高中数学 第六章 推理与证明 6.2 直接证明与间接证明
专题6.6 直接证明、间接证明、数学归纳法(原卷版)
第六篇不等式、推理与证明专题6.6直接证明、间接证明、数学归纳法【考纲要求】1.了解直接证明的两种基本方法——分析法和综合法;了解分析法和综合法的思考过程和特点.2.了解间接证明的一种基本方法——反证法;了解反证法的思考过程和特点3.了解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题【命题趋势】1.直接证明与间接证明一般考查以不等式、数列、解析几何、立体几何、函数、三角函数为背景的证明问题.2.数学归纳法一般以数列、集合为背景,用“归纳—猜想—证明”的模式考查.【核心素养】本讲内容主要考查逻辑推理和数学运算的核心素养.【素养清单•基础知识】1.直接证明(1)综合法①定义:利用已知条件和某些数学定义、定理、公理等,经过一系列的推理论证,最后推导出所要证明的结论成立,这种证明方法叫做综合法.②框图表示:P⇒Q1―→Q1⇒Q2―→Q2⇒Q3―→…―→Q n⇒Q(其中P表示已知条件、已有的定义、定理、公理等,Q表示所要证明的结论).(2)分析法①定义:从要证明的__结论__出发,逐步寻求使它成立的充分条件,直至最后把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止,这种证明方法叫做分析法.②框图表示:Q⇐P1―→P1⇐P2―→P2⇐P3―→…―→得到一个明显成立的条件.2.间接证明间接证明是不同于直接证明的又一类证明方法,反证法是一种常用的间接证明方法.(1)反证法的定义一般地,假设原命题的结论不成立,经过正确的推理,最后得出矛盾,由此说明假设错误,从而证明了原命题的成立,这样的证明方法叫作反证法.(2)用反证法证明的一般步骤①反设——假设原命题的结论不成立;②归谬——根据假设进行推理,直到推理中出现矛盾为止;③结论——断言假设不成立,从而肯定原命题的结论成立.用反证法证明命题“若p ,则q ”的过程可以用框图表示为 肯定条件p ,否定结论q ―→推出逻辑矛盾―→“若p ,则非q ”为假―→“若p ,则q ”为真【真题体验】1.用分析法证明:欲使①A >B ,只需②C <D ,这里①是②的( )A .充分条件B .必要条件C .充要条件D .既不充分也不必要条件2.用反证法证明命题“三角形三个内角至少有一个不大于60°”时,应假设( )A .三个内角都不大于60°B .三个内角都大于60°C .三个内角至多有一个大于60°D .三个内角至多有两个大于60°3.在△ABC 中,三个内角A ,B ,C 的对边分别为a ,b ,c ,且A ,B ,C 成等差数列,a ,b ,c 成等比数列,则△ABC 的形状为__________.4.下列条件:①ab >0;②ab <0;③a >0,b >0;④a <0,b <0,其中能使b a +a b ≥2成立的条件的个数是__________.5.(2019·湖北天门中学月考)设f (n )=1n +1+1n +2+…+12n (n ∈N *),那么f (n +1)-f (n )等于( )A.12n +1B.12n +2C.12n +1+12n +2D.12n +1-12n +26.(2019·黑龙江大庆一模)设f (x )是定义在正整数集上的函数,且f (x )满足:“当f (k )≥k +1成立时,总可推出f (k +1)≥k +2成立”.那么,下列命题总成立的是( )A .若f (1)<2成立,则f (10)<11成立B .若f (3)≥4成立,则当k ≥1时,均有f (k )≥k +1C .若f (2)<3成立,则f (1)≥2成立D .若f (4)≥5成立,则当k ≥4时,均有f (k )≥k +1成立7.用数学归纳法证明“当n 为正奇数时,x n +y n 能被x +y 整除”,当第二步假设n =2k -1(k ∈N *)时命题为真,进而需证n =__________时,命题亦真.【考法解码•题型拓展】考法一:分析法解题技巧:分析法证题的思路(1)先从结论入手,由此逐步推出保证此结论成立的充分条件,而当这些判断恰恰都是已证的命题(定义、公理、定理、法则、公式等)或要证命题的已知条件时,命题得证.(2)证明较复杂的问题时,可以采用两头凑的办法,即通过分析法找出某个与结论等价(或充分)的中间结论,然后通过综合法证明这个中间结论,从而使原命题得证.【例1】 已知a >0,求证:a 2+1a 2-2≥a +1a -2.考法二:综合法归纳总结 :综合法证题的思路(1)分析条件选择方向:分析题目的已知条件及已知与结论之间的联系,选择相关的定理、公式等,确定恰当的解题方法.(2)转化条件组织过程:把已知条件转化成解题所需要的语言,主要是文字、符号、图形三种语言之间的转化.(3)适当调整回顾反思:回顾解题过程,可对部分步骤进行调整,并对一些语言进行适当的修饰,反思总结解题方法的选取.【例2】 (1)设a ,b ,c ,d 均为正数,且a +b =c +d ,若ab >cd ,证明:①a +b >c +d ;②|a -b |<|c -d |.(2)(2019·长沙调考)已知函数f (x )=log 2(x +2),a ,b ,c 是两两不相等的正数,且a ,b ,c 成等比数列,试判断f (a )+f (c )与2f (b )的大小关系,并证明你的结论.考法三:反证法归纳总结(1)适用范围:①“结论”的反面比“结论”本身更简单、更具体、更明确的题目;②否定性命题、唯一性命题、存在性命题、“至多”“至少”型命题;③有的肯定形式命题,由于已知或结论涉及无限个元素,用直接证明法比较困难,往往用反证法.(2)推理关键:在正确的推理下得出矛盾,矛盾可以是与已知条件矛盾,与假设矛盾,与定义、公理、定理矛盾,与事实矛盾等,推导出的矛盾必须是明显的.【例3】 等差数列{a n }的前n 项和为S n ,a 1=1+2,S 3=9+3 2.(1)求数列{a n }的通项a n 与前n 项和S n ;(2)设b n =S n n (n ∈N *),求证:数列{b n }中任意不同的三项都不可能成为等比数列.考法四:数学归纳法证明等式归纳总结:数学归纳法证明等式的思路和注意点(1)思路:用数学归纳法证明等式问题,要“先看项”,弄清等式两边的构成规律,等式两边各有多少项,初始值n 0是多少.(2)注意点:由n=k时等式成立,推出n=k+1时等式成立,一要找出等式两边的变化(差异),明确变形目标;二要充分利用归纳假设,进行合理变形,正确地写出证明过程,不利用归纳假设的证明,就不是数学归纳法.【例1】求证:12-22+32-42+…+(2n-1)2-(2n)2=-n(2n+1)(n∈N*).考法五:数学归纳法证明不等式归纳总结(1)当遇到与正整数n有关的不等式证明时,应用其他办法不容易证明,则可考虑应用数学归纳法.(2)数学归纳法证明不等式的关键是由n=k成立,推证n=k+1时也成立,证明时用上归纳假设后,可采用分析法、综合法、作差(作商)比较法、放缩法等方法证明.【例2】已知数列{a n},a n≥0,a1=0,a2n+1+a n+1-1=a2n,求证:当n∈N*时,a n<a n+1.考法六:归纳—猜想—证明归纳总结:“归纳—猜想—证明”的模式,是不完全归纳法与数学归纳法综合应用的解题模式.其一般思路是:通过观察有限个特例,猜想出一般性的结论,然后用数学归纳法证明.这种方法在解决与正整数n有关的探索性问题、存在性问题中有着广泛的应用,其关键是归纳、猜想出公式.【例3】(2019·湖北孝感检测)数列{a n}满足S n=2n-a n(n∈N*).(1)计算a1,a2,a3,并猜想a n的通项公式;(2)用数学归纳法证明(1)中的猜想.【易错警示】易错点一:反证法中未用到反设的结论【典例】设{a n}是公比为q的等比数列.设q≠1,证明:数列{a n+1}不是等比数列.【错解】:假设{a n+1}是等比数列.则{a n+1}的前三项为a1+1,a2+1,a3+1,即a1+1,a1q+1,a1q2+1.(a1+1)(a1q2+1)-(a1q+1)2=a21q2+a1+a1q2+1-a21q2-2a1q-1=a1(q2-2q+1)=a1(q-1)2≠0,所以(a1+1)(a1q2+1)≠(a1q+1)2,所以数列{a n+1}不是等比数列.(推理中未用到结论的反设)【错因分析】:错解在解题的过程中并没有用到假设的结论,故不是反证法.利用反证法进行证明时,首先对所要证明的结论进行否定性假设,并以此为条件进行归谬,得到矛盾,则原命题成立.【正解】:假设{a n+1}是等比数列.则对任意的k∈N*,(a k+1+1)2=(a k+1)(a k+2+1),a2k+1+2a k+1+1=a k a k +2+a k+a k+2+1,a21q2k+2a1q k=a1q k-1·a1q k+1+a1q k-1+a1q k+1,因为a1≠0,所以2q k=q k-1+q k+1.又q≠0,所以q2-2q+1=0,所以q=1,这与已知q≠1矛盾.所以假设不成立,故数列{a n+1}不是等比数列.【误区防范】利用反证法证明数学问题时,要假设结论错误,并用假设的命题进行推理,如果没有用假设命题推理而推出矛盾结果,其推理过程是错误的.【跟踪训练】设a>0,b>0,且a2+b2=1a2+1b2.证明:a2+a<2与b2+b<2不可能同时成立.【答案】见解析【解析】证明 假设a 2+a <2与b 2+b <2同时成立,则有a 2+a +b 2+b <4.而由a 2+b 2=1a 2+1b 2得a 2b 2=1,因为a >0,b >0,所以ab =1.因为a 2+b 2≥2ab =2(当且仅当a =b =1时,等号成立),a +b ≥2ab =2(当且仅当a=b =1时,等号成立),所以a 2+a +b 2+b ≥2ab +2ab =4(当且仅当a =b =1时,等号成立),这与假设矛盾,故假设错误.