信号与系统(吴大正)教案(全)西安电子科技大学PPT课件

合集下载

信号与系统教案第5章(吴大正)

信号与系统教案第5章(吴大正)

二、收敛域
只有选择适当的值才能使积分收敛,信号f(t)的双 边拉普拉斯变换存在。 使 f(t)拉氏变换存在的取值范围称为Fb(s)的收敛域。 下面举例说明Fb(s)收敛域的问题。
5.1
拉普拉斯变换
例1 因果信号f1(t)= et (t) ,求其拉普拉斯变换。 解
( s ) t e 1 ( ) t j t F ( s ) e e d t [ 1 lim e e ] 1 b 0 0 ( s ) ( s ) t 1 s , Re[s] jω 不定 , 无界 , t st
t
f1 (t) 1 0 1 f2 (t) 1 t
例1:求如图信号的单边拉氏变换。 解:f1(t) = (t) –(t-1),f2(t) = (t+1) –(t-1) 1 F1(s)= (1 e s ) s F2(s)= F1(s)
-1
0
1
t
5.2
拉普拉斯变换性质
f1(t) 1 0 f2(t) 1 0 2 -1 4 t 1 t
= () + 1/j
(3)0 >0,F(j)不存在。 例f(t)=e2t(t) ←→F(s)=1/(s –2) , >2;其傅里叶变 换不存在。
5.2
拉普拉斯变换性质
5.2 拉普拉斯变换性质 一、线性性质
若f1(t)←→F1(s) Re[s]>1 , f2(t)←→F2(s) Re[s]>2 则 a1f1(t)+a2f2(t)←→a1F1(s)+a2F2(s) Re[s]>max(1,2)
例2:已知f1(t) ←→ F1(s), 求f2(t)←→ F2(s) 解: f2(t) = f1(0.5t) –f1 [0.5(t-2)] f1(0.5t) ←→ 2F1(2s)

第二章 信号与线性系统 吴大正 教材课件

第二章 信号与线性系统 吴大正 教材课件

第2章 离散信号与系统的Z域分析 连续系统的时域分析 1.齐次解 齐次解满足齐次微分方程
y ( n ) (t ) an 1 y ( n1) (t ) a0 y (t ) 0
为 n λ +a n-1λn-1+…+a1λ+a0=0
n an 1n 1
第2章 离散信号与系统的Z域分析 连续系统的时域分析 注意:系统初始值0-,0+的关系:
y(0-)= yx(0-)+yf(0-) y(0+)= yx(0+)+yf(0+)
对于因果系统: 对于时不变系统:
Yf(j)(0-)=0 yx(0+)= yx(0-)
y(0-)= yx(0-)= yx(0+);
奇异函数系数平衡法:分析两边δ(t)项的系数应相等,得 应包括 冲激函数,从而 y(t ) 在t=0处将跳变。
对等式两端从0-到0+进行积分:
y(t )

0
0
y(t )dt 3
0
0
y(t )dt 2
0
0
y(t )dt 2 (t )dt 6 (t )dt
第2章 离散信号与系统的Z域分析 连续系统的时域分析
第五讲
教学要点:
冲激响应 阶跃响应
第2章 离散信号与系统的Z域分析 连续系统的时域分析
冲激响应
冲激响应 一线性非时变系统,当其初始状态为零时,输入为单 位冲激信号δ(t)所引起的响应称为单位冲激响应,简称冲激

y(n-1)(0)=λn-1 1c1+ λn-1 2c2+…+λn-1 ncn+y(n-1)p(0)

西安电子科技大学信号与系统课件ppt-第4章___连续系统的频域分析(共102张PPT)

