用导数求切线方程的四种类型84657
用导数求切线方程(课堂PPT)
类型二:已知斜率,求曲线的切线方程
例2 与直线 2xy40平行的抛物线 y x 2
的切线方程是( )
4
类型三:已知过曲线上一点,求切线方程
例3 求过曲线 y x3 2x 上的点 (1, 1) 的切线方程
过曲线上一点的切线,该点未必是切点,故应
先设切点,再求切点,即用待定切点法.
5
设 P(x0,y0)为切点,则切线的斜率为 y|xx0 3x02 2
即 xy20 或 5x4y10
7
类型四:已知过曲线外一点,求切线方程
例4 求过点 ( 2 ,0 ) 且与曲线 y 1
x
相切的直线方程
8
设 P(x0,y0 )为切点,则切线的斜率为
y |x x0
1 x02
切线方程为
1 y y0 x02 (xx0)
y 1 x0
x102(xx0)源自又知切线过点 ( 2 ,0 ) ,把它代入上述方程,得
1 x0
1 x02
(2 x0)
9
解得
x0
1,y0
1 x0
1
故所求切线方程为 xy20
10
Thank You
11
用导数求切线方程
主讲人:甄玉星
1
四种常见的类型
类型一:已知切点,求曲线的切线方程 类型二:已知斜率,求曲线的切线方程 类型三:已知过曲线上一点,求切线方程 类型四:已知过曲线外一点,求切线方程
2
类型一:已知切点,求曲线的切线方程 例1 曲线 yx3 3x2 1 在点 (1, 1) 处的 切线方程为
切线方程为 yy0(3x022)(xx0)
y (x 0 3 2 x 0 ) (3 x 0 2 2 )(x x 0 )
用导数求切线方程的四种类型
用导数求切线方程的四种类型用导数求切线方程是导数的重要应用之一。
求曲线的切线方程的关键在于求出切点P(x,y)及斜率。
设P(x,y)是曲线y=f(x)上的一点,则以P的切点的切线方程为:y-y=f'(x)(x-x)。
若曲线y=f(x)在点P(x,f(x))的切线平行于y轴(即导数不存在)时,由切线定义知,切线方程为x=x。
下面例析四种常见的类型及解法。
类型一:已知切点,求曲线的切线方程这类题较为简单,只需求出曲线的导数f'(x),并代入点斜式方程即可。
例如,曲线y=x^3-3x^2+1在点(1,-1)处的切线方程为y-(-1)=-3(x-1),即y=-3x+2.类型二:已知斜率,求曲线的切线方程这类题可利用斜率求出切点,再用点斜式方程加以解决。
例如,与直线2x-y+4=0平行的抛物线y=x^2的切线方程为2x-y-1=0.类型三:已知过曲线上一点,求切线方程过曲线上一点的切线,该点未必是切点,故应先设切点,再求切点,即用待定切点法。
例如,求过曲线y=x^3-2x上的点(1,-1)的切线方程。
设想P(x,y)为切点,则切线的斜率为y'|(x=x)=3x^2-2.故所求切线方程为y-(1-2)=(3-2)(x-1),或5x+4y-1=0.类型四:已知两曲线的交点,求切线方程这类题一般需先求出两曲线在交点处的导数,再代入点斜式方程加以解决。
例如,已知曲线y=x^3-x和y=2x-x^2的交点为(1,0),求它们在该点的切线方程。
两曲线在交点处的导数分别为1和-1.故所求切线方程为y-(0)=1(x-1),或y-(0)=-1(x-1),即y=x-1或y=-x+1.类型四:已知过曲线外一点,求切线方程对于这类问题,我们可以先设定切点,再求解切点,使用待定切点法来解决。
例4:求过点(2,0)且与曲线$y=x/(1+x^2)$相切的直线方程。
解:设P(x,y)为切点,则切线的斜率为$y'=\frac{1-x^2}{(1+x^2)^2}$。
导数求切线方程的步骤
导数求切线方程的步骤求切线方程的步骤如下:第一步:求导数首先,我们需要求出给定函数的导数。
导数表示了函数在给定点上的斜率,也就是该点函数曲线的切线斜率。
求导数的过程根据函数的不同而有所差异,下面将以几种不同类型的函数为例进行解释。
1.1.常数函数:常数函数的导数为零,因为它的斜率在任何点都是零。
例如,函数f(x)=3的导数为f'(x)=0。
1.2.幂函数:幂函数的导数可以使用幂函数规则求导得到。
幂函数的一般形式是f(x)=x^n,其中n是一个实数。
根据幂函数的规则,导数f'(x)=n*x^(n-1)。
例如,对于函数f(x)=x^2,它的导数为f'(x)=2*x^(2-1)=2x。
1.3.指数函数:指数函数的导数可以使用指数函数规则求导得到。
指数函数的一般形式是f(x) = a^x,其中a是一个正实数且a≠1、根据指数函数的规则,导数f'(x) = ln(a)*a^x。
例如,对于函数f(x) = e^x,它的导数为f'(x) = ln(e)*e^x = e^x。
1.4.对数函数:对数函数的导数可以使用对数函数规则求导得到。
对数函数的一般形式是f(x) = loga(x),其中a是一个正实数且a≠1、根据对数函数的规则,导数f'(x) = 1/(x*ln(a))。
例如,对于函数f(x) = log3(x),它的导数为f'(x) = 1/(x*ln(3))。
第二步:确定切点切线是曲线上其中一点上的切线,因此我们需要确定曲线上的切点。
根据题目给出的条件,我们可以确定切点的横纵坐标。
第三步:计算斜率在给定点上,切线的斜率等于该点的导数值。
所以我们将给定点的横坐标代入到导数函数中,得到该点的导数值。
第四步:确定切线方程切线方程的一般形式是y = mx + b,其中m为切线的斜率,b为切线在横轴上的截距。
在给定点上,我们已经确定了斜率m,并且通过给定点的坐标,可以将x和y代入切线方程。
用导数求切线方程的四种类型知识讲解
用导数求切线方程的四种类型用导数求切线方程的四种类型浙江 曾安雄求曲线的切线方程是导数的重要应用之一,用导数求切线方程的关键在于求出切点00()P x y ,及斜率,其求法为:设00()P x y ,是曲线()y f x =上的一点,则以P 的切点的切线方程为:000()()y y f x x x '-=-.若曲线()y f x =在点00(())P x f x ,的切线平行于y 轴(即导数不存在)时,由切线定义知,切线方程为0x x =.下面例析四种常见的类型及解法. 类型一:已知切点,求曲线的切线方程此类题较为简单,只须求出曲线的导数()f x ',并代入点斜式方程即可. 例1 曲线3231y x x =-+在点(11)-,处的切线方程为( ) A.34y x =- B.32y x =-+ C.43y x =-+D.45y x =-解:由2()36f x x x '=-则在点(11)-,处斜率(1)3k f '==-,故所求的切线方程为(1)3(1)y x --=--,即32y x =-+,因而选B.类型二:已知斜率,求曲线的切线方程此类题可利用斜率求出切点,再用点斜式方程加以解决.例2 与直线240x y -+=的平行的抛物线2y x =的切线方程是( ) A.230x y -+=B.230x y --=C.210x y -+=D.210x y --=解:设00()P x y ,为切点,则切点的斜率为0022x x y x ='==|.01x =∴.由此得到切点(11),.故切线方程为12(1)y x -=-,即210x y --=,故选D.评注:此题所给的曲线是抛物线,故也可利用∆法加以解决,即设切线方程为2y x b =+,代入2y x =,得220x x b --=,又因为0∆=,得1b =-,故选D.类型三:已知过曲线上一点,求切线方程过曲线上一点的切线,该点未必是切点,故应先设切点,再求切点,即用待定切点法. 例3求过曲线32y x x =-上的点(11)-,的切线方程. 解:设想00()P x y ,为切点,则切线的斜率为02032x x y x ='=-|.∴切线方程为2000(32)()y y x x x -=--.320000(2)(32)()y x x x x x --=--.又知切线过点(11)-,,把它代入上述方程,得3200001(2)(32)(1)x x x x ---=--. 解得01x =,或012x =-.