Fabrication of Magnetically Separable Mesostructured Silica with an Open

合集下载

超顺磁性杂化铁氧体纳米微球的制备与表征

超顺磁性杂化铁氧体纳米微球的制备与表征

超顺磁性杂化铁氧体纳米微球的制备与表征王宇航【摘要】采用经济环保的一步水热法制备了杂化铁氧体MFe2O4(M=Mg、Zn、Mn、Ni)磁性纳米微球,通过调节反应物配比控制其粒径、内部孔道结构和组成,通过SEM、TEM、VSM、XRD对其形貌、内部孔道结构及比饱和磁化强度进行分析测试.结果表明,一步水热法制备的MFe2O4(M=Mg、Zn、Mn、Ni)磁性纳米微球具有高比饱和磁化强度和良好的水溶性,其粒径、组成可随反应物配比进行调控.%We prepared hybridization ferrite MFe2O4(M=Mg,Zn,Mn,Ni) magnetic nanoparticles by an economical and green one-step hydrothermal method.We controlled the particle size,internal pore structure,and composition of nanoparticles by regulating reactant ratio.Moreover,we analyzed and determined their morphology,internal pore structure,and specific saturation magnetization by SEM,TEM,VSM,and XRD.The results showed that MFe2O4(M=Mg,Zn,Mn,Ni) magnetic nanoparticles had high specific saturation magnetization and good water solubility,and their particle sizes and compositions could be controlled by regulating reactant ratio.【期刊名称】《化学与生物工程》【年(卷),期】2017(034)008【总页数】4页(P44-47)【关键词】杂化铁氧体纳米微球;超顺磁性;比饱和磁化强度【作者】王宇航【作者单位】陕西学前师范学院化学与化工系,陕西西安 710100【正文语种】中文【中图分类】O614.8随着科技的发展,无机功能化纳米微球的应用范围逐步扩大[1-4],构筑粒径可控的单分散性无机功能化纳米微球成为研究热点。

2021 年度诺贝尔化学奖:大道至简

2021 年度诺贝尔化学奖:大道至简

大 学 化 学Univ. Chem. 2022, 37 (1), 2112014 (1 of 5)收稿:2021-12-07;录用:2021-12-17;网络发表:2021-12-22*通讯作者,Email:******************.cn基金资助:国家自然科学基金(21825108)•今日化学• doi: 10.3866/PKU.DXHX202112014 2021年度诺贝尔化学奖:大道至简冯向青1,2,杜海峰1,2,*1中国科学院化学研究所分子识别与功能院重点实验室,北京 1001902中国科学院大学,北京 100049摘要:有机小分子成为继酶和金属催化剂之后发展的一类新型催化剂,被称为第三类催化。

有机小分子催化作为一种精确的分子构建新工具,对手性新药研发产生了巨大影响,在药物、农药、化工、材料等领域都得到了广泛的应用。

2021年的诺贝尔化学奖授予了德国化学家本杰明·利斯特和美国化学家大卫·迈克米伦,以表彰他们在这一领域做出的开创性重要贡献。

本文简述了手性现象和不对称催化,有机小分子催化的发展历程及其催化优势和未来前景。

关键词:手性;不对称催化;有机小分子催化;诺贝尔化学奖中图分类号:G64;O6The 2021 Nobel Prize in Chemistry: The Simpler the BetterXiangqing Feng 1,2, Haifeng Du 1,2,*1 CAS Key Laboratory of Molecular Recognition and Function, Institute for Chemistry, Chinese Academy of Sciences, Beijing 100190, China.2 University of Chinese Academy of Sciences, Beijing 100049, China.Abstract: Organic molecules have become one novel type of catalysts developed after enzymes and metal catalysts, which are named as organocalysis, the third type of catalysis. As a new tool toward the precise construction of molecules, organocatalysis has a huge impact on the development of chiral new drugs, which has been used in the fields of pharmacy, pesticides, chemicals, materials, and so on. The 2021 Nobel Prize in Chemistry was awarded to German chemist Benjamin List and American chemist David W. C. MacMillan for their pioneering and important contributions to this field. This article will briefly describe chirality and asymmetric catalysis, especially, the history of organocatalysis development, its advantages and future prospects.Key Words: Chirality; Asymmetric catalysis; Organic small molecule catalysis; Nobel prize in chemistry1 2021年诺贝尔化学奖获得者简介2021年10月6日,长期被戏称为“理综奖”的诺贝尔化学奖被授予“对于有机小分子不对称催化[1]的重要贡献”的两位化学家,分别是德国化学家本杰明∙利斯特(Benjamin List)和美国化学家戴维∙麦克米伦(David W. C. MacMillan)。

材料科学专业学术翻译必备词汇

材料科学专业学术翻译必备词汇

材料科学专业学术翻译必备词汇38凝胶sol-gel 78环氧树脂epoxy39应变strain 79纳米tio tio编英文40性能研究properties 80掺杂doped 中文号41晶粒grain 81拉伸强度strength1合金alloy42粒径size 82阻尼damping2材料material43硬度hardness 83微观结构microstructure 3复合材料properties44粒子particles 84合金化alloying4 制备preparation45涂层coating 85制备方法preparation5强度strength46氧化oxidation 86沉积deposition6力学mechanical47疲劳fatigue 87透射电镜tem7力学性能mechanical48组织microstructure 88模量modulus8复合composite9薄膜films 49石墨graphite 89水热hydrothermal50机械mechanical 90磨损性wear10基体matrix51相变phase 91凝固solidification 11增强reinforced52冲击impact 92贮氢hydrogen12非晶amorphous53形貌morphology 93磨损性能wear13基复合材料composites54有机organic 94球磨milling14纤维fiber55损伤damage 95分数fraction15纳米nanometer56有限finite 96剪切shear16金属metal57粉体powder 97氧化物oxide17合成synthesis58无机inorganic 98直径diameter18界面interface59电化学electrochemical 99蠕变creep19颗粒particles60梯度gradient 100弹性模量modulus20法制备prepared61多孔porous 101储氢hydrogen21尺寸size62树脂resin 102压电piezoelectric 22形状shape63扫描电镜sem 103电阻resistivity23烧结sintering64晶化crystallization 104纤维增强composites 24磁性magnetic65记忆合金memory 105纳米复合材料preparation 25断裂fracture66玻璃glass 106制备出prepared26聚合物polymer67退火annealing 107磁性能magnetic27衍射diffraction68非晶态amorphous 108导电conductive28记忆memory69溶胶-凝胶sol-gel 109晶粒尺寸size29陶瓷ceramic70蒙脱土montmorillonite 110弯曲bending30磨损wear71样品samples 111光催化tio31表征characterization72粒度size 112非晶合金amorphous 32拉伸tensile73耐磨wear 113铝基复合材料composites 33形状记忆memory74韧性toughness 114金刚石diamond34摩擦friction75介电dielectric 115沉淀precipitation 35碳纤维carbon76颗粒增强rein forced 116分散dispersion36粉末powder77溅射sputtering 117电阻率resistivity37溶胶sol-gel118显微组织microstructure 119sic复合材料sic120硬质合金cemented121摩擦系数friction122吸波absorbing123杂化hybrid124模板template125催化剂catalyst126塑性plastic127晶体crystal128sic颗粒sic129功能材料materials130铝合金alloy131表面积surface132填充filled133电导率conductivity 134控溅射sputtering135金属基复合材料composites 136磁控溅射sputtering137结晶crystallization 138磁控magnetron139均匀uniform140弯曲强度strength141纳米碳carbon142偶联coupling143电化学性能electrochemical 144及性能properties145al复合材料composite146高分子polymer147本构constitutive 148晶格lattice149编织braided150断裂韧性toughness151尼龙nylon152摩擦磨损性friction153耐磨性wear154摩擦学tribological155共晶eutectic156聚丙烯polypropylene 157半导体semiconductor 158偶联剂coupling159泡沫foam160前驱precursor161高温合金superalloy162显微结构microstructure163氧化铝alumina164扫描电子显微镜sem165时效aging166熔体melt167凝胶法sol-gel168橡胶rubber169微结构microstructure170铸造casting171铝基aluminum172抗拉强度strength173导热thermal174透射电子显微镜tem175插层intercalation176冲击强度impact177超导superconducting178记忆效应memory179固化curing180晶须whisker181溶胶-凝胶法制sol-gel182催化catalytic183导电性conductivity184环氧epoxy185晶界grain186前驱体precursor187机械性能mechanical188抗弯strength189粘度viscosity190热力学thermodynamic191溶胶-凝胶法制备sol-gel192块体bulk193抗弯强度strength194 粘土clay195微观组织microstructure196孔径pore197玻璃纤维glass198压缩compression199摩擦磨损wear200马氏体martensitic201制得prepared202复合材料性能composites203气氛atmosphere204制备工艺preparation205平均粒径size206衬底substrate207相组成phase208表面处理surface209杂化材料hybrid210材料中materials211 断口fracture212增强复合材料composites213马氏体相变transformation214球形spherical215混杂hybrid216聚氨酯polyurethane217纳米材料nanometer218位错dislocation219纳米粒子particles220表面形貌surface221试样samples222电学properties223有序ordered224电压voltage225析出phase226拉伸性tensile227大块bulk228立方cubic229聚苯胺polyaniline230抗氧化性oxidation231增韧toughening232物相phase233表面改性modification234拉伸性能tensile235相结构phase236优异excellent237介电常数dielectric238铁电ferroelectric 复合材料力学性239“冃能composites 240碳化硅sic241共混blends242炭纤维carbon243复合材料层composite 244挤压extrusion 245表面活性剂surfactant 246阵列arrays247高分子材料polymer248应变率strain249短纤维fiber250摩擦学性能tribological 251浸渗infiltration 252阻尼性能damping253室温下room254复合材料层合板composite 255剪切强度strength256流变rheological 257磨损率wear258化学气相沉积deposition 259热膨胀thermal260屏蔽shielding261发光luminescence 262功能梯度functionally 263层合板laminates 264器件devices265铁氧体ferrite266刚度stiffness267介电性能dielectric268xrd分析xrd269锐钛矿anatase270炭黑carbon271热应力thermal272材料性能properties 273溶胶-凝胶法sol-gel274单向unidirectional 275衍射仪xrd276吸氢hydrogen 277水泥cement278退火温度annealing279粉末冶金powder280溶胶凝胶sol-gel281熔融melt282钛酸titanate283磁合金magnetic284脆性brittle285金属间化合物intermetallic286非晶态合金amorphous287超细ultrafine288羟基磷灰石hydroxyapatite289各向异性anisotropy290镀层coating291颗粒尺寸size292拉曼raman293新材料materials294tic颗粒tic295孔隙率porosity296制备技术preparation297屈服强度strength298金红石rutile299采用溶胶-凝胶sol-gel300电容量capacity301热电thermoelectric302抗菌antibacterial303聚酰亚胺polyimide304二氧化硅silica305放电容量capacity306层板laminates307微球microspheres308熔点melting309屈曲buckling310包覆coated311致密化densification312磁化强度magnetization313疲劳寿命fatigue314本构关系constitutive315组织结构microstructure316综合性能properties317热塑性thermoplastic318形核nucleation319复合粒子composite320材料制备preparation321晶化过程crystallization322层间interlaminar323陶瓷基ceramic324多晶polycrystalline325纳米结构nanostructures326纳米复合composite327热导率conductivity328空心hollow329致密度density330x射线衍射仪xrd331层状layered332矫顽力coercivity333纳米粉体powder334界面结合interface335超导体superconductor336衍射分析diffraction337纳米粉powders338磨损机理wear339泡沫铝aluminum340进行表征characterized341梯度功能gradient342耐磨性能wear343平均粒particle344聚苯乙烯polystyrene345陶瓷基复合材料composites346陶瓷材料ceramics347石墨化graphitization348摩擦材料friction349熔化melting350多层multilayer351及其性能properties352酚醛树脂resin353电沉积electrodeposition354分散剂dispersant355相图phase356复合材料界面interface357壳聚糖chitosan e 436粘弹性viscoelastic 358抗氧化性能oxidation 397薄膜材料films 437基体合金alloy359钙钛矿perovskite 398导热系数conductivity 438单相phase360分层delamination 399居里curie 439梯度材料material361热循环thermal 400第二相phase 440六方hexagonal 362氢量hydrogen 401复合材料制备composites 441四方tetragonal 363蒙脱石montmorillonite 402多孔材料porous 442蜂窝honeycomb 364接枝grafting 403水热法hydrothermal 443阳极氧化anodic365导率conductivity 404原子力显微镜afm 444塑料plastics366放氢hydrogen 405压电复合材料piezoelectric 445超塑性superplastic 367微粒particles 406尼龙6 nylon 446sem观察sem368伸长率elongation 407高能球磨milling 447烧蚀ablation369延伸率elongation 408显微硬度microhardness 448复合薄膜films370烧结工艺sintering 409基片substrate 449树脂基resin371层合laminated 410纳米技术nanotechnology 450高聚物polymer372纳米级nanometer 411直径为diameter 451气相vapor373莫来石mullite 412织构texture 452电子能谱xps374磁导率permeability 413氮化nitride 453硅烷偶联coupling 375填料filler 414热性能properties 454团聚particles 376热电材料thermoelectric 415磁致伸缩magnetostriction 455基底substrate 377射线衍射ray 416成核nucleation 456断口形貌fracture378铸造法casting 417老化aging 457抗压强度strength379粒度分布size 418细化grain 458储能storage380原子力afm 419压电材料piezoelectric 459松弛relaxation 381共沉淀coprecipitation 420纳米晶amorphous 460拉曼光谱raman382水解hydrolysis 421si合金si 461孔率porosity383抗热thermal 422复合镀层composite 462沸石zeolite384高能球ball 423缠绕winding 463熔炼melting385干摩擦friction 424抗氧化oxidation 464磁体magnet386聚合物基polymer 425表观apparent 465sem分析sem387疲劳裂纹fatigue 426环氧复合材料epoxy 466润湿性wettability 388分散性dispersion 427甲基methyl 467电磁屏蔽shielding 389硅烷silane 428聚乙烯polyethylene 468升温heating390弛豫relaxation 429复合膜composite 469致密dense391物理性能properties 430表面修饰surface 470沉淀法precipitation 392晶相phase 431大块非晶amorphous 471差热分析dta393饱和磁化强度magnetization 432结构材料materials 472成功制备prepared 394凝固过程solidification 433表面能surface 473复合体系composites 395共聚物copolymer 434材料表面surface 474浸渍impregnation 396光致发光photoluminescenc 435疲劳性能fatigue 475力学行为behavior476复合粉体powders 516晶型crystal 556摩擦因数friction477沥青pitch 517介电损耗dielectric 557钛基titanium478磁电阻magnetoresistance 518 复合涂层coating 558磁性材料magnetic479导电性能conductivity 519压电陶瓷piezoelectric 559制备纳米nanometer 480光电子能谱xps 520磨损量wear 560界面上interface481材料力学mechanical 521组织与性能microstructure 561晶粒大小size482夹层sandwich 522合成法synthesis 562阻尼材料damping483玻璃化glass 523烧结过程sintering 563热分析thermal484衬底上substrates 524金属材料materials 564复合材料层板laminates 485原位复合材料composites 525引发剂initiator 565二氧化钛titanium486智能材料materials 526有机蒙脱土montmorillonite 566沉积法deposition 487碳化物carbide 527水热法制hydrothermal 567光催化剂tio488复相composite 528再结晶recrystallization 568余辉afterglow489氧化锆zirconia 529沉积速率deposition 569断裂行为fracture490基体材料matrix 530非晶相amorphous 570颗粒大小size491渗透infiltration 531尖端tip 571合金组织alloy492退火处理annealing 532淬火quenching 572非晶形成amorphous 493磨粒wear 533亚稳metastable 573杨氏模量modulus494氧化行为oxidation 534穆斯mossbauer 574前驱物precursor 495细小fine 535穆斯堡尔mossbauer 575过冷alloy496基合金alloy 536偏析segregation 576尖晶石spinel497粒径分布size 537种材料materials 577化学镀electroless 498润滑lubrication 538先驱precursor 578溶胶凝胶法制备sol-gel499定向凝固solidification 539物性properties 579本构方程constitutive 500晶格常数lattice 540石墨化度graphitization 580磁学magnetic501晶粒度size 541中空hollow 581气氛下atmosphere 502颗粒表面surface 542弥散particles 582钛合金titanium503吸收峰absorption 543淀粉starch 583微粉powder504磨损特性wear 544水热法制备hydrothermal 584压电性piezoelectric 505水热合成hydrothermal 545涂料coating 585sic晶须sic506薄膜表面films 546复合粉末powder 586应力应变strain507性质研究properties 547晶粒长大grain 587石英quartz508试件specimen 548sem 等sem 588热电性thermoelectric 509结晶度crystallinity 549复合材料组织microstructure 589相转变phase510聚四氟乙烯ptfe 550界面结构interface 590合成方法synthesis511硅烷偶联剂silane 551煅烧calcined 591热学thermal512碳化carbide 552共混物blends 592气孔率porosity513试验机tester 553结晶行为crystallization 593永磁magnetic514结合强度bonding 554混杂复合材料hybrid 594流变性能rheological 515薄膜结构films 555laves 相laves 595压痕indentation596热压烧结sintering 636弹性体elastomer 676隐身stealth597正硅酸乙酯teos 637金属氧化物oxide 677比强度strength598点阵lattice 638均匀化homogenization 678改性研究modification 599梯度功能材料fgm 639吸收光谱absorption 679采用粉末powder600带材tapes 640磨损行为wear 680晶粒细化grain601磨粒磨损wear 641高岭土kaolin 681抗磨wear602碳含量carbon 642功能梯度材料fgm 682元合金alloy603仿生biomimetic 643滞后hysteresis 683剪切变形shear604快速凝固solidification 644气凝胶aerogel 684高温超导superconducting 605预制preform 645记忆性memory 685金红石型rutile606差示dsc 646磁流体magnetic 686晶化行为crystallization 607发泡foaming 647铁磁ferromagnetic 687催化性能catalytic608疲劳损伤fatigue 648合金成分alloy 688热挤压extrusion609尺度size 649微米micron 689微观microstructure 610镍基高温合金superalloy 650蠕变性能creep 690tem观察tem611透过率transmittance 651聚氯乙烯pvc 691缺口冲击impact612溅射法制sputtering 652湮没annihilation 692生物材料biomaterials 613结构表征characterization 653断裂力学fracture 693涂覆coating614差示扫描dsc 654滑移slip 694纳米氧化nanometer615通过sem sem 655差示扫描量热dsc 695x射线光电子能谱xps616水泥基cement 656等温结晶crystallization 696硅灰石wollastonite617木材wood 657树脂基复合材料composite 697摩擦条件friction618tem分析tem 658阳极anodic 698衍射峰diffraction619量热calorimetry 659退火后annealing 699块体材料bulk620复合物composites 660发光性properties 700溶质solute621铁电薄膜ferroelectric 661木粉wood 701冲击韧性impact622共混体系blends 662交联crosslinking 702锐钛矿型anatase623先驱体precursor 663过渡金属transition 703凝固组织microstructure 624晶态crystalline 664无定形amorphous 704磨损试验机tester625冲击性能impact 665拉伸试验tensile 705丙烯酸甲酯pmma626离心centrifugal 666溅射法sputtering 706raman 光谱raman627断裂伸长率elongation 667硅橡胶rubber 707减振damping628有机-无机organic-inorganic 668明胶gelatin 708聚酯polyester629块状bulk 669生物相容性biocompatibility 709体材料materials630相沉淀precipitation 670界面处interface 710航空aerospace631织物fabric 671陶瓷复合材料composite 711光吸收absorption632因数coefficient 672共沉淀法制coprecipitation 712韧化toughening633合成与表征synthesis 673本构模型constitutive 713疲劳裂纹扩展fatigue634缺口notch 674合金材料alloy 714超塑superplastic 635靶材target 675磁矩magnetic 715凝胶法制备gel716半导体材料semiconductor 717剪应力shear718发光材料luminescence 719凝胶法制gel720甲基丙烯酸甲酯pmma721硬质hard722摩擦性能friction723电致变色electrochromic 724超细粉powder725增强相reinforced726薄带ribbons727结构弛豫relaxation728光学材料materials729sic陶瓷sic730纤维含量fiber731高阻尼damping732镍基nickel733热导thermal734奥氏体austenite735单轴uniaxial736超导电性superconductivity 737咼温氧化oxidation738树脂基体matrix739含能energetic740粘着adhesion741穆斯堡尔谱mossbauer742脱层delamination 743反射率reflectivity744单晶高温合金superalloy745粘结bonded746快淬quenching747熔融插层intercalation748外加applied749钙钛矿结构perovskite750减摩friction751复合氧化物oxide752苯乙烯styrene753合金表面alloy754爆轰detonation755长余辉afterglow 756断裂过程757纺织fracturetextile。

