三角形内角和教案设计
《三角形内角和》数学教案【优秀6篇】
《三角形内角和》数学教案【优秀6篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、合同协议、规章制度、条据文书、策划方案、心得体会、演讲致辞、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, contract agreements, rules and regulations, doctrinal documents, planning plans, insights, speeches, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!《三角形内角和》数学教案【优秀6篇】作为一位不辞辛劳的人·民教师,常常要根据教学需要编写教学设计,教学设计以计划和布局安排的形式,对怎样才能达到教学目标进行创造性的决策,以解决怎样教的问题。
三角形内角和教学设计(通用6篇)
三角形内角和教学设计三角形内角和教学设计(通用6篇)作为一名教师,总不可避免地需要编写教学设计,教学设计是把教学原理转化为教学材料和教学活动的计划。
那么优秀的教学设计是什么样的呢?下面是小编帮大家整理的三角形内角和教学设计(通用6篇),欢迎阅读,希望大家能够喜欢。
三角形内角和教学设计1【教学目标】1、学生动手操作,通过量、剪、拼、折的方法,探索并发现“三角形内角和等于180度”的规律。
2、在探究过程中,经历知识产生、发展和变化的过程,通过交流、比较,培养策略意识和初步的空间思维能力。
3、体验探究的过程和方法,感受思维提升的过程,激发求知欲和探索兴趣。
【教学重点】探究发现和验证“三角形的内角和180度”这一规律的过程,并归纳总结出规律。
【教学难点】对不同探究方法的指导和学生对规律的灵活应用。
【教具准备】课件、表格、学生准备不同类型的三角形各一个,量角器。
【教学过程】一、激趣引入。
1、猜谜语师:同学们喜欢猜谜语吗?生:喜欢。
师:那么,下面老师给大家出个谜语。
请听谜面:形状似座山,稳定性能坚,三竿首尾连,学问不简单。
(打一图形)大家一起说是什么?生:三角形2、介绍三角形按角的分类师:真聪明!!板书“三角形”!那么,三角形按角分可以分为钝角三角形、直角三角形和锐角三角形这几类师分别出示卡片贴于黑板。
3、激发学生探知心里师:大家会不会画三角形啊?生:会师:下面请你拿出笔在本子上画出一个三角形,但是我有个要求:画出一个有两个直角的三角形。
试一试吧!生:试着画师:画出来没有?生:没有师:画不出来了,是吗?生:是师:有两个直角的三角形为什么画不出来呢?这就是三角形中角的奥秘!这节课我们就来学习有关三角形角的知识“三角形内角和”(板书课题)二、探究新知。
1、认识三角形的内角看看这三个字,说说看,什么是三角形的内角?生:就是三角形里面的角。
师:三角形有几个内角啊?生:3个。
师:那么为了研究的时候比较方便,我们把这三个内角标上角1角2角3,请同学们也拿出桌子上三角形标出(教师标出)师:你知道什么是三角形“内角和”吗?生:三角形里面的角加起来的度数。
三角形内角和教学设计15篇
三角形内角和教学设计15篇三角形内角和教学设计(15篇)作为一名教职工,时常需要编写教学设计,教学设计是把教学原理转化为教学材料和教学活动的计划。
我们该怎么去写教学设计呢?下面是小编收集整理的三角形内角和教学设计,仅供参考,欢迎大家阅读。
三角形内角和教学设计1北师大版四年级数学下册1、探索与发现三角形的内角和是180°,已知三角形的两个角度,会求出第三个角度。
2、培养学生动手操作和合作交流的能力,促进掌握学习数学的方法。
3、培养学生自主学习、积极探索的好习惯,激发学生学习数学应用数学的兴趣。
重点掌握三角形的内角和是180°,会应用三角形的内角和解决实际问题;难点是探索性质的过程。
《三角形内角和》属于空间与图形的范畴,是在学生已经接触了三角形的稳定性和三角形的分类相关知识后对三角形的进一步研究,探索三个内角的和。
教材中安排了学生对不同形状的、大小的三角形进行进行度量,运用折叠、拼凑等方法发现三角形的内角和是180°。
扩充了学生认识图形的一般规律从直观感性的认识到具体的性质探索,更加深入的培养了学生的空间观念。
一、创设情境,激发兴趣。
出示课件,提出两个两个疑问:1、两个大小不一样的两个三角形的对话我比你大,所以我的内角和比你大,是这样的吗?2、三个形状不一样的三角形的争论。
