概率的进一步认识测试卷
九年级数学上册第三章《概率的进一步认识》
( C)
A.41
B.12
C.32
D.43
数学
二、填空题(每小题 5 分,共 25 分) 6.小明走进迷宫,迷宫中的每一个门都相同,第一道关口有 四个门,只有第三个门有开关,第二道关口有两个门,只有
1 第一个门有开关,他第一次就能走出迷宫的概率是 8 . 7.某口袋中有红色、黄色、蓝色玻璃球共 60 个,小明通过 多次摸球试验后,发现摸到红球、黄球、蓝球的频率为 35%,25%和 40%,估计口袋中黄色玻璃球有 15 个.
九年级上册
第三章《概率的进一步认识》
单元水平测试
学校 ______ 班级 ______ 姓名______ 学号______
数学
一、选择题(每小题 5 分,共 25 分)
1.“五一”期间,小明与小亮两家准备从东营港、黄河入海
口、龙悦湖中选择一景点游玩,小明与小亮通过抽签方式确
定景点,则两家抽到同一景点的概率是( A )
D.9
数学
4.做重复试验:抛掷同一枚啤酒瓶盖 1000 次.经过统计得
“凸面向上”的次数约为 420 次,则可以由此估计抛掷这枚
啤酒瓶盖出现“凹面向上”的概率约为( D )
A.0.22
B.0.42
C.0.50
D.0.58
数学
5.一个盒子装有除颜色外其他均相同的 2 个红球和 1 个白球,
现从中任取 2 个球,则取到的是 1 个红球、1 个白球的概率为
长分别带自己的孩子参加游戏,主持人准备把家长和孩子重 新组合完成游戏,A,B,C 分别表示三位家长,他们的孩子 分别对应的是 a,b,c.
数学
(1)若主持人分别从三位家长和三位孩子中各选一人参加游 1
戏,恰好是 A,a 的概率是 9 ; (2)若主持人先从三位家长中任选两人为一组,再从孩子中任 选两人为一组,四人共同参加游戏,恰好是两对家庭成员的 概率是多少?(画出树状图或列表)
第3章 概率的进一步认识 北师大版数学九年级上册单元测试卷(含答案)
第三章 概率的进一步认识时间:90分钟 满分:100分一、选择题(共8小题,每小题3分,共24分.每小题有四个选项,其中只有一个选项符合题意)1.用频率估计概率,可以发现抛掷硬币“正面向上”的概率为0.5,那么掷一枚质地均匀的硬币10次,下列说法正确的是( )A.每两次必有1次正面向上B.可能有5次正面向上C.必有5次正面向上D.不可能有10次正面向上2.[教材变式P 61练习](2021·辽宁阜新中考)小颖有两顶帽子,分别为红色和黑色,有三条围巾,分别为红色、黑色和白色,她随机拿出一顶帽子和一条围巾戴上,恰好为红色帽子和红色围巾的概率是( )A.12 B.23 C.56 D.163.(2022·山东济南历城区期末)一个不透明的袋子里装有白棋子、黑棋子共20个,这些棋子除颜色外都相同.小明从中随机摸出一颗棋子,记下颜色后放回,通过多次重复试验发现,摸出白棋子的频率稳定在0.6,则袋子中白棋子的个数最有可能是( )A.5B.8C.12D.154.(2022·安徽宿州期中)2022年冬奥会吉祥物为“冰墩墩”,冬残奥会吉祥物为“雪容融”.现有三张正面印有吉祥物的不透明卡片,卡片除正面图案不同外,其余均相同,其中两张正面印有“冰墩墩”图案,一张正面印有“雪容融”图案,将三张卡片正面向下洗匀,从中随机一次性抽取两张卡片,则抽出的两张卡片正面都印有“冰墩墩”图案的概率是( )A.13 B.12 C.49 D.235.(2021·重庆期末)一个不透明的袋子中装有3个白球,2个黑球,它们除颜色外都相同.将球摇匀后,从中随机摸出一个球,记下颜色后不放回,再随机摸出一个球.两次摸到的球颜色相同的概率是( )A.23 B.25 C.1325 D.13206.(2022·河南许昌一中月考)某市教委部门高度重视自然灾害中的安全教育,要求各级各类学校从认识安全警示标志入手开展安全教育活动.某数学兴趣小组准备了4张印有安全警示标志的卡片,正面图案如图所示,它们除此之外完全相同,把这4张卡片背面朝上洗匀,从中随机抽取两张卡片,则这两张卡片上的正面图案中有一张是轴对称图形的概率是( )A.12B.13C.14D.167.(2021·辽宁铁岭期末)若从1,2,3,4这四个数字中任选一个记为a ,再从这四个数字中任选一个记为c ,则关于x 的一元二次方程ax 2+4x+c=0没有实数根的概率为( )A.14B.13C.12D.238.(2022·江苏南京鼓楼区期中)如图是用画树状图的方法画出的某个试验的所有可能发生的结果,则这个试验不可能是( )A.在一个不透明的袋中有3个除颜色外完全相同的小球,其中2个黑球,1个白球,从中随机取出2个球B.小明,小王两个人分别去买一个盲盒,在三款盲盒中买到同一款盲盒C.从某学习小组的两名男生和一名女生中随机选取两名学生进行竞答D.体育测试中,随机从足球、篮球、排球三个项目中选择两个项目二、填空题(共5小题,每小题4分,共20分)9.(2022·北京期末)经过某个十字路口的汽车,可能直行,也可能向左转或向右转.如果这三种可能性大小相同,那么甲汽车经过这个十字路口时,向右转的概率是 .10.为积极响应“无偿献血,传递温暖”的号召,某高校一寝室的4个同学参与到爱心献血的活动中,他们其中有2个A 型血,1个B 型血,还有1个O 型血,现从该寝室随机抽取2个同学参与第一批次献血,则2个同学都是A 型血的概率为 .11.(2021·广东汕头潮阳区模拟)在如图所示的电路图中,随机闭合开关S 1,S 2,S 3中的两个,能让灯泡L 1发光的概率是 .12.(2022·辽宁锦州期中)一张纸片上有一个不规则的图案,小雅想了解该图案的面积是多少,她采取了以下的试验办法:用一个长为5 cm,宽为3 cm的长方形,将不规则图案围起来如图(1)所示,然后在适当位置随机地向长方形区域扔小球,并记录小球落在不规则图案内的次数(球落在界线上或长方形区域外不计入试验结果),她将若干次有效试验的结果绘制成了图(2)所示的折线统计图,由此她估计此不规则图案的面积为 cm2.(结果保留整数)图(1)图(2)13.(2021·江苏镇江中考)一只不透明的袋子中装有1个黄球,现放若干个红球进去,它们与黄球除颜色外都相同,搅匀后从中任意摸出两个球,若使得P(摸出一红一黄)=P(摸出两红),则放入的红球个数为 .三、解答题(共6小题,共56分)14.(8分)近几年,各式各样的共享经济模式在各个领域迅速普及应用,如图是某同学收集的四个共享经济领域的图标,将收集到的图标制成编号为A,B,C,D的四张卡片(除编号和内容外,其余完全相同),背面朝上,洗匀放好.(1)从中随机抽取一张,抽到的卡片上的图标恰好是“共享知识”的概率为 ;(2)从中随机抽取一张卡片,放回后洗匀,再从中随机抽取一张卡片,请用列表或画树状图的方法求抽到的两张卡片上的图标恰好是“共享出行”和“共享知识”的概率.15.(8分)某商场在“五一”促销活动中规定,顾客每消费100元就能获得一次抽奖机会.为了活跃气氛,设计了两种抽奖方案.方案一:转动转盘A一次,指针指向红的部分可领取一份奖品.方案二:转动转盘B两次,两次指针都指向红的部分可领取一份奖品.(两个转盘都被平均分成3份,若指针指向分界线,则重转)(1)转动一次转盘A,获得奖品的概率是 ;(2)如果你获得一次抽奖机会,你会选择哪种方案?请用列表法或画树状图法说明理由.16.(9分)(2022·辽宁抚顺新抚区期末)一个黑箱子里装有红、白两种颜色的球共4只,它们除颜色外,其他都相同.小明将球搅匀后从箱子中随机摸出一个球,记下颜色,再把它放回,不断重复试验,根据多次试验结果画出如下的折线统计图.(1)当试验次数很大时,摸到白球的频率将会接近 (精确到0.01),从箱子中摸一次球,摸到红球的概率是 ;(2)从该箱子里随机摸出一个球,不放回,再摸出一个球.用画树状图法或列表法求摸到一个红球和一个白球的概率.17.(10分)甲、乙、丙、丁四名同学进行一次乒乓球单打比赛,要从中选两位同学打第一场比赛.(1)请用画树状图法或列表法求出恰好选中甲、乙两位同学的概率;(2)请利用若干个除颜色外其他都相同的球,设计一个摸球试验(至少摸两次),并根据该试验写出一个发生概率与(1)中所求概率相同的事件.18.(10分)(2021·黑龙江大庆期中)如图(1),一枚质地均匀的正四面体骰子,它有四个面,每个面上分别以1,2,3,4标号;如图(2),等边三角形ABC的三个顶点处各有一个圆圈.明明和亮亮想玩跳圈游戏,游戏的规则为:游戏者从圈A起跳,每投掷一次骰子,骰子着地的一面点数是几,就沿着三角形的边逆时针方向连续跳跃几个边长.如:若第一次掷得点数为2,就逆时针连续跳2个边长,落到圈C;若第二次掷得点数为4,就从圈C继续逆时针连续跳4个边长,落到圈A.(1)明明随机掷一次骰子,她跳跃后落到圈A的概率为 ;(2)明明和亮亮一起玩跳圈游戏:明明随机投掷一次骰子,亮亮随机投掷两次骰子,以最终落到圈A为胜者.这个游戏公平吗?请说明理由. 图(1) 图(2)19.(11分)(2021·辽宁本溪期末)为了解学生对食品安全知识的了解情况,学校随机抽取了部分学生进行问卷调查,将调查结果按照“A:非常了解,B:了解,C:了解较少,D:不了解”四类分别进行统计,并绘制了下列两幅统计图(不完整).请根据图中信息,解答下列问题:(1)此次共调查了 名学生;扇形统计图中D所在扇形的圆心角为 ;(2)将上面的条形统计图补充完整;(3)若该校共有800名学生,请你估计对食品安全知识“非常了解”的学生的人数;(4)现有“非常了解”的男生2名,女生2名,从这4名学生中随机抽取2名学生进行座谈,刚好抽到同性别学生的概率是多少?第三章 概率的进一步认识12345678BD C A B A C B9.1310.1611.1312.613.31.B 抛掷硬币“正面向上”的概率为0.5,那么掷一枚质地均匀的硬币10次,可能有5次正面向上.2.D 画树状图如图所示,可知共有6种等可能的结果,恰好拿到红色帽子和红色围巾的结果有1种,∴恰好拿到红色帽子和红色围巾的概率为16.3.C 设袋子中白棋子有x 个,根据题意,得x20=0.6,解得x=12,∴袋子中白棋子的个数最有可能是12.4.A 把两张正面印有“冰墩墩”图案的卡片分别记为A 1,A 2,正面印有“雪容融”图案的卡片记为B,根据题意画树状图如下:从树状图可知,共有6种等可能的结果,其中抽出的两张卡片正面都印有“冰墩墩”图案的结果有2种,故P (抽出的两张卡片正面都印有“冰墩墩”图案)=26=13.5.B 画树状图如图:由树状图可知,共有20种等可能的结果,两次摸到的球颜色相同的结果有8种,∴两次摸到的球颜色相同的概率为820=25.6.A 把4张卡片从左到右依次标记为A,B,C,D,画树状图如图所示:由树状图可知,共有12种等可能的结果,因为只有C 卡片上的正面图案是轴对称图形,所以这两张卡片上的正面图案中有一张是轴对称图形的结果有6种,故P (这两张卡片上的正面图案中有一张是轴对称图形)=612=12.7.C 画树状图如图:由树状图可知,共有16种等可能的结果,其中使Δ=42-4ac<0,即ac>4的结果有8种,∴关于x 的一元二次方程ax 2+4x+c=0没有实数根的概率为816=12.8.B 在一个不透明的袋中有3个除颜色外完全相同的小球,其中2个黑球,1个白球,从中随机取出2个球,设A ,B 表示黑球,C 表示白球,则可画出题中的树状图;从某学习小组的两名男生和一名女生中随机选取两名学生进行竞答,设A ,B 表示男生,C 表示女生,则可画出题中的树状图;体育测试中,随机从足球、篮球、排球三个项目中选择两个项目,设A 表示足球,B 表示篮球,C 表示排球,则可画出题中的树状图;而小明,小王两个人分别去买一个盲盒,在三款盲盒中买到同一款盲盒,设A ,B ,C 分别表示三款盲盒,树状图为:9.1310.16 列表如下:AA B O A(A,A)(A,B)(A,O)A(A,A)(A,B)(A,O)B(B,A)(B,A)(B,O)O (O,A)(O,A)(O,B)由表可知共有12种等可能的结果,其中2个同学都是A 型血的结果有2种,∴P (2个同学都是A 型血)=212=16.11.13 根据题意画出树状图如下.由树状图可知,共有6种等可能的情况,其中能让灯泡L 1发光的情况有2种,即S 1S 2,S 2S 1,所以能让灯泡L 1发光的概率为26=13.12.6 假设不规则图案的面积为x cm 2,由题意得长方形的面积为15 cm 2,当事件A 试验次数足够多,即样本足够大时,其频率可估计事件A 发生的概率,故由题中折线统计图可知,小球落在不规则图案内的概率大约为0.4,所以x 15=0.4,解得x=6,所以估计此不规则图案的面积为6 cm 2.13.3 假设袋中的红球个数为1,此时袋中有1个黄球、1个红球,搅匀后从中任意摸出两个球,P (摸出一红一黄)=1,P (摸出两红)=0,不符合题意;假设袋中的红球个数为2,画树状图如下:由树状图可知,共有6种等可能的结果,其中两次摸到红球的结果有2种,摸出一红一黄的结果有4种,∴P (摸出一红一黄)=46=23,P (摸出两红)=26=13,不符合题意;假设袋中的红球个数为3,画树状图如下:由树状图可知,共有12种等可能的结果,其中两次摸到红球的结果有6种,摸出一红一黄的结果有6种,∴P (摸出一红一黄)=P (摸出两红)=612=12,符合题意,∴放入的红球个数为3.14.【参考答案】(1)14(3分)(2)根据题意画出如图所示的树状图:由树状图可知,共有16种等可能的结果,其中抽到的两张卡片上的图标是“共享出行”和“共享知识”的结果有2种,所以抽到的两张卡片上的图标是“共享出行”和“共享知识”的概率是216=18.(8分)15.【参考答案】(1)13(3分)(2)选择方案二.(4分)理由:画树状图如下.由树状图可知,共有9种等可能的结果,其中两次指针都指向红的部分的结果有4种,所以P (转动转盘B 两次,领取一份奖品)=49.(6分)由(1)知转动转盘A 一次,领取一份奖品的概率是13,因为13<49,所以选择方案二.(8分)16.【解题思路】(1)当试验次数达到1 500次时,摸到白球的频率接近于0.75,由此可估计摸到红球的概率;(2)先根据(1)的结论求出白球的个数和红球的个数,再列表得出所有等可能的结果,从中找到符合条件的结果,进而可求得概率.【参考答案】(1)0.75 14(4分)解法提示:由折线统计图可知,当试验次数很大时,摸到白球的频率将会接近0.75,从箱子中摸一次球,摸到红球的概率为1-0.75=0.25=14.(2)由(1)知,箱中白球的个数为4×0.75=3,则红球的个数为4-3=1,列表如下:白白白红白(白,白)(白,白)(红,白)白(白,白)(白,白)(红,白)白(白,白)(白,白)(红,白)红(白,红)(白,红)(白,红)由表知,共有12种等可能的结果,其中摸到一个红球和一个白球的结果有6种,∴摸到一个红球和一个白球的概率为612=12.(9分)17.【参考答案】(1)根据题意,画树状图如下: (3分)由树状图,可知共有12种等可能的结果,其中恰好选中甲、乙两位同学的结果有2种,所以P (恰好选中甲、乙两位同学)=212=16.(5分)(2)答案不唯一.如:在一个不透明的袋子中,放入四个除颜色外其他都相同的球,它们的颜色分别为白、黄、粉、橙,从袋中随机摸出一个球记下颜色,不放回,再从袋中随机摸出一个球,记下颜色.事件:两次摸出的球一个是白球,一个是粉球.(10分)18.【参考答案】(1)14(3分)(2)这个游戏不公平.(4分)理由:画树状图如图,共有16种等可能的结果,其中亮亮随机投掷两次骰子,最终落到圈A 的结果数为5,即共跳3个边长或6个边长,所以P (亮亮随机投掷两次骰子,最终落回到圈A )=516.(8分)因为14<516,所以这个游戏不公平.(10分)19.【参考答案】(1)120 54°(2分)解法提示:(25+23)÷40%=120(名),360°×10+8120=54°.(2)D 所占的百分比为(10+8)÷120×100%=15%,A 中的人数为120×(1-40%-20%-15%)=30(名),其中男生有30-16=14(名),C 中的人数为120×20%=24(名),其中女生有24-12=12(名).补全条形统计图如图所示:(4分)(3)800×(1-40%-20%-15%)=200(名),答:估计对食品安全知识“非常了解”的学生的人数为200.(7分)(4)画树状图:由树状图可知,共有12种等可能的结果,抽到同性别学生的结果有4种,所以P (刚好抽到同性别学生)=412=13.(11分)。
(常考题)北师大版初中数学九年级数学上册第三单元《概率的进一步认识》测试卷(含答案解析)
一、选择题1.甲、乙两位同学在一次用频率估计概率的实验中统计了某一结果出现的频率,并绘出了如下统计图,则符合这一结果的实验可能是()A.掷一枚正六面体的骰子,出现5点的概率B.掷一枚硬币,出现正面朝上的概事C.一个不透明的袋子中装着除颜色外都相同的两个红球和一个黄球,从中任意取出一个是黄球的概率D.任意写出一个两位数,能被2整除的概率2.有三张正面分别标有数字-2 ,3, 4 的不透明卡片,它们除数字不同外,其余全部相同,现将它们背面朝上洗匀后,从中任取一张(不放回),再从剩余的卡片中任取一张,则两次抽取的卡片上的数字之积为正偶数的概率是()A.49B.112C.13D.163.从{3,2,1,0,1,2,3}---这七个数中随机抽取一个数记为a,则a的值是不等式组352132xxxx⎧+>⎪⎪⎨⎪<+⎪⎩的解,但不是方程2320x x-+=的实数解的概率为().A.17B.27C.37D.474.若在“正三角形、平行四边形、菱形、正五边形、正六边形”这五种图形中随机抽取一种图形,则抽到的图形属于中心对称图形的概率是()A.15B.25C.35D.455.如图是一个正八边形,向其内部投一枚飞镖,投中阴影部分的概率是()A.13B.12C2D.346.一个不透明的袋子中装有白球4个,黑球若干个,这些球除颜色外其余完全一样.如果随机从袋中摸出一个球是白球的概率为13,那么袋中有多少个黑球( ) A .4个 B .12个 C .8个 D .不确定 7.现有两组相同的牌,每组三张且大小一样,三张牌的牌面数字分别是1、2、3,从每组牌中各摸出一张牌.两张牌的牌面数字之和等于4的概率是( )A .29B .13C .59D .238.某单位进行内部抽奖,共准备了100张抽奖券,设一等奖10个,二等奖20个,三等奖30个.若每张抽奖券获奖的可能性相同,则1张抽奖券中奖的概率是( ) A .0.1 B .0.2 C .0.3 D .0.69.如图,转盘的红、黄、蓝、紫四个扇形区域的圆心角分别记为α,β,γ,θ.自由转动转盘,则下面说法错误的是( )A .若90α>︒,则指针落在红色区域的概率大于0.25B .若αβγθ>++,则指针落在红色区域的概率大于0.5C .若αβγθ-=-,则指针落在红色或黄色区域的概率和为0.5D .若180γθ+=︒,则指针落在红色或黄色区域的概率和为0.510.一个密闭不透明的盒子里有若干个白球,在不许将球倒出来数的情况下,为了估计白球数,小刚向其中放入了8个黑球,搅匀后从中随意摸出一个球记下颜色,再把它放回盒中,不断重复这一过程,共摸球400次,其中80次摸到黑球,你估计盒中大约有白球( )A .32个B .36个C .40个D .42个11.一个不透明的布袋中,装有红、黄、白三种只有颜色不同的小球,其中红色小球有6个,黄、白色小球的数量相同,为估计袋中黄色小球的数量,每次将袋中小球搅匀后摸出一个小球记下颜色放回,再搅匀多次试验发现摸到红色的频率是18,则估计黄色小球的个数是( )A .21B .40C .42D .4812.把同一副扑克牌中的红桃2、红桃3、红桃4三张牌背面朝上放在桌子上,从中随机抽取两张,牌面的数字之和为奇数的概率为( )A .49B .13C .12D .23二、填空题13.一个小球在如图所示的地板上自由滚动,最终停在阴影区域的概率为_______.14.有六张大小形状相同的卡片,分别写有1~6这六个数字,将它们背面朝上洗匀后,任意抽取一张,记卡片上的数字为a,则a的值使得关于x的分式方程26122 axx x--=--有整数解的概率为_____.15.从“武汉加油!中国加油!”这句励志句中任选一个汉字,这个字是“油”的概率是___________.16.在一个布袋中装有四个完全相同的小球,它们分别写有“美”、“丽”、“罗”、“山”的文字.先从袋中摸出1个球后放回,混合均匀后再摸出1个球,求两次摸出的球上是含有“美”“丽”二字的概率为_____.17.技术变革带来产品质量的提升.某企业技术变革后,抽检某一产品2020件,欣喜发现产品合格的频率已达到0.9911,依此我们可以估计该产品合格的概率为_______.(结果要求保留两位小数)18.在一个不透明的袋子里装有4个白球,若干个黄球,每个球除颜色外均相同,将球搅匀,从中任意摸出一个球,摸到黄球的概率为45,则袋子内共有球____个.19.微信给甲、乙、丙三人,若微信的顺序是任意的,则第一个微信给甲的概率为_____.20.如图,一飞镖游戏板由大小相等的小正方形格子构成,向游戏板随机投掷一枚飞镖,击中黑色区域的概率是_____.三、解答题21.一个不透明的口袋里装有分别标有汉字“优”、“秀”、“学”、“生”的四个小球,除汉字不同之外,小球没有任何区别,每次摸球前先搅拌均匀.(1)若从中任取一个球,球上的汉字刚好是“优”的的概率是______;(2)从中任取一球,不放回,再从中任取一球,请用树状图或列表的方法,求取出两个球上的汉字能组成“优秀”或“学生”的概率.22.电视台为了开展线上“百人合唱一首歌”的“云演出”活动,需招募青少年歌手.甲、乙、丙、丁报名参加了应聘活动,其中甲、乙为男歌手,丙、丁为女歌手.现对这四名歌手采取随机抽取的方式进行线上面试.(1)若随机抽取一名歌手,求恰好抽到丁的概率;(2)若随机抽取两名歌手,请用列表或画树状图表示所有可能的结果,并求出恰好抽到一男一女的概率.23.在一个不透明的布袋里装有3个大小、质地均相同的乒乓球,球上分别标有数字为1、2、3(1)随机从布袋中一次摸出两个乒乓球,写出两个乒乓球上的数字都是奇数的概率是_________;(2)随机从布袋中摸出一个乒乓球,记下数字后放回布袋里,再随机从布袋中摸出一个乒乓球,请用列表或画树状图的方法求出两个乒乓球上的数字之和不小于4的概率.24.在一次数学兴趣小组活动中,李燕和刘凯两位同学设计了如图所示的两个转盘做游戏(每个转盘被分成面积相等的几个扇形,并在每个扇形区域内标上数字).游戏规则如下:两人分别同时转运甲、乙转盘,转盘停止后,若指针所指区域内两数和小于12,则李燕获胜;若指针所指区域内两数和等于12,则为平局;若指针所指区域内两数和大于12,则刘凯获胜(若指针停在等分线上,重转一次,直到指针指向某一份内为止).(1)请用列表或画树状图的方法表示出上述游戏中两数和的所有可能的结果;(2)计算平局的概率.(3)刘凯说:“这种规则不公平”,你认同他的说法吗?请说明理由.(4)若你认为不公平,请你帮他们修改规则使游戏公平?25.平定县位于山西中部东侧,是三晋东大门.境内山川秀丽,有著名旅游景区娘子关,有名扬三晋的冠山古书院,建于秦长城一百年之前的周关长城,省级森林公园药林寺等等,这些都是人们周末游的好去处,小明计划某个周末和妹妹一起去旅游,他收集了如图所示四个景点的卡片,卡片分别用N,G,C,Y表示,卡片大小、形状及背面完全相同,通过游戏规则,选择景点,请用列表法或画树状图的方法,求下列随机事件的概率:(1)若选择其中一个景点游戏规则:把这四张图片背面朝上洗匀后,妹妹从中随机抽取一张,作好记录后,将图片放回洗匀,哥哥再抽取一张求两人抽到同一景点的概率;(2)若选择其中两个景点,游戏规则:把这四张图片背面朝上洗匀后,妹妹和哥哥从中各随机抽取一张(不放回).求两人抽到娘子关和固关长城的概率.26.生活在数字时代的我们,很多场合用二维码(如图①)来表示不同的信息,类似地,可通过在网格中,对每一个小方格涂色或不涂色所得的图形来表示不同的信息,例如:网格中只有一个小方格(如图②),通过涂色或不涂色可表示两个不同的信息.(1)用树状图或列表格的方法,求图③可表示不同信息的总个数(图中标号1、2表示两个不同位置的小方格,下同)(2)图④为22⨯的网格图,它可表示不同信息的总个数为________;(3)某校需要给每位师生制作一张“校园出入证”,准备在证件的右下角采用n n⨯的网格图来表示个人身份信息,若该校师生共506人,则n的最小值为________.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据统计图可知,试验结果在0.33附近波动,即其概率P≈0.33,计算四个选项的概率,约为0.33者即为正确答案.【详解】根据统计图可知,试验结果在0.33附近波动,即其概率P≈0.33,A、掷一枚正六面体的骰子,出现5点的概率为16,故此选项错误;B、掷一枚硬币,出现正面朝上的概率为12,故此选项错误;C、一个不透明的袋子中装着除颜色外都相同的两个红球和一个黄球,从中任意取出一个是黄球的概率为10.333≈,故此选项正确;D、任意写出一个两位数,能被2整除的概率为12,故此选项错误.故选:C.【点睛】本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.同时此题在解答中要用到概率公式.2.C解析:C【详解】画树状图得:∵共有6种等可能的结果,两次抽取的卡片上的数字之积为正偶数的有2种情况, ∴两次抽取的卡片上的数字之积为正偶数的概率是:2163=. 故选C.【点睛】本题考查运用列表法或树状图法求概率.注意画树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件. 3.B解析:B【分析】先解不等式,再解一元二次方程,利用概率公式得到概率【详解】352132x x x x ⎧+>⎪⎪⎨⎪<+⎪⎩①② 解①得,2x >-,解②得,34x >-. ∴34x >-. ∵a 的值是不等式组352132x x x x ⎧+>⎪⎪⎨⎪<+⎪⎩的解, ∴0,1,2,3a =.方程23120x x -+=,解得11x =,22x =. ∵a 不是方程232x x -+的解,∴0a =或3.∴满足条件的a 的值为1,2(2个).∴概率为27. 故选B .4.C解析:C【解析】试题 这五种图形中,平行四边形、菱形和正六边形是中心对称图形,所以这五种图形中随机抽取一种图形,则抽到的图形属于中心对称图形的概率=35.故选C .考点:1.概率公式;2.中心对称图形. 5.B解析:B【分析】根据几何概率的求法:飞镖落在阴影部分的概率就是阴影区域的面积与总面积的比值.根据正八边形性质求出阴影部分面积占总面积之比,进而可得到答案【详解】 解:由正八边形性质可知∠EFB=∠FED=135°,故可作出正方形ABCD .则AEF 是等腰直角三角形,设AE x =,则AF x =,2EF x =,正八边形的边长是2x . 则正方形的边长是(22)x +.则正八边形的面积是:(2221(22)44122x x x ⎡⎤-=+⎣⎦, 阴影部分的面积是:2212[(22)2]2(21)2x x x x -⨯=. ()2221241122x x ++=, 故选:B .【点睛】 本题考查了几何概率的求法:一般用阴影区域表示所求事件(A );首先根据题意将代数关系用面积表示出来;然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A )发生的概率.同时也考查了正多边形的计算,根据正八边形性质构造正方形求面积比是关键.6.C解析:C 【分析】首先设黑球的个数为x个,根据题意得:4143=x+,解此分式方程即可求得答案.【详解】设黑球的个数为x个,根据题意得:41 43=x+,解得:x=8,经检验:x=8是原分式方程的解;∴黑球的个数为8.故选:C.【点睛】此题考查概率公式的应用.解题关键在于掌握概率=所求情况数与总情况数之比.7.B解析:B【分析】画树状图列出所有情况,看数字之和等于4的情况数占总情况数的多少即可.【详解】画树状图得:则共有9种等可能的结果,其中两张牌的牌面数字之和等于4的有3种结果,∴两张牌的牌面数字之和等于4的概率为39=13,故选:B.【点睛】本题考查列表法和树状图法,解题的关键是可以不重复不遗漏的列出所有可能的结果.8.D解析:D【分析】直接利用概率公式进行求解,即可得到答案.【详解】解:∵共准备了100张抽奖券,设一等奖10个,二等奖20个,三等奖30个.∴1张抽奖券中奖的概率是:102030100++=0.6, 故选:D .【点睛】 本题考查了概率公式:随机事件A 的概率P (A )=事件A 可能出现的结果数除以所有可能出现的结果数.9.C解析:C【分析】根据概率公式计算即可得到结论.【详解】解:A 、∵α>90°,900.25360360α∴>=,故A 正确; B 、∵α+β+γ+θ=360°,α>β+γ+θ, 1800.5360360α∴>=,故B 正确; C 、∵α-β=γ-θ,∴α+θ=β+γ,∵α+β+γ+θ=360°,∴α+θ=β+γ=180°, 1800.5360︒︒∴= ∴指针落在红色或紫色区域的概率和为0.5,故C 错误;D 、∵γ+θ=180°,∴α+β=180°,1800.5360∴= ∴指针落在红色或黄色区域的概率和为0.5,故D 正确;故选:C .【点睛】本题考查了概率公式,熟练掌握概率公式是解题的关键.10.A解析:A【分析】可根据“黑球数量÷黑白球总数=黑球所占比例”来列等量关系式,其中“黑白球总数=黑球个数+白球个数“,“黑球所占比例=随机摸到的黑球次数÷总共摸球的次数”【详解】设盒子里有白球x 个,根据=黑球个数摸到黑球次数小球总数摸球总次数得: 8808400x =+ 解得:x=32.经检验得x=32是方程的解.答:盒中大约有白球32个.故选;A .【点睛】此题主要考查了利用频率估计概率,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解,注意分式方程要验根.11.A解析:A【分析】 根据多次试验发现摸到红球的频率是18,则可以得出摸到红球的概率为18,再利用红色小球有6个,黄、白色小球的数目相同进而表示出黄球概率,得出答案即可.