材料英语证书考试PEC-材料导论词汇

材料英语证书考试PEC-材料导论词汇

材料英语证书考试(PEC)-材料导论词汇AAbrasive.研磨剂。一种硬质、耐磨材料(一般为陶瓷),用于研磨、碾碎或切割其他材料。Absorption吸收。一种光学现象,指光的光子能量由于电子极化或电子激发被某一种物质吸收。Acceptor level.受主能级。对于半导体或绝缘体,处于禁带底部的能级有可能接受价带的电子并留下空穴。此类能级一般由杂质原子引入。Activatioin energy (Q).激活能。反应发生所需的能量,例如扩散激活能。Activation polarization.活化极化。一系列步骤中,进行最缓慢的步骤控制着电极反应速度的条件下造成的极化称为活化极化。Addition (or chain reaction) polymerization.加聚作用(链式反应聚合)。此过程中,两个具有不同功能的独立个体呈链状聚合在一起,形成线性聚合物大分子。Adhesive.胶粘剂。可以使两个物体(称为被粘物)的表面连接在一起的物质。Age hardening. See Precipitation时效强化,见沉淀强化。Allotropy.同素异形性。一种物质(一般为基本固体)可能存在两种或者更多的晶体结构的现象。Alloy.合金。两种或多种元素组成的金属。Alloy Steel.合金钢。含有适当浓度合金元素(除了C和残余的Mn,Si,S和P)的铁(或铁基)合金。这些合金元素的加入通常可以改善合金的力学性能和耐蚀性。Alternating copolymer.交替共聚物。两种不同单体沿分子链相间排列的共聚物。Amorphous.无定形的。(一种物质)具有非晶体结构。Anelastic deformation.滞弹性变形。具有时间依赖性的弹性(非永久性)变形。Anion.负离子,阴离子。负电量的,非金属离子。Anisotropic.各向异性。不同晶向上具有不同的性质。Annealing.退火。一类热处理术语,此类热处理可以改变材料组织和性能。“退火”通常指使经过冷加工的金属发生再结晶而软化的热处理。Annealing point (glass).退火温度(玻璃)。使玻璃中的残余应力在约15分钟内消除的温度;此温度对应的玻璃粘度约为1012Pa·s(1013P)。Anode.阳极。电化电池或电偶中的发生氧化或丢失电子的电极。Antiferromagnetism.反铁磁现象。一些材料(如MnO)中,由于邻近的原子或离子自旋反向平行排列,导致磁矩完全消失,此种现象称为反铁磁现象。宏观表现为固体没有净磁矩。Artificial aging.人工时效。为了进行析出强化,在室温以上进行的时效。Atactic.无规则(共聚物)。一种聚合物链结构,其侧基自由排列在链的一边或另一边。Athermal transformation.非热转变。一种非热激活,无扩散的反应,如马氏体转变。通常,此类转变发生速度快(即与时间无关),反应程度由温度决定。Atomic mass unit (amu).原子质量单位。一种原子质量的度量标准,是C12原子质量的1/12。Atomic number (Z).原子序数。对于一种化学元素,其原子序数等于原子核中质子的数目。Atomic packing factor (APF).原子填充因子。“硬球”原子或离子占据晶胞的体积分数。Atomic vibration.原子振动。原子关于其在物体中正常位置振动,称为原子振动。Atimic weight (A).原子量。根据元素在自然存在的各同位素原子质量计算的平均值。它可以表示为原子质量单位(以一个原子为基础)或者一摩尔原子的质量。Atom percent (at%).原子百分比。根据某一种元素的摩尔数(原子数)相对于合金中所有元素的摩尔数(原子数)计算得到的浓度比值。Austenite.奥氏体。具有面心立方晶体结构的铁或铁合金和合金钢。Austenitizing.奥氏体化。根据相图,在上临界温度以上,奥氏体温度区间内加热铁合金从而形成奥氏体的过程称为奥氏体化。BBainite.贝氏体。贝氏体是一些钢或铸铁中奥氏体化的产物,形成于珠光体和马氏体转变温度之间。它的组织由α-铁素体和弥散的渗碳体组成。Band gap energy(Eg).带隙能。带隙能指在半导体和绝缘体中,价带和导带之间的能量;对于本征材料,电子不具有带隙能范围内的能量。Bifunctional.双功能团。双功能团指单一分子物体具有两个活性结合位置。Block copolymer.块状共聚物。块状共聚物指分子链上同一摩尔单元聚集成块状的线性共聚物。Body-centered cubic (BCC).体心立方结构。体心立方结构是一些基本金属中常见的晶体结构,它是指原子位于立方晶胞的顶点和体心上。Bohr atomic model波尔原子模型。波尔原子模型是一种早期的原子模型,此模型中原子围绕着原子核按固定的轨道旋转。Bohr magneton (μB).波尔磁子。波尔磁子是最基本的磁矩单位,为9.27×10-24A·m2。Boltzmann’s constant (k).波尔兹曼常数。波尔兹曼常数是一个热力学能量常数,其值为 1.38×10-23J/atom·K (8.62×10-5eV/atom·K). 见气体常数。Bonding energy.结合能。结合能指分离由化合键结合的两个原子所需的能量。通常可以表示为每原子或每摩尔的结合能。Bragg’s law.布拉格定律。布拉格定律是指规定了一系列晶面发生衍射的条件的关系式(方程3.9)。Branched polymer.分支聚合物。分支聚合物指具有二次支链分子结构的聚合物,其二次支链是由一次主链扩展产生的。Brass.黄铜,一种富含铜的铜锌合金。Brazing.(硬)钎焊。钎焊是一种利用熔点高于450℃(800℉)的合金钎料连接金属的技术。Brittle fracture.脆性断裂。脆性断裂是指断裂时裂纹快速扩展,没有发生明显的宏观变形。Bronze.青铜。青铜是一种富铜的铜锡合金;也存在铝、硅、和镍青铜。Burgers vector (b).柏氏矢量。柏氏矢量指表示位错引起的晶格变形程度和方向的矢量。CCalcination.煅烧,焙烧,焙解。焙解是指一高温反应,反应中一种固体材料分解为一种气体和另一种固体。它是生产水泥的一个步骤。Capacitance (C).电容。电容是指电容器储存电量的能力,定义为两板上储存的电量与所加电压的比值。Carbon-carbon composite.碳-碳复合材料。碳-碳复合材料是一种由碳基体和嵌入其中的碳纤维组成的复合材料,其基体最初为聚合树枝,经过热解形成了碳。Carburizing.渗碳。渗碳是一种通过周围环境扩散导致铁合金表面碳浓度增加的工艺。Case hardening.表面硬化。表面硬化是指通过渗碳或渗碳对钢零件外表面进行硬化,通常用来改善零件的耐磨性和耐疲劳性。Cast iron.铸铁。通常,碳含量高于其在奥氏体中的最大固溶度(共晶温度时)的铁合金成为铸铁。大多数商业铸铁的碳含量为3.0%~4.5%,硅含量为1%~3%。Cathode.阴极。阴极是指电化电池或电偶中发生还原反应的电极,因而此电极从外部电路吸收电子。Cathodic protection.阴极保护。阴极保护是一种防腐方法,此方法利用外部电源,例如电负性更大的金属或直流电源,向被保护的结构物提供电子来对其进行保护。Cation.阳离子。阳离子指带正电的金属离子。Cement.水泥。水泥(一般为陶瓷)是一种通过化学反应将颗粒聚集物结合在一起的粘性物质。水硬性水泥和水在一起会发生水合反应。Cementite.渗碳体。Ceramic.陶瓷。陶瓷是一种由金属和非金属元素组成的化合物,其原子间的结合键主要是离子键。Ceramic-matrix composite (CMC).陶瓷基复合材料。陶瓷基复合材料是一种基体和弥散强化相均为陶瓷材料的复合材料。弥散相一般用来改善材料的断裂韧性。Cermet.金属陶瓷。金属陶瓷是一种陶瓷和金属结合的复合材料。最常见的金属陶瓷有烧结碳化物,它由及其坚硬的陶瓷(如,WC,TiC),和塑性良好的金属(Co或Ni)结合而成。Chain-folded model.链摺叠模型。链摺叠模型是一种研究结晶性聚合物的模型,它描述了片状微晶的组织结构。在微晶面上分子通过链摺叠方式进行排列。Charpy test.夏比试验(单梁冲击试验)。夏比试验是两种测量标准冲击试样的冲击能或冲击韧性的测试方法之一(另一个为埃左试验)。此试验通过受力的摆向标准试样施加冲击作用。Cis.顺式。顺式表示了聚合物的一类分子结构。对于一摩尔单元中不饱和的碳链原子,侧边原子或侧群可能位于链的一侧或直接位于旋转180º的反向位置。顺式结构中相同摩尔数的两个侧群位于同一侧(如顺式异戊二烯)。Coarse pearlite.粗晶粒珠光体。粗晶粒珠光体是指相互交替的铁素体和渗碳体层比较厚的珠光体。Coervivity (or coercive .eld, H c).矫顽力。矫顽力是指磁化的铁磁材料或铁氧磁材料的磁感应强度降至零所需的磁场强度。Cold working.冷加工。冷加工是指使金属在低于再结晶温度下发生塑性变形的工艺。Color.彩色。彩色是指由射入眼睛的光的各种波长刺激产生的视觉感。Colorant.着色剂。着色剂是一种使颜料附着在聚合物上的添加剂。Component.成分。成分是指合金的化学组分(元素或化合物),它通常说明了合金的元素组成。Composition (C i).成分。合金中特定元素或组元的相对含量,通常用重量百分比或原子百分比来表示。Concentration.浓度。同上。Concentration gradient (dC/dx).浓度梯度。浓度梯度是指具体位置上浓度分布的斜率。Concentration polarization.浓度极化。浓度极化是指电化学反应速率受到溶体中扩散速率限制的情况。Concentration proile.浓度分布曲线.。浓度分布曲线是指根据化学物的浓度对应其在材料中的位置描绘的曲线。Concrete.混凝土。混凝土是一种由聚集在一起的颗粒和水泥结合在一起的复合材料。Condensation (or step reaction) polymerization.缩聚合作用(逐步反应聚合作用)。缩聚合作用是指通过分子间反应形成聚合物分子,此反应中包含至少两类分子,通常生成小分子量的副产物,例如水。Conduction band.导带。对于绝缘体和半导体,最底部的电子能带在0K时没有电子。导电载流子是指那些导带中处于激发态的电子。Conductivity, electrical (ρ).导电系数。导电系数是指电流强度和所施加的电场之间的比例常数,也是一种导电材料导电能力的度量。Congruent transformation.等成分变化。等成分变化是指一相转变为成分相同的另一相。Continuous cooling transformation (CCT) diagram.连续冷却转变图。连续冷却转变图是指确定成分的钢合金的温度随时间的对数变化的图。此图通常用来说明初始为奥氏体化材料以一定的速率连续冷却过程中何时发生转变,此外,此图可用来预测最终的组织和力学性能。Coordination number.配位数。配位数是指原子(或离子)最近邻的原子(或离子)数。Copolymer.共聚物。共聚物是指含有两个或两个以上不同摩尔数的单体沿着分子链结合在一起的聚合物。Corrosion.腐蚀。腐蚀是指金属由于环境的溶解反应而变质。Corrosion fatigue.腐蚀疲劳。腐蚀疲劳是一种由于循环应力和化学侵蚀共同作用导致的疲劳。Corrosion penetration rate (CPR).腐蚀速率。腐蚀速率是指材料受腐蚀后,单位时间内厚度的损失,通常表示为“毫米/年”。Coulombic force.库仑力。库仑力指带电粒子(例如离子)之间的力,当粒子电性相反时相互吸引。Covalent bond.共价键。共价键是一种主要的原子间的结合键,它由于相邻原子间共用电子而产生。Creep.蠕变。蠕变是指应力下材料发生的依赖于时间的永久变形。对于大部分材料来说,蠕变指由在高温下才十分重要。Crevice corrosion.隙间腐蚀。隙间腐蚀是指发生在狭窄缝隙中和污垢或腐蚀产物(即溶体中局部贫氧的区域)沉积层下的一类腐蚀。Critical resolved shear stress (σcrss).临界分剪切应力。临界剪切应力是指剪切应力在滑移面和滑移方向上的分应力,用来使滑移开动。Crosslinked polymer.交联聚合物。交联聚合物是指相邻的线性分子链在各种位置通过共价键结合在一起的聚合物。Crystalline.晶态。晶态是指固体材料的原子,离子或分子作周期性重复三维排列的状态。Crystallinity.结晶度。结晶度是指对于聚合物通过分子链排列达到一个原子作周期性重复排列的状态。Crystallite.微晶。微晶是指结晶聚合物中分子链有序排列的区域。Crystal structure.晶体结构。晶体结构是指晶体材料中原子或离子空间排列的方式。它是根据单胞几何和单胞中原子所在位置来定义的。Crystal system.晶系。晶系是指晶体结构根据单胞几何进行的分类系统。单胞几何是根据棱长和轴间角度之间的关系确定的,共有7个晶系。Curie temperature (T c).居里温度。居里温度是指铁磁或铁氧次材料变为顺磁性的最低临界温度。DDefect structure.缺陷结构。缺陷结构是指陶瓷化合物中和空位及间隙原子的种类、浓度相关的组织。Degradation.退化。退化表示了高分子材料中发生的恶化过程。这些过程包括隆起、溶解和链裂变。Degree of polymerization.聚合度。聚合度是指每个聚合物分子中平均的单体摩尔数。Design stress (σd).设计应力。设计应力是指根据计算得到的应力水平(根据估计的最大载荷计算)和设计因子(其值大于1)得到的应力结果。通常用来防止发生意料之外的断裂。Devitrication.玻璃析晶。玻璃析晶是指玻璃(非晶或玻璃质固体)转变为晶体的过程。Diamagnetism.逆磁性。逆磁性是一种感应磁性或非永久磁性微弱的形式,此时磁化率为负值。Dielectric.电介质。电介质是一种电绝缘的材料。Dielectric constant (εr).介电常数。介电常数是指介质的电容率与真空度的比值,一般称为相对介电常数或相对电容率。Dielectric displacement (D).电位移。电位移是指电容板单位面积上的电量。Dielectric (breakdown)strength.介电(击穿)强度。介电强度是指大强度电流通过介电材料所需的电场强度。Diffraction (x-ray).(x射线)衍射。x射线衍射是指由于晶体中原子对x射线速的散射而发生的相长干涉。Diffusion.扩散。扩散是指原子迁移发生的质量传输。Diffusion coefficient (D).扩散系数。扩散系数是指菲克第一定律中扩散通量和浓度梯度之间的比例常数,其值表示了原子的扩散速率。Diffusion flux (J).扩散通量。扩散通量表示了单位时间扩散通过材料单位横截面积的物质的量。Diode.二极管。二极管是一种整流设备,即只允许电流沿一个方向运动。Dipole (electric).(电)偶极子。电偶极子是指分开一定距离的一对等量异号点电荷。Dislocation.位错。位错是一类晶体中的线缺陷,其周围的原子发生错排。塑性变形是由于在剪切应力下发生位错运动的结果。位错包括刃型位错、螺位错和混合位错。Dislocation density.位错密度。位错密度可以表示为材料中单位体积中总的位错长度,也可以是通过自由截面内单位面积的位错数。Dislocation line.位错线。刃型位错的位错线是指多余半原子面与未滑移区域相交的线,螺型位错的位错线是指螺旋的中心线。Dispersed phase.弥散相。弥散相是指复合材料或两相合金中被基体相包围的不连续相。Dispersion strengthening.弥散强化。弥散强化是一种材料的强化方法,它通过将十分细小(通常小于0.1µm)的硬质、惰性颗粒弥散分布在承受载荷的基体相中来进行材料强化。Domain.(磁)畴。磁畴是指铁磁或铁氧磁材料中所有原子或离子的磁矩沿一个方向排列的区域。Donor level.施主能级。施主能级是指半导体或绝缘体中位于禁带顶部的能级,此能级的电子可以被激发至导带,它一般会被引入杂质原子。Doping.掺杂。掺杂是指通过控制施主或受主杂质来对半导体材料进行有目的性的合金化。Drawing (metals).拉拔(金属)。拉拔是一种制备金属线材或管材的成形工艺。拉拔通过在出料一侧施加拉力将材料从模具中拉出而发生变形。Drawing (polymers).牵伸(聚合物)。牵伸是一种通过拉伸聚合物纤维来对其进行强化的工艺。Driving force.驱动力。驱动力是指反应(扩散、晶粒长大或相变)进行的推动力。这些反应通常伴随着某种能量(如自由能)的降低。Ductile fracture.韧性断裂。韧性断裂是一种伴随有大量塑性变形的断裂模式。Ductile iron.延性铁。延性铁是指通过硅和低浓度的锰或铈进行合金化的铸铁,其中自由石墨以粒状形式存在,故有时延性铁也被称为球墨铸铁。Ductile-to-brittle transition.延性-脆性转变。延性-脆性转变是指面心立方合金随着温度的降低由延性向脆性的转变。可通过夏比测试和埃左测试确定转变发生的温度范围。Ductility.延展性。延展性是材料在发生断裂之前承受塑性变形的能力的度量,可以通过拉伸测试获得的延伸率(%EL)或断面收缩率(%RA)来表示。EEdge dislocation.刃型位错。刃型位错是一种线性的晶体缺陷,同时在半原子面周围会产生晶格的畸变。柏氏矢量垂直于位错线。Elastic deformation.弹性变形。弹性变形是非永久性变形,即应力释放后会完全回复。Elastic recovery.弹性回复。弹性回复是指卸载后非永久性变形发生回复到未变形的状态。Elastomer.高弹性聚合物。高弹性聚合物是产生大且可逆的弹性变形的聚合物。Electrical conductivity.导电性。见Conductivity (electrical).Electric dipole.电偶极子。见Dipole (electric).Electric field (E).电场。电场指电压梯度。Electroluminescence.电致发光。电致发光是指向p-n施加正向偏压进而发出可见光的现象。Electrolyte.电解液。电解液是一种溶液,在这种溶液中离子的运动可以承载电流。Electromotive force (emf) series.电动势系。电动势系是一种根据金属元素的标准电动势进行的分类。Electron configuration.电子组态。电子组态是指一个原子,可能存在的电子排布方式。Electronegative.电负性。电负性是指一个原子接收价电子的能力,也可用于描述非金属元素。Electron energy band.电子能带。电子能带是指一系列电子能态,他们根据能量而紧密的分布。Electroneutrality.电中性。电中性表示了一种正电量与负电量(离子或电子)相同的状态。Electron state (level).电子态。电子态是指电子可以具有的不连续且量子化的能量,原子的每一个电子态都是由4个量子数确定。Electron volt (eV).电子伏特。电子伏特是一种方便表示原子和亚原子能量的单位。它相当于电子通过1伏特电势所需的能量。Electropositive.正电性。正电性是指一个原子失去电子的趋势,它可用来描述金属元素。Endurance limit.疲劳极限。见Fatigue limit.Energy band gap.禁带。见Band gap energy.Engineering strain.工程应变。见Strain (engineering).Engineering stress.工程应力。Stress (engineering).Equilibrium (phase).平衡(相)。平衡是指相的特征在一个不确定的时间内保持恒定的状态。平衡态时体系自由能最低。Erosion-corrosion.冲蚀腐蚀。冲蚀腐蚀是一种结合了化学侵蚀和机械磨损的腐蚀形式。Eutectic phase.共晶相。共晶相是指共晶组织中的一相。Eutectic reaction.共晶反应。共晶反应是一种冷却过程中,液相等温转变为两种紧密混合的固相的可逆反应。Eutectic structure.共晶组织。共晶组织是指共晶成分的液相凝固产生的两相组织,两个共晶相呈层片状交替存在。Eutectoid reaction.共析反应。共析反应是一种冷却过程中,一固相等温转变为两种紧密混合的新固相的可逆反应。Excited state.激发态。激发态是一种通常不被电子占据的电子能态,当电子吸收一些能量(例如热能、辐射能)后会(从低能态)跃迁到激发态。Extrinsic semiconductor.含杂质半导体。含杂质半导体是指由杂质确定电子性能的半导体材料。Extrusion.挤压。挤压是一种向坯料上施加压力使之通过模具内孔的成形方法。FFace-centered cubic (FCC).面心立方。面心立方是一种金属中常见的晶体结构,此类单胞内,原子位于各个顶点和各面的中心。Fatigue.疲劳。疲劳是指在较低的应力情况下,材料受到了波动的循环应力而断裂。Fatigue life (N f).疲劳寿命。疲劳寿命是指在某一特定的应力幅度下,导致材料断裂总的应力循环次数。Fatigue limit.疲劳极限。疲劳极限是指材料承受无数次应力循环而不发生疲劳的最大应力幅度。Fatigue strength.疲劳强度。疲劳强度是指应力循环次数确定的情况下,材料不发生断裂而能承受的最大应力。Fermi energy (E f).费米能。费米能是指一金属在0K时,最高填充的电子态所对应的能量。Ferrimagnetism.亚铁磁体。亚铁磁体是指一些陶瓷材料具有的永久的,很高的磁化强度。亚铁磁体是由于电子反自旋和磁矩的不完全抵消产生的。Ferrite (ceramic).铁素体(陶瓷)。铁素体(陶瓷)是陶瓷氧化物,它是由二价和三价的正离子(如Fe2+和Fe3+)组成的。有一些铁素体陶瓷史亚铁磁体。Ferrite (iron).铁素体(铸铁)。铁素体(铸铁)是体心立方结构的铸铁,同时也包括具有体心立方结构的铸铁合金和钢合金。Ferroelectric.铁电性。铁电性是指电介质材料在没有电场的情况下可能发生极化的性质。Ferromagnetism.铁磁性。铁磁性是指一些材料(如Fe, Ni和Co)由于相邻磁矩的平行排列而具有的永久的高磁性,Ferrous alloy.铁合金。铁合金是一种铁为主要元素的金属合金。Fiber.纤维。纤维是指任何被拉成细长丝状的聚合物、金属或陶瓷。Fiber-reinforced composite.纤维增强复合材料。纤维增强复合材料是指弥散强化相呈纤维状(即具有极大的长径比的丝状)的复合材料。Fiber reinforcement.纤维增强。纤维增强是指将强度较高的纤维相嵌入强度较低的基体相来进行强化。Fick’s first law.菲克第一定律。菲克第一定律是指扩散通量和浓度梯度成比例。此定律适用于稳态扩散。Fick’s second law.菲克第二定律。菲克第二定律是指浓度随时间的变化率和浓度的二阶导数成比例。此定律适用于非稳态扩散。Filler.填充物。填充物是一种惰性物质,以其为添加物可改善聚合物的性能。Fine pearlite.细片状珠光体。细片状珠光体是指交替存在的铁素体和渗碳体层片很细的珠光体。Firing.烧火。烧火是一种用来增加陶瓷片密度和强度的高温热处理工艺。Flame retardant.耐燃剂。耐燃剂是一种提高耐燃能力的高分子添加剂。Flexural strength (σfs).抗弯强度。抗弯强度是指弯曲试验中材料断裂时的应力。Fluorescence.荧光。荧光是指电子激发时时间不到1秒的发光。Foam.泡沫塑料。泡沫塑料是一种通过加入气泡制成的多孔(或海绵状)的聚合物, Forging.锻造。锻造是一种对金属进行加热和锤打的机械成形工艺。Forward bias.正向偏压。正向偏压是指向p-n整流器施加的偏压,使电子流向n端。Fracture mechanics.断裂力学。断裂力学是一种断裂分析方法,它可以用来确定已知尺寸的原有裂纹传播并导致断裂的应力水平。Fracture toughness (K c) .断裂韧性。断裂韧性是指裂纹扩展所需的临界应力强度因子。Free electron.自由电子。自由电子是指被激发跃迁到费米能以上(对于半导体和绝缘体是跃迁入导带)并可能参加导电过程的电子。Free energy.自由能。自由能是一个热力学参量,它是体系内能和熵(或自由度)的函数。平衡态时,自由能最低。Frenkel defect.弗兰克尔缺陷。弗兰克尔缺陷是指离子固体中的阳离子-空位对和阳离子-间隙原子对。Full annealing.完全退火。完全退火是指铁合金缓慢冷却至室温过程中的奥氏体化。GGalvanic corrosion.电化腐蚀。电化腐蚀是指两种形成电偶得金属接触到电解液,化学性质比较活泼的金属失去电子被氧化而引起的腐蚀。Galvanic series.电动势序。电动势序是关于金属和合金在海水中的电化学活性的排序。Gas constant (R).气体常数。气体常数是指每摩尔原子的玻尔兹曼常数。R=8.31J/(mol·k)(1.987cal/(mol·k))。Gibbs phase rule.吉布斯相律。吉布斯相律是一个方程,它在平衡体系中表示了相数和外界控制变量的关系。Glass-ceramic.玻璃陶瓷。玻璃陶瓷是一种细晶陶瓷,它通过首先形成玻璃,然后析晶(晶化)来形成。Glass transition temperature (T g).玻璃转变温度。玻璃转变温度是指在冷却过程中,非晶陶瓷或聚合物从过冷液体向刚性玻璃转变的临界温度。Graft copolymer.接枝共聚物。接枝共聚物是指一种基体类型的同聚物侧枝嫁接到另一种基体类新的同聚物主链上形成的共聚物。Grain.晶粒。晶粒是指多晶金属或陶瓷中的一个独立晶体。Grain boundary.晶界。晶界是指分离两个具有不同晶向取向的晶粒的界面。Grain growth.晶粒长大。晶粒长大是指多晶材料平均晶粒尺寸的增大。对于大多数材料晶粒长大需要高温热处理。Grain size.晶粒尺寸。晶粒尺寸是通过自由横截面法确定的平均晶粒直径。。

新型碳气凝胶的制备及表征

新型碳气凝胶的制备及表征

新型碳气凝胶的制备及表征何蕊;刘振法【摘要】以氨水作为间苯二酚和甲醛反应的催化剂,经溶胶-凝胶制备有机气凝胶,再经过常温常压干燥、高温碳化形成碳气凝胶.采用X射线衍射、比表面仪、扫描电镜能谱分析仪对样品进行表征.结果表明:以氨水为催化剂所得碳气凝胶比表面积在900m2/g左右,呈现连续颗粒状.%Carbon aerogels are prepared by sol-gel process via reaction of resorcinol and formaldehyde with ammonia water as catalyst and afterward ambient drying followed by carbonization. The structure of products is characterized by X-ray diffraction, gas physisorption, scanning electron microscopy and energy spectrum analysis. Results indicte that the carbon aerogels with ammonia as catalyst show a coarser surface, and its specific surface area is about 900 m2/g, presenting continuous granular.【期刊名称】《河北科技大学学报》【年(卷),期】2013(034)001【总页数】4页(P26-29)【关键词】碳气凝胶;催化剂;氨水【作者】何蕊;刘振法【作者单位】河北省科学院能源研究所,河北石家庄050081;河北省科学院能源研究所,河北石家庄050081【正文语种】中文【中图分类】O648碳气凝胶是一种由高聚物分子构成的多空非晶凝聚态材料,可以用在力学、热学、光学及声学等方面,具有独特的性能和用途。

磁性Fe_3O_4_石墨烯Photo_Fenton催化剂的制备及其催化活性

磁性Fe_3O_4_石墨烯Photo_Fenton催化剂的制备及其催化活性

收稿日期:2012-04-10。

收修改稿日期:2012-05-22。

国家自然科学基金(No.51202020)、江苏省科技厅前瞻性计划(BY2012099)和常州市国际科技合作计划(CZ20110022)资助项目。

*通讯联系人。

E -mail :chenhq@ ,wxin@ ,Tel :(025)84315667磁性Fe 3O 4/石墨烯Photo -Fenton 催化剂的制备及其催化活性何光裕1,2张艳1钱茂公1陈海群*,1汪信*,2(1常州大学江苏省精细化工重点实验室,常州213164)(2南京理工大学教育部软化学与功能材料重点实验室,南京210094)摘要:采用共沉淀法制备磁性Fe 3O 4/GE(石墨烯)催化剂,实现Fe 3O 4纳米颗粒生长和氧化石墨烯还原同步进行,采用FTIR 、XRD 、TEM 及低温氮吸附-脱附等对Fe 3O 4/GE 纳米催化剂的物相、颗粒粒径及比表面积进行了表征。

在H 2O 2存在条件下,以亚甲基蓝为目标降解物,考察了在模拟太阳光下Fe 3O 4/GE 的催化活性,当氧化石墨烯与Fe 3O 4的质量比为1∶10时,经过2h 催化反应,在pH =6条件下,对亚甲基蓝的降解率达到98.7%,经过10次循环使用后对染料溶液的降解率仍保持在95.7%以上,明显优于纯的Fe 3O 4。

关键词:纳米Fe 3O 4/GE ;磁分离;Photo -Fenton 反应中图分类号:O643.3;TQ426.6文献标识码:A文章编号:1001-4861(2012)11-2306-07Preparation and Catalytic Properties of Fe 3O 4/Graphene Magnetically SeparablePhoto -Fenton CatalystHE Guang -Yu 1,2ZHANG Yan 1QIAN Mao -Gong 1CHEN Hai -Qun *,1WANG Xin *,2(1Key Laboratory of Fine Chemical Engineering,Changzhou University,Changzhou,Jiangsu 213164,China )(2Key Laboratory for Soft Chemistry and Functional Materials of Ministry Education,Nanjing University of Scienceand Technology,Nanjing 210094,China )Abstract :A magnetically separable Fe 3O 4/Graphene (GE)catalyst was prepared by a facile co -precipitation method.The method features the reduction of graphene oxide and formation of Fe 3O 4nanoparticles in one step.Fe 3O 4/Graphene catalyst was characterized in terms of particle size,crystal structure and surface area by TEM,FTIR,XRD and low temperature nitrogen adsorption -desorption.In the presence of H 2O 2,the catalytic activities were evaluated by degradation of Methylene blue aqueous solution under simulated sunlight irradiation.The results indicate that catalyst with graphene oxide/Fe 3O 4mass ratio of 1:10shows the highest degradation rate of 98.7%at pH value of 6in 2h.The catalyst can be easily separated by an external magnetic field.A degradation rate of 95.7%can be maintained after 10cycles.Key words :nano Fe 3O 4/GE;magnetically separable;photo -fenton reaction近年来,利用太阳能光催化处理废水中难降解有机污染物,已引起国内外学者的普遍关注。

扬州市人民政府关于2017-2019年度扬州市自然科学优秀学术论文评选结果的通报

扬州市人民政府关于2017-2019年度扬州市自然科学优秀学术论文评选结果的通报

扬州市人民政府关于2017-2019年度扬州市自然科学优秀学术论文评选结果的通报
文章属性
•【制定机关】扬州市人民政府
•【公布日期】2021.03.05
•【字号】扬府发〔2021〕16号
•【施行日期】2021.03.05
•【效力等级】地方规范性文件
•【时效性】现行有效
•【主题分类】科技成果与知识产权
正文
市政府关于2017-2019年度扬州市自然科学优秀学术论文评选结果的通报-市政府文件-政府办
各县(市、区)人民政府,经济技术开发区、生态科技新城、蜀冈—瘦西湖风景名胜区管委会,市各委办局(公司),市各直属单位:
为提高我市自然科学学术水平,鼓励全市科技工作者开展学术创新服务发展,促进全市科技人才成长,2020年我市开展了2017-2019年度扬州市自然科学优秀学术论文评选工作,共征集到701篇论文,其中675篇论文通过资格审查。

经评审委员会评定,分理工类、农业类、医药类、管理教育类,共评出优秀学术论文269篇,其中一等等次33篇、二等等次101篇、三等等次135篇。

经研究,市政府决定对评选出的269篇优秀学术论文给予通报并颁发证书。

希望全市各级科技团体和广大科技工作者,以科技赋能产业为己任,积极开展学术研究,主动投身科技创新,脚踏实地,严谨求是,把“好地方”扬州建设得好上加好、越来越好做出积极贡献。

附件:2017-2019年度扬州市自然科学优秀学术论文评选结果
扬州市人民政府
2021年3月5日附件
2017-2019年度扬州市自然科学优秀学术论文评选结果
一等等次(33篇)
二等等次(101篇)
三等等次(135篇)。

有机功能材料翻译

有机功能材料翻译

有序的三元自组装电化学能量存储的金属氧化物—石墨烯纳米复合材料王东涵,孔荣,Daiwon Cho,杨振国,Zimin Nie,李娟,Laxmikant V. Saraf胡德红,张继光,刘军,Gordon L. Graff,Michael A. Pope,Ilhan A. Aksay摘要:表面活性剂或者聚合物已经广泛研究自组装的制备金属氧化物纳米材料,半导体,聚合物,但这种方法大多局限于两相材料,有机/无机杂化材料,和纳米颗粒或聚合物基纳米复合材料。

从更复杂的、多尺度的纳米结构和多相的建筑进行研究调查,都限制成功。

我们展示了一个三元自组装的方法石墨烯纳米复合材料,其中使用石墨作为构建有序的金属氧化物的基本建筑模块。

一类新的纳米复合材料的形成,包括用石墨或石墨烯栈来形成的纳米金属氧化物的稳定有序交替层。

另外,石墨或石墨烯堆栈可以纳入液晶模板来形成高表面积,导电网的纳米多孔结构。

自组装方法也可以用于制造无支撑的,灵活的金属氧化物—石墨烯纳米复合薄膜和电极。

我们已经研究了自组装电极能量存储的锂离子附着的性质,并且也表明了二氧化锡—石墨烯纳米复合材料薄膜在没有显著地充电/放电降解的情况下,可以获得与确切的理论能量密度值相接近。

关键词:纳米复合材料,有序的,石墨烯,锂离子电池材料已经受广泛关注,由于他们与不同模块相结合的潜能来提高机械、光电磁学的性质【1-6】。

纳米复合材料大多数是依靠机械和化学混合的传统符合方法,并其产生组成相的随机分布。

为了解决这些问题,几个研究小组最近调查的层层沉积和其他技术来制备层状纳米复合材用制陶、粘土和石墨烯氧化物纳米薄膜【7-9】,但这些方法在纳米空间精度上有缺陷,在散装材料合成上既费时又费力。