我们的形状不一样,所以我们的内角和各不相同,是这样的吗?老师发现它们争论的焦点是三角形的内角和的问题,那什么是三角形的内角?什么又是三角形的内角和呢?二、初建模型,实际验证自己的猜想在第一步的基础上学生自然想到要量出三角形每个角的度数就能够求出三角形的内角和,从而证明三角形的内角和与三角形的大小和形状没有关系都接近180度。
这时教师要组织学生进行小组合作,每人用量角器量出一种三角形的三个内角,并计算出它们的总和是多少?把小组的测量结果和讨论结果记录下来以便全班进行交流。
三角形的形状三角形每个内角的度数内角和锐角三角形钝角三角形直角三角形等腰三角形等边三角形三、再建模型,彻底的得出正确的结论因为在上一环节学生已经得出三角形的内角和大约都是或接近180度。
《三角形内角和》数学教案(优秀6篇)
《三角形内角和》数学教案(优秀6篇)4、演示任意一个三角形的内角和都是180度。
出示一些三角形,让学生指出内角和。
师:你有什么发现?(无论是什么样的三角形他的内角和都是180度,与三角形的形状大小没有关系。
)(板书三角形的内角和是180度。
)师:那我们再看看刚刚汇报的结果。
为什么之前测量的时候并没有得到这样得到结果呢?(测量的不够精确,存在误差)师:如果测量仪器再精密一些,测量的更准确一些都可以得到三角形内角和是180度。
现在确定这个结论了吗?(25分钟)师:除了这节课大家想到的方法,还有很多方法也能证明三角形的内角和是180°到初中我们还有更严密的方法证明三角形的内角和是180°。
早在300多年前就有一位法国有名的科学家帕斯卡,他在12岁时就验证了任何三角形的内角和都是180°师:你们能用今天的发现做一些练习吗?五、测评反馈1、判断。
(1)直角三角形的两个锐角的和是90°。
(2)一个等腰三角形的底角可能是钝角。
(3)三角形的内角和都是180°,与三角形的大小无关。
4、剪一剪。
把一个三角形纸板沿直线剪一刀,剩下的纸板的内角和是多少度?六、课后作业69页第1题、第3题。
七、板书设计《三角形内角和》教学设计篇四【教材分析】《三角形内角和》是北师大版《数学》四年级下册的内容。
是在学生学习了三角形的概念及特征之后进行的,它是掌握多边形内角和及其他实际问题的基础,因此,掌握“三角形的内角和是180度”这一规律具有重要意义。
教材首先出示了两个三角形比内角和这一情境,让学生通过测量、折叠、拼凑等方法,发现三角形的内角和是180度。
教材还安排了“试一试”,“练一练”的内容。
已知三角形两个内角的度数,求出第三个角的度数。
【学生分析】经过近四年的课改实验,孩子们已经有了一定的自主探究,合作交流的能力。
他们喜欢在实践中感悟,在实践中发表自己的见解,对数学产生了浓厚的兴趣。
四年级数学教案《三角形的内角和》(精选10篇)
四年级数学教案《三角形的内角和》〔精选10篇〕四年级数学教案《三角形的内角和》〔精选10篇〕四年级数学教案《三角形的内角和》篇1教学目的⑴探究并发现三角形的内角和是180°,能利用这个知识解决实际问题。
⑵学生在经历观察、猜测、验证的过程中,提升自身动手动脑及推理、归纳总结的才能。
⑶在参与学习的过程中,感受数学独特的魅力,获得成功体验,并产生学习数学的积极情感。
教学重点:检验三角形的内角和是180°。
教学难点:引导学生通过实验探究得出三角形的内角和是180度。
教学环节:问题情境与老师活动:学生活动媒体应用设计意图目的达成导入新课一、复习旧知,导入新课。
1、复习三角形分类的知识。
师出示三角形,生快速说出它的名称。
2、什么是三角形的内角?我们通常所说的角就是三角形的内角。
为了便于称呼,我们习惯用∠A、∠B、∠c来表示。
什么是三角形的内角和?三角形“三个内角的度数之和”就是三角形的内角和。
用一个含有∠A、∠B、∠c的式子来表示应该如何写?∠A+∠B+∠c。
3、今天这节课啊我们就一起来研究三角形的内角和。
〔揭题:三角形的内角和〕由三角形的内角引出三角形的内角和,“∠A+∠B+∠c”的表示形式形象的表达出三内角求和的关系二、动手操作,探究新知1、出示三角板,猜一猜。
师:这个三角形的内角和是多少度?熟悉这副三角板吗?请拿出形状与这块一样的三角板,并同桌互相指一指各个角的度数把三角形三个内角的度数合起来就叫三角形的内角和。
是不是所有的三角形的内角和都是180°呢?你能肯定吗?我们得想个方法验证三角形的内角和是多少?可以用什么方法验证呢?3.学生测量4.汇报的测量结果除了我们这节课大家想到的方法,还有很多方法也能验证三角形的内角和是180°到初中我们还要更严密的方法证明三角形的内角和是180°5、稳固知识。
一个三角形中能不能有两个直角?能不能有2个钝角?三、应用所学,解决问题。
“三角形内角和”教学设计(精选10篇)