西安电子科技大学信号与系统课件ppt-第4章___连续系统的频域分析(共102张PPT)
n1
1 2
An{[cos(n0t
n)
j sin(n0t
n )]
[cos(0t n ) j sin(n0t n )]}
c0
n1
1 2
An [cos(n0t
n)
j sin(n0t
n )]
1 2
An [cos(0t
n)
j sin(n0t
n )]
c0
n1
1 2
An [cos(n0t
第4章 连续系统的频域分析
第4章 连续(liánxù)系统的频域分析
4.1 信号的正交分解与傅里叶级数
4.2 信号的频谱
4.3 傅里叶变换的性质
4.4 线性非时变系统的频域分析(fēnxī)
4.5 傅里叶变换计算机模拟举例
《 信号与线性系统》
第一页,共一百零二页。
第4章 连续系统的频域分析
4.1 信号的正交分解(fēnjiě)与傅里叶级数
f (t)sin(2 nf )dt
bn
2 T
2 0
f (t) cos(2 nf )dt
c 2 2 f (t)dt T0
(4―7) (4―8) (4―9)
《 信号与线性系统》
第八页,共一百零二页。
第4章 连续系统的频域分析
根 据 (gēnjù) 三 角 函 数 的 运 算 法 则 , 式 (4―6) 还 可 写 成 式
f (t) 1 F ( )e j td
2
(4―27)
《 信号与线性系统》
第二十六页,共一百零二页。
第4章 连续系统的频域分析
式(4―24)和(4―27)是非常重要的一对式子,重写如
下(rúxià),并称前式为f(t)的傅里叶变换,后式为函数F(ω)的

信号与线性系统分析第一章课件吴大正主编

信号与线性系统分析第一章课件吴大正主编

其中包含的信息。

在本课程中对“信息”和“消息”两词未加严格区分。

3、信号反映信息的物理量,是信息的物理体现,是信息的载体。

为了有效地传播和利用消息,常常需要将消息转换成便于传输和处理的信号。

信号是消息的载体,一般表现为随时间变化的某种物理量。

根据物理量的不同特性,可把信号区分为声信号、光信号、电信号等不同类别。

在各种信号中,电信号是一种最便于传输、控制与处理的信号。

同时,在实际应用中,许多非电信号常可通过适当的传感器变换成电信号。

因此,研究电信号具有重要意义。

在本课程中,若无特殊说明,信号一词均指电信号。

信号举例信号可以描述范围极为广泛的一类物理现象,如,声音和图像(屏幕)。

日本人寻找大庆60年代初日本某咨询公司从我国公开发行的《人民画报》照片上发现北京的公共汽车上没有气包了,而这气包正是中国缺油的标志,这个微小的变化使他们推断出中国一定找到了大油田。

事隔不久,《人民日报》刊登了《大庆精神大庆人》的文章,肯定中国有了大油田,日本人储存了这个信息。

1966年7月《人民画报》刊登了王进喜的照片,照片上的王进喜戴着厚厚的皮帽。

日本人从照片上帽子的保暖性判断,大庆在零下30多度的地区,从帽子的式样分析,很可能在中国的东北地区,再从冬天的温度测算大体的纬度得出结论,大庆大致在哈尔滨到齐齐哈尔之间。