【详解】设黄球的数目为x ,则黄球和白球一共有2x 个, ∵多次试验发现摸到红球的频率是18,则得出摸到红球的概率为18, ∴662x +=18, 解得:x =21, 经检验x=21是所列方程的根,则黄色小球的个数是21个.故选:A .【点睛】本题考查了利用频率估计概率,根据题目中给出频率可知道概率,从而可求出黄色小球的数目是解题关键.12.D解析:D【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与从中随机抽取两张,牌面的数字之和为奇数的情况,再利用概率公式求解即可求得答案.【详解】解:根据题意画树状图如下:∵共有6种等可能的结果,从中随机抽取两张,牌面的数字之和为奇数的有4种情况,∴从中随机抽取两张,牌面的数字之和为奇数的概率为:4263=;故选:D.【点睛】本题考查了用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.二、填空题13.【分析】先求出黑色方砖在整个地板中所占的比值再根据其比值即可得出结论【详解】∵由图可知黑色方砖5块共有25块方砖∴黑色方砖在整个地板中所占的比值∴它停在黑色区域的概率是故答案为:【点睛】本题考查了几解析:1 5【分析】先求出黑色方砖在整个地板中所占的比值,再根据其比值即可得出结论.【详解】∵由图可知,黑色方砖5块,共有25块方砖,∴黑色方砖在整个地板中所占的比值51255=,∴它停在黑色区域的概率是15.故答案为:15.【点睛】本题考查了几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率.14.【分析】先把分式方程化为整式方程解整式方程得到x=且x≠2利用有理数的整除性得到a=2或3然后根据概率公式求解【详解】把分式方程去分母得ax﹣2﹣(x﹣2)=6∴(a﹣1)x=6∵分式方程有整数解∴解析:13.【分析】先把分式方程化为整式方程,解整式方程得到x =61a -且x ≠2,利用有理数的整除性得到a =2或3,然后根据概率公式求解. 【详解】把分式方程26122ax x x --=--去分母得ax ﹣2﹣(x ﹣2)=6, ∴(a ﹣1)x =6, ∵分式方程有整数解,∴x =61a -且x ≠2, ∴a =2或3,∴a 的值使得关于x 的分式方程26122ax x x --=--有整数解的概率=13.故答案为13. 【点睛】本题考查了分式方程的解:求出使分式方程中令等号左右两边相等且分母不等于0的未知数的值,这个值叫方程的解.分式方程的增根是令分母等于0的未知数的值,不是原分式方程的解.也考查了概率公式.15.【分析】根据概率的求法找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率【详解】解:∵在武汉加油!中国加油!这8个字中油字有2个∴这句话中任选一个汉字这个字是油的概率是故答解析:14【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率. 【详解】解:∵在“武汉加油!中国加油!”这8个字中,“油”字有2个, ∴这句话中任选一个汉字,这个字是“油”的概率是21=84, 故答案为:14. 【点睛】本题考查概率的求法:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m n. 16.【分析】画树状图展示所有16种等可能的结果数再找出两次摸出的球上是写有美丽二字的结果数然后根据概率公式求解【详解】(1)用1234别表示美丽罗山画树形图如下:由树形图可知所有等可能的情况有16种其中解析:1 8【分析】画树状图展示所有16种等可能的结果数,再找出两次摸出的球上是写有“美丽”二字的结果数,然后根据概率公式求解.【详解】(1)用1、2、3、4别表示美、丽、罗、山,画树形图如下:由树形图可知,所有等可能的情况有16种,其中“1,2”出现的情况有2种,∴P(美丽)21168==.故答案为:18.【点睛】本题考查了用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.17.99【分析】根据产品合格的频率已达到09911保留两位小数所以估计合格件数的概率为099【详解】解:合格频率为:09911保留两位小数为099则根据产品合频率估计该产品合格的概率为099故答案为09解析:99【分析】根据产品合格的频率已达到0.9911,保留两位小数,所以估计合格件数的概率为0.99.【详解】解:合格频率为:0.9911,保留两位小数为0.99,则根据产品合频率,估计该产品合格的概率为0.99.故答案为0.99.【点睛】本题考查了利用频率估计概率.用到的知识点为:概率=所求情况数与总情况数之比及运用样本数据去估计总体数据的基本解题思想.18.20【分析】设袋子内共有球x个利用概率公式得到然后利用比例性质求出x即可【详解】解:设袋子内共有球x个根据题意得解得x=20经检验x=20为原方程的解即袋子内共有球20个故答案为20【点睛】本题考查解析:20设袋子内共有球x个,利用概率公式得到445xx-=,然后利用比例性质求出x即可.【详解】解:设袋子内共有球x个,根据题意得445xx-=,解得x=20,经检验x=20为原方程的解,即袋子内共有球20个.故答案为20.【点睛】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.19.【分析】根据题意微信的顺序是任意的微信给甲乙丙三人的概率都相等均为【详解】∵微信的顺序是任意的∴微信给甲乙丙三人的概率都相等∴第一个微信给甲的概率为故答案为【点睛】此题考查了概率的求法:如果一个事件解析:1 3【分析】根据题意,微信的顺序是任意的,微信给甲、乙、丙三人的概率都相等均为13.【详解】∵微信的顺序是任意的,∴微信给甲、乙、丙三人的概率都相等,∴第一个微信给甲的概率为13.故答案为13.【点睛】此题考查了概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.20.【分析】利用黑色区域的面积除以游戏板的面积即可【详解】解:黑色区域的面积=3×3﹣×3×1﹣×2×2﹣×3×1=4∴击中黑色区域的概率==故答案是:【点睛】本题考查了几何概率:求概率时已知和未知与几解析:1 5利用黑色区域的面积除以游戏板的面积即可.【详解】解:黑色区域的面积=3×3﹣12×3×1﹣12×2×2﹣12×3×1=4,∴击中黑色区域的概率=420=15.故答案是:15.【点睛】本题考查了几何概率:求概率时,已知和未知与几何有关的就是几何概率.计算方法是长度比,面积比,体积比等.三、解答题21.(1)14;(2)13【分析】(1)直接利用概率公式求解即可;(2)列表法列出所有等可能的结果,从中找到符合条件的结果数,再根据概率公式求解即可;【详解】解:(1)∵共有4个数,∴若从中任取一个球,球上的汉字刚好是“优”的概为14;(2)列出下表:∴按要求能组成“优秀”或“学生”的概率为41 123 ==.【点睛】本题考查了列表法和树状图法,以及用概率公式求解概率;正确掌握知识点是解题的关键;22.(1)14;(2)23【分析】(1)共有4种可能出现的结果,抽到丁的只有1种,可求出抽到丁的概率; (2)用列表法表示所有可能出现的结果,进而求出恰好抽到一男一女的概率. 【详解】解:(1)共有4种可能出现的结果,抽到丁的只有1种, 因此()14P =抽到丁, 故答案为:14; ()2根据题意,列表如下:因为、乙为男歌手,丙、丁为女歌手,所以其中恰好一男一女的结果有8种, 则()82123P ==一男一女, 所以,恰好抽到一男一女的概率是23. 【点睛】本题考查列表法或树状图法求随机事件发生的概率,列举出所有可能出现的结果情况是正确解答的前提. 23.(1)13;(2)23【分析】(1)用列举法展示所有可能的结果数,然后根据概率公式求解;(2)画树状图展示所有9种等可能的结果数,再找出两个兵乒球上的数字之和不小于4的结果数,然后根据概率公式求解. 【详解】(1)可能出现的结果有:()12,,()13,,()23,,共3种, 两个数字都是奇数的只有()13,一种,∴两个乒乓球上的数字都是奇数的概率是13,故答案为:13;(1)画树状图如下:一共有9种可能的结果,其中大于或等于4的有6种,∴两个乒乓球上的数字之和不小于4的概率为:6293=.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.24.(1)见解析,12种;(2)14;(3)认同,见解析;(4)见解析.【分析】(1)根据题意画出树状图,得出游戏中两数和的所有可能的结果数;(2)根据(1)得出两数和共有的情况数和其中和等于12的情况数,再根据概率公式即可得出答案;(3)根据(1)得出两数和共有的情况数和其中和小于12的情况、和大于12的情况数,再根据概率公式即可得出答案;(4)应保证双方赢的概率相同.【详解】解:(1)画树状图:可见,两数和共有12种等可能性;(2)两数和共有12种等可能性,其中平局的情况有3种,∴P(出现平局)31124==;(3)由(1)可知,两数和共有12种等可能的情况,其中和小于12的情况有6种,和大于12的情况有3种,P∴(李燕获胜)61 122 ==,P(刘凯获胜)31 124 ==,∵1142<,∴这个游戏规则对双方不公平.(4)游戏规则:(答案不唯一)如:两人分别同时转运甲、乙转盘,转盘停止后,若指针所指区域内两数等于12,则李燕胜;若指针所指区域内两数和大于12,则刘凯获胜(若指针停在等分线上,重转一次,直到指针指向某一份内为止).或:两人分别同时转运甲、乙转盘,转盘停止后,若指针所指区域内两数小于12,则李燕胜;否则就刘凯获胜(若指针停在等分线上,重转一次,直到指针指向某一份内为止).【点睛】本题考查了用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.游戏双方获胜的概率相同,游戏就公平,否则游戏不公平.用到的知识点为:概率=所求情况数与总情况数之比.25.(1)14;(2)16【分析】(1)画树状图,共有16种等可能的结果,其中两人抽到同一景点的结果有4个,则由概率公式求解即可;(2)画树状图,共有12种等可能的结果,其中两人抽到娘子关和固关长城的结果有2个,则由概率公式求解即可.【详解】解:(1)画树状图如下:由树状图可以看出,所有可能出现的结果共有16种,而且每种结果出现的可能性相同,其中抽到的两个景点相同的结果共有4种,∴P(抽到同一景点)41164==;(2)画树状图如下:。
北师版九年级数学上册 第三章 概率的进一步认识 综合测试卷(含答案)
北师版数学九年级上册 第3章 概率的进一步认识综合测试卷(时间90分钟,满分120分)第Ⅰ卷(选择题)一.选择题(本大题共10小题,每小题3分,共30分)1. 将一枚质地均匀的硬币先后抛掷两次,则至少出现一次正面向上的概率为( ) A.14 B.12 C.34 D.232. 笔筒中有10支型号、颜色完全相同的铅笔,将它们逐一标上1~10的号码,若从笔筒中任意抽出一支铅笔,则抽到编号是3的倍数的概率是( ) A.110 B.15 C.310 D.253.如图是两个可以自由转动的均匀圆盘A 和B ,A ,B 分别被均匀地分成三等份和四等份,同时自由转动圆盘A 和B ,圆盘停止后,指针分别指向的两个数字的积为偶数的概率是( ) A.34 B.23 C.12 D.134.小明的袋中有红、黄、蓝、白球若干个,晓晓又放入5个黑球,通过多次摸球试验,发现摸到红球、黄球、蓝球、白球的频率依次为30%,15%,40%,10%,则小明的袋中大约有黄球( ) A .5个 B .10个 C .15个 D .30个5.一个不透明的袋子中有1个红球,2个黄球,这些球除颜色外无其他差别,从袋子中随机摸出1个球后放回,再随机摸出1个球,两次摸出的球都是黄球的概率( ) A.23 B.13 C.14 D.496.甲、乙两人用如图所示的两个转盘(每个转盘被分成面积相等的3个扇形)做游戏.游戏规则:转动两个转盘各一次,当转盘停止后,指针所在区域的数字之和为偶数时甲获胜;数字之和为奇数时乙获胜.若指针落在分界线上,则需要重新转动转盘.甲获胜的概率是( ) A.13 B.49 C.59 D.237.某展览大厅有2个入口和2个出口,其示意图如图所示,参观者可从任意一个入口进入,参观结束后可从任意一个出口离开,则一位参观者从入口1进入并从出口A 离开的概率是( ) A.12 B.13 C.14 D.168.一天晚上,小丽在清洗两只颜色分别为粉色和白色的有盖茶杯时,突然停电了,小丽只好把杯盖和茶杯随机搭配在一起,则其颜色搭配一致的概率是( )A.14B.12C.34D .1 9.某超市举行购物“翻牌抽奖”活动,如图所示,四张牌分别对应价值5,10,15,20(单位:元)的四件奖品,如果随机翻两张牌,且第一次翻过的牌不再参加下次翻牌,则所获奖品总价值不低于30元的概率为( ) A.12 B.23 C.13 D.3410.在一个不透明的口袋中装有4个红球和若干个白球,他们除颜色外其他完全相同.通过多次摸球实验后发现,摸到红球的频率稳定在25%附近,则口袋中白球可能有( ) A .16个 B .15个 C .13个 D .12个第Ⅱ卷(非选择题)二.填空题(共8小题,3*8=24)11.对于▱ABCD ,从以下五个关系式中任取一个作为条件:①AB =BC ;②∠BAD =90°;③AC =BD ;④AC ⊥BD ;⑤∠DAB =∠ABC ,能判定▱ABCD 是矩形的概率是________.12. 下表记录了某种幼树在一定条件下移植成活情况:由此估计这种幼树在此条件下移植成活的概率约是______ (精确到0.1).13.春节期间,《中国诗词大会》节目的播出深受观众喜爱,进一步激起了人们对古诗词的喜爱.现有以下四句古诗词:①锄禾日当午;②春眠不觉晓;③白日依山尽;④床前明月光.甲、乙两名同学从中各随机选取了一句写在了纸上,则他们选取的诗句恰好相同的概率为________.14. 有A,B两只不透明的口袋,每只口袋里装有两只相同的球,A袋中的两只球上分别写了“细”“致”的字样,B袋中的两只球上分别写了“信”“心”的字样,从每只口袋里各摸出一只球,刚好能组成“细心”字样的概率是________.15.如图,电路图上有四个开关A,B,C,D和一个小灯泡,闭合开关D或同时闭合开关A,B,C都可使小灯泡发光,则任意闭合其中两个开关,小灯泡发光的概率是_____. 16.从1,-1,0三个数中任取两个不同的数作为点的坐标,则该点在坐标轴上的概率是_____. 17.盒子里有完全相同的三个小球,球上分别标有数字-2,1,4,随机摸出一个小球,其上的数字记为p(放回),再随机摸出一个小球,其上的数字记为q,则满足关于x的方程x2+px+q=0有实数根的概率是__________.18.若十位上的数字比个位上的数字、百位上的数字都大的三位数叫做“中高数”,如796就是一个“中高数”.若十位上的数字为6,则从3,4,5,7,8中任选两数(不重复),与6组成“中高数”的概率是___________.三.解答题(共8小题,66分)19.(6分)4件同型号的产品中,有1件不合格品和3件合格品.(1)从这4件产品中随机抽取1件进行检测,求抽到的是不合格品的概率;(2)从这4件产品中随机抽取2件进行检测,求抽到的都是合格品的概率;(3)在这4件产品中加入x件合格品后,进行如下试验:随机抽取1件进行检测,然后放回,多次重复这个试验,通过大量的重复试验后发现,抽到合格品的频率稳定在0.95,则可以推算出x的值大约为多少?20.(6分) 如图,数轴上的点A,B,C,D表示的数分别为-3,-1,1,2,从A,B,C,D四点中任意取两点,求所取两点之间的距离为2的概率.21.(8分) 小明、小刚和小红打算各自随机选择本周日的上午或下午去扬州马可波罗花世界游玩.(1)小明和小刚都在本周日上午去游玩的概率为________;(2)求他们三人在同一个半天去游玩的概率.22.(8分) 有两个信封,每个信封内各装有四张完全相同的卡片,其中一个信封内的四张卡片上分别写有1,2,3,4四个数,另一个信封内的四张卡片上分别写有5,6,7,8四个数,甲、乙两人商定了一个游戏,规则是:从这两个信封中各随机抽取一张卡片,然后把卡片上的两个数相乘,如果得到的积大于20,则甲获胜,否则乙获胜.(1)请你通过列表(或画树状图)计算甲获胜的概率;(2)你认为这个游戏公平吗?为什么?23.(8分) 由于只有1张市运动会开幕式的门票,小王和小张都想去,两人商量采取转转盘(如图,转盘盘面被分为面积相等,且标有数字1,2,3,4的4个扇形区域)的游戏方式决定谁胜谁去观看.规则如下:两人各转动转盘一次,当转盘指针停止,如两次指针对应盘面数字都是奇数,则小王胜;如两次指针对应盘面数字都是偶数,则小张胜;如两次指针对应盘面数字是一奇一偶,视为平局,若为平局,继续上述游戏,直至分出胜负.如果小王和小张按上述规则各转动转盘一次,则:(1)小王转动转盘,当转盘指针停止,对应盘面数字为奇数的概率是多少?(2)该游戏是否公平?请用列表或画树状图的方法说明理由.24.(8分) 如小美周末来到公园,发现在公园一角有一种“守株待兔”游戏.游戏设计者提供了一只兔子和一个有A,B,C,D,E五个出入口的兔笼,而且笼内的兔子从每个出入口走出兔笼的机会是均等的.规定:①玩家只能将小兔从A,B两个出入口放入:②如果小兔进入笼子后选择从开始进入的出入口离开,则可获得一只价值4元的小兔玩具,否则应付费3元.(1)请用画树状图的方法,列举出该游戏的所有可能情况;(2)小美得到小兔玩具的机会有多大?(3)假设有125人次玩此游戏,估计游戏设计者可赚多少元.25.(10分) 我省中小学积极开展综合实践活动,某校准备组织开展四项综合实践活动:“A.我是非遗小传人,B.学做家常餐,C.爱心义卖行动,D.找个岗位去体验”.为了解学生最喜爱哪项综合实践活动,随机抽取部分学生进行问卷调查(每位学生只能选择一项),将调查结果绘制成下面两幅不完整的统计图,请结合图中提供的信息回答下列问题:(1)本次一共调查了______名学生,在扇形统计图中,m的值是_______;(2)补全条形统计图;(3)若该校共有1 200名学生,估计最喜爱B和C项目的学生一共有多少名?(4)现有最喜爱A,B,C,D活动项目的学生各一人,学校要从这四人中随机选取两人交流活动体会,请用列表或画树状图的方法求出恰好选取最喜爱C和D项目的两位学生的概率.26.(12分) 图①是一枚质地均匀的正四面体形状的骰子,每个面上分别标有数字1,2,3,4,图②是一个正六边形棋盘,现通过掷骰子的方式玩跳棋游戏,规则是:将这枚骰子掷出后,看骰子向上三个面(除底面外)的数字之和是几,就从图②中的A点开始沿着顺时针方向连续跳动几个顶点,第二次从第一次的终点处开始,按第一次的方法跳动.(1)随机掷一次骰子,则棋子跳动到点C处的概率是__________;(2)随机掷两次骰子,用画树状图或列表的方法,求棋子最终跳动到点C处的概率.图①图②参考答案:1-5CCBCD 6-10CCBCD11. 3 512. 0.913. 1 414. 1 415. 1 216. 2 317. 2 318.31019. 解:(1)P(抽到的是不合格品)=14 (2)假设不合格的产品为F ,合格的三件产品分别为T 1,T 2,T 3,通过列表(表略)可知一共有:(F ,T 1),(F ,T 2),(F ,T 3),(T 1,T 2),(T 1,T 3),(T 2,T 3)共6种情况,因此可得P(抽到的都是合格品)=36=12 (3)P =3+x 4+x =0.95,解得x =16,经检验是原方程的解,∴x =16 20. 解:画树状图为:由树状图可知共有12种等可能的结果数,其中所取两点之间的距离为2的结果数为4,∴所取两点之间的距离为2的概率=412=1321. 解:(1) 画树状图为:小明和小刚都在本周日去游玩有4种可能的结果,其中都在本周日上午去游玩的可能性只有1种,∴小明和小刚都在本周日上午去游玩的概率为14(2)由树状图可知,他们三人在同一个半天去游玩的结果有(上,上,上)、(下,下,下)这2种,∴他们三人在同一个半天去游玩的概率为28=1422. 解:(1)列表如下:由上表可知该游戏所有等可能的结果共16种,其中两卡片上的数字之积大于20的有5种,∴甲获胜的概率为516(2)不公平,∵甲获胜的概率为516,乙获胜的概率为1116,∴这个游戏不公平23. 解:(1)∵转盘的4个等分区域内只有1,3两个奇数,∴小王转动转盘,当转盘指针停止,对应盘面数字为奇数的概率=24=12(2)列表如下:所有等可能的情况有16种,其中两指针所指数字都是偶数或都是奇数的情况都是4种,∴P(小王胜)=416=14,P(小张胜)=416=14,∴游戏公平24. 解:(1)画树状图略(2)共有10种等可能的结果,其中从开始进入的出入口离开的情况有2种,所以小美玩一次“守株待兔”游戏能得到小兔玩具的概率为15(3)125×0.8×3-125×0.2×4=200,所以估计游戏设计者可赚200元 25. 解:(1)200 20%(2)最喜爱C 项目的人数是200×25%=50(人),补图如下(3)估计最喜爱B 和C 项目的学生一共有1 200×(45%+25%)=840(名) (4)画树状图为:由图可知共有12种等可能的结果数,恰好选取最喜爱C 和D 项目的两位学生的结果数为2种,∴P(恰好选取最喜爱C 和D 项目的两位学生)=212=1626. 解: (1)14(2)列表如下:由表可知共有16种等可能的结果,两次的和为14可以到达点C ,有3种情形,∴棋子最终跳动到点C 处的概率为316。
(典型题)初中数学九年级数学上册第三单元《概率的进一步认识》测试题(含答案解析)
一、选择题1.一个不透明的袋子里装有黄、白、红三种颜色的球,其中黄色16个,白色8个和红色若干,小明通过多次摸球试验后,发现摸到红球的频率稳定在0.5左右,则摸到黄球的概率约为()A.23B.12C.13D.162.掷一枚均匀的硬币两次,两次均为反面朝上的概率是()A.12B.13C.23D.143.张老师对本班40名学生的血型作了统计,列出如下的统计表,则本班AB型血的人数是()组别A型B型AB型O型频率0.40.350.10.15A.16人B.14人C.6人D.4人4.现有4条线段,长度依次是2、4、6、7,从中任选三条,能组成三角形的概率是()A.14B.12C.35D.345.如图,4×2的正方形的网格中,在A,B,C,D四个点中任选三个点,能够组成等腰三角形的概率为()A.1 B.12C.13D.146.2018年10月,开州区举行初中学业水平实验操作考试.要求每名学生从物理、化学、生物三个学科中随机抽取一科参加测试,甲、乙两名同学都抽到化学学科的概率是().A.13B.14C.16D.197.同时掷两个质地均匀的骰子,观察向上一面的点数,两个骰子的点数相同的概率为()A .13B .14 C .16 D .1368.从拼音“nanhai”中随机抽取一个字母,抽中a 的概率为( ) A .12B .13C .15D .169.下列命题正确的是( )A .1x -有意义的x 取值范围是1x >.B .一组数据的方差越大,这组数据波动性越大.C .若7255'a ∠=︒,则a ∠的补角为10745'.D .布袋中有除颜色以外完全相同的3个黄球和5个白球,从布袋中随机摸出一个球是白球的概率为3810.一个密闭不透明的盒子里有若干个白球,在不许将球倒出来数的情况下,为了估计白球数,小刚向其中放入了8个黑球,搅匀后从中随意摸出一个球记下颜色,再把它放回盒中,不断重复这一过程,共摸球400次,其中80次摸到黑球,你估计盒中大约有白球( ) A .32个B .36个C .40个D .42个11.四个外观完全相同的粽子有三种口味:两个豆沙、一个红枣、一个蛋黄,从中随机选一个是豆沙味的概率为( ) A .14B .13C .12D .112.随机掷一枚质地均匀的硬币两次,落地后至多有一次正面朝下的概率为( ) A .34B .23C .12D .14二、填空题13.如图,一段长管中放置着三根同样的绳子,小明从左边随机选一根,张华从右边随机选一根,两人恰好选中同一根绳子的概率是__________.14.甲、乙、丙、丁两位同学做传球游戏:第一次由甲将球随机传给乙、丙、丁中的某一人,从第二次起,每次都由持球者将球再随机传给其他三人中的某一人,则第二次传球后球回到甲手里的概率是______.15.有一把钥匙藏在如图所示的16块正方形瓷砖的某一块下面,则钥匙藏在黑色瓷砖下面的概率是_____16.布袋中有2个红球.3个黄球,每一个球除颜色外都相同,从袋中任意摸出一个球是黄球的概率是__________.17.为庆祝中华人民共和国成立70周年,某校开展以“我和我亲爱的祖国”为主题快闪活动,他们准备从报名参加的3男2女共5名同学中,随机选出2名同学进行领唱,选出的这2名同学刚好是一男一女的概率是:_________.18.现有6张正面分别标有数字1,0,1,2,3,4-的不透明卡片,这些卡片除数字不同外其余全部相同现将它们背面朝上,洗均匀后从中任取一张,将该卡片上的数字记为a ,则使得关于x 的一元二次方程2220x x a -+-=有实数根的概率为____.19.在一个不透明的布袋中,有红球、白球共30个,除颜色外其它完全相同,小明通过多次摸球试验后发现,其中摸到红球的频率稳定在40%,则随机从口袋中摸出一个是红球的概率是_____.20.在一个不透明的口袋中,装有一些除颜色外完全相同的红、白、黑三种颜色的小球.己知袋中有红球5个,白球23个,且从袋中随机摸出一个红球的概率是110,则袋中黑球的个数为__________.三、解答题21.2020年疫情期间,某校为学生提供四种在线学习方式:在线阅读、在线听课、在线答疑、在线讨论,为了解学生的需求,对学生进行了“你最喜欢哪种在线学习方式的调查,调查结果制成两幅不完整统计图如图,根据图中信息回答问题:(1)本次调查人数有 人,在线答疑所在扇形的圆心角度数是 ; (2)补全条形统计图;(3)甲、乙两位同学都参加了在线学习,请用画树状图或列表的方法求出两名同学喜欢同一种在线学习方式的概率.22.如图,有一个可以自由转动的转盘被平均分成3个扇形,分别标有1、2、3三个数字,小王和小李各转动一次转盘为一次游戏,当每次转盘停止后,指针所指扇形内的数为各自所得的数,一次游戏结束得到一组数(指针指在分界线时取指针右侧扇形的数). (1)小王转动一次转盘指针指向3所在扇形的概率是______________.(2)请你用树状图或列表的方法求一次游戏结束后两数之和是5的概率.23.为发展学生多元能力,某校九年级开设A,B,C,D四门校本选修课程,要求九年级每个学生必须选报且只能选报其中一门.图1,图2是九年(1)班学生A,B,C,D四门校本选修课程选课情况的不完整统计图.请根据图中信息,解答下列问题.(1)求九年(1)班学生的总人数及该班选报A课程的学生人数;(2)在统计的信息中,我们发现九年(1)班的甲同学和乙同学选报了A课程,若从该班选报A课程的同学中随机抽取2名进行选修学习效果的测评,求甲,乙同时被抽中的概率.24.布袋中有红、黄、蓝三种只有颜色不同的球各一个,从中先摸出一个球,记录下它的颜色,将它放回布袋并搅匀,再摸出一个球,记录下颜色.求摸出的两个球颜色为“一红一黄”的概率.25.在一次数学兴趣小组活动中,李燕和刘凯两位同学设计了如图所示的两个转盘做游戏(每个转盘被分成面积相等的几个扇形,并在每个扇形区域内标上数字).游戏规则如下:两人分别同时转运甲、乙转盘,转盘停止后,若指针所指区域内两数和小于12,则李燕获胜;若指针所指区域内两数和等于12,则为平局;若指针所指区域内两数和大于12,则刘凯获胜(若指针停在等分线上,重转一次,直到指针指向某一份内为止).(1)请用列表或画树状图的方法表示出上述游戏中两数和的所有可能的结果;(2)计算平局的概率.(3)刘凯说:“这种规则不公平”,你认同他的说法吗?请说明理由.(4)若你认为不公平,请你帮他们修改规则使游戏公平?26.为了解某校九年级男生1000米跑的水平,从中随机抽取部分男生进行测试,并把测试成绩分为A、B、C、D四个等次,绘制成如图所示的不完整的统计图,请你依图解答下列问题:(1)a=,b=,c=;(2)请将条形统计图补充完整,并计算表示C等次的扇形所对的圆心角的度数为°;(3)学校决定从A等次的甲、乙、丙、丁四名男生中,随机选取两名男生参加全市中学生1000米跑比赛,请用列表法或画树状图法,求甲、乙两名男生同时被选中的概率.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据多次摸球试验后,发现摸到红球的频率稳定在0.5左右,可以计算出摸到黄球和白球的概率和为1−0.5=0.5,由此可估计到布袋中的三种球可能共有48个,则利用概率公式即可得出结论.【详解】解:∵通过多次摸球试验后发现,摸到红球的频率稳定在0.5左右,∴摸到黄球和白球的概率和为1−0.5=0.5.则布袋中的三种球可能共有:168480.5+=个,∴摸到黄球的概率约为:161483=.故选:C.【点睛】此题考查了利用频率估计概率,解答此题的关键是掌握频率和概率的关系及概率的计算方法.2.D解析:D【分析】首先根据题意用列举法,即可求得掷一枚均匀的硬币两次,所有等可能的结果,又由两次均为反面朝上的只有1种情况,然后利用概率公式求解即可求得答案.【详解】解:∵掷一枚均匀的硬币两次,等可能的结果有:正正,正反,反正,反反,又∵两次均为反面朝上的只有1种情况,∴两次均为反面朝上的概率是:14.故选:D.【点睛】本题考查了用列举法求概率.注意不重不漏的表示出所有等可能的结果是解此题的关键,注意:概率 所求情况数与总情况数之比.3.D解析:D【分析】根据题意计算求解即可.