“三角形内角和”教学设计(精选10篇)“三角形内角和”教学设计篇1一、教学目标1.学问目标:通过测量、撕拼(剪拼)、折叠等方法,探究和发觉三角形三个内角的度数和等于180°这一规律,并能实际应用。
2.力量目标:培育同学主动探究、动手操作的力量。
使同学养成良好的合作习惯。
3.情感目标:让同学体会几何图形内在的结构美。
并充分体会到学习数学的欢乐。
二、教学过程(一)创设情境,导入新课1、师:我们已经熟悉了三角形,你知道哪些关于三角形的学问?(同学畅所欲言。
)2、师:我们在争论三角形学问的时候,三角形中的三个好伴侣却吵了起来,想知道是怎么回事吗?让我们一起去看看吧!师口述:一个大的直角三角形说:“我的个头大,我的内角和肯定比你们大。
”一个钝角三角形说:“我有一个钝角,我的内角和才是最大的)一个小的锐角三角形很委屈的样子说“是这样吗?”,3、究竟谁说的对呢?今日我们就来讨论有关三角形内角和的学问。
(板书课题:三角形内角和)(二)自主探究,发觉规律1、熟悉什么是三角形的内角和。
师:你知道什么是三角形的内角和吗?通过同学争论,得出三角形的内角和就是三角形三个内角的度数和。
2、探究三角形内角和的特点。
①让同学想一想、说一说怎样才能知道三角形的内角和?同学会想到量一量每个三角形的内角,再相加的方法来得到三角形的内角和。
(假如同学想到别的方法,只要合理的,老师就赐予确定,并鼓舞他们对自己想到的方法进行)②小组合作。
通过小组合作后沟通,汇报。
(老师同时板书出几个小组汇报的结果)让同学们发觉每个三角形的内角和都在180°左右。
引导同学推想出三角形的内角和可能都是180°。
3、验证推想。
让同学动脑筋想一想,怎样才能验证自己的推想是否正确,同学可能会想到用折拼或剪拼的方法来看一看三角形的三个角和起来是不是180°,也就是说三角形的三个角能不能拼成一个平角。
(小组合作验证,老师参加其中。
小学数学《三角形内角和》教学设计(优秀5篇)
小学数学《三角形内角和》教学设计(优秀5篇)《三角形内角和》数学教案篇一【教学内容】:人教版第八册第85页例5及“做一做”和练习十四的第9、10、12题。
【课程标准】:认识三角形,通过观察、操作、了解三角形内角和是180度。
【学情分析】:学生已经掌握了三角形的概念、分类,熟悉了钝角、锐角、平角这些角的知识。
对于三角形的内角和是多少度,学生是不陌生的,因为学生有以前认识角、用量角器量三角板三个角的度数以及三角形的分类的基础,学生也有提前预习的习惯,很多孩子都能回答出三角形的内角和是180度,但是他们却不知道怎样才能得出三角形的内角和是180度。
另外,经过三年多的学习,学生们已具备了初步的动手操作能力、主动探究能力以及小组合作的能力。
【学习目标】:1、结合具体图形能描述出三角形的内角、内角和的含义。
2、在教师的引导下,通过猜测和计算能说出三角形的内角和是180°。
3、在小组合作交流中,通过动手操作,实验、验证、总结三角形的内角和是180°,同时发展动手动脑及分析推理能力。
4、能运用三角形的内角和是180°这一规律,求三角形中未知角的度数。
【评价任务设计】:1、利用孩子已有经验,通过教师的提问和引导以及学生的直观观察,说出三角形的内角、内角和的含义。
达成目标1。
2、在教师的引导下,以游戏的形式学生通过猜测三角形的内角和是多少度,然后通过计算说出三角形的内角和是180°的结论。
达成目标2。
3、在小组合作交流中,通折一折、拼一拼和摆一摆的动手操作、实验、验证并归纳总结出三角形的内角和是180°。
达成目标3。
4、能运用三角形的内角和是180°这一规律,求三角形中未知角的度数。
通过“做一做”和习题第9、10、12题达成目标4和目标3。
【重难点】教学重点:探索和发现三角形的内角和是180°。
教学难点: 充分发挥学生的主体作用,自主探索和发现三角形的内角和是180°【教学过程】一、复习准备。
《三角形的内角和》教学设计【优秀8篇】
《三角形的内角和》教学设计【优秀8篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、心得体会、策划方案、合同协议、条据文书、竞聘演讲、心得体会、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, insights, planning plans, contract agreements, documentary evidence, competitive speeches, insights, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please stay tuned!《三角形的内角和》教学设计【优秀8篇】教学设计的目的是为了提高教学效率和教学质量,使学生在单位时间内能够学到更多的知识。