这当然还只是推测。

为了验证这些推测,他们又利用来中国的机会,测量了运送原油的火车上的灰尘厚度。

火车在大地上行走,不断积累着灰尘。

从灰尘的厚度可以测算火车行走的时间和从出发地到目的地北京之间的距离。

灰尘厚度表示的时间和距离与日本人从帽子上的信息所作的分析是一致的。

1966年,中国官方报纸在介绍王铁人时提到了马家窑这个地方,在报道中举了王进喜等石油工人是靠人推肩把钻机运送到现场的例子。

日本人从这篇报道中认为,大庆油田离车站不远,如果很远,是无法用人力搬运的。

既然在马家窑,日本人就从精确的地图上找到了马家窑。

日本人还从当地的地质结构推测松辽盆地一带称为大庆油田,对大庆油田的规模有了比较准确的认识。

第一章信号与线性系统吴大正教材课件

第一章信号与线性系统吴大正教材课件

第 1 章 信号与系统的基本概念
二、信号的分类
1. 连续信号与离散信号
连续信号:一个信号,如果在某个时间区间内除有限个间断点 外都有定义, 就称该信号在此区间内为连续时间信号, 简称 连续信号。 这里“连续”一词是指在定义域内 (除有限个间断 点外)信号变量是连续可变的。至于信号的取值,在值域内可 以是连续的,也可以是跳变的。
第 1 章 信号与系统的基本概念
离散信号: 仅在离散时刻点上有定义的信号称为离散时间信 号,简称 离散信号 。这里“离散”一词表示自变量只取离散 的数值,相邻离散时刻点的间隔可以是相等的,也可以是不 相等的。在这些离散时刻点以外,信号无定义。信号的值域 可以是连续的, 也可以是不连续的。
定义在等间隔离散时刻点上的离散信号也称为序列, 通 常记为f(k),其中k称为序号。与序号 m相应的序列值 f(m)称为 信号的第m个样值。 例如:
f2 (t)
?
? (t)
?
??1(t ?
?
0)
??0(t ? 0)
图1.1-2(c)表示一个延时的单边指数信号, 其表达式为
f3 (t)
?
?? Ae?? ?
(t (t? t0 )
?
t0 )
??0
(t ? t0 )
式中,A是常数, α>0。信号变量 t在定义域(-∞, ∞)内连续变 化,信号f3(t)在值域[0, A) 上连续取值。注意,f3(t)在t=t0处 有间断点。
第 1 章 信号与系统的基本概念
极限 :对于间断点处的信号值一般不作定义,这样做不会影响 分析结果。如有必要, 也可按高等数学规定,定义信号 f(t)在 间断点 t0处的信号值等于其左极限 f(t0-)与右极限 f(t0+)的算术平 均值, 即

西安电子科技大学信号与系统课件ppt-第1章信号与系统

西安电子科技大学信号与系统课件ppt-第1章信号与系统
般步骤: (1)若信号 f(t)→f(at+b),则先反转,后展缩,再平 移; ( 2 ) 若信号 f(mt+n)→f(t) ,则先平移,后展缩,再
反转;
(3)若信号f(mt+n)→f(at+b),则先实现f(mt+n)→f(t), 再进行f(t)→f(at+b)。
例1―4试粗略地画出下列信号的波形图: (1) f1(t)=(2-3e-t)· u(t); (2) f2(t)=(5e-t-5e-3t)· u(t); (3) f3(t)=e-|t|(-∞<t<∞); (4) f4(t)=cosπ(t-1)· u(t+1); (5) f5(t)=sin π /2 (1-t)· u(t-1); (6) f6(t)=e-tcos10πt(u(t-1)-u(t-2));
系统的输入和输出是连续时间变量 t 的函数,叫作
连续时间系统。输入用f(t)表示,输出用y(t)表示。
图1.6 连续时间信号及反转波形
图1.7 离散时间信号及反转波形
7.平移
以变量t- t0代替信号f(t)中的独立变量t,得信号f(tt0) ,它是信号 f(t) 沿时间轴平移 t0 的波形。这里 f(t) 与 f(t-t0)的波形形状完全一样,只是在位置上移动了t0(t0为 一实常数)。 t0 >0,f(t)右移; t0 <0,f(t)左移;平移距 离为| t0 |。 图1.8表示连续时间信号的平移。这类信号在雷 达、声纳和地震信号处理中经常遇到。利用位移信号
图1.9 f(t)、f(2t)、f(t/2)的波形
9.综合变换 以变量at+b代替f(t)中的独立变量t,可得一新的信 号函数 f(at+b) 。当 a> 0时,它是 f(t) 沿时间轴展缩、平 移后的信号波形;当a<0时,它是f(t)沿时间轴展缩平 移和反转后的信号波形,下面举例说明其变换过程。