故所求切线方程为(12)(32)(1)y x --=--,或13112842y x ⎛⎫⎛⎫⎛⎫--+=-+ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭,即20x y --=,或5410x y +-=.评注:可以发现直线5410x y +-=并不以(11)-,为切点,实际上是经过了点(11)-,且以1728⎛⎫- ⎪⎝⎭,为切点的直线.这说明过曲线上一点的切线,该点未必是切点,解决此类问题可用待定切点法.类型四:已知过曲线外一点,求切线方程此类题可先设切点,再求切点,即用待定切点法来求解. 例4 求过点(20),且与曲线1y x=相切的直线方程. 解:设00()P x y ,为切点,则切线的斜率为0201x x y x ='=-|. ∴切线方程为00201()y y x x x -=--,即020011()y x x x x -=--. 又已知切线过点(20),,把它代入上述方程,得020011(2)x x x -=--. 解得000111x y x ===,,即20x y +-=. 评注:点(20),实际上是曲线外的一点,但在解答过程中却无需判断它的确切位置,充分反映出待定切点法的高效性.例5 已知函数33y x x =-,过点(016)A ,作曲线()y f x =的切线,求此切线方程.解:曲线方程为33y x x =-,点(016)A ,不在曲线上. 设切点为00()M x y ,,则点M 的坐标满足30003y x x =-. 因200()3(1)f x x '=-,故切线的方程为20003(1)()y y x x x -=--.点(016)A ,在切线上,则有32000016(3)3(1)(0)x x x x --=--. 化简得308x =-,解得02x =-.所以,切点为(22)M --,,切线方程为9160x y -+=.评注:此类题的解题思路是,先判断点A 是否在曲线上,若点A 在曲线上,化为类型一或类型三;若点A 不在曲线上,应先设出切点并求出切点.在初中数学中,曲线的切线没有一般的定义。
用导数求切线方程的四种类型
添加标题
添加标题
添加标题
导数大于0表示函数在对应区间内 单调递增
导数小于0表示函数在对应区间内 单调递减
导数在几何上表导数等于0时,函数可能存在拐点或极值点 导数小于0时,函数在对应区间内单调递减
导数等于切线斜率 导数可以求出切线的斜率
导数在求切线方程中起到关 键作用
添加标题
添加标题
切线与该点处的切线垂直
添加标题
添加标题
切线方程的求解需要用到切点处的 坐标和斜率
确定函数表达式 确定导数表达式 计算导数值 代入切点坐标
代入切点坐标求斜率要细心 切线斜率与函数值大小无关 切线方程的形式要正确 切线方程与函数解析式不同
切线方程的书写格式要正确 切线斜率的计算要准确 切点坐标的选取要合理 切线方程的求解方法要规范
切线斜率:通 过将切点坐标 代入导函数中,
求得斜率为 f'(x0)
切线方程:利 用点斜式方程 y-y0=f'(x0)(xx0),得到切线
方程
确定函数在某点的导数 利用导数求出该点的切线斜率 根据切线斜率和已知点写出切线方程 验证切线方程是否符合题意
切点是曲线上某一点,在该点处函 数的导数存在
切点处函数值必须为零
汇报人:XX
导数与切线斜率的关系是密 切相关的
切点是曲线上某 一点,在该点处 曲线的切线存在
切点处的导数值 即为切线的斜率
切点坐标由曲线 方程和切线斜率 共同确定
切点是唯一确定 的,但切线方程 可能有多种形式
确定函数表达 式
求导函数
代入切点坐标
计算切线斜率
切点坐标:已 知曲线上的一 个点,记为(x0,
y0)
定义:切线方 程是表示切点 与曲线在某一 点的切线关系
导数求切线的四种形式
导数应用(一)——导数求切线的四种类型授课教师:王岩宇考考你:1.已知f(x)=x2,求曲线在x=2处的切线的斜率2.函数3f x x x=-,[0,1]()34x∈的最大值是…………………………………………【】C.0D.-1A.1B.123.曲线y=x3在点P处切线斜率为k,当k=3时,P点的坐标为_________4. 已知函数2)(23-=+++=x c bx ax x x f 在处取得极值,并且它的图象与直线33+-=x y 在点(1,0)处相切,则函数)(x f 的表达式为 __ __新课(一)用导数求切线方程的四种类型求曲线的切线方程是导数的重要应用之一,用导数求切线方程的关键在于求出切点00()P x y ,及斜率,其求法为:设00()P x y ,是曲线()y f x =上的一点,则以P 的切点的切线方程为:000()()y y f x x x '-=- .若曲线()y f x =在点00(())P x f x ,的切线平行于y 轴(即导数不存在)时,由切线定义知,切线方程为0x x =.下面例析四种常见的类型及解法.类型一:已知切点,求曲线的切线方程此类题较为简单,只须求出曲线的导数()f x ',并代入点斜式方程即可.(常见于选择、填空)例1 曲线3231y x x =-+在点(11)-,处的切线方程为( )A.34y x =-B.32y x =-+ C.43y x =-+D.45y x =-变式训练:曲线y =x 3在点(1,1)处的切线与x 轴、直线x =2所围成的三角形的面积为__________.类型二:已知斜率,求曲线的切线方程此类题可利用斜率求出切点,再用点斜式方程加以解决.(以选择填空为主要出题类型)例2 与直线240x y -+=的平行的抛物线2y x =的切线方程是( )A.230x y -+=B.230x y --= C.210x y -+=D.210x y --=变式训练:过曲线13-+=x x y 上一点P 的切线与直线74-=x y 平行,则P 点的坐标为 .类型三:已知过曲线上一点,求切线方程。
用导数求切线方程的四种类型
用导数求切线方程的四种类型在微积分中,切线是曲线上某一点的切线。
通过使用导数,我们可以求解给定曲线上某一点的切线方程。
在本文中,我们将探讨四种使用导数求解切线方程的常见类型。
1. 曲线方程已知的情况首先,我们考虑的是当曲线方程已知时求解切线方程的情况。
假设我们有一个曲线y=f(x),其中f(x)是一个可导函数。
要求解曲线上某一点(x1,y1)处的切线方程,我们可以执行以下步骤:1.计算函数f(x)在点(x1,y1)处的导数f′(x1)。
2.使用点斜式或一般式等方程形式得到切线方程。
点斜式切线方程的一般形式为y−y1=m(x−x1),其中m是斜率。
一般式切线方程的一般形式为ax+by=c,其中a,b,c是常数。
2. 给定两个点的情况其次,我们考虑的是当曲线上两个点已知时求解切线方程的情况。
与上一种情况不同,我们不知道曲线的具体方程,但我们已知曲线上的两个点(x1,y1)和(x2,y2)。
为了求解这种情况下的切线方程,我们可以按照以下步骤进行:1.使用点斜式求解斜率。
2.写出点斜式的一般方程形式y−y1=m(x−x1)。
3.将另一个点(x2,y2)替代初始点(x1,y1)。
4.解方程得出切线方程。
3. 已知切线方程的情况接下来,我们讨论已知切线方程的情况。
假设我们已经知道了曲线上某一点处的切线方程,我们的目标是求解曲线方程。
我们可以按照以下步骤进行操作:1.确定切线方程的斜率m。
2.使用导数的定义f′(x)=m来设置方程。
3.解方程以获得曲线方程。
4. 求解切线与坐标轴的交点最后,我们研究切线与坐标轴相交的情况。
为了求解切线与x轴和y轴的交点,我们可以按照以下步骤进行:1.求解切线与x轴的交点:将y值设为0,然后解方程得到x坐标的值。
2.求解切线与y轴的交点:将x值设为0,然后解方程得到y坐标的值。
通过上述四种类型的方法,我们可以使用导数来求解切线方程。
这些方法在解决微积分问题以及实际问题中的应用非常广泛。
(完整版)导数求切线方程-(有答案)-12