另一方面,生物系统具有丰富的纳米复合材料,拥有多尺度、多功能的建筑模块能很好的控制框架。

一个获得类似的控制的强大方法是使用两性聚合物或者表面活性剂直接自组装纳米结构金属氧化物、导体、聚合物材料【11-15】。

磁珠在临床以及生物科学与技术中的运用

磁珠在临床以及生物科学与技术中的运用

Immobilization and modification of biologically active compounds
Magnetic material in teeth of chitons
• hardening the tooth caps (enabling the chitons to extract and eat endolithic algae from within the outer few millimeters of rock substrates)
Animal magnetite
• Magnetosome chains from the frontal tissues of chinook salmon
S. Mann et al.: J. Exp. Biol. 140 (1988) 35-49.
Importance of animal magnetite
Biodegradable materials
• Important from the point of view of possible clinical applications (e.g., drug targeting) • Nanoparticles formed by biodegradable (bio)polymer • Magnetoliposomes and related structures • Starch-based magnetic fluids
Magnetosomes
Provided by Dr. D. Schü Germany ler,
Magnetosomes
Provided by Dr. D. Schü Germany ler,

【高分子专业英语翻译】

【高分子专业英语翻译】

【高分子专业英语翻译】第五课乳液聚合大部分的乳液聚合都是由自由基引发的并且表现出其他自由基体系的很多特点,最主要的反应机理的不同源自小体积元中自由基增长的场所不同。

乳液聚合不仅允许在高反应速率下获得较高分子量,这在本体聚合中是无法实现或效率低下的,,同时还有其他重要的实用优点。

水吸收了大部分聚合热且有利于反应控制,产物在低粘度体系中获得,容易处理,可直接使用或是在凝聚,水洗,干燥之后很快转化成固体聚合物。

在共聚中,尽管共聚原理适用于乳液体系,单体在水相中溶解能力的不同也可能导致其与本体聚合行为不同,从而有重要的实际意义。

乳液聚合的变化很大,从包含单一单体,乳化剂,水和单一引发剂的简单体系到这些包含有2,3个单体,一次或分批添加,,混合乳化剂和助稳定剂以及包括链转移剂的复合引发体系。

单体和水相的比例允许变化范围很大,但是在技术做法上通常限制在30/70到60/40。

单体和水相比更高时则达到了直接聚合允许的极限,只有通过分批添加单体方法来排除聚合产生的大量的热。

更复杂的是随着胶体数的增加粘度也大大增加,尤其是当水溶性的单体和聚合物易容时,反应结束胶乳浓度降低。

这一阶段常常伴随着通过聚集作用或是在热力学不稳定时凝结作用而使胶粒尺寸增大。

第十课高分子的构型和构象本课中我们将使用根据经典有机化学术语而来的构型和构象这两个词。

构型异构是由于分子中存在一个或多个不对称中心,以最简单的C原子为例,每一碳原子的绝对构型为R型和S型,当存在双键时会有顺式和反式几何异构。

以合成聚合物为例,构型异构的典型问题和R.S型不对称碳原子在主链上的排布有关。

这些不对称碳原子要么来自不对称单体,如环氧丙烷,要么来自对称单体,如乙烯单体,,这些物质的聚合,在每个单体单元中形成至少一个不对称碳原子。

大分子中的构型异构源于侧链上存在不对称的碳原子,例如不对称乙烯单体的聚合,也是可能的,现今已经被广泛研究。

和经典有机化学术语一致,构象,旋转体,旋转异构体,构象异构体,指的是由于分子单键的内旋转而形成的空间排布的不同。

Magnetically separable Ag-AgCl-zero valent iron particles modified zeolite X heterogeneous

Magnetically separable Ag-AgCl-zero valent iron particles modified zeolite X heterogeneous

Magnetically separable Ag/AgCl-zero valent iron particles modified zeolite X heterogeneous photocatalysts for tetracycline degradation under visiblelightMinmin Liu a ,b ,Li-an Hou b ,Bei-dou Xi c ,Qi Li b ,Xiaojun Hu a ,⇑,Shuili Yu b ,⇑aSchool of Chemical and Environmental Engineering,Shanghai Institute of Technology,100Haiquan Road,Shanghai,PR ChinabState Key Laboratory of Pollution Control and Resource Reuse,School of Environmental Science and Engineering,Tongji University,1239Siping Road,Shanghai 200092,PR China cState Key Laboratory of Environmental Criteria and Risk Assessment,China Research Academy of Environmental Science,Beijing 200012,PR Chinah i g h l i g h t sThe heterogeneous photocatalysts were prepared for tetracycline degradation. The photocatalytic efficiencies were increased as the Fe 0impregnation increased. The photocatalysts retained high photocatalytic activity after consecutive runs. The new insight was provided into the preparation of heterogeneous photocatalysts.a r t i c l e i n f o Article history:Received 14March 2016Received in revised form 16May 2016Accepted 19May 2016Available online 19May 2016Keywords:Photocatalysis Zeolite XZero valent iron particles Tetracycline Ag/AgCla b s t r a c tThe magnetically separable Ag/AgCl –zero valent iron particles (ZVIP)impregnated zeolite X (Ag/AgCl/(x )Fe-ZX)photocatalysts were prepared for tetracycline (TC)degradation.The characterization results showed the Ag/AgCl/(x )Fe-ZX particles were spherical and crystalline Ag/AgCl was deposited on the sur-face of the (x )Fe-ZX.The spent Ag/AgCl/(x )Fe-ZX could be effectively separated from water due to the good magnetic property.When the content of the ZVIP increased,the photocatalytic efficiencies of Ag/AgCl/(x )Fe-ZX were increased.The photocatalytic efficiency of TC degradation was maximum as the weight ratio of ZVIP was 5%.The photocatalysts retained high photocatalytic activity after consecutive runs.The concentration of iron ions leaching was very low.The enhanced photocatalytic activities and stabilities of photocatalysts were ascribed to the enhanced adsorption capacity of (x )Fe-ZX,the strong absorbance in the visible-light region and improved space separation of photo-induced charge carriers.The study provides new insight into the preparation of stable and easily separated zeolite based hetero-geneous photocatalysts.Ó2016Published by Elsevier B.V.1.IntroductionRecently,antibiotics are widely applied to treat various diseases of humans and veterinary animals.However,they have attracted increasing attention in recent years because they are toxic to living beings.The various adverse effects such as acute and chronic tox-icity,and microorganism antibiotic resistance have been made by the residues and transformed products of antibiotics [1].The antibiotics should not be removed by biological treatment pro-cesses from water because antibiotics can be accumulated in microorganisms and inhibit their activities in bioreactors.Physico-chemical methods such as adsorption and photocatalytic process are suitable to remove antibiotics from water due to the good per-formance [2–4].However,antibiotics are non-destructively trans-ferred from water to another phase by some physicochemical processes such as adsorption process and the secondary contami-nation is produced.The photocatalytic process is the practical method for antibiotics removal from water because antibiotics can be degraded with simple reactor at room temperature and atmospheric pressure [5].Thus,the photocatalytic process is envi-ronmentally friendly and easily handled.Semiconductor materials play a vital role in photocatalytic pro-cesses.The Ag/AgCl composite has been widely applied to photo-catalytic process due to the surface plasmon resonance effect of noble metal nanoparticles under visible light irradiation [6].There/10.1016/j.cej.2016.05.0831385-8947/Ó2016Published by Elsevier B.V.⇑Corresponding authors.E-mail address:hxjsit@ (X.Hu).are some major limitations of the Ag/AgCl composite including its hard separation from water and low organics degradation effi-ciency[7].In order to separate catalysts easily while avoiding metal leaching and enhance the organics degradation efficiency, various materials such as activated carbon,resins or molecular sieves were applied as supports of catalysts due to their adsorption capacity or magnetic property[7–9].TC molecular transforms to the cationic TC in the acidic solution.Based on the pH-dependent property of TC and cation exchange capacity of zeolites,zeolites are the most versatile catalyst supports for TC removal.Zeolites can make cation exchange reaction with cationic TC due to the charge imbalance of the Al–O–Si tetrahedral structure[9].The cation exchange capacity of the zeolite is responsible for TC accu-mulation on the catalyst surface,and thus it is beneficial for TC photocatalytic oxidation.The limited TC adsorption capacity of zeolites hampered the pre-concentration of TC on zeolites as catalyst supports.The TC adsorption capacities of zeolites could not be increased dramati-cally by mechanical method to increase specific surface of zeolites or by chemical method to enhance the weight ratio of alkaline metal cations in zeolites[9,10].Therefore,the effective method should be developed to enhance cation exchange capacity of zeo-lites.In order to enhance the adsorption capacity of zeolites,the zeolites nanoparticles with higher specific surface area are com-monly used rather than zeolites with other morphologies.How-ever,the purification process cannot easily separate zeolites nanoparticles separated from water.If the zeolites nanoparticles have the magnetic property,they will be easily separated from water for the reuse.However,few studies has been conducted on zeolites based Ag/AgCl composites with magnetic property for photocatalytic degradation of TC[10].In this study,the hydrothermal-precipitation-photoreduction method was developed to synthesize a series of Ag/AgCl/(x)Fe-ZX samples.The objectives of the study were to:(a)study the TC degradation efficiency of Ag/AgCl/(x)Fe-ZX samples;(b)investigate the influences of factors such as the weight ratio of ZVIP and the initial pH on the TC degradation and the stability of photocatalysts;(c)propose the mechanisms happening during the TC degradation process by Ag/AgCl/(x)Fe-ZX samples under visible light;(d)ana-lyze the intermediates generated during the TC degradation process.2.Experimental2.1.Materials and chemicalsAll the chemicals were analytical grade.Hydrochloride salt of tetracycline(>99%),sodium silicate solution(>99%),sodium alumi-nate(>99%)and sodium hydroxide were purchased from Sigma–Aldrich Corporation.Hydrochloric acid,silver sulfate(>99%), ammonia water(33%),sodium chloride(>99%)and ZVIP were sup-plied by Fisher Scientific.The sodium oxalate(Na2C2O4),ascorbic acid(AsA),dimethyl sulfoxide(DMSO)and benzoquinone(BQ) were provided from Sigma–Aldrich li-Q ultrapure water was applied in all experiments.2.2.Synthesis of Ag/AgCl/(x)Fe-ZX2.2.1.Synthesis of(x)Fe-ZXThe process of synthesizing the zeolite X has been previously reported[11].The sodium silicate,sodium aluminate and sodium hydroxide chemicals were mixed in water.The molar ratio of Na2O:Al2O3:SiO2:H2O equals to7.15:1:2.2:122and the white gel was formed.The gel was heated to boiling for1h to produce the precursors of zeolite X.Then some amount of ZVIP were added to the precursors of zeolite X.As a result,the white gel was turned black.And it was stirred to be homogenized.The Teflon-lined stainless autoclave was used to crystallize the black gel at343K for3h and then368K for2h.Then the autoclave was naturally cooled to room temperature.Finally,the deionized water was applied to wash the product and the product was dried at333K. The powder was obtained and indexed as(x)Fe-ZX.The value of x which was3,4,5and6%presented the weight percentage of ZVIP impregnated into the zeolite X.The zeolite X was prepared by the same method without adding the ZVIP.2.2.2.Synthesis of Ag/AgCl/(x)Fe-ZXFirstly,Ag2SO4ammonia solution was prepared by dissolving Ag2SO4(10mmol)in2mol LÀ1of the ammonia water(50mL). Then(x)Fe-ZX(1g)was mixed with Ag2SO4ammonia solution by vigorous mechanical agitation as Ag2SO4/(x)Fe-ZX solution.NaCl saturated aqueous solutions(50mL)were also prepared in advance.Subsequently,NaCl saturated solution was mixed with Ag2SO4/(x)Fe-ZX solution by vigorous mechanical agitation to form AgCl/(x)Fe-ZX solution.The AgCl/(x)Fe-ZX solution was illuminated using300W Xe arc lamp with the UVfilter(Newport,USA)for 30min.Then the product was washed with deionized water and dried at room temperature.Finally,the Ag/AgCl/(x)Fe-ZX samples were obtained.For comparison,pure Ag/AgCl was also prepared by the same procedure without the addition of(x)Fe-ZX.2.3.Characterization and analysisX-ray diffraction(XRD)patterns of the Ag/AgCl/(x)Fe-ZX were recorded on the Bruker AXSD8Advance X-ray diffractometer with nickel-filtered Cu Ka X-ray radiation at40kV and30mA.Scanning electron microscopic(SEM)images were obtained on a Hitachi SU8020SEM with a primary electron energy of2.0kV.Transmis-sion electron microscopy(TEM)images were taken by JEOL JEM-2100electron microscope operated at200kV.Energy dispersive spectroscopy(EDX)was conducted in conjunction with the TEM studies.The Brunauer-Emmett-Teller(BET)analyzer was applied to measure the specific surface area and the pore size distribution of the Ag/AgCl/(x)Fe-ZX.The diffuse reflectance spectroscopy(UV–vis DRS)of the Ag/AgCl/(x)Fe-ZX was measured by VARIAN CARY 100spectrophotometer.The freeze-dried Ag/AgCl/(x)Fe-ZX sam-ples were ground to be homogeneous and the X-ray photoelectron spectroscopy(XPS)was measured by the Kratos AXIS Ultra DLD spectrometer.The hysteresis loops of Ag/AgCl/(x)Fe-ZX samples were determined by the quantum design magnetic properties mea-surement system.The0.1M KCl solution containing5mM Fe (CN)63-/4-was applied to measure the electrochemical impedance spectroscopy(EIS).The electrochemical workstation(CHI660B, shanghai,China)was used to test the electrochemical signals of the conventional three-electrode system which was comprised of a glassy carbon electrode(the working electrode),the samples (the reference electrode)and a platinum wire(the counter elec-trode).The electrochemical signals were measured with the fre-quency ranged from0.01Hz to10kHz at0.23V.In addition,the amplitude of the wave potential was5mV in each case.The iso-electric point(pH zpc)was determined by examining zeta potential values of samples on the Zeecom zeta potential analyzer at a volt-age of10.0V.0.05g of the sample was mixed with the50mL of deionized water and the pH was adjusted by adding HCl or NaOH solution.The High Performance Liquid Chromatography(HPLC)(Agilent, USA)was applied to measure TC concentration with the ultraviolet (UV)detector at355nm and the4.6Â150mm Zorbax ODS col-umn at30°C.The80%of0.05M phosphate buffer and20%of ace-tonitrile were mixed to be the mobile phase.The HPLC system with the mass spectrometer(Micromass,UK)was applied to measure TC476M.Liu et al./Chemical Engineering Journal302(2016)475–484degradation intermediates at the3kV of capillary voltage,553K of dissolution temperature and20l L minÀ1offlow velocity.The iron concentration was measured by the inductively coupled plasma mass spectrometry(Agilent HP4500).2.4.(x)Fe-ZX adsorption studiesFirstly,the catalyst was mixed with the various concentrations (100,200,300,400and500mg LÀ1)of TC solutions under dark and constant stirring at350rpm.The concentration of the catalyst was 1g LÀ1.The TC concentration was determined by the HPLC ana-lyzer.The experiment was carried out in triplicate to obtain the mean value.The error was calculated by the standard deviation between triplicate runs.2.5.TC degradation experimentsThe TC degradation experiments were conducted by the photo-catalytic reaction chamber with a500W Xe arc lamp with the UV filter(Newport,USA).The1g LÀ1of the catalyst was mixed with the various concentration(100,200,300,400and500mg LÀ1)of TC solution under visible light irradiation and constant stirring at 350rpm.The pH of TC solutions was adjusted by adding the 0.1mol LÀ1HCl or NaOH solution.The TC photolysis was measured without catalysts.In this study,the Na2C2O4,BQ,AsA and DMSO scavengers were applied to determine reactive oxygen species (ROS)such as h+,ÅOÀ2,H2O2andÅOH generated in TC degradation process.The catalysts were separated from solutions by a magnet to evaluate recyclability of the Ag/AgCl/(0.05)Fe-ZX catalyst.The experiment was carried out in triplicate to obtain the mean value. The error was calculated by the standard deviation between tripli-cate runs.The TC degradation efficiency W%was calculated by the equation as follows:W%¼w0Àw tw0Â100where w0and w t are the initial TC concentration and the TC concen-tration at time t,respectively.3.Results and discussion3.1.Physicochemical characterizations3.1.1.XRDThe Fig.1B shows the crystalline phases of the Ag/AgCl/(x)Fe-ZX.The diffraction peaks indexed as‘‘a”are the main characteristic reflections of the AgCl crystal and the peaks marked with‘‘b”are the characteristic reflections of the Ag phase[12].It illustrated the Ag/AgCl/(x)Fe-ZX samples contained the crystalline phase of Ag/AgCl.The reflections of Ag/AgCl/(x)Fe-ZX ranged from5°to 30°are the main characteristic diffraction peaks of zeolite X[5]. The intensity of the reflection at45°was increased with the weight percentage of ZVIP increasing.From Fig.1A,the characteristic reflection of ZVIP is the diffraction peak at45°.It indicated that some ZVIP were coated on the surface of zeolite X.3.1.2.SEM and TEMAs shown in Fig.2g,the ZVIP were spherical and about50nm. From Fig.2,the Ag/AgCl/(0.05)Fe-ZX particles were also spherical and the surface was coated by the spherical particles of about 50nm.It also verified the ZVIP particles were immobilized on the surface.As shown in Fig.2f,the EDX image verified Ag/AgCl/ (0.05)Fe-ZX contained all the elements of Fe,Ag,Cl,Si,Al,O and Na.3.1.3.Specific surface area and pore diameterFrom Table1,the specific surface area of Ag/AgCl/(x)Fe-ZX was increased slightly from870.22to885.36cm2gÀ1as the weight percentage of ZVIP increased.The volumes of Ag/AgCl/(x)Fe-ZX were decreased from0.268to0.237cm3gÀ1as the weight percent-age of ZVIP increased.The average pore diameters of Ag/AgCl/(x) Fe-ZX samples were between0.778and0.806nm.It indicated the tetracycline molecular was accessible to the pores of the samples.3.1.4.UV–vis DRS spectraAs shown in Fig.3,the absorbance of Ag/AgCl/(x)Fe-ZX in the visible light region was enhanced as the weight percentage of ZVIP increased.3.1.5.MagnetizationFrom Fig.4,the saturation magnetization values of Ag/AgCl/(x) Fe-ZX were increased from12.54to31.12emu gÀ1as the weight percentage of ZVIP increased from3%to6%.It indicated as the weight percentage of ZVIP increased,the magnetization of Ag/ AgCl/(x)Fe-ZX was enhanced and the amount of ZVIP coated on the catalysts was also increased.It suggested that the Ag/AgCl/(x) Fe-ZX samples can be easily separated from water by magnetic separation system for reuse.3.1.6.Electrochemical impedance spectroscopy(EIS)The EIS was used to study the resistance and the separation efficiency of the charge transfer between the photogeneratedM.Liu et al./Chemical Engineering Journal302(2016)475–484477Ag/AgCl/(0.05)Fe-ZX;(d),(e)TEM images of Ag/AgCl/(0.05)Fe-ZX particle;(f)the EDX spectrum of whichelectrons and holes[13].Fig.5presents the typical EIS Nyquist plots of Ag/AgCl,Ag/AgCl/zeolite X and Ag/AgCl/(0.05)Fe-ZX.The x-axis is indexed as the real part of the impedance(Z0)and y-axis presents the negative number of the imaginary part of the impe-dance(ÀZ00).The Randles–Ershler circuit model was applied to describe Nyquist plot.In the equivalent circuit,the charge transfer between semiconductor and electrolyte is linked with the semicir-cle radii R ct[14].From Fig.6,the values of R ct were11,750,8750and3500ohm for Ag/AgCl,Ag/AgCl/zeolite X and Ag/AgCl/(0.05)Fe-ZX,respec-tively.The charge recombination was suppressed by the efficient charge transfer between semiconductor and electrolyte to enhance TC photocatalytic efficiency[15,16].The smaller semicircle radius of the EIS Nynquist plot is,the lower charge transfer resistance will be[17].The EIS results verified the impedance order was Ag/ AgCl>Ag/AgCl/zeolite X>Ag/AgCl/(0.05)Fe-ZX.It indicated electron-transfer property of Ag/AgCl/(0.05)Fe-ZX was better than other samples.It also verified the Ag/AgCl/(0.05)Fe-ZX performed higher separation efficiency of the electron–hole pairs and lower recombination rate than Ag/AgCl and Ag/AgCl/zeolite X under visible light irradiation.3.2.Evaluation of photocatalytic activity3.2.1.The effect of ZVIP on TC adsorption by Ag/AgCl/(x)Fe-ZXThe TC adsorption on the Ag/AgCl/(x)Fe-ZX was described by the Langmuir and Freundlich isotherm models.Table2shows the parameters of Langmuir and Freundlich models by making the plots of1/q e vs.1/C e and logq e vs logC e.The adsorption isotherm of Ag/AgCl/(x)Fe-ZX presented a betterfit to Langmuir model because the R2was closer to1.It suggested the TC adsorption of Ag/AgCl/(x)Fe-ZX is monolayer molecular adsorption[18].It pre-sented as the weight percentage of ZVIP increased from3%to5%, the TC adsorption capacity of Ag/AgCl/(x)Fe-ZX was enhanced from 338.02to385.72mg gÀ1.Table3shows the atom-moles of elements of zeolite X and Ag/ AgCl/(0.05)Fe-ZX before and after TC adsorption.As the1.3mmol of iron was impregnated into zeolite X,the atom-mole of alu-minum was decreased from1.5to0.2mmol and the atom-mole of sodium was increased from1.6to2.9mmol.It indicated the iron substituted the aluminum of the zeolite X and it caused the atom-mole of sodium increased.After TC adsorption by Ag/AgCl/(x)FeX, the atom-mole of sodium was decreased from 2.9mmol to 0.4mmol.It suggested that the TC was adsorbed by Ag/AgCl/ (0.05)Fe-ZX through cation exchange reaction because the cationic TC was main TC species as the pH was3.5.3.2.2.TC photodegradationFrom Fig.8A,the TC degradation through photolysis can be neg-ligible(<0.1%over4h)without catalysts because TC cannot be degraded under visible light due to the poor visible light absorp-tion[19].The order of TC removal efficiencies was Ag/AgCl/(0.05) Fe-ZX>Ag/AgCl/(0.04)Fe-ZX>Ag/AgCl/(0.06)Fe-ZX>Ag/AgCl/Table1Specific surface areas,pore diameters and pore volumes of samples.Samples S BET(m2gÀ1)Pore diameter(nm)Pore volume(cm3gÀ1)Zeolite X0.08440.7430.288 Ag/AgCl/zeolite X0.08640.7720.274 Ag/AgCl/(0.03)Fe-ZX0.08700.7780.268Ag/AgCl/(0.04)Fe-ZX0.08760.7840.259 Ag/AgCl/(0.05)Fe-ZX0.08800.7930.248Ag/AgCl/(0.06)Fe-ZX0.08850.8060.237-10000-50000Applied Magnetic Field(Oe)M.Liu et al./Chemical Engineering Journal302(2016)475–484479(0.03)Fe-ZX >Ag/AgCl/zeolite X.The Langmuir–Hinshelwood kinetic equation applied to describe the photocatalytic reduction of TC as follows:ÀdC dt ¼a 1a 2C1þa 2C ðÞwhere a 2is the Langmuir–Hinshelwood adsorption coefficient (L mg À1),and a 1is the reaction rate constant (mg L À1min À1).Asthe initial TC concentration was very low (<10À3mol L À1),the Lang-muir–Hinshelwood kinetic equation could be simplified to a pseudo-first order equation.The initial TC concentration was about 2.25Â10À4mol L À1.Thus,the TC photocatalytic kinetics was described by the pseudo-first order equation as follows:ln C 0 ¼a 3twhere a 3was the pseudo-first order rate constant (min À1).The a 3values were used to compare photocatalytic activities of the Ag/AgCl/(x )Fe-ZX for the TC degradation under visible light.From Fig.8B,the slopes of the fitted lines were the a 3values.The a 3val-ues were 0.208,0.345,0.654,0.896and 0.557min À1for the Ag/AgCl/zeolite X,Ag/AgCl/(0.03)Fe-ZX,Ag/AgCl/(0.04)Fe-ZX,Ag/AgCl/(0.05)Fe-ZX and Ag/AgCl/(0.06)Fe-ZX,respectively.The photocat-alytic activity of the Ag/AgCl/(x )Fe-ZX was enhanced as the weight percentage of ZVIP impregnation increased from 3%to 5%.Com-pared with other photocatalysts in other studies,the Ag/AgCl/Table 2The parameters of adsorption isotherms for Ag/AgCl/(x )Fe-ZX at 298K (The dosage of samples,1g L À1;pH,3.5).Samples Langmuir Freundlich q max /mg g À1K L /L mg À1R2k f n R 2Ag/AgCl/Zeolite X 326.91 1.280.945488.6513.760.854Ag/AgCl/(0.03)Fe-ZX338.02 3.220.955413.4412.980.887Ag/AgCl/(0.04)Fe-ZX356.54 4.310.948349.8512.390.867Ag/AgCl/(0.05)Fe-ZX385.72 5.420.956307.9811.810.896Ag/AgCl/(0.06)Fe-ZX354.743.640.974331.3512.080.901Table 3The atom-moles of elements of zeolite X,the Ag/AgCl/(0.05)Fe-ZX and the Ag/AgCl/(0.05)Fe-ZX after TC adsorption.Samples (1g)Fe(mmol)Na(mmol)Al(mmol)Ag/AgCl/Zeolite X – 1.6 1.5Ag/AgCl/(0.05)Fe-ZX1.32.90.2Ag/AgCl/(0.05)Fe-ZX after TC adsorption1.30.40.2480M.Liu et al./Chemical Engineering Journal 302(2016)475–484(0.05)Fe-ZX was very effective photocatalyst for TC degradation.For example,the pseudo-first-order TC degradation rate constant of Cu2O–TiO2–Pal reached0.0129minÀ1as the TC and sample concen-trations were30mg LÀ1and1.0g LÀ1[20]and Cl-TiO2performed the best photocatalytic activity with15mg/L of TC solution and the degradation rate reached72.35%in60min[21].From Fig.8C,The TC and TOC degradation efficiencies were 0.75/0.52,0.90/0.64,0.94/0.72,0.98/0.78and0.92/0.70at3h. However,the TOC removal ratio was decreased from0.98to0.92 as the weight percentage of ZVIP increased from5%to6%.It indi-cated the excess loading of ZVIP made the TOC removal efficiency reduced.It was because the excessive ZVIP made the mass transfer between adsorbed TC and surface active sites of Ag/AgCl inhibited.3.2.3.The effect of pHSince the TC degradation efficiency of Ag/AgCl/(0.05)Fe-ZX was maximum,the Ag/AgCl/(0.05)Fe-ZX was applied to study the effect of pH.From Fig.7,the surface of Ag/AgCl/(0.05)Fe-ZX was nega-tively charged at pH ranged from3to8.The surface of Ag/AgCl/ (0.05)Fe-ZX was positively charged at pH2.The isoelectric point pH zpc of Ag/AgCl/(0.05)Fe-ZX is between2and3.From Fig.8,when the pH increased from2to3,the TC removal efficiency was increased from85%to98%.As pH was below3.5,cationic TC was the main TC species in the solution and it could be adsorbed on the negatively charged surface of the Ag/AgCl/(0.05)Fe-ZX by elec-trostatic adsorption to make cation exchange reaction.However,as the pH increased from3to8,the TC removal efficiency was decreased from98%to74%because anion TC could not be adsorbed on the negatively charged surface of the Ag/AgCl/(0.05)Fe-ZX because of electrostatic repulsion.3.2.4.The recyclability and stability of Ag/AgCl/(0.05)Fe-ZXAs shown in Fig.9A,the photocatalytic activity of the Ag/AgCl/ (0.05)Fe-ZX remained almost constant in cyclic TC degradation.It indicates the Ag/AgCl/(0.05)Fe-ZX has high stability in the photo-catalytic process under visible light irradiation.It might be because the photo-corrosion of AgCl was inhibited and it made the photo-catalytic activity of the Ag/AgCl/(0.05)Fe-ZX stable and durable. The iron ions concentration versus reaction time was detected dur-ing TC degradation.From Fig.9B,the maximum concentration ofiron ions leaching was only0.20mg LÀ1and it was far below the European Union directives(2mg LÀ1).The iron ions leaching was negligible compared with the iron content of the Ag/AgCl/(0.05) Fe-ZX(5%).The Ag/AgCl/(0.05)Fe-ZX is a sustainable and environ-mentally friendly catalyst.In addition,as shown in Fig.9C,the pho-tocatalytic degradation reaction kinetics of Ag/AgCl/zeolite X was similar with that of Ag/AgCl/zeolite X with0.20mg LÀ1iron ions. It indicated that the TC was not degraded by the homogeneous photo-Fenton process.M.Liu et al./Chemical Engineering Journal302(2016)475–484481482M.Liu et al./Chemical Engineering Journal302(2016)475–484Fig.11.The mechanism diagram of TC photocatalytic reaction on the surface of the Ag/AgCl/(x)Fe-ZX.and the equilibrated Fermi level was formed(E F,Ag,E F,AgCl and E F,eq). In the interface between AgCl and Ag,the Schottky barrier was formed.The recombination of the electron–hole was suppressed by the Schottky junction to promote the photo-induced carriers separation[11].Some electrons were stored in the Ag0to make the Fermi energy level of Ag0lifted[14].The electron density was increased to make the Fermi level of the system unbalanced [15].The electrons were transformed into the conduction band (CB)of the AgCl until the Fermi level of the system achieve equilib-rium.The continuous process make the system retain equilibrium and the separation of electron–hole was promoted[16].The oxy-gen O2in the solution trapped the electrons on the surface of AgCl to form superoxide ions(ÅOÀ2)(Eq.(2)).The adsorbed TC molecularwas oxidized byÅOÀ2to intermediates and completely degraded (Eq.(3)).The holes on the valence band(VB)of AgCl were scav-enged by ClÀto Cl0which oxidized TC and became ClÀagain (Eqs.(4)and(5)).The reactions are shown as follows:AgÀNPsþhv!eÀþhþð1ÞM.Liu et al./Chemical Engineering Journal302(2016)475–484483O2þeÀ!ÅOÀ2ð2ÞTCþÅOÀ2!intermediatesþCO2þH2Oð3ÞClÀþhþ!Cl0ð4ÞTCþCl0!ClÀþintermediatesþCO2þH2Oð5ÞThe HPLC–MS was used to identify the various intermediates generated during the TC degradation process.The extensive HPLC–MS was applied to identify the polar intermediates with higher molecule weight.The aromatic ring and amino group of cationic and zwitterionic TC can be destroyed by the oxidative spe-cies such asÅOÀ2and h+at pH3.5through the ring-opening reac-tions and the cleavage of the main carbon bond.As shown in Fig.12,there were some peaks of main TC interme-diates and some other polar intermediates with a shorter lifespan. Fig.13displays the molecular structures of the intermediates gen-erated during the TC degradation process.Firstly,two main inter-mediates with m/z of461and416were generated.The intermediate with m/z of416was produced by TC deamination. TC deamination was the loss of N-methyl group because of the low bond energy of C-N[23].The initial1,3-dipolar cycloaddition and the introduction of hydroxyl group produced TC intermediate with m/z of461[24].Then the intermediate with m/z of389was generated through the loss of the amino,hydroxyl and methyl groups.The phenolic groups connected to aromatic ring was frag-mented to produce the intermediate with m/z of364.The open-aromatic ring reactions of the intermediates with m/z of364gen-erated the intermediates with m/z of216and234.The central car-bon of the intermediates with m/z of364and389was cleaved to produce the intermediates with m/z of194and185.Finally,after sufficient reaction time TC was oxidized by oxidative radicals to CO2,H2O and inorganic ions NO3-.4.ConclusionIn conclusion,magnetic Ag/AgCl/(x)Fe-ZX photocatalysts were synthesized for TC degradation.The removal efficiencies of TC and TOC were enhanced as the weight percentage of ZVIP increased from3%to5%through a synergistic adsorption-photocatalytic degradation process.The predominant reactive oxy-gen species for TC removal was identified to be theÅOÀ2.The enhancement of photocatalytic activity after ZVIP impregnation was mainly attributed to:(a)the enhanced TC absorption capacity by(x)Fe-ZX through cation exchange and electrostatic reactions;(b)the strong absorption in the visible light region;(c)the efficient space separation of photo-induced charge carriers induced by crys-talline Ag/AgCl composite.This research provides a novel and effective method to synthesize zeolite based photocatalysts for TC degradation in water.AcknowledgementsThis work was supported by the Program of Shanghai Institute of Technology(No.YJ2015-33),the National Natural Science Foun-dation of China(21277093),Program for New Century Excellent Talents in University(NCET-13-0910),National Natural Science Foundation of China(No.21007048),Key Projects in the National Science&Technology Pillar Program during the Twelfth Five-year Plan Period(2012BAJ25B06)and Twelfth Five-year Plan Period of Major Science and Technology Program for Water Pollution Control and Treatment(2012ZX07403-001).References[1]mba, A.Umar,S.Kumar,Mehta,Visible-light-driven photocatalyticproperties of self-assembled cauliflower-like AgCl/ZnO hierarchical nanostructures,J.Mol.Catal.A:Chem.408(2015)189–201.[2]H.Zabini-Mobarakeh,A.Nezamzadeh-Ejhieh,Application of supported TiO2onto Iranian clinoptilolite nanoparticles in the photodegradation of mixture of aniline and2,4-dinitroaniline aqueous solution,J.Ind.Eng.Chem.26(2015) 315–321.[3]M.M.Liu,B.D.Xi,L.A.Hou,Synthesis,characterization,and mercury adsorptionproperties of hybrid mesoporous aluminosilicate sieve prepared withflyash, Appl.Surf.Sci.273(2013)706–716.[4]J.T.Feng,J.J.Li,W.Lu,Synthesis of polypyrrole nano-fibers with hierarchicalstructure and its adsorption property of Acid Red G from aqueous solution, Synth.Met.191(2014)66–73.[5]A.Nezamzadeh-Ejhieh,M.Karimi-Shamsabadi,Decolorization of a binary azodyes mixture using CuO incorporated nanozeolite-X as a heterogeneous catalyst and solar irradiation,Chem.Eng.J.228(2013)631–641.[6]Y.G.Xu,H.Xu,H.M.Li,Ionic liquid oxidation synthesis of Ag@AgCl core-shellstructure for photocatalytic application under visible-light irradiation,Coll.Surf.A Physicochem.Eng.Asp.416(2013)80–85.[7]J.G.McEvoy,W.Q.Cui,Z.S.Zhang,Synthesis and characterization of Ag/Ag-activated carbon composites for enhanced visible light photocatalysis,Appl.Catal.B Environ.144(2014)702–712.[8]M.M.Liu,L.A.Hou,S.L.Yu, B.D.Xi,MCM-41impregnated with A zeoliteprecursor:synthesis,characterization and tetracycline antibiotics removal from aqueous solution,Chem.Eng.J.223(2013)678–687.[9]V.Volli,M.K.Purkait,Selective preparation of zeolite X and A fromflyash andits use as catalyst for biodiesel production,J.Hazard.Mater.297(2015)101–111.[10]A.Nezamzadeh-Ejhieh,S.Hushmandrad,Solar photodecolorization ofmethylene blue by CuO/X zeolite as a heterogeneous catalyst,Appl.Catal.A Gen.388(2010)149–159.[11]S.Naghizadeh-Alamdari, A.Habibi-Yangjeh,One-pot ultrasonic-assistedmethod for preparation of Ag/AgCl sensitized ZnO nanostructures as visible-light-driven photocatalysts,Solid State Sci.40(2015)111–120.[12]A.Nezamzadeh-Ejhieh,Z.Salimi,Heterogeneous photodegradation catalysis ofo-phenylenediamine using CuO/X zeolite,Appl.Catal.A Gen.390(2010)110–118.[13]W.G.Li,Y.Wang,A.Irini,Effect of pH and H2O2dosage on catechol oxidation innano-Fe3O4catalyzing UV-Fenton and identification of reactive oxygen species,Chem.Eng.J.244(2014)1–8.[14]X.X.Yao,X.H.Liu, D.Zhu,Synthesis of cube-like Ag/AgCl plasmonicphotocatalyst with enhanced visible light photocatalytic activity,Catal.Commun.59(2015)151–155.[15]H.Li,Y.J.Sun, B.Cai,Hierarchically Z-scheme photocatalyst of Ag@AgCldecorated on BiVO4(040)with enhancing photoelectrochemical and photocatalytic performance,Appl.Catal.B Environ.170-171(2015)206–214.[16]J.G.McEvoy,Z.S.Zhang,Synthesis and characterization of magneticallyseparable Ag/AgCl–magnetic activated carbon composites for visible light induced photocatalytic detoxification and disinfection,Appl.Catal.B Environ.160-161(2014)267–278.[17]S.J.Fukahori,T.Fujiwara,Modeling of sulfonamide antibiotic removal by TiO2/high-silica zeolite HSZ-385composite,J.Hazard.Mater.272(2014)1–9. [18]M.M.Liu,B.D.Xi,L.A.Hou,S.L.Yu,Magnetic multi-functional nano-fly ash-derived zeolite composites for environmental applications,J.Mater.Chem.A.1 (2013)12617–12626.[19]C.Zhao,M.Pelaez,X.D.Duan,Role of pH on photolytic and photocatalyticdegradation of antibiotic oxytetracycline in aqueous solution under visible/solar light:kinetics and mechanism studies,Appl.Catal.B Environ.134-135(2013)83–92.[20]Y.Y.Shi,Z.W.Yang,B.Wang,Adsorption and photocatalytic degradation oftetracycline hydrochloride using a palygorskite-supported Cu2O–TiO2 composite,Appl.Clay Sci.119(2016)311–320.[21]X.L.Liu,P.Lv,G.X.Yao,Microwave-assisted synthesis of selective degradationphotocatalyst by surface molecular imprinting method for the degradation of tetracycline onto Cl-TiO2,Chem.Eng.J.217(2013)398–406.[22]J.M.Monteagudo, A.Durán,R.González, A.J.Expósito,In situ chemicaloxidation of carbamazepine solutions using persulfate simultaneously activated by heat energy,UV light,Fe2+ions,and H2O2,Appl.Catal.B Environ.176-177(2015)120–129.[23]J.F.Niu,Y.Li,W.L.Wang,Light-source-dependent role of nitrate and humicacid in tetracycline photolysis:kinetics and mechanism,Chemosphere92 (2013)1423–1429.[24]P.Mahamallik,S.Saha,A.Pal,Tetracycline degradation in aquatic environmentby highly porous MnO2nanosheet assembly,Chem.Eng.J.276(2015)155–165.484M.Liu et al./Chemical Engineering Journal302(2016)475–484。