信号与线性系统分析--吴大正课件

信号与线性系统分析--吴大正课件
解答
第 18 页
解答
(1)sin2t是周期信号,其角频率和周期分别为 ω1= 2 rad/s , T1= 2π/ ω1= πs
cos3t是周期信号,其角频率和周期分别为 ω2= 3 rad/s , T2= 2π/ ω2= (2π/3) s
由于T1/T2= 3/2为有理数,故f1(t)为周期信号,其周期为 T1和T2的最小公倍数2π。 (2) cos2t 和sinπt的周期分别为T1= πs, T2= 2 s,由于 T1/T2为无理数,故f2(t)为非周期信号。
28k4xk15xk2消去xk得yk2yk13yk24fk15fk2xkfk2xk13xk2系统的特性系统的分析方法16系统的特性与分析方法一系统的特性连续系统与离散系统动态系统与即时系统但输入单输出与多输入多输出系统线性系统与非线性系统时不变与时变系统因果系统与非因果系统稳定系统与不稳定系统常用分类方法
按所具有的时间特性划分:
确定信号和随机信号; 连续信号和离散信号;
周期信号和非周其信号; 能量信号和功率信号;
一维信号和多维信号; 因果信号与反因果信号;
实信号与复信号;
左边信号与右边信号。
第 11 页
1. 确定信号和随机信号
•确定性信号:可用确定的时间函数表示的信号:f(t)
但实际传输的信号是不确定的,常受 到各种干扰及噪声的影响。 •随机信号: 取值具有不确定性的信号: 电子系统中的起伏热噪声、雷电干扰信号。 •伪随机信号:貌似随机而遵循严格规律产生的信号: 伪随机码。
第 19 页
离散周期信号举例1
例 判断正弦序列f(k) = sin(βk)是否为周期信号,若是, 确定其周期。
解 f (k) = sin(βk) = sin(βk + 2mπ) , m = 0,±1,±2,…

第二章 信号与线性系统 吴大正 教材课件

第二章 信号与线性系统 吴大正 教材课件
yf (0) 2 yf (0) 2
对于t>0时
yf (t ) 3 yf (t ) 2 y f (t ) 6 (t )
第2章 离散信号与系统的Z域分析 连续系统的时域分析
y f (t ) C f 1e t C f 2e 2t 3;
y f (t ) 4e t e 2t 3, t 0
y (t ) an 1 y
(n)
( n 1)
(t ) a0 y (t ) bm f
m j 0
( m)
(t ) b0 f (t )
(2.1-1)
可表示为:
ai y ( i ) (t ) b j f ( j ) (t )
i 0
n
式中an-1,…,a1,a0和bm,…,b1,b0均为常数。该方程的全解由齐 次解和特解组成。齐次方程的解即为齐次解,用yh(t)表示。非齐 次方程的特解用yp(t)表示。即有 y(t)=yh(t)+yp(t) (2.1-2)
例2―3 求微分方程y″(t)+3y′(t)+2y(t)=f(t)的齐次解。 解:由特征方程
2 3 2 0 解得特征根λ1=-1,λ2=-2。
因此该方程的齐次解
yh(t)=c1e-t+c2e-2t
第2章 离散信号与系统的Z域分析 连续系统的时域分析 例2-1 求微分方程y″(t)+2y′(t)+y(t)=f(t)的齐次解。 解 由特征方程 2 2 1 0 解得二重根λ1=λ2=-1,
y x (t ) 4e t 2e 2t , t 0
第2章 离散信号与系统的Z域分析 连续系统的时域分析 2、零状态响应yf(t)

信号与系统教案(吴大正第四版西电PPT)第8章

信号与系统教案(吴大正第四版西电PPT)第8章
第8-13页

©西安电子科技大学电路与系统教研中心
信号与系统 电子教案
8.2
连续系统状态方程的建立
2013-7-12
例1 某系统的微分方程为 y(t) + 3 y (t) + 2y(t) = 2 f (t) +8 f (t) 试求该系统的状态方程和输出方程。
方法一:画出直接形式的信号流图
2( s 4) 解由微分方程不难写出其系统函数 H ( s ) 2 s 3s 2
R1 x1 (t ) L x (t ) 1 2 C

1 1 L x1 (t ) L 1 x (t ) 2 0 R2 C
0 u (t ) s1 1 u (t ) s2 R2 C
通常将状态方程和输出方程总称为动态方程或系统方程。
第8-6页

©西安电子科技大学电路与系统教研中心
信号与系统 电子教案
8.1
状态变量与状态方程
2013-7-12
对于一般的n阶多输入-多 ff1(t) 2(t) 输出LTI连续系统,如图 。 其状态方程和输出方程为
fp(t)