【详解】由题意知:共40名学生,由表知:P(AB型)=0.10.10.1 0.40.350.10.151.∴本班AB型血的人数=40×0.1=4名.故选D.【点睛】本题主要考查了概率的知识,正确掌握概率的知识是解题的关键.4.B解析:B【分析】从四条线段中任意选取三条,找出所有的可能,以及能构成三角形的情况数,即可求出所求的概率.【详解】解:从长度分别为2、4、6、7的四条线段中任选三条有如下4种情况:2、4、6;2、4、7;2、6、7;4、6、7;其中能构成三角形的有2、6、7;4、6、7这两种情况,所以能构成三角形的概率是21 42 =,故选:B.【点睛】本题考查了概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.构成三角形的基本要求为两小边之和大于最大边.5.B解析:B【分析】根据题意,先列举所有的可能结果,然后选取能组成等腰三角形的结果,根据概率公式即可求出答案.【详解】解:根据题意,在A,B,C,D四个点中任选三个点,有:△ABC、△ABD、△ACD、△BCD,共4个三角形;其中是等腰三角形的有:△ACD、△BCD,共2个;∴能够组成等腰三角形的概率为:2142P==;故选:B.【点睛】本题考查了列举法求概率,等腰三角形的性质,勾股定理与网格问题,解题的关键是熟练掌握列举法求概率,以及正确得到等腰三角形的个数.6.D解析:D【分析】列树状图解答即可.【详解】树状图如下:共有9种等可能的情况,其中甲、乙都抽到化学学科的有1种情况,∴P(甲、乙两名同学都抽到化学学科)=19,故选:D.【点睛】此题考查列树状图求事件的概率,会画树状图,理解题意是解题的关键.7.C解析:C【分析】首先列表,然后根据表格求得所有等可能的结果与两个骰子的点数相同的情况,再根据概率公式求解即可.【详解】列表得:∴两个骰子的点数相同的概率为:61=366故选:C【点睛】此题考查了树状图法与列表法求概率.注意树状图法与列表法可以不重不漏的表示出所有等可能的结果.用到的知识点为:概率=所求情况数与总情况数之比8.B解析:B【解析】【分析】nanhai共有6个拼音字母,a有2个,根据概率公式可得答案.【详解】∵nanhai共有6个拼音字母,a有2个,∴抽中a的概率为21=,63故选:B.【点睛】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.9.B解析:B【分析】分别分析各选项的题设是否能推出结论,即可得到答案.【详解】解:x 取值范围是1x ≥,故选项A 命题错误; B. 一组数据的方差越大,这组数据波动性越大,故选项B 命题正确; C. 若7255'a ∠=︒,则a ∠的补角为1075',故选项C 命题错误;D. 布袋中有除颜色以外完全相同的3个黄球和5个白球,从布袋中随机摸出一个球是白球的概率为58,故选项D 命题错误; 故答案为B. 【点睛】本题考查了命题真假的判断,掌握分析各选项的题设能否退出结论的知识点是解答本题的关键.10.A解析:A 【分析】可根据“黑球数量÷黑白球总数=黑球所占比例”来列等量关系式,其中“黑白球总数=黑球个数+白球个数“,“黑球所占比例=随机摸到的黑球次数÷总共摸球的次数” 【详解】设盒子里有白球x 个, 根据=黑球个数摸到黑球次数小球总数摸球总次数得:8808400x =+ 解得:x=32.经检验得x=32是方程的解. 答:盒中大约有白球32个. 故选;A . 【点睛】此题主要考查了利用频率估计概率,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解,注意分式方程要验根.11.C解析:C 【分析】根据概率公式用豆沙口味的个数除以粽子的总个数即可得出答案. 【详解】解:∵外观完全相同的粽子有4个,两个豆沙、一个红枣、一个蛋黄, ∴从中随机选一个是豆沙味的概率是2142=. 故选:C . 【点睛】本题考查了概率的知识.用到的知识点为:概率=所求情况数与总情况数之比.12.A解析:A【分析】用列举法确定所有等可能的情况,根据落地后至多有一次正面朝下的次数,利用概率公式计算解答.【详解】随机掷一枚质地均匀的硬币两次,共“正、反”,“反、正”,“正、正”,“反、反”,4种情况,落地后至多有一次正面朝下包括“正、反”,“反、正”,“正、正”,3种情况,故至多有一次正面朝下的概率为34.故选:A.【点睛】此题考查了列举法求概率,解题的关键是找到所有的情况.用到的知识点为:概率=所求情况数与总情况数之比.二、填空题13.【分析】根据题意把所有可能出现的结果用表格表示出来即可求解【详解】解:所有可能出现的结果用表格表示为:共有9种等可能的结果其中两人恰好选中同一根绳子的结果共有3种∴两人恰好选中同一根绳子的概率为:故解析:1 3【分析】根据题意,把所有可能出现的结果用表格表示出来,即可求解.【详解】解:所有可能出现的结果用表格表示为:共有9种等可能的结果,其中两人恰好选中同一根绳子的结果共有3种,∴两人恰好选中同一根绳子的概率为:3193,故答案为:13.本题考查用列表法或画树状图法求概率,解题的关键是根据题意列出所有可能出现的结果.14.【分析】画出树状图可得总结果数与传到甲手里的情况数根据概率公式即可得答案【详解】画树状图如下:共有9种等可能的结果其中第二次传球后球回到甲手里的结果有3种∴第二次传球后球回到甲手里的概率为=故答案为解析:1 3【分析】画出树状图,可得总结果数与传到甲手里的情况数,根据概率公式即可得答案.【详解】画树状图如下:共有9种等可能的结果,其中第二次传球后球回到甲手里的结果有3种,∴第二次传球后球回到甲手里的概率为39=13.故答案为:1 3【点睛】本题考查了树状图法计算概率,计算概率的方法有树状图法与列表法,正确的画出树状图是解题关键.15.【分析】数出黑色瓷砖的数目和瓷砖总数求出二者比值即可【详解】解:根据题意分析可得:钥匙藏在黑色瓷砖下面的概率是黑色瓷砖面积与总面积的比值进而转化为黑色瓷砖个数与总数的比值即故答案为:【点睛】本题考查解析:1 4【分析】数出黑色瓷砖的数目和瓷砖总数,求出二者比值即可.【详解】解:根据题意分析可得:钥匙藏在黑色瓷砖下面的概率是黑色瓷砖面积与总面积的比值,进而转化为黑色瓷砖个数与总数的比值即41 164故答案为:1 4 .本题考查几何概率的求法:根据题意将面积比表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率.16.【分析】直接根据概率公式求解【详解】∵袋中有2个红球3个黄球共有5个球∴从袋中任意摸出一个球是黄球的概率是故答案为:【点睛】本题考查了概率公式随机事件A的概率P(A)=事件A可能出现的结果数除以所有解析:3 5【分析】直接根据概率公式求解.【详解】∵袋中有2个红球、3个黄球,共有5个球,∴从袋中任意摸出一个球是黄球的概率是35.故答案为:35.【点睛】本题考查了概率公式,随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.17.【分析】先画出树状图求出所有可能出现的结果数再找出选出的2名同学刚好是一男一女的结果数然后利用概率公式求解即可【详解】解:设报名的3名男生分别为ABC2名女生分别为MN则所有可能出现的结果如图所示:解析:3 5【分析】先画出树状图求出所有可能出现的结果数,再找出选出的2名同学刚好是一男一女的结果数,然后利用概率公式求解即可.【详解】解:设报名的3名男生分别为A、B、C,2名女生分别为M、N,则所有可能出现的结果如图所示:由图可知,共有20种等可能的结果,其中选出的2名同学刚好是一男一女的结果有12种,所以选出的2名同学刚好是一男一女的概率=123 205.故答案为:35.【点睛】本题考查了求两次事件的概率,属于常考题型,熟练掌握画树状图或列表的方法是解题的关键.18.【分析】先由一元二次方程x2-2x+a-2=0有实数根得出a的取值范围最后根据概率公式进行计算即可【详解】解:∵一元二次方程x2-2x+a-2=0有实数根∴4-4(a-2)≥0∴a≤3∴a=-101解析:5 6【分析】先由一元二次方程x2-2x+a-2=0有实数根,得出a的取值范围,最后根据概率公式进行计算即可.【详解】解:∵一元二次方程x2-2x+a-2=0有实数根,∴4-4(a-2)≥0,∴a≤3,∴a=-1,0,1,2,3.∴使得关于x的一元二次方程x2-2x+a-2=0有实数根概率为:56.【点睛】考查概率的求法;用到的知识点为:概率=所求情况数与总情况数之比.得到使一元二次方程x2-2x+a-2=0有实数根情况数是解决本题的关键.19.【分析】根据题意得出摸出红球的频率继而根据频数=总数×频率计算即可【详解】∵小明通过多次摸球试验后发现其中摸到红球的频率稳定在40∴口袋中红色球的个数可能是30×40=12个故答案为:12【点睛】本解析:【分析】根据题意得出摸出红球的频率,继而根据频数=总数×频率计算即可.【详解】∵小明通过多次摸球试验后发现其中摸到红球的频率稳定在40%,∴口袋中红色球的个数可能是30×40%=12个.故答案为:12.【点睛】本题比较容易,考查利用频率估计概率.大量反复试验下频率稳定值即概率.用到的知识点为:概率=所求情况数与总情况数之比.20.22【分析】袋中黑球的个数为利用概率公式得到然后利用比例性质求出即可【详解】解:设袋中黑球的个数为根据题意得解得即袋中黑球的个数为个故答案为:22【点睛】本题主要考查概率的计算问题关键在于根据题意对解析:22【分析】袋中黑球的个数为x,利用概率公式得到5152310x=++,然后利用比例性质求出x即可.【详解】解:设袋中黑球的个数为x,根据题意得5152310x=++,解得22x=,即袋中黑球的个数为22个.故答案为:22.【点睛】本题主要考查概率的计算问题,关键在于根据题意对概率公式的应用.三、解答题21.(1)100,72°;(2)见解析;(3)14.【分析】(1)样本中“在线阅读”的人数有25人,占调查人数的25%,可求出调查人数;再求出“在线答疑”所占整体的百分比即可求出相应的圆心角的度数即可;(2)补全条形统计图即可;(3)画出树状图表示所有可能出现的结果情况,进而求出甲、乙两个人选择同一种方式的概率.【详解】解:(1)25÷25%=100(人),即本次调查人数有100人,“在线答疑”的人数为100-40-25-15=20(人),在扇形图中的圆心角度数为360°×20 100=72°;故答案为:100,72°;(2)补全条形统计图如图所示:(3)四类在线学习方式在线阅读、在线听课、在线答疑、在线讨论分别用A、B、C、D表示,画树状图如图:共有16个等可能的结果,其中甲、乙两名同学喜欢同一种在线学习方式的结果有4个,∴甲、乙两名同学喜欢同一种在线学习方式的概率为41164.【点睛】本题考查了列表法与树状图法、条形统计图、扇形统计图等知识,理解两个统计图中的数量关系,正确画出树状图是解题的关键.22.(1)13;(2)29【分析】(1)利用概率公式计算可得;(2)先画树状图展示所有9个等可能的结果数,再找出两个数字之和为5的结果数,由概率公式求解即可.【详解】解:(1)∵转盘被平均分成3个扇形,分别标有1、2、3三个数字,转盘中有3的数字为1个,∴小王转动一次转盘指针指向3所在扇形的概率是13,故答案为:13;(2)画树状图为:共有9个等可能的结果数,其中两个数字之和为5的结果数为2个,∴两个数字之和为5的概率=29.【点睛】本题考查了列表法与树状图,树状图法适合两步或两步以上完成的事件;画出树状图是解题的关键.23.(1)总人数40人,选报A课程的学生人数为4人;(2)16.【分析】(1)利用B的频数和所占百分比计算即可;利用公式计算即可;(2)选用列表法或画树状图法计算即可.【详解】解:(1)九年(1)班学生的总人数是1640%40÷=(人),该班选报A课程的学生人数是4010%4⨯=(人).(2)由(1)得,九年(1)班选报A课程的人数是4,将甲,乙以外的两人记为丙,丁.根据题意,可以列出如下表格:甲乙丙丁甲(甲,乙)(甲,丙)(甲,丁)乙(乙,甲)(乙,丙)(乙,丁)丙(丙,甲)(丙,乙)(丙,J)丁(丁,甲)(丁,乙)(丁,丙)其中他们“甲,乙同时被抽中”的结果有2种.P∴(甲,乙同时被抽中)21 126 ==.∴甲,乙同时被抽中的概率是16.【点睛】本题考查了统计图的计算,列表法或画树状图法求概率,熟练掌握统计图的意义,灵活选择概率的计算方法是解题的关键.24.2 9【分析】先画出树状图,由树状图求得所有等可能的结果数,找出一红一黄的情况数,再利用概率公式,即可求得答案.【详解】解:画树状图得:由树状图可知:共有9种等情况数,其中“一红一黄”的有2种,∴摸出的两个球颜色为“一红一黄”的概率为29.【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.25.(1)见解析,12种;(2)14;(3)认同,见解析;(4)见解析.【分析】(1)根据题意画出树状图,得出游戏中两数和的所有可能的结果数;(2)根据(1)得出两数和共有的情况数和其中和等于12的情况数,再根据概率公式即可得出答案;(3)根据(1)得出两数和共有的情况数和其中和小于12的情况、和大于12的情况数,再根据概率公式即可得出答案;(4)应保证双方赢的概率相同.【详解】解:(1)画树状图:可见,两数和共有12种等可能性;(2)两数和共有12种等可能性,其中平局的情况有3种, ∴P (出现平局)31124==; (3)由(1)可知,两数和共有12种等可能的情况,其中和小于12的情况有6种,和大于12的情况有3种,P ∴(李燕获胜)61122==, P (刘凯获胜)31124==, ∵1142<, ∴这个游戏规则对双方不公平. (4)游戏规则:(答案不唯一)如:两人分别同时转运甲、乙转盘,转盘停止后,若指针所指区域内两数等于12,则李燕胜;若指针所指区域内两数和大于12,则刘凯获胜(若指针停在等分线上,重转一次,直到指针指向某一份内为止).或:两人分别同时转运甲、乙转盘,转盘停止后,若指针所指区域内两数小于12,则李燕胜;否则就刘凯获胜(若指针停在等分线上,重转一次,直到指针指向某一份内为止). 【点睛】本题考查了用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.游戏双方获胜的概率相同,游戏就公平,否则游戏不公平.用到的知识点为:概率=所求情况数与总情况数之比. 26.(1)2,45,20;(2)图见解析,72;(3)16【分析】(1)用A 等次的人数除以它所占的百分比得到调查的总人数,再分别求出a 和B 等次的人数,然后计算出b 、c 的值;(2)先补全条形统计图,然后用360°乘以C 等次所占的百分比得到C 等次的扇形所对的圆心角的度数;(3)画树状图展示所有12种等可能的结果数,再找出甲、乙两名男生同时被选中的结果数,然后根据概率公式求解. 【详解】解:(1)1230%40÷=, 405%2a =⨯=;401282%100%45%40b ---=⨯=,即45b =; 8%100%20%40c =⨯=,即20c =; 故答案为:2,45,20;(2)B等次人数为40128218---=,条形统计图补充为:C等次的扇形所对的圆心角的度数20%36072=⨯︒=︒;故答案为72︒;(3)画树状图为:共有12种等可能的结果数,其中甲、乙两名男生同时被选中的结果数为2,所以甲、乙两名男生同时被选中的概率21 126 ==.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式计算事件A或事件B的概率.也考查了统计图.。
北师大版数学九年级上册第三章测试题及答案解析(2套)
北师大版数学九年级上册第三章测试题(一)(概率的进一步认识测试卷)一、选择题1.一个不透明的袋子里装着质地、大小都相同的3个红球和2个绿球,随机从中摸出一球,不再放回袋中,充分搅匀后再随机摸出一球.两次都摸到红球的概率是()A. B.C. D.2.假定鸟卵孵化后,雏鸟为雌与雄的概率相同.如果三枚卵全部成功孵化,则三只雏鸟中恰有两只雌鸟的概率是()A. B.C. D.3.在四张背面完全相同的卡片上分别印有等腰三角形、平行四边形、菱形、圆的图案,现将印有图案的一面朝下,混合后从中随机抽取两张,则抽到卡片上印有的图案都是轴对称图形的概率为()A. B.C. D.二、填空题4.袋中装有一个红球和一个白球,他们除了颜色外其它都相同,随机从中摸出一个球,记录下颜色后放回袋中充分摇匀后,再随机摸出一个球,两次都摸到红球的概率是.5.有两把不同的锁和三把钥匙,其中两把钥匙能打开同一把锁,第三把钥匙能打开另一把锁.任意取出一把钥匙去开任意的一把锁,一次能打开锁的概率是.6.襄阳市辖区内旅游景点较多,李老师和刚初中毕业的儿子准备到古隆中、水镜庄、黄家湾三个景点去游玩.如果他们各自在这三个景点中任选一个作为游玩的第一站(每个景点被选为第一站的可能性相同),那么他们都选择古隆中为第一站的概率是.7.从1,2,3这三个数字中任意取出两个不同的数字,则取出的两个数字都是奇数的概率是.8.在一个不透明的口袋中,有3个完全相同的小球,他们的标号分别是2,3,4,从袋中随机地摸取一个小球然后放回,再随机的摸取一个小球,则两次摸取的小球标号之和为5的概率是.9.已知a、b可以取﹣2、﹣1、1、2中任意一个值(a≠b),则直线y=ax+b的图象不经过第四象限的概率是.三、解答题10.在一只不透明的袋中,装着标有数字3,4,5,7的质地、大小均相同的小球,小明和小东同时从袋中随机各摸出1个球,并计算这两个球上的数字之和,当和小于9时小明获胜,反之小东获胜.(1)请用树状图或列表的方法,求小明获胜的概率;(2)这个游戏公平吗?请说明理由.11.甲乙两人玩一种游戏:三张大小、质地都相同的卡片上分别标有数字1,2,3,现将标有数字的一面朝下,洗匀后甲从中任意抽取一张,记下数字后放回;又将卡片洗匀,乙也从中任意抽取一张,计算甲乙两人抽得的两个数字之积,如果积为奇数则甲胜,若积为偶数则乙胜.(1)用列表或画树状图等方法,列出甲乙两人抽得的数字之积所有可能出现的情况;(2)请判断该游戏对甲乙双方是否公平?并说明理由.12.现有一个六面分别标有数字1,2,3,4,5,6且质地均匀的正方形骰子,另有三张正面分别标有数字1,2,3的卡片(卡片除数字外,其他都相同),先由小明投骰子一次,记下骰子向上一面出现的数字,然后由小王从三张背面朝上放置在桌面上的卡片中随机抽取一张,记下卡片上的数字.(1)请用列表或画树形图(树状图)的方法,求出骰子向上一面出现的数字与卡片上的数字之积为6的概率;。
第三章概率的进一步认识检测卷(含答案)
第三章概率的进一步认识检测卷(本试卷满分120分,考试时间100分钟)一、选择题(每小题3分,共30分)下列各小题均有四个选项,其中只有一项是符合题意的.1.从长为2,5,6,8的四条线段中任意选取三条作为边,能构成三角形的概率为()A.14B.12C.34D.12.掷两枚普通的骰子,所得点数之和为10的概率为()A.118B.136C.112D.1153.聪聪和康康参加了学校举办的“数学趣味知识大赛”,试题最后有三道附加题,要求任选其一作答,那么聪聪和康康都选择附加题第一题的概率为()A.13B.23C.59D.194.有五张除正面图案外完全相同的卡片,正面分别印有圆、矩形、等边三角形、菱形、平行四边形(邻边不相等且不垂直),现将五张卡片正面朝下洗匀,从中随机抽取两张,则抽到的两张卡片正面的图案恰好都既是轴对称图形又是中心对称图形的概率为()A.625B.310C.1120D.355.某市今年中考体育测试,其中男生测试项目有200 m跑、1 000 m 跑、立定跳远、投掷实心球、一分钟跳绳、引体向上、篮球半场来回运球上篮七个项目,考生须从这七个项目中选取两个项目,其中200 m跑为必选项目,剩下六个项目任选一个,则两名男生在体育测试中所选项目完全相同的概率为()A.17B.16C.15D.146.在一次联欢晚会上,某班进行以下游戏:准备两个不透明的袋子和7个小球(大小、形状完全一样),一个袋子里放置3个小球,球面上分别写着“好”“运”“来”,另一个袋子里放置4个小球,球面上分别写着“新”“年”“好”“运”.现从两个袋子里各随机抽取一个球.若球面上的字可以组成“好运”,则获得一等奖,获得一等奖的概率为()A.112B.18C.16D.147.在大量重复试验中,关于随机事件发生的频率与概率,下列说法正确的是()A.频率就是概率B.频率与试验次数无关C.概率是随机的,与频率无关D.随着试验次数的增加,频率一般会越来越接近概率8.在一个不透明的盒子里装有若干个同一型号的白色乒乓球,小明想通过摸球试验估计盒子里有白色乒乓球的个数,于是又另外拿了9个黄色乒乓球(与白色乒乓球的型号相同)放进盒子里.每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回,通过大量重复摸球试验后发现,摸到黄色乒乓球的频率稳定在0.3附近,则估计原来盒子中白色乒乓球的个数为()A.21B.24C.27D.309.以下说法合理的是()A.小明做了3次掷图钉的试验,发现2次钉尖朝上,由此他说钉尖朝上的概率是23B.某彩票的中奖概率是7%,那么买100张彩票一定有7张中奖C.某射击运动员射击一次只有两种可能的结果:中靶与不中靶,所以他击中靶的概率是12D.小明做了3次掷均匀硬币的试验,其中有一次正面朝上,2次正面朝下,他认为再掷一次,正面朝上的概率是1210.经过某十字路口的汽车,可能直行,也可能左转或者右转,如果这三种可能性大小相同,则经过这个十字路口的两辆汽车一辆直行,一辆右转的概率为()A.47B.49C.29D.19二、填空题(每小题3分,共15分)11.截至2020年10月,郑州地铁运营线路共5条,多条地铁的开通极大地方便了人们的出行.如图是某地铁站的进站口,共有4个闸机检票通道口.若甲、乙两人各随机选择一个闸机检票口进站,则甲、乙两人从同一个闸机检票通道口进站的概率为.第11题图12.如图,用两个可自由转动的转盘做“配紫色”游戏:分别转动两个转盘,若其中一个转出红色,另一个转出蓝色即可配出紫色,那么可配成紫色的概率为.第12题图13.在一个不透明的袋子中装有20个红球和若干个白球,这些球除颜色外完全相同,随机摸出一个球,记下颜色后再放回,多次摸取再放回后发现摸到白球的频率稳定在0.2附近,则袋子中白球的个数为.14.在-1,3,5,7中随机选取一个数记为a,再从余下的数中随机取一个数记为b,则一次函数y=ax+b的图象经过第一、三、四象限的概率为.15.在四边形ABCD中,①四边形ABCD是平行四边形;②AC=BD;③AC⊥BD;④AB=BC.从上述4个条件中任选2个,可以判定四边形ABCD是菱形的概率为.三、解答题(本大题共8个小题,满分75分)16.(8分)甲口袋中装有两个相同的小球,它们分别写有数字4和7;乙口袋中装有三个相同的小球,它们分别写有数字5,6,9,小明和小丽玩游戏:从两个口袋中随机各取出一个小球,如果两个小球上的数字之和是偶数,则小丽胜;否则小明胜.但小丽认为,这个游戏不公平,你同意小丽的看法吗?请用画树状图法或列表法说明理由.17.(9分)在一次企业赞助的数学竞赛活动中,甲、乙两同学得分相同,获并列第一名,于是每人可在准备好的4件奖品中获得其中一件,至于谁得什么奖品只好用抽签来决定,4个纸签内分别写上了文具盒、计算器、篮球、文曲星4个奖品名称,在看不到签中所写内容的情况下.(1)求第一位抽奖的同学抽中“计算器”的概率是多少?(2)有同学认为,如果甲先抽,那么他抽到“文曲星”的概率会大些,你同意这种说法吗?并用列表法或画树状图法加以说明.18.(9分)为了准备2022年九年级物理、化学实验操作考试,某中学对九年级学生进行了模拟训练,物理、化学各有4个不同的实验操作题目,物理实验用①,②,③,④表示,化学实验用字母a,b,c,d表示,测试时每名学生每科只操作一个实验,实验的题目由学生抽签确定,第一次抽签确定物理实验题目,第二次抽签确定化学实验题目.(1)某位同学抽签的所有可能情况有种.(2)小明对物理的②④实验和化学的a,d实验的准备比较充分,请用画树状图或列表的方法,求小明同时抽到两科都准备较充分的实验题目的概率.19.(9分)某中学各班举行了“垃圾分类,从我做起”的主题班会,九年级三班的同学在班会课上进行了一个有关垃圾分类知识竞答的活动,他们上网查阅了相关资料,收集到四个图标,并将其制成编号为A,B,C,D的四张卡片(除编号和内容外,其余完全相同).他们将这四张卡片背面朝上,洗匀放好.(1)从中随机抽取一张,恰好抽到“B”的概率为.(2)从中随机抽取一张(不放回),再从中随机抽取一张,请用列表或画树状图的方法求抽到的两张卡片恰好是“A”和“C”的概率.20.(9分)在一个不透明的盒子里装有标号分别为1,2,3的三个小球,这些小球除标号数字外都相同,随机摸出一个小球,记下数字后放回,充分摇匀后再摸,部分试验数据如下表:试验次数20 40 60 80 100 120 150 摸到1号小球的频率0.35 0.325 0.35 0.338 0.34 0.325 0.327 (1)从上表中可以估计摸到1号小球的概率为.(精确到0.01)(2)甲、乙两人用这三个小球玩摸球游戏,规则是:甲随机摸出一个小球,记下标号数字后放回盒中,充分摇匀后,乙再从盒中随机摸出一个小球,并记下标号数字.若两次摸到小球的标号数字同为奇数或同为偶数,则甲获胜;若两次摸到小球的标号数字为一奇一偶,则乙获胜.请用列表或画树状图的方法说明这个游戏规则是否公平.21.(9分)如图,电路图中有3个开关a,b,c和一个灯泡.(1)若开关b已闭合,随机闭合a,c中一个开关,灯泡发光的概率为.(2)请用树状图法或列表法,求当随机闭合两个开关时灯泡发光的概率.22.(11分)为了促进学生全面发展,河南省某地区教育局在全区中小学开展“书法、手球、豫剧进校园”活动.今年8月份,该区某校举行了“朝阳沟”演唱比赛,比赛分为A,B,C,D,E五个等级,该校部分学生参加了学校的比赛,并将比赛结果绘制成如下两幅不完整的统计图:请根据图中信息,解答下列问题:(1)求该校参加本次“朝阳沟”演唱比赛的学生人数.(2)求扇形统计图中B等级所对应扇形圆心角的度数.(3)已知A等级的4名学生中有2名男生,2名女生,现从中任意选出2名学生作为全校学生的楷模,请你用列表或画树状图的方法,求恰好选中一男一女的概率.23.(11分)“五一”假期,某公司组织部分员工分别到甲、乙、丙、丁四地旅游,公司按定额购买了前往各地的车票,如图所示是车票种类和相应数量的条形统计图(不完整):(1)若去丁地的车票数量占全部车票的10%,请求出全部的车票数量,并补全条形统计图.(2)若公司采用随机抽取的方式发车票,小胡先从所有的车票中随机抽取一张(所有车票的形状、大小、质地完全相同),那么员工小胡抽到去甲地的车票的概率是多少?(3)若有一张车票,小王和小李都想要,于是决定采取摸球的方式决定,具体规则为:不透明袋子中装有分别标有1,2,3,4的4个球,这4个球除数字外完全相同,小王先从袋子中摸出一个球,然后放回,小李再摸,若小王摸出的球所标数字比小李摸出的球所标数字小,则小王获得这张车票,否则小李获得这张车票.试用列表或画树状图的方法分析这个规则是否公平.第三章概率的进一步认识检测卷答案一、选择题(每小题3分,共30分)下列各小题均有四个选项,其中只有一项是符合题意的.1.B.2.C.3.D.4.B.5.B.6.C.7.D.8. A.9.D. 10.C.二、填空题(每小题3分,共15分)11.14.12.13.13.5.14.14.15.13.三、解答题(本大题共8个小题,满分75分)16.(8分)解:不同意.(1分)理由:根据题意,列表如下:(4分)由表格可知,共有6种等可能的结果,其中和是奇数、和是偶数的结果各有3种,∴P(和为奇数)=P(和为偶数)=36=1 2 .∴这个游戏公平.(8分)17.(9分)解:(1)第一位抽奖的同学抽中“计算器”的概率为14.(2分)(2)不同意.(3分)理由:根据题意,画树状图如下:由树状图可知,共有12种等可能的结果,其中甲抽到“文曲星”和乙抽到“文曲星”的结果各有3种,∴P(甲抽到“文曲星”)=P(乙抽到“文曲星”)=312=1 4 .∴甲、乙抽到“文曲星”的概率一样.(9分)18.(9分)解:(1)16 (2分)(2)根据题意,画树状图如下:(6分)由树状图可知,共有16种等可能的结果,其中小明恰好抽到两科都准备比较充分的实验题目的结果有4种,故其概率为:416=14.(9分)19.(9分)解:(1)14(2分)(2)根据题意,画树状图如下:(6分)由树状图可知,共有12种等可能的结果,其中抽到的两张卡片恰好是“A”和“C”的结果有2种,故其概率为:212=16.(9分)20.(9分)解:(1)0.33 (2分)(2)根据题意,列表如下:分)由表格可知,共有9种等可能的结果,其中两次摸到小球的标号数字同为奇数或同为偶数的结果有5种,两次摸到小球的标号数字为一奇一偶的结果有4种,∴P(甲获胜)=59,P(乙获胜)=49.∵49<59,∴这个游戏规则不公平.(9分)21.(9分)解:(1)12(2分)(2)根据题意,画树状图如下:(6分)由树状图可知,共有6种等可能的结果,其中使灯泡发光的结果有4种,故其概率为:46=23.(9分)22.(11分)解:(1)4÷8%=50(人).答:该校参加本次“朝阳沟”演唱比赛的学生人数为50.(2分)(2)50-(4+20+8+2)=16(人).360°×1650=115.2°.答:扇形统计图中B等级所对应扇形圆心角的度数为115.2°.(4分)(3)根据题意,列表如下:由表格可知,共有12种等可能的结果,其中恰好选中一男一女的结果有8种,故其概率为:812=23.(11分)23.(11分)解:(1)(20+40+30)÷(1-10%)=100(张).答:全部的车票数量为100张.(1分)补全条形统计图如下:(4分)(2)员工小胡抽到去甲地的车票的概率为:20100=15.(6分)(3)根据题意,列表如下:8分)由表格可知,共有16种等可能的结果,其中小王摸出的球所标数字比小李摸出的球所标数字小的结果有6种.∴P(小王获得这张车票)=6 16=38,P(小李获得这张车票)=1-38=58.∵3 8<58,∴这个规则不公平.(11分)。