三角形内角和数学教案3篇【通用文档】
三角形内角和数学教案3篇【通用文档】三角形的内角和数学教案1【教学内容】:人教版第八册第85页例5及“做一做”和练习十四的第9、10、12题。
【课程标准】:认识三角形,通过观察、操作、了解三角形内角和是180度。
【学情分析】:学生已经掌握了三角形的概念、分类,熟悉了钝角、锐角、*角这些角的知识。
对于三角形的内角和是多少度,学生是不陌生的,因为学生有以前认识角、用量角器量三角板三个角的度数以及三角形的分类的基础,学生也有提前预习的习惯,很多孩子都能回答出三角形的内角和是180度,但是他们却不知道怎样才能得出三角形的内角和是180度。
另外,经过三年多的学习,学生们已具备了初步的动手操作能力、主动探究能力以及小组合作的能力。
【学习目标】:1、结合具体图形能描述出三角形的内角、内角和的含义。
2、在教师的引导下,通过猜测和计算能说出三角形的内角和是180°。
3、在小组合作交流中,通过动手操作,实验、验证、总结三角形的内角和是180°,同时发展动手动脑及分析推理能力。
4、能运用三角形的内角和是180°这一规律,求三角形中未知角的度数。
【评价任务设计】:1、利用孩子已有经验,通过教师的提问和引导以及学生的直观观察,说出三角形的内角、内角和的含义。
达成目标1。
2、在教师的引导下,以游戏的形式学生通过猜测三角形的内角和是多少度,然后通过计算说出三角形的内角和是180°的结论。
达成目标2。
3、在小组合作交流中,通折一折、拼一拼和摆一摆的动手操作、实验、验证并归纳总结出三角形的内角和是180°。
达成目标3。
4、能运用三角形的内角和是180°这一规律,求三角形中未知角的度数。
通过“做一做”和习题第9、10、12题达成目标4和目标3。
【重难点】教学重点:探索和发现三角形的内角和是180°。
教学难点: 充分发挥学生的主体作用,自主探索和发现三角形的内角和是180°【教学过程】一、复习准备。
三角形内角和教学设计方案(精选7篇)
三角形内角和教学设计方案(精选7篇)三角形内角和教学设计方案(精选篇1)课题三角形的内角和手记教学目标1.让学生亲自动手,通过量、剪、拼等活动发现、证实三角形内角和是180°,并会应用这一知识解决生活中简单的实际问题。
2.在学生在动手获取知识的过程中,培养学生的实践能力,并通过动手操作把三角形内角和转化为平角的探究活动,向学生渗透“转化”数学思想。
3.使学生体验成功的喜悦,激发学生主动学习数学的兴趣。
重点难点重点:让学生经历“三角形内角和是180°”这一知识的形成、发展和应用过程。
难点:探索、验证三角形内角和是180°的过程。
过程资源体验目标“学”与“教”创设问题情境课件出示:两个三角板遵循由特殊到一般的规律进行探究,引发学生的猜想后,引导学生探讨所有的三角形的内角和是不是也是180°。
这是同学们熟悉的三角尺,请同学们说一说这两个三角尺的三个内角分别是多少度?生: 45°、90°、45°。
生: 30°、90°、60°。
师:仔细观察,算一算这两个三角形的内角和是多少度?生:90°+45°+45°=180°。
生:90°+60°+30°=180°。
师:通过刚才的算一算,我们得到这两个三角形的内角和是180°,由此你想到了什么?生:直角三角形内角和是180°,锐角三角形、钝角三角形内角和也是180°。
师:这只是我们的一种猜想,三角形的内角和是否真的等于180°,还需要我们去验证。
构建模型每个组准备六个三角形(锐角三角形2个、直角三角形2个、钝角三角形2个)课件学生自己剪的一个任意三角形大胆放手让学生通过有层次的自主操作活动,帮助学生结合已有的知识经验,探究验证三角形内角和的不同方法。
让学生在经历“提出猜想—实验验证—得出结论”中感悟、体验知识的形成过程,将“三角形内角和是180°”一点一滴,浸入学生大脑,融入已有认知结构。
小学数学《三角形内角和》教学设计(通用8篇)
小学数学《三角形内角和》教学设计(通用8篇)下文是我为您精心整理的《小学数学《三角形内角和》教学设计(通用8篇)》,您浏览的《小学数学《三角形内角和》教学设计(通用8篇)》正文如下:小学数学《三角形内角和》教学设计篇1教学目标:1、通过测量一量、拼一拼、折一折三个活动,探索和发现三角形三个内角的度数和等于180°。
2、已知三角形两个角的度数,会求出第三个角的度数。
3、经历三角形内角和的研究方法,感受数学研究方法。
教学重点:1、探索和发现三角形三个内角的度数和等于180°。