所以a 2+a <2与b 2+b <2不可能同时成立.易错点二:证明过程未用到归纳假设【典例】用数学归纳法证明:12+122+123+…+12n -1+12n =1-12n (n ∈N *).【错解】:证明:(1)当n =1时,左边=12,右边=1-12=12,等式成立.(2)假设当n =k (k ∈N *,且k ≥1)时,等式成立,即12+122+123+…+12k -1+12k =1-12k .那么当n =k +1时,左边=12+122+123+…+12k -1+12k +12k +1=12×⎣⎡⎦⎤1-⎝⎛⎭⎫12k +11-12=1-12k +1.这就是说,当n =k +1时,等式也成立.根据(1)和(2),可知等式对任意n ∈N *都成立.【错因分析】:错误的原因在第二步,它是直接利用了等比数列的求和公式求出了当n =k +1时,式子12+122+…+12k -1+12k +12k +1的和,而没有利用“归纳假设”,不符合数学归纳法证明的步骤. 【正解】:证明:(1)当n =1时,左边=12,右边=1-12=12,等式成立.(2)假设当n =k (k ∈N *,且k ≥1)时,等式成立,即12+122+123+…+12k -1+12k =1-12k ,那么当n =k +1时,左边=12+122+123+…+12k -1+12k +12k +1=1-12k +12k +1=1-12k +1=右边.这就是说,当n =k +1时,等式也成立.根据(1)和(2),可知等式对任意n ∈N *都成立.【误区防范】(1)用数学归纳法证明命题时常出现两种错误:一是n 0的值找错.二是证明命题n =k +1也成立时,没有用到n =k 时的归纳假设.(2)确定由n =k 变化到n =k +1的过程中项的变化情况时,要把握好项的变化规律以及首末项.【跟踪训练】 设a 1=1,a n +1=a 2n -2a n +2+1(n ∈N *),求a 2,a 3,a n ,并用数学归纳法证明你的结论.【答案】见解析【解析】a 2=2,a 3=2+1,可写为a 1=1-1+1,a 2=2-1+1,a 3=3-1+1.因此猜想a n =n -1+1.下面用数学归纳法证明上式:当n =1时结论成立.假设n =k 时结论成立,即a k =k -1+1,则a k +1+11 1.这就是说,当n =k +1时结论也成立.综上可知,a n =n -1+1(n ∈N *).【递进题组】1.欲证a 2+b 2-1-a 2b 2≤0,只需证明( )A .2ab -1-a 2b 2≤0B .a 2+b 2-1-a 4+b 42≤0 C.a +b22-1-a 2b 2≤0 D .(a 2-1)(b 2-1)≥02.若0<a 1<a 2,0<b 1<b 2,且a 1+a 2=b 1+b 2=1,则下列代数式中值最大的是( )A .a 1b 1+a 2b 2B .a 1a 2+b 1b 2C .a 1b 2+a 2b 1 D.123.设a ,b ,c 均为正数,且a +b +c =1,证明:(1)ab +bc +ac ≤13;(2)a 2b +b 2c +c 2a ≥1.4.已知a ≠0,证明:关于x 的方程ax =b 有且只有一个根.5.设f (n )=1+12+13+…+1n (n ∈N *),求证:f (1)+f (2)+…+f (n -1)=n [f (n )-1](n ≥2,n ∈N *).6.用数学归纳法证明:1+n2≤1+12+13+…+12n≤12+n(n∈N*).7.(2019·湖北部分重点中学联考)已知数列{x n}满足x1=12,且x n+1=x n2-x n(n∈N*).(1)用数学归纳法证明:0<x n<1;(2)设a n=1x n,求数列{a n}的通项公式.8.(2019·武穴中学月考)试证:n 为正整数时,f (n )=32n +2-8n -9能被64整除.【考卷送检】一、选择题1.用反证法证明命题“若a +b +c 为偶数,则自然数a ,b ,c 恰有一个偶数”时,正确的反设为( ) A .自然数a ,b ,c 都是奇数B .自然数a ,b ,c 都是偶数C .自然数a ,b ,c 中至少有两个偶数D .自然数a ,b ,c 都是奇数或至少有两个偶数2.分析法又称执果索因法,若用分析法证明“设 a >b >c ,且a +b +c =0,求证b 2-ac <3a ”,索的因应是( )A .a -b >0B .a -c >0C .(a -b )(a -c )>0D .(a -b )(a -c )<03.(2019·焦作一中月考)若a ,b ∈R ,则下面四个式子中恒成立的是( )A .lg(1+a 2)>0B .a 2+b 2≥2(a -b -1)C .a 2+3ab >2b 2D.a b <a +1b +1 4.设f (x )是定义在R 上的奇函数,且当x ≥0时,f (x )单调递减,若x 1+x 2>0,则f (x 1)+f (x 2)的值( ) A .恒为负值 B .恒等于零C .恒为正值D .无法确定正负5.已知a >b >0,且 ab =1,若 0<c <1,p =log c a 2+b 22,q =log c ⎝ ⎛⎭⎪⎫1a +b 2,则p ,q 的大小关系是( )A .p >qB .p <qC .p =qD .p ≥q6.设x ,y ,z >0,则三个数y x +y z ,z x +z y ,x z +x y ( )A .都大于2B .至少有一个大于2C .至少有一个不小于2D .至少有一个不大于2二、填空题7.设a =3+22,b =2+7,则a ,b 的大小关系为________.8.用反证法证明命题“若实数a ,b ,c ,d 满足a +b =c +d =1,ac +bd >1,则a ,b ,c ,d 中至少有一个是非负数”时,第一步要假设结论的否定成立,那么结论的否定是________________.9.(2019·郑州一模)某题字迹有污损,大致内容是“已知|x |≤1,,用分析法证明|x +y |≤|1+xy |”.估计污损部分的文字内容为________.三、解答题10.(2019·永州一中月考)已知a ≥b >0,求证:2a 3-b 3≥2ab 2-a 2b .证明 欲要证2a 3-b 3≥2ab 2-a 2b 成立,只需证2a 3-b 3-2ab 2+a 2b ≥0,即证2a (a 2-b 2)+b (a 2-b 2)≥0,即证(a +b )(a -b )(2a +b )≥0.因为a ≥b >0,所以a -b ≥0,a +b >0,2a +b >0,从而(a +b )(a -b )(2a +b )≥0成立,所以2a 3-b 3≥2ab 2-a 2b .11.(2019·黄石二中期中)已知四棱锥S -ABCD 中,底面是边长为1的正方形,又SB =SD =2,SA =1.(1)求证:SA ⊥平面ABCD ;(2)在棱SC 上是否存在异于S ,C 的点F ,使得BF ∥平面SAD ?若存在,确定点F 的位置;若不存在,请说明理由.12.已知数列{a n }满足a 1=12,且a n +1=a n 3a n +1(n ∈N *).(1)证明:数列⎩⎨⎧⎭⎬⎫1a n 是等差数列,并求数列{a n }的通项公式;(2)设b n =a n a n +1(n ∈N *),数列{b n }的前n 项和记为T n ,证明:T n <16.13.设a ,b 是两个实数,给出下列条件:①a +b >1;②a +b =2;③a +b >2;④a 2 +b 2>2;⑤ab >1.其中能推出“a ,b 中至少有一个大于1”的条件是________(填序号).14.求证:1-12+13-14+…+12n -1-12n =1n +1+1n +2+…+12n (n ∈N *).15.用数学归纳法证明1+122+132+…+1n 2<2-1n (n ∈N *,n ≥2).16.(2019·衡水高中调研)首项为正数的数列{a n }满足a n +1=14(a 2n +3),n ∈N *.证明:若a 1为奇数,则对一切n ≥2,a n 都是奇数.17.已知函数f (x )=13x 3-x ,数列{a n }满足条件:a 1≥1,a n +1≥f ′(a n +1),试比较11+a 1+11+a 2+11+a 3+…+11+a n 与1的大小,并说明理由.。
2015届高考数学总复习第六章 第六节直接证明与间接证明精讲课件 文
2bn 4 (3)若 cn= ,证明:c1+c2+„+cn<3. anan+1
思路点拨:当单独用综合法或分析法难以奏效时,可以综合
法与分析法并用,取长补短,以利于迅速地将题设与欲证结 论相互贯通. (1)证明:当n=1时,S1=2a1-1,得a1=1. ∵Sn=2an-n,∴当n≥2时Sn-1=2an-1-(n-1), 两式相减,得an=2an-2an-1-1, ∴an=2an-1+1.∴an+1=2an-1+2=2(an-1+1). ∴{an+1}是以a1+1=2为首项,2为公比的等比数列. (2)解析:由(1)得an+1=2×2n-1=2n,∴an=2n-1,n∈N*. ∴bn=log2(an+1)=log22n=n,n∈N*.
∴AB=2.∴AB2+BC2=AC2.∴AB⊥BC. 由已知AB⊥BB1, ∴AB⊥平面BB1C1C. 又∵AB⊂平面ABE,∴平面ABE⊥平面BB1C1C. (2)证明:取AC的中点M,连接C1M,FM. 在△ABC中,FM∥AB,而FM⊄ABE, ∴直线FM∥平面ABE. 在矩形ACC1A1中,E,M都是中点, ∴C1M∥AE.
2
用分析法证明命题
【例 2】 已知 a>b>c,且 a+b+c=0,求证: b2-ac< 3a.
自主解答: 解析:要证 只需证b2-ac<3a2, 只需证b2+a(a+b)<3a2, 只需证2a2-ab-b2>0, 只需证(a-b)(2a+b)>0, 只需证(a-b)(a-c)>0.