{xi(t0)}
y1(t) y2(t) ┇
首先选择状态变量 。 通常选电容电压和电 感电流为状态变量。 必须保证所选状态变 量为独立的电容电压 和独立的电感电流。
uC1 uC1 uC2 uC3 us uC2
(a) 任选两个电容电压 独立
(b) 任选一个电容电压 独立 iL1
iL1
iL3
iL2
is
iL2
四种非独立的电路结构
(c) 任选两个电感电流 独立 (d) 任选一个电感电流 独立

信号与系统教案(吴大正第四版西电PPT)第2章

信号与系统教案(吴大正第四版西电PPT)第2章
0− 0− 0− 0−
0+
由于积分在无穷小区间[0-, 进行的 进行的, 连续, 由于积分在无穷小区间 ,0+]进行的,且y(t)在t=0连续, 在 连续 0+ 0+ 故 ∫0− y(t )dt = 0, ∫0− ε (t )dt = 0 于是由上式得 [y’(0+) – y’(0-)] + 3[y(0+) – y(0-)]=2 考虑 y(0+) = y(0-)=2 ,所以 y’(0+) – y’(0-) = 2 , y’(0+) = y’(0-) + 2 =2 由上可见,当微分方程等号右端含有冲激函数( 由上可见,当微分方程等号右端含有冲激函数(及其各 阶导数) 响应y(t)及其各阶导数中,有些在 处将 及其各阶导数中, 阶导数)时,响应 及其各阶导数中 有些在t=0处将 发生跃变。但如果右端不含时,则不会跃变。 发生跃变。但如果右端不含时,则不会跃变。
一、卷积代数 二、奇异函数的卷积特性 三、卷积的微积分性质 四、卷积的时移特性
点击目录
第2-1页
,进入相关章节
■ห้องสมุดไป่ตู้
©西安电子科技大学电路与系统教研中心
信号与系统 电子教案
2.1
LTI连续系统的响应 LTI连续系统的响应
第二章 连续系统的时域分析
LTI连续系统的时域分析,归结为:建立并求解线 连续系统的时域分析,归结为: 连续系统的时域分析 性微分方程。 性微分方程。 由于在其分析过程涉及的函数变量均为时间t, 由于在其分析过程涉及的函数变量均为时间 ,故 称为时域分析法 这种方法比较直观,物理概念清楚, 时域分析法。 称为时域分析法。这种方法比较直观,物理概念清楚, 是学习各种变换域分析法的基础。 是学习各种变换域分析法的基础。

信号与系统教案第6章(吴大正)

信号与系统教案第6章(吴大正)
第6-13页

z z 1
F(z)=
z ( z 1)
2
©西安电子科技大学电路与系统教研中心
信号与系统 电子教案
6.2
z变换的性质
三、序列乘ak(z域尺度变换)
若 f(k) ←→ F(z) , <z< , 且有常数a0

akf(k) ←→ F(z/a) , a<z<a

信号与系统 电子教案
6.2
z变换的性质
五、序列乘k(z域微分)
若 f(k) ←→F(z) , <z< 则 d kf (k ) z F ( z ) , <z<
dz
例:求f(k)= kε(k)的z变换F(z). 解:
( k )
z z 1
d z ( z 1) z z k ( k ) z z 2 2 d z z 1 ( z 1) ( z 1)
F1 ( z )
k


(k ) z
k

k


(k ) z
k
1
可见,其单边、双边z变换相等。与z 无关, 所以其收敛域为整个z 平面。 (2) f2(k)的双边z 变换为 F2(z) = z2 + 2z + 3 + 2z-1 + z-2 收敛域为0<z< ∞ f2 (k)的单边z 变换为
F (z)
F (z)
k