2、已知三角形两个角的度数,会求出第三个角的度数。
教学难点:掌握探究方法(猜想-验证-归纳总结),学会用“转化”的数学思想探究三角形内角和。
教学用具:表格、课件。
学具准备:各种三角形、剪刀、量角器。
一、创设情境揭示课题。
1、一天两个三角形发生了争执,他们请你们来评评理。
大三角形说:“我的个头大,所以我的内角和一定比你大。
”小三角形很不甘心地说:“我有一个钝角,我的内角和一定比你大。
”谁说得有道理呢?今天让我们来做一回裁判吧。
生1:大三角形大(个子大)生2:小三角形大(有钝角)(教师不做判断,让学生带着问题进入新课)2、什么是三角形的内角和?(板书:内角和)讲解:三角形内两条边所夹的角就叫做这个三角形的内角。
每个三角形都有三个内角,这三个内角的度数加起来就是三角形的内角和。
二、自主探究,合作交流。
(一)提出问题:1、你认为谁说得对?你是怎么想的?2、你有什么办法可以比较一下这两个三角形的内角和呢?生1:用量角器量一量三个内角各是多少度,把它们加起来,再比较。
生2:用拼一拼的办法把三个角拼到一起看它们能不能组成平角。
生3:用折一折的办法把三个角折到一起看它们能不能组成平角(二)探索与发现活动一:量一量(1)①了解活动要求:(屏幕显示)A、在练习本上画一个三角形,量一量三角形三个内角的度数并标注。
(测量时要认真,力求准确)B、把测量结果记录在表格中,并计算三角形内角和。
三角形内角和教学设计十篇
三角形内角和教学设计十篇三角形内角和教学设计1【教材内容】北京市义务教育课程改革实验教材(北京版)第九册数学【教材分析】《三角形内角和》是北京市义务教育课程改革实验教材(北京版)第九册第三单元的内容,属于空间与图形的范畴,是在学生已经掌握了三角形的稳定性和三角形的三边关系相关知识后对三角形的进一步研究,探索三角形的内角和等于180°。
教材中安排了学生对不同形状的、大小的三角形进行度量,再利用拼、折、剪等方法发现三角形的内角和是180°。
让学生在自主探索中发现三角形的又一特性,更加深入的培养了学生的空间观念。
【学生分析】在四年级学生已经掌握了角的概念、角的分类和角的度量等知识。
在本课之前,学生又掌握了三角形的稳定性研究了三角形的分类。
这些都为进一步研究三角形内角和作了知识储备和心理准备,为本课内容的教学作了铺垫。
三角形的内角和是三角形的一个重要性质。
它有助于理解三角形的三个内角之间的关系,是进一步学习、研究几何问题的基础。
【教学目标】1.通过量、拼、折、剪等方法探索和发现三角形的内角和等于180°掌握并会应用这一规律解决实际的问题。
2.通过讨论、争辩、操作、推理发展学生动手操作、观察比较和抽象概括的能力。
3.使学生掌握由特殊到一般的逻辑思辨方法和先猜想后研究问题的方法。
【教学重点】让学生经历“三角形内角和是180度”这一知识的形成发展和应用的全过程。
【教学难点】能利用学到的知识进行合情的推理。
【教具学具准备】课件、各种各样的直角三角形、长方形、剪刀、量角器、数学纸【教学过程】一.学具三角板,引入新课1.(出示两个直角三角板),问:这是咱们同学非常了解的一种学习工具,是什么呀?(三角板)它们的外形是什么形状的?(三角形)(课件:抽象出三角形)2.顾名思义一个三角形都有几个角呀?(三个)3.认识内角1)在三角形的内部相临两条边之间所夹的角叫做三角形的内角。
(课件闪烁∠1)(板书:三角形内角)∠1就叫做三角形的什么?这两条边夹的角∠2呢?∠3呢?2)这个三角形内有几个内角?(三个)这个呢?(三个)(设计意图:由学生最了解的三角板引入新课,激发学生兴趣的同时为后面的学习做准备)二.动手操作,探索新知(一)直角三角形内角和ⅰ、特殊直角三角形内角和1.根据我们以往对三角板的了解,你还记得每个三角形上每个内角各是多少度吗?(生说度数,师课件上在相应角出示度数:①90°、60°、30°,②90°、45°、45°)。
《三角形的内角和》教学设计优秀8篇
《三角形的内角和》教学设计优秀8篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作报告、总结计划、心得体会、演讲致辞、策划方案、合同协议、条据文书、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as work reports, summary plans, insights, speeches, planning plans, contract agreements, documentary evidence, teaching materials, complete essays, and other sample essays. If you would like to learn about different sample formats and writing methods, please pay attention!《三角形的内角和》教学设计优秀8篇作为一名默默奉献的教育工作者,通常会被要求编写教学设计,借助教学设计可以更好地组织教学活动。