因为已知a>b>c,所以a-b>0,a-c>0, 所以(a-b)(a-c)>0,显然成立, 故原不等式成立. 点评:分析法的特点和思路是“执果索因”,是逆向思
数学证明中的直接证明与间接证明
数学是一门严谨的学科,其核心在于推理与证明。
在进行数学证明时,有直接证明和间接证明两种方法。
直接证明是通过逻辑推理直接得出结论,而间接证明则是通过反证法或者归谬法,通过推翻事实的否定来得出结论。
本文将分别介绍直接证明和间接证明,并分析它们在数学证明中的应用。
首先,我们来讨论直接证明。
直接证明是最常见、最直接的证明方法。
其核心思想是根据已知条件和数学定理,一步一步地推导出结论。
直接证明通常包括假设、推理和结论三个步骤。
首先,我们根据题目给出的条件假设一些前提条件,然后利用已知的定理和公理进行推理,最后根据这些推理得出结论。
直接证明的优点是逻辑性强、直观明了,容易让读者明白推理的过程。
此外,对于一些简单的数学问题,直接证明能够很快得出结论,省去了许多繁琐的步骤。
然而,直接证明的弊端是有时难以找到合适的定理进行推理,或者推导过程中的中间步骤比较复杂。
在遇到这种情况时,我们就需要采用间接证明的方法。
其次,我们来讨论间接证明。
间接证明有两种形式,一种是反证法,另一种是归谬法。
反证法的基本思想是通过假设反命题的真假进行推导,如果得出一个恒真的结论,则原命题成立。
归谬法则是通过假设原命题为真进行推导,最后得出一个恒假的结论,从而推翻了原命题。
间接证明的优点是可以处理一些复杂的数学问题,特别是那些直接证明困难的问题。
间接证明可以通过假设反命题的真假或者假设原命题的真假,利用反证法或归谬法的推导过程将问题的复杂性降低,从而得出结论。
然而,间接证明的过程通常较为繁琐,需要较高的抽象思维能力和逻辑推理能力。
在实际的数学证明中,常常需要根据题目的要求和限制条件选择合适的证明方法。
有时,我们可以通过观察和归纳总结出一些数量关系或性质,然后用直接证明进行推导。
而对于一些性质复杂的数学问题,我们可能需要采用间接证明的方法。
因此,掌握直接证明和间接证明的技巧对于解决数学问题至关重要。
总之,数学证明中的直接证明和间接证明是两种常用的推理方法。
直接证明与间接证明
第4讲直接证明与间接证明讲义讲义一、导入【教学建议】我们知道,合情推理所得结论的正确性是需要证明的,这正是数学区别于其他学科的显著特点,数学结论的正确性必须通过逻辑推理的方式加以证明.综合法和分析法是直接证明中最基本的两种方法,反证法是间接证明的一种直接方法.C先生上了公交车却发现没带钱包,售票员不由分说让他下车,一位小伙子微笑着递过一块钱,C 先生很感激.车上的人开始小声议论C 先生是骗钱的,就在C先生生气准备甩票下车的时候,借钱给他的小伙子大声问:“能不能借一下您的手机?”C先生递过手机,小伙子拨了个号码,说了两三分钟的话,C先生想这下可以证明我的清白了.下车后C先生打开手机愣住了,原来小伙子根本没有拨通电话,但是直接证明了他的清白.二、知识讲解知识点1 综合法1.用综合法证明数学问题,证明步骤严谨,逐层递进,步步为营,条理清晰,形式简洁,宜于表达推理的思维轨迹,并且综合法的推理过程属于演绎推理,它的每一步推理得出的结论都是正确的,不同于合情推理.使用综合法证明问题,有时从条件可得出几个结论,哪个结论才可作为下一步的条件是分析的要点,所以如何找到“切入点”和有效的推理途径是有效利用综合法证明数学问题的关键.2. 综合法证明数学命题的步骤第一步:分析条件,选择方向.认真发掘题目的已知条件,特别是隐含条件,分析已知与结论之间的联系,选择相关的公理、定理、公式、结论,确定恰当的解题方法.第二步:转化条件,组织过程.把题目的已知条件,转化成解题所需要的语言,主要是文字、符号、图形三种语言之间的转化.组织过程时要有严密的逻辑,简洁的语言,清晰的思路.第三步:适当调整,回顾反思.解题后回顾解题过程,可对部分步骤进行调整,并对一些语言进行适当的修饰,反思总结解题方法的选取.知识点2 分析法1.分析法的推理过程也属于演绎推理,每一步推理都是严密的逻辑推理.2.分析法证明不等式的依据、方法与技巧.(1)解题依据:分析法证明不等式的依据是不等式的基本性质、已知的重要不等式和逻辑推理的基本理论;(2)适用范围:对于一些条件复杂,结构简单的不等式的证明,经常用综合法.而对于一些条件简单、结论复杂的不等式的证明,常用分析法;(3)思路方法:分析法证明不等式的思路是从要证的不等式出发,逐步寻求使它成立的充分条件,最后得到的充分条件是已知(或已证)的不等式;(4)应用技巧:用分析法证明数学命题时,一定要恰当地用好“要证”、“只需证”、“即证”等词语.知识点3 反证法1.反证法证明数学命题的一般步骤第一步:分清命题“p→q”的条件和结论;第二步:作出与命题结论q相矛盾的假定⌝q(反设);第三步:由p和⌝q出发,应用正确的推理方法,推出矛盾结果(归谬);第四步:断定产生矛盾结果的原因,在于开始所作的假定⌝q不真,于是原结论q成立,从而间接地证明了命题p→q为真.第三步中所说的矛盾结果,通常是指推出的结果与已知公理、已知定义、已知定理或已知条件矛盾,与临时假定矛盾以及自相矛盾等各种情况.2.反证法的适用对象作为一种间接证明方法,反证法尤其适合证明以下几类数学问题:(1)直接证明需分多种情况的;(2)结论本身是以否定形式出现的一类命题——否定性命题;(3)关于唯一性、存在性的命题;(4)结论以“至多”、“至少”等形式出现的命题;(5)条件与结论联系不够明显,直接由条件推结论的线索不够清晰,结论的反面是比原结论更具体、更容易研究的命题.三、例题精析【教学建议】分析法和综合法是对立统一的两种方法.一个命题用何种方法证明,要能针对具体问题进行分析,灵活地运用各种证法.当不知从何入手时,有时可以运用分析法而获得解决,特别是对于条件简单而结论复杂的题目更是行之有效的方法.用反证法证题时,必须把结论的否定作为条件使用,否则就不是反证法.【题干】(1)设A =12a +12b ,B =2a +b(a >0,b >0),则A 、B 的大小关系为________. 【答案】A ≥B【解析】A -B =a +b 2ab -2a +b =)(24)(2b a ab ab b a +-+≥0. 【题干】(2)若P =a +6+a +7,Q =a +8+a +5(a ≥0),则P ,Q 的大小关系是( )A .P >QB .P =QC .P <QD .由a 的取值确定【答案】 A【解析】 P 2=2a +13+2a 2+13a +42,Q 2=2a +13+2a 2+13a +40,∴P 2>Q 2,又∵P >0,Q >0,∴P >Q .【题干】(3)有三张卡片,分别写有1和2,1和3,2和3.甲、乙、丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是________.【答案】 1和3【解析】 由丙说:“我的卡片上的数字之和不是5”可知,丙为“1和2”或“1和3”,又乙说“我与丙的卡片上相同的数字不是1”,所以乙只可能为“2和3”,又甲说“我与乙的卡片上相同的数字不是2”,所以甲只能为“1和3”.【题干】(4)设数列{a n }的前n 项和为S n .若对任意正整数n ,总存在正整数m ,使得S n =a m ,则称{a n }是 例题1“H 数列”.(1)若数列{a n }的前n 项和S n =2n (n ∈N *),证明:{a n }是“H 数列”;(2)证明:对任意的等差数列{a n },总存在两个“H 数列”{b n }和{c n },使得a n =b n +c n (n ∈N *)成立.【解析】(1)由已知,a n +1=S n +1-S n =2n +1-2n =2n .于是对任意的正整数n ,总存在正整数m =n +1,使得S n =2n =a m .所以{a n }是“H 数列”.(2)设等差数列{a n }的公差为d ,则a n =a 1+(n -1)d =na 1+(n -1)(d -a 1)(n ∈N *).令b n =na 1,c n =(n -1)(d -a 1),则a n =b n +c n (n ∈N *).下面证{b n }是“H 数列”.设{b n }的前n 项和为T n ,则T n =n (n +1)2a 1(n ∈N *).于是对任意的正整数n ,总存在正整数m =n (n +1)2,使得T n =b m ,所以{b n }是“H 数列”.同理可证{c n }也是“H 数列”.所以对任意的等差数列{a n },总存在两个“H 数列”{b n }和{c n },使得a n =b n +c n (n ∈N *)成立. 【题干】(1)欲证2−√5<√6−√7成立,只需证( )A .(2−√5)2<(√6−√7)2B .(2−√6)2<(√5−√7)2C .(2+√7)2<(√5+√6)2D .(2−√5−√6)2<(−√7)2【答案】C【解析】由分析法知,欲证2−√5<√6−√7,只需证2+√7<√6+√5,即证(2+√7)2<(√6+√5)2,故选C .【题干】(2)分析法又称执果索因法,已知x >0,用分析法证明1+x <1+x 2时,索的因是( ) A .x 2>1B .x 2>4C .x 2>0D .x 2>1【答案】 C【解析】 因为x >0,所以要证1+x <1+x 2,只需证(1+x )2<⎝⎛⎭⎫1+x 22, 即证0<x 24,即证x 2>0,因为x >0,所以x 2>0成立,故原不等式成立. 【题干】(3)已知△ABC 的三个内角A ,B ,C 成等差数列,A ,B ,C 的对边分别为a ,b ,c .【求证】1a +b +1b +c =3a +b +c . 例题2证明:要证1a +b +1b +c =3a +b +c, 即证a +b +c a +b +a +b +c b +c =3,也就是c a +b +a b +c=1, 只需证c (b +c )+a (a +b )=(a +b )(b +c ),需证c 2+a 2=ac +b 2,又△ABC 三内角A ,B ,C 成等差数列,故B =60°,由余弦定理,得b 2=c 2+a 2-2ac cos 60°,即b 2=c 2+a 2-ac ,故c 2+a 2=ac +b 2成立.于是原等式成立. 【题干】(1)用反证法证明“若x 2-1=0,则x =-1或x =1”时,应假设________.【答案】 x ≠-1且x ≠1【解析】 “x =-1或x =1”的否定是“x ≠-1且x ≠1”.【题干】(2)设a ,b 是两个实数,给出下列条件:①a +b >1;②a +b =2;③a +b >2;④a 2+b 2>2;⑤ab >1.其中能推出:“a ,b 中至少有一个大于1”的条件是( )A .②③B .①②③C .③D .③④⑤【答案】 C【解析】 若a =12,b =23,则a +b >1,但a <1,b <1,故①推不出; 若a =b =1,则a +b =2,故②推不出;若a =-2,b =-3,则a 2+b 2>2,故④推不出;若a =-2,b =-3,则ab >1,故⑤推不出;对于③,即a +b >2,则a ,b 中至少有一个大于1,下面用反证法证明:假设a ≤1且b ≤1,则a +b ≤2与a +b >2矛盾,因此假设不成立,a ,b 中至少有一个大于1.【题干】(3)已知非零实数a ,b ,c 构成公差不为0的等差数列,求证:1a ,1b ,1c 不可能成等差数列.【解析】假设1a ,1b ,1c 成等差数列,则2b =1a +1c ,所以2ac=bc+ab.① 因为a ,b ,c 成等差数列,所以2b=a+c.②把②代入①,得2ac=b (a+c )=b ·2b.所以b 2=ac.③由②平方,得4b 2=(a+c )2.④把③代入④,得4ac=(a+c )2,所以(a-c )2=0.所以a=c.例题3代入②,得b=a,故a=b=c,所以数列a,b,c的公差为0.这与已知矛盾,因此假设错误.故1a ,1b,1c不可能成等差数列.。