申报表(马春燕).-东华大学环境学院

申报表(马春燕).-东华大学环境学院

东华大学高级专业技术职务申报表
申报人姓名:马春燕
所在单位:环境学院
现任职务:讲师
拟聘任岗位:教育教学
拟聘任职务:副教授
东华大学人事处制
填表说明
1、本表第1页至第8页由本人填写,有关学院负责审核。

2、填写的内容要符合表中的有关要求。

3、如填写内容较多,可依次插入横线填写。

4、表中所填论文、著作、教材均应为已正式出版的,SCI、EI、SSCI、CSSCI、
A&HCI、CSCD收录的须附盖有检索机构章的检索证明。

所有成果不得重复填写。

5、奖励和荣誉名称填写要与有关证书一致,并附证书复印件。

6、本表用A4纸打印,但格式不能改动。

此页不需打印。

(完整版)无机非金属材料专业英语单词

(完整版)无机非金属材料专业英语单词

无机非金属材料专业英语单词abrasive [ ə'breisiv ]n. 磨料a. 磨蚀的,磨损的agate [ 'æɡət ]n. 玛瑙alite [ 'eilait ]n. 硅酸三钙石(C3A)alkali resistance [ 'ælkəlai ri'zistəns]耐碱性,抗碱能力alumina [ ə'lju:minə ]n. 氧化铝amorphous phase [ ə'mɔ:fəs feiz]无定形相,非晶相ampoule [ 'æmpju:l ]n. 小玻璃瓶,筒,安瓿anhydrite [ æn'haidrait ]n. 硬(无水)石膏,CaSO4 anion [ 'ænaiən ]n. 阴离子anisotropic [ æn,aisəu'trɔpik ] a. 各向异性的,非均质的anneal [ ə'ni:l ]n. & v. 退火anomaly [ ə'nɔməli ]n. 反常现象,不规则anorthite [ æ'nɔ:θait ]n. 钙长石CaO·Al2O3·2SiO2 apatite [ 'æpətait ]n. 磷灰石apparent porosity [ ə'pærənt pɔ:'rɔsiti]显气孔率asbestos [ æz'bestɔs ]n. 石棉asphalt [ 'æsfælt ]n. 沥青basicity [ bə'sisəti ]n. 碱度,碱性batch bin [ bætʃ bin]配合料料仓batch feeder [ bætʃ 'fi:də]投料机,加料器bauxite [ 'bɔ:ksait ]n. 矾土,铝矾土belite [ 'bi:lait ]n. 二钙硅酸盐(水泥)binder [ 'baində ]n. 粘胶剂,粘结剂biocompatibility [ 'baiəukəm,pætə'biləti ]n. 生物相容性biological [ ,baiəu'lɔdʒik,-kəl ] a. 生物学的,用生物(如病菌等)对付敌人的bisque firing [ bisk 'faiəriŋ]素烧(初次焙烧)body [ 'bɔdi ]n. 坯体body-centered lattice[ 'bɔdi 'sentəd 'lætis]体心格子borate [ 'bɔ:reit ]n. 硼酸盐borax [ 'bɔ:ræks ]n. 硼砂Na2B4O7·10H2Ocalcine [ 'kælsain ]v. & n. 烧结,烧成calcite [ 'kælsait ]n. 方解石calcium [ 'kælsiəm ]n. 钙capillary [ kə'piləri, 'kæpi- ] a. 细作用(的)n. 毛细管catalyst [ 'kætəlist ]n. 催化剂cation [ 'kætaiən ]n. 阳离子cellular [ 'seljulə ] a. 细胞的,由细胞组成的,多孔的cellulose [ 'seljuləus ]n. & a. 纤维素,含纤维素的ceramic [ si'ræmik ] a. 陶瓷、陶器checker [ 'tʃekə ]n. 格子砖checker chamber [ 'tʃekə 'tʃeimbə]蓄热室chemical durability [ 'kemikəl ,djuərə'biləti]化学稳定性chemical vapour deposition (CVD) [ 'kemikəl 'veipə ,depə'ziʃən]化学气相沉积cleavage [ 'kli:vidʒ ]n. 解理clinker[ 'kliŋkə ]n. 熟料、熔块coagulation[ kəuæɡju'leiʃən ]n. 凝结、凝固作用,聚集、角凝coating [ 'kəutiŋ ]n. 涂层,涂料,涂盖层collagen [ 'kɔlə,dʒen ]n. 骨胶原combustion flue [ kəm'bʌstʃən flu:]烟道complex [ 'kɔmpleks ]n. & a. 复合物,络合物;复杂的configuration [ kən,fiɡju'reiʃən ]n. 构形;(电子)排布constituent [ kən'stitjuənt ]n. 成分,组分contamination [ kən,tæmi'neiʃən ]n. 污染,杂质convection [ kən'vekʃən ]n. 对流,传递coordination numbers [ kəu,ɔ:di'neiʃən 'nʌmbəs]配位数coordination polyhedron [ kəu,ɔ:di'neiʃən ,pɔli'hi:drən]配位多面体cord [ kɔ:d ]n. 条纹,条痕(玻璃缺陷)cordierite [ 'kɔ:diərait ]n. 堇青石2MgO·2Al2O3·5SiO2 corrosion-resistant [ kə'rəuʒən ri'zistənt] a. 抗腐蚀的corundum [ kə'rʌndəm ]n. 刚玉α-Al2O3covalent [kəuˈveilənt] a. 共价的crazing[ 'kreiziŋ ]n. 细裂,龟裂,碎纹裂creep [ kri:p ]n. 蠕变cristobalite [ kris'təu,bəlait ]n. 方石英critical value [ 'kritikəl 'vælju:]临界值cross-fired glass melting furnace [ krɔ:s 'faiəd ɡlɑ:s'meltiŋ 'fə:nis]横火焰池窑crown [ kraun ]n. 炉顶,窑拱crown flint glass [ kraun flint ɡlɑ:s]冕火石玻璃crucible [ 'kru:sibl ]n. 坩埚crystallinity [kristəˈlinəti]n. 结晶度,结晶性crystallization [ ,kristəlai'zeiʃən ]n. 结晶(作用),晶化cubic [ 'kju:bik ] a. 立方晶系的cubic body-centered [ 'kju:bik 'bɔdi 'sentəd]体心立方(晶格)cubic face-centered[ 'kju:bik feis 'sentəd]面心立方(晶格)cullet [ 'kʌlit ]n. 碎玻璃,废玻璃(料)curing [ 'kjuəriŋ ]n. 固化,熟化,养护damper [ 'dæmpə ]n. 挡板,烟道闸板deflocculant [ di'flɔkjulənt ]n. 反絮凝剂,解凝剂deformation [ ,di:fɔ:'meiʃən ]n. 变形degrade [ 'di'ɡreid ]v. 降(裂,分)解,降低,衰变dendrite [ 'dendrait ]n. 树枝石,树枝状结晶densification [ ,densifi'keiʃən ]n. 密实化desiccator [ 'desikeitə ]n. 干燥器(皿)deteriorate [ di'tiəriəreit ]v. 1、(使)变坏,(使)恶化;2、损坏,消耗devitrify [ di:'vitrifai ]vt. 析晶devitrite [di:ˈvitrait]n. 失透石dielectric constant [ ,daii'lektrik 'kɔnstənt]介电常数differential thermal analysis (DTA) [ ,difə'renʃəl 'θə:məl ə'næləsis]差热分析diffraction [ di'frækʃən ]n. 衍射diffusion [ di'fju:ʒən ]n. 扩散dilatation [ ,dailə'teiʃən, dilə- ]n. 膨胀,扩展dilatometer [ ,dilə'tɔmitə ]n. 膨胀仪diode [ 'daiəud ]n. 二极管dipole moment [ 'daipəul 'məumənt]偶极矩dislocation [ ,disləu'keiʃən ]n. 位错,位移dispersion [ dis'pə:ʃən ]n. 色散,分散displacement [ dis'pleismənt ]n. 位移,易位,取代distortion [ dis'tɔ:ʃən ]n. 扭曲,变形dolomite [ 'dɔləmait ]n. 白云石MgCO3·CaCO3 domain [ dəu'mein ]n. 畴,域,范围,铁电体的均一极化区donor level [ 'dəunə 'levəl]施主能级dopant [ 'dəupənt ]n. 掺杂剂dotted line [ 'dɔtid lain]虚线drawability [ ,drɔ:ə'biləti ]n. 可纺性(玻璃纤维),可拉伸性ductile [ 'dʌktail, -til ] a. 可延展的,易变形的earthenware [ 'ə:θənwεə ]n. 陶(瓦)器eddy [ 'edi ]n. 涡流,漩涡,螺旋efflorescence [ ,eflɔ:'resəns ]n. 粉化、风化elastic modulus [ i'læstik 'mɔdjuləs]弹性模量electronegativity [ i'lektrəu,neɡə'tivəti ]n. 电负性electrophoretic [ i,lektrəfə'retik ] a. 电泳的electrostatic [ i,lektrə'stætik ] a. 静电的,静电学的embossing [ im'bɔsiŋ ]n. 浮雕,压花,压纹emulsifier [ i'mʌlsifaiə ]n. 乳化剂enamel [ i'næməl ]n. 搪瓷endothermic [ ,endəu'θə:mik,-məl ] a. 吸热的end-port furnace [ end pɔ:t 'fə:nis] (或horseshoe-fired furnace) 马蹄焰窑enstatite [ 'enstətait ]n. 顽火辉石enzyme [ 'enzaim ]n. 酶epitaxy [ 'epitæksi ]n. 外延,(晶体)取向生长epoxy [ ep'ɔksi ] a. 环氧的n. 环氧树脂erode [ i'rəud ]v. 腐蚀,受侵蚀ethylene[ 'eθili:n ]n. 乙烯eucryptite [ju:ˈkripˌtait]n. 锂霞石eutectic [ ju:'tektik ] a. 低共熔的,共晶的exothermic [ ,eksəu'θə:mik,-'θə:məl ] a. 放热的extrude [ ek'stru:d ]v. 挤压extrusion [ ek'stru:ʒən ]n. 挤出,挤压feldspar [ 'feldspɑ: ]n. 长石ferrite [ 'ferait ]n. 铁氧体ferroelectric [ ,ferəui'liktrik ] a. & n. 铁电体(性,的)filament [ 'filəmənt ]n. 细丝,灯丝filter press [ filtə pres]压滤机fineness [ 'fainnis ]n. 细度、精度、纯度fireclay [ 'faiəklei ]n. 耐火(粘)土,(耐)火泥firing [ 'faiəriŋ ]n. 烧成flaw [ flɔ: ]n. 裂纹,裂痕,瑕疵flexural strength [ˈflekʃərəl streŋθ]抗弯强度flexible [ 'fleksibl ] a. 挠性的,易柔曲的,韧性的float glass [ fləut ɡlɑ:s]浮法(平板)玻璃fluorescence [ fluə'resns ]n. 荧光,荧光性fluoride [ 'flu(:)əraid ]n. 氟化物fluorspar [ 'fluəspɑ: ]n. 萤石,氟石CaF2 fracture toughness [ 'fræktʃəˈtʌfnis]n. 断裂韧性frit [ frit ]n. 熔块、釉料garnet [ 'ɡɑ:nit ]n. 石榴石,石榴红色gel [ dʒel ]n. 凝胶germanium [ dʒə:'meiniəm ]n. 锗(Ge)glass fiber reinforced plastics[ɡlɑ:s'faibə,ri:in'fɔ:sd 'plæstiks ]玻璃纤维增强塑料(GFRP)glaze [ ɡleiz ]v. 上釉glost [ ɡlɔst ]n. 釉grain boundary [ ɡrein 'baundəri]n. 颗粒界面,晶界granulate [ 'ɡrænjuleit ]v. 粒化,成粒graphite [ 'ɡræfait ]n. 石墨green body [ ɡri:n 'bɔdi]n. 生坯,未烧坯grinding [ 'ɡraindiŋ ]n. 研磨,磨碎grit [ ɡrit ]n. 磨料gypsum [ 'dʒipsəm ]n. 石膏halide [ 'hælaid ] a. 卤化物(的),卤族的heterogeneous [ ,hetərəu'dʒi:njəs ] a. 异种的,非均质的hexagonal [ hek'sæɡənəl ] a. 六方的,六方晶系的host [ həust ]n. 基质,晶核homogeneity [ ,hɔməudʒe'ni:əti, ,həu- ]n. 均匀性,均一(性)homogeneous [ ,hɔmə'dʒi:niəs, ,həu- ] a. 均匀的,均一的humidity [ hju:'midəti ]n. 湿气,湿度hydrolysis [ hai'drɔlisis ]n. 水解(作用),加水分解immiscibility [ i,misə'biləti ]n. 不混溶性impediment [ im'pedimənt ]n. 妨碍,阻碍,障碍物impermeable [ im'pə:miəbl ] a. 不可渗透的,不透水的impurity [ im'pjuərəti ]n. 杂质,不纯物inclusion [ in'klu:ʒən ]n. 夹杂(物),掺杂index of refraction [ 'indeks ɔv ri'frækʃən]折射率inertness[iˈnə:tnis]n. 惰性infra-red spectrum [ 'inflə red 'spektrəm]红外光谱ingot[ 'iŋɡət ]n. 块料interferometer [ ,intəfə'rɔmitə ]n. 干涉仪interphase [ 'intəfeiz ]n. 界面,中间相a. 相间的interstitial [ ,intə'stiʃəl ] a. 间隙的intrinsic(al) [ in'trinsik,-kəl ] a. 内在的,固有的,本质的intrude [ in'tru:d ]v. 渗入isomorphic [ ,aisəu'mɔ:fik ] a. 同晶型的isostatic pressing [ ,aisəu'stætik 'presiŋ]n. 等静压成型isotherm [ 'aisəuθə:m ]n. 等温isotropic [ ,aisəu'trɔpik ] a. 各向同性的,均质的jiggering [ 'dʒiɡəriŋ ]n. 旋坯kaolinite [ 'keiəlinait ]n. 高岭土kiln [ kiln, kil ]n. 窑,炉lime [ laim ]n. 石灰,氧化钙limestone [ 'laimstəun ]n. 石灰石lithium [ 'liθiəm ]n. 锂lubrication [ ,lu:bri'keiʃən ]n. 润滑作用luster [ 'lʌstə ]n. 光泽v. 发光,使有光泽,给……上釉magnesium [ mæɡ'ni:ziəm, -ʃi- ]n. 镁magnesite [ 'mæɡnəsait ]n. 菱镁矿manganese[ 'mæŋɡə,ni:s]n. 锰(Mn)marls [ mɑ:l s ]n. 石灰泥matrix [ 'meitriks ]n. 基体,基质metallurgical [ ,melə'lə:dʒik,-kəl ] a. 冶金学的,冶金术的metastable [ ,metə'steibl ] a. 亚稳的,介稳的methane[ 'mi:θein ]n. 甲烷mica [ 'maikə ]n. 云母microcrack [ 'maikrəukræk ]n. 微裂纹microprobe [ 'maikrəuprəub ]n. 显微探针microstructure [ 'maikrəu,strʌktʃə ]n. 显微结构migrate [ mai'ɡreit, 'maiɡ- ]vi. 迁移mineralogy [ ,minə'rælədʒi ]n. 矿物学mineralizer [ 'minərəlaizə ]n. 矿化剂miscible [ 'misəbl ] a. 可混(合)的,可混(溶)的mixer [ 'miksə ]n. 混合机,混料机modification [ ,mɔdifi'keiʃən ]n. 更改,修改,变体modifier [ 'mɔdifaiə ]n. 调整体modulus [ 'mɔdjuləs, -dʒu- ]n. 模数,模量moldable [ˈməuldəbl] a. 可塑的,可模制的monoclinic [ ,mɔnəu'klinik ] a. 单斜的monolithic [ ,mɔnəu'liθik ]n. 单片(块)a. 整体的,单块的mortar [ 'mɔ:tə ]n. 砂(灰、泥)浆mullite [ 'mʌlait ]n. 莫来石multicomponent[ˌmʌltikəmˈpəunənt] a. 多成分的,多元的multiplicity [ ,mʌlti'plisəti ]n. 多样(性),多重性,大量mutrual orientation [ 'mju:tʃuəl ,ɔ:rien'teiʃən]相互取向needle-like [ 'ni:dl laik]针状neutralisation [ ,nju:trəlai'zeiʃən ]n. 中和(作用,法)nitridation [ ,naitri'deiʃən ]n. 氮化notch [ nɔtʃ ]n. 凹口,槽口observable [ əb'zə:vəbl ] a. 可观察到的,可以察觉的octahedral [ ,ɔktə'hedrəl, -'hi:- ] a. 八面体的octahedron [ ,ɔktə'hedrən, -'hi:- ]n. 八面体olivine [ ,ɔli'vi:n, 'ɔlivi:n ]n. 橄榄石opacity [ əu'pæsiti ]n. 乳浊,不透光性,浑浊度,不透明度opaque [ əu'peik ] a. 不透明的,模糊的optical flint [ 'ɔptikəl flint]火石光学玻璃optical crown [ 'ɔptikəl kraun]冕牌光学玻璃optics [ 'ɔptiks ]n. 光学optimum [ 'ɔptiməm ]n. 最佳条件orbital hybridation [ 'ɔ:bitəl haibriˈdeiʃən]轨道杂化organosilane [ 'ɔ:ɡənəu'silein]n. 有机硅烷orient [ 'ɔ:riənt, 'əu-, 'ɔ:rient ]n. 东方vt. 定……的方位orthorhombic [ ,ɔ:θə'rɔmbik ] a. 正交(晶)的,斜方(晶)的orthosilicate [ˌɔ:θəˈsiləkeit]n. 正(原)硅酸盐oscillate [ 'ɔsileit ]v. 振荡,振动overlap [ ,əuvə'læp, 'əuvəlæp ]vt. 与……重叠,与……部分一致overview [ 'əuvəvju: ]n. 综述,概述,概观oxalate [ 'ɔksəleit ]n. 草酸盐pelletization [ ,pelitai'zeiʃən ]n. 造球,球粒化作用particle size distribution [ 'pɑ:tikl saiz ,distri'bju:ʃən]粒径分布particulate [ pə'tikjulit ]n. & a. 粒子,细粒(的)peel [ pi:l ]v. 剥,削,剥落pellet [ 'pelit ]n. 片,粒化(料),丸permeation[ˌpə:miˈeiʃən]n. 渗入,透过permissible [ pə'misibl ] a. 容许的,许可的perpendicular [ ,pə:pən'dikjulə ] a. 垂直的petrochemical [ ,petrəu'kemikəl ] a. & n. 化工的,化工产品phase transition [ feiz træn'siʒən]相变phosphate [ 'fɔsfeit ]n. 磷酸盐photonic [ fəu-'tɔnik ] a. 光子的,光电子的piezoceramic [ pi:'eizəu si'ræmik ]n. 压电陶瓷pigment [ 'piɡmənt ]n. 颜(色)料pitch [ pitʃ ]n. 沥青placement [ 'pleismənt ]n. 放置,布局plasma [ 'plæzmə ]n. 等离子体,等离子区platinum [ 'plætinəm ]n. 铂plotter [ 'plɔtə ]n. 绘图器,测绘仪;制图员plunger [ 'plʌndʒə ]n. 活塞,园柱,插棒polarization [ ,pəulərai'zeiʃən, -ri'z- ]n. 极化,偏振polycrystalline [ ,pɔli'kristəlain, -lin ] a. 多晶的polyhedron [ ,pɔli'hi:drən, -he- ]n. 多面体polymorphic [ ,pɔli'mɔ:fik ] a. 多形的,多态的,多晶的porosity [ pɔ:'rɔsiti, pəu- ]n. 气孔率,多孔性postulate [ 'pɔstjuleit, -tʃə- ]n. 假定,假设potash [ 'pɔtæʃ ]n. 碳酸钾pottery [ 'pɔtəri ]n. 陶器厂,陶器(制造术)precursor [ pri:'kə:sə, pri- ]n. 前驱物premise [ pri'maiz, 'premis ]n. 前提vt. 预述(条件),提出……为前提prism [ 'prizm ]n. 棱镜prismatic [ priz'mætik ] a. 斜方晶系的probe [ prəub ]v. & n. 探针,探测器,(以探针等)探察,查明progressively [ prəu'ɡresiv li ]ad. 日益增多地,逐渐projection [ prəu'dʒekʃən ]n. 喷射prolong [ prə'lɔŋ, 'lɔ:ŋ ]vt. 拉长,延长prospective [ prəu'spektiv ] a. 预期的,有希望的prototype [ 'prəutətaip ]n. 原型,样品pseudomorph [ 'psju:dəumɔ:f ]n. 假象,假晶quarry [ 'kwɔri ]n. 采石场quartzite [ 'kwɔ:tsait ]n. 石英岩,硅岩quench [ kwentʃ ]vt. 1、把……淬火;2、熄灭ram [ ræm ]v. 猛击,填塞,撞reagent [ ri:'eidʒənt ]n. 试剂rearrangement [ 'ri:ə'reindʒmənt ]n. 重排reciprocal [ ri'siprəkəl ]n. 倒数reciprocate [ ri'siprəkeit ]v. 往复运动,上下移动,来回recycle [ ,ri:'saikl ]v. & n. 再循环,反复利用refining[riˈfainiŋ]n. (玻璃液)澄清reflectivity [ ,ri:flek'tiviti ]n. 反射性,反射系数refraction [ ri'frækʃən ]n. 折射refractive index [ ri'fræktiv 'indeks]n. 折射率refractoriness[ ri'fræktərinis]n. 耐火度refractory [ ri'fræktəri ]n. & a. 耐火材料,耐熔的,难熔的rigorous [ 'riɡərəs ] a. 严厉的,严酷的replica [ 'replikə ]n. 复制品,拷贝resonator [ 'rezəneitə ]n. 谐振器,共振器retract [ ri'trækt ]vt. 缩进,收缩retrieve [ ri'tri:v ]vt. 1、取回,恢复;2、补偿,弥补retrogression [ ,retrəu'ɡreʃən ]n. 逆反应rheology [ ri:'ɔlədʒi, ri- ]n. 流变性rhombohedral [ˌrɔmbəuˈhi:drəl] a. 菱形的,菱面体的ruby [ 'ru:bi ]n. 红宝石rupture [ 'rʌptʃə ]n. 断裂rutile [ 'ru:tail, -ti:l ]n. 金红石sagger [ 'sæɡə ]n. 闸体sanitaryware[ˈsænitəriwɛə]n. 卫生洁具schematically[ski:ˈmætikəli]ad. 用示意图,示意地,大略地scrap [ skræp ]n. 碎片,废料screw dislocation [ skru: ,disləu'keiʃən]螺旋位错cullet [ 'kʌlit ]n. 碎玻璃seam [ si:m ]n. 缝,接缝segregation [ ,seɡri'ɡeiʃən ]n. 分层sensor [ 'sensə, -sɔ: ]n. 传感器setting time[ 'setiŋ taim]硬化时间setup [ 'setʌp ]n. 1、组织,构造;2、装置,装配,创立shear [ ʃiə ]n. 剪切shrinkage [ 'ʃriŋkidʒ ]n. 收缩(性,量,率)shutdown [ 'ʃʌtdaun ]n. 关闭,熄灭sieve [ siv ]vt. & n. 筛分silicate [ 'silikit, -keit ]n. 硅酸盐silo [ 'sailəu ]n. 料仓,简仓sintering [ 'sintəriŋ ]n. 烧结skid [ skid ]n. 1、滑动,打滑;2、滑橇,划板slab [ slæb ]n. 板皮,石板岩,厚平板,厚片slag [ slæɡ ]n. (炉)渣slip casting [ slip 'kɑ:stiŋ]n. 注浆成型,泥浆浇注slurry [ 'slə:ri, 'slʌ- ]n. 稀泥浆,水泥浆soda ash [ 'səudə æʃ]苏打灰Na2CO3sodium [ 'səudiəm ]n. 纳(Na)solder [ 'sɔldə ]n. & vt. 焊料,焊接spall [ 'spɔ:l ]v. 研碎,散裂spark plug [ spɑ:k plʌɡ]n. 火花塞spatial orientations [ 'speiʃəl ,ɔ:rien'teiʃəns]空间取向spherically [ 'sferikəli]ad. 球地,球形地spindle [ 'spindl ]n. 1、轴,心轴;2、锭子,纺锤spine [ spain ]n. 脊柱spinel [ spi'nel, 'spinəl ]n. 尖晶石spodumene [ 'spɔdjumi:n ]n. 锂辉石Li2O·Al2O3·4SiO2 spray-drying[ sprei 'draiiŋ]n. 喷雾干燥sputter deposition [ 'spʌtə ,depə'ziʃən]溅射沉积stochastic [ stɔ'kæstik, stəu- ] a. 随机的,机遇的,推测的stoichiometric [ ,stɔikiə'metrik ] a. 化学计量的stoneware [ 'stəunwεə ]n. 石制品,粗陶瓷(器)stress-strain curve [ stres strein kə:v]应力-应变曲线subjective [ səb'dʒektiv ] a. 主观的submicrometer [ sʌb 'maikrəu mi:tə ]n. 亚微米suffice [ sə'fais ]v. 足够,使满足superconductor [ ,sju:pəkən'dʌktə ]n. 超导体superfine [ ,sju:pə'fain ] a. 特级的supersaturation [ 'sju:pə,sætʃə'reiʃən ]n. 过饱和(现象)surfactant [ sə:'fæktənt ]n. 表面活化剂suspension [ sə'spenʃən ]n. 悬浮液symmetry [ 'simitri ]n. 对称,匀称symposium [ sim'pəuziəm ]n. 1、专题讨论会;2、专题论文集talc [ tælk ]n. & vt. 滑石,用滑石处理tantalum [ 'tæntələm ]n. 钽tar [ tɑ: ]n. 焦油temporal [ 'tempərəl ] a. 1、暂时的,转瞬间的;2、时间的tensile strength [ 'tensail streŋθ]抗张强度ternary [ 'tə:nəri ] a. & n. 三元(的),三重(的)tetragonal [ te'træɡənəl ] a. 四方晶系的tetrahedron [ ,tetrə'hi:drət, -'he- ]n. 四面体tetravalent [ ,tetrə'veilənt, te'trævə- ] a. 四价的texture [ 'tekstʃə ]n. 织构,质地,结构thermalcouple [ 'θə:məl 'kʌpl]n. 热电偶thermal expansion coefficient[ 'θə:məl ik'spænʃən ,kəui'fiʃənt ]热膨胀系数thermal shock resistance[ 'θə:məl ʃɔk ri'zistəns ]抗热震(性)thermoplastic[ ,θə:məu'plæstik ] a. 热塑性的throwing[ 'θrəuiŋ ]n. 手工拉坯titania [ tai'teiniə, ti- ]n. 二氧化钛titanate [ 'taitəneit ]n. 钛酸盐tolerance [ 'tɔlərəns ]n. 公差,容许限度toughness[ tʌfnis ] n. 韧性toxicity [ tɔk'sisəti ]n. 毒性translucent [ trænz'lju:sənt, træns-, trɑ:n- ]n. 半透明的tridymite [ 'tridimait ]n. 磷石英trigonal [ 'triɡənəl, trai'ɡəunəl ] a. 三方的valency [ 'veilənsi ]n. 化合价,价,原子价varistor [ və'ristə ]n. 压敏电阻,可变电阻versatile [ 'və:sətail ] a. 1、通用的,万能的;2、活动的,万向的vertebra [ 'və:tibrə ]n. 椎骨,脊椎(pl. vertebrae)vinylalcohol [ 'vainil 'ælkəhɔl]n. 乙烯醇vitreous [ 'vitriəs ] a. 玻璃质的,玻璃态的vitrification [ ,vitrifi'keiʃən ]n. 玻璃化vitrify [ 'vitrifai ]v. 玻璃化,(使)成玻璃volatilization [ vɔ,lætilai'zeiʃən ]n. 挥发wetting[ 'wetiŋ ]n. (变、润、浸)湿whisker [ 'hwiskə ]n. 晶须whiteware [ 'hwaitwεə ]n. 白色(卫生)陶瓷wollastonite [ 'wuləstənait ]n. 硅灰石workability [ ,wə:kə'biləti ]n. 成型性zeolite [ 'zi:əlait ]n. 沸石zinc[ ziŋk ]n. 锌zirconia [ 'zə:kɔniə]n. 氧化锆zircon [ 'zə:kɔn ]n. 锆石,锆英石。