《三角形的内角和》教学设计15篇
《三角形的内角和》教学设计 1 教学内容:本节课的教学内容是义务教育课程标准试验教科书数 学四班级下册第五单位的第四课时《三角形的内角和》,主要内容是: 验证三角形的内角和是 180°等。 教学内容分析:三角形的内角和是 180 是三角形的一个重要性质, 它有助于学生理解三角形的三个内角之间的关系,也是进一步学习的 基础。 教学对象分析:作为四班级的学生已有肯定的生活阅历,在平常 的生活中已经接触到三角形,在尊重学生已有的学问的基础上和利用 他们已把握的学习方法,老师把课堂教学组织生动、活泼,突出学问 性、趣味性和生活性,使学生能在轻松开心的气氛中学习。 教学目标: 1、学问目标:学生通过量、剪、拼、摆等操作学具活动,找到 新旧学问之间的联系,主动把握三角形内角和是 180°,并运用所学 学问解决简洁的实际问题。 2、能力目标:培养学生的观察、归纳、概括能力和初步的空间 想象力。 3、情感目标:培养学生的创新意识、探究精神和实践能力,在 学生亲自动手和归纳中,感受到理性的美。 教学重点:理解并把握三角形的内角和是 180°。
第 7 页 共 71 页
就是∠1+∠2+∠3=180°,借助图像 ∠2=180°-∠1-∠3 或∠2=180°-(∠1+∠3) =180°-140°-25°=180°-(140°+25°) =40°-25°=180°-165° =15°=15° 2、一个等腰三角形的顶角是 80°,它的两个底角各是多少度? 学生分析:因为等腰三角形的两个底角相等,又因为三角形的内
教学目标 1、通过试验、操作、推理归纳出三角形内角和是 180°。 2、能运用三角形的内角和是 180°这一规律,求三角形未知角 的度数并运用解决实际生活问题。 3、通过拼摆,感受数学的转化思想。 教学重点 探究发觉和验证“三角形的内角和 180 度”。 教学难点 验证三角形的内角和是 180 度。 教学预备 多媒体课件,锐角三角形、直角三角形、钝角三角形,剪刀,量 角器等。
三角形内角和教学设计(优秀5篇)
三角形内角和教学设计(优秀5篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作报告、总结计划、心得体会、演讲致辞、策划方案、合同协议、条据文书、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as work reports, summary plans, insights, speeches, planning plans, contract agreements, documentary evidence, teaching materials, complete essays, and other sample essays. If you would like to learn about different sample formats and writing methods, please pay attention!三角形内角和教学设计(优秀5篇)作为一名默默奉献的教育工作者,可能需要进行教学设计编写工作,教学设计是根据课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角形内角和教案设计何爱君教学内容:义务教育课程表准教科书数学(人教版)四年级下册85页.例题5.教学目标:1.让学生亲自动手,通过量、剪、拼等活动发现、证实三角形内角和是180°,并会应用这一知识解决生活中简单的实际问题。
2.让学生在动手获取知识的过程中,培养学生的创新意识、探索精神和实践能力。
并通过动手操作把三角形内角和转化为平角的探究活动,向学生渗透“转化”数学思想。
3.使学生体验成功的喜悦,激发学生主动学习数学的兴趣。
教学重点:让学生经历“三角形内角和是180°”这一知识的形成、发展和应用的全过程。
教学准备多媒体课件、学具。
教学过程一、激趣引入(一)认识三角形内角1.我们已经认识了三角形,什么是三角形?谁能说三角形按角分类,可以分成哪几类?(学生回答问题.)2.请看屏幕(课件演示三条线段围成三角形的过程)。