直接证明与间接证明
第十二章
12.4
直接证明与间接证明
梳理自测 探究突破 巩固提升
考纲要求
-9-
4.命题“对于任意角 θ,cos4θ-sin4θ=cos 2θ”的证明:cos4θ-sin4θ=(cos2θsin2θ)(cos2θ+sin2θ)=cos2θ-sin2θ=cos 2θ 过程应用了( A.分析法 C.综合法、分析法综合应用 B.综合法 D.间接证明法 )
因为证明过程是“从左往右”,即由条件⇒结论 B
关闭 关闭
解析
答案
第十二章
12.4
直接证明与间接证明
梳理自测 探究突破 巩固提升
考纲要求
-10-
5.因为某种产品的两种原料相继提价,所以生产者决定对产品分两次提价, 现在有三种提价方案: 方案甲:第一次提价 p%,第二次提价 q%; 方案乙:第一次提价 q%,第二次提价 p%; 方案丙:第一次提价 A.甲
即证明 ( t an x1+t an x2) >t an 只需证明
1 2
������1 +������2 ������ +������ 1 sin������1 sin������2 ,只需证明 + >t an 1 2, 2 2 cos������1 cos������2 2
sin( ������1 +������2 ) sin( ������1 +������2 ) > . 2cos������1 cos������2 1+cos(������1 +������2 ) π 由于 x1,x2∈ 0, ,故 x1+x2∈( 0,π) . 2
梳理自测 探究突破 巩固提升
考纲要求
高中数学中常见的证明方法
高中数学中常见的证明方法一、直接证明法直接证明法是最基本也是最常见的证明方法之一。
它通过对所要证明的命题进行逻辑推理和分析,直接给出证明的过程和结论。
要使用直接证明法,一般需要明确以下几个步骤:1. 提出所要证明的命题:首先,明确所要证明的命题,即要证明的结论。
2. 建立前提条件:在进行证明前,需要明确前提条件,即已知条件或已知命题。
3. 逻辑推理:通过逻辑推理和分析,根据已知条件和逻辑关系,逐步推导出结论。
4. 结论:最后,根据已有的证明过程,给出结论。
二、间接证明法间接证明法又称反证法,它是通过假设所要证明的命题不成立,然后推导出与已知事实矛盾的结论,从而证明所要证明的命题是正确的。
间接证明法的一般步骤如下:1. 假设反命题:首先,假设所要证明的命题的反命题是正确的。
2. 推导过程:根据假设和已知条件,通过逻辑推理进行推导,尽可能多地得到信息。
3. 矛盾结论:最终推导出一个与已知事实矛盾的结论。
4. 否定假设:由于假设的反命题与已知事实矛盾,所以可以否定假设,即所要证明的命题是正确的。
间接证明法常用于证明一些数学定理、存在性证明和最大最小值的存在性等问题。
三、数学归纳法数学归纳法是一种常用的证明方法,特别适用于证明一类命题或定理,如整数性质、等差数列的性质等。
它基于两个基本步骤:基本情况的验证和归纳假设的使用。
数学归纳法的一般步骤如下:1. 基本情况的验证:首先,验证当命题成立的最小情况,通常是n=1或n=0的情况。
2. 归纳假设的使用:假设当n=k时命题成立,即假设命题对于某个特定的正整数k是成立的。
3. 归纳步骤的推理:在归纳假设的基础上进行推理和分析,证明当n=k+1时命题也成立。
4. 归纳法的结论:根据归纳步骤的推理和基本情况的验证,可以得出结论,即所要证明的命题对于所有正整数都成立。
数学归纳法在数学推理和定理证明中有着广泛的应用,尤其适用于证明具有递推性质的命题。
四、逆否命题证明法逆否命题证明法是通过对命题的逆否命题进行证明,从而间接地证明所要证明的命题。
直接证明与间接证明_知识讲解
直接证明与间接证明【要点梳理】要点一:直接证明直接证明最常见的两种方法是综合法和分析法,它们是思维方向相反的两种不同的推理方法. 综合法定义:一般地,从命题的已知条件出发,利用定义、公理、定理及运算法则,经过演绎推理,一步步地接近要证明的结论,直到完成命题的证明,我们把这种思维方法叫做综合法.... 基本思路:执因索果综合法又叫“顺推证法”或“由因导果法”.它是由已知走向求证,即从数学题的已知条件出发,经过逐步的逻辑推理,最后导出待证结论或需求的问题.综合法这种由因导果的证明方法,其逻辑依据是三段论式的演绎推理方法.综合法的思维框图:用P 表示已知条件,Q 表示要证明的结论,123...i Q i n =(,,,,)为已知的定义、定理、公理等,则综合法可用框图表示为: 11223...n P Q Q Q Q Q Q Q ⇒→⇒→⇒→→⇒(已知) (逐步推导结论成立的必要条件) (结论)要点诠释(1)从“已知”看“可知”,逐步推出“未知”,由因导果,其逐步推理实际上是寻找它的必要条件;(2)用综合法证明不等式,证明步骤严谨,逐层递进,步步为营,条理清晰,形式简洁,宜于表达推理的思维轨迹;(3)因用综合法证明命题“若A 则D ”的思考过程可表示为:故要从A 推理到D ,由A 推演出的中间结论未必唯一,如B 、B 1、B 2等,可由B 、B 1、B 2进一步推演出的中间结论则可能更多,如C 、C 1、C 2、C 3、C 4等等.所以如何找到“切入点”和有效的推理途径是有效利用综合法证明问题的“瓶颈”.综合法证明不等式时常用的不等式(1)a 2+b 2≥2ab (当且仅当a =b 时取“=”号);(2)2a b +≥a ,b ∈R*,当且仅当a =b 时取“=”号); (3)a 2≥0,|a |≥0,(a -b )2≥0;(4)2b a a b +≥(a ,b 同号);2b a a b+≤-(a ,b 异号); (5)a ,b ∈R ,2221()2a b a b +≥+, (6)不等式的性质定理1 对称性:a >b ⇔b <a .定理2 传递性:a b a c b c >⎫⇒>⎬>⎭. 定理3 加法性质:a b a c b c c R >⎫⇒+>+⎬∈⎭. 推论 a b a c b d c d >⎫⇒+>+⎬>⎭. 定理4 乘法性质:0a b ac bc c >⎫⇒>⎬>⎭. 推论1 00a b ac bc c d >>⎫⇒>⎬>>⎭. 推论2 0*n n a b a b n N >>⎫⇒>⎬∈⎭.定理5 开方性质:0*a b n N >>⎫⇒>⎬∈⎭ 分析法定义一般地,从需要证明的命题出发,分析使这个命题成立的充分条件,逐步寻找使命题成立的充分条件,直至所寻求的充分条件显然成立(已知条件、定理、定义、公理等),或由已知证明成立,从而确定所证的命题成立的一种证明方法,叫做分析法.基本思路:执果索因分析法又叫“逆推证法”或“执果索因法”.它是从要证明的结论出发,分析使之成立的条件,即寻求使每一步成立的充分条件,直到最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止.分析法这种执果索因的证明方法,其逻辑依据是三段论式的演绎推理方法.分析法的思维框图:用123i P i =L (,,,)表示已知条件和已有的定义、公理、公式、定理等,Q 所要证明的结论,则用分析法证明可用框图表示为: 11223...Q P P P P P ⇐→⇐→⇐→→得到一个明显成立的条件(结论) (逐步寻找使结论成立的充分条件) (已知)格式:要证……,只需证……,只需证……,因为……成立,所以原不等式得证.要点诠释:(1)分析法是综合法的逆过程,即从“未知”看“需知”,执果索因,逐步靠拢“已知”,其逐步推理,实际上是寻找它的充分条件.(2)由于分析法是逆推证明,故在利用分析法证明时应注意逻辑性与规范性,即分析法有独特的表述.综合法与分析法的横向联系(1) 综合法是把整个不等式看做一个整体,通过对欲证不等式的分析、观察,选择恰当不等式作为证题的出发点,其难点在于到底从哪个不等式出发合适,这就要求我们不仅要熟悉、正确运用作为定理性质的不等式,还要注意这些不等式进行恰当变形后的利用.分析法的优点是利于思考,因为它方向明确,思路自然,易于掌握,而综合法的优点是宜于表述,条理清晰,形式简洁.我们在证明不等式时,常用分析法寻找解题思路,即从结论出发,逐步缩小范围,进而确定我们所需要的“因”,再用综合法有条理地表述证题过程.分析法一般用于综合法难以实施的时候.(2)有不等式的证明,需要把综合法和分析法联合起来使用:根据条件的结构特点去转化结论,得到中间结论Q ;根据结论的结构特点去转化条件,得到中间结论P .若由P 可以推出Q 成立,就可以证明结论成立,这种边分析边综合的证明方法,称之为分析综合法,或称“两头挤法”.分析综合法充分表明分析与综合之间互为前提、互相渗透、互相转化的辩证统一关系,分析的终点是综合的起点,综合的终点又成为进一步分析的起点.命题“若P 则Q ”的推演过程可表示为:要点二:间接证明 间接证明不是从正面确定命题的真实性,而是证明它的反面为假,或改证它的等价命题为真,间接地达到目的,反证法是间接证明的一种基本方法.反证法定义:一般地,首先假设要证明的命题结论不正确,即结论的反面成立,然后利用公理,已知的定义、定理,命题的条件逐步分析,得到和命题的条件或公理、定理、定义及明显成立的事实等矛盾的结论,以此说明假设的结论不成立,从而证明了原命题成立,这样的证明方法叫做反证法.反证法的基本思路:假设——矛盾——肯定①分清命题的条件和结论.②做出与命题结论相矛盾的假设.③由假设出发,结合已知条件,应用演绎推理方法,推出矛盾的结果.