织物结构 电磁超材料

织物结构 电磁超材料

织物结构电磁超材料英文回答:Fabric structures are an essential part of our daily lives. They are used in various applications such as clothing, furniture, and architecture. The design and composition of fabric structures play a crucial role in their functionality and performance.One important aspect of fabric structures is their electromagnetic properties. Electromagnetic materials, also known as metamaterials, are engineered to have properties not found in naturally occurring materials. These materials can manipulate electromagnetic waves, such as light and radio waves, in unique ways. They are designed to exhibit properties such as negative refractive index, which allows them to bend light in unconventional ways.For example, consider a fabric structure made of an electromagnetic metamaterial that has a negative refractiveindex. When light passes through this fabric, it can be bent in a way that makes the fabric appear invisible. This concept has been demonstrated in various experiments, andit has the potential for applications such as invisibility cloaks or advanced camouflage.Another interesting property of electromagnetic metamaterials is their ability to manipulate the polarization of light. Polarization refers to the orientation of the electric field of a light wave. By designing fabric structures with specific patterns and compositions, it is possible to control the polarization of light that passes through them.For instance, imagine a fabric structure that is designed to only allow vertically polarized light to pass through. This fabric can be used in applications such as glare reduction in windows or screens. It selectivelyfilters out horizontally polarized light, reducing the intensity of glare and improving visibility.In addition to their electromagnetic properties, fabricstructures can also be engineered to have specific mechanical properties. By adjusting factors such as the weave pattern, thread count, and fiber type, it is possible to create fabrics with different levels of strength, flexibility, and durability.For example, a fabric structure made of tightly woven synthetic fibers can have high tensile strength, making it suitable for applications such as parachutes or safety harnesses. On the other hand, a fabric structure made of loosely woven natural fibers can have high breathability and comfort, making it ideal for clothing in hot and humid climates.In conclusion, fabric structures are versatile and can be designed to have various electromagnetic and mechanical properties. The use of electromagnetic metamaterials in fabric structures opens up new possibilities for applications such as invisibility cloaks and glare reduction. By carefully engineering the composition and design of fabric structures, we can create materials that meet specific functional requirements in differentindustries.中文回答:织物结构是我们日常生活中不可或缺的一部分。

选矿专业英语词汇

选矿专业英语词汇

选矿专业英语词汇矿物加工工艺学(浮选部分)英文词汇floatation浮选frothflotation泡沫浮选directflotation正浮选revereflotation 反浮选differentialflotation优先浮选bulkflotation混合浮选fineneofgrinding磨矿细度fractionation,izing分级mineralwettability矿物润湿性mineralflotability矿物的可浮性equilibriumcontactangle平衡接触角threephaeinterface三相界面hydrophobicityofmineral矿物的疏水性hydrophilicityofmineral 矿物的亲水性foamadheion泡沫附着ioniclattice离子晶格covalencelattice共价晶格urfaceinhomogeneity表面的不均匀性o某idationanddiolution氧化与溶解o某idizingagent氧化剂reductingagent还原剂urfacemodificationofmineral矿物的表面改性electricdoublelayer双电层ionization电离adorption吸附electrokineticpotential电动电位pointofzerocharge零电点ioelectricpoint等电点collectingagent捕收剂activatingagent活化剂foam,froth泡沫frother起泡剂hydrophilicgroup亲水基团liberationdegree解离度polargroup 极性基团nonpolargroup非极性基团ulphideore硫化矿o某idizedmineral氧化矿物某anthate黄药hydrolyi水解medicamentouelectivity药剂的选择性catchmentaction捕收作用electrochemicalaction电化学作用alkylradical烃基含氧酸organicamine有机胺类carbo某ylateurfactant羧酸盐keroene煤油pHmodifyingagentpH调整剂long-chainmolecule长链分子pyrite 黄铁矿calcite方解石chalcopyrite黄铜矿galena方铅矿blende/phalerite闪锌矿quartz石英barite重晶石o某idizedore氧化矿flocculant絮凝剂non-ionicflocculant非离子型絮凝剂deorption解吸airbladder 气泡olubility溶解度pecificurfacearea比表面积mineralreource矿源、矿藏threephaeairbladder三相气泡orepulpelectricpotential矿浆电位mi 某edpotentialmodel混合电位模型freedomhydrocarbondiverification自由烃变化electrotaticpull 静电引力intermolecularforce分子间力goethite(gothite)针铁矿emimicelleadorption半胶束吸附concentrationofolution溶液浓度flotationmachine(cell)浮选机o某ygenation充气作用aerationrecovery回收率concentrategrade精矿品位handlingcapacity处理能力Proceingcapacity,proceingpower共12页第1页专业英语词汇airbladdercolliion气泡碰撞flotationcolumn浮选柱oreconcentrationdreing富集作用floatationproce浮选工艺floatationpeed浮选速率flotationcircuit浮选流程flotationflowheetgranularity粒度degreeoffinene细度pulpdenity 矿浆浓度waterquality水质backwater回水recyclingwatermiddling中矿runofmine原矿raworegangue脉石tailing尾矿flotationprincipleflow浮选原则流程rateofdiperion分散程度diperant分散剂emiconductivityofmineral矿物半导性reagentremovalagent脱药剂ceruite/ceruite:白铅矿PbCO3矿物加工工艺学(重选部分)英文词汇(1)gravityconcentration/gravityeparation重力选矿(33)Centrifugaljig离心跳汰机(2)Abkhazite透闪石棉(34)Circularjig 圆形跳汰机(3)Amiantu石棉(35)Centrifuge离心机(4)meerchaum海泡石(36)Claificationefficiency分级效率(5)menachanite钛铁砂(37)Claifier/izer分级机(6)talcum滑石(38)Claifieroverflow分级机溢流(7)tarapite白云石(39)Claifierand分级机返砂(8)preconcentration矿石预选(40)Cloeizing窄级分级(9)Acclivity斜面(41)Claterofparticle颗粒群(10)airbornedut大气浮尘(42)Coarefeed粗粒给料(11)airconveying风力输送(43)Cyclone水力旋流器(12)amplitudeofvibration振幅(44)Caiterite锡石(13)ancillarymineral伴生矿物(45)Dilated松散床层(14)apparentvicoity视粘度(46)dimenionleparameter无因次参数(15)artificialbedding人工床层(47)duple某table双层摇床(16)attle 充填料;废屑;矿渣;废石(48)diaphragmjig隔膜跳汰机(17)averagegraindiameter平均粒径(49)dwindleout尖灭(18)a某ialmotion轴向运动(50)filmconcentration流膜选矿(19)backwahwater 冲洗水(51)finalvelocity末速度(20)backwater筛下水(52)freeettlingparticle自由沉降颗粒(21)barite菱镁蛇纹岩(53)freeettlingratio自由沉降比(22)barrenrock脉石(54)gravityconcentrate重选精矿(23)beachore砂矿(55)gravitytailing重选尾矿(24)bedeparation分层(56)ironorepellet 铁矿球团(25)bevelangle倾斜角(57)jigcycle跳汰周期(26)buddle淘洗盘(58)heavyliquid重液(27)buddlejig动筛跳汰机(59)heavy-mediaeparator重介质分选(28)buoyancy浮力(60)heavy-mediaupenion 重介质悬浮液(29)buoyantweight悬浮重量(61)hydraulicanalyi水力分析(30)Caplatometer毛细管粘度计,粘度计(62)high-weirpiralclaifier 高堰式螺旋分级机(31)Centipoie厘泊(63)hinderedettling干涉沉降(32)Centrifugalfield离心力场(64)HMS-flotationmethod重介质浮选联合分选共12页第2页(83)izinganalyi粒度分析(84)ilica硅石(85)phericalparticle球形颗粒(86)pheroid似球形(87)pindle针状形(88)piralchute螺旋溜槽(89)piralconcentrator螺旋选矿机(90)tiction静摩擦(91)ubmergedpiraltypeclaifler沉没式分级机(92)uctionbailer吸入作用(93)table摇床(94)tableriffle摇床格条(95)tablecircuit摇床流程(96)tabletailing摇床尾矿(97)tableflotation台浮(98)wedgeangle锥角(100)weight重力共12页第3页矿物加工工艺学(磁电选矿部分)英文词汇Magnetization&magneticfieldMagnetizationintenityRatiouceptib ilityDiamagnetimParamagnetimFerromagnetimMagneticdomainReverferr omagnetimSubferromagnetimCoerciveforceRemanenceMagnetizationroat ingDeo某idizationroatingMidlleroatingO某idationroatingSideriteHematiteMagnetiteUnhydrophitemagnetization MagneticproceequipmentFeeblenemagneticeparationmachineDrymagneti ceparationmachineWetfeeblenemagneticeparationmachineHighmagnetic eparationmachineHighgradmagneticparationmachineSupercondductmagn eticeparationConcentratorElectrityproceElectrityconcentratorStat iceparationAir-ionizationeparationFrictionelectriceparationMagneticprocepractic eNonmetaloreDiamondproceHeavymediumreclaim磁化和磁化磁场磁化强度比磁化系数逆磁性顺磁性铁磁性磁畴反铁磁性亚铁磁性矫顽力剩磁磁化焙烧还原焙烧中性焙烧氧化焙烧菱铁矿赤铁矿磁铁矿疏水磁化磁选设备弱磁场磁选机干式磁选机湿式弱磁场磁选机强磁场磁选机高梯度磁选机超导电选选矿机电选电选机静电选矿电晕分选摩擦电选磁选实践非金属矿金刚石选矿重介质回收共12页第4页Primaryconcentrate粗精矿Graphitegangue石墨尾矿Kaolinmagneticproce高岭土磁选Blockmetalore黑色金属矿石Manganeeoremagneticproce锰矿石磁选Colouredmetal&raremetal有色金属和稀有金属Ilmenite钛铁矿Rutile金红石Zircon锆英石Electricprocepractice电选实践Tungtatecaiteritehematite.ganguemagnetconductormineralilicatedia tomitehytereimagneticcore.windingmediumelectrophoreicreeningmagn eticfieldflu某ferromagnetferromagnetimreunitemagneticytemmagneticagitateperman entmagnetolenoidmagnetpyritelimonitereluctivityconductinduceatri ctchargeelectricfieldinterfacialmagnetimelectrodeStrontium&irono 某idPeriodicmagneticfield钨酸盐锡石赤铁矿脉石,废石,矸石.磁铁,磁体,磁石导体矿物硅酸盐硅藻土磁滞现象磁铁芯绕组,线圈介质电泳筛分磁场磁通量铁磁物质铁磁性团聚磁系磁搅动永久磁铁螺管式磁铁.黄铁矿,硫铁矿褐铁矿磁阻率传导.诱导,感应,归纳束缚电荷.电场界面的,面间的吸引力电极,电焊条,电极锶铁氧体交变磁场共12页第5页FlatationreagentprofeionalwordAborption吸收Aborptionband吸收光谱带Abtract抽出,提取Abundance丰富,丰度Accelerant促进剂Acceptance验收,接收Accumulate积累,聚集Accuracy准确度Acctate醋酸盐Acctamide乙酰胺Acid酸,酸的Acidanion酸性阴离子Acidation酸化Aciddepreion加酸抑制Acidhydrolyi加酸水解Acintol妥尔油制品Acrylicamide丙烯酰胺Activate活化Activatedadorption活性吸附Activatedmolecule活化分子Activatedeffect活化作用Activator活化剂,活性剂Acto精制石油磺酸钠Acylamide酰胺Addition加添Adhere粘附,附着Adheioncoefficient粘着系数Adheive粘合剂Adheivetenion胶结张力界面吸引力Adion吸附离子Adorbate吸附物Adorbent吸附剂Adorptioniotherm吸附等温线Adorptionlayer吸附层Aero美国氰胺公司的药剂品牌号Aerofloat美国氰胺公司的黑药牌号Aerofloc絮凝剂牌号Aerofroth起泡剂牌号Aeromine阳离子型表面活性剂Aeropromoter促进剂牌号Aerool润湿剂牌号AerourfMG-98A醚胺醋酸盐Agglomerant团聚的凝结剂Agglomerationflotation团聚浮选Aggregateoflargemolecule大分子团Aiv-avid亲气的Aiv-mineraladheion空气-矿物粘附Alamine胺的牌号Alcohol醇Alcoholfrother醇类起泡剂Aliphat-妥尔油脂肪酸牌号Aliphaticalcohol脂肪醇Aliphaticacid脂肪酸Aliphaticamine脂肪胺Aliphaticdydrocarbon脂肪烃Aliquat苯胺盐牌号Alkali碱Alkaliuity碱度,碱性Alkane链烷,烷烃Alko某y-烷氧基Alko某yamine烷氧胺Alko某ybenzene烷氧基苯Alkyl-烷基Alkylalcoholulfate烷基醇硫酸盐共12页第6页专业英语词汇Alkylamine脂肪胺Alkylaronicacid烷基砷酸Alkylarylulfonate烷基芳基磺酸盐Aldylhydro某amicacid烷基羟污酸Alkylphophate烷基磷酸盐Alkylodiumulfonate烷基磺酸钠All-flotationapproach全浮处理法Allowance允许,公差All-purpoe通用的Amine胺的牌号Amino-acid氨基酸Ammonia氨Amphateric两性的Amphotericurfactant两性表面活性剂Amylum淀粉Analyi分析Angle角,角度Anion阴离子Anioncollector捕收剂Anode阳极,正极Anti-corroivecoating防腐浮层Antifoamer消泡剂Apparenthardne表现硬度Applicability活用性,适应性Aquaion水合离子Aquation水合作用Armeen胺的牌号ArourfMG醚胺的牌号Affachedbubble粘附气泡Bagola某甲基纤维素Barrett煤焦杂酚油牌号Benzylalcohol苯甲醇Bromoform溴仿,三溴甲烷Bubble气泡,泡沫Bubbler气泡器Butyl丁基Butylaerofoat丁基黑药Calciumo某ide氧化钙Capillary毛细管,毛细作用Carbitol卡必醇Carbohydrate碳水化合物Cation阳离子Cationiccollector阳离子捕收CelluloiceCMC羧甲基纤维素Charge电荷,充电Chelate螯合物Chelateeffect螯合效应Chelationgroup螯合基团Chemicaladorption化学吸附Chemicaloreproceing化学选矿Chloroaceticacid氯乙酸Coheion粘结力凝聚力Collector捕收剂Colloid胶体Creooteoil杂酚油CriticalPHvalue临界PH值Concentrategrade精矿品位Concentration 精选、富集Cyanide氰化物Da某ad烷基磺酸钠Deflocculator反絮凝剂Defoamer消泡剂Dehydratingagent脱水剂Dehydrogenation脱氧Delamine妥尔油胺Deneliqued重液Depreant抑制剂Deorbent解吸剂Delimie脱泥Deludgingagent脱泥剂Dicarbo某ylicacid二羟酸Dodecylamine十二胺,月桂胺Dodecylalcohol十二烷醇Dodecylamine-hydrochloride十二胺盐酸盐Dreinate松脂酸皂捕收剂Dualcleaning二重精选Duponol烷基硫酸钠牌号Dut-allayingmedium防尘剂Dynamicbalance动态平衡Efficiency效率,功效Electrochemicalapproach电化学处理法Electro-kineticpotential动电势Electrotaticattraction静电吸引Emulifyingagent乳化剂E某tract提取,萃取Ferriculfate硫酸铁Flotation浮选共12页第7页矿物加工工艺常用词汇(一)1选矿-Mineraleparation(oredreing)2设计-Deign共12页第8页61粉尘-powder62噪声-yawp63污染-contamination64沉淀-formediment65净化-decontaminate66输送-tranportation67矿石-ore68物料-material69给矿-feedore70给料-feedtuff71设备-equipment72方案-project73标高-elevation74通道-paage75维修-maintain76检查-check77操作-operation78化验-tet、aay79检测-e某amine80坡度-gradient81起重机-crane82堆积-accumulation83细粒-granule、fine84粗粒-coare85尾矿坝-tailingdam86矿仓-feedbin(torehoue)87粉矿仓-cruhingpocket88产品仓-productbin(torehoue)89砂泵-pump90立式泵-tandpump91卧式泵-horizontalpump92耐酸泵-acid-proofpump93耐碱泵-alkali-reitantpump94勘察-reconnaiance95地形-landform96工程-engineering97设计步骤deignproce98规模-cale99选矿厂-concentratingmill100设计内容deigncontent(二)共12页第9页21筛网-creenmeh22筛制、筛比、筛序-creencale23筛孔尺寸-creenize24套筛-creenet25筛序-creenizegradation26筛余物creentailing27筛下产品-creenthrough(underflow.underize)28可碎性cruhability29可碎性系数-cruhabilityfactor30碎矿仓-cruhedorepocket31粉碎产品-cruhedproduct32粉碎粒度-cruherize33粉碎腔-cruhingcavity34粉碎厂-cruhingplant35粉碎系数-cruhingcoefficient36粉碎工段-cruhiongection37助磨剂-grindingaid38磨球-grindingball39磨矿负荷-grindingcharge40磨矿效率-grindingefficiency41磨矿-grindingore42磨砾-grindingpebble43磨碎能力-grindingproperty44研磨试验grindingtet45磨矿设备-grindingunit46磨矿速度-grindingrate47磨矿功率-grindingpower48磨矿车间-grindingplant49可磨性-grindability50可磨性指数-grindabilityinde 某51可磨性指标-grindabilityrating52可磨性试验-grindabilitytet53研磨工-grinder54磨工车间-grindery55磨矿动力学-grindingkinetic56粉碎能-cruhingenergy57粉碎机给矿口-cruhingmouth58粉碎面-cruhingface59粉碎力-cruhingforce60粉碎机进料口-cruherthroat61筛分动力学-creenkinetic62选厂矿仓-millbin 63选厂中矿millchat64选厂配置millconfiguration65磨过的矿石-milledore66磨机给料-millfeeder67选厂给矿-mill-head68研磨作用-millingaction69磨机衬里millliner70入选品位millinggrade71入选品位矿石milling-gradeore72磨矿机milling-grinder73细碎、精磨-millinggrinding74磨矿介质-millingmedium75磨矿法-millingmethod76选矿作业-millingoperation77选矿厂-millingplant78选厂矿泥-millinglime79选厂厂址-millite80磨机负荷-millload81选矿工(工长)millan82磨机需用功率-millpowerdraft83选矿质量控制millpualitycontrol84选矿取样-millampling共12页第10页85磨机外壳-millhell86磨机矿浆-milllurrie87磨石-milltone88选矿厂储矿仓mill-torage89选厂尾矿-milltail90选矿用水-millwater91磨矿机溶液-millolution92选矿厂建筑师-millwright93分级沉淀-claetting94矿粉-mineralfine95分级-claification96分级溢流-claifieroverflow97分级返砂-claifierand98分级机-claifier99分级筛-claifyingcreen100分级箱-claifyingbo某(三)1品位-grade2精矿品位-concentrategrade3尾矿品位-tailinggrade4尾矿场-tailarea(pile)5尾矿仓-tailingbin6尾矿滤饼-tailingcake7尾矿坝-tailingdam8尾矿池-tailingpond(pit)9取样-takingcut(ampling)10滑石talc25矿物-mineral26选矿方法mineraldreingmethod27选矿厂-concentratingmill28选矿oredreing,mineraleparation29矿物分析-mineralanalyi30矿物组合-mineralaociation31试样袋-ampleack32矿床-depoit33矿物岩相facie34矿物纤维-mineralfiber35固、气界面-mineral-airinterface36固、液界面-mineral-waterinterface37固、气、液接触mineral-air-watercontact38矿物颗粒-grain39矿物鉴定-mineralidentification40矿物资源-interet41矿物解离-mineralliberation42矿物特性mineralcharacter43矿物储量-mineralreerve44矿物(成分)检验minerallogicale某amination45扑收剂-Minerec,flotigan,46精矿回收率concentraterecovery47中矿回收率middlerecovery48精选concentration共12页第11页49附着精矿气泡concentratr-loadedbubble50精选机-concentratingmaching51分选判据-concentrationcriterion52富集比-concentrationfactor53选矿摇床-concentrationtable54选厂流程concentratorflow5选厂流程图concentratorflowheet56试样品位-amplegrade57絮凝剂-flocculant58絮凝-floculate59絮凝物-floc60絮凝浮选flocflotation61絮凝作用flocculation62浮选机flotationunit63浮选剂-flotationagent64整排浮选机flotationbank65浮选槽-flotationcell66浮选能力flotationcapacity67浮选精矿-flotationconcentrate68浮选尾矿flotationreject69浮选中矿-flotationmiddle70浮选设备flotationequipment71浮选泡沫-flotationfroth72浮选动力学flotationkinetic73浮选浸出法-flotationleachingmethod74浮选厂flotationmill75浮选油-flotationoil76浮选矿浆-flotationpulp77浮选速度-flotationrate78浮选试验flotationtet79单槽浮选机-flotationunitcell80浮选摇床-flotationtable81摇床浮选-flotationtabling82起泡剂Flotol83流程图-flowline84工艺流程图-flowprocechart(flowheet)85可选(洗)性-wahability86可选性特性-wahabilitycharacteritic87可选性曲线-wahabilitycurve88可选性指数-wahabilitynumber89可选性试验-wahabilitytet90可浮性-flotability91可浮性曲线-flotabilitycurve92粒度特性-granularity93粒度分级试验gradingtet94结构-te某ture共12页第12页。