用导数求切线方程的四种类型求曲线的切线方程是导数的重要应用之一,用导数求切线方程的关键在于求出切点00()P x y ,及斜率,其求法为:设00()P x y ,是曲线()y f x =上的一点,则以P 的切点的切线方程为:000()()y y f x x x '-=-.若曲线()y f x =在点00(())P x f x ,的切线平行于y 轴(即导数不存在)时,由切线定义知,切线方程为0x x =.下面例析四种常见的类型及解法. 类型一:已知切点,求曲线的切线方程此类题较为简单,只须求出曲线的导数()f x ',并代入点斜式方程即可. 例1 曲线3231y x x =-+在点(11)-,处的切线方程为( ) A.34y x =-B.32y x =-+ C.43y x =-+D.45y x =-解:由2()36f x x x '=-则在点(11)-,处斜率(1)3k f '==-,故所求的切线方程为(1)3(1)y x --=--,即32y x =-+,因而选B.类型二:已知斜率,求曲线的切线方程此类题可利用斜率求出切点,再用点斜式方程加以解决.例2 与直线240x y -+=的平行的抛物线2y x =的切线方程是( ) A.230x y -+= B.230x y --= C.210x y -+=D.210x y --=解:设00()P x y ,为切点,则切点的斜率为0022x x y x ='==|. 01x =∴.由此得到切点(11),.故切线方程为12(1)y x -=-,即210x y --=,故选D.评注:此题所给的曲线是抛物线,故也可利用∆法加以解决,即设切线方程为2y x b =+,代入2y x =,得220x x b --=,又因为0∆=,得1b =-,故选D.类型三:已知过曲线上一点,求切线方程过曲线上一点的切线,该点未必是切点,故应先设切点,再求切点,即用待定切点法. 例3 求过曲线32y x x =-上的点(11)-,的切线方程. 解:设想00()P x y ,为切点,则切线的斜率为02032x x y x ='=-|.∴切线方程为2000(32)()y y x x x -=--.320000(2)(32)()y x x x x x --=--.又知切线过点(11)-,,把它代入上述方程,得3200001(2)(32)(1)x x x x ---=--.解得01x =,或012x =-.故所求切线方程为(12)(32)(1)y x --=--,或13112842y x ⎛⎫⎛⎫⎛⎫--+=-+ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭,即20x y --=,或5410x y +-=.评注:可以发现直线5410x y +-=并不以(11)-,为切点,实际上是经过了点(11)-,且以1728⎛⎫- ⎪⎝⎭,为切点的直线.这说明过曲线上一点的切线,该点未必是切点,解决此类问题可用待定切点法.类型四:已知过曲线外一点,求切线方程此类题可先设切点,再求切点,即用待定切点法来求解.例4 求过点(20),且与曲线1y x=相切的直线方程.解:设00()P x y ,为切点,则切线的斜率为0201x x y x ='=-|.∴切线方程为00201()y y x x x -=--,即020011()y x x x x -=--. 又已知切线过点(20),,把它代入上述方程,得020011(2)x x x -=--. 解得000111x y x ===,,即20x y +-=. 评注:点(20),实际上是曲线外的一点,但在解答过程中却无需判断它的确切位置,充分反映出待定切点法的高效性.例5 已知函数33y x x =-,过点(016)A ,作曲线()y f x =的切线,求此切线方程. 解:曲线方程为33y x x =-,点(016)A ,不在曲线上. 设切点为00()M x y ,,则点M 的坐标满足30003y x x =-. 因200()3(1)f x x '=-,故切线的方程为20003(1)()y y x x x -=--.点(016)A ,在切线上,则有32000016(3)3(1)(0)x x x x --=--. 化简得308x =-,解得02x =-.所以,切点为(22)M --,,切线方程为9160x y -+=.评注:此类题的解题思路是,先判断点A 是否在曲线上,若点A 在曲线上,化为类型一或类型三;若点A 不在曲线上,应先设出切点并求出切点.。
利用导数的几何意义求切线方程
利用导数的几何意义求切线方程切线是曲线上的一条直线,与曲线相切于其中一点,并且在该点处与曲线有相同的斜率。
利用导数的几何意义来求切线方程是一种常用的方法。
为了更好地理解这个过程,我将按照以下步骤进行解释。
首先,让我们从一元函数的导数开始,然后再扩展到二元函数的情况。
对于一元函数f(x),假设我们有一个点P(x,f(x))。
我们希望找到曲线f(x)与点P处的切线方程。
步骤1:计算导数首先,我们需要计算函数f(x)的导数。
函数的导数描述了函数在其中一点的变化率,也可以理解为函数曲线在该点的切线的斜率。
因此,导数f'(x)可以告诉我们曲线在点P处的斜率。
步骤2:确定切线的斜率由于切线与曲线在点P处有相同的斜率,我们可以使用f(x)的导数f'(x)来找到切线的斜率。
步骤3:利用点斜式写出切线方程我们已经得到了切线的斜率,接下来我们需要确定切线通过点P(x,f(x))。
我们可以使用点斜式,也就是y-y1=m(x-x1),其中m是切线的斜率,(x1,y1)是切线通过的点。
将点P代入点斜式方程,我们可以得到切线方程的一般形式。
步骤4:化简切线方程最后,我们需要对切线方程进行化简,以得到更简洁的形式。
根据具体的函数形式和需求,我们可以将切线方程进行进一步的简化。
以上是一元函数的情况,下面我们将拓展到二元函数的情况。
对于二元函数z=f(x,y),我们希望找到曲面与其中一点P(x,y,f(x,y))处的切平面方程。
步骤1:计算偏导数首先,我们需要计算函数f(x,y)在其中一点P的偏导数。
偏导数告诉我们函数值变化的快慢和方向。
在其中一点P处,偏导数可以提供切平面的法向量方向。
步骤2:确定切平面的法向量由于切平面的法向量与曲面在点P处的法向量相同,我们可以使用偏导数来确定切平面的法向量。
步骤3:利用点法式写出切平面方程我们已经得到了切平面的法向量,接下来我们需要确定切平面通过点P(x,y,f(x,y))。
导数法求曲线切线方程的三种题型
导数法求曲线切线方程的三种题型本文将介绍导数法求解曲线切线方程的三种常见题型。
导数法是解决曲线切线问题的一种常用方法,能够快速而准确地求得曲线上某点的切线方程。
1. 已知函数解析式的题型对于已知函数解析式的题型,我们可以通过求导来获得函数的导函数,然后根据导数的定义来求得切线的斜率。
切线的斜率可以通过导数函数在给定点处的值得到。
最后,利用给定点和切线斜率,我们可以求得切线的方程。
以 y=f(x) 为例,求曲线在点 (a, f(a)) 处的切线方程。
具体步骤如下:1. 求函数 f(x) 的导函数 f'(x);2. 计算 f'(a),得到切线的斜率 k;3. 利用点斜式或一般式,将点 (a, f(a)) 和斜率 k 带入,得到切线方程。
2. 已知曲线上点和斜率的题型对于已知曲线上某点和斜率的题型,我们可以通过求导函数来得到切线的斜率。
切线的斜率等于导函数在给定点处的值。
然后,利用给定点和切线斜率,我们可以求得切线的方程。
以曲线上的点 (a, f(a)) 和切线斜率 m 为例,求曲线在该点处的切线方程。
具体步骤如下:1. 求导函数 f'(x);2. 计算 f'(a) 的值,得到切线的斜率;3. 利用点斜式或一般式,将点 (a, f(a)) 和斜率 m 带入,得到切线方程。
3. 已知两个切线相交的题型对于已知两个切线相交的题型,我们可以通过求解方程组来求得两切线的交点坐标。
首先,我们需要利用已知切线的斜率和点来得到切线的方程。
然后,将两个切线方程联立,解方程组可以得到切线的交点坐标。
以已知切线1方程和切线2方程的斜率和交点为例,求两切线的交点坐标。
具体步骤如下:1. 求切线1和切线2的方程;2. 联立两切线方程,形成方程组;3. 解方程组,得到切线的交点坐标。
使用导数法求解曲线切线方程的三种题型,能够帮助我们准确而高效地求得曲线上某点的切线方程。
这些方法在数学和物理等领域都有广泛的应用,是解决相关问题的重要工具。
用导数求切线方程及应用
类型四:已知过曲线外一点,求切线方程 此类题可先设切点,再求切点,即用待定切点法 来求解.