f (k ) z
k
k
称为序列f(k)的 双边z变换 称为序列f(k)的 单边z变换


f (k ) z
k 0

第一章信号与线性系统吴大正教材课件.ppt

第一章信号与线性系统吴大正教材课件.ppt

第 1 章 信号与系统的基本概念 例 1试判断下列信号是否为周期信号。若是,确定其周期。 (1) f1(t)=sin 2t+cos 3t (2) f2(t)=cos 2t+sinπt 解 我们知道,如果两个周期信号x(t)和y(t)的周期具有公 倍数,则它们的和信号
f(t)=x(t)+y(t) 仍然是一个周期信号, 其周期是x(t)和y(t)周期的最小公倍数。
第 1 章 信号与系统的基本概念
f1(t) A
f2(t) 1
f3(t) A
-2 -1
01
2t
o
-A
t
o t0
t
(a)
(b)
(c)
图 1.1-2 连续信号 图1.1-2(a)是正弦信号,其表达式
f1(t) Asin(t)
第 1 章 信号与系统的基本概念
图1.1-2(b)是单位阶跃信号, 通常记为ε(t),其表达式为
第 1 章 信号与系统的基本概念
二、信号的分类
1. 连续信号与离散信号
连续信号:一个信号,如果在某个时间区间内除有限个间断点 外都有定义, 就称该信号在此区间内为连续时间信号,简称 连续信号。 这里“连续”一词是指在定义域内(除有限个间断 点外)信号变量是连续可变的。至于信号的取值,在值域内可 以是连续的,也可以是跳变的。
量E为

E lim
2

f (t) 2dt
2
P lim 1

注意:为方便起见,有时将信号f(t)或f(k)的自变量省略,简记 为f(·), 表示信号变量允许取连续变量或者离散变量,即用f(·) 统一表示连续信号和离散信号。
第 1 章 信号与系统的基本概念 2. 一个连续信号f(t),若对所有t均有

第1章吴大正信号与线性系统分析PPT课件

第1章吴大正信号与线性系统分析PPT课件
3. 信号(signal):
信号是信息的载体。通过信号传递信息。
为了有效地传播和利用信息, 常常需要将信息转换成便于传输 和处理的信号。
信号我们并不陌生,如刚才铃 声—声信号,表示该上课了;
十字路口的红绿灯—光信号, 指挥交通;
电视机天线接受的电视信息— 电信号;
广告牌上的文字、图象信号等 等。
1.1 绪论
而将t ≥ 0, f(t) =0的信号称为反因果信号。
还有其他分类,如实信号与复信号;左边信号与右边 信号等等。
典型信号
• 常用连续信号
•1. 实指数信号• Nhomakorabea2. 正弦信号

3. 复指数信号

4. Sa(t)信号(抽样信号)
• 1.3.2 阶跃信号、冲激信号等信号

1. 单位阶跃信号ε(t)

2. 单位冲激函数δ(t)
通常将对应某序号m的序列值称为第m个样点的“样值”
1.2 信号的描述和分类
3. 周期信号和非周期信号
周期信号(period signal)是定义在(-∞,∞)区
间,每隔一定时间T (或整数N),按相同规律重复
变化的信号。 连续周期信号f(t)满足
f(t) = f(t + mT),m = 0,±1,±2,…
3 ,
6
,
k k
0 1
0 , k 其他
2,
3, k 0
f2
(k
)
2
4
, ,
k k
1 2
0 , k其他
f1 (k ) f 2 (k ) 86,, 4,
9 , k 0 0,
f1(k) f2(k) 12, k 1
0 ,k其他

信号与系统吴大正第四版PPT精品文档

信号与系统吴大正第四版PPT精品文档


信号与系统 电子课件
(2)零状态响应。 先求初值 yzs(0)和 。yzs(0) 将f(t)=ε(t)代入方程得
y z s ( t ) 3 y z s ( t ) 2 y z s ( t ) 2 ( t ) 6 ( t ) ( 1 )
由冲激函数匹配法知,y zs ( t应) 包含 2, ( t从) 而 y z s (在t ) t= 0处将发生跃变,即 yzs(0)。yzs(0)
.
20
第1-20页