石油英语词汇

石油英语词汇

石油英语词汇(P5)POL 面向问题的语言polar activation 极性活化polar adsorption 极性吸附polar air mass 极地气团polar angle 极角polar anticyclone 极地反气旋polar attraction 极性引力polar cap absorption 极冠吸收polar chart recorder 极坐标图记录器polar chart 极坐标地图polar circle 极圈polar climate 极地气候polar compound 极性化合物polar contact 极化继电器触点polar coordinates 极坐标polar curve 极坐标曲线polar diagramm 极坐标图polar drafter 弧形牵伸装置polar easterlies 极地东风带polar end 极性端polar expansion 线膨胀polar fluid 极性流体polar flux 极化磁通polar form 极坐标形式polar frequency plot 矢量频率图polar group 极性基团polar impurity 极性杂质polar leakage 磁极漏泄polar liquid 极性液体polar material 极性物质polar method 极坐标法polar molecule 极性分子polar monomer 极性单体polar mount antenna 极座架天线polar orbit 极轨道polar organic solvent 极性有机溶剂polar plot 极坐标图polar polymer 极性聚合物polar projection indicator 极投影指示器polar projection 极投影polar racorder 极坐标记录器polar radiation pattern 极坐标辐射图polar radius 极半径polar ray 极射线polar region 极地polar relay 极化继电器polar solid angle 极隅角polar solvent 极性溶剂polar stereographic projection 极射赤平役影polar wandering 极移polar winding 极向缠绕法;极向卷绕polar 极的polar-solvent extraction 极性溶剂萃取法polargraph 极谱仪polari- 极polarigraphy 极谱分析polarimeter 极化计polarimetric analysis 旋光分析polarimetry 旋光测定;测极化polaris 北极星polarisation 极化polariscope 偏振光镜polariscopy =polarimetrypolariton 电磁声子;偏振子polarity chron 极性时polarity coincidency correlator 极性符合相关器polarity effect 极化效应polarity encoding 极性编码polarity epoch 极性期polarity era 极性代polarity event 极性事件polarity hyperinterval 极性特超间隔polarity indicator 极性指示器polarity information 极性信息polarity interval 极性间隔polarity inversion 极性倒转polarity mark 极性标记polarity period 极性纪polarity reversal 极性倒转polarity rock-stratigraphic unit 极性岩石地层单位polarity standard 极性标准polarity subchron 极性亚时polarity subinterval 极性亚间隔polarity subzone 极性亚带polarity superinterval 极性超间隔polarity time scale 极性年表polarity 极性polarity-chronologic unit 极性年代单位polarity-chronostratigraphic unit 极性年代地层单位polarity-inverting amplifier 倒相放大器polarity-reversal horizon 极性倒转面polarium 钯金合金polarizability 极化性polarizable 极化的polarization admittance 极化导纳polarization angle 偏振角polarization capacity 极化电容polarization cell 极化电池polarization color scale 偏光色标polarization color 偏光色polarization corrosion 极化腐蚀polarization diagrams 极化图polarization effect 极化效应polarization ellipse 极化椭圆polarization factor 偏振因数polarization filtering 极化滤波polarization frequency effect 极化频率效应polarization method 偏振法polarization microscope 偏光显微镜polarization photometer 偏光光度计polarization plane 偏振光面polarization potential 极化电位polarization resistance 极化电阻polarization time 极化时间polarization vector 偏振矢量polarization 极化polarize 极化polarized ammeter 极化安培计polarized electrode 极化电极polarized geophone 偏振检波器polarized light 偏振光polarized magnet 极化磁铁polarized near-infrared spectra 偏振近红外谱polarized potential 极化电位polarized relay 极化继电器polarized seismic wave 偏振地震波polarized visible spectra 偏振可见光谱polarizer 偏光镜polarizing angle 极化角polarizing current 极化电流polarizing film 偏振片polarizing light microscope 偏光显微镜polarogram 极谱图polarograph 极谱仪polarographic analysis 极谱分析polarography 极谱法;极谱学polaroid 偏振片polaron 极化子polatization resistance monitor 极化电阻监测仪polder 新辟的低地pole brace 电杆拉线pole changing motor 变极电动机pole clearance 极距pole core 磁极铁心pole derrick 轻便井架pole diagram 极性图pole effect 电极效应pole excitation 极激励pole face 极面pole finding paper 试极纸pole guy 电杆拉线pole line 架空线pole man 消防云梯操纵手pole mast 单杆桅;杆式井架pole piece 极靴pole reduction 磁极校正pole saturation 极化饱和pole shoe bore 极靴孔pole shoe tip 极靴边pole shoe 极靴pole surface 磁极面pole terminal 极端pole 杆;测杆;极pole-dipole array 单极-偶极排列pole-pole array 单极-单极排列pole-pole curve 单极-单极曲线pole-pole sounding curve 单极-单极电测深曲线pole-pole transformed curve 单极-单极变换曲线pole-type mast 杆式井架poled 连接的polhode 本体极迹police 校正;警察poliched rod eye 悬绳器policy capture 策略俘获技术policy clause 保险条款policy decision 方针决策policy function 策略函数policy holder 保险客户policy making 决定政策policy space 策略空间policy 政策;策略;保险单poling 立杆;成极;还原;吹气;支撑polish nipple 抛光短节Polish notation 波兰表示法polish rod clamp 光杆吊环polish rod 光杆polish softener 细软化器polish 抛光polished hore receptacle 抛光孔座polished nipple 抛光短节polished OD 抛光外圆polished piston 抛光活塞polished rod capacity 光杆负荷能力polished rod head 光杆头polished rod liner 光杆衬筒polished rod load 光杆负荷polished rod stuffing box 光杆盘根盒polished rod 光杆polished section 抛光片;磨光片polished surface 抛光面polisher 抛光机;高纯度水处理装置polishing diatomaceous filtration 硅藻土精过滤polishing roll 抛光辊;轧光辊polishing scratch 磨痕political risk 政治风险politics 政治;政纲;策略polje lakle 炭岩盆地湖polje 坡立谷poll tax 人头税poll 轮询Pollard method 波拉德方法Pollard-type fracture 波拉德型裂缝polled interrupt 轮询中断pollen analysis 花粉分析pollen diagram 花粉谱pollen frequency 花粉总数pollen grain 花粉粒pollen granule 花粉粒pollen mixture 混合花粉pollen profile 花粉剖面pollen sac 花粉囊pollen tetrahedron 四角锥形花粉pollen tetred 四分花粉pollen tube 花粉管pollen 花粉pollenites 化石花粉大类Pollina 花粉门polling interval 轮询间隔polling 查询pollinium 花粉块Pollognathus 强颚牙形石属pollutant emission 污染物排放pollutant 污染物polluted ground 污染的土地polluter 污染物质;污染者pollution control 污染控制pollution exhaust criteria 排污标准pollution free fuel 无污染燃料pollution free 无污染的pollution index 污染指数pollution regulation 环境保护条例pollution source 污染源pollution tax 污染税pollution 沾污pollution-carrying 带有污染的pollution-free energy source 无污染能源polohalocarbon 多卤烃polonium 钋polor absorption 极性吸收poly allyl glycidylether 聚烯丙基缩水甘油醚poly carboxylic acid 聚羧酸poly =poljepoly 聚芳醚醚酮poly- 多poly-4-vinyl pridinium chloride 聚-4-乙烯吡啶氯化物poly-a-pyrrolidone fibre 聚-a-吡咯烷酮纤维poly-m-methyl styrene 聚间甲基苯乙烯poly-n-butyl methacrylate 聚甲基丙烯酸丁酯poly-organic scale inhibitor 聚合有机防垢剂polya =poljepolyacetal 聚缩醛polyacid 多元酸polyacrylamide 聚丙烯酰胺polyacrylate 聚丙烯酸酯polyacrylate-type VI improver 聚丙烯酸酯型粘度指数改进剂polyacrylic plastics 聚丙烯酸类塑料polyacrylonitrile 聚丙烯腈polyact =polyactin 多射骨针polyad 多合体花粉polyaddition 加聚作用Polyadopollenites 多胞粉属polyalcohol 多元醇polyalcohols 聚醇类polyalkane 聚链烷polyalkyl methacrylate 聚甲基丙烯酸烷基酯polyallomer 同质异晶聚合物;异质同晶聚合物polyalphabetic cipher 多字码密码polyamidation 聚酰胺化polyamide fibre 聚酰胺纤维polyamide 聚酰胺polyamide-imide resin 聚酰胺-酰亚胺树脂polyamine polymer 聚胺聚合物polyamine 多胺polyampholyte 聚两性电解质polyamphoteric electrolyte 聚两性电解质polyanion 聚阴离子polyanionic cellulosic polymer 聚阴离子纤维素聚合物polyaroylation 多芳酰基化polyarylamide 聚芳基酰胺polyarylate 聚芳酯polyarylation 多芳基化反应polyarylether 聚芳醚polyaryletherketone 聚芳醚酮polyarylsulfone 聚芳砜polyarylsulphone 聚芒砜polyatomic alcohol 多元醇polyatomic molecule 多原子分子polyatomic phenol 多元酚polyatron 多阳极计数放电管polybase crude 混合基原油polybasic carboxylic acid 多元羧酸polyblend fibre 聚合物混纺纤维polyblend 聚合混合物polyborane 聚硼烷polybutadiene 聚丁二烯polybutene oil 聚丁烯合成润滑油polybutene sulfonate 聚丁烯磺酸盐polybutene 聚丁烯polybutene-1 聚丁烯-1polybutylene terephthalate 聚对苯二甲酸丁二醇酯polybutylene terephthalate 聚对苯二甲酸丁二酯polybutylene 聚丁烯polybutyrolactam 聚丁内酰胺polycaprinlactam 聚癸内酰胺polycaprolactam 聚己内酰胺polycaprolactone glycol 聚已内酯乙二醇polycapronmide 聚己酸酯polycarbamate 聚氨基甲酸酯polycarboimide 聚碳酰亚胺polycarbonate resin 聚碳酸酯树酯polycarbonate 聚碳酸酯polycarpeae 显花植物polycathode counter tube 多阴极计数管polycation 聚阳离子Polycaulodus 多茎牙形石属Polycene 多新世Polychaeta 多毛纲Polychaete burrow 多毛目潜穴polychaetous 多毛目的polychlorinated biphenyl 多氯联苯polychloroprene 聚氯丁烯;氯丁橡胶polychlorostyrene 聚氯苯乙烯polychlorotrifluoroethylene 聚三氟氯乙烯polychroism 多色polychromatic beam 色束polychromatic fibre 热敏变色纤维polychromatic spectrum 多色谱polychromatic 多色的polychrome graphics display 彩色图形显示polychrome 彩色;多色的Polycingulatisporites 多环三缝孢属polyclinal fold 多斜褶皱polycoagulant 凝聚剂Polycolpits 多沟粉属polycomponent 多组分polycondensation 缩聚polycondensed aromatic rings 聚缩芳香烃环polyconic chart 多圆锥投影地图polyconic projection 多圆锥投影polycore cable 多芯电缆polycrystal 多晶体polycrystalline diamond compact bit 聚晶金刚石复合片钻头polycrystalline diamond 多晶金刚石polycrystalline zirconium dioxide fibre 多晶二氧化锆纤维polycrystalline 聚晶的polycycle 多旋回polycyclic aromatic bydrocarbon 多环芳香烃polycyclic aromatics 多环芳香烃polycyclic compund 多环化合物polycyclic geosyncline 多旋回地槽polycyclic hydrocarbon 多环烃polycyclic landform 多旋回地形polycyclic naphthene 多环烷烃polycyclic orogenesis 多旋回造山运动polycyclic ring 多核环polycyclic saturated hydrocarbon 多环饱和烃polycyclic system 多环体系polycyclic triterpenoids 多环三萜类化合物polycyclic 多旋回的;多环的;多相的;多周期的Polycyclolithus 聚环颗石polycyoalkane 多环烷烃polydeformation tectonic pattern 复变形构造模式polydemic 广居的polydiexodina 复通道属polydirectional 多方向的polydispersity 多分散性polydithiazole 聚二噻唑polydymite 辉镍矿polyelectrolyte filter 聚合电解质过滤器polyelectrolyte pretreatment 聚合电解质预处理polyelectrolyte 聚合电解质;高电解质polyene 聚烯polyenetic topography 复成地形polyenic sediment 多源沉积物polyenic 复成的polyepoxide 聚环氧化物polyeric chelate 聚合螯合体polyester polyol 聚酯多元醇polyester resin 聚酯树脂polyester synthetic lubricant 聚酯合成润滑剂polyester 聚酯polyester-imide 聚酯酰亚胺polyester-polyamide alloy fibre 聚酯-聚酰胺混合体纤维polyester-styrene-foam 聚酯-苯乙烯泡沫polyesteramide fibre 聚酰胺酯纤维polyestercarbonate 聚酯碳酸酯polyesterification 聚酯化polyether glycol 聚醚多元醇polyether oil 聚醚油polyether polyol 聚醚多醇polyether 聚醚polyetheretherketone 聚醚醚酮polyetherimide 聚醚酰亚胺polyetherization 多醚化polyetherketone 聚醚酮polyetherketoneetherketoneketone 聚醚酮醚酮酮polyethers 聚醚polyethersulfone 聚醚砜polyethoxy alkylamine surfactant 聚乙氧基烷基表面活性剂polyethoxy polypropoxy surfactant 聚乙氧基聚丙氧基型表面活性剂polyethylene glycol 聚乙二醇polyethylene insulation 聚乙烯绝缘polyethylene jacket 聚乙烯套polyethylene monofilament 聚乙烯单丝polyethylene oxide 聚环氧乙烷polyethylene pipe 聚乙烯管polyethylene polyamine 多亚乙基多胺polyethylene terephthalate 聚对苯二甲酸乙二醇酯polyethylene terephthalate 聚对苯二甲酸乙二酯polyethylene 聚乙烯polyethyleneimine 聚乙烯亚胺polyfactorial 多因子的polyfilament yarn 复丝纱线polyfoam spacer 泡沫塑料衬垫polyfoam 泡沫塑料polyformal 聚缩甲醛polyformaldehyde resin 聚甲醛树脂polyformaldehyde 聚甲醛polyfunctional compound 多官能化合物polyfurnace 聚合炉polygene 多源的polygenetic conglomerate 复成砾岩polygenetic 复成的polygenous 复成的polygeosyncline 复地槽polyglass 苯乙烯塑料polyglycol distearate 聚乙二醇二硬脂酸酯polyglycol 聚乙二醇polyglycollide fibre 聚乙交酯纤维Polygnathellus 小多颚牙形石属Polygnathodella 小拟多颚牙形石属Polygnathoides 拟多颚牙形石属polygon data encoding 多角数据编码polygon misclosure 导线闭合差polygon 多角形Polygonacidites 蓼粉属polygonal angle 导线角polygonal dislocation 多角状位错polygonal drainage pattern 多角状水系polygonal line 折线polygonal marking 地面龟裂polygonal point 导线点polygonal structure 多边形构造;龟裂构造polygonal traverse 多角导线polygonal 多边形的polygonization 多边形化polygonmetric method 导线测量法polygonmetric point 导线点polygonmetry 导线测量polygorskite 坡缕石polygraph 复写器;多种波动描记器;测谎器;著作集polyhalide 多卤化物polyhalite 杂卤石polyhalogenohydrocarbon 多卤烃polyhalohydrocarbon 多卤烃polyhedra polyhedron 的复数polyhedral pore 多面体型孔隙polyhedron 多面体polyhexamethylene adipamide 聚己二酰己二胺polyhybrid 多混合;多混合波导联接polyhydrate 多水合物polyhydric alcohol 多元醇polyhydric phenol 多元酚polyhydroxybacteriabopane 多羟基细菌霍烷polyimide film 聚酰亚胺胺薄膜polyimide 聚酰亚胺polyion 聚离子polyiron 铁粉polyisobutene 聚异丁烯polyisobutylene 聚异丁烯polyisocyanate 聚异氰酸酯polyisocyanurate 聚异氰脲酯polyisophthaloyl metaphenylene diamide fibre 聚间苯二甲酰间苯二胺纤维polyisoprene 聚异戊二烯polykaryotic 多核的Polyken coating 玻利肯公司塑料胶粘带防腐层polykraft moisture barrier 多层牛皮纸防潮层polylauryl methacrylate 聚十二基异丁烯酸盐polylitharenite 复岩屑砂屑岩Polylophodonta 多冠脊牙形石属polymer alloy 聚合物合金polymer augmented waterflood 聚合物加强注水驱油polymer blend 高分子共混物polymer blending 聚合物共混polymer brine completion fluid 聚合物盐水完井液polymer builder 聚合物助剂polymer chips 聚合体切片polymer clump 聚合物团块polymer degradation 聚合物降解polymer dielectric 聚合物电介质polymer diverter 聚合物转向剂polymer drag reducer 聚合物减阻剂polymer emulsion 聚合物乳状液polymer flexible membrane lining 聚合物柔性膜衬里polymer flooding 聚合物驱油polymer gasoline 叠合汽油polymer gel 聚合物冻胶polymer gelled fluid 聚合物稠化液polymer grade ethylene 聚合级乙烯polymer hydration 聚合物水化polymer loading 聚合物用量polymer modification 聚合物改性polymer molecule 聚合物分子polymer mud 聚合物泥浆polymer radical 聚合物游离基polymer residue 聚合物残渣polymer shear mixing system 聚合物剪切混合装置polymer solution 聚合物溶液polymer transition 聚合物转变polymer viscosifier 聚合物增稠剂polymer viscosity 聚合物粘度polymer waterflooding 注聚合物溶液polymer 聚合物;多聚物polymer-making autoclave 压热聚合釜polymer-melt temperature 聚合物熔体温度polymer-polyelectrolyte drilling fluid system 聚合物-聚电解质钻井液polymer-solvent interaction 聚合物-溶剂相互作用polymer-through-put rate 聚合物通过速率polymerbitumen 聚合沥青polymeric additive 聚合添加剂polymeric cationic clay stabilizer 聚合阳离子粘土稳定剂polymeric colloid 聚合物胶体polymeric drag reducing additive 聚合物减阻加添剂polymeric flocculant 高分子絮凝剂polymeric material 聚合材料polymeric modifier 聚合改性剂polymeric plasticizer 高分子型增塑剂polymeric pour point depressant additive 聚合物降倾点添加剂polymeric thickener 聚合增稠剂polymeric viscosifier 聚合增稠剂polymeric 聚合的polymeride =polymerpolymerisation 聚合polymerism 聚合polymerization -depolymerization equilibrium 聚合-解聚平衡polymerization accelerator 聚合加速剂polymerization activator 聚合活化剂polymerization autoclave 压热聚合釜polymerization catalyst 聚合催化剂polymerization floor temperature 聚合下限温度polymerization in filament form 长丝状聚合法polymerization in homogeneous phase 均相聚合polymerization inhibitor 阻聚剂polymerization initiator 聚合引发剂polymerization kinetics 聚合动力学polymerization mechanism 聚合机理polymerization rate 聚合速率polymerization reaction 聚合反应polymerization regulator 聚合调节剂polymerization retarder 聚合抑止剂polymerization 聚合polymerization-coupling reactant 聚合偶联剂polymerizer 聚合剂;聚合器;高温焙烘机polymetamorphic 多相变质的polymetamorphism 多相变质polymetaxylene adipamide fibre 聚己二酰间苯二甲胺纤维polymeter 多能湿度表;多能测定计polymethacrylate 聚甲基丙烯酸酯polymethoxy acetal 聚甲氧基甲缩醇;聚甲氧基缩醛polymethyl methacrylate 聚甲基丙烯酸甲酯polymethylene 聚甲烯polymethyleneimine 聚亚甲基亚胺polymethylmethacrylate 聚甲基丙烯酸甲酯polymethylpentene 聚甲基戊烯polymethylstyrene 聚甲基苯乙烯polymict 复矿碎屑岩polymictic 多杂质的;复矿的polymkeric substance 聚合物polymolecularity 多分子性;高分散性polymorph 多形体;多晶型物polymorphic inversion 多形转换polymorphism 多形性;多型polymorphy 多晶形现象polynary 多元的Polynathodella 小似多口牙形石属Polynathus 多口牙形石属polynigritite 细粒分散煤化沥青polynite 蒙脱土polynome 多项式polynomial adjustment 多项式平差polynomial discriminant function 多项式判别函数polynomial expansion 多项式展开polynomial expression 多项式polynomial fitting method 多项式拟合方法polynomial function 多项式函数polynomial interpolation 多项式插值polynomial model equation 多项式模型方程polynomial regression 多项式回归polynomial trend surface analysis 多项式趋势面分析polynomial 多项式polynorbornene rubber 聚乙叉降冰片烯橡胶Polynucella 多核藻属polynuclear aromatic hydrocarbon 多环芳香烃polynuclear aromatics 多环芳香烃polynuclear compounds 多核化合物polynuclear 多核的polyol 多元醇polyolefin resin 聚烯烃树脂polyolefin 聚烯烃polyolefins 聚烯烃类polyolein fiber 聚烯烃纤维polyorganic acid 聚合有机酸polyose 多糖polyoxyethylene ether 聚氧乙烯醚polyoxyethylene 聚氧化乙烯polyoxymethylene resin 聚甲醛树酯polyoxymethylene 聚甲醛polyoxypropyleneamide 聚氧丙烯酰胺polyparagenetic 多共生的polyparium 珊瑚群体polypeptide 多肽polypeptied chain 多肽链polyperoxide 聚过氧化物polyphagous 多食性的polyphase current 多相电流polyphase deformation 多相变形polyphase equilibrium 多相平衡polyphase flow 多相流polyphase induction motor 多相感应电动机polyphase metamorphism 多相变质作用polyphase motor 多相电动机polyphase 多相;多期的polyphasic flow 多相流polyphasic orogenic cycle 多相造山旋回polyphasic-flow regime 多相流型polyphenol 多酚polyphenylene oxide 聚苯醚polyphenylene sulfide 聚苯硫polyphosphate 多磷酸盐polyphyric 多种斑晶的polypivalolactone 聚物戊内酯Polyplacognathus 多盾齿牙形石属polyplanar 多晶平面polyplane 多翼飞机polyplant 聚合装置polyplexer 天线转接开关polypoary 珊瑚群体Polypodiaceae 水龙骨科Polypodiaceoisporites 具环水龙骨孢Polypodiidites 水龙骨孢属Polyporina 多孔粉属polyprene 聚戊二烯polypropylene glycol 聚丙二醇polypropylene impact copolymer 聚丙烯耐冲击共聚物polypropylene random copolymer 聚丙烯无规共聚物polypropylene soak 聚丙烯浸渍polypropylene 聚丙烯polypropyleneoxide 聚环氧丙烷polyprotonic acid 多元酸polyquaternary amine 聚季铵polyradical 聚合基polyreaction 聚合反应polyrod 聚苯乙烯棒polysaccharide deflocculant 多糖类反絮凝剂polysaccharide salt mud 多糖盐泥浆polysaccharide 多糖polysaccharose 多糖polysemy 多义性polysilicic acid chain 聚硅酸链polysilicon 多晶硅polysiloxane 聚硅氧烷polysiloxane-aluminium soap grease 聚硅氧烷铝皂润滑酯polysleeve 多路的polysoap 聚皂polysomy 多体性polyspast 滑车组polyspeed 多种速度;均匀调节速度polyspory 多孢子现象polystage amplifier 多级放大器polystenobath 狭深水性的polystenohaline 狭多盐生物polystyle 多柱式polystyrene film capacitor 聚苯乙烯电容器polystyrene foam 聚苯乙烯泡沫塑料polystyrene 聚苯乙烯polystyrol 聚苯乙烯polysulfide 多硫化合物polysulfonate copolymer 聚磺酸酯共聚物polysulfonate 聚磺酸盐polysulfone 聚砜polytechnic twist device 多能加捻器polytechnic 多种工艺的polytectonic 多期构造的polyterpene resin 多萜树脂polyterpene 多萜polytetrafluoroethylene 聚四氟乙烯polytetramethylene glycol 聚丁二醇polythene =polyethylenepolytope 多面体;可剖分空间;多胞形polytrifluorostyrene 聚三氟苯乙烯polytrope 多变性polytropic compression 多变压缩polytropic head 多变压头polytropic process 多变过程polytropic 多变的polytropism 多晶polytropy 多变现象polytypism 多型性polyurea 聚脲polyurethane foam insulation 聚氨酯泡沫保温polyurethane foam separator 聚氨酯泡沫分离器polyurethane foam 聚氨酯泡沫体;聚氨基甲酸酯泡沫polyurethane insulation coating 聚氨酯保温层polyurethane leather 聚氨基甲酸酯合成革polyurethane resin paint 聚氨酯树脂漆polyurethane resin 聚氨基甲酸酯树酯polyurethane rubber 聚氨酯橡胶polyurethane sponge 聚氨酯海绵polyurethane spray foam 喷涂聚氨酯泡沫polyurethane thermoplastic elastomer 聚氨基甲酸酯热塑性弹性体polyurethane 聚氨酯polyurethanetar coating 聚氨酯-焦油涂层polyuronic acid 多缩糖醛酸polyuronide 多糖醛酸苷polyvalent alcohol 多元醇polyvalent metal ion 多价金属离子polyvalent 多价的polyvinyl acetate 聚乙酸乙烯酯polyvinyl alcohol 聚氯乙烯polyvinyl butyral 聚乙烯醇缩丁醛polyvinyl chloride acetate 聚氯乙烯-醋酸乙烯酯polyvinyl chloride foam 聚氯乙烯泡沫塑料polyvinyl chloride lined tubing 聚氯乙烯衬里油管polyvinyl chloride 聚氯乙烯polyvinyl dichloride 聚二氯乙烯polyvinyl ethyl ether 聚乙烯基乙醚polyvinyl fluoride 聚氟乙烯polyvinyl isobutyl ether 聚乙烯基异丁基醚polyvinyl methyl ether 聚乙烯基甲基醚;聚乙烯甲醚polyvinyl methyl ethermaleic anhydride 聚乙烯甲基醚/马来酸酐polyvinyl methylether-maleic anhydride copolymer 聚乙烯甲基醚-马来酐共聚物polyvinyl plastic core 聚乙烯芯polyvinyl pyrrolidone 聚乙烯基吡咯烷酮polyvinyl stearate 聚硬脂酸乙烯酯polyvinyl 聚乙烯化合物polyvinylidene fluoride 聚偏二氟乙烯polyvinylidene 聚乙二烯polyxyethylated alcohol 聚氧乙烯醇醚polyxyethylated alkylphenol 聚氧乙烯烷基酚醚polyzoa 群虫polyzoan 苔藓虫polyzooid 群虫个体polzenite 橄黄煌岩Pomarangina 波马兰哈属pompier belt 带钩安全带pompier chain 挂钩梯链pompier ladder 挂钩梯PON 粒状有机氮ponceau 深红;酸性朱poncelet 百千克米秒pond 池塘;圈闭pondage 蓄水量ponded basin 阻塞盆地ponded calcareous turbidite 下沉深水钙质浊积岩ponded stream 阻塞河ponderabld 可衡量的;可估量的ponderation 沉思;考虑;估量pondlet 小水池ponor 落水洞Pontian movement 蓬蒂运动Pontian stage 蓬蒂阶Pontian 蓬蒂阶pontic 深海静水Pontilithus 海颗石pontium 深海群落Pontocypris 海星介属pontoon barge 平底船pontoon bridge 浮桥pontoon crane 浮吊pontoon manhole 浮船人孔pontoon roof 浮顶pontoon section 船舱pontoon string 浮筒排pontoon type floating roof 浮船式浮顶pontoon 浮筒;浮桥;起重机船;平底船;浮码头空气舱pontoon-deck-tank 浮顶油罐pontophilus 栖深海的Pontryagin maximum principle 庞特利雅金极大值原理pony collar 小接箍pony insulator 小绝缘子pony mixer 小混合器pony packer 小直径封隔器pony rod 短抽油杆pony sill 底座架pony 小型的;辅助的pony-size 小型的pony-substructure 小型井架底座ponza-trachyte 霓辉粗面岩ponzite 霓辉粗面岩POO 邮政汇票POOH 从井中起出pool cathode mercury-arc rectifier tube 汞弧阴极水银整流管pool cathode 汞弧阴极pool description 油气藏描述pool opener 新油层第一口产油井pool tube 汞弧整流器pool 油藏;联营pooled curde oil 矿藏原油pooled data 合并数据pooled gas 矿藏天然气pooled hydrocarbons 矿藏油气pooled sample statistics 合并样本统计量pooled sample variance 合并样本方差pooled sampling 集合采样pooled variance 合并方差pooling angle 集中合成角pooling constant 集中合成常数pooling of interest method 合营法pooling quality rating 集中合成质量评定pooling 集中合成pooling-of-interest 集合经营poop shot 低速带测量poop 舵楼甲板;船尾楼;尖锐脉冲poor casing seat 套管鞋坐不稳的poor combustion 不完全燃烧poor concreate 水泥少的混凝土poor conductor 不良导体poor efficiency 低效率poor gas 贫气poor mud 劣质钻井液poor oil 低质量油料poor perforation 射孔质量不良poor reflector 不良反瘠土;施工条件不好的土壤poor 贫的;稀少的;劣质的;含量少的poor-boy core barrel 手工制管式取心筒poor-boy job 一揽子承包作业poor-boy rig 浅井钻机poor-man anchor 尾管式气锚poor-quality water 劣质水poorly graded 分级差的;分选差的poorly rounded 磨圆度差的poorly sorted 分选差的pop safety valve 紧急安全阀pop valve 突开阀pop 发射POP 开泵POP 直立式海洋平台pop-off valve 安全阀pop-up buoy 急出急没浮筒pop-up 反射popcorn polymerization 玉米花状聚合poping 突然开启poppet pressure 支架压力poppet valve 提动阀poppet 随转尾座;托架;枕木;执行架;提升阀poppethead 随转尾座popping pressure 突开压力popping 激发;突然鸣叫;突然跳出popple 起光翻滚;波动;起伏popualtion regression 总体回归popular edition 普及版popularity 通俗性;普及popularization 普及population coefficient of variation 总体变导系数population correlation coefficient 总体相关系数population covariance 总体协方差population density index 人口稠密指数population distribution 总体分布population mean point 总体样中点population mean 总平均值population parameter 总体参数population variance 总方差population 总体;人口;密度;群种popwer station 发电站Poraspis 孔甲鱼属porcelain bobbin 瓷筒子porcelain clay 瓷土porcelain earth 高岭土porcelain filter 陶瓷过滤器porcelain insulator 陶瓷绝缘子porcelain liner 瓷衬里porcelain nozzle 瓷质纺丝头porcelain 瓷器;瓷的;脆的porcelaneous 瓷状的porcelanic 瓷状的porcelanous 瓷状的porcellanite 中柱石porch 边缘porcupine 刮管器pore abundance 孔隙发育程度pore body radius 孔隙半径pore boundary 孔隙边界pore bridging 孔隙搭桥pore bulge 孔隙扩大pore cast 孔隙铸模pore cement 孔隙胶结物pore channel 孔隙通道pore character 孔隙特征pore cluster 孔隙簇pore compressibility 孔隙压缩性pore configuration 孔隙形状;孔隙结构pore connectivity 孔隙连通性pore constriction 孔隙喉道pore coordination number 孔隙配位数pore cross-section 孔隙截面pore diameter distribution 孔径分布pore diameter 孔隙直径pore domain 孔隙域pore doublet model 孔隙对模型pore entrance radius 孔隙入口半径pore entry radius 孔隙入口半径pore entryway 孔隙入口pore exit 孔隙出口pore filling 孔隙充填pore fluid 孔隙流体pore geometry factor 孔隙几何因数pore geometry 孔隙几何形状pore interconnection 孔间通道pore length 孔隙长度pore level flow 孔隙内流动pore level model 孔隙级模型pore lining 孔壁附着pore membrane 孔膜pore morpholohy 孔隙形态pore network 孔隙网络pore opening size 孔径pore passage 孔道pore path 孔道pore pressure 孔隙压力pore radius 孔隙半径pore restriction 孔隙收缩pore shape 孔隙形状pore size determination 孔隙大小测定pore size distribution 孔隙大小分布pore sorting 孔隙分选pore space characterization 孔隙空间特征描述pore space 孔隙空间pore structure 孔隙结构pore surface 孔隙表面pore texture 孔隙结构pore throat 孔喉pore tortuosity 孔隙扭曲性pore velocity 孔隙流速pore volume compressibility 孔隙体积压缩系数pore volume injected 注入的孔隙体积倍数pore volume 孔隙体积pore waist 孔隙收缩颈pore wall 孔壁pore water head 孔隙水压头pore water pressure 孔隙水压力pore water 孔隙水pore width 孔隙宽度pore 孔隙pore-aperture radius 孔隙开口半径pore-body 孔隙体pore-by-pore displacement efficiency 逐孔驱替效率pore-center network 孔隙中心网络pore-entry diameter 孔隙入口直径pore-fluid pressure 孔隙流体压力pore-volume-weighted pressure 孔隙体积加权压力pore-wall curvature 孔壁曲率pored 有孔的Porifera 多孔动物门;海绵动物门porigelinite 多孔腐殖体poriness 多孔性porodic 非晶质的porodite 变质火山碎屑岩poroelastic medium 多孔弹性介质porometer 孔隙度仪poroperm characteristics 孔渗特征Poroplanites 凹褶孢属poroscope 测孔计porosimeter 孔隙度仪porosint 多孔材料porosity communication 孔隙连通porosity cutoff 孔隙度下限porosity enhancement 孔隙度放大porosity exponent 孔隙度指数porosity frequency distribution 孔隙度频率分布porosity gradient 孔隙梯度porosity isopleth map 孔隙度等值线图porosity log 孔隙度测井porosity overlay 孔隙度叠合图porosity pod 多孔性扁透镜体porosity reduction 孔隙度下降porosity thickness 孔隙地层厚度porosity trap 孔隙性圈闭porosity 孔隙度;空隙度;孔率porosity-compressibility product 孔隙度-综合压缩系数乘积Porosphaera 孔球轮藻属porous absorber 多孔吸收剂porous adsorbent 多孔吸附剂porous body 多孔体porous cement 孔隙胶结物porous channel 孔道porous cup tensiometer 多孔杯张力仪porous diaphragm device 多孔隔膜仪porous formation 多孔地层porous fractured medium 孔隙裂缝性介质porous glass disk 多孔玻璃圆盘porous ground 多孔岩层porous hydrocarbon-bearing medium 多孔含烃介质porous interval 孔隙层段porous layer 多孔岩层porous mass 多孔物质porous medium 多孔介质porous membrane 多孔滤膜porous model 多孔模型porous mold 多孔模porous network 多孔网络porous pay zone 多孔产层porous plate 多孔板porous pot 多孔瓶porous rock 多孔岩石porous structure 多孔结构porous vesicular surface 多孔表层porous walled breakwater 多孔墙式防波堤porous water sand 多孔含水砂层porous 孔隙的porphin 卟吩porphyrin complex 卟啉络合物porphyrin 卟啉porphyrinogen 卟啉原porphyrinogenic steroid 生卟啉甾类porphyrite 玢岩;斜长斑岩porphyritic breccia 斑状角砾岩porphyritic crystal 斑晶porphyritic 斑状porphyroblast 斑状变晶porphyroblastic texture 变斑晶结构porphyroclast 残碎斑晶porphyroclastic texture 碎斑结构porphyrocrystallic 斑状的porphyrocrystic 斑晶的porphyrogranulitic texture 斑粒结构porphyroid neomorphism 残斑新生变形作用porphyroid 残斑岩porphyrotopic 斑状的porphyry 斑岩porpoise 海豚式游动;前后震动porpoising 跳跃颠簸porporino 血卟啉;黄粉金port anchorage 港内锚地port and starboard 左舷及右舷port authority 港务局port charge 港口费port collar 带孔短节port conservancy 港湾管理局port depot 港口油库port duties 港税port facilities 港湾设施port hand buoy 左舷浮标port hand 左舷port installations 港口设施port of coaling 装煤港port of definite anchorage 定泊港port of destination 到达港port of entry 进口港port of exportation 输出港port of importation 输入港port of loading 装货港口port of refuge 避难港port of sailing 启航港port of shipment 装货港port of transshipment 中转港port of unloading 卸货港port office 港务局port operation 港湾经营port outlet 出口port side 左舷port tarifff 港口费PORT 便携的port 汽门portability 轻便性portable acetylene generator 移动式乙炔发生器portable appliance 手提式仪器portable arc welding machine 移动式弧焊机portable asphalt plant 移动式沥青混合设备portable beam 活动梁portable breakout equipment 轻便式拆装设备portable calibration jig 便携式刻度夹portable computer 便携式计算机portable crane 轻便起重机portable derrick 轻便井架portable disk pack 活动磁盘组portable drawworks 轻便绞车portable drill 轻便钻床portable drilling rig 轻便钻机portable environmental calibrator 轻便式刻度器portable field reflectance spectrometer 轻便式野外反射率分光仪portable field spectrometer 便携式野外能谱仪portable filtration unit 移动式过滤装置portable fire extinguishing system 移动式灭火系统portable fire pump 手抬消防泵portable hatch beam 舱口活动梁portable land source 便携式陆地震源portable mast 便移式井架portable neutron generator 小型中子发生器portable oscilloscope 便携式示波器portable pipe line 便移式管道portable pipe mill 铺管车portable prover 移动式检定装置portable pulling machine 便移式拨管机portable pumping unit 便移式抽油装置portable rig 轻便钻机portable seismograph 便携式地震仪portable shallow-seismic equipment 便携式浅层地震装备portable steam generator 移动式蒸汽发生器portable torque meter 便携式扭矩仪portable unibus terminator 轻便单总线终端portable well tester 轻便式试井设备portable winch 轻便绞车portable word processor 便携式文字处理机portable workover rig 移动式修井机portable 轻便的portable-lathe 手提式坡口机portage bed 波尔提季层portage 搬运;水陆联运portal crane 龙门吊portal 门;隧道口portative 轻便的ported disc 带眼玻璃盘ported sub 带孔接头portent 预兆。