④断定产生矛盾结果的原因,在于开始所做的假定不真,于是原结论成立,从而间接地证明原命题为真.反证法的格式:用反证法证明命题“若p则q”时,它的全部过程和逻辑根据可以表示如下:要点诠释:(1)反证法是间接证明的一种基本方法.它是先假设要证的命题不成立,即结论的反面成立,在已知条件和“假设”这个新条件下,通过逻辑推理,得出与定义、公理、定理、已知条件、临时假设等相矛盾的结论,从而判定结论的反面不能成立,即证明了命题的结论一定是正确的.(2) 反证法的优点:对原结论否定的假定的提出,相当于增加了一个已知条件.反证法的一般步骤:(1)反设:假设所要证明的结论不成立,假设结论的反面成立;(2)归谬:由“反设”出发,通过正确的推理,导出矛盾——与已知条件、已知的公理、定义、定理、反设及明显的事实矛盾或自相矛盾;(3)结论:因为推理正确,产生矛盾的原因在于“反设”的谬误,既然结论的反面不成立,从而肯定了结论成立.要点诠释:(1)结论的反面即结论的否定,要特别注意:“都是”的反面为“不都是”,即“至少有一个不是”,不是“都不是”;“都有”的反面为“不都有”,即“至少有一个没有”,不是“都没有”;“都不是”的反面是“部分是或全部是”,即“至少有一个是”,不是“都是”;“都没有”的反面为“部分有或全部有”,即“至少有一个有”,不是“都有”(2)归谬的主要类型:①与已知条件矛盾;②与假设矛盾(自相矛盾);③与定义、定理、公理、事实矛盾.宜用反证法证明的题型:①要证的结论与条件之间的联系不明显,直接由条件推出结论的线索不够清晰;比如“存在性问题、唯一性问题”等;②如果从正面证明,需要分成多种情形进行分类讨论,而从反面进行证明,只要研究一种或很少的几种情形.比如带有“至少有一个”或“至多有一个”等字样的数学问题.要点诠释:反证法体现出正难则反的思维策略(补集的思想)和以退为进的思维策略,故在解决某些正面思考难度较大和探索型命题时,有独特的效果.【典型例题】【高清课堂:例题1】类型一:综合法证明例1.求证:a4+b4+c4≥abc(a+b+c).【证明】∵a4+b4≥2a2b2,b4+c4≥2b2c2,c4+a4≥2c2a2,∴(a4+b4)+(b4+c4)+(c4+a4)≥2(a2b2+b2c2+c2a2),又∵a2b2+b2c2≥2ab2c,b2c2+c2a2≥2abc2,a2b2+c2a2≥2a2bc,∴2(a2b2+b2c2+c2a2)≥2abc(a+b+c).∴2(a4+b4+c4)≥2abc(a+b+c),即a4+b4+c4≥abc(a+b+c).【总结升华】利用综合法时,从已知出发,进行运算和推理得到要证明的结论,并且在用均值定理证明不等式时,一要注意均值定理运用的条件,二要运用定理对式子作适当的变形,把式分成若干部分,对每部分运用均值定理后,再把它们相加或相减.举一反三:【变式1】已知a,b是正数,且a+b=1,求证:114a b+≥.【证明】证法一:∵a,b∈R,且a+b=1,∴2a b ab +≥,∴12ab ≤, ∴1114a b a b ab ab++==≥. 证法二:∵a ,b ∈R +,∴20a b ab +=>,11120a b ab +≥>, ∴11()4a b a b ⎛⎫++≥ ⎪⎝⎭. 又a +b =1,∴114a b+≥. 证法三:1111224a b a b b a a b a b a b a b b a+++=+=+++≥+⋅=. 当且仅当a =b 时,取“=”号.【变式2】求证:5321232log 19log 19log 19++<. 【证明】待证不等式的左端是3个数和的形式,右端是一常数的形式,而左端3个分母的真数相同,由此可联想到公式,1log log a b b a =转化成能直接利用对数的运算性质进行化简的形式. ∵ 1log log a b b a =, ∴左边∵, ∴5321232log 19log 19log 19++<. 例2.已知数列{a n }中,S n 是它的前n 项和,并且S n +1=4a n +2(n =1,2,…),a 1=1.(1)设b n =a n +1-2a n (n =1,2,…),求证:数列{b n }是等比数列.(2)设2n n na c =(n =1,2,…), 求证:数列{c n }是等差数列. 【证明】(1)∵S n +1=4a n +2,∴S n +2=4a n +1+2,两式相减,得S n +2―S n +1=4a n +1―4a n (n =1,2,3,…),即a n +2=4a n +1―4a n ,变形得a n +2―2a n +1=2(a n +1―2a n ).∵b n =a n +1-2a n (n =1,2,…),∴b n +1=2b n (n =1,2,…).由此可知,数列{b n }是公比为2的等比数列.由S 2=a 1+a 2=4a 1+2,a 1=1,得a 2=5,b 1=a 2―2a 1=3.故b n =3·2n ―1.(2)∵2n n n a c =(n =1,2,…) ∴11111122222n n n n n n n n n n n a a a a b c c ++++++--=-== 将b n =3·2n -1代入,得134n n c c +-=(n =1,2,…). 由此可知,数列{c n }是公差34d =的等差数列,它的首项11122a c ==,故3144n c n =-. 【总结升华】本题从已知条件入手,分析数列间的相互关系,合理实现了数列间的转化,从而使问题获解,综合法是直接证明中最常用的证明方法.举一反三:【变式1】已知数列{}n a 满足15a =, 25a =,116(2)n n n a a a n +-=+≥.求证:{}12n n a a ++是等比数列;【证明】 由a n +1=a n +6a n -1,a n +1+2a n =3(a n +2a n -1) (n ≥2),∵a 1=5,a 2=5∴a 2+2a 1=15,故数列{a n +1+2a n }是以15为首项,3为公比的等比数列.【变式2】在△ABC 中,若a 2=b (b +c ),求证:A =2B .【证明】∵a 2=b (b +c ),222222()cos 22b c a b c b bc A bc bc+-+-+==, 又222222222()22cos 2cos 12121222()2a c b b c b c b bc c b B B ac a b b c b ⎛⎫+-++---⎛⎫=-=-=-== ⎪ ⎪+⎝⎭⎝⎭,∴cos A =cos2B .又A 、B 是三角形的内角,故A =2B .例3.如图所示,在四棱锥P —ABCD 中,底面ABCD 是正方形,侧棱PD ⊥底面ABCD ,PD =DC ,E 是PC 的中点,作EF ⊥PB 交PB 于点F .求证:(1)P A ∥平面EDB ;(2)PB ⊥平面EFD .【证明】(1)连结AC 交BD 于O ,连结E O .∵底面ABCD 是正方形,∴点O 是AC 的中点,在△P AC 中,E O 是中位线,∴P A ∥E O .而E O ⊂平面EDB 且P A ⊄平面EDB ,∴P A ∥平面EDB .(2)PD ⊥底面ABCD 且DC ⊂底面ABCD ,∴PD ⊥DC .由PD =DC ,可知△PDC 是等腰直角三角形,而DE 是斜边PC 上的中线,∴DE ⊥PC .①同样由PD ⊥底面ABCD ,得PD ⊥BC .∵底面ABCD是正方形,∴DC⊥BC,∴BC⊥平面PDC.而DE⊂平面PDC,∴BC⊥DE.②由①和②推得DE⊥平面PBC.而PB⊂平面PBC,∴DE⊥PB.又EF⊥PB且DE∩EF=E,∴PB⊥平面EFD.【总结升华】利用综合法证明立体几何中线线、线面和面面关系的关键在于熟练地运用判定定理和性质定理.举一反三:【变式1】如图,设在四面体PABC中,90ABC∠=o,PA PB PC==,D是AC的中点.求证:PD垂直于ABC∆所在的平面.【证明】连PD、BD因为BD是Rt ABC∆斜边上的中线,所以DA DC DB==又因为PA PB PC==,而PD是PAD∆、PBD∆、PCD∆的公共边,所以PAD∆≅PBD PCD∆≅∆于是PDA PDB PDC∠=∠=∠,而90PDA PDC∠=∠=o,因此90PDB∠=o∴PD AC⊥,PD BD⊥由此可知PD垂直于ABC∆所在的平面.【变式2】如图所示,在四棱锥S—ABCD中,底面ABCD是正方形,SA平面ABCD,且SA=AB,点E为AB的中点,点F为SC的中点.求证:(1)EF⊥CD;(2)平面SCD⊥平面SCE.【证明】(1)∵SA⊥平面ABCD,F为SC的中点,∴AF为Rt△SAC斜边SC上的中线.∴12AF SC=.又∵四边形ABCD是正方形,∴CB⊥AB.而由SA ⊥平面ABCD ,得CB ⊥SA ,∴CB ⊥平面SAB .又∵SB ⊂平面SAB ,∴CB ⊥SB .∴BF 为Rt △SBC 的斜边SC 上的中线,∴12BF SC =. ∴AF =BF ,∴△AFB 为等腰三角形.又E 为AB 的中点,∴EF ⊥AB .又CD ∥AB ,∴EF ⊥CD .(2)由已知易得Rt △SAE ≌Rt △CBE ,SE =EC ,即△SEC 是等腰三角形,∴EF ⊥SC .又∵EF ⊥CD 且SC ∩CD =C ,∴EF ⊥平面SCD .又EF ⊂平面SCE ,∴平面SCD ⊥平面SCE .类型二:分析法证明例4. 设0a >、0b >,且a b ≠,用分析法证明:3322a b a b ab ++>.【证明】要证3322a b a b ab +>+成立,只需证33220a b a b ab +--> 成立,即证22()()0a a b b b a -+->成立,即证22()()0a b a b -->成立,也就是要证2()()0a b a b +->成立,因为0a >、0b >,且a b ≠,所以2()()0a b a b +->显然成立,由此原不等式得证.【总结升华】1.在证明过程中,若使用综合法出现困难时,应及时调整思路,分析一下要证明结论成立需要怎样的充分条件是明智之举.从结论出发,结合已知条件,逐步反推,寻找使当前命题成立的充分条件的方法.2. 用分析法证明问题时,一定要恰当地用好“要证”“只需证”“即证”“也即证”等词语.举一反三:【变式1】设a ,b ,c ,d ∈R ,求证:ac bc +≤【证明】当ac +bc ≤0时,不等式显然成立.当ac +b d >0时,要证明ac bd +只需证明(ac +b d)2≤(a 2+b 2)(c 2+d 2),即证明a 2c 2+2abc d+b 2d 2≤a 2c 2+a 2d 2+b 2c 2+b 2d 2,只需证明2abc d≤a 2d 2+b 2c 2,只需证明(a d -bc )2≥0. 