第三章 概率的进一步认识 自我检测
第三章 《概率的进一步认识》 自我检测 (时间:90分钟,满分:100分)一、选择题(每题2分,共10分)1、在盒子里放有三张分别写有整式1+a 、2+a 、2的卡片,从中随机抽取两张卡片,把两张卡片上的整式分别作为分子和分母,则能组成分式的概率是( ) A 、31 B 、32 C 、61 D 、43 2、从n 张互不相同的普通扑克牌中任意抽取一张,抽到黑桃K 的概率是51,则n =( ) A 、54 B 、52 C 、10 D 、53、在一个不透明的布袋中装有红色、白色玻璃球共40个,除颜色外其他完全相同。
小明通过多次摸球试验后发现,其中摸到红色球的频率稳定在15%左右,则口袋中红色球可能有 ( )A 、6个B 、8个C 、34个D 、36个4、一个口袋中只有若干个白球,从中摸出1个球做上记号后,重新放回口袋中,然后不断重复上述过程,一共摸了150次,其中有6次摸到了那个做了记号的球,于是我们可以估计这个口袋中共有白球( )A 、27个B 、26个C 、25个D 、24个5、“上升数”是一个数中右边数字比左边数字大的自然数(如:34,568,2469等)。
任取一个两位数,是“上升数”的概率是 ( ) A 、21 B 、52 C 、53 D 、187 二、填空题(每题2分,共12分)6、某学校的九年(1)班,有男生20人,女生23人。
其中男生有18人住宿,女生有20人住宿。
现随机抽一名学生,①抽到一名男生的概率是 ;②抽到一名住宿男生的概率是 ;③抽到一名走读女生的概率是 。
7、小华买了一套科普读物,有上、中、下三册,要整齐地摆放在书架上,有 种摆法,其中恰好摆成“上、中、下”顺序的概率是 。
8、在一个不透明的袋中装有除颜色外其余都相同的三个小球,其中一个红色球、两个黄色球。
如果第一次先从袋中摸出一个球后不再放回,第二次再从袋中摸出一个,那么两次都摸到黄色球的概率是 。
9、在一个不透明的盒子中装有4个白球,n 个黄球,它们除颜色不同外,其余均相同。
北师大版数学九年级上册第三章《概率的进一步认识》试卷含答案
北师大版数学九上第三章《概率的进一步认识》试卷、答案一、选择题(共12小题;共36分)1. 甲、乙两人用如图所示的两个转盘(每个转盘被分成面积相等的个扇形)做游戏.游戏规则:转动两个转盘各一次,当转盘停止后,指针所在区域的数字之和为偶数时甲获胜;数字之和为奇数时乙获胜.若指针落在分界线上,则需要重新转动转盘.甲获胜的概率是A. B. C. D.2. 甲、乙两名同学在一次用频率去估计概率的实验中,统一了某一结果出现的频率绘出的统计图如图所示,则符合这一结果的实验可能是A. 从一个装有个白球和个红球的袋子中任取两球,取到两个白球的概率B. 任意写一个正整数,它能被整除的概率C. 抛一枚硬币,连续两次出现正面的概率D. 掷一枚正六面体的骰子,出现点的概率3. 小茜课间活动中,上午大课间活动时可以先从跳绳、乒乓球、健美操中随机选择一项运动,上午课外活动再从篮球、武术、太极拳中随机选择一项运动.则小茜上午、下午都选中球类运动的概率是A. B. C. D.4. 将分别标有“孔”“孟”“之”“乡”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀.随机摸出一球,不放回;再随机摸出一球.两次摸出的球上的汉字能组成“孔孟”的概率是A. B. C. D.5. 在不透明的袋子中有黑棋子枚和白棋子若干(它们除颜色外都相同),现随机从中摸出枚记下颜色后放回,这样连续做了次,记录了如下的数据:次数黑棋数根据以上数据,估算袋中的白棋子数量为A. 枚B. 枚C. 枚D. 枚6. 现有两枚质地均匀的骰子,每枚骰子的六个面上都分别标上数字,,,,,.同时投掷这两枚骰子,以朝上一面所标的数字为掷得的结果,那么所得结果之和为的概率是A. B. C. D.7. 小明和小华玩“石头、剪子、布”的游戏,若随机出手一次,则小华获胜的概率是A. B. C. D.8. 小明在一次用频率估计概率的实验中,统计了某一结果出现的频率,并绘制了如图所示的统计图,则符合这一结果的实验可能是A. 掷一枚质地均匀的硬币,正面朝上的概率B. 从一个装有个白球和个红球的不透明袋子中任意摸出一球(小球除颜色外,完全相同),摸到红球的概率C. 从一副去掉大小王的扑克牌,任意抽取一张,抽到黑桃的概率D. 任意买一张电影票,座位号是的倍数的概率9. 学校新开设了航模、彩绘、泥塑三个社团,如果征征、舟舟两名同学每人随机选择参加其中一个社团,那么征征和舟舟选到同一社团的概率是A. B. C. D.10. 小明和小华参加社会实践活动,随机选择“打扫社区卫生”和“参加社会调查”其中一项,那么两人同时“参加社会调查”的概率为A. B. C. D.11. 王大伯为了估计他家鱼塘里有多少条鱼,从鱼塘里捞出条鱼,将它们做上标记,然后放回鱼塘.经过一段时间后,再从鱼塘中随机捕捞条鱼,其中有标记的鱼有条,请你估计鱼塘里鱼的数量大约有A. 条B. 条C. 条D. 条12. 一个布袋内只装有个黑球和个白球,这些球除颜色外其余都相同,随机摸出一个球后放回并搅匀,再随机摸出一个球,则两次摸出的球都是黑球的概率是A. B. C. D.二、填空题(共6小题;共24分)13. 在一个暗箱里放有个除颜色外其余完全相同的球,这个球中红球只有个,每次将球搅拌均匀后,任意摸出一个球记下颜色再放回暗箱.通过大量重复摸球试验后发现,摸到红球的频率稳定在,那么可以推测出大约是.14. 淘淘和丽丽是非常要好的九年级学生,在月份进行的物理、化学、生物实验技能考试中,考试科目要求三选一,并且采取抽签方式取得,那么他们两人都抽到物理实验的概率是.15. 一个不透明的袋子中装有除颜色外均相同的个黑球、个白球和若干个红球.每次摇匀随机摸出一个球,记下颜色后再放回袋子中,通过大量重复摸球试验后,发现摸到红球的频率稳定于,由此可估计袋子中约有红球个.16. 在一个不透明的口袋中,装有,,,四个完全相同的小球,随机摸取一个小球然后放回,再随机摸取一个小球,两次摸到同一个小球的概率是.17. 如图,随机地闭合开关,,,,中的三个,能够使灯泡,同时发光的概率是.18. 在一只不透明的口袋中放人红球个,黑球个,黄球个,这些球除色不同外其他完全相同.搅匀后随机从中摸出一个,恰好是黄球的概率为,则放人口袋中的黄球总数.三、解答题(共7小题;共60分)19.(8分)甲、乙两个人做游戏:在一个不透明的口袋中装有张相同的纸牌,它们分别标有数字,,,.从中随机摸出一张纸牌然后放回,再随机摸出一张纸牌,若两次摸出的纸牌上数字之和是的倍数,则甲胜;否则乙胜.这个游戏对双方公平吗?请列表格或画树状图说明理由.20.(10分)在一个不透明的口袋里装有仅颜色不同的黑、白两种颜色球只,某学习小组做摸球实验.将球搅匀后从中随机摸出一个球,记下颜色,再把它放回袋中,不断重复,下表是活动进行中记下的一组数据摸球的次数摸到白球的次数摸到白球的频率(1)请你估计,当很大时,摸到白球的频率将会接近(精确到).(2)假如你去摸一次,你摸到白球的概率是,摸到黑球的概率是.(3)试估算口袋中黑、白两种颜色的球有多少只.21. (8分)小华和小军做摸球游戏,袋中装有编号为,,的三个小球,袋中装有编号为,,的三个小球,两袋中的所有小球除编号外都相同,从两个袋子中分别随机摸出一个小球,若袋摸出的小球的编号与袋摸出小球的编号之差为偶数,则小华胜,否则小军胜.这个游戏对双方公平吗?请说明理由.22. (8分)小明和小亮用如图所示的两个转盘(每个转盘被分成三个面积相等的扇形)做游戏,转动两个转盘各一次,若两次数字之和为奇数,则小明胜;若两次数字之和为偶数,则小亮胜,这个游戏对双方公平吗?说说你的理由.23. (8分)在一个不透明的纸箱里装有红、黄、蓝三种颜色的小球,它们除颜色外完全相同,其中红球有个,黄球有个,蓝球有个.现有一张电影票,小明和小亮决定通过摸球游戏定输赢,赢的一方得电影票.游戏规则是:两人各摸次球,先由小明从纸箱里随机摸出个球,记录颜色后放回,将小球摇匀,再由小亮随机摸出个球.若两人摸到的球颜色相同,则小明赢,否则小亮赢.这个游戏规则对双方公平吗?请你利用树状图或列表法说明理由.24.(10分)“六一”期间,某公园游戏场举行“游园”活动.有一种游戏的规则是:在一个装有个红球和若干个白球(每个球除颜色外其他都相同)的袋中,随机摸一个球,摸到一个红球就得到一个喜羊羊玩具.已知共有人次参加这种游戏,公园游戏场发放的喜羊羊玩具为个.(1)求参加一次这种游戏活动得到喜羊羊玩具的频率.(2)请你估计袋中白球接近多少个.25. (8分)甲、乙两人进行摸牌游戏.现有三张形状大小完全相同的牌,正面分别标有数字,,.将三张牌背面朝上,洗匀后放在桌子上.(1)甲从中随机抽取一张牌,记录数字后放回洗匀,乙再随机抽取一张.请用列表法或画树状图的方法,求两人抽取相同数字的概率;(2)若两人抽取的数字和为的倍数,则甲获胜;若抽取的数字和为的倍数,则乙获胜.这个游戏公平吗?请用概率的知识加以解释.答案第一部分1. C2. A3. A4. B5. C6. C7. C8. B9. C 【解析】本题考查列表法求概率.将征征、舟舟两名同学参加社团的可能情况列表如下:航模征征彩绘征征泥塑征征航模舟舟航模舟舟航模征征航模舟舟彩绘征征航模舟舟泥塑征征彩绘舟舟彩绘舟舟航模征征彩绘舟舟彩绘征征彩绘舟舟泥塑征征泥塑舟舟泥塑舟舟航模征征泥塑舟舟彩绘征征泥塑舟舟泥塑征征由上表可知征征和舟舟选择的可能情况有种,其中征征和舟舟选到同一社团的可能情况有种,所以概率为.10. A11. C12. D 【解析】列表法:符合题意的情况用“”表示,不符合题意用“”表示.黑白白黑白白所以(两次黑).第二部分13.14.15.16.17.【解析】随机地闭合开关,,,,中的三个共有种可能,能够使灯泡,同时发光有种可能(,,或,,).随机地闭合开关,,,,中的三个,能够使灯泡,同时发光的概率是.18.第三部分19. 不公平,根据题意列表如下:所有等可能的情况有种,其中两次摸出的纸牌上数字之和是的倍数的情况有:,,,,,共种,所以甲获胜,乙获胜,则该游戏不公平.20. (1)【解析】根据题意可得当很大时,摸到白球的频率将会接近.(2);【解析】因为当很大时,摸到白球的频率将会接近;所以摸到白球的概率是;摸到黑球的概率是.(3)因为摸到白球的概率是,摸到黑球的概率是,所以口袋中黑、白两种颜色的球,有白球是个,黑球是个.21. 列表如下共有种等可能结果,其中袋中数字减去袋中数字为偶数有种等可能结果.;小华胜则小军胜的概率为.,不公平.22. 这个游戏对双方不公平.理由如下:画树状图为:共有种等可能的结果数,其中两次数字之和为奇数的结果数为,两次数字之和为偶数的结果数为,小明胜的概率,小亮胜的概率,而,这个游戏对双方不公平.23. 不公平,画树状图如图所示.由上述树状图知,所有可能出现的结果共有种.小明赢,小亮赢.此游戏对双方不公平,小亮赢的可能性大.24. (1)因为所以参加一次这种游戏活动得到喜羊羊玩具的频率为.(2)因为试验次数很大,频率接近概率,所以估计从袋中任意摸出一个球恰好是红球的概率是.设袋中白球有个,则根据题意,得,解得.经检验是方程的解.所以估计袋中白球接近个.25. (1)所有可能出现的结果如图:【解析】树状图法:甲乙所有可能出现的结果从上面的表格(或树状图)可以看出,总共有种结果,每种结果出现的可能性相同,其中两人抽取相同.数字的结果有种,所以两人抽取相同数字(2)不公平.从上面的表格(或树状图)可以看出,两人抽取数字和为的倍数有种,两人抽取数字和为的倍数有种,所以甲获胜;乙获胜.因为,所以甲获胜的概率大,游戏不公平.。
(必考题)初中数学九年级数学上册第三单元《概率的进一步认识》检测(含答案解析)
一、选择题1.一只小狗在如图的方砖上走来走去,最终停在阴影方砖上的概率是( )A.25B.13C.415D.152.张老师对本班40名学生的血型作了统计,列出如下的统计表,则本班AB型血的人数是()组别A型B型AB型O型频率0.40.350.10.15A.16人B.14人C.6人D.4人3.三张背面完全相同的数字牌,它们的正面分别印有数字1,2,3,将它们背面朝上,洗匀后随机抽取一张,记录牌上的数字并把牌放回,再重复这样的步骤两次,得到三个数字a、b、c,则以a、b、c为边长能构成等腰三角形的概率是()A.19B.13C.59D.794.如图,4×2的正方形的网格中,在A,B,C,D四个点中任选三个点,能够组成等腰三角形的概率为()A.1 B.12C.13D.145.袋中装有除颜色外其他完全相同的4个小球,其中3个红色,一个白色,从袋中任意地摸出两个球,这两个球颜色相同的概率是( )A.12B.13C.23D.166.我们要遵守交通规则,文明出行,做到“红灯停,绿灯行”,小刚每天从家到学校需经过三个路口,且每个路口都安装了红绿灯,每个路口红灯和绿灯亮的时间相同,那么小刚从家出发去学校,他遇到两次红灯的概率是()A .18B .38C .58D .127.对一批衬衣进行抽检,得到合格衬衣的频数表如下,若出售1200件衬衣,则其中次品的件数大约是( )A .12B .24C .1188D .11768.在一个不透明的盒子中有大小均匀的黄球与白球共12个,若从盒子中随机取出一个球,若取出的球是白球的概率是13,则盒子中白球的个数是( ). A .3B .4C .6D .89.小冬和小松正在玩“掷骰子,走方格”的游戏.游戏规则如下:(1)掷一枚质地均匀的正方体骰子(骰子六个面的数字分别是1至6),落地后骰子向上一面的数字是几,就先向前走几格,然后暂停.(2)再看暂停的格子上相应的文字要求,按要求去做后,若还有新的文字要求,则继续按新要求去做,直至无新要求为止,此次走方格结束.下图是该游戏的部分方格:例如:小冬现在的位置在大本营,掷骰子,骰子向上一面的数字是2,则小冬先向前走两格到达方格2,然后执行方格2的文字要求“后退一格”,则退回到方格1,再执行方格1的文字要求:对自己说“加油!”.小冬此次“掷骰子,走方格”结束,最终停在了方格1.如果小松现在的位置也在大本营,那么他掷一次骰子最终停在方格6的概率是( ) A .16B .13C .12D .2310.一个不透明的布袋中,装有红、黄、白三种只有颜色不同的小球,其中红色小球有6个,黄、白色小球的数量相同,为估计袋中黄色小球的数量,每次将袋中小球搅匀后摸出一个小球记下颜色放回,再搅匀多次试验发现摸到红色的频率是18,则估计黄色小球的个数是( ) A .21B .40C .42D .4811.从一副扑克中抽出三张牌,分别为梅花1,2,3,背面朝上搅匀后先抽取一张点数记为a ,放回搅匀再抽取一张点数记为b ,则点(),a b 在直线1y x =-上的概率是( ) A .13B .16C .29D .5912.已知数据:117,4,5-,2π1-,0.其中无理数出现的频率为( ) A .0.2B .0.4C .0.6D .0.8二、填空题13.现有四张分别标有数字-5、-2、1、2的卡片,它们除数字不同外其余完全相同,把卡片背面朝上洗匀,从中任意抽取一张,将上面的数字记为a ,放回后从卡片中再任意抽取一张,将上面的数字记为b ,则点(a ,b )在直线y=2x -1的概率为___________. 14.在一个不透明的布袋中装有52个白球和若干个黑球,除颜色外其他都相同,小强每次摸出一个球记录下颜色后并放回,通过多次试验后发现,摸到黑球的频率稳定在0.2左右,则布袋中黑球的个数可能有________.15.一个小球在如图所示的地板上自由滚动,最终停在阴影区域的概率为_______.16.从“线段,等边三角形,圆,矩形,正六边形”这五个图形中任取一个,取到既是轴对称图形又是中心对称图形的概率是_____.17.有五张正面分别标有数﹣2,0,1,3,4的纸片做成无差别的纸团,洗匀后从中任取一个纸团,若展开后将纸片上的数记为a ,则使关于x 的方程ax ﹣1﹣3(x +1)=﹣3x 的解是正整数的概率为_____.18.“上升数”是一个数中右边数字比左边数字大的自然数(如:34,568,2469等).任取一个两位数,是“上升数”的概率是_________ .19.一个不透明的盒子中装有3个黄球,6个红球,这些球除了颜色外无其他差别.从中随机摸出一个球,恰好是黄球的概率为__________.20.在边长为1的小正方形组成的43⨯网格中,有如图所示的A B 、两个格点,在其余格点上任意放置点C ,恰好能使ABC ∆的面积为1的概率是_____.三、解答题21.2020年疫情期间,某校为学生提供四种在线学习方式:在线阅读、在线听课、在线答疑、在线讨论,为了解学生的需求,对学生进行了“你最喜欢哪种在线学习方式的调查,调查结果制成两幅不完整统计图如图,根据图中信息回答问题:(1)本次调查人数有人,在线答疑所在扇形的圆心角度数是;(2)补全条形统计图;(3)甲、乙两位同学都参加了在线学习,请用画树状图或列表的方法求出两名同学喜欢同一种在线学习方式的概率.22.甲、乙,丙、丁4人聚会,每人带了一件礼物,4件礼物从外盒包装看完全相同,将4件礼物放在一起.(1)甲从中随机抽取一件,求甲抽到的是自己带来的礼物的概率;(2)甲先从中随机抽取一件,不放回,乙再从中随机抽取一件,用列表法或画树状图法求甲、乙2人抽到的都不是自己带来的礼物的概率.23.某校有A,B两个餐厅,甲、乙、丙三名学生各自随机选择其中的一个餐厅用餐,用列表或列树状图的方法解决下列问题:(1)求甲、乙、丙三名学生在同一个餐厅用餐的概率.(2)求甲、乙、丙三名学生中至少有一人在B餐厅用餐的概率.24.三名运动员参加定点投篮比赛,原定甲、乙、丙依次出场.为保证公平竞争,现采用抽签方式重新确定出场顺序.(1)画出抽签后每个运动员出场顺序的树状图;(2)求:①抽签后甲运动员的出场顺序发生变化的概率;②抽签后每个运动员的出场顺序都发生变化的概率.25.小亮、小芳和两个陌生人甲、乙同在如图所示的地下车库等电梯,已知两个陌生人到1至3层的任意一层出电梯.(1)请你用画树状图或列表法求出甲、乙二人在同一层楼出电梯的概率;(2)小亮和小芳打赌说:“若甲、乙在同一层或相邻楼层出电梯,则小亮胜,否则小芳胜”,该游戏是否公平?并说明理由.26.近年来,小龙虾因肉味鲜美深受人们欢迎.又逢吃虾季,某餐厅为了解消费者对去年销量较好的麻辣味、蒜香味、酱爆味、十三香味这四种不同口味小龙虾的喜爱情况,对某居民区部分居民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).请根据以上信息回答:(1)本次参加抽样调查的居民有______人,a ______;(2)请把条形统计图补充完整;(3)初二(1)班的小巴同学喜欢吃小龙虾,端午节妈妈从餐厅打包了5只小龙虾给小巴,其中两只是麻辣味,另外3只是蒜香味,小巴吃了5只中的两只.请用画树状图或列表的方法,求小巴吃的两只小龙虾中一只是麻辣味、一只是蒜香味的概率.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】先求出黑色方格在整个方格中所占面积的比值,再根据其比值即可得出结论.【详解】∵图中共有15个方格,其中黑色方格6个,∴黑色方格在整个方格中所占面积的比值=52=,165∴最终停在阴影方砖上的概率为2.5故选A.【点睛】此题考查几何概率,解题关键在于掌握计算公式. 2.D解析:D【分析】根据题意计算求解即可.【详解】由题意知:共40名学生,由表知:P(AB型)=0.10.10.1 0.40.350.10.151.∴本班AB型血的人数=40×0.1=4名.故选D.【点睛】本题主要考查了概率的知识,正确掌握概率的知识是解题的关键.3.C解析:C【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与构成等腰三角形的情况,再利用概率公式即可求得答案.【详解】画树状图得:∵共有27种等可能的结果,构成等腰三角形的有15种情况,∴以a、b、c为边长正好构成等腰三角形的概率是:155279.故选:C.【点睛】本题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.4.B解析:B【分析】根据题意,先列举所有的可能结果,然后选取能组成等腰三角形的结果,根据概率公式即可求出答案.【详解】解:根据题意,在A,B,C,D四个点中任选三个点,有:△ABC、△ABD、△ACD、△BCD,共4个三角形;其中是等腰三角形的有:△ACD、△BCD,共2个;∴能够组成等腰三角形的概率为:2142P==;故选:B.【点睛】本题考查了列举法求概率,等腰三角形的性质,勾股定理与网格问题,解题的关键是熟练掌握列举法求概率,以及正确得到等腰三角形的个数.5.A解析:A【分析】用树形图法确定所有情况和所需情况,然后用概率公式解答即可.【详解】解:画树状图如下:则总共有12种情况,其中有6种情况是两个球颜色相同的,故其概率为61 122=.故答案为A.【点睛】本题考查画树形图和概率公式,其中根据题意画出树形图是解答本题的关键.6.B解析:B【分析】画树状图得出所有情况数和遇到两次红灯的情况数,根据概率公式即可得答案.【详解】根据题意画树状图如下:共有8种等情况数,其中遇到两次红灯的有3种,则遇到两次红灯的概率是38,故选:B.【点睛】本题考查利用列表法或树状图法求概率,用到的知识点为:概率=所求情况数与总情况数之比;根据树状图得到遇两次红灯的情况数是解题关键.7.B解析:B【分析】由表中数据可判断合格衬衣的频率稳定在0.98,于是利于频率估计概率可判断任意抽取一件衬衣是合格品的概率为0.98,从而得出结论.【详解】解:根据表中数据可得任抽取一件衬衣是合格品的概率为0.98,次品的概率为0.02,出售1200件衬衣,其中次品大约有1200×0.02=24(件),故选:B.【点睛】此题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.8.B解析:B【分析】根据白、黄球共有的个数乘以白球的概率即可解答.【详解】由题意得:12×13=4,即白球的个数是4.故选:B.【点睛】本题考查概率公式:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.9.B解析:B【分析】根据掷一次骰子最终停在方格6的出现的情况利用概率公式解答即可.【详解】掷一次骰子最终停在方格6的情况有①直接掷6;②掷3后前进三格到6;所以掷一次骰子最终停在方格6的概率是21 63 ,故选B.此题考查几何概率,关键是根据掷一次骰子最终停在方格6的出现的情况利用概率公式解答.10.A解析:A 【分析】根据多次试验发现摸到红球的频率是18,则可以得出摸到红球的概率为18,再利用红色小球有6个,黄、白色小球的数目相同进而表示出黄球概率,得出答案即可. 【详解】设黄球的数目为x ,则黄球和白球一共有2x 个,∵多次试验发现摸到红球的频率是18,则得出摸到红球的概率为18, ∴662x +=18, 解得:x =21,经检验x=21是所列方程的根,则黄色小球的个数是21个. 故选:A . 【点睛】本题考查了利用频率估计概率,根据题目中给出频率可知道概率,从而可求出黄色小球的数目是解题关键.11.C解析:C 【分析】首先列出表格即可求得所有等可能的结果与点(a ,b)在直线1y x =- 上的情况,然后利用概率公式求解即可; 【详解】 列表格为:其中点(a ,b)在直线 上的情况有:由列表可知,一共有种等可能的结果,其中点,在直线上的情况有种,所以点(a ,b)在直线1y x =- 上的概率为29; 故选:C .本题考查了用列表法或树状图法求概率,用到的知识点为:概率=所求情况数与总情况数之比.12.B解析:B【分析】根据无理数的定义和“频率=频数÷总数”计算即可.【详解】解:共有5个数,其中无理数有,2π1-,共2个所以无理数出现的频率为2÷5=0.4.故选B.【点睛】此题考查的是无理数的判断和求频率问题,掌握无理数的定义和频率公式是解决此题的关键.二、填空题13.【分析】利用列表法或画树状图法确定点的坐标的总可能性把坐标之一代入函数的解析式确定在直线上的可能性根据概率公式计算即可【详解】根据题意画树状图如下:∴一共有16种等可能性∵点(-2-5)(11)在直解析:18.【分析】利用列表法或画树状图法,确定点的坐标的总可能性,把坐标之一代入函数的解析式,确定在直线上的可能性,根据概率公式计算即可.【详解】根据题意,画树状图如下:∴一共有16种等可能性,∵点(-2,-5),(1,1)在直线y=2x -1上, ∴有2种可能性,∴点(a ,b )在直线y=2x -1的概率为216=18, 故答案为:18. 【点睛】本题考查了用列表法或画树状图法求概率,熟练掌握两种求概率的基本方法是解题的关键.14.13【分析】在同样条件下大量反复试验时随机事件发生的频率逐渐稳定在概率附近可以从比例关系入手设出未知数列出方程求解【详解】解:设袋中有黑球x 个由题意得:=02解得:x=13经检验x=13是原方程的解解析:13 【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,设出未知数列出方程求解. 【详解】解:设袋中有黑球x 个,由题意得:52xx =0.2, 解得:x=13,经检验x=13是原方程的解, 则布袋中黑球的个数可能有13个. 故答案为:13.【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.15.【分析】先求出黑色方砖在整个地板中所占的比值再根据其比值即可得出结论【详解】∵由图可知黑色方砖5块共有25块方砖∴黑色方砖在整个地板中所占的比值∴它停在黑色区域的概率是故答案为:【点睛】本题考查了几解析:1 5【分析】先求出黑色方砖在整个地板中所占的比值,再根据其比值即可得出结论.【详解】∵由图可知,黑色方砖5块,共有25块方砖,∴黑色方砖在整个地板中所占的比值51255,∴它停在黑色区域的概率是15.故答案为:15.【点睛】本题考查了几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率.16.【详解】试题分析:在线段等边三角形圆矩形正六边形这五个图形中既是中心对称图形又是轴对称图形的有线段圆矩形正六边形共4个所以取到的图形既是中心对称图形又是轴对称图形的概率为【点睛】本题考查概率公式掌握解析:4 5 .【详解】试题分析:在线段、等边三角形、圆、矩形、正六边形这五个图形中,既是中心对称图形又是轴对称图形的有线段、圆、矩形、正六边形,共4个,所以取到的图形既是中心对称图形又是轴对称图形的概率为4 5 .【点睛】本题考查概率公式,掌握图形特点是解题关键,难度不大.17.【分析】根据题意由当a分别取20134时解方程ax﹣1﹣3(x+1)=﹣3x 得到正整数的个数然后根据概率公式求解【详解】解:当a=﹣2时方程ax﹣1﹣3(x+1)=﹣3x化为﹣2x﹣1﹣3x﹣3=﹣解析:2 5【分析】根据题意由当a分别取2,0,1,3,4时,解方程ax﹣1﹣3(x+1)=﹣3x得到正整数的个数,然后根据概率公式求解.【详解】解:当a=﹣2时,方程ax﹣1﹣3(x+1)=﹣3x化为﹣2x﹣1﹣3x﹣3=﹣3x,解得x=﹣2;当a=0时,方程ax﹣1﹣3(x+1)=﹣3x化为﹣1﹣3x﹣3=﹣3x,无解;当a=1时,方程ax﹣1﹣3(x+1)=﹣3x化为x﹣1﹣3x﹣3=﹣3x,解得x=4;当a=3时,方程ax﹣1﹣3(x+1)=﹣3x化为3x﹣1﹣3x﹣3=﹣3x,解得x=43;当a=4时,方程ax﹣1﹣3(x+1)=﹣3x化为4x﹣1﹣3x﹣3=﹣3x,解得x=1;所以使关于x的方程ax﹣1﹣3(x+1)=﹣3x的解是正整数的结果数为2,所以展开后将纸片上的数记为a,则使关于x的方程ax﹣1﹣3(x+1)=﹣3x的解是正整数的概率=25.故答案为:25.【点睛】本题考查概率公式以及解一元二次方程,注意掌握某事件的概率=某事件所占的情况数与总情况数之比.18.4【分析】先列举出所有上升数再根据概率公式解答即可【详解】解:两位数一共有99-10+1=90个上升数为:共8+7+6+5+4+3+2+1=36个概率为36÷90=04故答案为:04解析:4【分析】先列举出所有上升数,再根据概率公式解答即可.【详解】解:两位数一共有99-10+1=90个,上升数为:共8+7+6+5+4+3+2+1=36个.概率为36÷90=0.4.故答案为:0.4.19.【分析】先算出总的球的个数直接利用概率公式求解即可求得答案【详解】解:总的球数为:3+6=9个所以从中随机摸出一个球恰好是黄球的概率为:故答案为:;【点睛】本题主要考查了概率公式:随机事件A的概率P解析:1 3【分析】先算出总的球的个数,直接利用概率公式求解即可求得答案.【详解】解:总的球数为:3+6=9个,所以从中随机摸出一个球,恰好是黄球的概率为:31 93 =,故答案为:13;【点睛】本题主要考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.20.【分析】在的网格中共有20-2=18个格点找到能使得三角形ABC的面积为1的格点即可利用概率公式求解【详解】解:由题意知任意放C的情况有18种使三角形的面积为的情况有5种故答案为:【点睛】本题考查了解析:5 18【分析】在43⨯的网格中共有20-2=18个格点,找到能使得三角形ABC的面积为1的格点即可利用概率公式求解.【详解】解:由题意知,任意放C的情况有18种,使三角形的面积为的情况有5种()15 18∴=使三角形面积为P故答案为:5 18【点睛】本题考查了概率的公式,将所有情况都列举出来是解决此题的关键.三、解答题21.(1)100,72°;(2)见解析;(3)14.【分析】(1)样本中“在线阅读”的人数有25人,占调查人数的25%,可求出调查人数;再求出“在线答疑”所占整体的百分比即可求出相应的圆心角的度数即可;(2)补全条形统计图即可;(3)画出树状图表示所有可能出现的结果情况,进而求出甲、乙两个人选择同一种方式的概率.