三条线段围成三角形后,在三角形内形成了三个角,(课件分别出现三个角的弧线),我们把三角形里面的这三个角分别叫做三角形的内角。
(二)设疑,激发学生探究新知的心理1.请同学们帮老师画一个三角形,能做到吗?(激发学生主动学习的心理)请听要求,画一个有两个内角是直角的三角形,开始。
(设置矛盾,使学生在矛盾中去发现问题、探究问题。
)学生安要求画三角形.2.问:有谁画出来啦?(课件演示):是不是画成这个样子了?只能画两个直角。
问题出现在哪儿呢?这一定有什么奥秘?那就让我们一起来研究吧!二、动手操作,探究新知(一)研究特殊三角形的内角和1.请看屏幕。
(播放课件)熟悉这副三角板吗?(课件闪动其中的一块三角板)学生回答:90°、45°、45°。
(课件演示:由三角板抽象出三角形)这个三角形各角的度数。
它们的和是多少?学生回答:是180°。
追问:你是怎样知道的?生:90°+45°+45°=180°。
把三角形三个内角的度数合起来就叫三角形的内角和。
板题:三角形内角和2.(课件演示另一块三角板的各角的度数。
)这个呢?它的内角和是多少度呢?90°+60°+30°=180°。
3.从刚才两个三角形内角和的计算中,你发现什么?这两个三角形的内角和都是180°。
这两个三角形都是直角三角形,并且是特殊的三角形。
(二)研究一般三角形内角和1.猜一猜。
猜一猜其它三角形的内角和是多少度呢?同桌互相说说自己的看法。
2.操作、验证一般三角形内角和是180°。
(1)小组合作、进行探究。
1.所有三角形的内角和究竟是不是180°,你能用什么办法来证明,使别人相信呢?那就请四人小组共同研究吧!2.每个小组都有不同类型的三角形。
每种类型的三角形都需要验证,小组活动的要求如下:课件显示组长负责填写表格,组员每人负责量一个三角形的每个内角,并记录下来,最后算出这个三角形的内角和,把结果告诉组长.量一量,完成表格.(2)小组汇报结果。
请各小组汇报探究结果。
(三)继续探究没有得到统一的结果。
这个办法不能使人很信服,怎么办?还有其它办法吗?引导学生用拼合的办法,就是把三角形的三个内角放在一起,可以拼成一个平角。
1.用拼合的方法验证。
小组内完成,活动的要求同上.拼一拼,完成表格.2.汇报验证结果。
先验证锐角三角形,我们得出什么结论?(锐角三角形的内角拼在一起是一个平角,所以锐角三角形的内角和是180°。
直角三角形的内角和也是180°。
钝角三角形的内角和还是180°)。
3.课件演示验证结果。
请看屏幕,老师也来验证一下,是不是跟你们得到的结果一样?(播放课件)我们可以得出一个怎样的结论?(三角形的内角和是180°。
)(教师板书:三角形的内角和是180°学生齐读一遍。
)为什么用测量计算的方法不能得到统一的结果呢?(量的不准。
有的量角器有误差。
)三、解决疑问。
现在谁能说说不能画出有两个直角的一个三角形的原因?(让学生体验成功的喜悦)(因为三角形的内角和是180°,在一个三角形中如果有两个直角,它的内角和就大于180°。
)在一个三角形中,有没有可能有两个钝角呢?(不可能。
)追问:为什么?(因为两个锐角和已经超过了180°。
)问:那有没有可能有两个锐角呢?(有,在一个三角形中最少有两个内角是锐角。
)四、应用三角形的内角和解决问题。
1. 看图求出未知角的度数。
(知识的直接运用,数学信息很浅显)2. 85页做一做:在一个三角形中,∠1=140度,∠3=35度,求∠2的度数.3.88页第9.10题(数学信息较为隐藏和生活中的实际问题)4.89页16题.思考题.板书设计:三角形内角和180°180°180°三角形内角和180°教学反思:新课标提出“人人学有价值的数学”。
强调“教学要从学生已有的经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程。
要激发学生的学习积极性,向学生提供充分从事数学活动的机会,让他们积极主动地探索,解决数学问题,发现数学规律,获得数学经验;而教师只是学生学习的组织者、引导者和合作者,在全面参与和了解学生的学习过程中起着对学生进行积极的评价,关注他们的学习方法、学习水平和情感态度,促使学生向着预定的目标发展的作用”。
根据这一教学理念来设计这堂课.它的特点是遵循从特殊到一般的规律进行探究活动.学生对三角尺上每个角的度数比较熟悉,就从这里入手。
先让学生算出每块三角尺三个内角的和是180°,引发学生的猜想:其它三角形的内角和也是180°吗?接着,引导学生小组合作,出示不同类型的三角形,用通过量一量、算一算,得出三角形的内角和是180°或接近180°(测量误差),再引导学生通过剪拼的方法发现:各类三角形的三个内角都可以拼成一个平角。