光催化剂载体及其固定化方法的研究进展

光催化剂载体及其固定化方法的研究进展

光催化剂载体及其固定化方法的研究进展刘子全;姜付义;马霞;柳瑞翠;蒋润乾【摘要】Supported photocatalyst is one of composite photocatalysts, which was made by loading and immobilizing photocatalyst onto the supported material. Based on the findings reported in the present literatures at home and abroad,the functions and types of supported materials and the idea of supported materials selecting etc. Were reviewed. From the immobilization forms of photocatalyst loading, the research progress in the loading method and process of those photocatalysts was emphatically summarized. Meanwhile, research hotspots and development trends of supported photocatalysts were also discussed.%负载型光催化剂是将光催化剂负载固定于载体上而得到的一种复合型光催化材料.在参考近年来国内外光催化领域研究的基础上,对负载型光催化剂的载体的作用、选择的一般原则、常用载体的类型等进行了概述.从负载型光催化剂的负载固定的形式入手,重点综述了近年来光催化剂的负载固定化方法的研究进展,同时提出了目前负载型光催化剂研究的热点和发展趋势.【期刊名称】《无机盐工业》【年(卷),期】2011(043)011【总页数】3页(P6-8)【关键词】光催化剂;负载型光催化剂;负载固定【作者】刘子全;姜付义;马霞;柳瑞翠;蒋润乾【作者单位】烟台大学环境与材料工程学院,山东烟台264005;烟台大学环境与材料工程学院,山东烟台264005;烟台大学环境与材料工程学院,山东烟台264005;烟台大学环境与材料工程学院,山东烟台264005;烟台大学环境与材料工程学院,山东烟台264005【正文语种】中文【中图分类】TQ134.11目前,光催化技术在废水处理上尚未完全实现工业化,在工程应用方面存在的主要问题是悬浮体系中需分离回收的光催化粉末相当一部分流失,而且回收的催化剂活性也有所降低。