【详解】解:(1)25÷25%=100(人),即本次调查人数有100人,“在线答疑”的人数为100-40-25-15=20(人),在扇形图中的圆心角度数为360°×20 100=72°;故答案为:100,72°;(2)补全条形统计图如图所示:(3)四类在线学习方式在线阅读、在线听课、在线答疑、在线讨论分别用A、B、C、D表示,画树状图如图:共有16个等可能的结果,其中甲、乙两名同学喜欢同一种在线学习方式的结果有4个,∴甲、乙两名同学喜欢同一种在线学习方式的概率为41164.【点睛】本题考查了列表法与树状图法、条形统计图、扇形统计图等知识,理解两个统计图中的数量关系,正确画出树状图是解题的关键.22.(1)14;(2)712【分析】(1)根据概率公式计算即可得出答案;(2)画出树状图,然后根据概率公式列式进行计算即可得解.【详解】解:(1)甲抽到的是自己带来的礼物的概率是:14.(2)设甲、乙、丙、丁4人的扎物分别为a、b、c、d,根据题意画出树状图如图;一共有12种等可能的结果,甲、乙2人抽到的都不是自己带来的礼物的结果有7种∴甲、乙2人抽到的都不是自己带来的礼物的概率为712.【点睛】本题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.23.(1)14;(2)78【分析】(1)画树形图展示所有8种等可能的结果数,再找出甲、乙、丙三名学生在同一个餐厅用餐的结果数,然后根据概率公式求解;(2)从树状图中找出甲、乙、丙三名学生中至少有一人在B餐厅用餐的结果数,然后根据概率公式求解.【详解】解:画树状图如下:甲、乙、丙选择餐厅的所有可能结果有8种,(1)甲、乙、丙三名学生在同一个餐厅用餐的可能结果有2种,∴P(甲、乙、丙三名学生在同一个餐厅用餐)21 84 ==;(2)甲、乙、丙三名学生中至少有一人在B餐厅用餐的可能结果有7种,∴P(甲、乙、丙三名学生中至少有一人在B餐厅用餐)=78.【点睛】本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.24.(1)图见解析;(2)①23;②13.【分析】(1)根据题意画出树状图即可;(2)①先根据树状图得出所有可能的结果,再找出抽签后甲运动员的出场顺序发生变化的结果,然后利用概率公式进行计算即可得;②先根据树状图得出所有可能的结果,再找出抽签后每个运动员的出场顺序都发生变化的结果,然后利用概率公式进行计算即可得.【详解】解:(1)由题意,画树状图如下所示:(2)①由树状图可知,所有可能出现的等可能结果共6种,其中,抽签后甲运动员的出场顺序发生变化的有4种情况,即(乙、甲、丙),(乙、丙、甲),(丙、甲、乙),(丙、乙、甲),则抽签后甲运动员的出场顺序发生变化的概率为4263P==;②∵在这6种等可能的结果中,抽签后每个运动员的出场顺序都发生变化的有2种情况,即(乙、丙、甲),(丙、甲、乙),∴抽签后每个运动员的出场顺序都发生变化的概率为2163P==.【点睛】本题考查了利用列举法求概率,依据题意,正确画出树状图是解题关键.25.(1)13;(2)不公平,理由见解析.【分析】(1)根据题意画出树状图得出所有等可能的情况数,找出符合条件的情况数,然后根据概率公式即可得出答案;(2)根据概率公式先求出小亮获胜的概率和小芳获胜的概率,然后进行比较,即可得出答案.【详解】解:(1)根据题意画树状图如下:共有9种等可能的情况数,其中甲、乙二人在同一层楼出电梯的有3种,则甲、乙二人在同一层楼出电梯的概率是39=13.(2)由(1)可知,共有9种等可能的情况数,其中甲、乙二人在同一层楼出电梯的有3种,两人在相邻楼层出电梯的有4种,共7种,∴小亮获胜的概率为79,∴小芳获胜的概率为29,∵79>29,∴该游戏不公平.【点睛】本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.26.(1)800,15;(2)麻辣味有320人,酱爆味的有120人,补图见解答;(3)35.【分析】(1)根据十三香味的人数和所占的百分比求出总人数,用蒜香味的人数除以总人数求出蒜香味所占的百分比,再用整体1减去其它味所占的百分比即可求出a的值;(2)用总人数乘以各自所占的百分比求出麻辣味和酱爆味的人数,从而补全统计图;(3)根据题意画出树状图得出所有等可能等情况数,找出符合条件的情况数,然后根据概率公式即可得出答案.【详解】】解:(1)本次参加抽样调查的居民有:80÷36360︒︒=800(人);蒜香味所占的百分比是:280800×100%=35%,则a%=1-35%-40%-36360︒︒=15%,即a=15;故答案为:800,15;(2)麻辣味的人数有:800×40%=320(人),酱爆味的人数有:800×15%=120(人),补全统计图如下:(3)两只麻辣味的小龙虾分别用A、B表示,3只蒜香味的小龙虾分别用C、D、E表示,画树状图如下:共有20种等可能的情况数,其中一只是麻辣味、一只是蒜香味的12种,则小巴吃的两只小龙虾中一只是麻辣味、一只是蒜香味的概率是123 205.【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回试验还是不放回试验.用到的知识点为:概率=所求情况数与总情况数之比.。
第三章《概率的进一步认识》单元测试题(含答案)
第三章 概率的进一步认识第Ⅰ卷 (选择题 共30分)一、选择题(每小题3分,共30分)1.三张外观相同的卡片上分别标有数字1,2,3,从中随机一次性抽出两张,这两张卡片上的数字恰好都小于3的概率是( )A.13B.23C.16D.192.某学校在八年级开设了数学史、诗词赏析、陶艺三门课程,若小波和小睿两名同学每人随机选择其中一门课程,则小波和小睿选到同一门课程的概率是( )A.12B.13C.16D.193.布袋中有红、黄、蓝三种颜色的球各一个,从中摸出一个球之后不放回布袋,再摸第二个球,这时得到的两个球的颜色中有“一红一黄”的概率是( )A.16B.29C.13D.234.有3个整式x ,x +1,2,先随机取一个整式作为分子,再从余下的整式中随机取一个作为分母,恰能组成分式的概率是( )A.13B.12C.23D.565.在物理课上,某实验的电路图如图1所示,其中S 1,S 2,S 3表示电路的开关,L 表示小灯泡,R 为保护电阻.若闭合开关S 1,S 2,S 3中的任意两个,则小灯泡L 发光的概率为( )图1A.16B.13C.12D.236.如图2,两个转盘分别自由转动一次,当它们都停止转动时,两个转盘的指针都指向2的概率为( )图2A.12B.14C.18D.1167.在一个不透明的口袋里装了只有颜色不同的黄球、白球若干只.某小组做摸球试验:将球搅匀后从中随机摸出一个,记下颜色,再放回袋中,不断重复这一过程.下表是活动中的一组数据,则摸到黄球的概率约是( )A.0.4 B .0.5 C .0.6 D .0.78.某学习小组做“用频率估计概率”的试验时,统计了某一结果出现的频率,绘制了如下表格,则符合这一结果的试验最有可能的是( )A.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃 B .在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀” C .抛一个质地均匀的正六面体骰子,向上的面点数是5 D .抛一枚硬币,出现反面的概率9.为了估计不透明的袋子里装有多少个球,先从袋中摸出10个球都做上标记,然后放回袋中去,充分摇匀后再摸出10个球,发现其中有一个球有标记,那么你估计袋中大约有球( )A .10个B .20个C .100个D .121个10.有A ,B 两粒质地均匀的正方体骰子(骰子每个面上的点数分别为1,2,3,4,5,6),小王掷骰子A ,朝上的数字记作x ;小张掷骰子B ,朝上的数字记作y .在平面直角坐标系中有一矩形,四个点的坐标分别为(0,0),(6,0),(6,4)和(0,4),小王、小张各掷一次所确定的点P (x ,y )落在矩形内(不含矩形的边)的概率是( )A.23B.512C.12D.712请将选择题答案填入下表:第Ⅱ卷 (非选择题 共90分)二、填空题(每小题3分,共18分)11.一个不透明的袋子中装有2个红球,1个绿球,这些球除颜色不同外其余都相同,从袋子中随机摸出一个小球记下颜色后放回,再随机摸出一个小球,则一次摸到红球一次摸到绿球的概率为________.12.从-1,0,1,2这四个数中,任取两个不同的数作为点的坐标,则该点在第一象限的概率为________.13.小明和小亮做游戏,先是各自背着对方在纸上写一个自然数,然后同时呈现出来.他们约定:若两人所写的数都是奇数或都是偶数,则小明获胜;否则,小亮获胜.这个游戏对双方________.(填“公平”或“不公平”).14.点P 的坐标是(a ,b),从-2,-1,0,1,2这五个数中任取一个数作为a 的值,再从余下的四个数中任取一个数作为b 的值,则点P(a ,b)在平面直角坐标系中第二象限内的概率是________.15.在围棋盒中有x 颗白色棋子和y 颗黑色棋子,从盒中随机取出一颗棋子,取到白色棋子的概率是25.若再往盒中放进3颗黑色棋子,则取到白色棋子的概率变为14,原来围棋盒中有白色棋子______颗.16.如果任意选择一对有序整数(m ,n),其中|m|≤1,|n|≤3,每一对这样的有序整数被选择的可能性是相等的,那么关于x 的方程x 2+nx +m =0有两个相等实数根的概率是________.三、解答题(共72分)17.(6分)不透明的文具袋中装有规格相同的红、黑两种颜色的通用中性笔芯,其中红色的有3支,黑色的有2支.(1)从文具袋中随机抽取1支笔芯,求恰好抽到的是红色笔芯的概率;(2)从文具袋中随机抽取2支笔芯,求恰好抽到的都是黑色笔芯的概率.(请用画树状图法或列表法求解)18.(6分)研究问题:一个不透明的盒中装有若干个只有颜色不一样的红球和黄球.怎样估算不同颜色球的数量?操作方法:先从盒中摸出8个球,画上记号放回盒中,再进行摸球试验.摸球试验的要求:先搅拌均匀,每次摸出1个球,放回盒中再继续.活动结果:摸球试验活动一共做了50次,统计结果如下表:由上述摸球试验可推算:(1)盒中红球、黄球占总球数的百分比分别是多少?(2)盒中有红球多少个?19.(8分)甲、乙、丙三名同学站成一排进行毕业合影留念,请用列表或画树状图的方法列出所有可能的情形,并求出甲、乙两人相邻的概率是多少.20.(8分)九年级某班组织全班活动,班委会准备买一些奖品.班长王倩拿15元钱去商店全部用来购买圆珠笔和铅笔两种奖品,已知圆珠笔的价格为2元/支,铅笔的价格为1元/支,且每种笔至少买一支.(1)有多少种购买方案?请列举所有可能的结果;(2)从上述方案中任选一种方案购买,求买到的圆珠笔与铅笔数量相等的概率.21.(10分)小明参加某个智力竞答节目,答对最后两道单选题就顺利通关.第一道单选题有3个选项,第二道单选题有4个选项,这两道题小明都不会,不过小明还有一个“求助”没有用(使用“求助”可以让主持人去掉其中一题的一个错误选项).(1)如果小明第一题不使用“求助”,那么小明答对第一道题的概率是________;(2)如果小明将“求助”留在第二题使用,请用画树状图或者列表的方法来分析小明顺利通关的概率;(3)从概率的角度分析,你建议小明在第几题使用“求助”?22.(10分)小明、小芳做一个“配色”的游戏.如图3是两个可以自由转动的转盘,每个转盘被分成面积相等的几个扇形,并涂上图中所示的颜色.同时转动两个转盘,如果转盘A 转出了红色,转盘B转出了蓝色,或者转盘A转出了蓝色,转盘B转出了红色,则红色和蓝色在一起配成紫色,这种情况下小芳获胜;同样,蓝色和黄色在一起配成绿色,这种情况下小明获胜;在其他情况下不分胜负.(1)利用列表或画树状图的方法表示此游戏所有可能出现的结果;(2)此游戏规则对小明、小芳公平吗?试说明理由.图323.(12分)一个暗箱中有大小相同的1个黑球和n个白球(记为白1、白2、…、白n),每次从中取出一个球,取到白球得1分,取到黑球得2分,甲从暗箱中有放回地依次取出2个球,而乙从暗箱中一次性取出2个球.(1)若n=2,分别求甲取得3分的概率和乙取得3分的概率;(请用“画树状图”或“列表”等方式给出分析过程)(2)若乙取得3分的概率小于120,则白球至少有多少个?(请直接写出结果)24.(12分)五一假期,某公司组织部分员工分别到A,B,C,D四地旅游,公司按定额购买了前往各地的车票.图4是未制作完的车票种类和数量的条形统计图,根据统计图回答下列问题:(1)若去D地的车票占全部车票的10%,求去D地车票的数量,并补全条形统计图;(2)若公司采用随机抽取的方式分发车票,每人抽取一张(所有车票的形状、大小、质地完全相同且充分洗匀),则员工小胡抽到去A地的车票的概率是多少?(3)若有一张车票,小王、小李都想要,最后决定采取抛掷一枚各面分别标有数字1,2,3,4的正四面体骰子的方法来确定,具体规则是:“每人各抛掷一次,若小王掷得着地一面的数字比小李掷得着地一面的数字小,车票给小王,否则给小李”.试用列表或画树状图的方法分析这个规则对双方是否公平.图4详解详析1.A [解析] 列表如下:3的情况有2种,∴P(两张卡片上的数字都小于3)=26=13.解题突破从m(m >2)张卡片中一次性抽出两张卡片,可以理解为先抽出一张,再从剩下的里面抽出一张,即属于“抽出不放回”试验问题,可见为两步试验问题,可用列表法求解.2.B [解析] 列表如下:共有9所以其概率为39=13.故选B . 3.C [解析] 画树状图如下:一共有6种情况,“一红一黄”的情况有2种,∴P(一红一黄)=26=13.故选C .4.C [解析] 画树状图如下:共有6种等可能的结果,其中恰能组成分式的结果数为4种, 所以恰能组成分式的概率为46=23.5.B [解析] 列表如下:共有613L 发光的概率是26=13.故选B .6.D [解析] 列表如下:∵共有指针都指向2的概率为116.故选D .7.B [解析] 观察表格得:通过多次摸球试验后发现摸到黄球的频率稳定在0.5左右,则P(摸到黄球)=0.5.8.B [解析] A .一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃的概率为14,不符合题意;B .在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”的概率是13,符合题意;C .抛一个质地均匀的正六面体骰子,向上的面点数是5的概率为16,不符合题意;D .抛一枚硬币,出现反面的概率为12,不符合题意.故选B .9.C10.B [解析] 画树状图如下:∵共有36种等可能的结果,小王、小张各掷一次所确定的点P(x ,y)落在矩形内(不含矩形的边)的有15种情况,∴小王、小张各掷一次所确定的点P(x ,y)落在矩形内(不含矩形的边)的概率是1536=512.故选B .11.49[解析] 画树状图如下:∵共有9种等可能的结果,一次摸到红球一次摸到绿球的有4种情况,∴一次摸到红球一次摸到绿球的概率是49.12.16[解析] 画树状图如下:∵共有12种等可能的结果,点落在第一象限的可能是(1,2),(2,1)两种情形, ∴该点在第一象限的概率为212=16. 13.公平 [解析] 两人写的数共有奇偶、偶奇、偶偶、奇奇四种情况,因此同为奇数或同为偶数的概率为24=12,一奇一偶的概率也为24=12,所以这个游戏对双方公平.14.15[解析] 画树状图如下:共有20种等可能的结果,其中点P(a ,b)在平面直角坐标系中第二象限内的结果数为4,所以点P(a ,b)在平面直角坐标系中第二象限内的概率=420=15.15.216.17 [解析] 依题意知m =0,±1,n =0,±1,±2,±3,∴有序整数(m ,n)共有3×7=21(种).∵方程x 2+nx +m =0有两个相等的实数根,∴Δ=n 2-4m =0,有(0,0),(1,2),(1,-2)三种可能,∴关于x 的方程x 2+nx +m =0有两个相等实数根的概率是321=17.17.[解析] (1)由不透明的文具袋中装有规格相同的红、黑两种颜色的通用中性笔芯,其中红色的有3支,黑色的有2支,直接利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好抽到的都是黑色笔芯的情况,再利用概率公式即可求得答案.解:(1)∵不透明的文具袋中装有规格相同的红、黑两种颜色的通用中性笔芯,其中红色的有3支,黑色的有2支,∴恰好抽到的是红色笔芯的概率为33+2=35.(2)画树状图如下:∵共有20种等可能的结果,恰好抽到的都是黑色笔芯的只有2种情况, ∴恰好抽到的都是黑色笔芯的概率为220=110.18.解:(1)由题意可知,50次摸球试验活动中,出现红球20次,黄球30次, 所以红球所占百分比为20÷50×100%=40%,黄球所占百分比为30÷50×100%=60%. 答:盒中红球占总球数的40%,黄球占总球数的60%.(2)由题意可知,50次摸球试验活动中,出现有记号的球4次,所以总球数为8÷450=100,所以红球有40%×100=40(个).答:盒中有红球40个. 19.解:用树状图分析如下:∵一共有6种等可能的情况,甲、乙两人相邻的有4种情况, ∴甲、乙两人相邻的概率是46=23.20.解:(1)设买圆珠笔x 支,铅笔y 支, 则2x +y =15,所以y =15-2x. 当x =1时,y =13; 当x =2时,y =11; 当x =3时,y =9; 当x =4时,y =7; 当x =5时,y =5; 当x =6时,y =3; 当x =7时,y =1. 所以共有7种购买方案.(2)在这7种方案中,买到的圆珠笔与铅笔数量相等的只有1种,所以P(买到的圆珠笔与铅笔数量相等)=17.21.解:(1)∵第一道单选题有3个选项,∴如果小明第一题不使用“求助”,那么小明答对第一道题的概率是13.故答案为:13.(2)分别用A ,B ,C 表示第一道单选题的3个选项,a ,b ,c 表示第二道单选题剩下的3个选项.画树状图如下:∵共有9种等可能的结果,小明顺利通关的只有1种情况, ∴小明顺利通关的概率为19.(3)∵如果在第一题使用“求助”,小明顺利通关的概率为18,如果在第二题使用“求助”,小明顺利通关的概率为19,∴建议小明在第一题使用“求助”. 解题突破(1)直接利用概率公式求解;(2)此问属于两次试验概率问题,注意第二次试验时只有三种可能;(3)比较第一题使用“求助”小明顺利通关的概率与第二题使用“求助”小明顺利通关的概率的大小,把“求助”用在通关概率大的那一次上.22.解:(1)用列表法将所有可能出现的结果表示如下:(2)不公平.理由:上面等可能出现的12种结果中,有3种情况能配成紫色,故配成紫色的概率是312,即小芳获胜的概率是14;但只有2种情况能配成绿色,故配成绿色的概率是212,即小明获胜的概率是16.而14>16,故小芳获胜的可能性大,这个“配色”游戏规则对双方是不公平的.23.解:(1)得3分,即为取到黑球、白球各1个. 甲从暗箱中有放回地依次取出2个球,画树状图如下:∴甲取得3分的概率为49;乙从暗箱中一次性取出2个球,画树状图如下:∴乙取得3分的概率=46=23.(2)若乙取得3分的概率小于120,则2n +1<120,∴n >39,∴白球至少有40个. 24.解:(1)设去D 地的车票有x 张,则x =(x +20+40+30)×10%,解得x =10. 答:去D 地的车票有10张. 补全条形统计图如图所示.(2)小胡抽到去A 地的车票的概率为2020+40+30+10=15.答:员工小胡抽到去A 地的车票的概率是15.(3)列表如下:小的有6种:(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),∴小王掷得着地一面的数字比小李掷得的着地一面数字小的概率为616=38.则小王掷得着地一面的数字不小于小李掷得的着地一面数字的概率为1-38=58.∵58≠38,∴这个规则对双方不公平.。
2023-2024学年第一学期北师大版九年级数学上册第3章复习测试卷附答案
2023-2024学年第一学期九年级数学上册第3章【概率的进一步认识】复习测试卷一.选择题1.某中学初三年级四个班,四个数学老师分别任教不同的班.期末考试时,学校安排统一监考,要求同年级数学老师交换监考,那么安排初三年级数学考试时可选择的监考方案有()种.A.8B.9C.10D.122.经过某十字路口的汽车,可能直行,也可能向左转或向右转,如果这三种可能性大小相同,当三辆汽车经过这个十字路口时,至少有两辆汽车向左转的概率是()A.B.C.D.3.小颖有两顶帽子,分别为红色和黑色,有三条围巾,分别为红色、黑色和白色,她随机拿出一顶帽子和一条围巾戴上,恰好为红色帽子和红色围巾的概率是()A.B.C.D.4.现有4根木棒,长度分别为4cm、6cm、8cm、10cm,从中任取三根木棒,能够组成三角形的概率是()A.B.C.D.5.如图,随机闭合开关S1,S2,S3中的两个,则能让两盏灯泡同时发光的概率为()A.B.C.D.6.从﹣4,﹣1,2,3四个数中随机选取两个不同的数,分别记为a,c,则关于x的方程ax2+4x+c=0有两个不相等的实数根的概率是()A.B.C.D.7.从1,2,3三个数中取出一个数作为点P的横坐标,从4,5,6,7四个数中取出一个数作为点P的纵坐标,则点P落在直线y=﹣x+6上的概率是()A.B.C.D.8.一个盒子里有完全相同的三个小球,球上分别标上数字﹣1、1、2.随机摸出一个小球(不放回)其数字记为p,再随机摸出另一个小球其数字记为q,则满足关于x的方程x2+px+q=0有实数根的概率是()A.B.C.D.9.将一枚六个面编号分别为1、2、3、4、5、6的质地均匀的正方体骰子先后投掷两次,记第一次掷出的点数为a,第二次掷出的点数为c,则使关于x的一元二次方程ax2﹣6x+c=0有实数解的概率为()A.B.C.D.10.在一个不透明的袋子里装有红球,黄球共36个,这些球除颜色外都相同.小明通过多次试验发现,摸出红球的频率稳定在0.25左右,则袋子中红球的个数最有可能是()A.5B.9C.15D.2411.甲、乙两名同学在一次用频率去估计概率的试验中,统计了某一结果出现的频率,并绘出了如下折线统计图,则最有可能符合这一结果的试验的是()A.掷一枚正六面体的骰子,出现1点的概率B.抛一枚硬币,出现正面的概率C.任意写一个整数,它能被3整除的概率D.从一副去掉大小王的扑克牌中,任意抽取一张,抽到黑桃的概率二.填空题12.如图,有A、B、C三类长方形(或正方形)卡片(a>b),其中甲同学持有A、B类卡片各一张,乙同学持有B、C类卡片各一张,丙同学持有A、C类卡片各一张,现随机选取两位同学手中的卡片共四张进行拼图,则能拼成一个正方形的概率是.13.如图所示的电路图中,当随机闭合S1,S2,S3,S4中的两个开关时,能够让灯泡发光的概率为.14.将如图所示的两个转盘(A转盘被分成三等份,B转盘被分成四等份)各转动一次,当转盘停止后,指针所在区域(指针指向区域分界线时,需重新转动转盘)的数字之和为偶数概率是.15.一水库里有鲤鱼、鲫鱼、草鱼共2000尾,小明捕捞了100尾鱼,发现鲫鱼有35尾,估计水库里有尾鲫鱼.16.某养鱼专业户为了估计鱼塘中鱼的总条数,他先从鱼塘中捞出100条,将每条鱼作了记号后放回水中,当它们完全混合于鱼群后,再从鱼塘中捞出100条鱼,发现其中带记号的鱼有10条,估计该鱼塘里约有条鱼.三.解答题17.三人相互传球,由甲开始发球,并作为第一次传球.(1)用列表或画树状图的方法求经过3次传球后,球仍回到甲手中的概率是多少?(2)由(1)进一步探索:经过4次传球后,球仍回到甲手中的不同传球的方法共有多少种?18.某大学为了解大学生对中国共产党党史知识的学习情况,在大学一年级和二年级举行有关党史知识测试活动.现从一、二两个年级中各随机抽取20名学生的测试成绩(满分50分,30分及30分以上为合格;40分及40分以上为优秀)进行整理、描述和分析,给出了下面的部分信息.大学一年级20名学生的测试成绩为:39,50,39,50,49,30,30,49,49,49,43,43,43,37,37,37,43,43,37,25.大学二年级20名学生的测试成绩条形统计图如图所示;两个年级抽取的学生的测试成绩的平均数、众数、中位数、优秀率如下表所示:年级平均数众数中位数优秀率大一a b43m大二39.544c n请你根据上面提供的所有信息,解答下列问题:(1)上表中a=,b=,c=,m=,n;根据样本统计数据,你认为该大学一、二年级中哪个年级学生掌握党史知识较好?并说明理由(写出一条理由即可);(2)已知该大学一、二年级共1240名学生参加了此次测试活动,通过计算,估计参加此次测试活动成绩合格的学生人数能否超过1000人;(3)从样本中测试成绩为满分的一、二年级的学生中随机抽取两名学生,用列举法求两人在同一年级的概率.19.如图,甲、乙两个转盘均被分成3个面积相等的扇形,每个扇形中都标有相应的数字,同时转动两个转盘(当指针指在边界线上时视为无效,需重新转动转盘),当转盘停止后,把甲、乙两个转盘中指针所指数字分别记为x,y.请用树状图或列表法求点(x,y)落在平面直角坐标系第一象限内的概率.20.“共和国勋章”获得者钟南山院士说:按照疫苗保护率达到70%计算,中国的新冠疫苗覆盖率需要达到近80%,才有可能形成群体免疫.本着自愿的原则,18至60周岁符合身体条件的中国公民均可免费接种新冠疫苗.居民甲、乙准备接种疫苗,其居住地及工作单位附近有两个大型医院和两个社区卫生服务中心均可免费接种疫苗,提供疫苗种类如下表:接种地点疫苗种类医院A新冠病毒灭活疫苗B重组新冠病毒疫苗(CHO细胞)社区卫生服务中心C新冠病毒灭活疫苗D重组新冠病毒疫苗(CHO细胞)若居民甲、乙均在A、B、C、D中随机独立选取一个接种点接种疫苗,且选择每个接种点的机会均等.(提示:用A、B、C、D表示选取结果)(1)求居民甲接种的是新冠病毒灭活疫苗的概率;(2)请用列表或画树状图的方法求居民甲、乙接种的是相同种类疫苗的概率.21.现有分别标有1,2,3,4的四张扑克:(1)同时从中任取两张,猜测两数和为奇数的机会;(2)先从中任取一张,放回后搅匀再取一张,猜测两数和为奇数的机会.小明说(1)(2)中和为奇数的机会均等;小刚说(1)(2)中和为奇数的机会不均等,你认为他们俩谁的判断正确?请用画树状图或列表的方法说理.22.小杰和小明玩扑克牌游戏,各出一张牌比输赢.游戏的规则是:谁的牌数字大谁赢,同样大就平:A 遇2就输,遇其他牌(除A外)都赢.目前小杰手中A、K、J,小明手中有2、Q、J.(1)求出小明抽到的牌恰好是“2”的概率;(2)小杰、小明两人谁获胜的机会大?画出树状图,通过计算说明理由.23.将5个完全相同的小球分别装在甲、乙两个不透明的口袋中.甲袋中有3个球,分别标有数字2、3、4;乙袋中有2个球,分别标有2、4.从甲、乙两个口袋中各随机摸出一个球.用列表法或画树状图法,求摸出的两个球上数字之和为5的概率.24.在一个不透明的箱子中装有2个红球、n个白球和1个黄球,这些球除颜色外无其他差别.(1)若每次摸球前先将箱子里的球摇匀,任意摸出一个球记下颜色后再放回箱子里,通过大量重复摸球实验后发现,摸到红球的频率稳定在25%,那么估计箱子里白球的个数n为;(2)如果箱子里白球的个数n为1,小亮随机从箱子里摸出1个球不放回,再随机摸出1个球,请用画树状图或列表法求两次均摸到红球的概率.25.在一个不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共30只,某小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复.下表是活动进行中的一组统计数据:摸球的次数n1001502005008001000…摸到白球的次数m5896116295484601…摸到白球的频率0.580.640.580.590.6050.601…(1)请估计:当n很大时,摸到白球的频率将会接近;(2)假如你去摸一次,你摸到白球的概率是,摸到黑球的概率是;(3)试估算口袋中黑、白两种颜色的球各有多少只?26.一个不透明的箱子里装有3个红色小球和若干个白色小球,每个小球除颜色外其他完全相同,每次把箱子里的小球摇匀后随机摸出一个小球,记下颜色后再放回箱子里,通过大量重复试验后,发现摸到红色小球的频率稳定于0.75左右.(1)请你估计箱子里白色小球的个数;(2)现从该箱子里摸出1个小球,记下颜色后放回箱子里,摇匀后,再摸出1个小球,求两次摸出的小球颜色恰好不同的概率(用画树状图或列表的方法).参考答案一.选择题1.解:设4个班级分别为A、B、C、D,相对应的4个老师分别为a,b,c,d.由图中可以看出,共有9种情况.故选:B.2.解:根据题意画图如下:一共有27种等可能的情况;至少有两辆车向左转的有7种,则至少有两辆车向左转的概率为:.故选:D.3.解:画树状图如图:,共有6个等可能的结果,恰好取到红色帽子和红色围巾的结果有1个,∴恰好取到红色帽子和红色围巾的概率为,故选:C.4.解:从中任取三根木棒所有可能的情况为(4、6、8),(4、6、10),(6、8、10),(4、8、10)4种情况,其中(4、6、8),(6、8、10),(4、8、10)这3种能构成三角形,所以能够构成三角形的概率是,故选:C.5.解:根据题意画图如下:∵共有6种等可能的结果,能让两盏灯泡同时发光的有2种情况,∴能让两盏灯泡同时发光的概率为:P==.故选:C.6.解:画树状图如图:共有12个等可能的结果,关于x的方程ax2+4x+c=0有两个不相等的实数根(16﹣4ac>0,即ac<4)的结果有8个,∴关于x的方程ax2+4x+c=0有两个不相等的实数根的概率为=,故选:D.7.解:根据题意画图如下:共有12种等可能的情况数,其中点P落在直线y=﹣x+6上的有2种,则点P落在直线y=﹣x+6上的概率是=.故选:D.8.