再利用课件演示进一步验证,由此获得三角形的内角和是180°的结论。
这一系列活动潜移默化地向学生渗透了“转化”数学思想,为后继学习奠定了必要的基础。
最后让学生运用结论解决实际问题,练习的安排上,注意练习层次,共安排三个层次,逐步加深。
练习形式具有趣味性,激发了学生主动解题的积极性。
这篇教学设计通过施教,符合新课程理念,转变学生的学习方式,能让学生以小组合作的形式进行问题的探索与研究,学生在整节课中学得轻松。
整节课的教学设计,条理清晰,层次清楚,学生思维活跃,教学一开始从学生熟悉的三角板抽象出特殊的三角形探讨三角形的内角和是180°,接下来很自然地引导学生探讨所有的三角形的内角和是不是也是180,过渡自然且有吸引力。
感受主要有三点.一. 正确引导学生进行合理的猜测.新课标强调要让学生”通过观察.试验.归纳.类比等得到数学猜想”.在这节课中,我通过引导学生分别计算同学们非常熟悉的两个三角板的内角和是180度后,让学生猜一猜,其他的三角形的内角和是多少度?为培养了学生进行合情合理的猜想提供了一定的事实依据,培养了学生言之有理,落笔有据的良好习惯.提高了学生的合情推理能力,发展学生的思辨意识.二. 培养了学生实事求是的科学态度.数学是一门思维严谨的学科.学数学必须要有事实求实的科学态度.本节课在用量一量的方法验证三角形的内角和是否是180度时,由于误差的原因,只能得出大约是180度.这种方法没有足够的说服力. 再引导学生用把三个角拼在一起得到一个平角进行验证.得到三角形的内角和是180度.这样验证活动有根有据,培养了学生实事求是的科学态度.三.验证活动设计严密在验证活动的过程中,四人小组活动要求明确,每个人都有活动任务.当学生进行测量、计算,但得不到统一的结果,再引导学生用把三个角拼在一起得到一个平角进行验证。
这时,有部分学生在拼凑的过程中出现了困难,花费的时间较长,在这里用课件再演示一遍正好解决了这个问题。
练习设计也具有许多优点,注意到练习的梯度,并由浅入深,照顾到不同层次学生的需求,也很有趣味性。
不足的地方:思考题考虑不周.思考题是课件显示的,要求同桌讨论.一部分学生不知道怎样进行讨论.如果给每桌发一个四边形和一个六边形.学生可以通过画一画,或折一折.有助于学生更好的理解题意.真正发挥思考题的作用.教学目标:1、通过测量、撕拼、折叠等方法,探索和发现三角形三个内角的度数和等于180°。
已知三角形两个角的度数,能求出第三个角的度数。
2、经历探索三角形内角和的研究过程,感受数学的研究方法,并能运用到相关的领域。
3、渗透转化迁移思想,对学生进行辩证唯物主义观点的启蒙教育。
4、让学生在探索中体验数学学习的成功感。
教学重难点:通过小组讨论、动手操作等方式,由学生自己推导出三角形内角和180度,并能应用这一规律解决实际问题。
教学准备:各种三角形若干个、量角器、剪刀等。
教学过程一.复习旧知、引出课题1、长方形、正方形内角和切入(出示长方形和正方形)长方形和正方形各有哪些特征?它们四个内角的内角和各是多少度?你知道三角形的哪些知识?它的内角和是多少度?2、揭题:今天我们要来探索三角形的内角和。
(板书:三角形的内角和)二.自主探究,实践操作(一)大胆猜想,质疑引入1.量:请同学拿出任意一个三角形,用量角器量出它三个内角的度数,并标在三角形上。
2.算:算一算它的内角和是多少度。
3.反馈:有的三角形内角和正好是180°,有的是179°,还有181°等等。
4.猜测:你能不能猜一猜三角形的内角和可能是多少度?(板书:猜测:三角形的内角和是180°)【关注学生的生活经验和已有的知识体验是《标准》的重要理念之一。
通过学生已有的知识经验出发,让学生猜一猜、说一说,从而为学生的探索提供空间。
】(二)自主动手,验证猜想1.同学们能通过动手操作,想办法来验证自己的猜想吗?请同学们先独立思考,再在小组内把你的想法与同伴进行交流,然后选用一种方法进行验证。
2.学生动手用撕、拼、折等方法验证3.交流汇报:你用了什么方法?得到什么结论?(板书:验证:量、折、撕)4、质疑:用实验的方法来验证自己的猜想是否正确,是进行科学探究常用的一种方法。
可是,有时实验会产生误差,如今天测量角度时就有误差了,而且有的三角形既不能量,也不能折,更不能撕,你们有没有更科学的验证办法?【留给学生一定的思考时间,让课堂出现思维的空白点。
】(三)运用转化,完善验证1.知道曹冲称象的故事吗?谁愿意来讲一讲这个故事?2.介绍转化思想方法:曹冲真聪明!把称大象重量的问题转化成了称石头重量的问题,(板书:转化)转化――是一种常用数学思想方法。
我们常常运用转化的思想方法来解决问题。