0) 例4. 求过点 (2, 直线方程.
1 且与曲线 y x
相切的
练习 已知函数
,过点 y x 3x
3
A(0, 16) 作曲线
y f ( x的切线,求此切线方程. )
知识回顾:
导数的几何意义:
函数f ( x)在x x0处的导数f ( x0 )就是:
'
曲线y f ( x)在点( P x0 , f ( x0 ))处的切线PT的斜率。 即k f ( x0 ), 在点P处的切线方程为
'
y y0 f ( x0 )( x x0 )
四种常见的类型及解法.
• 类型一:已知切点,求曲线的切线方程 • 此类题较为简单,只须求出曲线的导数,并代 入点斜式方程即可.
例1.已经曲线C: y x x 2 和点 A(1,2)。求曲线C在点A处的切线方程?
3
类型二:已知斜率,求曲线的切线方程 此类题可利用斜率求出切点,再用点斜式方程加以 解决. 例2 与直线
2x y 4 0
的平行的抛物线
y x2
的切线方程是
评注:此题Leabharlann 给的曲线是抛物线,故也可利用 法加以
解决,即设切线方程为
y 2x b
类型三:已知过曲线上一点,求切线方程 过曲线上一点的切线,该点未必是切点,故应先 设切点,再求切点,即用待定切点法.
3 y x 2 x 上的点 (1 , 1) 的切线 • 例3 求过曲线 方程.
利用导数求抛物线切线方程的三种问题类型
利用导数求抛物线切线方程的三种问题类型问题类型一:已知抛物线上一点求切线方程已知抛物线方程为 $y=ax^2+bx+c$,且已知抛物线上一点为$(x_1, y_1)$,求该点处的切线方程。
解题步骤如下:1. 求出抛物线方程的导数 $\frac{dy}{dx}$。
2. 将已知点 $(x_1, y_1)$ 代入导数 $\frac{dy}{dx}$ 中,求出切线的斜率 $k$。
3. 使用点斜式来表示切线方程,即 $y-y_1=k(x-x_1)$。
问题类型二:已知切线斜率求切线方程已知抛物线方程为$y=ax^2+bx+c$,且已知切线的斜率为$k$,求切线方程。
解题步骤如下:1. 求出抛物线方程的导数 $\frac{dy}{dx}$。
2. 将切线的斜率 $k$ 代入导数 $\frac{dy}{dx}$ 中,得到一个方程。
3. 解方程,求出该方程对应的横坐标 $x$。
4. 将求得的横坐标 $x$ 代入抛物线方程中,求出纵坐标 $y$。
5. 使用点斜式来表示切线方程,即 $y-y=k(x-x_1)$,其中 $(x_1, y_1)$ 为切点坐标。
问题类型三:已知抛物线与切线重合求切点坐标已知抛物线方程为$y=ax^2+bx+c$,且已知抛物线与切线重合,求切点的坐标。
解题步骤如下:1. 求出抛物线方程的导数 $\frac{dy}{dx}$。
2. 将导数$\frac{dy}{dx}$ 与抛物线方程相等,得到一个方程。
3. 解方程,求出该方程对应的横坐标 $x$。
4. 将求得的横坐标 $x$ 代入抛物线方程中,求出纵坐标 $y$。
5. 切点的坐标为 $(x, y)$。
以上是利用导数求抛物线切线方程的三种问题类型及解题步骤。
希望对你有所帮助!。
用导数求切线方程的四种类型[精选.]
用导数求切线方程的四种类型浙江 曾安雄求曲线的切线方程是导数的重要应用之一,用导数求切线方程的关键在于求出切点00()P x y ,及斜率,其求法为:设00()P x y ,是曲线()y f x =上的一点,则以P 的切点的切线方程为:000()()y y f x x x '-=-.若曲线()y f x =在点00(())P x f x ,的切线平行于y 轴(即导数不存在)时,由切线定义知,切线方程为0x x =.下面例析四种常见的类型及解法. 类型一:已知切点,求曲线的切线方程此类题较为简单,只须求出曲线的导数()f x ',并代入点斜式方程即可.例1 曲线3231y x x =-+在点(11)-,处的切线方程为( )A.34y x =- B.32y x =-+ C.43y x =-+D.45y x =-解:由2()36f x x x '=-则在点(11)-,处斜率(1)3k f '==-,故所求的切线方程为(1)3(1)y x --=--,即32y x =-+,因而选B.类型二:已知斜率,求曲线的切线方程此类题可利用斜率求出切点,再用点斜式方程加以解决. 例2 与直线240x y -+=的平行的抛物线2y x =的切线方程是( )A.230x y -+= B.230x y --= C.210x y -+=D.210x y --=解:设00()P x y ,为切点,则切点的斜率为0022x xy x ='==|.01x =∴.由此得到切点(11),.故切线方程为12(1)y x -=-,即210x y --=,故选D.评注:此题所给的曲线是抛物线,故也可利用∆法加以解决,即设切线方程为2y x b =+,代入2y x =,得220x x b --=,又因为0∆=,得1b =-,故选D.类型三:已知过曲线上一点,求切线方程过曲线上一点的切线,该点未必是切点,故应先设切点,再求切点,即用待定切点法.例3求过曲线32y x x =-上的点(11)-,的切线方程. 解:设想00()P x y ,为切点,则切线的斜率为02032x xy x ='=-|. ∴切线方程为2000(32)()y y x x x -=--.320000(2)(32)()y x x x x x --=--.又知切线过点(11)-,,把它代入上述方程,得3200001(2)(32)(1)x x x x ---=--.解得01x =,或012x =-.故所求切线方程为(12)(32)(1)y x --=--,或13112842y x ⎛⎫⎛⎫⎛⎫--+=-+ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭,即20x y --=,或5410x y +-=.评注:可以发现直线5410x y +-=并不以(11)-,为切点,实际上是经过了点(11)-,且以1728⎛⎫- ⎪⎝⎭,为切点的直线.这说明过曲线上一点的切线,该点未必是切点,解决此类问题可用待定切点法.类型四:已知过曲线外一点,求切线方程此类题可先设切点,再求切点,即用待定切点法来求解.例4 求过点(20),且与曲线1y x=相切的直线方程.解:设00()P x y ,为切点,则切线的斜率为0201x xy x ='=-|.∴切线方程为00201()y y x x x -=--,即020011()y x x x x -=--. 又已知切线过点(20),,把它代入上述方程,得02011(2)x x x -=--. 解得000111x y x ===,,即20x y +-=.评注:点(20),实际上是曲线外的一点,但在解答过程中却无需判断它的确切位置,充分反映出待定切点法的高效性.例5 已知函数33y x x =-,过点(016)A ,作曲线()y f x =的切线,求此切线方程.解:曲线方程为33y x x =-,点(016)A ,不在曲线上.设切点为00()M x y ,, 则点M 的坐标满足30003y x x =-.因200()3(1)f x x '=-,故切线的方程为20003(1)()y y x x x -=--.点(016)A ,在切线上,则有32000016(3)3(1)(0)x x x x --=--.化简得308x =-,解得02x =-.所以,切点为(22)M --,,切线方程为9160x y -+=.评注:此类题的解题思路是,先判断点A 是否在曲线上,若点A 在曲线上,化为类型一或类型三;若点A 不在曲线上,应先设出切点并求出切点.在初中数学中,曲线的切线没有一般的定义。
导数切线问题类型
导数切线问题类型
在求导数问题中,常见的切线问题类型包括以下几类:
1. 求一点处的切线方程:已知函数的导数和一点的坐标,求该点处的切线方程。