解:画树状图得:∵x2+px+q=0有实数根,∴Δ=b2﹣4ac=p2﹣4q≥0,∵共有6种等可能的结果,满足关于x的方程x2+px+q=0有实数根的有(1,﹣1),(2,﹣1),(2,1)共3种情况,∴满足关于x的方程x2+px+q=0有实数根的概率是:=.故选:A.9.解:列表得:∴一共有36种情况,∵b=﹣6,当b2﹣4ac≥0时,有实根,即36﹣4ac≥0有实根,∴ac≤9,∴方程有实数根的有17种情况,∴方程有实数根的概率=,故选:D.10.解:设袋子中红球有x个,根据题意,得:=0.25,解得x=9,∴袋子中红球的个数最有可能是9个,故选:B.11.解:A、掷一枚正六面体的骰子,出现1点的概率为,故此选项不符合题意;B、掷一枚硬币,出现正面朝上的概率为,故此选项不符合题意;C、任意写一个整数,它能被3整除的概率为,故此选项符合题意;D、从一副去掉大小王的扑克牌中,任意抽取一张,抽到黑桃的概率,故此选项不符合题意;故选:C.二.填空题12.解:由题可得,随机选取两位同学,可能的结果如下:甲乙、甲丙、乙丙,∵a2+2ab+b2=(a+b)2,∴选择乙丙手中的卡片共四张进行拼图,则能拼成一个边长为(a+b)的正方形,∴能拼成一个正方形的概率为,故答案为:.13.解:设S1、S2、S3、S4分别用1、2、3、4表示,画树状图得:∵共有12种等可能的结果,能够让灯泡发光的有6种结果,∴能够让灯泡发光的概率为:=,故答案为:.14.解:根据题意画图如下:共有12个等可能的结果,指针所在区域(指针指向区域分界线时,需重新转动转盘)的数字之和为3的倍数偶数的结果有6个,则指针所在区域(指针指向区域分界线时,需重新转动转盘)的数字之和为偶数的概率为=.故答案为:.15.解:由题意可得,2000×=700(尾),即估计水库里有700尾鲫鱼,故答案为:700.16.解:∵100条鱼,带记号的鱼有10条,∴估计鱼塘中带记号的鱼的概率==,而鱼塘中带记号的鱼有100条,∴估计该鱼塘里约有鱼的条数=100÷=1000.故答案为1000.三.解答题17.解:(1)画树状图得:∵共有8种等可能的结果,经过3次传球后,球仍回到甲手中的有2种情况,∴经过3次传球后,球仍回到甲手中的概率是:=;(2)画树状图得:则经过4次传球后,球仍回到甲手中的不同传球的方法共有6种.18.解:(1)将一年级20名同学成绩整理如下表:成绩25303739434950人数1242542∴a=(25×1+30×2+37×4+39×2+43×5+49×4+50×2)=41.1,b=43,c==42.5,m=(5+4+2)÷20×100%=55%,n=(3+5+2+3)÷20×100%=65%,故答案为:41.1,43,42.5,55%,=65%;从表中优秀率看,二年级样本优秀率达到65%高于一年级的55%,因此估计二年级学生的优秀率高,所以用优秀率评价,估计二年级学生掌握党史知识较好.(2)∵样本合格率为:=92.5%,∴估计总体的合格率大约为92.5%,∴估计参加测试的两个年级合格学生约为:1240×92.5%=1147(人),∴估计参加此次测试活动成绩合格的学生人数能超过1000人;(3)一年级满分有2人,记为A,B,二年级满分有3人,记为C,D,E,画树状图如图:共有20种等可能的结果,两人在同一年级的结果有8种,∴两人在同一年级的概率为=.19.解:画树状图如图:共有9种等可能的结果,点(x,y)落在平面直角坐标系第一象限内的结果有4种,∴点(x,y)落在平面直角坐标系第一象限内的概率为.20.解:(1)居民甲接种的是新冠病毒灭活疫苗的概率为=;(2)画树状图如图:共有16种等可能的结果,居民甲、乙接种的是相同种类疫苗的结果有8种,∴居民甲、乙接种的是相同种类疫苗的概率为=.21.解:小刚的判断正确.(1)列表如下:第一张第二张12341(2,1)(3,1)(4,1)2(1,2)(3,2)(4,2)3(1,3)(2,3)(4,3)4(1,4)(2,4)(3,4)由上表可知,共有12种结果,每种结果出现的可能性相同,其中两数和为奇数的结果有8种.∴P(和为奇数)=;(2)列表如下:第一次第二次12341(1,1)(2,1)(3,1)(4,1)2(1,2)(2,2)(3,2)(4,2)3(1,3)(2,3)(3,3)(4,3)4(1,4)(2,4)(3,4)(4,4)由上表可知,其16种结果,每种结果出现的可能性相同,其中两数和为奇数的结果共有8种.∴P(和为奇数)=,∵,∴小刚的判断正确.22.解:(1)小明抽到的牌恰好是“2”的概率=;(2)他们获胜的机会一样大.理由如下:画树状图为:共有9种等可能的结果,其中小杰获胜的结果数为4,小明获胜的结果数为4,所以小杰获胜的概率=;小明获胜的概率=,而=,所以小杰、小明两人获胜的机会一样大.23.解:画图如下:共有6种等可能的结果数,其中摸出的两个球上数字之和为5的有1种,则摸出的两个球上数字之和为5的概率为.故答案为:.24.解:(1)根据题意知,=0.25,解得:n=5,经检验n=5是分式方程的解,即估计箱子里白球的个数n为5,故答案为:5;(2)列表得红1红2白黄红1(红2,红1)(白,红1)(黄,红1)红2(红1,红2)(白,红2)(黄,红2)白(红1,白)(红2,白)(黄,白)黄(红1,黄)(红2,黄)(白,黄)摸球的结果共有12种等可能结果,其中两次均摸到红球的有2种结果,∴P(两次均摸到红球)==.25.答:(1)根据题意可得当n很大时,摸到白球的频率将会接近0.60;(2)因为当n很大时,摸到白球的频率将会接近0.60;所以摸到白球的概率是0.6;摸到黑球的概率是0.4;(3)因为摸到白球的概率是0.6,摸到黑球的概率是0.4,所以口袋中黑、白两种颜色的球有白球是30×0.6=18个,黑球是30×0.4=12个;故答案为:(1)0.60;(2)0.6,0.4;26.解:(1)∵通过多次摸球试验后发现,摸到红球的频率稳定在0.75左右,∴估计摸到红球的概率为0.75,设白球有x个,根据题意,得:=0.75,解得x=1,经检验x=1是分式方程的解,∴估计箱子里白色小球的个数为1;(2)画树状图为:共有16种等可能的结果数,其中两次摸出的球恰好颜色不同的结果数为6,∴两次摸出的小球颜色恰好不同的概率为=.。
(必考题)初中数学九年级数学上册第三单元《概率的进一步认识》测试卷(答案解析)
一、选择题1.甲、乙两名同学在一次用频率去估计概率的试验中,统计了某一结果出现的频率,并绘出了如下折线统计图,则最有可能符合这一结果的试验的是()A.掷一枚正六面体的骰子,出现1点的概率B.抛一枚硬币,出现正面的概率C.任意写一个整数,它能被3整除的概率D.从一副去掉大小王的扑克牌中,任意抽取一张,抽到黑桃的概率2.某学习小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如表的表格,则符合这一结果的实验最有可能的是()实验次数10020030050080010002000频率0.3650.3280.3300.3340.3360.3320.333A.抛一枚硬币,出现正面B.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃C.抛一个质地均匀的正六面体骰子(六个面上分别标1,2,3,4,5,6),向上的面点数是5D.从一个装有2个白球和1个红球的袋子中任取一球,取到红球3.一只小狗在如图的方砖上走来走去,最终停在阴影方砖上的概率是( )A.25B.13C.415D.154.从{3,2,1,0,1,2,3}---这七个数中随机抽取一个数记为a,则a的值是不等式组352132xxxx⎧+>⎪⎪⎨⎪<+⎪⎩的解,但不是方程2320x x-+=的实数解的概率为().A.17B.27C.37D.475.三张背面完全相同的数字牌,它们的正面分别印有数字1,2,3,将它们背面朝上,洗匀后随机抽取一张,记录牌上的数字并把牌放回,再重复这样的步骤两次,得到三个数字a、b、c,则以a、b、c为边长能构成等腰三角形的概率是()A.19B.13C.59D.796.王刚设计了一个转盘游戏:随意转动转盘,使指针最后落在红色区域的概率为13,如果他将转盘等分成12份,则红色区域应占的份数是()A.3份B.4份C.6份D.9份7.下列说法正确的是()A.任意掷一枚质地均匀的硬币10次,一定有5次正面向上B.通过抛掷一枚均匀的硬币确定谁先发球的比赛规则是不公平的C.“367人中至少有2人生日相同”是必然事件D.四张分别画有等边三角形、平行四边形、菱形、圆的卡片,从中随机抽取一张,恰好抽到中心对称图形的概率是12.8.均匀的四面体的各面上依次标有1,2,3,4四个数字,同时抛掷两个这样的正四面体,着地的一面数字之和为5的概率是()A.316B.14C.168D.1169.如图A是某公园的进口,B,C,D是三个不同的出口,小明从A处进入公园,那么从B,C,D三个出口中恰好在C出口出来的概率为()A.14B.13C.12D.2310.把同一副扑克牌中的红桃2、红桃3、红桃4三张牌背面朝上放在桌子上,从中随机抽取两张,牌面的数字之和为奇数的概率为()A.49B.13C.12D.2311.一家公司招考员工,每位考生要在A、B、C、D、E这5道试题中随机抽出2道题回答,规定答对其中1题即为合格.已知某位考生会答A、B两题,则他合格的概率为()A.710B.12C.25D.1512.随机掷一枚质地均匀的硬币两次,落地后至多有一次正面朝下的概率为( ) A .34B .23C .12D .14二、填空题13.大数据分析技术为打赢疫情防控阻击战发挥了重要作用.如图是刘军老师的健康码示意图,用打印机打印于边长为2cm 的正方形区域内.为了估计图中阴影部分的总面积,刘军老师在正方形区域内随机掷点,经过大量重复试验,发现点落在阴影部分的频率稳定在0.65左右,由此可估计阴影部分的总面积约为__________2cm .14.大冶市现要从甲、乙两位男生和丙、丁两位女生中,选派两位同学分别作为参加全市汉字听写大赛,则恰好选中一男一女两位同学参赛的概率是________________. 15.现将背面完全相同,正面分别标有数6-,1,2,3的四张卡片洗匀后,背面朝上,从中任取一张,将该卡片上的数标记为m ,再从剩下的三张卡片中任取一张,将该卡片上的数记为n ,则数字m 、n 都、不是方程2560x x -+=的解的概率为______.16.在一个不透明的口袋中装有5个红球和若干个白球,它们除颜色外其他完全相同,通过多次摸球实验后发现,摸到红球的频率稳定在0.25附近,则估计口袋中大约共有___个球.17.甲、乙、丙、丁两位同学做传球游戏:第一次由甲将球随机传给乙、丙、丁中的某一人,从第二次起,每次都由持球者将球再随机传给其他三人中的某一人,则第二次传球后球回到甲手里的概率是______.18.一个不透明的袋子中装有若干个红球和6个黄球,它们除颜色外都相同,从中随机摸出一个球,记下颜色后放回,通过大量反复实验发现,摸到黄球的频率约为0.3,由此推测从这个袋中摸到红球的概率约为_____________.19.为庆祝中华人民共和国成立70周年,某校开展以“我和我亲爱的祖国”为主题快闪活动,他们准备从报名参加的3男2女共5名同学中,随机选出2名同学进行领唱,选出的这2名同学刚好是一男一女的概率是:_________.20.在5张完全相同的卡片上分别画上等边三角形、平行四边形、直角梯形、正方形和圆.在看不见图形的情况下随机摸出1张,这张卡片上的图形是中心对称图形的概率是________.三、解答题21.2020年疫情期间,某校为学生提供四种在线学习方式:在线阅读、在线听课、在线答疑、在线讨论,为了解学生的需求,对学生进行了“你最喜欢哪种在线学习方式的调查,调查结果制成两幅不完整统计图如图,根据图中信息回答问题:(1)本次调查人数有人,在线答疑所在扇形的圆心角度数是;(2)补全条形统计图;(3)甲、乙两位同学都参加了在线学习,请用画树状图或列表的方法求出两名同学喜欢同一种在线学习方式的概率.22.有4张印有“青”、“山”、“绿”、“水”字样的卡片(卡片的开状、大小、质地都相同),放在一个不透明的盒子中,将卡片洗匀.(1)从盒子中任意取出一张卡片,恰好取出印有“青”字的卡片的概率为__________;(2)先从盒子中任意取出一张卡片,记录后放回并搅匀,再从其中任意取出一张卡片,求取出的两张卡片中,至少有1张印有“青”字的卡片的概率(请画树状图或列表等方法求解).23.如图所示的转盘,分成三个相同的扇形,指针位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置,并相应得到一个数(指针指向两个扇形的交线时,当作指向右边的扇形).”发生的概率;(1)求事件“转动一次,得到的数恰好是1(2)写出此情境下一个不可能发生的事件;(3)用树状图或列表法,求事件“转动两次,第一次得到的数与第二次得到的数绝对值相等”发生的概率.24.小秋打算去某影城看电影.她用手机打开购票页面,座位已选情况如图所示(虚线边框内为黄金区域,其余为普通区域;深色为已售座位,白色为可选座位).求下列事件的概率:(1)小秋独自观影,他选择第4排或第5排的概率是_________;(2)小秋约小叶一同观影,求小秋选择2个同排相邻的座位恰好都在黄金区域的概率.25.生活在数字时代的我们,很多场合用二维码(如图①)来表示不同的信息,类似地,可通过在网格中,对每一个小方格涂色或不涂色所得的图形来表示不同的信息,例如:网格中只有一个小方格(如图②),通过涂色或不涂色可表示两个不同的信息.(1)用树状图或列表格的方法,求图③可表示不同信息的总个数(图中标号1、2表示两个不同位置的小方格,下同)(2)图④为22⨯的网格图,它可表示不同信息的总个数为________;⨯的网格(3)某校需要给每位师生制作一张“校园出入证”,准备在证件的右下角采用n n图来表示个人身份信息,若该校师生共506人,则n的最小值为________.26.小明代表学校参加“我和我的祖国”主题宣传教育活动,该活动分为两个阶段,第一阶段有“歌曲演唱”、“书法展示”、“器乐独奏”3个项目(依次用A,B,C表示),第二阶段有“故事演讲”、“诗歌朗诵”2个项目(依次用D,E表示),参加人员在每个阶段各随机抽取一个项目完成.请用画树状图或列表的方法,求小明恰好抽中B,D两个项目的概率.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据统计图可知,试验结果在0.33附近波动,即其概率P≈0.33,计算四个选项的概率,约为0.33者即为正确答案.解:A、掷一枚正六面体的骰子,出现1点的概率为16,故此选项错误;B、掷一枚硬币,出现正面朝上的概率为12,故此选项错误;C、任意写一个整数,它能被3整除的概率为13,故此选项正确;D、从一副去掉大小王的扑克牌中,任意抽取一张,抽到黑桃的概率为131524;故此选项错误.故选:C.【点睛】此题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.同时此题在解答中要用到概率公式.2.D解析:D【分析】根据利用频率估计概率得到实验的概率在0.33左右,再分别计算出四个选项中的概率,再进行判断.【详解】A、抛一枚硬币,出现正面的概率是12,不符合题意;B、一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃的概率是14,不符合题意;C、抛一个质地均匀的正六面体骰子(六个面上分别标1,2,3,4,5,6),向上的面点数是5的概率是16,不符合题意;D、从一个装有2个白球和1个红球的袋子中任取一球,取到红球的概率是13,符合题意,故选:D.【点睛】此题考查频率估计概率,计算简单事件的概率,正确理解题意计算出各事件的概率是解题的关键.3.A解析:A【分析】先求出黑色方格在整个方格中所占面积的比值,再根据其比值即可得出结论.∵图中共有15个方格,其中黑色方格6个, ∴黑色方格在整个方格中所占面积的比值=52=165, ∴最终停在阴影方砖上的概率为25. 故选A. 【点睛】此题考查几何概率,解题关键在于掌握计算公式.4.B解析:B 【分析】先解不等式,再解一元二次方程,利用概率公式得到概率 【详解】352132x x x x ⎧+>⎪⎪⎨⎪<+⎪⎩①② 解①得,2x >-, 解②得,34x >-. ∴34x >-. ∵a 的值是不等式组352132x x x x ⎧+>⎪⎪⎨⎪<+⎪⎩的解, ∴0,1,2,3a =. 方程23120x x -+=, 解得11x =,22x =.∵a 不是方程232x x -+的解,∴0a =或3.∴满足条件的a 的值为1,2(2个). ∴概率为27.故选B .5.C解析:C 【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与构成等腰三角形的情况,再利用概率公式即可求得答案. 【详解】 画树状图得:∵共有27种等可能的结果,构成等腰三角形的有15种情况, ∴以a 、b 、c 为边长正好构成等腰三角形的概率是:155279=. 故选:C . 【点睛】本题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.6.B解析:B 【分析】首先根据概率确定在图中红色区域的面积在整个面积中占的比例,根据这个比例即可求出红色区域应占的份数. 【详解】解:∵他将转盘等分成12份,指针最后落在红色区域的概率为13, 设红色区域应占的份数是x ,∴1123x =, 解得:x=4, 故选:B . 【点睛】本题考查了几何概率的求法,根据面积之比即所求几何概率得出是解题关键.7.C解析:C 【分析】利用随机事件和必然事件的定义对A 、C 进行判断;利用比较两事件的概率的大小判断游戏的公平性对B 进行判断;利用中心对称的性质和概率公式对D 进行判断. 【详解】A、任意掷一枚质地均匀的硬币10次,可能有5次正面向上,所以A选项错误;B、通过抛掷一枚均匀的硬币确定谁先发球的比赛规则是公平的,所以B选项错误;C、“367人中至少有2人生日相同”是必然事件,所以C选项正确;D、四张分别画有等边三角形、平行四边形、菱形、圆的卡片,从中随机抽取一张,恰好抽到中心对称图形的概率是34,所以D选项错误.故选:C.【点睛】本题考查了随机事件以及概率公式和游戏公平性:判断游戏公平性需要先计算每个事件的概率,然后比较概率的大小,概率相等就公平,否则就不公平.8.B解析:B【分析】列举出所有情况,看着地的一面数字之和为5的情况占总情况的多少即可.【详解】同时抛掷两个这样的正四面体,可能出现的结果有16种,数字之和为5的有4种,所以着地的一面数字之和为5的概率是41 164故选:B.【点睛】本题考查了概率的求法.用到的知识点为:概率=所求情况数与总情况数之比.9.B解析:B【分析】根据概率公式求出该事件的概率即可.【详解】解:根据题意共有3种等情况数,其中“A口进C口出”有一种情况,从“A口进C口出”的概率为1 3故选:B.【点睛】本题考查的是基本的概率计算,熟悉相关概率计算是解题的关键.10.D解析:D【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与从中随机抽取两张,牌面的数字之和为奇数的情况,再利用概率公式求解即可求得答案.【详解】解:根据题意画树状图如下:∵共有6种等可能的结果,从中随机抽取两张,牌面的数字之和为奇数的有4种情况,∴从中随机抽取两张,牌面的数字之和为奇数的概率为:4263;故选:D.【点睛】本题考查了用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.11.A解析:A【分析】列举出所有情况,看合格的情况数占所有情况数的多少即可.【详解】共有20种情况,合格的情况数有14种,所以概率为7 10.故选A.【点睛】考查用列树状图的方法解决概率问题;得到合格的情况数是解决本题的关键;用到的知识点为:概率等于所求情况数与总情况数之比.第II卷(非选择题)请点击修改第II卷的文字说明12.A解析:A【分析】用列举法确定所有等可能的情况,根据落地后至多有一次正面朝下的次数,利用概率公式计算解答.【详解】随机掷一枚质地均匀的硬币两次,共“正、反”,“反、正”,“正、正”,“反、反”,4种情况,落地后至多有一次正面朝下包括“正、反”,“反、正”,“正、正”,3种情况,故至多有一次正面朝下的概率为34.故选:A.【点睛】此题考查了列举法求概率,解题的关键是找到所有的情况.用到的知识点为:概率=所求情况数与总情况数之比.二、填空题13.【分析】根据频率可以估计阴影部分占正方形的65求出正方形面积即可求【详解】解:因为经过大量重复试验发现点落在阴影部分的频率稳定在左右所以估计阴影部分面积大约占正方形面积的65正方形的面积为:2×2=解析:2.6【分析】根据频率可以估计阴影部分占正方形的65%,求出正方形面积即可求.【详解】解:因为经过大量重复试验,发现点落在阴影部分的频率稳定在0.65左右,所以,估计阴影部分面积大约占正方形面积的65%,正方形的面积为:2×2=4(cm2),由此可估计阴影部分的总面积约为:4×65%=2.6(cm2)故答案为:2.6.【点睛】本题考查了用频率估计概率,解题关键是明确频率估计概率的方法及应用.14.【分析】首先根据题意画出树状图可求得恰好选派一男一女两位同学参赛的有8种情况然后利用概率公式求解即可求得答案【详解】解:画树状图得:则共有12种等可能的结果恰好选派一男一女两位同学参赛的有8种情况∴解析:2 3【分析】首先根据题意画出树状图,可求得恰好选派一男一女两位同学参赛的有8种情况,然后利用概率公式求解即可求得答案.【详解】解:画树状图得:则共有12种等可能的结果,恰好选派一男一女两位同学参赛的有8种情况,∴恰好选派一男一女两位同学参赛的概率为:82123.故答案为:23.【点睛】本题考查了概率的计算问题,掌握画树状图或列表法准确求出概率是解题的关键.15.【分析】画树状图列出所有等可能情况再找出数字mn都不是方程x2−5x+6=0的解的情况利用概率公式计算可得【详解】画树状图如下:由树状图知共有12种等可能结果∵x2−5x+6=0的解为x=2或x=3解析:1 6【分析】画树状图列出所有等可能情况,再找出数字m、n都不是方程x2−5x+6=0的解的情况,利用概率公式计算可得.【详解】画树状图如下:由树状图知共有12种等可能结果,∵x2−5x+6=0的解为x=2或x=3,∴数字m、n都不是方程x2−5x+6=0的解的有2种结果,∴数字m、n都不是方程x2−5x+6=0的解的概率为212=16,故答案为:16.【点睛】本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,是解题的关键.16.【分析】由摸到红球的频率稳定在025附近得出口袋中得到红色球的概率进而求出球个数即可【详解】解:设球个数为x个∵摸到红色球的频率稳定在025左右∴口袋中得到红色球的概率为025∴解得:经检验x=20解析:【分析】由摸到红球的频率稳定在0.25附近得出口袋中得到红色球的概率,进而求出球个数即可.【详解】解:设球个数为x个,∵摸到红色球的频率稳定在0.25左右,∴口袋中得到红色球的概率为0.25,∴514x,解得:20x,经检验,x=20是原方程解,所以,球的个数为20个,故答案为:20.【点睛】此题主要考查了利用频率估计概率,根据大量反复试验下频率稳定值即概率得出是解题关键.17.【分析】画出树状图可得总结果数与传到甲手里的情况数根据概率公式即可得答案【详解】画树状图如下:共有9种等可能的结果其中第二次传球后球回到甲手里的结果有3种∴第二次传球后球回到甲手里的概率为=故答案为解析:1 3【分析】画出树状图,可得总结果数与传到甲手里的情况数,根据概率公式即可得答案.【详解】画树状图如下:共有9种等可能的结果,其中第二次传球后球回到甲手里的结果有3种,∴第二次传球后球回到甲手里的概率为39=13.故答案为:1 3【点睛】本题考查了树状图法计算概率,计算概率的方法有树状图法与列表法,正确的画出树状图是解题关键.18.7【分析】由于摸到红球和黄球的频率之和等于1根据摸到黄球的频率可以得到摸到红球的频率【详解】解:由题意可得摸到红球和黄球的频率之和为:1摸到黄球的频率约为03∴摸到红球的频率约为1-03=07故答案解析:7【分析】由于摸到红球和黄球的频率之和等于1,根据摸到黄球的频率,可以得到摸到红球的频率.【详解】解:由题意可得,摸到红球和黄球的频率之和为:1,摸到黄球的频率约为0.3,∴摸到红球的频率约为1-0.3=0.7,故答案为:0.7.【点睛】本题考查利用频率估计概率,解题的关键是明确题意,找出所求问题需要的条件.19.【分析】先画出树状图求出所有可能出现的结果数再找出选出的2名同学刚好是一男一女的结果数然后利用概率公式求解即可【详解】解:设报名的3名男生分别为ABC2名女生分别为MN则所有可能出现的结果如图所示:解析:3 5【分析】先画出树状图求出所有可能出现的结果数,再找出选出的2名同学刚好是一男一女的结果数,然后利用概率公式求解即可.【详解】解:设报名的3名男生分别为A、B、C,2名女生分别为M、N,则所有可能出现的结果如图所示:由图可知,共有20种等可能的结果,其中选出的2名同学刚好是一男一女的结果有12种,所以选出的2名同学刚好是一男一女的概率=123 205.故答案为:35.【点睛】本题考查了求两次事件的概率,属于常考题型,熟练掌握画树状图或列表的方法是解题的关键.20.【分析】先找出中心对称图形有平行四边形正方形和圆3个再直接利用概率公式求解即可求得答案【详解】解:张完全相同的卡片中中心对称图形有平行四边形正方形和圆3个随机摸出1张卡片上的图形是中心对称图形的概率解析:3 5【分析】先找出中心对称图形有平行四边形、正方形和圆3个,再直接利用概率公式求解即可求得答案.【详解】解:5张完全相同的卡片中中心对称图形有平行四边形、正方形和圆3个,∴随机摸出1张,卡片上的图形是中心对称图形的概率是35,故答案为:35.【点睛】本题主要考查了中心对称图形和概率公式.用到的知识点为:概率=所求情况数与总情况数之比.三、解答题21.(1)100,72°;(2)见解析;(3)14.【分析】(1)样本中“在线阅读”的人数有25人,占调查人数的25%,可求出调查人数;再求出“在线答疑”所占整体的百分比即可求出相应的圆心角的度数即可;(2)补全条形统计图即可;(3)画出树状图表示所有可能出现的结果情况,进而求出甲、乙两个人选择同一种方式的概率.【详解】解:(1)25÷25%=100(人),即本次调查人数有100人,“在线答疑”的人数为100-40-25-15=20(人),在扇形图中的圆心角度数为360°×20 100=72°;故答案为:100,72°;(2)补全条形统计图如图所示:(3)四类在线学习方式在线阅读、在线听课、在线答疑、在线讨论分别用A、B、C、D表示,画树状图如图:共有16个等可能的结果,其中甲、乙两名同学喜欢同一种在线学习方式的结果有4个,∴甲、乙两名同学喜欢同一种在线学习方式的概率为41164=.【点睛】本题考查了列表法与树状图法、条形统计图、扇形统计图等知识,理解两个统计图中的数量关系,正确画出树状图是解题的关键.22.(1)14;(2)716【分析】(1)直接利用概率公式求解可得;(2)画树状图列出所有等可能结果,从中找到符合条件的结果数,再利用概率公式求解可得.【详解】解:(1)从盒子中任意取出1张卡片,恰好取出印有“青”字的卡片的概率为14,故答案为:14;(2)画树状图如下:由图可知,共有16种等可能的结果,其中取出的两张卡片中,至少有1张印有“青”字的卡片的有7种结果,∴P(取出的两张卡片中,至少有1张印有“青”字的卡片)716=.【点睛】本题考查了用列表法或树状图法求随机事件的概率,解题时需要注意是放回试验还是不放回试验.用到的知识点为:概率=所求情况数与总情况数之比.23.(1)13;(2)事件“转动一次,得到的数恰好是2”或事件“转动两次,第一次与第二次得到的两数之和为3”;(3)见解析,59【分析】(1)转动一次,得到的数共有三种可能,即可得到答案; (2)根据题意,找概率为0的事件,即可得到答案; (3)根据题意画树状图即可得到答案; 【详解】解:(1)转动一次,得到的数共有三种可能,其中为1-的有一种,(-1)13P =所指的数为; (2)答案不唯一,如:事件“转动一次,得到的数恰好是2”或事件“转动两次,第一次与第二次得到的两数之和为3”; (3)画树状图如下:共有9种可能,其中两次绝对值相等的有5种,()59P ∴=所指两数的绝对值相等;【点睛】本题主要考查了列表法与树状图法,准确计算是解题的关键. 24.(1)12;(2)12【分析】(1)由概率公式求解即可; (2)由概率公式求解即可. 【详解】解:(1)由题意知:白色为可选座位,共2+2+1+3=8(个) 其中,第4排1个空位,第5排3个空位,共4个空位, 小秋独自观影,他选择第4排或第5排的概率是4182=, 故答案为:12; (2)小秋选择2个同排相邻的座位共有4个结果,其中小秋选择2个同排相邻的座位恰好都在黄金区域的结果有2个,∴小秋选择2个同排相邻的座位恰好都在黄金区域的概率为21=42. 【点睛】 .此题考查的是概率的应用与计算.用到的知识点为:概率=所求情况数与总情况数之比. 25.(1)见解析;(2)16;(3)3【分析】(1)画出树状图即可得出答案; (2)画出树状图即可得到答案; (3)由题意得出规律,即可得出答案; 【详解】(1)画树状图如下:共有4种等可能结果,∴图③可表示不同信息的总个数为4; (2)画树状图如下:共有16种等可能的结果; 故答案是16;(3)由图①得:当1n =时,122=, 由图 ④得:当2n =时,222216⨯=, ∴3n =时,333222512⨯⨯=, ∵16<492<512, ∴n 的最小值为3. 故答案是3. 【点睛】。
(必考题)初中数学九年级数学上册第三单元《概率的进一步认识》测试卷(包含答案解析)(4)