而上式成立,∴2222ac bd a b c d +≤+⋅+成立. 【变式2】求证:123(3)a a a a a --<---≥【证明】分析法: 要证123(3)a a a a a --<---≥成立, 只需证明321(3)a a a a a +-<-+-≥, 两边平方得232(3)232(2)(1)a a a a a a -+-<-+--(3)a ≥, 所以只需证明(3)(2)(1)a a a a -<--(3)a ≥, 两边平方得22332a a a a -<-+,即02<,∵02<恒成立,∴原不等式得证.【变式3】用分析法证明:若a >0,则212122-+≥-+a a a a . 【证明】要证212122-+≥-+a a a a , 只需证212122++≥++aa a a . ∵a >0,∴两边均大于零,因此只需证2222)21()21(++≥++a a a a 只需证)1(222211441222222a a a a a a a a +++++≥++++, 只需证)1(22122a a a a +≥+,只需证)21(2112222++≥+a a a a , 即证2122≥+a a ,它显然成立.∴原不等式成立.例5. 若a ,b ,c 是不全相等的正数,求证:lg2b a ++ lg 2c b ++ lg 2a c +>lg a +lg b +lg c . 【证明】要证lg 2b a ++ lg 2c b ++ lg 2a c +>lg a +lg b +lg c , 只需证lg 2b a +·2c b +·2a c +>lg (a ·b ·c ), 只需证2b a +·2c b +·2a c +>abc . 但是,2b a +0>≥ab ,2c b +0>≥bc ,2a c +0>≥ac .且上述三式中的等号不全成立,所以,2b a +·2c b +·2a c +>abc . 因此lg 2b a ++ lg 2c b ++ lg 2a c +>lg a +lg b +lg c . 【总结升华】这个证明中的前半部分用的是分析法,后半部分用的是综合法.在实际证题过程中,分析法与综合法是统一运用的,把分析法和综合法孤立起来运用是脱离实际的.没有分析就没有综合;没有综合也没有分析.问题仅在于,在构建命题的证明路径时,有时分析法居主导地位,综合法伴随着它;有时却刚刚相反,是综合法导主导地位,而分析法伴随着它.举一反三:【变式1】设a 、b 是两个正实数,且a ≠b ,求证:3a +3b >22ab b a +【证明】证明一:(分析法)要证3a +3b >22ab b a +成立,只需证(a +b )( 2a -ab +2b )>ab (a +b )成立,即需证2a -ab +2b >ab 成立.(∵a +b >0)只需证2a -2ab +2b >0成立,即需证()2b a ->0成立. 而由已知条件可知,a ≠b ,有a -b ≠0,所以()2b a ->0显然成立,由此命题得证. 证明二:(综合法)∵a ≠b ,∴a -b ≠0,∴()2b a ->0,即2a -2ab +2b >0,亦即2a -ab +2b >ab . 由题设条件知,a +b >0,∴(a +b )( 2a -ab +2b )>(a +b )ab即3a +3b >22ab b a +,由此命题得证.【变式2】ABC ∆的三个内角,,A B C 成等差数列,求证:113a b b c a b c +=++++ 【证明】要证原式成立,只要证3a b c a b c a b b c +++++=++, 即只要证1c a a b b c+=++ 即只要证2221bc c a ab ab b ac bc+++=+++; 而2A C B +=,所以060B =,由余弦定理得222b a c ac =+-所以222222222221bc c a ab bc c a ab bc c a ab ab b ac bc ab a c ac ac bc ab a c bc+++++++++===+++++-+++++. 类型三:反证法证明例6.【证明】=只需证22≠,即证10≠5≠,即证2125≠,而该式显然成立,≠不成等差数列.=2125≠∵,5≠,10≠∴,即3720+≠,即2≠,∴ ≠∴【总结升华】结论中含有“不是”“不可能”“不存在”等词语的命题,此类问题的反面比较具体,适宜应用反证法. 举一反三:【变式1】求证:函数()f x =不是周期函数.【证明】假设()f x =则存在常数T (T≠0)使得对任意x ∈R ,都有成立.上式中含x=0,则有cos01=,2m =π(m ∈z 且m≠0). ①再令x=T ,则有1=,2n =π(n ∈Z 且n ≠0). ②②÷①得:32n m =, 这里,m ,n 为非零整数,故n m为有理数,而32无理数,二者不可能相等. 因此3()cos f x x =不是周期函数.【变式2】设{a n }是公比为q 的等比数列,S n 为它的前n 项和.(1)求证:数列{S n }不是等比数列.(2)数列{S n }是等差数列吗?为什么?【解析】(1)证明:假设{S n }是等比数列,则2213S S S =, 即222111(1)(1)a q a a q q +=⋅++.∵a 1≠0,∴(1+q )2=1+q +q 2.即q =0,与等比数列中公比q ≠0矛盾.故{S n }不是等比数列.(2)解:①当q =1时,S n =na 1,n ∈N*,数列{S n }是等差数列.②当q ≠1时,{S n }不是等差数列,下面用反证法证明:假设数列{S n }是等差数列,则S 1,S 2,S 3成等差数列,即2S 2=S 1+S 3,∴2a 1(1+q )=a 1+a 1(1+q +q 2).∵a 1≠0,∴2+2q =1+1+q +q 2,得q =q 2.∵q ≠1,∴q =0,这与等比数列中公比q ≠0矛盾.从而当q ≠1时,{S n }不是等差数列.综上①②可知,当q =1时,数列{S n }是等差数列;当q ≠1时,数列{S n }不是等差数列.【变式3】已知数列{a n }的前n 项的和S n 满足S n =2a n -3n (n ∈N *).(1)求证{a n +3}为等比数列,并求{a n }的通项公式;(2)数列{a n }是否存在三项使它们按原顺序可以构成等差数列?若存在,求出一组适合条件的项;若不存在,请说明理由.【解析】 (1) 证明:∵S n =2a n -3n (n ∈N *),∴a 1=S 1=2a 1-3,∴a 1=3.又由112323(1)n n n n S a n S a n ++=-⎧⎨=-+⎩得a n +1=S n +1-S n =2a n +1-2a n -3, ∴a n +1+3=2(a n +3),∴{a n +3}是首项为a 1+3=6,公比为2的等比数列.∴a n+3=6×2n-1,即a n=3(2n-1).(2)解:假设数列{a n}中存在三项a r,a s,a t (r<s<t),它们可以构成等差数列.由(1)知a r<a s<a t,则2a s=a r+a t,∴6(2s-1)=3(2r-1)+3(2t-1),即2s+1=2r+2t,∴2s+1-r=1+2t-r(*)∵r、s、t均为正整数且r<s<t,∴(*)左边为偶数而右边为奇数,∴假设不成立,即数列{a n}不存在三项使它们按原顺序可以构成等差数列.例7. 已知a,b,c∈(0,1),求证:(1―a)b,(1―b)c,(1-c)a中至少有一个小于或等于14.【证明】证法一:假设三式同时大于14,即1(1)4a b->,1(1)4b c->,1(1)4c a->,三式相乘,得1 (1)(1)(1)64a ab bc c-⋅-⋅->,又211 (1)24a aa a-+⎛⎫-≤=⎪⎝⎭,同理1(1)4b b-≤,1(1)4c c-≤,以上三式相乘,得1 (1)(1)(1)64a ab bc c-⋅-⋅-≤,这与1(1)(1)(1)64a ab bc c-⋅-⋅->矛盾,故结论得证.证法二:假设三式同时大于14.∵0<a<1,∴1-a>0.∴(1)11(1)242a ba b-+≥->=.同理(1)122b c-+≥,(1)122c a-+≥.三式相加,得33 22 >,∴原命题成立.【总结升华】从正面证明,需要分成多种情形进行分类讨论,而从反面进行证明,只要研究一种或很少的几种情形的问题多用反证法.比如这类带有“至少有一个”等字样的数学问题.举一反三:【变式】已知,,,0,1a b c R a b c abc ∈++==,求证:,,a b c 中至少有一个大于32. 【证明】假设,,a b c 都小于或等于32, 因为 1abc =,所以,,a b c 三者同为正或一正两负,又因为0a b c ++=,所以,,a b c 三者中有两负一正,不妨设0,0,0a b c ><<,则1,b c a bc a +=-=由均值不等式得()2b c bc -+≥,即12a a ≥, 解得33273482a ≥≥=,与假设矛盾,所以 ,,abc 中至少有一个大于32. 例8.已知:直线a 以及A ∉a .求证:经过直线a 和点A 有且只有一个平面.【证明】(1)“存在性”,在直线a 上任取两点B 、C ,如图.∵A ∉a ,B ∈a ,C ∈a ,∴A 、B 、C 三点不在同一直线上.∴过A 、B 、C 三点有且只有一个平面α∵B ∈α,C ∈α,∴a ⊂α,即过直线a 和点A 有一个平面α.(2)“唯一性”,假设过直线a 和点A 还有一个平面β.∵A ∉a ,B ∈a ,C ∈a ,∴B ∈β,C ∈β.∴过不共线的三点A 、B 、C 有两个平面α、β,这与公理矛盾.∴假设不成立,即过直线a 和点A 不可能还有另一个平面β,而只能有一个平面α.【总结升华】 这里证明“唯一性”时用了反证法.对于“唯一性”问题往往使用反证法进行证明,要注意与“同一法”的区别与联系.举一反三:【变式】求证:两条相交直线有且只有一个交点.【证明】假设结论不成立,即有两种可能:(1)若直线a 、b 无交点,那么a ∥b ,与已知矛盾;(2)若直线a 、b 不止有一个交点,则至少有两个交点A 和B ,这样同时经过点A 、B 就有两条直线,这与“经过两点有且只有一条直线”相矛盾.综上所述,两条相交直线有且只有一个交点.。
直接证明与间接证明
到结果的证明方法,它是利用已知 (1)______ 条件和某些数学定义、公理、定理等,经过一系列的推理论证, 最后推导出所要证明的结论成立的证明方法. 分析法是从要证明的结论出发,逐步寻求使它成立的充 (2)______ 分条件,直到最后,把要证明的结论归结为判断一个明显成立 的条件(已知条件、定义、公理、定理等)为止的证明方法.