这类问题通常需要使用导数的定义和直线斜率的概念进行求解。
2. 求函数图像上的切线方程:已知函数的表达式,求函数图像上某一点处的切线方程。
通常需要先求函数的导数,然后根据给定点的坐标和导数计算切线方程。
3. 求函数的水平切线和垂直切线:已知函数的导数,求函数在某些点处的水平切线方程和垂直切线方程。
水平切线方程的斜率为0,垂直切线方程的斜率为无穷大或无穷小。
这类问题需要根据导数的定义和直线斜率的概念进行求解。
4. 求函数的拐点和弧度切点:已知函数的二阶导数,求函数图像上的拐点和弧度切点。
拐点是函数图像由凹变凸或凸变凹的位置,其对应的二阶导数为零;弧度切点是函数图像由凹变凸或凸变凹的位置,其对应的二阶导数不存在。
这类问题通常需要根据导数和二阶导数的定义进行求解。
5. 求两条曲线的切点:已知两条曲线的函数表达式,求两条曲线的切点。
切点即为两条曲线上相同坐标的点,且两条曲线在该点处的切线重合。
这类问题需要将两条曲线的函数表达式联立求解。
如何求解导数中与切线相关的问题
方法集锦我们知道,函数f (x )在点x 0处的导数f ′(x 0)的几何意义是在曲线y =f (x )上点P (x 0,y 0)处的切线的斜率.相应地,切线方程为y -y 0=f ′(x 0)(x -x 0).因此我们常根据导数的几何意义来求解导数中与切线相关的问题.类型一:求曲线的切线的方程求曲线的切线的方程问题分为两种,一种是求在曲线y =f (x )上一点P (x 0,y 0)处的切线方程,此时点P (x 0,y 0)为切点,切线斜率为k =f ′(x 0),切线只有一条,对应的切线方程为y -y 0=f ′(x 0)(x -x 0).第二种是求过曲线y =f (x )上一点P (x 0,y 0)的切线方程,此时切线经过P 点,P 点可能是切点,也可能不是切点,这样的直线可能有多条.我们需先设出切点的坐标A (x 1,y 1),则以A 为切点的切线方程为y -y 1=f ′(x 1)(x -x 1),然后列出方程组求出切点A (x 1,y 1),将其代入方程y -y 1=f ′(x 1)(x -x 1),即可得到所求的切线方程.例1.已知f (x )为偶函数,当x <0时,f (x )=ln(-x )+3x ,则曲线y =f (x )在点(1,-3)处的切线方程是______.解析:解答本题有两种思路.思路一是先求当x >0时y =f (x )的解析式,再求切线方程.即当x >0时,-x <0,f (-x )=ln x -3x .由f (x )为偶函数得当x >0时,f (x )=ln x -3x ,所以点(1,-3)在y =f (x )上,且f ′(x )=1x-3,则f ′(1)=-2,所以切线方程为2x +y +1=0.思路二是由偶函数的图象关于y 轴对称可得在y =f (x )上关于y 轴对称的点的切线也关于y 轴对称,即两切线斜率互为相反数.而点(1,-3)关于y 轴对称的点(-1,-3)也在y =f (x )上,所以当x <0时,f ′(x )=-1-x+3=1x +3,则f ′(-1)=2.由f (x )为偶函数得f ′(1)=-2,所以切线方程为2x +y +1=0.在求切线的方程时,我们首先要判断切线是否过切点,然后对曲线的方程求导,得出切线的斜率和方程.类型二:求切点的坐标已知切线的方程(或斜率)求切点坐标的一般思路是,先设出切点的坐标,并对函数求导,再根据导数的几何意义得到切线的斜率,建立方程便可求出切点的横坐标,再将横坐标代入曲线的方程中即可求出切点的纵坐标.例2.点A 在曲线y =ln x 上,且该曲线在点A 处的切线经过点(-e ,-1)(e 为自然对数的底数),则点A 的坐标是.解:设切点A (x 0,ln x 0),由题意可得ìíîïïïïk =f ′(x 0)=1x 0,k =ln x 0+1x 0+e ,消去k 得x 0ln x 0=e ,又当x ∈(0,1)时g (x )=x ln x <0;当x ∈(1,+∞)时g (x )=x ln x 单调递增,且g (e )=e ,则x 0=e ,A (e ,1).我们根据切线的斜率及其切点在切线方程上,得到两个方程,通过解方程组求得切点的坐标.类型三:两曲线的公共切线问题两曲线的公共切线问题是指两条曲线相切于同一条直线的问题.解答此类问题的思路是确定切点的位置并设出切点的坐标,然后对两曲线的方程求导,分别求出切线的斜率或方程.由于两曲线的切线是公共的,所以求出的切线的斜率或方程相等,以此建立方程组,便可使问题得解.例3.若直线y =kx +b 是曲线y =ln x +2的切线,也是曲线y =ln(x +1)的切线,则b =.分析:题目中的切点不确定,需通过切点的坐标来求得切线的斜率和方程,所以必须设出切点的坐标,并围绕切点的坐标来建立关系式.解:设y =kx +b 与y =ln x +2相切于点(x 1,y 1),与y =ln(x +1)相切于点(x 2,y 2),所以y =ln x +2的切线为y -y 1=1x 1(x -x 1),由y 1=ln x 1+2得y =1x 1∙x +ln x 1+1,同理可得y =ln(x +1)的切线为y =1x 2+1∙x +ln(x 2+1)-x2x 2+1,又这两条切线即是同一直线,所以ìíîïïïïk =1x 1=1x 2+1,b =ln x 1+1=ln(x 2+1)-x 2x 2+1,解得x 2=-12,于是b =1-ln 2.不管切线是否过切点,求解与切线相关的问题都必须从切点出发,根据导数的几何意义来建立关系式.解题过程中的运算量较大,因此,同学们在求导、求切线的斜率和方程、解方程组时需谨慎计算,避免出错.(作者单位:福建省宁化第一中学)46Copyright©博看网 . All Rights Reserved.。
专题一:用导数求切线方程的四种类
用导数求切线方程的四种类型求曲线的切线方程是导数的重要应用之一,用导数求切线方程的关键在于求出切点00()P x y ,与斜率,其求法为:设00()P x y ,是曲线()y f x =上的一点,则以P 的切点的切线方程为:000()()y y f x x x '-=-.若曲线()y f x =在点00(())P x f x ,的切线平行于y 轴(即导数不存在)时,由切线定义知,切线方程为0x x =.下面例析四种常见的类型与解法. 类型一:已知切点,求曲线的切线方程此类题较为简单,只须求出曲线的导数()f x ',并代入点斜式方程即可.例1 曲线3231y x x =-+在点(11)-,处的切线方程为( ) A.34y x =- B.32y x =-+ C.43y x =-+ D.45y x =- 1解:由2()36f x x x '=-则在点(11)-,处斜率(1)3k f '==-,故所求的切线方程为(1)3(1)y x --=--,即32y x =-+,因而选B.练习:1.设f ′(x 0)=0,则曲线y =f (x )在点(x 0,f (x 0))处的切线( ) A .不存在 B .与x 轴平行或重合 C .与x 轴垂直 D .与x 轴斜交答案 B 2.已知函数y =f (x )的图像如右图所示,则f ′(x A )与f ′(x B )的大小关系是( )A .f ′(x A )>f ′(xB ) B .f ′(x A )<f ′(x B )C .f ′(x A )=f ′(x B )D .不能确定 答案 B2.曲线y =-2x 2+1在点(0,1)处的切线的斜率是( )A .-4B .0C .4D .不存在答案 B10.已知曲线y =2x 3上一点A (1,2),则A 处的切线斜率等于( )A .2B .4C .6+6·Δx +2·(Δx )2D .6答案 D4.函数y =sin 2x 的图像在⎝ ⎛⎭⎪⎫π6,14处的切线的斜率是( )A. 3B.33C.12D.32答案 D分析 将函数y =sin 2x 看作是由函数y =u 2,u =sin x 复合而成的.