一、选择题1.王老师的讲义夹里放了大小相同的试卷12张,其中语文5张,数学4张,外语3张,他随机从讲义夹中抽出1张,抽出的试卷恰好是数学试卷的概率是()A.14B.13C.512D.122.一个学习兴趣小组有2名女生,3名男生,现要从这5名学生中任选出一人担当组长,则女生当组长的概率是()A.12B.23C.25D.353.在一个不透明纸箱中放有除了标注数字不同外,其他完全相同的3张卡片,上面分别标有数字1,2,3,从中任意摸出一张,放回搅匀后再任意摸出一张,两次摸出的数字之和为奇数的概率为()A.59B.49C.56D.134.如图,电路图上有四个开关A、B、C、D和一个小灯泡,则任意闭合其中两个开关,小灯泡发光的概率是()A.12B.13C.14D.165.如图为某一试验结果的频率随试验次数变化趋势图,则下列试验中不符合该图的是()A.掷一枚普通正六面体骰子,出现点数不超过2B.掷一枚硬币,出现正面朝上C.从装有2个黑球、1个白球的不透明布袋中随机摸出一球为白球D.从分别标有数字l,2,3,4,5,6,7,8,9的九张卡片中,随机抽取一张卡片所标记的数字不小于76.同时掷两个质地均匀的骰子,观察向上一面的点数,两个骰子的点数相同的概率为()A.13B.14C.16D.1367.随机掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,则这个骰子向上的一面点数大于3的概率为()A.12B.13C.14D.158.在一个不透明的盒子中有大小均匀的黄球与白球共12个,若从盒子中随机取出一个球,若取出的球是白球的概率是13,则盒子中白球的个数是().A.3 B.4 C.6 D.89.一个不透明的盒子中装有3个白球、9个红球,这些球除颜色外,没有任何其他区别,现从这个盒子中随机摸出一个球,摸到红球的可能性是()A.34B.13C.14D.2310.,cos45°, ,0,17五个数中,随机抽取一个数,抽到无理数的概率是()A.15B.25C.35D.4511.一个袋子里装有一双红色、一双绿色手套,两双手套除颜色外,其他完全相同,随机地从袋中摸出两只,恰好是一双的概率()A.12B.13C.14D.1612.在一个口袋中有4个完全相同的小球,它们的标号分别为1,2,3,4,从中随机摸出两个小球,则摸出的两个小球标号之和大于4的概率是()A.38B.12C.58D.23二、填空题13.对一批口罩进行抽检,统计合格口罩的只数,得到合格口罩的频率如下:14.某校组织“优质课大赛”活动,经过评比有两名男教师和两名女教师获得一等奖,学校将从这四名教师中随机挑选两位教师参加市教育局组织的决赛,挑选的两位教师恰好是一男一女的概率为____.15.一个不透明的袋子中装有1个白球和3个红球,这些球除颜色外都相同.搅匀后从中任意摸出2个球,摸出两个颜色不同的小球的概率为_____.16.李老师想从小明、小红、小丽和小亮四个人中用抽签的方式抽取两个人做流动值周生,则小红和小丽同时被抽中的概率是______.17.有一把钥匙藏在如图所示的16块正方形瓷砖的某一块下面,则钥匙藏在黑色瓷砖下面的概率是_____18.在边长为1的小正方形组成的43⨯网格中,有如图所示的A B、两个格点,在其余格点上任意放置点C,恰好能使ABC∆的面积为1的概率是_____.19.有4根细木棒,它们的长度分别是2cm、4cm、6cm、8cm.从中任取3根恰好能搭成一个三角形的概率是_____.20.在一个不透明的口袋中,装有一些除颜色外完全相同的红、白、黑三种颜色的小球.己知袋中有红球5个,白球23个,且从袋中随机摸出一个红球的概率是110,则袋中黑球的个数为__________.三、解答题21.有甲、乙、丙三张完全相同的卡片,小明在其正面各写上一个方程,如图,然后将这三张卡片背面朝上洗匀.(1)从中随机抽取一张,求抽到方程没有实数根的概率;(2)从中随机抽取一张,记下方程后放回,再随机抽取一张,请用列表或面树状图的方法,求抽到的方程都有实数根的概率.22.为弘扬中华传统文化,某初中初三年级举办了“国学经典大赛”.比赛项目:A.宋词;B.论语;C.唐诗;D.三字经.比赛形式分“单人组”和“双人组”.(1)小明参加“单人组”,她从中随机抽取一个比赛项目,恰好抽中“唐诗”的概率是多少?(2)小芳和小华组成一个小组参加“双人组”比赛,比赛规则如下:同一小组的两名队员的比赛项目不能相同,且每人只能随机抽取一次,则恰好小芳抽中“三字经”且小华抽中“论语”的概率是多少?请用画树状图或列表的方法进行说明.23.在如图所示的电路图中,有四个断开的开关A、B、C、D和一个灯泡L.(1)若任意闭合其中一个开关,则灯泡L发亮的概率为;(2)若任意闭合其中两个开关,请用列表法或画树状图法求灯泡L发亮的概率.24.布袋中有红、黄、蓝三种只有颜色不同的球各一个,从中先摸出一个球,记录下它的颜色,将它放回布袋并搅匀,再摸出一个球,记录下颜色.求摸出的两个球颜色为“一红一黄”的概率.25.2022年冬奥会吉祥物为“冰墩墩”,冬残奥会吉祥物为“雪容融”,如图,现有三张正面印有吉祥物的不透明卡片,卡片除正面图案不同外,其余均相同,其中两张正面印有冰墩墩图案的卡片分别记为A1、A2,正面印有雪容融图案的卡片记为B,将三张卡片正面向下洗匀,小明同学从中随机抽取一张卡片,记下图案后正面向下放回,洗匀后再从中随机抽取一张卡片,请用画树状图或列表的方法,求小明同学抽出的两张卡片都是冰墩墩卡片的概率.26.小秋打算去某影城看电影.她用手机打开购票页面,座位已选情况如图所示(虚线边框内为黄金区域,其余为普通区域;深色为已售座位,白色为可选座位).求下列事件的概率:(1)小秋独自观影,他选择第4排或第5排的概率是_________;(2)小秋约小叶一同观影,求小秋选择2个同排相邻的座位恰好都在黄金区域的概率.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据随机事件概率大小的求法,找准两点:①符合条件的情况数目;②全部情况的总数.二者的比值就是其发生的概率的大小.【详解】解:∵小明的讲义夹里放了大小相同的试卷共12页,数学4页,∴他随机地从讲义夹中抽出1页,抽出的试卷恰好是数学试卷的概率为41123.故选:B.【点睛】本题考查概率的求法与运用,一般方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.2.C解析:C【分析】直接利用概率公式求解即可求得答案.【详解】∵一个学习兴趣小组有2名女生,3名男生,∴女生当组长的概率是:25.故选:C.【点睛】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.3.B解析:B【分析】先画出树状图得出所有等可能的情况的数量和所需要的情况的数量,再计算所需要情况的概率即得.【详解】解:由题意可画树状图如下:根据树状图可知:两次摸球共有9种等可能情况,其中两次摸出球所标数字之和为奇数的情况有4种,所以两次摸出球所标数字之和为奇数的概率为:49.【点睛】本题考查了概率的求法,能根据题意列出树状图或列表是解题关键.4.A解析:A【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与小灯泡发光的情况,再利用概率公式即可求得答案.【详解】解:画树状图得:∵共有12种等可能的结果,现任意闭合其中两个开关,则小灯泡发光的有6种情况,∴小灯泡发光的概率为612=12.故选:A.【点睛】此题考查了列表法或树状图法求概率.用到的知识点为:概率 所求情况数与总情况数之比.5.B解析:B【分析】首先根据折线统计图可得出该事件的概率在30%以上,分别计算各选项概率,即可得出答案.【详解】解:A.掷一枚普通正六面体骰子,出现点数不超过2的概率为13,符合该图;B.掷一枚硬币,出现正面朝上的概率为12,不符合该图;C.从装有2个黑球、1个白球的不透明布袋中随机摸出一球为白球的概率为13,符合该图;D.从分别标有数字l,2,3,4,5,6,7,8,9的九张卡片中,随机抽取一张卡片所标记的数字不小于7概率为13,符合该图.故选:B.【点睛】本题考查的知识点是用频率估计概率,解题的关键是从折线统计图中得出事件的概率值.6.C解析:C【分析】首先列表,然后根据表格求得所有等可能的结果与两个骰子的点数相同的情况,再根据概率公式求解即可.【详解】列表得:∴两个骰子的点数相同的概率为:61=366故选:C【点睛】此题考查了树状图法与列表法求概率.注意树状图法与列表法可以不重不漏的表示出所有等可能的结果.用到的知识点为:概率=所求情况数与总情况数之比7.A解析:A【分析】骰子六个面出现的机会相同,求出骰子向上的一面点数大于3的情况有几种,直接应用求概率的公式求解即可.【详解】∵一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,点数大于3的有4,5,6共3个,∴这个骰子向上的一面点数大于3的概率为3162=故选:A.【点睛】考核知识点:概率.熟记概率的公式是关键.8.B解析:B【分析】根据白、黄球共有的个数乘以白球的概率即可解答.【详解】由题意得:12×13=4,即白球的个数是4.故选:B.【点睛】本题考查概率公式:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.9.A解析:A【分析】先求出球的总数,再由概率公式即可得出结论.【详解】∵一个不透明的盒子中装有3个白球,9个红球,∴球的总数=3+9=12(个),∴这个盒子中随机摸出一个球,摸到红球的可能性=93124=.故选:A.【点睛】本题考查的是可能性的大小,熟记随机事件的概率公式是解答此题的关键.10.C解析:C【分析】先确定这5个数中无理数的个数,再利用概率公式计算得出答案.【详解】∵cos45°=2是无理数,∴,cos45°,π,0,17,cos45°,π,共3个, ∴,cos45°,π,0,17五个数中,随机抽取一个数,抽到无理数的概率是35. 故选C. 【点睛】此题主要考查了概率公式,正确得出无理数的个数是解题关键.11.B解析:B 【分析】列举出所有情况,让恰好是一双的情况数除以总情况数即为所求的概率. 【详解】 列表得:∴恰好是一双的概率41123=. 故选B . 【点睛】列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;用到的知识点为:概率=所求情况数与总情况数之比.12.D解析:D 【分析】首先根据题意列出表格,然后由表格中求得所有等可能的结果与两次摸出的小球的标号之和大于4的情况,再利用概率公式即可求得答案; 【详解】两次摸出小球标号的组合如下:共12组∴其概率为:=123,故选:D.【点睛】本题考查了用列表法或树状图法求概率,注意列表法或树状图法要不重复不遗漏的列出所有等可能的情况,所用到的知识点为:概率 =所求情况数与总情况数之比.二、填空题13.84【分析】观察表格合格的频率趋近于084从而由此得到口罩合格的概率即可【详解】解:∵随着抽样的增大合格的频率趋近于084∴估计从该批次口罩中任抽一只口罩是合格品的概率为084故答案为:084【点睛解析:84【分析】观察表格合格的频率趋近于0.84,从而由此得到口罩合格的概率即可.【详解】解:∵随着抽样的增大,合格的频率趋近于0.84,∴估计从该批次口罩中任抽一只口罩是合格品的概率为0.84.故答案为:0.84.【点睛】本题考查了用频率估计概率,解题关键是熟练运用频率估计概率解决问题.14.【分析】根据列表法求出所有可能及可得出挑选的两位教师恰好是一男一女的结果数而利用概率公式计算可得【详解】解:所有可能的结果如下表:男1 男2 女1 女2 男1 (男1男2)(男1女1)(男解析:2 3【分析】根据列表法求出所有可能及可得出挑选的两位教师恰好是一男一女的结果数而利用概率公式计算可得.【详解】解:所有可能的结果如下表:女1(女1,男1)(女1,男2)(女1,女2)女2(女2,男1)(女2,男2)(女2,女1)的结果有8种,所以其概率为挑选的两位教师恰好是一男一女的概率为812=23,故答案为23.【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.15.【分析】用列表法列举出所有等可能出现的情况从中找出两个球颜色不同的结果数进而求出概率【详解】解:用列表法表示所有可能出现的结果如下:共有12种不同的结果数其中两个球颜色不同的有6种∴摸出两个颜色不同解析:1 2【分析】用列表法列举出所有等可能出现的情况,从中找出两个球颜色不同的结果数,进而求出概率.【详解】解:用列表法表示所有可能出现的结果如下:共有12种不同的结果数,其中两个球颜色不同的有6种,∴摸出两个颜色不同的小球的概率为61122,故答案为:12.【点睛】本题考查随机事件的概率,可用列表法和树状图法来解,属于中考常考题型.16.【分析】首先根据题意画出树状图然后由树状图求得所有等可能的结果与小红和小丽同时被抽中的情况再利用概率公式即可求得答案【详解】画树状图得:∵共有12种等可能的结果小红和小丽同时被抽中的有2种情况∴小红解析:1 6【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与小红和小丽同时被抽中的情况,再利用概率公式即可求得答案.【详解】画树状图得:∵共有12种等可能的结果,小红和小丽同时被抽中的有2种情况,∴小红和小丽同时被抽中的概率是:P =16.故答案为1 6【点睛】此题考查了树状图法与列表法求概率.用到的知识点为:概率=所求情况数与总情况数之比.17.【分析】数出黑色瓷砖的数目和瓷砖总数求出二者比值即可【详解】解:根据题意分析可得:钥匙藏在黑色瓷砖下面的概率是黑色瓷砖面积与总面积的比值进而转化为黑色瓷砖个数与总数的比值即故答案为:【点睛】本题考查解析:1 4【分析】数出黑色瓷砖的数目和瓷砖总数,求出二者比值即可.【详解】解:根据题意分析可得:钥匙藏在黑色瓷砖下面的概率是黑色瓷砖面积与总面积的比值,进而转化为黑色瓷砖个数与总数的比值即41 164故答案为:1 4 .【点睛】本题考查几何概率的求法:根据题意将面积比表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率.18.【分析】在的网格中共有20-2=18个格点找到能使得三角形ABC的面积为1的格点即可利用概率公式求解【详解】解:由题意知任意放C的情况有18种使三角形的面积为的情况有5种故答案为:【点睛】本题考查了解析:5 18【分析】在43⨯的网格中共有20-2=18个格点,找到能使得三角形ABC的面积为1的格点即可利用概率公式求解.【详解】解:由题意知,任意放C的情况有18种,使三角形的面积为的情况有5种()15 18∴=使三角形面积为P故答案为:5 18【点睛】本题考查了概率的公式,将所有情况都列举出来是解决此题的关键.19.【分析】根据题意列举出所有4种等可能的结果数再根据题意得出能够构成三角形的结果数最后根据概率公式即可求解【详解】从中任取3根共有4种等可能的结果数它们为246;248;268;468其中恰好能搭成一解析:1 4【分析】根据题意列举出所有4种等可能的结果数,再根据题意得出能够构成三角形的结果数,最后根据概率公式即可求解.【详解】从中任取3根共有4种等可能的结果数,它们为2、4、6;2、4、8;2、6、8;、4、6、8,其中恰好能搭成一个三角形为4、6、8,所以恰好能搭成一个三角形的概率=14.故答案为14.【点睛】本题考查列表法或树状图法和三角形三边关系,解题的关键是通过列表法或树状图法展示出所有等可能的结果数及求出构成三角形的结果数.20.22【分析】袋中黑球的个数为利用概率公式得到然后利用比例性质求出即可【详解】解:设袋中黑球的个数为根据题意得解得即袋中黑球的个数为个故答案为:22【点睛】本题主要考查概率的计算问题关键在于根据题意对解析:22 【分析】袋中黑球的个数为x ,利用概率公式得到5152310x =++,然后利用比例性质求出x 即可. 【详解】解:设袋中黑球的个数为x ,根据题意得5152310x =++,解得22x =,即袋中黑球的个数为22个. 故答案为:22. 【点睛】本题主要考查概率的计算问题,关键在于根据题意对概率公式的应用.三、解答题21.(1)13;(2)49.【分析】(1)根据根的判别式分别判断三个方程根的情况,再运用概率公式求解即可; (2)画出树状图展示所有9种等可能的结果,找出恰好抽到两个方程都有实数根的结果数,然后根据概率公式求解. 【详解】解:(1)方程有实数根,则2=40b ac ∆-≥> 甲方程:210x +=2=0411=40∆-⨯⨯-<∴甲方程没有实数根; 乙方程:20x x +=2=1410=10∆-⨯⨯>∴乙方程有实数根 丙方程:2210x x ++=2=2411440∆-⨯⨯=-=∴丙方程有实数根所以,抽到方程没有实数根的概率13; (2)画树状图:共有9种等可能的结果,其中恰好抽到两个方程都有实数根的结果数为4,所以恰好抽到两个方程都有实数根的概率=49.【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.22.(1)14;(2)112【分析】(1)直接利用概率公式求解;(2)先画树状图展示所有12种等可能的结果数,再找出恰好小红抽中“唐诗”且小明抽中“宋词”的结果数,然后根据概率公式求解.【详解】解:(1)根据题意,恰好抽中“唐诗”的概率是14;(2)根据题意,树状图如下所示:由树状图可以看出,所有可能出现的结果共12种,这些结果出现的可能性相等,小芳抽中“三字经”且小华抽中“论语”的结果只有1种,所以概率是1 12.【点睛】本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.23.(1)14;(2)12【分析】(1)根据概率公式直接填即可;(2)依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率.【详解】解:(1)有4个开关,只有D开关一个闭合小灯发亮,所以任意闭合其中一个开关,则小灯泡发光的概率是14;(2)根据题意,列表如下A B C DA AB AC ADB BA BC BDC CA CB CDD DA DB DC∴6种P∴(灯泡L发光)61 122 ==.【点睛】本题主要考查概率的求法.是跨学科综合题,综合物理学中电学知识,结合电路图,正确判断出灯泡发光的条件,掌握根据题意正确画出树状图或列表法以及概率的计算方法是解题的关键.24.2 9【分析】先画出树状图,由树状图求得所有等可能的结果数,找出一红一黄的情况数,再利用概率公式,即可求得答案.【详解】解:画树状图得:由树状图可知:共有9种等情况数,其中“一红一黄”的有2种,∴摸出的两个球颜色为“一红一黄”的概率为29.【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.25.49.【分析】画出树状图得出所有等可能的情况数,再找出甲乙两人选择同款套餐的情况数,然后根据概率公式求解即可.【详解】解:根据题意画图如下:所有等可能的情况有9种,小明同学抽出的两张卡片都是冰墩墩的有4种,小明同学抽出的两张卡片都是冰墩墩卡片的概率为:4 9【点睛】本题考查概率问题,掌握概率的意义,树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A的结果数目m,然后根据概率公式求出事件A的概率.26.(1)12;(2)12【分析】(1)由概率公式求解即可;(2)由概率公式求解即可.【详解】解:(1)由题意知:白色为可选座位,共2+2+1+3=8(个)其中,第4排1个空位,第5排3个空位,共4个空位,小秋独自观影,他选择第4排或第5排的概率是41 82 ,故答案为:12;(2)小秋选择2个同排相邻的座位共有4个结果,其中小秋选择2个同排相邻的座位恰好都在黄金区域的结果有2个,∴小秋选择2个同排相邻的座位恰好都在黄金区域的概率为21 =42.【点睛】.此题考查的是概率的应用与计算.用到的知识点为:概率=所求情况数与总情况数之比.。
北师大版九年级数学上册 第3章 《概率的进一步认识》 单元测试卷 含答案
北师版数学九年级上册第三章概率的进一步认识 单元测试卷(时间90分钟,满分120分)第Ⅰ卷(选择题)一.选择题(本大题共10小题,每小题3分,共30分)1. 某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行抽查.各组随机抽取辖区内某三个小区中的一个进行检查,则两个组恰好抽到同一个小区的概率是( ) A.19 B.16 C.13 D.232. 如图,小颖在围棋盘上两个格子的格点上任意摆放黑、白两个棋子,且两个棋子不在同一条网格线上,其中,恰好摆放成如图所示位置的概率是( ) A.112 B.110 C.16 D.253. 如图所示的两个转盘中,指针落在每一个数上的机会均等,那么两个指针同时落在偶数上的概率是( )A.1925B.1025C.625D.5254. 小明有2件上衣,分别为红色和蓝色;有3条裤子,其中2条为蓝色,1条为棕色.小明任意拿出1件上衣和1条裤子穿上,则小明穿的上衣和裤子恰好都是蓝色的概率是( ) A.13 B.12 C.23 D.345. 三张背面完全相同的数字牌,它们的正面分别印有数字“1”“2”“3”,将它们背面朝上,洗匀后随机抽取一张,记录牌上的数字并把牌放回,再重复这样的步骤两次,得到三个数字a ,b ,c ,则以a ,b ,c 为边长正好构成等边三角形的概率是( ) A.19 B.127 C.59 D.136. 用图中两个可自由转动的转盘做“配紫色”游戏:分别旋转两个转盘,若其中一个转出红色,另一个转出蓝色即可配成紫色,那么可配成紫色的概率是( ) A.12 B.13 C.59 D.497. 如图,在平面直角坐标系中,点A 1,A 2在x 轴上,点B 1,B 2在y 轴上,其坐标分别为A 1(1,0),A 2(2,0),B 1(0,1),B 2(0,2),分别以A 1,A 2,B 1,B 2其中的任意两点与点O 为顶点作三角形,所作三角形是等腰三角形的概率是( ) A.34 B.13 C.23 D.128.一个盒子里有完全相同的三个小球,球上分别标有数-1,1,2.随机摸出一个小球(不放回),其数记为p ,再随机摸出另一个小球,其数记为q ,则满足关于x 的方程x 2-px +q =0有实数根的概率是( )A.12B.13C.23D.569.小兰和小潭分别用掷A ,B 两枚正六面体骰子的方法来确定P(x ,y)的位置,她们规定:小兰掷得的点数为x ,小潭掷得的点数为y ,那么,她们各掷一次所确定的点落在已知直线y =-2x +6上的概率为( )A.16B.118C.112D.1910. 如图是两个可以自由转动的转盘,每个转盘被分成两个扇形,同时转动两个转盘,转盘停止后,指针所指区域内的数字之和为4的概率是( ) A.12 B.13 C.14 D.15第Ⅱ卷(非选择题)二.填空题(共8小题,3*8=24)11.在一个不透明的袋子里,有2个黑球和1个白球,除了颜色外全部相同,任意摸两个球,摸到1黑1白的概率是________.12. 有两个不透明的盒子,第一个盒子中有3张卡片,上面的数字分别为1,2,2;第二个盒子中有5张卡片,上面的数字分别为1,2,2,3,3.这些卡片除了数字不同外,其它都相同,从每个盒子中各抽出一张,都抽到卡片数字是2的概率为________.13. 如图是一个能自由转动的正六边形转盘,这个转盘被三条分割线分成形状相同,面积相等的三部分,且分别标有“1”,“2”,“3”三个数字,指针的位置固定不动,让转盘自由转动两次,当每次转盘停止后,记录指针指向的数(当指针指向分割线时,视其指向分割线左边的区域),则两次指针指向的数都是奇数的概率为_________.14. 在一个不透明的盒子中装有n个球,它们除了颜色之外其他都没有区别,其中含有3个红球,每次摸球前,将盒中所有的球摇匀,然后随机摸出一个球,记下颜色后再放回盒中.通过大量重复试验,发现摸到红球的频率稳定在0.03,那么可以推算出n的值大约是_______.15.2018年10月14日,韵动中国·2018广安国际红色马拉松赛激情开跑.上万名跑友在小平故里展开激烈的角逐.某校从两名男生和三名女生中选出两名同学作为红色马拉松赛的志愿者,则选出一男一女的概率是_______.16.从如图所示的四个带圆圈的数字中,任取两个数字(既可以是相邻也可以是相对的两个数字)相互交换它们的位置,交换一次后能使①,②两数在相对位置上的概率是_______.17.如图所示的两个圆盘中,指针落在每一个数所在的区域上的机会均等,则两个指针同时落在数“1”所在的区域上的概率是_________18.小燕一家三口在商场参加抽奖活动,每人只有一次抽奖机会:在一个不透明的箱子中装有红、黄、白三种球各1个,这些球除颜色外无其他差别,从箱子中随机摸出1个球,然后放回箱子中,轮到下一个人摸球,三人摸到球的颜色都不相同的概率是________三.解答题(共8小题,66分)19.(6分) 一个不透明的口袋中有一个小球,上面分别标有字母a,b,c,每个小球除字母不同外其余均相同,小园同学从口袋中随机摸出一个小球,记下字母后放回且搅匀,再从口袋中随机摸出一个小球记下字母.用画树状图(或列表)的方法,求小园同学两次摸出的小球上的字母相同的概率.20.(6分) 某校组织一项公益知识竞赛,比赛规定:每个班级由2名男生、2名女生及1名班主任老师组成代表队.但参赛时,每班只能有3名队员上场参赛,班主任老师必须参加,另外2名队员分别在2名男生和2名女生中各随机抽出1名.初三(1)班由甲、乙2名男生和丙、丁2名女生及1名班主任组成了代表队,求恰好抽到由男生甲、女生丙和这位班主任一起上场参赛的概率.(请用画树状图或列表的方法给出分析过程)21.(8分)在学习概率的课堂上,老师提出问题:只有一张电影票,小明和小刚想通过抽取扑克牌的游戏来决定谁去看电影,请你设计一个对小明和小刚都公平的方案.甲同学的方案:将红桃2,3,4,5四张牌背面向上,小明先抽一张,小刚从剩下的三张牌中抽一张,若两张牌上的数字之和是奇数,则小明看电影,否则小刚看电影.(1)甲同学的方案公平吗?请用列表或画树状图的方法说明;(2)乙同学将甲的方案修改为只用红桃2、3、4三张牌,抽取方式及规则不变,乙同学的方案公平吗?(只回答,不用说明理由).22.(8分)有2部不同的电影A ,B ,甲、乙、丙3人分别从中任意选择1部观看. (1)求甲选择A 部电影的概率;(2)求甲、乙、丙3人选择同1部电影的概率(请用画树状图的方法给出分析过程,并求出结果).23.(8分) 随机抛掷图中均匀的正四面体(正四面体的各面依次标有1,2,3,4四个数字),并且自由转动图中的转盘(转盘被分成面积相等的五个扇形区域).(1)求正四面体着地的数字与转盘指针所指区域的数字之积为4的概率;(2)设正四面体着地的数字为a ,转盘指针所指区域内的数字为b ,求关于x 的方程ax 2+3x +b4=0有实数根的概率.24.(8分) 在四张背面完全相同的纸牌A ,B ,C ,D 中,其中正面分别画有四个不同的几何图形(如图),小华将这4张纸牌背面朝上洗匀后摸出一张(不放回),再从余下的3张纸牌中摸出一张.(1)用树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌可用A,B,C,D表示);(2)求摸出两张纸牌牌面上所画几何图形既是轴对称图形又是中心对称图形的概率.25.(10分) 甲、乙两人利用扑克牌玩“10点”游戏,游戏规则如下:①将牌面数字作为“点数”,如红桃6的“点数”就是6(牌面点数与牌的花色无关);②两人摸牌结束时,将所摸牌的“点数”相加,若“点数”之和小于或等于10,此时“点数”之和就是“最终点数”;若“点数”之和大于10,则“最终点数”是0;③游戏结束前双方均不知道对方“点数”;④判定游戏结果的依据是:“最终点数”大的一方获胜,“最终点数”相等时不分胜负.现甲、乙均各自摸了两张牌,数字之和都是5,这时桌上还有四张背面朝上的扑克牌,牌面数字分别是4,5,6,7.(1)若甲从桌上继续摸一张扑克牌,乙不再摸牌,则甲获胜的概率为________;(2)若甲先从桌上继续摸一张扑克牌,接着乙从剩下的扑克牌中摸出一张牌,然后双方不再摸牌.请用树状图或表格表示出这次摸牌后所有可能的结果,再列表呈现甲、乙的“最终点数”,并求乙获胜的概率.26.(12分) 小明的口袋里装有红、黄、蓝三种颜色的小球若干个(除颜色外其余都相同),其中红球2个(分别标有1号、2号),蓝球1个.若从中任意摸出一个球,它是蓝球的概率为14.(1)求袋中黄球的个数;(2)第一次任意摸一个球(不放回),第二次再摸一个球,请用画树状图或列表格的方法,求两次摸到不同颜色球的概率;(3)若规定摸到红球得5分,摸到黄球得3分,摸到蓝球得1分,小明共摸6次小球(每次摸1个球,摸后放回)得20分,问小明有哪几种摸法?参考答案:1-5CACAA 6-10DDABB11. 2312.41513. 4914. 100 15. 3516. 1317.12518. 2919. 解:列表如下:所有等可能的情况有9种,其中两次摸出的小球的标号相同的情况有3种,则P =39=1320. 解:列表如下:由表可知共有4种等可能的结果,其中恰好抽到由男生甲、女生丙和这位班主任一起上场比赛的情况只有1种,∴其概率为1421. 解:(1)甲同学的方案不公平.理由:列表如下:所有出现的等可能结果共有12种,其中抽出的牌面上的数字之和为奇数的有8种,故小明获胜的概率为812=23,则小刚获胜的概率为13,故此游戏两人获胜的概率不相同,即甲同学的方案不公平(2)不公平22. 解:(1)甲选择A 部电影的概率=12(2)画树状图为:共有8种等可能的结果,其中甲、乙、丙3人选择同1部电影的结果有2种,所以甲、乙、丙3人选择同1部电影的概率为28=1423. 解:(1)画树状图略,总共有20种结果,每种结果出现的可能性相同,正四面体着地的数字与转盘指针所指区域的数字之积为4的有3种情况,故正四面体着地的数字与转盘指针所指区域的数字之积为4的概率为:320(2)∵方程ax 2+3x +b4=0有实数根的条件为:9-ab≥0,∴满足ab≤9的结果共有14种:(1,1),(1,2),(1,3),(1,4),(1,5),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(4,1),(4,2),∴关于x 的方程ax 2+3x +b4=0有实数根的概率为:1420=71024. 解:(1)画树状图如图所示:则共有12种等可能的结果(2)∵既是轴对称图形又是中心对称图形的只有B ,C ,∴既是轴对称图形又是中心对称图形的有2种情况,∴既是轴对称图形又是中心对称图形的概率为212=1625. 解:(1)12(2)画树状图得:则共有12种等可能的结果.列表得:∴乙获胜的概率为51226. 解:(1)1个(2)画树状图如图,所以两次摸到不同颜色球的概率为:P =1012=56(3)设小明摸到红球x 次,摸到黄球y 次,则摸到红球有(6-x -y)次,由题意得5x +3y +(6-x -y)=20,即2x +y =7,y =7-2x.因为x 、y 、(6-x -y)均为自然数,所以当x =1时,y =5,6-x -y =0;当x =2时,y =3,6-x -y =1;当x =3时,y =1,6-x -y =2;综上:小明共有三种摸法:摸到红、黄、蓝三种球分别为1次、5次、0次;或2次、2次、1次;或3次、1次、2次。