索因法.它常见的书面表达形式是:“要证…,只需证…”或
“…⇐…”.利用分析法证明“若 A 则 B”命题的分析法思考过 程可用框图表示为:
图 10-2-2 分析法的思考顺序执果索因的顺序,是从 B 上溯寻其论据, 如 C、C1、C2 等,再寻求 C、C1、C2 的论据,如 B、B1、B2、 B3、B4 等等,继而寻求 B、B1、B2、B3、B4 的依据,如果其中之 一 B 的论据恰为已知条件,于是命题已经得证.
2 比数列,则 bq =bpbr.
即(q+ 2)2=(p+ 2)(r+ 2). ∴(q2-pr)+(2q-p-r) ∵p、q、r∈N*,
2 q -pr=0 ∴ 2q-p-r=0
2=0.
p+r2 =pr,(p-r)2=0, .∴ 2
∴p=r.与 p≠r 矛盾. ∴数列{bn}中任意不同的三项都不可能成等比数列.
错源:犯循环论证的逻辑性错误
例 4:设 a、b、c、d 是正有理数, c、 d是无理数,求证: a c+b d是无理数.
误解分析:本题在推理证明过程中,容易犯循环论证的逻 辑性错误:因为 c为无理数,a 为正有理数,故 a c为无理数, 同理 b d也为无理数,两正无理数的和为无理数,故 a c+b d 为无理数.主要原因是对有关概念定理没有真正的理解掌握, 导致用任意的推广引申定理得出有利于论题成立的假判断.
2014数学文补教案—第六章不等式与推理证明
第六章不等式、推理与证明【知识特点】(1)不等式应用十分广泛,是高中数学的主要工具,试题类型多、方法多、概念要求较高,特别是不等式性质的条件与结论,基本不等式的条件等。
(2)不等式的性质本身就是解题的手段和方法,要认真理解和体会不等式性质的条件与结论,并运用它去解题。
(3)一元二次不等式的解法及求解程序框图一定要在理解的基础上掌握,因为求解的程序框图就是求解的一般方法与步骤。
(4)二元一次不等式组与简单的线性规划是解决最优化问题的一个重要手段,但画图时一定要细心,然后求出目标函数的最值。
(5)基本不等式的条件是解题的关键,一定要认真体会,会运用基本不等式来证明或求解问题。
(6)推理与证明贯穿于每一个章节,是对以前所学知识的总结与归纳,概念较多,知识比较系统,逻辑性较强,在高中数学中有着特殊地位。
【重点关注】不等式、推理与证明的学习应立足基础,重在理解,加强训练,学会建模,培养能力,提高素质,因此在学习中应重点注意以下几点:(1)学习不等式性质时,要弄清条件与结论,要克服“想当然”和“显然成立”的思维定势,要以比较准则和实数的运算法则为依据解决问题。
(2)解某些不等式时,要与函数的定义域、值域、单调性联系起来,注重数形结合思想,解含参数不等式时要注重分类讨论的思想。
(3)利用基本不等式求最值时,要满足三个条件:一正,二定,三相等。
(4)要强化不等式的应用意识,同时要注意到不等式与函数和方程的对比与联系,充分利用函数方程思想、数形结合思想处理不等式问题。
(5)利用线性规划解决实际问题,充分利用数形结合思想,会达到事半功倍的效果,因此力求画图标准。
(6)深刻理解合情推理的含义,归纳解决这类问题的规律和方法,掌握分析法、综合法、反证法的证明过程和解题特点。
(7)合情推理中主要包括类比推理与归纳推理两种推理模式,类比、归纳的数学思想是在进行问题探讨、研究时常见的思想方法。
(8)数学归纳法是证明数列、等式、不等式的有效方法,证明问题时要注意充分利用归纳假设,同时注意项数的变化,在证明不等问题时,注意放缩、作差等方法的应用。
高考一轮数学第六章 第六节 直接证明与间接证明
返回
返回
1.(教材习题改编)用反证法证明命题“三角形三个内角
至少有一个不大于60°”时,应假设
A.三个内角都不大于60° B.三个内角都大于60° C.三个内角至多有一个大于60° D.三个内角至多有两个大于60° 解析:假设为:“三个内角都大于60°”. 答案: B
(
)
返回
2.若函数F(x)=f(x)+f(-x)与G(x)=f(x)-f(-x),其中 f(x)的定义域为R,且f(x)不恒为零,则 A.F(x)、G(x)均为偶函数 B.F(x)为奇函数,G(x)为偶函数 ( )
第 六 章 不 等 式、 推 理 与 证 明
第 六 节 直 接 证 明 与 间 接 证 明
抓 基 础
明 考 向
教 你 一 招 我 来 演 练
提 能 力
返回
[备考方向要明了]
考 什 么 1.了解直接证明的两种基本方法——分析法和综合法. 了解分析法和综合法的思考过程及特点.
2.了解间接证明的一种基本方法——反证法.了解反证
结论,不从结论的反面出发进行推理,就不是反证法;
(3) 推导出的矛盾可能多种多样,有的与已知矛盾,有的与 假设矛盾,有的与事实矛盾等,推导出的矛盾必须是明 显的. 返回
返回
返回
[考题范例]
(12分) (2011· 安徽高考) (1)设x≥1,y≥1, 1 1 1 证明x+y+xy≤x+y +xy; (2)设1<a≤b≤c,证明logab+logbc +logca≤logba+logcb+logac.
返回
[精析考题]
[例3] (2011· 安徽高考)设直线l1:y=k1x+1,l2:y=k2x -1, 其中实数k1,k2满足k1k2+2=0. (1)证明l1与l2相交; (2)证明l1与l2的交点在椭圆2x2+y2=1上.
直接证明与间接证明_分析法
直接证明与间接证明_分析法直接证明和间接证明是逻辑学中的两种证明方法。
直接证明是通过事实和逻辑推理直接得出结论的方法,而间接证明则是通过反证法来达到证明的目的。
下面将从分析法的角度来探讨直接证明和间接证明的特点和应用。
首先,直接证明是一种简洁明确的证明方法。
它通过逐步展示事实和推理过程,直接地得出结论。
直接证明要求每一步的推理都是严谨和合乎逻辑的,不允许出现漏洞和错误。
直接证明的优点在于它的证明过程清晰明了,逻辑性强,容易理解和接受。
对于一些简单的问题,直接证明是最常见和最有效的证明方法。
其次,直接证明适用于一些直观的、已知的情况。
例如,要证明一个三角形的三个内角之和等于180度,可以通过直接证明来达到目的。
我们可以利用平行线和同位角的性质,逐步推导出对应角相等,从而得出结论。
这种情况下,我们有直观的几何图形和一些已知的性质,通过推理和演绎可以直接得出结论。
然而,直接证明也有一定的局限性。
对于一些复杂的问题,直接证明可能会变得更加困难和繁琐。
有时候,问题本身的复杂性以及需要证明的结论的复杂性会导致直接证明的推理过程变得更加难以理解和掌握。
在这种情况下,间接证明就可以派上用场。
间接证明是一种通过反证法推导出结论的方法。
它假设待证命题的否定是成立的,然后通过推理和推导得出矛盾的结论,从而证明了原命题的正确性。
间接证明的优点在于它能够化复杂的问题为简单的矛盾,通过推理和演绎来证明原命题的正确性。
它可以避免直接证明中的复杂推理和繁琐的计算。
间接证明适用于一些复杂、难以直接证明的问题。
例如,欧几里得几何中的数学定理费马大定理就是一个典型的间接证明的例子。
费马大定理认为不存在任何正整数n大于2的整数解(x,y,z),使得x^n+y^n=z^n成立。
然而,这个定理的直接证明非常困难。
数学家费马通过间接证明的方法证明了该定理的正确性,从而为数学界做出了重大贡献。
总结起来,直接证明和间接证明是逻辑学中两种常见的证明方法。
直接证明与间接证明 知识点+例题+练习
教
学
过
程
1.分析法的特点:从未知看需知,逐步靠拢已知.
2.综合法的特点:从已知看可知,逐步推出未知.
3.分析法和综合法各有优缺点.分析法思考起来比较自然,容易
寻找到解题的思路和方法,缺点是思路逆行,叙述较繁;综合法从
条件推出结论,较简捷地解决问题,但不便于思考.实际证题时常
常两法兼用,先用分析法探索证明途径,然后再用综合法叙述出来.
4.利用反证法证明数学问题时,要假设结论错误,并用假设的命
题进行推理,没有用假设命题推理而推出矛盾结果,其推理过程是
错误的.
基础巩固题组
(建议用时:40分钟)
一、填空题
1.(2014·安阳模拟)若a<b<0,则下列不等式中成立的是________.
①1
a<
1
b;②a+
1
b>b+
1
a;③b+
1
a>a+
1
b;④
b
a<
b+1
a+1
.
2.用反证法证明命题:“已知a,b∈N,若ab可被5整除,则a,b中至少有一个能被5整除”时,应反设________成立.
3.(2014·上海模拟)“a=1
4”是“对任意正数x,均有x+
a
x≥1”的
________条件.教学效果分析。
高考数学一轮复习 第六章 不等式、推理与证明 6-6 直接证明与间接证明课件 文
∴f(0)≥0.于是 f(0)=0.
(2)对于 f(x)=2x,x∈[0,1],f(1)=2 不满足新定义中的条件②, ∴f(x)=2x,(x∈[0,1])不是理想函数. 对于 f(x)=x2,x∈[0,1],显然 f(x)≥0,且 f(1)=1. 任意的 x1,x2∈[0,1],x1+x2≤1, f(x1+x2)-f(x1)-f(x2)=(x1+x2)2-x21-x22=2x1x2≥0, 即 f(x1)+f(x2)≤f(x1+x2). ∴f(x)=x2(x∈[0,1])是理想函数. 对于 f(x)= x,x∈[0,1],显然满足条件①②. 对任意的 x1,x2∈[0,1],x1+x2≤1, 有 f2(x1+x2)-[f(x1)+f(x2)]2=(x1+x2)-(x1+2 x1x2+x2)=-2 x1x2≤0, 即 f2(x1+x2)≤[f(x1)+f(x2)]2.∴f(x1+x2)≤f(x1)+f(x2),不满足条件③. ∴f(x)= x(x∈[0,1])不是理想函数.综上,f(x)=x2(x∈[0,1])是理想函数, f(x)=2x(x∈[0,1])与 f(x)= x(x∈[0,1])不是理想函数.
命题角度2 分析法的应用
典例2
已知△ABC的三个内角A,B,C成等差数列,A,B,C的对边分别为a,b,c.