解析 ∵y ′=2sin x cos x , ∴y ′|x =π6=2sin π6cos π6=322.曲线y =13x 3-2在点(-1,-73)处切线的倾斜角为( )A .30°B .45°C .135°D .60°答案 B6.y =x 3的切线倾斜角的围为________. 答案 [0,π2)解析 k =y ′=3x 2≥0.8.设点P 是曲线y =x 3-3x +23上的任意一点,点P 处切线倾斜角为α,则角α的取值围是( )A.⎣⎢⎡⎭⎪⎫23π,π B.⎝ ⎛⎦⎥⎤π2,56π C.⎣⎢⎡⎭⎪⎫0,π2∪⎝ ⎛⎭⎪⎫56π,πD.⎣⎢⎡⎭⎪⎫0,π2∪⎣⎢⎡⎭⎪⎫23π,π答案 D解析 由y ′=3x 2-3,易知y ′≥-3,即tan α≥- 3. ∴0≤α<π2或23π≤α<π.14.已知曲线C :y =x 3,求在曲线C 上横坐标为1的点处的切线方程.解析 将x =1代入曲线C 的方程得y =1, ∴切点P (1,1).∵y ′=lim Δx →0Δy Δx =lim Δx →0x +Δx 3-x 3Δx=lim Δx →03x 2Δx +3x Δx2+Δx3Δx=lim Δx →0[3x 2+3xΔx +(Δx )2]=3x 2,∴y ′|x =1=3.∴过P 点的切线方程为y -1=3(x -1), 即3x -y -2=0.14.求曲线y =sin x 在点A (π6,12)处的切线方程.解析 ∵y =sin x ,∴y ′=cos x . ∴y ′|x =π6=cos π6=32,k =32.∴切线方程为y -12=32(x -π6).化简得63x -12y +6-3π=0. 6.曲线y =xx -2在点(1,-1)处的切线方程为( )A .y =x -2B .y =-3x +2C .y =2x -3D .y =-2x +1答案 D例3 求曲线y =1x 2-3x 在点(4,12)处的切线方程.[思路分析] 将函数变形为y =(x 2-3x )-12,将其看做是由函数y =u -12、u =x 2-3x 复合而成.[解析] ∵y =1x 2-3x=(x 2-3x )-12, ∴y ′=-12(x 2-3x )-32·(x 2-3x )′=-12(x 2-3x )-32·(2x -3).∴曲线y =1x 2-3x在点(4,12)处的切线斜率为 k =y ′|x =4=-12(42-3×4)-32·(2×4-3)=-516.∴曲线在点(4,12)处的切线方程为y -12=-516(x -4),即5x +16y -28=0. 探究3 此题不要将函数y =1x 2-3x看做是由y =1u ,u =v ,v =x 2-3x 三个函数复合而成的,这样求导就麻烦了.思考题 3 (1)曲线y =3x 2+1在点(1,2)处的切线方程为__________________.[答案] 3x -2y +1=0(2)y =11-x 2的水平切线方程是________.[解析] 令y ′=0,得x =0,∴y =1.12.求曲线y =2x -x 3在点(-1,-1)处的切线的方程与此切线与x 轴、y 轴所围成的平面图形的面积.答案 x +y +2=0;28.曲线y =e 12 x在点(4,e 2)处的切线与坐标轴所围三角形的面积为( )A.92e 2 B .4e 2 C .2e 2 D .e 2答案 D解析 ∵y ′=12·e 12 x,∴切线的斜率k =y ′|x =4=12e 2.∴切线方程为y -e 2=12e 2(x -4).∴横纵截距分别为2,-e 2,∴S =e 2,应选D.11.已知函数y =f (x )的图像在点M (1,f (1))处的切线方程是y =12x+2,则f (1)+f ′(1)=________.答案 3解析 f ′(1)=12,f (1)=12×1+2=52,∴f (1)+f ′(1)=3.5.如图是函数f (x )与f (x )在点P 处切线的图像,则f (2)+f ′(2)=________.答案 98解析 由题图知,切线方程为x 4+y4.5=1,f (2)=4.5·(1-24)=94,f ′(2)=-4.54=-98.∴f (2)+f ′(2)=94-98=98.类型二:已知斜率,求曲线的切线方程此类题可利用斜率求出切点,再用点斜式方程加以解决. 例2 与直线240x y -+=的平行的抛物线2y x =的切线方程是( )A.230x y -+= B.230x y --= C.210x y -+= D.210x y --=2 解:设00()P x y ,为切点,则切点的斜率为0022x xy x ='==|.01x =∴.由此得到切点(11),.故切线方程为12(1)y x -=-,即210x y --=,应选D.评注:此题所给的曲线是抛物线,故也可利用∆法加以解决,即设切线方程为2y x b =+,代入2y x =,得220x x b --=,又因为0∆=,得1b =-,应选D.练习:3.曲线y =x 3在点P 处的切线斜率为3,则点P 的坐标为( ) A .(-2,-8) B .(1,1),(-1,-1) C .(2,8) D .(-12,-18)答案 B13.若曲线y =2x 3上某点切线的斜率等于6,求此点的坐标. 解析 ∵y ′|x =x 0=lim Δx →02x 0+Δx3-2x 30Δx=6x 20,∴6x 20=6.∴x 0=±1.故(1,2),(-1,-2)为所求. 3.已知曲线y =x 24-3ln x 的一条切线的斜率为12,则切点的横坐标为( )A .3B .2C .1 D.12答案 A解析 y ′=12x -31x ,由12x -3x =12.得x =3或x =-2.由于x >0,所以x =3.3.已知曲线y =f (x )在点P (x 0,f (x 0))处的切线方程为2x +y +1=0,那么( )A .f ′(x 0)=0B .f ′(x 0)<0C .f ′(x 0)>0D .f ′(x 0)不能确定答案 B5.如果曲线y =f (x )在点(x 0,f (x 0))处的切线方程为x +2y -3=0,那么( )A .f ′(x 0)>0B .f ′(x 0)<0C .f ′(x 0)=0D .f ′(x 0)不存在答案 B7.在曲线y =x 2上切线的倾斜角为π4的点是( )A .(0,0)B .(2,4)C .(14,116)D .(12,14)答案 D2.若曲线y =x 4的一条切线l 与直线x +4y -8=0垂直,则l 的方程为( )A .4x -y -3=0B .x +4y -5=0C .4x -y +3=0D .x +4y +3=0答案 A解析 ∵l 与直线x +4y -8=0垂直, ∴l 的斜率为4.∵y ′=4x 3,∴由切线l 的斜率是4,得4x 3=4,∴x =1. ∴切点坐标为(1,1).∴切线方程为y -1=4(x -1), 即4x -y -3=0.应选A.11.已知P (-1,1),Q (2,4)是曲线y =x 2上的两点,则与直线PQ 平行的曲线y =x 2的切线方程是________.答案 4x -4y -1=0解析 k =4-12--1=1,又y ′=2x ,令2x =1,得x =12,进而y =14,∴切线方程为y -14=1·(x -12),即4x -4y -1=0.13.如果曲线y =x 2+x -3的某一条切线与直线y =3x +4平行,求切点坐标与切线方程.答案 切点坐标为(1,-1),切线方程为3x -y -4=0 13.曲线y =x 3+3x 2+6x -10的切线中,斜率最小的切线方程为______________.答案 3x -y -11=0解析 y ′=3x 2+6x +6=3(x +1)2+3≥3, 当且仅当x =-1时取等号,当x =-1,时y =-14. ∴切线方程为y +14=3(x +1),即3x -y -11=0.9.