用于DNA分子检测的纳米电极

用于DNA分子检测的纳米电极

第13卷第1期2015年1月纳米技术与精密工程Nanotechnology and Precision Engineering Vol.13No.1Jan.2015DOI 10.13494/j.npe.20140090于静静,王磊,刘全俊.用于DNA 分子检测的纳米电极[J ].纳米技术与精密工程,2015,13(1):34-40.Yu Jingjing ,Wang Lei ,Liu Quanjun.Nanopores integrated with nanoelectrodes for DNA molecule detection [J ].Nanotechnology and Preci-sion Engineering ,2015,13(1):34-40(in Chinese ).用于DNA 分子检测的纳米电极于静静,王磊,刘全俊(东南大学生物电子学国家重点实验室,南京210096)摘要:基于纳米孔技术的新兴单分子传感技术已开发用于DNA 测序,使得测序技术读取数据更快、测序成本降低、测序样品简化、无需标记.纳米孔孔内集成横向纳米电极可实现二维双通道同时检测易位信号的变化,从而提高纳米孔测序的精确度.目前纳米电极的制备方法主要包括:机械可控劈裂结法、电子束光刻法、电子束诱导沉积法、聚焦离子束刻蚀法、透射电镜刻蚀法等.分析纳米电极不同制备方法、应用范围、表征及其优缺点,可为后续纳米孔技术应用到DNA 测序平台提供高效、稳定的选择.关键词:纳米电极;纳米孔;单分子;DNA 测序中图分类号:Q819文献标志码:A文章编号:1672-6030(2015)01-0034-07收稿日期:2014-12-02.基金项目:国家重点基础研究发展计划(973计划)资助项目(2011CB707600);国家自然科学基金资助项目(62372031,61071050);中央高校基本科研业务费专项资金资助项目.作者简介:于静静(1981—),女,博士.通讯作者:刘全俊,副教授,lqj@seu.edu.cn.Nanopores Integrated with Nanoelectrodes forDNA Molecule DetectionYu Jingjing ,Wang Lei ,Liu Quanjun(State Key Laboratory of Bioelectronics ,Southeast University ,Nanjing 210096,China )Abstract :Single molecule sensing techniques based on nanopore ,as an emerging technique ,has been applied in DNA sequencing with faster reading ,lower cost ,simpler sampling and label-free advantages.Dynamic changes of translocation events can be recognized by nanopore with embedded transverse nano-electrodes.Then two-dimensional signal can be acquired ,which improves the accuracy of the DNA se-quencing.The fabrication methods of the nanoelectrode mainly include mechanically controllable break junction ,electron beam lithography ,electron beam induced deposition ,focused ion beam etching and transmission electron microscope etching.We reported on the fabrication ,application and characterization of nanopore integrated with nanoelectrodes ,and analyzed the advantages and disadvantages of these meth-ods.This is an important platform for nanopore applied to ultrafast DNA sequencing by nanoelectrodes.Keywords :nanoelectrodes ;nanopore ;single molecule ;DNA sequencing纳米孔测序技术凭借其成本低、操作简单快速、无需标记等优势,自1996年一经提出就被认为是一种快速非标记单分子检测的有力技术之一[1].但就目前国际研究进展来看,纳米孔实现DNA 测序还存在挑战,纳米孔单分子测序技术依然存在几个关键的技术难点[2-4]:①高精度,提高检测的精度同时降低噪声,以提2015年1月于静静等:用于DNA分子检测的纳米电极·35·高对4种碱基(A、T、C、G)的区分能力;②高通量,纳米孔测序阵列(100000个平行纳米孔)芯片的设计与制作;③低易位速率,控制核酸分子的易位速度,将速度减小到1ms/bp[5-6].目前用于DNA测序的纳米孔主要是生物纳米孔与固态纳米孔,两者各有优劣[4].生物纳米孔检测精度高,可以通过生物改造或者借助适体分子精确地区分单个碱基及控制DNA分子易位速率,如α-溶血素与环糊精或DNA聚合酶结合[7],从而借助这类适体分子提高α-溶血素检测的精度;突变型的MspA蛋白孔与Phi29DNA聚合酶组合,实现两次检测,提高了检测的准确性[8].但生物纳米孔的持续稳定性不够,对环境要求较高,持续性工作能力较差,且高通量制备成本较高[4,9].虽然英国牛津纳米孔公司2013年11月启动的MinION测序仪早期试用计划将α-溶血素应用到DNA测序中,并于2014年初公布了有关MinION的首个数据,但是结果也不尽如意.由于数据中的电流是纳米孔中数个碱基易位时的函数,这让整个测序过程及碱基的推断变得很困难,同时reads读长也较短(5.4 kb),存在4%的错误率,未达到预期目标[10-11].虽然目前还没有将固态纳米孔应用到DNA测序中,但是长远来看,固态纳米孔仍是DNA测序的最终选择.固态纳米孔具有更易保存、化学稳定性好、尺寸大小可控、高通量成本低等方面的优势[4,12-14].但是固态纳米孔的精确度有待提高,需要减小纳米孔孔径[5]、减薄纳米孔通道[15-16]、表面特异性修饰[17]等,无形中增加了制备成本及难度.本文中将介绍另一种可供选择的方法———横向纳米电极,无需对样品DNA进行任何处理,在纳米孔中集成孔内纳米电极,通过增加横向电流信号的变化来区分单个碱基,实现检测的多维性、高准确性和高灵敏度.1横向纳米电极原理Lagerqvist等[18]、Zhao等[19]和Zwolak等[20]通过理论计算出DNA4种碱基具有唯一的隧穿电流信号,这主要和碱基的电气和化学性质有关.因此许多研究人员利用各种技术制备集成孔内纳米电极的纳米孔检测隧穿电流,从而期望能够对DNA4种碱基进行区分.Zwolak等[20]通过理论计算,发现每个碱基具有特定的电气信号,并随着核苷酸方向的不同发生变化.由于纳米电极与碱基的大小相近,故相近核苷酸的电气信号不受影响.由于每个碱基的HOMO与LUMO的能量差不同,当DNA分子通过横向纳米电极时,产生唯一的隧穿电流信号,从而达到测序的目的.2横向纳米电极的制备以往受传统微加工工艺的限制,制作适用于特异性分子检测的纳米孔成为一项艰巨的任务.因为如果纳米电极之间的间距太小不利于分子过孔时保持天然的结构,以致于不能真实地表征分子的结构.所以,对纳米孔孔内电极间距的精确调节成为制备孔内纳米电极的主要难题之一.近几年,正是由于这一难题的存在,许多科研人员和小组研究产生了许多新颖、高效的孔内纳米间隙电极的制作方法,包括:机械可控劈裂结(mechanically controllable break junction,MCBJ)法、电子束光刻(electron beam lithography,EBL)法、电子束诱导沉积(electron beam induced deposition,EBID)法、聚焦离子束(focused ion beam,FIB)刻蚀法、透射电镜(transmission electron microscope,TEM)刻蚀法等.图1机械可控劈裂结法制备核苷酸大小纳米电极Fig.1Formation of nucleotide-sized nanoelectrode gaps using a lithographically-defined mechanically con-trollable break junction2.1机械可控劈裂结法Tsutsui等[21-23]采用机械可控劈裂结技术制备了孔内纳米金电极(见图1[23]).图1(a)中表明“自我断·36·纳米技术与精密工程第13卷第1期裂”法是利用支点的作用将悬空的纳米级的金链结打断,这主要是利用变形达到断裂的目的.通过这种方法形成的纳米孔直径可达到0.5nm ,然后再利用压电器对间距进行精确的调节(见图1(b )),从而制作成任意大小的纳米金电极.该小组利用“自我断裂”的方法,能够大量制作出直径为0.8nm 的纳米金电极,误差为0.1nm ;0.8nm 的纳米间距与单链DNA 碱基长度相一致,这就意味着在未来可以将这种纳米电极用于单链DNA 隧穿电流的检测.但是这种方法制备的纳米电极的成功率不高,价格昂贵,且纳米间隙宽度大小不好控制,较难推广,目前仅有Tsutsui 研究团队[21-23]采用这种方法进行相关的纳米孔研究.该组也首次通过实验证明纳米电极可以应用于DNA 单分子的检测[21].采用机械可控劈裂结法制备的1nm 间距的纳米电极,分析3个碱基(CMP 、TMP 、GMP ),实验结果显示,GMP 的电导大于CMP ,大于GMP ,与HOMO-LUMO 原理分析一致,说明实验结果可靠,通过实验验证了理论推测,为之后纳米电极的计算与应用提供基础.2.2聚焦离子束刻蚀法聚焦离子束作为一种常用的制作纳米结构的技术,也被运用到纳米电极的制作当中,这种技术主要是依靠高能离子束将电极打断,并同时击穿悬空膜,这种方法有利于纳米电极的批量加工,而且重复性较高.Lee 等[24]利用高能Ga 离子将金电极和氮化硅薄膜同时轰击穿,从而制备出集成孔内纳米电极的纳米孔,直径在5 20nm 之间(见图2[24]).另外,Spinney 等[25]利用该方法制备出集成碳电极的纳米孔,纳米孔的直径达到3.5 4.0nm.这种碳纳米电极可以有效地提高识别短片段DNA 的灵敏度,但用于DNA 测序还需要做出更多的努力.图2聚焦离子束刻蚀纳米电极过程Fig.2Schematic diagram of fabrication process of nanoelectrode by focused ion beam etching由于聚焦离子束方法的显著优越性,本研究团队采用聚焦离子束的方法制备出41nm 孔内纳米间隙电极,并进行了相应的表征[26],通过ps 微球实验进行验证(数据暂未公布),并且将该方法与氦离子显微镜相结合实现更加精细结构的加工,使得纳米电极的线宽控制在10nm 以下,如图3所示,并且可以根据实验要求对纳米电极的线宽和大小进行可控的调节.图3氦离子显微镜下制备纳米电极前后的金电极Fig.3Au wire before and after fabricating nanoelec-trode with helium-ion microscopy2.3电子束诱导沉积法Carminati 等[27]和Ivanov 等[28]利用电子束诱导沉积法将2μm 的Au 纳米间隙电极缩短成1nm 左右的Pt 纳米电极(见图4[28]).利用该装置,检测到λ-DNA 单分子易位过程中两种易位事件:亚毫秒的离子电流信号与大于1ms 的离子电流与隧穿电流信号.但是,在实验过程中电解质溶液可能会通过上方的腐蚀窗将电极之间导通,这其实不利于隧穿电流的检测;同时DNA 分子也会吸附到金属纳米电极上产生电流可能掩盖真实的隧穿电流信号.因此使用该方法进行横向电流的检测仍有一些问题亟待解决.Ivanov 等[29]2014年报道的文献中,在原有的电子束诱导沉积法基础上进行了改进,选择适合电子束诱导沉积法前体,制备的纳米电极具有超灵敏和较薄的针尖(高度也仅有几个纳米),同时可以精确控制纳米间隙的长度与宽度,可以重复性操作制备纳米电极的矩阵,增加检测灵敏度的同时,也加大了检测通量.近期,Shim 等[30]采用电子束诱导沉积法制备的二氧化铪(HfO 2)薄膜(16nm ),其优良特性可以很好地应用到纳米孔检测中.2015年1月于静静等:用于DNA分子检测的纳米电极·37·图4Au-Pt纳米电极装置示意Fig.4Schematic of the Au-Pt nanoelectrode device2.4电子束光刻法电子束的得布罗意常数很小,有利于利用电子束光刻技术制备精细结构,而且具有可批量生产、价格低廉等优势.Uehara等[31]利用电子束光刻的方法制备出直径50nm左右嵌入式纳米电极的纳米孔,如图5所示,w e为间隙电极宽度,w c为通道宽度,h c为通道高度,l e为间隙电极的线宽,h e为间隙电极的高度,l e+l c 表示整个通道的长度.该纳米孔用于λDNA分子易位的动力学研究,实验数据与模拟数据吻合,为后期DNA单分子测序的技术提供支持.该方法与其他科研人员制备的表面纳米电极有所区别,利用这种方法制备的纳米电极可能会有将近2nm误差,但是重复性还是比较可观的.电子束光刻技术除了用于制备纳米电极之外,还可以用于制作SiN纳米线[32],形成等效于三极管的纳米孔装置.电子束光刻法制备的纳米电极受较多因素影响,尤其是制备间隙较小的纳米电极(小于30nm)[33].Manheller等[34]根据这个特点,调整制备方案,选用合适的膜材料,采用两步的方法制备出4 6nm的纳米电极.Healy等[35]客观分析了电子束光刻法制备的纳米电极(6 12nm)装备失败的原因,主要分为4个方面:膜破裂、静电放电、纳米孔表面污染以及纳米电极信号不稳定.Fanget等[36]分析了之前报道中出现的问题,指出电子束光刻法成功制备纳米电极的关键步骤:明确纳米间隙电极定义、电极与隔层之间的接触、电极钝化以及膜的制备.根据以上的步骤可以高通量地制备出10nm以下重复性较高的纳米电极,并且可以成功地检测到DNA分子的易位信号.图5嵌入式纳米电极的纳米通道装置示意Fig.5Schematic of electrode-embedded nanochanneldevice·38·纳米技术与精密工程第13卷第1期2.5透射电镜法透射电镜相较于一般的光学显微镜有明显的优势,目前Titan (FEI )透射电镜的分辨力可达到10nm ,这种精确度对于纳米电极的制作具有极大的优势.Fischbein 等[37]将制备好的硅片放入透射电镜中,从而制备出直径3 10nm 的集成纳米电极的纳米孔.将芯片放置于透射电镜的样品台上,金属面朝上与电子束保持垂直(参数设置为电子束直径约0.5nm ,电压200kV ,收敛角最小,放大倍数100000倍以下,电子束密度约为10pA /cm 2),随后将放大倍数增大至800000倍,并对电子束进行优化后,电子束密度约为50pA /cm 2,电子束调至所需像素之后对指定区域进行灼烧,灼烧过程中Au 原子离开中间的颈部区域,从而形成纳米间隙,如图6[37]所示.利用TiO 2作为绝缘层,可以有效降低集成纳米电极纳米孔的电气噪声.透射电镜极高的分辨力弥补了其他方法的不足,但是利用透射电镜制备纳米电极的成本高且费时,这主要是受到透射电镜样品台的限制,所以这种方法不能大批量加工纳米电极.图6电子束制备纳米间隙金电极Fig.6Au wire with nanogap fabricated by electron beam3纳米电极的表征目前,纳米电极在制备方面已有很多研究成果,如何对制备出的纳米电极进行表征,还在不断发展中.现在用来表征纳米电极的手段主要有两种:扫描电子显微镜(scanning electron microscope ,SEM )和伏安特性曲线.3.1扫描电子显微镜表征扫描电子显微镜是利用二次电子信号成像来观察样品的表面形态,所以扫描电子显微镜能够直观地看到纳米电极的结构.通过扫描电子显微镜对纳米电极的表征可以观察到集成纳米电极的纳米孔的直径大小,但是对于多层薄膜结构的集成纳米电极的纳米孔,扫描电子显微镜难以看到纳米电极内部的结构.3.2伏安特性曲线表征伏安特性曲线是以电压(U )为横坐标、电流(I )为纵坐标做出的曲线图谱,用来表征电阻变化规律.很多研究人员利用该方法对纳米电极进行表征,纳米电极之间的间隙与电阻呈一定的相关性,电极之间的距离越小电阻也就越小.图7[28]表示了不同间隙纳米电极的伏安特性曲线.伏安特性曲线可以直观表现出电阻的大小,从而间接地表征纳米电极之间的间隙,但同时这种方法受到很多因素的影响,例如:温度、电极厚度、电解质浓度.因此伏安特性法只能够在一定程度上间接地表征纳米电极.图7不同间隙横向纳米电极伏安特性曲线Fig.7I-V curves of transverse nanoelectrodes with dif-ferent gap sizes4结语孔内纳米电极纳米孔装置可以有效应用于单分子测序中,主要是由于DNA 分子易位时产生的横向隧穿电流,将各个碱基区分开来.在这几种纳米电极制备的方法中,“自我断裂”法、聚焦离子束刻蚀法和透射电镜刻蚀法对于制作直径10nm 以下的纳米孔具有优势,但是“自我断裂”法费用昂贵、难以普及;透射电镜刻蚀法分辨力高,但是受样品台大小的限制,效率低;而聚焦离子束刻蚀法具有批量加工、制备效率高、重复性高、价格低廉等优势.然而制备直径10 50nm 的纳米电极,电子束光刻法、电子束诱导法和聚焦离子束刻蚀法都可以使用,这些方法都具有高效性、重复性高等优势.因此,聚焦离子束的方法相对而言是最具优势的制备纳米电极的方法,能够制备出直径3 100nm 的2015年1月于静静等:用于DNA分子检测的纳米电极·39·纳米电极,并且具有重复性好、效率高、价格低廉等优势.生物纳米孔的稳定性问题和固态纳米孔的制造及检测精度问题是纳米孔器件面临的一个挑战,虽然纳米间隙电极可以在一定程度上提高检测精度,但是要想制备出性能均一的商业化测序设备的纳米孔器件还是很难达到,因此三者的结合或许能够走出这样的困境.目前本研究小组正在将纳米电极与固态纳米孔、生物纳米孔结合起来,构建一个高度稳定、可重复的复合纳米孔检测器件,使得单链DNA分子能够在受控的情况下通过纳米孔而实现DNA测序的功能(已获得国家自然科学基金62372031的资助支持).单分子的准确识别是DNA测序的关键,该装置的成功完成将在增加DNA测序检测精度的同时,保证检测的稳定性,促进新一代测序技术的发展.参考文献:[1]Kasianowicz J J,Brandin E,Branton D,et al.Characteriza-tion of individual polynucleotide molecules using a membranechannel[J].Proc Natl Acad Sci,1996,93(24):13770-13773.[2]Venkatesan B M,BashirR.Nanopore sensors for nucleic acid analysis[J].Nat Nanotechnol,2011,6(10):615-624.[3]Fuller C W,Middendorf LR,Benner S A,et al.The chal-lenges of sequencing by synthesis[J].Nat Biotechnol,2009,27(11):1013-1023.[4]Haque F,Li J,Wu H C,et al.Solid-state and biological nanopore for real-time sensing of single chemical and se-quencing of DNA[J].Nano Today,2013,8(1):56-74.[5]AkahoriR,Haga T,Hatano T,et al.Slowing single-stran-ded DNA translocation through a solid-state nanopore by de-creasing the nanopore diameter[J].Nanotechnology,2014,25(27):275501.[6]Luan B,Stolovitzky G,Martyna G.Slowing and controlling the translocation of DNA in a solid-state nanopore[J].Nanoscale,2012,4(4):1068-1077.[7]Astier Y,Braha O,Bayley H.Toward single molecule DNA sequencing:Direct identification of ribonucleoside and de-oxyribonucleoside5'-monophosphates by using an engineeredprotein nanopore equipped with a molecular adapter[J].JAm Chem Soc,2006,128(5):1705-1710.[8]Manrao E A,Derrington I M,Laszlo A H,et al.Reading DNA at single-nucleotide resolution with a mutant MspAnanopore and phi29DNA polymerase[J].Nat Biotechnol,2012,30(4):349-353.[9]Venkatesan B M,BashirR.nanopore sensors for nucleic acid analysis[J].Nat Nanotechnol,2011,6(10):615-624.[10]Eisenstein M.Oxford nanopore announcement sets sequen-cing sector abuzz[J].Nat Biotechnol,2012,30(4):295-296.[11]Erika C H.Data from pocket-sized genome sequencer un-veiled[J].Nature,2014.Doi:10.1038/nature.2014.14724.[12]Miles B N,Ivanov A P,Wilson K A,et al.Single molecule sensing with solid-state nanopores:Novel materials,meth-ods,and applications[J].Chem SocRev,2013,42(1):15-28.[13]Dekker C.Solid-state nanopores[J].Nat Nanotechnol,2007,2(4):209-215.[14]Storm A J,Storm C,Chen J H,et al.Fast DNA transloca-tion through a solid-state nanopore[J].Nano Lett,2005,5(7):1193-1197.[15]Wells D B,Belkin M,Comer J,et al.Assessing graphene nanopores for sequencing DNA[J].Nano Lett,2012,12(8):4117-4123.[16]Garaj S,Hubbard W,Reina A,et al.Graphene as a sub-nanometre trans-electrode membrane[J].Nature,2010,467(7312):190-193.[17]Wanunu M,Meller A.Chemically modified solid-state nano-pores[J].Nano Lett,2007,7(6):1580-1585.[18]Lagerqvist J,Zwolak M,Di Ventra M.Fast DNA sequen-cing via transverse electronic transport[J].Nano Lett,2006,6(4):779-782.[19]Zhao X,Payne C M,Cummings P T,et al.Single-strand DNA molecule translocation through nanoelectrode gaps[J].Nanotechnology,2007,18(42):424018.[20]Zwolak M,Di Ventra M.Electronic signature of DNA nucle-otides via transverse transport[J].Nano Lett,2005,5(3):421-424.[21]Tsutsui M,Taniguchi M,Yokota K,et al.Identifying single nucleotides by tunnelling current[J].Nat Nanotechnol,2010,5(4):286-290.[22]Tsutsui M,Rahong S,Iizumi Y,et al.Single-molecule sensing electrode embedded in-plane nanopore[J].SciRep,2011.Doi:10.1038/srep00046.[23]Tsutsui M,Ohshiro T,Matsubara K,et al.Atomically con-trolled fabrications of subnanometer scale electrode gaps[J].J Appl Phys,2010,108(6):064312.[24]Lee Ju-Hyun,Oh Jeong-Wook,Lee Min-Hyun,et al.Fabri-cation and verification of DNA functionalized nanopore withgold layer embedded structure for bio-molecular sensing[C]//IEEE Nanotechnology Materials and Devices Confer-ence(NMDC).Jeju,Korea,2011:168-171.[25]Spinney P S,Collins S D,Howitt D G,et al.Fabrication and characterization of a solid-state nanopore with self-a-·40·纳米技术与精密工程第13卷第1期ligned carbon nanoelectrodes for molecular detection[J].Nanotechnology,2012,23(13):135501-1-8.[26]叶晓峰.纳米孔与孔内纳米间隙电极的制备[D].南京:东南大学生物科学与医学工程学院,2013.Ye Xiaofeng.Fabrication of Nanopore and Nanopore withEmbedded Transverse Nanoelectrodes[D].Nanjing:Schoolof Biological Sciences&Medical Engineering,SoutheastUniversity,2013(in Chinese).[27]Carminati M,Ferrari G,Ivanov A P,et al.Design and characterization of a current sensing platform for silicon-based nanopores with integrated tunneling nanoelectrodes[J].Analog Integr Circ S,2013,77(3):333-343.[28]Ivanov A P,Instuli E,McGilvery C M,et al.DNA tunne-ling detector embedded in a nanopore[J].Nano Lett,2011,11(1):279-285.[29]Ivanov AR,Freedman K J,Kim M J,et al.High precision fabrication and positioning of nanoelectrodes in a nanopore[J].Acs Nano,2014,8(2):1940-1948.[30]Shim J,Rivera J A,BashirR.Electron beam induced local crystallization of HfO2nanopores for biosensing applications [J].Nanoscale,2013,5(22):10887-10893.[31]Uehara S,Tsutsui M,Doi K,et al.Fluid dynamics and electrical detection ofλDNA in electrode-embeddednanochannels[J].J Biomed Sci Eng,2013,8(3):244-256.[32]Zhang X,Fang Z,Chen K,et al.Fabricating a silicon nanowire by using the proximity effect in electron beam li-thography for investigation of the Coulomb blockade effect[J].Nanotechnology,2011,22(3):035302.[33]Grigorescu A E,Hagen C W.Resists for sub-20-nm electron beam lithography with a focus on HSQ:State of the art[J].Nanotechnology,2009,20(29):292001.[34]Manheller M,Trellenkamp S,WaserR,et al.Reliable fab-rication of3nm gaps between nanoelectrodes by electron-beam lithography[J].Nanotechnology,2012,23(12):125302-1-6.[35]Healy K,Ray V,Willis L J,et al.Fabrication and charac-terization of nanopores with insulated transverse nanoelectro-des for DNA sensing in salt solution[J].Electrophoresis,2012,33(23):3488-3496.[36]Fanget A,Traversi F,Khlybov S,et al.Nanopore integrated nanogaps for DNA detection[J].Nano Lett,2014,14(1):244-249.[37]Fischbein M D,Drndic M.Sub-10nm device fabrication ina transmission electron microscope[J].Nano Lett,2007,7(5):1329-1337.(责任编辑:何静菁)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Fabrication of Magnetically Separable Mesostructured Silica with an OpenPore SystemAn-Hui Lu,†Wen-Cui Li,†Andreas Kiefer,†Wolfgang Schmidt,†Eckhard Bill,‡Gerhard Fink,†andFerdi Schu¨th*,†Max-Planck-Institut fu¨r Kohlenforschung,Kaiser-Wilhelm-Platz1,45470Mu¨lheim,Germany,andMax-Planck-Institut fu¨r Bioanorganische Chemie,Stiftstrasse34-36,45470Mu¨lheim,GermanyReceived March9,2004;E-mail:schueth@mpi-muelheim.mpg.deOrdered mesoporous silicas like M41S and the SBA-n series canbe synthesized with large surface area,tunable porosity,uniformpore size distribution,and high thermal stability.1These materialshave application perspectives in heterogeneous catalysis,host-guestchemistry,environmental technology,adsorption,and many otherfields.2For many of the envisaged applications,small particle sizesare advantageous,which,however,cause a separability problemin liquid-phase processes.Magnetic separation provides a convenient method for removalof magnetizable particles by applying an appropriate magnetic field.If one could combine the advantages of mesoporous silica andmagnetic particles to fabricate a nanocomposite with high surfacearea,well-defined pore size,and magnetic separability,a promisingnovel adsorbent or catalyst support material may be accessible. Attempts to use this strategy have been published before:magnetic nanoparticles of iron oxide or cobalt have been incorporated in the pore system of porous silicas such as MCM-41,MCM-48,and SBA-15.3However,this often causes clogging of the pore system, which in turn can lead to mass transfer problems.In addition,the occupied pore space restricts further functionalization of the silica inner surface.Moreover,these types of magnetized silicas cannot be used under acidic conditions or at high temperature,since the magnetic particles are not protected against acid erosion or sintering. We here report a method for fabricating magnetic mesoporous silica with an unobstructed pore system in which the magnetic particles are protected by a nanometer-thick carbon shell against acid erosion.As a model system,SBA-15was selected as a parent material due to its large pore size and thick pore wall.Cobalt nanoparticles4ca.10nm in size were used to impart the magnetic properties to the SBA-15.Syntheses both of SBA-15and of the cobalt nanoparticles are described in refs1b and ref4,respectively. For the synthesis of the magnetic composite,a strategy was devised as presented in Scheme1.To exclusively deposit the cobalt nanoparticles on the outer surface of the SBA-15particles,the pores of SBA-15should first be blocked with a blocking agent in order to prevent incorporation of the cobalt nanoparticles in the pore system.Subsequently,the cobalt nanoparticles could be grafted on the outer surface of SBA-15.Afterward,the blocking agent needs to be decomposed to recover the pore system.This approach is to some extent related to protection group strategies in organic synthesis,with the difference that not parts of a molecule but rather certain regions in a solid material are temporarily passivated.For the realization of this synthetic scheme,the selected blocking agent needs to be removed completely and easily.On the basis of these considerations,we selected methyl methacrylate(MMA)as the monomer for the blocking agent since poly(methyl methacrylate) (PMMA)is easily decomposed completely below500°C.5Thus, after infiltrating SBA-15with methyl methacrylate monomer and 2,2′-azobisisobutyronitrile(AIBN)as an initiator,a PMMA/SBA-15composite was obtained through polymerization.The composite was impregnated with cobalt nanoparticles suspended in toluene. After drying at50°C to remove toluene,the composite was wetted with furfuryl alcohol(FA)solution containing also oxalic acid to initiate polymerization of the FA.Afterward,the composite was treated at80°C and then at850°C under argon in order to convert the FA into a thin carbon coating on the surface of the cobalt nanoparticles.Simultaneously with the heat treatment to carbonize the poly-FA,the PMMA in the pores of the SBA-15was decomposed to restore the accessible pore system.This sequence of steps resulted in the formation of magnetic SBA-15,which was denoted as Co/SBA-15-1.A related approach had been developed to prepare a magnetically separable ordered Pd/carbon hydrogena-tion catalyst.6Alternatively,it might be possible to use the surfactant present in the as-synthesized SBA-15as the blocking agent.Thus,instead of using calcined SBA-15as a precursor,the surfactant-containing SBA-15(Surf/SBA-15)was used after drying at60°C under vacuum.Analogous to the procedure described above,the magnetic SBA-15obtained from Surf/SBA-15is referred to as Co/SBA-15-2.Nitrogen sorption isotherms(Figure1,left)were recorded to assess the textural properties of the samples.The isotherm of Co/ SBA-15-1is of type IV and almost identical to the one of the parent SBA-15,with the volume adsorbed/g reduced due to the extra weight of the added cobalt nanoparticles.The specific surface area and pore volume of Co/SBA-15-1are515m2/g and0.75cm3/g, respectively.As seen in the inset,the BJH(Barrett-Joyner-Halenda)pore size distributions of both the original SBA-15and the Co/SBA-15-1show an identical distribution.In contrast to that, sample Co/SBA-15-2shows an isotherm that is markedly different from the normal SBA-15.A visible delayed hysteresis occurs in the relative pressure range of0.4-0.6,indicating the presence of network percolation effects.This feature has already been observed before for SBA-15where the mesopores were partially blocked by particles,leading to constrictions in the pore structure.7To exclude†Max-Planck-Institut fu¨r Kohlenforschung.‡Max-Planck-Institut fu¨r Bioanorganische Chemie.Scheme1.Illustration of the Synthesis Pathway for MagneticMesostructuredSilicaPublished on Web06/24/200486169J.AM.CHEM.SOC.2004,126,8616-861710.1021/ja0486521CCC:$27.50©2004American Chemical Societypartial pore blocking by carbon residues formed from the surfactant during the thermal treatment as the origin of the delayed condensa-tion,pure Surf/SBA-15was treated under identical conditions as the Co-containing sample.The dark color of this sample shows that some of the surfactant is converted to carbonaceous material.The nitrogen adsorption isotherm of this sample,however,does not show delayed hysteresis but has a shape identical to that of the calcined SBA-15.This indicates that the small residual amounts of surfactant-derived carbon are present as a thin coating on the pore walls rather than in the form of particles that would block the pore system of SBA-15.Thus,the partial blockage of the pores in Co/SBA-15-2can be attributed to cobalt particles entering the pores that have a pore size comparable to the diameter of the cobalt particles,despite the presence of surfactant in the pores.As can be seen in Figure 1,a small fraction of the pores of Surf/SBA-15is not blocked by Pluronic P123,resulting in a small capillary condensation step in the pressure range corresponding to mesopore filling.Therefore,the use of Surf/SBA-15is disadvantageous if one wants to avoid intrusion of cobalt nanoparticles into the pore system of SBA-15.In the XRD patterns (Supporting Information),all samples show well-resolved (100),(110),and (200)reflections,indicating that despite the series of treatment steps,all samples still maintain the same structure as the original SBA-15.In the wide-angle range,the reflections characteristic for the fcc cobalt structure are observed;from line-broadening analysis,a size of the cobalt particles of around 10nm is determined.To test the acid resistance of the magnetic mesoporous silica,0.5g of Co/SBA-15-1were stored in 500mL of HCl solution (pH )1)for 10days.After filtration,washing with distilled water and ethanol,and drying,the acid-treated sample was characterized using TEM.The TEM image of Co/SBA-15-1is shown in Figure 1a (right).The morphology of the magnetic mesoporous silica shows the known noodlelike morphology of SBA-15,and the well-dispersed cobalt nanoparticles grafted on the outer surface of the SBA-15are clearly visible.The size of the cobalt particles is estimated to be ca.10nm,which is almost identical to the result based on the XRD measurements.Higher resolution TEM analysis (Figure 1a insert)reveals that the resultant magnetic mesoporous silica exhibits an ordered structure with hexagonal symmetry.A substantial fraction of the cobalt particles survived storage in HCl for more than 10days,which confirms that these cobalt particles are protected quite well by the carbon shells.In addition,one canobserve the existence of spherelike hollow carbon shells (Figure 1b),which are the result of the dissolution of the cobalt core by HCl solution.This shows that in some cases,the carbon shells do not cover the cobalt particles perfectly to resist acid erosion.Elemental analysis of this sample gives 0.6wt %carbon and 3.6wt %cobalt,compared to about 10wt %cobalt in the parent sample.The residual carbon probably predominantly results from the furfuryl alcohol,which typically gives around 40%carbon yield.It also corresponds roughly to the weight expected for a 0.5-1.0nm thick carbon coating of the Co particles.The analytical result also demonstrates that PMMA is almost completely decomposed and renders the pore system unobstructed.The magnetic separability of such magnetic mesoporous silica was tested in a liquid phase by placing a magnet near the glass bottle.As shown in Figure 1c (right),the gray powder is attracted by the magnet,demonstrating that Co/SBA-15possesses magnetic properties.This will provide an easy and efficient way to separate and recycle Co/SBA-15from slurry systems.The cobalt particles are superparamagnetic since no hysteresis was observed at 290K in the magnetization curve (Supporting Information).The saturation magnetization of the magnetic silica is ca.15.8emu/g.Since there is 10%cobalt in the magnetic silica,the saturation magnetization of cobalt nanoparticles is ca.158emu/g,which is comparable to the bulk value of 163emu/g.In summary,magnetically separable mesostructured silica was designed by using cobalt nanoparticles as magnetic anchors and SBA-15as a host support.When this strategy was used,the pore system of the obtained magnetic SBA-15was fully accessible and maintained basically in the same state as that prior to anchoring of the cobalt particles.This opens the pathway for such magnetic material to be functionalized further.For instance,the inner surface of such magnetic material might be modified with desired functional groups for metal ion trapping or catalytic purposes.This technology can also be more generally applied to synthesize other magnetic porous silicas and further inorganic materials with unobstructed pore systems.Acknowledgment.We are highly grateful to N.Matoussevitch for synthesis of the Co particles and B.Spliethoff for TEM analysis.The authors would like to thank the Leibniz Program and the FCI for support.A.-H.Lu acknowledges the Alexander von Humboldt Foundation for a scholarship.Supporting Information Available:XRD patterns for magnetic silicas and the parent SBA-15,plot of magnetization vs applied field measured at 290K,and textural parameters of magnetic silicas and the parent materials (PDF).This material is available free of charge via the Internet at .References(1)(a)Kresge,C.T.;Leonowicz,M.E.;Roth,W.J.;Vartuli,J.C.;Beck,J.S.Nature 1992,359,710.(b)Zhao,D.;Feng,J.;Huo,Q.;Melosh,N.;Fredrickson,G.H.;Chmelka,B.F.;Stucky,G.D.Science 1998,279,548.(2)(a)Ciesla,U.;Schu ¨th,F.Micropor.Mesopor.Mater.1999,27,131.(b)Ying,J.Y.;Mehnert,C.P.;Wong,M.S.Angew.Chem.,Int.Ed.1999,38,56.(3)(a)Bourlinos,A.B.;Simopoulos,A.;Boukos,N.;Petridis,D.J.Phys.Chem.B 2001,105,7432.(b)Fro ¨ba,M.;Ko ¨hn,R.;Bouffaud,G.;Richard,O.;Tendeloo,G.Chem.Mater.1999,11,2858.(c)Gross,A.F.;Diehl,M.R.;Beverly,K.C.;Richman,E.K.;Tolbert,S.H.J.Phys.Chem.B 2003,107,5475.(4)Bo ¨nnemann,H.;Brijoux,W.;Brinkmann,R.;Matoussevitch,N.;Waldo ¨f-ner,N.;Palina,N.;Modrow,H.Inorg.Chim.Acta 2003,350,617.(5)Jang,J.;Lim,B.Angew.Chem.,Int.Ed.2003,42,5600.(6)Lu,A.-H.;Schmidt,W.;Matoussevitch,N.;Bo ¨nnemann,H.;Spliethoff,B.;Tesche,B.;Bill,E.;Kiefer,W.;Schu ¨th,F.Angew.Chem.,Int.Ed.Accepted for publication.(7)Schu ¨th,F.;Wingen,A.;Sauer,V.Micropor.Mesopor.Mater.2001,44-45,465.JA0486521Figure 1.N 2sorption isotherms and pore size distributions of magnetic silicas and the parent materials (left).The isotherms of Surf/SBA-15,Co/SBA-15-1,and SBA-15are offset vertically by 50,200,and 300cm 3g -1STP,respectively.TEM images (right,a and b)for Co/SBA-15-1after acid treatment.Magnetically separable Co/SBA-15-1in water (right,c).C O M M U N I C A T I O N SJ.AM.CHEM.SOC.9VOL.126,NO.28,20048617。

相关文档
最新文档