault indication Voltage indication Control typeManual test Manual resetProbe interchangeability Label mark A conforming to IEC 60034-11Hold-in power consumption in W 1 W Hold-in power consumption in VA 2.5 VAResistance 1500...1650 Ohm reset 2700...3100 Ohm tripping Number of probes 0 (6)Input voltage< 2.5 V (1500 Ohm) for probe< 7.5 V (4000 Ohm) for probe conforming to IEC 60034-11Maximum short circuit detection resistance 20 OhmCondition of useConnection of probes 1000 m >2.5 mm²Connection of probes 500 m >1.5 mm²[Uimp] rated impulse withstand voltage 2.5 kVRated power in VA 100 VA at 220 V - electrical durability: 500000 cycles Breaking capacity2 A at 24 V DC DC-133 A at 250 V AC AC-166 A at 120 V AC AC-16i s c l a i m e r : T h i s d o c u m e n t a t i o n i s n o t i n t e n d e d a s a s u b s t i t u t e f o r a n d i s n o t t o b e u s e d f o r d e t e r m i n i n g s u i t a b i l i t y o r r e l i a b i l i t y o f t h e s e p r o d u c t s f o r s p e c i f i c u s e r a p p l i c a t i o n sConnections - terminals Power circuit: cage type connector 1 cable(s) 0.75…2.5 mm²flexible with cable endPower circuit: cage type connector 1 cable(s) 0.75…2.5 mm²solid with cable endPower circuit: cage type connector 1 cable(s) 1…2.5 mm²flexible without cable endPower circuit: cage type connector 1 cable(s) 1…2.5 mm²solid without cable endPower circuit: cage type connector 2 cable(s) 0.75…2.5 mm²flexible with cable endPower circuit: cage type connector 2 cable(s) 0.75…2.5 mm²solid with cable endPower circuit: cage type connector 2 cable(s) 1…2.5 mm²flexible without cable endPower circuit: cage type connector 2 cable(s) 1…2.5 mm²solid without cable endTightening torque0.8 N.mHeight100 mmWidth22.5 mmDepth100 mmNet weight0.22 kgEnvironmentStandards IEC 60947-8IEC 60034-11VDE 0660IP degree of protection IP20 conforming to IEC 60529IP20 conforming to VDE 0106Ambient air temperature for operation-25…60 °CAmbient air temperature for storage-40…85 °C conforming to IEC 60068-2-2-40…85 °C conforming to IEC 60068-2-2Operating altitude<= 1500 m without derating in temperature> 1500...3000 m with derating in temperatureVibration resistance 1 gn 25...150 Hz conforming to IEC 60068-2-62.5 gn 2...25 Hz conforming to IEC 60068-2-6Shock resistance 5 gn 11 ms conforming to IEC 60068-2-27Electromagnetic compatibility Resistance to electrostatic discharge level 3 conforming to IEC 61000-4-2Resistance to fast transient level 3 conforming to IEC 61000-4-4Surge resistance 1.2/50-8/20 level 4 conforming to IEC 61000-4-5Susceptibility to electromagnetic fields level 3 conforming to IEC 61000-4-3Immunity to microbreaks and voltage drops conforming to IEC 61000-4-11Packing UnitsUnit Type of Package 1PCENumber of Units in Package 11Package 1 Weight145 gPackage 1 Height 2.5 cmPackage 1 width10.3 cmPackage 1 Length10.5 cmUnit Type of Package 2S02Number of Units in Package 236Package 2 Weight 5.529 kgPackage 2 Height15 cmPackage 2 width30 cmPackage 2 Length40 cmOffer SustainabilityEU RoHS Directive CompliantEU RoHS DeclarationMercury free YesRoHS exemption information YesChina RoHS Regulation China RoHS declarationProduct out of China RoHS scope. Substance declaration for your informationWEEE The product must be disposed on European Union markets following specific waste collection andnever end up in rubbish binsContractual warrantyWarranty18 months。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Units
dBm VDC °C °C °C
265 °C for 10 s
SM1411-5
Electrical Characteristics Characteristic
Center Frequency 2 dB Bandwidth Insertion Loss, 1574.42 to 1576.42 MHz Amplitude Ripple, 1574.42 to 1576.42 MHz Rejection Referenced to ILMAX DC to 1450 MHz 1450 to 1520 MHz 1625 to 1640 MHz 1640 to 1805 MHz 1805 to 1910 MHz 1910 to 2000 MHz 2000 to 4000 MHz 4000 to 6000 MHz VSWR, 1574.42 to 1576.42 MHz Terminating Source impedance Terminating Load impedance Case Style Lid Symbolization = year/month manufacturing code
/
SM1411-5 Case
5-Terminal Surface-Mount Case 1.45 X 1.15- mm Nominal Footprint
Electrical Connections
Connection
Input Output Ground
Terminals
/
分销商库存信息:
RFM SF1186K-3
CAUTION: Electrostatic Sensitive Device. Observe precautions for handling. Notes:
1. 2. US and international patents may apply. RFM, stylized RFM logo, and RF Monolithics, Inc. are registered trademarks of RF Monolithics, Inc.
Pb
1575.42 MHz SAW Filter
Value
+10 3 -40 to +95 -40 to +105 -40 to +85
Absolute Maximum Ratings Rating
Maximum Incident Power in Passband Maximum DC Voltage On any Non-ground Terminal Operating Temperature Range Component Storage Temperature Range Storage Temperature Range in Tape and Reel Maximum Soldering Temerature Profile (5 cycles maximum)
C A B, D, E
Package Dimensions
2
Circuit Board Footprint
Test Circuit
50 ohm 50 ohm
E-mail: info@ ©2009-2011 by RF Monolithics, Inc.
Page 4 of 5 SF1186K-3 1/5/11
Sym
fC ILMAX
Notes
Min
Typ
1575.42 40 0.9 0.1
Max
Units
MHz MHz dB dBP-P
1.5 0.75
35 30 45 38 38 38 30 20 ZS ZL
38 45 48 40 40 43 45 22 1.15 50 50 SM1411-5 2
dB
1.6 Ω Ω
Page 2 of 5 SF1186K-3 1/5/11
/
Input VSWR Plot
Output VSWR Plot
E-mail: info@ ©2009-2011 by RF Monolithics, Inc.
Page 3 of 5 SF1186K-3 1/5/11
SF1186K-3
• • • • RF Filter Designed for Front End GPS Applications Excellent Rejection 1.45 x 1.15 mm Surface-Mount Case Complies with Directive 2002/95/EC (RoHS)
Байду номын сангаас
/
Reel Dimensions - 7 inch Reel, 3000 Filters
Tape Dimensions
E-mail: info@ ©2009-2011 by RF Monolithics, Inc.
Page 5 of 5 SF1186K-3 1/5/11
E-mail: info@ ©2009-2011 by RF Monolithics, Inc.
Page 1 of 5 SF1186K-3 1/5/11
/
Frequency Response Plots
E-mail: info@ ©2009-2011 by RF Monolithics, Inc.
相关文档
最新文档