设直线y =12x +b 是曲线y =ln x (x >0)的一条切线,则实数b的值为________.答案 ln2-14.设曲线y =ax 2在点(1,a )处的切线与直线2x -y -6=0平行,则a 等于( )A .1 B.12 C .-12D .-1答案 A14.设曲线y =e ax 在点(0,1)处的切线与直线x +2y +1=0垂直,则a =________.答案 2解析 由题意得y ′=a e ax ,y ′|x =0=a e a ×0=2,a =2. 10.函数f (x )=a sin ax (a ∈R )的图像过点P (2π,0),并且在点P 处的切线斜率为4,则f (x )的最小正周期为( )A .2πB .π C.π2 D.π4答案 B解析 f ′(x )=a 2cos ax ,∴f ′(2π)=a 2cos2πa . 又a sin2πa =0,∴2πa =k π,k ∈Z . ∴f ′(2π)=a 2cos k π=4,∴a =±2. ∴T =2π|a |=π.6.曲线y =ln(2x -1)上的点到直线2x -y +3=0的最短距离是( )A. 5 B .2 5 C .3 5 D .0 答案 A解析 y ′=22x -1=2,∴x =1.∴切点坐标为(1,0).由点到直线的距离公式,得d =|2×1-0+3|22+12= 5. 19.曲线y =x (x +1)(2-x )有两条平行于y =x 的切线,则两切线之间的距离为________.答案 16272解析 y =x (x +1)(2-x )=-x 3+x 2+2x ,y ′=-3x 2+2x +2,令-3x 2+2x +2=1,得x 1=1或x 2=-13.∴两个切点分别为(1,2)和(-13,-1427).切线方程为x -y +1=0和x -y -527=0.∴d =|1+527|2=16227.类型三:已知过曲线上一点,求切线方程过曲线上一点的切线,该点未必是切点,故应先设切点,再求切点,即用待定切点法.6.以下说确的是( )A .曲线的切线和曲线有交点,这点一定是切点B .过曲线上一点作曲线的切线,这点一定是切点C .若f ′(x 0)不存在,则曲线y =f (x )在点(x 0,f (x 0))处无切线D .若曲线y =f (x )在点(x 0,f (x 0))处有切线,则f ′(x 0)不一定存在答案 D例3 求过曲线32y x x =-上的点(11)-,的切线方程.3解:设想00()P x y ,为切点,则切线的斜率为02032x xy x ='=-|.∴切线方程为2000(32)()y y x x x -=--.320000(2)(32)()y x x x x x --=--.又知切线过点(11)-,,把它代入上述方程,得3200001(2)(32)(1)x x x x ---=--.解得01x =,或012x =-.故所求切线方程为(12)(32)(1)y x --=--,或13112842y x ⎛⎫⎛⎫⎛⎫--+=-+ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭,即20x y --=,或5410x y +-=.评注:可以发现直线5410x y +-=并不以(11)-,为切点,实际上是经过了点(11)-,且以1728⎛⎫- ⎪⎝⎭,为切点的直线.这说明过曲线上一点的切线,该点未必是切点,解决此类问题可用待定切点法. 练习:类型四:已知过曲线外一点,求切线方程此类题可先设切点,再求切点,即用待定切点法来求解.例4 求过点(20),且与曲线1y x=相切的直线方程.4解:设00()P x y ,为切点,则切线的斜率为0201x xy x ='=-|.∴切线方程为00201()y y x x x -=--,即020011()y x x x x -=--. 又已知切线过点(20),,把它代入上述方程,得02011(2)x x x -=--. 解得000111x y x ===,,即20x y +-=. 评注:点(20),实际上是曲线外的一点,但在解答过程中却无需判断它的确切位置,充分反映出待定切点法的高效性例5 已知函数33y x x =-,过点(016)A ,作曲线()y f x =的切线,求此切线方程.5解:曲线方程为33y x x =-,点(016)A ,不在曲线上. 设切点为00()M x y ,,则点M的坐标满足30003y x x =-.因200()3(1)f x x '=-,故切线的方程为20003(1)()y y x x x -=--.点(016)A ,在切线上,则有32000016(3)3(1)(0)x x x x --=--. 化简得308x =-,解得02x =-.所以,切点为(22)M --,,切线方程为9160x y -+=.评注:此类题的解题思路是,先判断点A 是否在曲线上,若点A 在曲线上,化为类型一或类型三;若点A 不在曲线上,应先设出切点并求出切点.练习:17.已知曲线方程为y =x 2,求过A (3,5)点且与曲线相切的直线方程.解析 解法一 设过A (3,5)与曲线y =x 2相切的直线方程为y -5=k (x -3),即y =kx +5-3k .由⎩⎪⎨⎪⎧y =kx +5-3k y =x 2,得x 2-kx +3k -5=0.Δ=k 2-4(3k -5)=0,整理得(k -2)(k -10)=0. ∴k =2或k =10. 所求的直线方程为2x -y -1=0,10x -y -25=0.解法二设切点P的坐标为(x0,y0),由y=x2,得y′=2x.∴y′|x=x0=2x0.由已知kPA=2x0,即5-y03-x0=2x0.又y0=2x0,代入上式整理,得x0=1或x0=5.18.已知曲线S:y=3x-x3与点P(2,2),则过点P可向S引切线,其切线条数为( )A.0 B.1C.2 D.3答案 D解析显然P不在S上,设切点为(x0,y0),由y′=3-3x2,得y′|x=x0=3-3x20.切线方程为y-(3x0-x30)=(3-3x20)(x-x0).∵P(2,2)在切线上,∴2-(3x0-x30)=(3-3x20)(2-x0),即x30-3x20+2=0.∴(x0-1)(x20-2x0-2)=0.由x0-1=0,得x0=1.由x20-2x0-2=0,得x0=1± 3.∵有三个切点,∴由P向S作切线可以作3条.综合练习:10.已知f(x)=x2+2xf′(1),则f′(0)等于( )A.0 B.-4C.-2 D.2答案 B解析 f ′(x )=2x +2f ′(1),令x =1,得f ′(1)=2+2f ′(1),∴f ′(1)=-2. ∴f ′(0)=2f ′(1)=-4.12.设函数f (x )=g (x )+x 2,曲线y =g (x )在点(1,g (1))处的切线方程为y =2x +1,则曲线y =f (x )在点(1,f (1))处的切线的斜率为( )A .4B .-14C .2D .-12答案 A解析 依题意得f ′(x )=g ′(x )+2x ,f ′(1)=g ′(1)+2=4,选A.15.(1)求过曲线y =e x 上点P (1,e)且与曲线在该点处的切线垂直的直线方程;(2)曲线y =15x 5上一点M 处的切线与直线y =-x +3垂直,求此切线方程.解析 (1)∵y ′=e x ,∴曲线在点P (1,e)处的切线斜率是y ′|x =1=e. ∴过点P 且与切线垂直的直线的斜率为k =-1e .∴所求直线方程为y -e =-1e(x -1),(2)∵切线与y =-x +3垂直,∴切线斜率为1. 又y ′=x 4,令x 4=1,∴x =±1.