求证:a+1 b+b+1 c=a+3b+c. 证明 要证a+1 b+b+1 c=a+3b+c,
即证a+a+b+b c+a+b+b+c c=3,
也就是a+c b+b+a c=1,
只需证c(b+c)+a(a+b)=(a+b)(b+c),
2.分析法 (1)定义:从___要__证__明__的__结__论___出发,逐步寻求使它成立的__充__分__条__件_,直到最后,把要证明的结论归 结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止,这种证明方法叫做分析法. (2)框图表示: Q⇐P1 ―→ P1⇐P2 ―→ P2⇐P3 ―→…―→ 得到一个明显成立的条件 (其中Q表示要证明的结 论). (3)思维过程:执果索因.
形式推理的直接证明与间接证明方法
形式推理的直接证明与间接证明方法形式推理作为数理逻辑的重要分支,通过严密的推理方法,可以从已知的前提推导出合理的结论。
在形式推理中,直接证明和间接证明是两种常见的证明方法。
本文将就这两种方法进行详细探讨,并分析其适用场景和特点。
一、直接证明方法直接证明方法是一种简单直接的推理方式,通过从已知的前提出发,逐步推导到目标结论,以达到证明的目的。
下面以一个具体的例子来说明直接证明的思路和步骤。
假设要证明一个命题P蕴含命题Q,即P→Q。
首先,我们可以从已知P的前提出发,通过逻辑推理得到Q的结论,即推导出Q。
在直接证明中,推导过程中的每一步都必须建立在已知的前提和已证明的结论之上,每一步都要经过严格的逻辑推导,确保推导过程的准确性和有效性。
直接证明方法的优点是简单直观,容易理解和掌握,推理过程清晰明了。
然而,直接证明适用于简单明了的命题,对于复杂或者繁琐的命题,推导过程可能会非常冗长和复杂,不利于推理的简化和提高效率。
二、间接证明方法间接证明方法是一种通过反证法来证明命题的推理方式。
当我们希望证明一个命题P时,可以先假设P不成立,即假设非P为真,然后从这一假设出发,推导出矛盾的结论,再通过排除法得出非P为假,即P成立的结论。
反证法的基本思想是,通过假设命题的反面来推导出矛盾,从而可以得出命题成立。
这种方法在一些特定的证明中非常有效,特别是当直接证明非常困难或者不可行时。
与直接证明方法相比,间接证明方法的优点在于,可以简化复杂的推理过程,通过将问题转化为矛盾的形式,更容易找到解决方案。
然而,间接证明的缺点是需要注意推导步骤的准确性,避免出现漏洞或者错误的推理过程。
三、直接证明与间接证明的比较分析直接证明和间接证明是形式推理中常用的两种方法,它们各有优劣,适用于不同的推理场景。
直接证明方法适用于简单清晰的命题,推导过程相对直接明了,容易理解和掌握。
对于直接证明适用的命题,我们可以通过逐步推导的方式来得到结论。
福建省高中数学教材目录
人教A版――必修4
第一章集合与函数的概念
1.1集合
1.2函数及其表示
1.3函数的基本性质
章综合复习与测试
第二章基本初等函数(I)
2.1指数函数
2.2对数函数
2.3幂函数
章综合复习与测试
第三章函数的应用
3.1函数与方程
3.2函数模型及其应用
章综合复习与测试
第一章三角函数
1.1任意角和弧度制
第三章三角恒等变换
3.1两角和与差的正弦、余弦和正.
3.2简单的三角恒等变换
章复习与测试
人教A版――必修5
人教A版――必修3
人教A版――必修2
第一章解三角形
1.1正弦定理和余弦定理
1.2应用举例
1.3实习作业
章复习与测试
第二章数列
2.1数列的概念与简单表示法
2.2等差数列
2.3等差数列的前n项和
2.4等比数列
4.4一员线性回归案例
章综合
第五章推理与证明
5.1合情推理和演绎推理
5.2直接证明与间接证明
章综合
第六章框图
6.1知识结构图
6.2工序流程图
6.3程序框图
章综合
第七章数系的扩充与复数
7.1解方程与数系的扩充
7.2复数的概念
7.3复数的四则运算
7.4副数的几何表示
章综合
总复习
湘教版――选修2-1
湘教版――选修2-2
5.4复数的几何表示
章综合
第六章推理与证明
6.1合情推理和演绎推理
6.2直接证明与间接证明
6.3数系归纳法
章综合
总复习
第七章计数原理
第六节 直接证明和间接证明
x1+x2 1 因此, [f(x1)+f(x2)]>f 2 . 2
数学
首页
上一页
下一页
末页
第六节
直接证明和间接证明
结束
[一题多变]
fx1+fx2 x1+x2 证明:要证明 ≥f , 2 2
3 - x 1 h′(x)= -x2+x-1= . x+1 x+1
h(x)在(-1,0)上为增函数,在(0,+∞)上为减函数. h(x)max=h(0)=0,h(x)≤h(0)=0,即 f(x)≤g(x).
数学
首页
上一页
下一页
末页
第六节
直接证明和间接证明
结束
考点二
x1+x2 1 1 [典例] 证明:要证 [f(x1)+f(x2)]>f ,即证明2(tan x1 2 2
3x1-2x1+3x2-2x2 x1+x2 x1+x2 即证明 ≥3 - 2· ,因此只要证明 2 2 2 3x1+3x2 x1+x2 3x1+3x2 x1+x2 -(x1+x2)≥3 -(x1+x2),即证明 ≥3 , 2 2 2 2 3x1+3x2 因此只要证明 ≥ 3x1· 3x2, 2 由于 x1,x2∈R 时,3x1>0,3x2>0, 3x1+3x2 由基本不等式知 ≥ 3x1· 3x2显然成立,故原结论成立. 2
∴cos x1cos x2>0,sin(x1+x2)>0,1+cos(x1+x2)>0,
数学
首页
上一页
下一页
末页
第六节
直接证明和间接证明
结束
故只需证明 1+cos(x1+x2)>2cos x1cos x2, 即证 1+cos x1cos x2-sin x1sin x2>2cos x1cos x2, 即证:cos(x1-x2)<1. 由
数学证明中的直接证明与间接证明
数学证明中的直接证明与间接证明数学证明是数学领域中的重要内容,通过逻辑推理和严格的论证,以确保数学理论的正确性和可信度。
数学证明通常可以分为直接证明和间接证明两种形式。
本文将介绍直接证明和间接证明的含义、特点以及应用。
一、直接证明直接证明是一种常用的证明方法,它通过逻辑的推理和论证,直接从已知的命题出发,推导出所要证明的结论。
直接证明通常遵循以下步骤:1. 确定所要证明的命题或结论。
2. 列出已知条件和前提条件。
3. 运用逻辑推理、定义和定理等数学原理,一步一步地推导出结论。
4. 分析并验证证明过程中的每一步是否严谨、正确。
5. 结束证明,得出所要证明的命题。
直接证明的特点是逻辑性强、推理过程直观,并且能够根据已知条件直接得出结论。
因此,直接证明在数学证明中广泛应用于各个领域。
例如,我们来证明一个简单的数学定理:两个偶数的和是偶数。
定理:若a和b为偶数,则a+b为偶数。
证明:设a=2m,b=2n,其中m和n为整数。
则a+b=2m+2n=2(m+n)。
由于m和n为整数,所以m+n也是整数。
因此,a+b=2(m+n)为偶数。
证毕。
二、间接证明间接证明是一种通过反证法推导出结论的证明方法。
它假设所要证明的结论为假,通过运用逻辑推理和推导,得出与已知条件或已知结论相矛盾的结论,从而推断出所要证明的结论为真。
间接证明通常遵循以下步骤:1. 确定所要证明的命题或结论。
2. 假设所要证明的命题为假。
3. 运用逻辑推理和推导,推出与已知条件或已知结论相矛盾的结论。
4. 推断出所要证明的命题为真。
5. 结束证明,得出所要证明的命题。
间接证明的特点是通过对反证假设进行逻辑推理,将所要证明的结论转化为与已知条件相矛盾的结论。
它常常用于证明一些与质数、无理数、等级等有关的命题。
例如,我们来证明一个著名的数学定理:根号2是一个无理数。
定理:根号2是一个无理数。
证明:假设根号2是一个有理数,可以表示为根号2=p/q,其中p 和q互质。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6.2.1 直接证明:分析法与综合法
1.已知y >x >0,且x +y =1,那么
( ) A .x <x +y 2<y <2xy B .2xy <x <x +y 2<y
C .x <x +y 2<2xy <y
D .x <2xy <x +y 2<y
答案 D
解析 ∵y >x >0,且x +y =1,∴设y =34,x =14,
则x +y 2=12,2xy =38,∴x <2xy <x +y 2<y ,故选D.
2.欲证2-3<6-7成立,只需证
( ) A .(2-3)2<(6-7)2
B .(2-6)2<(3-7)2
C .(2+7)2<(3+6)2
D .(2-3-6)2<(-7)2
答案 C
解析 根据不等式性质,a >b >0时,才有a 2>b 2, ∴只需证:2+7<6+3,
只需证:(2+7)2<(3+6)2.
3.求证:1
log 519+2log 319+3log 219
<2.
证明 因为1
log b a
=log a b ,所以左边
=log 195+2log 193+3log 192
=log 195+log 1932+log 1923=log 19(5×32×23)=log 19360.
因为log 19360<log 19361=2,
所以1log 519+2log 319+3
log 219
<2.
4.已知1-tan α
2+tan α=1,求证:cos α-sin α=3(cos α+sin α).
证明 要证cos α-sin α=3(cos α+sin α),
只需证cos α-sin αcos α+sin α=3,只需证1-tan α1+tan α
=3, 只需证1-tan α=3(1+tan α),只需证tan α=-12
, ∵1-tan α2+tan α
=1,∴1-tan α=2+tan α, 即2tan α=-1.∴tan α=-12
显然成立, ∴结论得证.
1.综合法证题是从条件出发,由因导果;分析法是从结论出发,执果索因.
2.分析法证题时,一定要恰当地运用“要证”、“只需证”、“即证”等词语.
3.在实际证题过程中,分析法与综合法是统一运用的,把分析法和综合法孤立起来运用是脱离实际的.没有分析就没有综合;没有综合也没有分析.问题仅在于,在构建命题的证明路径时,有时分析法居主导地位,综合法伴随着它;有时却刚刚相反,是综合法居主导地位,而分析法伴随着它.。