概率的进一步认识测试卷
《概率的进一步认识》概念检测卷姓名:分数:概念梳理检测:1.把刻画事件A发生的可能性大小的数值,称为事件A发生的。
2.分析概率方法一般方法是:和。
3.当涉及求两步完成的随机事件的概率时,既可以用表示,也可以用表示,当涉及到两步以上的随机事件的概率时,一般用表示。
4.无论是用列表法求概率,还是用树状图求概率,其共同的前提是各种结果发生的可能性。
5.相关知识点链接:频数与频率频数:在数据统计中,每个对象出现的次数叫做频数,频率:每个对象出现的次数与总次数的比值为频率。
6.概率的意义和大小:概率就是表示每件事情发生的可能性大小,即一个时间发生的可能性大小的数值。
必然事件发生的概率为;不可能事件发生的概率为;不确定事件发生的概率在之间。
7.【知识点1】频率与概率的含义在试验中,每个对象出现的频繁程度不同,我们称每个对象出现的次数为频数,而每个对象出现的次数与总次数的比值为频率,即 频数频率总次数把刻画事件A发生的可能性大小的数值,称为事件A发生的。
8.【知识点2】通过实验运用稳定的频率来估计某一时间的概率在进行试验的时候,当试验的次数很大时,某个事件发生的频率稳定在相应的概率附近。
我们可以通过多次试验,用一个事件发生的来估计这一事件发生的。
第三章《概率的进一步认识》单元测试卷姓名:分数:(时间:60分钟满分:100分)一、选择题(每小题3分,共30分)1.事件A:打开电视,它正在播广告;事件B:抛掷一个均匀的骰子,朝上的点数小于7;事件C:在标准大气压下,温度低于0 ℃时冰融化.3个事件的概率分别记为P(A), P(B), P(C),则P(A), P(B), P(C)的大小关系正确的是()A. P(C)<P(A)=P(B)B.P(C)<P(A)<P(B)C. P(C)<P(B)<P(A) D.P(A)<P(B)<P(C)2. 从-5,0,4,π,3.5这五个数中,随机抽取一个,则抽到无理数的概率是( ) A.15 B.25 C.35 D.453.如图,在2×2的正方形网格中有9个格点,已经取定点A和B ,在余下的7个点中任取一点C ,使△ABC 为直角三角形的概率是( )A.12B.25C.37D.474.袋子里有4个球,标有2,3,4,5,先抽取一个并记住,放回,然后再抽取一个,问抽取的两个球数字之和大于6的概率是( )A.12B.712C.58D.345.掷两枚普通正六面体骰子,所得点数之和为11的概率为( )A.118B.136C.112D.1156.用图中两个可自由转动的转盘做“配紫色”游戏:分别旋转两个转盘,若其中一个转出红色,另一个转出蓝色即可配成紫色.那么可配成紫色的概率是( )A.14B.34C.13D.12,第6题图) ,第7题图)7.如图所示的两个转盘中,指针落在每一个数上的机会均等,那么两个指针同时落在偶数上的概率是( )A.1925B.1025C.625D.5258. 有三张正面分别写有数字-1,1,2的卡片,它们背面完全相同,现将这三张卡片背面朝上洗匀后随机抽取一张,以其正面的数字作为a 的值,然后再从剩余的两张卡片中随机抽取一张,以其正面的数字作为b 的值,则点(a,b)在第二象限的概率是( )A.16B.13C.12D.239.从长为10 cm ,7 cm ,5 cm ,3 cm 的四条线段中任选三条能够组成三角形的概率是( ) A.14 B.13 C.12 D.3410.如图,在平面直角坐标系中,点A 1,A 2在x 轴上,点B 1,B 2在y 轴上,其坐标分别为A 1(1,0),A 2(2,0),B 1(0,1),B 2(0,2),分别以A 1,A 2,B 1,B 2其中的任意两点与点O 为顶点作三角形,所作三角形是等腰三角形的概率是( )A.34B.13C.23D.12二、填空题(每小题3分,共18分)11.一个布袋中装有3个红球和4个白球,这些球除颜色外其他都相同.从袋子中随机摸出一个球,这个球是白球的概率为___.12.在一个不透明的袋子中有10个除颜色外均相同的小球,通过多次摸球试验后,发现摸到白球的频率约为40%,估计袋中白球有____个.13.有两把不同的锁和三把钥匙,其中两把钥匙能打开同一把锁,第三把钥匙能打开另一把锁.任意取出一把钥匙去开任意一把锁,一次能打开锁的概率是___.14.一个不透明的袋子中装有黑、白小球各两个,这些球除颜色外无其他差别,从袋子中随机摸出一个小球后,放回并摇匀,再随机摸出一个小球,则两次摸出的小球都是白球的概率是__ .15.若同时抛掷两枚质地均匀的骰子,则事件“两枚骰子朝上的点数互不相同”的概率是__ .16.已知一包糖果共有五种颜色(糖果仅有颜色差别),如图是这包糖果颜色分布百分比的统计图.在这包糖果中任取一粒糖果,则取出的糖果的颜色为绿色或棕色的概率是__ .三、解答题(共52分)17.(10分)小明有2件上衣,分别为红色和蓝色,有3条裤子,其中2条为蓝色、1条为棕色.小明任意拿出1件上衣和1条裤子穿上.请用画树状图或列表的方法列出所有可能出现的结果,并求小明穿的上衣和裤子恰好都是蓝色的概率.18.(10分)在一个不透明的口袋中装有4张相同的纸牌,它们分别标有数字1,2,3,4.随机地摸取一张纸牌记下数字然后放回,再随机摸取一张纸牌.(1)计算两次摸取纸牌上数字之和为5的概率;(2)甲、乙两人进行游戏,如果两次摸取纸牌上数字之和为奇数,则甲胜;如果两次摸取纸牌上数字之和为偶数,则乙胜.这是个公平的游戏吗?请说明理由.19.(10分)分别把带有指针的圆形转盘A,B分成4等份、3等份的扇形区域,并在每一个小区域内标上数字(如图所示).欢欢、乐乐两个人玩转盘游戏,游戏规则是:同时转动两个转盘,当转盘停止时,若指针所指两区域的数字之积为奇数,则欢欢胜;若指针所指两区域的数字之积为偶数,则乐乐胜;若有指针落在分割线上,则无效,需重新转动转盘.(1)试用列表或画树状图的方法,求欢欢获胜的概率;(2)请问这个游戏规则对欢欢、乐乐双方公平吗?试说明理由.20.(10分)某小学学生较多,为了便于学生尽快就餐,师生约定:早餐一人一份,一份两样,一样一个,食堂师傅在窗口随机发放(发放的食品价格一样).食堂在某天早餐提供了猪肉包、面包、鸡蛋、油饼四样食品.(1)按约定,“小李同学在该天早餐得到两个油饼”是________事件;(可能,必然,不可能)(2)请用列表或画树状图的方法,求出小张同学该天早餐刚好得到猪肉包和油饼的概率.21.(10分)某景区7月1日~7月7日一周天气预报如图,小丽打算选择这期间一天或两天去该景区旅游.求下列事件的概率:(1)随机选择一天,恰好天气预报是晴;(2)随机选择连续的两天,恰好天气预报都是晴.。
北师大版九年级数学上册第三单元概率的进一步认识 检测试题 含答案
单元测试(三) 概率的进一步认识(满分:150分,考试用时120分钟)一、选择题(本大题共15个小题,每小题3分,共45分)1.将一枚质地均匀的硬币抛掷两次,则两次都是正面向上的概率为( )A.12B.13C.23D.142.在一个口袋中有4个完全相同的小球,把它们分别标号为①,②,③,④.随机地摸出一个小球,记录后放回,再随机摸出一个小球,则两次摸出的小球的标号相同的概率是( )A.116B.316C.14D.5163.中考体育男生抽测项目规则是:从立定跳远、实心球、引体向上中随机抽一项,从50米、50×2米、100米中随机抽一项,恰好抽中实心球和50米的概率是( )A.13B.16C.23D.194.一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是( )A.12B.14C.16D.1125.在一个不透明的盒子中装有a个除颜色外完全相同的球,这a个球中只有3个红球.若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子,通过大量重复试验后,发现摸到红球的频率稳定在20%左右,则a的值大约为( )A.12 B.15 C.18 D.216.用图中两个可自由转动的转盘做“配紫色”游戏:分别旋转两个转盘,若其中一个转出红色,另一个转出蓝色即可配成紫色.那么可配成紫色的概率是( )A.14B.34C.13D.127.假定鸟卵孵化后,雏鸟为雌与雄的概率相同.如果三枚卵全部成功孵化,那么三只雏鸟中有两只雌鸟的概率是( )A.16B.38C.58D.238.一个布袋内只装有1个黑球和2个白球,这些球除颜色外其余都相同,随机摸出一个球后放回并搅匀,再随机摸出一个球,则两次摸出的球都是黑球的概率是( )A.49B.13C.16D.199.学校组织校外实践活动,安排给九年级三辆车,小明与小红都可以从这三辆车中任选一辆搭乘,小明与小红同车的概率是( )A.19B.16C.13D.1210.有一箱子装有3张分别标示为4,5,6的号码牌,已知小武以每次取一张且取后不放回的方式,先后取出2张牌,组成一个两位数,取出第1张牌的号码为十位数,第2张牌的号码为个位数,若先后取出2张牌组成两位数的每一种结果发生的机会都相同,则组成的两位数为6的倍数的概率为( )A.16B.14C.13D.1211.小明和小亮做游戏,先是各自背着对方在纸上写一个不大于100的正整数,然后都拿给对方看.他们约定:若两人所写的数都是奇数或都是偶数,则小明获胜;若两个人所写的数一个是奇数,另一个是偶数,则小亮获胜.这个游戏( )A.对小明有利 B.对小亮有利C.是公平的D.无法确定对谁有利12.如图,随机闭合开关S1,S2,S3中的两个,则灯泡发光的概率是( )A.34B.23C.13D.1213.从1,2,3,4中任取两个不同的数,其乘积大于4的概率是( )A.16B.13C.12D.2314.如图,直线a∥b,直线c与直线a、b都相交,从所标识的∠1、∠2、∠3、∠4、∠5这五个角中任意选取两个角,则所选取的两个角互为补角的概率是( )A.35B.25C.15D.2315.某口袋中有20个球,其中白球x个,绿球2x个,其余为黑球.甲从袋中任意摸出一个球,若为绿球则甲获胜,甲摸出的球放回袋中,乙从袋中摸出一个球,若为黑球则乙获胜.则当x=________时,游戏对甲、乙双方公平( ) A.3 B.4 C.5 D.6二、填空题(本大题共5小题,每小题5分,共25分)16.学校要从小明、小红与小华三人中随机选取两人作为升旗手,则小明和小红同时入选的概率是________.17.小颖妈妈经营的玩具店某次进了一箱黑白两种颜色的塑料球共3 000个,为了估计两种颜色的球各有多少个,她将箱子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回箱子中,多次重复上述过程后,她发现摸到黑球的频率在0.7附近波动,据此可以估计黑球的个数约是________.18.从长度分别为2,4,6,7的四条线段中随机取三条,能构成三角形的概率是________.19.“服务社会,提升自我”凉山州某学校积极开展志愿者服务活动,来自九年级的5名同学(三男两女)成立了“交通秩序维护”小分队.若从该小分队任选两名同学进行交通秩序维护,则恰是一男一女的概率是________.20.让图中两个转盘分别自由转动一次,当转盘停止转动时,两个指针分别落在某两个数所表示的区域,则这两个数的和是2的倍数或是3的倍数的概率等于________.三、解答题(本大题共7个小题,各题分值见题号后,共80分)21.(8分)一只不透明的袋子中,装有分别标有数字1,2,3的三个球,这些球除所标的数字外都相同,搅匀后从中摸出1个球,记录下数字后放回袋中并搅匀,再从中任意摸出1个球,记录下数字,请用列表方法,求出两次摸出的球上的数字之和为偶数的概率.22.(8分)如图的方格地面上,标有编号A、B、C的3个小方格地面是空地,另外6个小方格地面是草坪,除此以外小方格地面完全相同.(1)一只自由飞行的鸟,将随意地落在图中的方格地面上,则小鸟落在草坪上的概率是________;(2)现从3个小方格空地中任意选取2个种植草坪,则刚好选取A和B的2个小方格空地种植草坪的概率是多少?(用树形图或列表法求解)23.(10分)在四边形ABCD中,①AB∥CD;②AD∥BC;③AB=CD;④AD=BC,在这四个条件中任选两个作为已知条件,能判定四边形ABCD是平行四边形的概率是多少?24.(12分)“石头、剪子、布”是小朋友都熟悉的游戏,游戏时小聪、小明两人同时做“石头、剪子、布”三种手势中的一种,规定“石头”(记为A)胜“剪子”,“剪子”(记为B)胜“布”,“布”(记为C)胜“石头”,同种手势不分胜负,继续比赛.(1)请用树状图或表格列举出同一回合中所有可能的对阵情况;(2)假定小聪、小明两人每次都等可能地做这三种手势,那么同一回合中两人“不谋而合”(即同种手势)的概率是多少?25.(12分)一只不透明的袋子中装有4个质地、大小均相同的小球,这些小球分别标有3、4、5、x,甲、乙两人每次同时从袋中各随机摸出1个小球,并计算摸出的这2个小球上数字之和,记录后都将小球放回袋中搅匀,进行重复试验,试验数据如表:摸球总10 20 30 60 90 120 180 240 330 450(1)如果试验继续进行下去,根据上表数据,出现“和为8”的频率将稳定在它的概率附近,估计出现“和为8”的概率是________;(2)如果摸出的这两个小球上数字之和为9的概率是13,那么x 的值可以取7吗?请用列表法或画树状图说明理由;如果x 的值不可以取7,请写出一个符合要求的x 值.26.(14分)某中学要在全校学生中举办“中国梦·我的梦”主题演讲比赛,要求每班选一名代表参赛.九年级(1)班经过投票初选,小亮和小丽票数并列班级第一,现在他们都想代表本班参赛.经班长与他们协商决定,用他们学过的掷骰子游戏来确定谁去参赛(胜者参赛).规则如下:两人同时随机各掷一枚完全相同且质地均匀的骰子一次,向上一面的点数都是奇数,则小亮胜;向上一面的点数都是偶数,则小丽胜;否则,视为平局.若为平局,继续上述游戏,直至分出胜负为止.如果小亮和小丽按上述规则各掷一次骰子,那么请你解答下列问题:(1)小亮掷得向上一面的点数为奇数的概率是多少?(2)该游戏是否公平?请用列表或树状图等方法说明理由.(骰子:六个面上分别刻有1、2、3、4、5、6个小圆点的小正方体)27.(16分)为决定谁获得仅有的一张电影票,甲和乙设计了如下游戏:在三张完全相同的卡片上,分别写上字母A,B,B,背面朝上,每次活动洗均匀.甲说:我随机抽取一张,若抽到字母B,电影票归我;乙说:我随机抽取一张后放回,再随机抽取一张,若两次抽取的字母相同电影票归我.(1)求甲获得电影票的概率;(2)求乙获得电影票的概率;(3)此游戏对谁有利?参考答案1.D 2.C 3.D 4.C 5.B 6.D 7.B 8.D 9.C10.A 11.C 12.B 13.C 14.A 15.B 16.13 17.2 100个 18.12 19.35 20.5821.1 2 3 1 2 3 4 2 3 4 5 3456∴两次摸出的球上的数字之和为偶数的概率为59. 22.(1)23(2)P(编号为A 、B 的2个小方格空地种植草坪)=26=13.23.画树状图如下:由树状图可知,所有等可能的结果共12种,满足条件的结果有8种.所以能判定四边形ABCD 是平行四边形的概率是812=23. 24.(1)略.(2)P(不谋而合)=13.,3,4,5,7 3,,7,8,10 4,7,,9,11 5,8,9,,12 7,10,11,12, 25.(1)0.33 (2)不可以取7.∵当x =7时,列表如下(也可以画树状图):∴两个小球上数字之和为9的概率是212=16≠13,当x =5时,两个小球上数字之和为9的概率是13.(答案不唯一,也可以是4). 26.(1)P =36=12.(2)游戏公平.理由如下:小亮 小丽1 2 3 4 5 6 1 (1,1) (1,2) (1,3) (1,4) (1,5) (1,6) 2(2,1)(2,2)(2,3)(2,4)(2,5)(2,6)3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6)4 (4,1) (4,2) (4,3) (4,4) (4,5) (4,6)5 (5,1) (5,2) (5,3) (5,4) (5,5)(5,6) 6(6,1)(6,2)(6,3)(6,4)(6,5)(6,6)由上表可知,共有36种等可能的结果,其中小亮、小丽获胜各有9种结果. ∴P(小亮胜)=936=14,P(小丽胜)=936=14.∴该游戏是公平的. 27.(1)P(甲获得电影票)=23.(2)可能出现的结果如下(列表 A B B A (A ,A) (A ,B) (A ,B) B (B ,A) (B ,B) (B ,B) B(B ,A)(B ,B)(B ,B)共有9种等可能结果,其中两次抽取字母相同的结果有5种.∴P(乙获得电影票)=59.(3) ∵23>59, ∴此游戏对甲更有利.。
北师大版九年级数学上册第三章《概率的进一步认识》测试题
不要慌张,要仔细做题 呦!《概率的进一步认识》检测题黑神庙中学九年级( )班 姓名 学号 得分 一.选择题(每小题3分,共30分)1.“任意买一张电影票,座位号是3的倍数”,此事件是( ) A.不可能事件 B.不确定事件 C.必然事件 D.以上都不是2.下列说法中正确的是 ( )A.可能性很小的事件在一次实验中一定不会发生B.可能性很小的事件在一次实验中一定会发生C.可能性很小的事件在一次实验中有可能发生D.不可能事件在一次实验中也可能发生3.下列事件为确定事件的是( )A.掷一枚质地均匀的骰子,骰子停止转动后偶数点朝上B.从一副扑克牌中任意抽取一张牌,抽到的牌是红桃C.任意选择电视的某一频道,正在播放动画片D.在同一年出生的367名学生中,至少有两人的生日在同一天4.一个袋子中有4个珠子,其中2个是红色,2个蓝色,除颜色外其余特征均相同,若在这个袋中任取2个珠子,都是红色的概率是 ( ) A . B . C . D .5.掷两枚硬币,正面都朝上的概率为( )A.21 B.31 C.41 D.51213141616.有木条4根,分别为10cm ,8cm ,4cm ,2cm,从中任取三根能组成三角形的概率是( )A.21B.31C.41D.51 7.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其他完全相同。
小李通过多次摸球试验后发现其中摸到红色、黑色球的频率稳定在15%和45%,则口袋中白色球的个数很可能是( ) A.6 B.16 C.18 D.248.如图是从一副扑克牌中取出的两组牌,分别是黑桃1、2、3、4和方块1、2、3、4,将它们背面朝上分别重新洗牌后,从两组牌中各摸出一张,则摸出的两张牌的牌面数字之和等于5的概率是( ) A.21 B.31 C.41 D.53 9.如图,图中的两个转盘分别被均匀地分成5个和4个扇形,每个扇形上都标有数字,同时自由转动两个转盘,转盘停止后,指针都落在奇数上的概率是( )A. 25B. 310C.320D.1510.一个均匀的立方体六个面上分别标有1,2,3,4,5,6,如图是这个立方体表面的展开图,抛掷这个立方体,则朝上一面的数恰好等于朝下一面的数的2倍的概率是( )A .61B .C .D .312132二.填空题(每题4分,共20分)11.如果当一次试验要涉与两个因素(例如掷两骰子)并且可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,我们通常采用 求概率;当一次试验要涉与3个或3个以上的因素(例如从3个口袋中取球)时,为了不重不漏地列出所有可能结果,通常采用 求概率.12.不透明的袋子中有五个球,三红二白,从中摸一个球,记下颜色,放回去再摸一个球,则摸到二红的机会是 .13.小王手里拿着黑桃1和黑桃2两张牌,小亮手里拿着梅花1和梅花2两张牌,他们各出一张,共有 种不同的出牌方式,其中牌面数之和为4的概率是 .14.密码锁的密码是一个5位密码,每个密码的数字都可以从0到9的任何一个.某人忘了后2位号码,随意拨动后2位号码正好能开锁的概率是 .15.为了估计湖里有多少条鱼,有如下方案:从湖里捕上100条做上标记,然后放回湖里,经过一段时间,第二次再捕上200条,若其中有标记的鱼有32条,则估计湖里大约有 条鱼. 三.解答题(共50分)12345348916.(6分)小明和小亮用如图的同一个转盘进行“配紫色”游戏.游戏规则如下:连续转动两次转盘,如果两次转盘转出的颜色相同或配成紫色(若其中一次转盘转出蓝色,另一次转出红色,则可配成紫色),则小明胜,否则小亮胜.你认为这个游戏对双方公平吗?请说明理由.17.(6分)某人有红、白、蓝三件衬衫,红、白、蓝三条长裤,该人任意拿一件衬衫和一条长裤,正好是一套白的概率为多少?18.(8分)不透明的口袋里装有白、黄、蓝三种颜色的乒乓球(除颜色外其余都相同),其中白球2个,黄球1个,蓝球1个,第一次任意摸一个球(不放回),第二次再摸一个球,请用画树状图或列表格法,求两次摸到都是白球的概率.19.(10分)分别把带有指针的圆形转盘A、B分成4等份、3等份的扇形区域,并在每一个小区域内标上数字(如图所示).欢欢、乐乐两个人玩转盘游戏,游戏规则是:同时转动两个转盘,当转盘停止时,若指针所指两区域的数字之积为奇数,则欢欢胜;若指针所指两区域的数字之积为偶数,则乐乐胜;若有指针落在分割线上,则无效,需重新转动转盘.请问这个游戏规则对欢欢、乐乐双方公平吗?试说明理由.20.(10分)掷两枚质地均匀的骰子,用列表法求下列事件的概率:(1)两枚骰子点数和不小于9的概率;(2)两枚骰子点数和是4的倍数的概率.21.(10分)我校安排两辆车,组织九年级学生团员去敬老院参加学雷锋活动,其中小明、小强与小军都可以从这两辆车中任选一辆搭乘,用画树状图求小明与小强同车的概率.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《概率的进一步认识》概念检测卷
姓名:分数:
概念梳理检测:
1.把刻画事件A发生的可能性大小的数值,称为事件A发生的。
2.分析概率方法一般方法是:和。
3.当涉及求两步完成的随机事件的概率时,既可以用表示,也可以用
表示,当涉及到两步以上的随机事件的概率时,一般用表示。
4.无论是用列表法求概率,还是用树状图求概率,其共同的前提是各种结果发生的可能性。
5.相关知识点链接:
频数与频率
频数:在数据统计中,每个对象出现的次数叫做频数,
频率:每个对象出现的次数与总次数的比值为频率。
6.概率的意义和大小:概率就是表示每件事情发生的可能性大小,即一个时间发生的可能性大小的数值。
必然事件发生的概率为;不可能事件发生的概率为;不确定事件发生的概率在之间。
7.【知识点1】频率与概率的含义
在试验中,每个对象出现的频繁程度不同,我们称每个对象出现的次数为频数,而每
个对象出现的次数与总次数的比值为频率,即 频数
频率
总次数
把刻画事件A发生的可能性大小的数值,称为事件A发生的。
8.【知识点2】通过实验运用稳定的频率来估计某一时间的概率
在进行试验的时候,当试验的次数很大时,某个事件发生的频率稳定在相应的概率附近。
我们可以通过多次试验,用一个事件发生的来估计这一事件发生的。
第三章《概率的进一步认识》单元测试卷 姓名: 分数: (时间:60分钟 满分:100分) 一、选择题(每小题3分,共30分) 1.事件A :打开电视,它正在播广告;事件B :抛掷一个均匀的骰子,朝上的点数小于7;事件C :在标准大气压下,温度低于0 ℃时冰融化.3个事件的概率分别记为P(A), P(B), P(C),则P(A), P(B), P(C)的大小关系正确的是( )
A. P (C )<P (A )=P (B ) B .P (C )<P (A )<P (B )
C. P (C )<P (B )<P (A ) D .P (A )<P (B )<P (C )
2. 从-5,0,4,π,
3.5这五个数中,随机抽取一个,则抽到无理数的概率是( ) A.15 B.25 C.35 D.45
3.如图,在2×2的正方形网格中有9个格点,已经取定点A 和B ,在余下的7个点中任取一点C ,使△ABC 为直角三角形的概率是( )
A.12
B.25
C.37
D.47
4.袋子里有4个球,标有2,3,4,5,先抽取一个并记住,放回,然后再抽取一个,问抽取的两个球数字之和大于6的概率是( )
A.12
B.712
C.58
D.34
5.掷两枚普通正六面体骰子,所得点数之和为11的概率为( )
A.118
B.136
C.112
D.115
6.用图中两个可自由转动的转盘做“配紫色”游戏:分别旋转两个转盘,若其中一个转出红色,另一个转出蓝色即可配成紫色.那么可配成紫色的概率是( )
A.14
B.34
C.13
D.12
,第6题图) ,第7题图)
7.如图所示的两个转盘中,指针落在每一个数上的机会均等,那么两个指针同时落在偶数上的概率是( )
A.1925
B.1025
C.625
D.525
8. 有三张正面分别写有数字-1,1,2的卡片,它们背面完全相同,现将这三张卡片背面朝上洗匀后随机抽取一张,以其正面的数字作为a 的值,然后再从剩余的两张卡片中随机抽取一张,以其正面的数字作为b 的值,则点(a,b)在第二象限的概率是( )
A.16
B.13
C.12
D.23
9.从长为10 cm ,7 cm ,5 cm ,3 cm 的四条线段中任选三条能够组成三角形
的概率是( )
A.14
B.13
C.12
D.34
10.如图,在平面直角坐标系中,点A 1,A 2在x 轴上,点B 1,B 2在y 轴上,其坐标分别为A 1(1,0),A 2(2,0),B 1(0,1),B 2(0,2),分别以A 1,A 2,B 1,B 2其中的任意两点与点O 为顶点作三角
形,所作三角形是等腰三角形的概率是( ) A.34 B.13 C.23 D.12
二、填空题(每小题3分,共18分)
11.一个布袋中装有3个红球和4个白球,这些球除颜色外其他都相同.从袋子中随机摸出一个球,这个球是白球的概率为___.
12.在一个不透明的袋子中有10个除颜色外均相同的小球,通过多次摸球试验后,发现摸到白球的频率约为40%,估计袋中白球有____个.
13.有两把不同的锁和三把钥匙,其中两把钥匙能打开同一把锁,第三把钥匙能打开另一把锁.任意取出一把钥匙去开任意一把锁,一次能打开锁的概率是___.
14.一个不透明的袋子中装有黑、白小球各两个,这些球除颜色外无其他差别,从袋子中随机摸出一个小球后,放回并摇匀,再随机摸出一个小球,则两次摸出的小球都是白球的概率是__ .
15.若同时抛掷两枚质地均匀的骰子,则事件“两枚骰子朝上的点数互不相同”的概率是__ .
16.已知一包糖果共有五种颜色(糖果仅有颜色差别),如图是这包糖果颜
色分布百分比的统计图.在这包糖果中任取一粒糖果,则取出的糖果的颜色
为绿色或棕色的概率是__ .
三、解答题(共52分)
17.(10分)小明有2件上衣,分别为红色和蓝色,有3条裤子,其中2条为蓝
色、1条为棕色.小明任意拿出1件上衣和1条裤子穿上.请用画树状图或列表的方法列出所有可能出现的结果,并求小明穿的上衣和裤子恰好都是蓝色的概率.
18.(10分)在一个不透明的口袋中装有4张相同的纸牌,它们分别标有数字1,2,3,4.随机地摸取一张纸牌记下数字然后放回,再随机摸取一张纸牌.
(1)计算两次摸取纸牌上数字之和为5的概率;
(2)甲、乙两人进行游戏,如果两次摸取纸牌上数字之和为奇数,则甲胜;如果两次摸取纸牌上数字之和为偶数,则乙胜.这是个公平的游戏吗?请说明理由.
19. (10分)分别把带有指针的圆形转盘A,B 分成4等份、3等份的扇形区域,并在每一个小区域内标上数字(如图所示).欢欢、乐乐两个人玩转盘游戏,游戏规则是:同时转动两个
转盘,当转盘停止时,若指针所指两区域的数字之积为奇数,则欢欢胜;若指针所指两区域的数字之积为偶数,则乐乐胜;若有指针落在分割线上,则无效,需重新转动转盘.
(1)试用列表或画树状图的方法,求欢欢获胜的概率;
(2)请问这个游戏规则对欢欢、乐乐双方公平吗?试说明理由.
20.(10分)某小学学生较多,为了便于学生尽快就餐,师生约定:早餐一人一份,一份两样,一样一个,食堂师傅在窗口随机发放(发放的食品价格一样).食堂在某天早餐提供了猪肉包、面包、鸡蛋、油饼四样食品.
(1)按约定,“小李同学在该天早餐得到两个油饼”是________事件;(可能,必然,不可能)
(2)请用列表或画树状图的方法,求出小张同学该天早餐刚好得到猪肉包和油饼的概率.
21.(10分)某景区7月1日~7月7日一周天气预报如图,小丽打算选择这期间一天或两天去该景区旅游.求下列事件的概率:
(1)随机选择一天,恰好天气预报是晴;
(2)随机选择连续的两天,恰好天气预报都是晴.。