∴切线方程为5x -5y -4=0或5x -5y +4=0.4.y =ax 2+1的图像与直线y =x 相切,则a =( ) A.18 B.14 C.12 D .1答案 B解析 由已知{ y =ax 2+1,y =x 有唯一解,即x =ax 2+1,ax 2-x +1=0有唯一解, ∴Δ=1-4a =0,∴a =14.15.点P 在曲线y =f (x )=x 2+1上,且曲线在点P 处的切线与曲线y =-2x 2-1相切,求点P 的坐标.解析 设P (x 0,y 0),则y 0=x 20+1.f ′(x 0)=lim Δx →0x 0+Δx2+1-x 20+1Δx=2x 0.所以过点P 的切线方程为y -y 0=2x 0(x -x 0),即y =2x 0x +1-x 20.而此直线与曲线y =-2x 2-1相切,所以切线与曲线y =-2x 2-1只有一个公共点. 由{ y =2x 0x +1-x 20,y =-2x 2-1,得即Δ=4x 20-8(2-x 20)=0.解得x 0=±233,y 0=73.所以点P 的坐标为(233,73)或(-233,73).17.若直线y =kx 与曲线y =x 3-3x 2+2x 相切,求k 的值. 解析 设切点坐标为(x 0,y 0),y ′|x =x 0=3x 20-6x 0+2=k .若x 0=0,则k =2.若x 0≠0,由y 0=kx 0,得k =y 0x 0.∴3x 20-6x 0+2=y 0x 0,即3x 20-6x 0+2=x 30-3x 20+2x 0x 0.解之,得x 0=32. ∴k =3×(32)2-6×32+2=-14.综上,k =2或k =-14.16.已知函数f (x )=2x 3+ax 与g (x )=bx 2+c 的图像都过点P (2,0),且在点P 处有公共切线,求f (x )、g (x )的表达式.解析 ∵f (x )=2x 3+ax 的图像过点P (2,0), ∴a =-8.∴f (x )=2x 3-8x .∴f ′(x )=6x 2-8. 对于g (x )=bx 2+c 的图像过点P (2,0),则4b +c =0. 又g ′(x )=2bx ,∴g ′(2)=4b =f ′(2)=16. ∴b =4.∴c =-16. ∴g (x )=4x 2-16. 综上可知,f (x )=2x 3-8x ,g (x )=4x 2-16.1.已知直线l 1为曲线y =x 2+x -2在点(1,0)处的切线,l 2为该曲线的另一条切线,且l 1⊥l 2.(1)求直线l 1,l 2的方程;(2)求由直线l 1,l 2和x 轴所围成的三角形的面积.分析 (1)求曲线在某点处的切线方程的步骤:先求曲线在这点处的导数,这点对应的导数值即为过此点切线的斜率,再用点斜式写出直线方程;(2)求面积用S =12a ·h 即可完成.解析 (1)因为y ′=2x +1,则直线l 1的斜率k 1=2×1+1=3,则直线l 1的方程为y =3x -3,设直线l 2过曲线y =x 2+x -2上的点B (x0,y0),因为l 1⊥l 2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
题型一:利用导数去切线斜率
类型一:已知切点,求曲线的切线方程
此类题较为简单,只须求出曲线的导数()f x ',并代入点斜式方程即可. 例1 曲线3231y x x =-+在点(11)-,处的切线方程为
解:由2()36f x x x '=-则在点(11)-,处斜率(1)3k f '==-,故所求的切线方程为(1)3(1)y x --=--,即32y x =-+,. 类型二:已知过曲线上一点,求切线方程
过曲线上一点的切线,该点未必是切点,故应先设切点,再求切点,即用待定切点法. 例2 求过曲线32y x x =-上的点(11)-,的切线方程.
类型三:已知过曲线外一点,求切线方程
此类题可先设切点,再求切点,即用待定切点法来求解.
例3 求过点(20),且与曲线1y x
=相切的直线方程.
题型二:利用导数判断函数单调性
总结求解函数f(x)单调区间的步骤: 练习:判断下列函数的单调性,并求出单调区间。
(1)确定函数f(x)的定义域; (2)求f(x)的导数f'(x);
(3)解不等式 f'(x)>0 ,解集在定义域内的部分为 增区间; (4)解不等式 f'(x)<0 ,解集在定义域内的部分为 减区间.
例1.:已知导函数 的下列信息:
注意:
x
x x f x x x f x x x x f ln 2
1
)()3(7
62)()2(),0(,sin )()1(223-=+-=∈-=π图像的大致形状。
试画出或当或当当)(0)(,1,40)(,1,40)(,41x f x f x x x f x x x f x ='==<'<>>'<<3211
11(1)2231(11)y x y x x =-+-=-+-练习:、在,处的切线方程
、在,处的切线方程1(01)x y xe =+-3、曲线在,处的切线方程sin 20x y x e x =++=5、曲线在处的切线方程
(1)由原函数的图像画导函数的图像看原函数的单调性,决定导函数的正负。
(2)由导函数的图像画原函数的图像看导函数的正负,决定原函数的单调性。
练习.:如果函数的图像如下图,
那么导函数的图像可能是( )
1、求函数
的单调区间。
2、求函数f(x)=2sinx ﹣x 的单调区间。
3.823
4)(22
+-=
x x x f 4.x x x f ln 23)(2
-=
题型三.利用函数单调性,求有关参数的取值范围。
(1) (2)
例1.已知f(x)=2ax-x
2
1
,x 在(0,1】上是增函数,求a 的范围。
13632)(2
3+--=x x x x f
例2.1-ax -x x f 3
=)(
(1)若f (x )在R 上为增函数,求a 的范围 (2)是否存在a ,在f (x )在(-1,1)上位减函数
题型四:利用导数研究函数极值与最值
1. 判别f (x 0)是极大、极小值的方法:
若0x 满足0)(0='x f ,且在0x 的两侧)(x f 的导数异号,则0x 是)(x f 的极值点,)(0x f 是极值,并且如果)(x f '在0x 两侧满足“左正右负”,则0x 是)(x f 的极大值点,)(0x f 是极大值;如果)(x f '在0x 两侧满足“左负右正”,则0x 是)(x f 的极小值点,)(0x f 是极小值
2. 求可导函数f (x )的极值的步骤: (1)确定函数的定义区间,求导数f ′(x )
(2)求方程f ′(x )=0的根
(3)用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格.检查f ′(x )在方程根左右的值的符号,如果左正右负,那么f (x )在这个根处取得极大值;如果左负右正,那么f (x )在这个根处取得极小值;如果左右不改变符号,那么f (x )在这个根处无极值
3、例子: 例1求y =
3
1x 3
-4x +4的极值 解:y ′=(
3
1x 3
-4x +4)′=x 2-4=(x +2)(x -2) 令y ′=0,解得x 1=-2,x 2=2
当x 变化时,y ′,y 的变化情况如下表
∴当x =-2时,y 有极大值且y 极大值3
当x =2时,y 有极小值且y 极小值=3
练习1.求f(x)=x 12-x 3
的极值
2.设a 为实数,函数
.)(23a x x x x f +--=
(Ⅰ)求)(x f 的极值.
3.设函数
1323
1)(23
+-+-=ax ax x x f ,其中10<<a . (1)求函数)(x f 的极值;
4..已知a 为实数,))(4()(2
a x x x f --=
(1)若0)1(=-'f ,求)(x f 在[-2,2] 上的最大值和最小值;
5.
32
()32f x x x =-+在区间[]1,1-上的最大值是
6.已知函数2)()(2
=-==x c x x x f y 在处有极大值,则常数c = ;。