信号与系统 电子课件
三、全响应
全响应 = 自由响应 + 强迫响应 = 零输入响应 + 零状态响应
.
21
第1-21页

信号与系统 电子课件 2.2 冲激响应和阶跃响应
一.冲激响应 1.定义 系统在单位冲激信号δ(t) 作用下产生的零状态响应,称为
单位冲激响应,简称冲激响应,一般用h(t)表示。
g1(t)3g1(t)2g1(t)(t)
g1(0)g1(0)0
其特征根 11,2,其2特解为0.5,于是得:
g 1 (t) (C 1 e t C 2 e 2 t 0 .5 )(t)
又根据0-状态求得0+状态值得:g1(0)g1 (0)0
解得: C 11,C20.5
得:
g 1 (t) ( e t 0 .5 e 2 t 0 .5 )(t)
.
3
第1-3页

信号与系统 电子课件
一、微分方程的经典解
微分方程的解:y(t)= yh(t)+ yp(t) 其中, y(t): 完全解。 yh(t): 齐次解。由微分方程的特征根确定。 yp(t): 特解。与激励函数的形式有关。
.
4

信号与线性系统分析(第四版)--吴大正课件.

信号与线性系统分析(第四版)--吴大正课件.
第 20 页
离散周期信号举例2
例 判断下列序列是否为周期信号,若是,确定其周期。 (1)f1(k) = sin(3πk/4) + cos(0.5πk) (2)f2(k) = sin(2k)
解 (1)sin(3πk/4) 和cos(0.5πk)的数字角频率分别为 β1 = 3π/4 rad, β2 = 0.5π rad 由于2π/ β1 = 8/3, 2π/ β2 = 4为有理数,故它们的周期 分别为N1 = 8 , N2 = 4,故f1(k) 为周期序列,其周期为 N1和N2的最小公倍数8。 (2)sin(2k) 的数字角频率为 β1 = 2 rad;由于2π/ β1 = π为无理数,故f2(k) = sin(2k)为非周期序列 。
如:ε(t)是功率信号; tε(t)、 e t为非功率非能量信号;
δ(t)是无定义的非功率非能量信号。
第 25 页
5.一维信号和多维信号
一维信号: 只由一个自变量描述的信号,如语音信号。
多维信号: 由多个自变量描述的信号,如图像信号。 还有其他分类,如:
实信号与复信号 左边信号与右边信号 因果信号和反因果信号
③ S t ) 0 a ,t ( n π , n 1 , 2 , 3
④ sitd n tπ, sitd n tπ

0t
2
limSat)(0
t
t
⑥ sit)n sπ c itn ( π t
t
第 31 页
§1.3 信号的基本运算
两信号的相加和相乘 信号的时间变化
➢ 平移 ➢ 反转 ➢ 尺度变换 信号的微分和积分
第7页
通信系统 为传送消息而装设的全套技术设备
信信
信信

信信
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3. 周期信号和非周期信号
周期信号(period signal)是定义在(-∞,∞)区
间,每隔一定时间T (或整数N),按相同规律重复
变化的信号。
连续周期信号f(t)满足 f(t) = f(t + mT),m = 0,±1,±2,…
离散周期信号f(k)满足 f(k) = f(k + mN),m = 0,±1,±2,…
1 .5,
f
(k )
2,
0,
1,
0,
k 1 k0 k 1 k2 k3 k4 其他 k
f(k)= {…,0,1,2,-1.5,2,0,1,0,…} ↑
k=0
通常将对应某序号m的序列值称为第m个样点的“样值”
第1-9页
-
9

©西安电子科技大学电路与系统教研中心
信号与系统 电子教案
1.2 信号的描述和分类
满足上述关系的最小T(或整数N)称为该信号的周期。
不具有周期性的信号称为非周期信号。
第1-10页
-
10

©西安电子科技大学电路与系统教研中心
信号与系统 电子教案
1.2 信号的描述和分类
例1 判断下列信号是否为周期信号,若是,确定其周期。
(1)f1(t) = sin2t + cos3t (2)f2(t) = cos2t + sinπt
信号与系统 电子教案
1.2 信号的描述和分类
二、信号的分类
1. 确定信号和随机信号
可以用确定时间函数表示的信号,称为确定信 号或规则信号。如正弦信号。
若信号不能用确切的函数描述,它在任意时刻
的取值都具有不确定性,只可能知道它的统计特性, 如在某时刻取某一数值的概率,这类信号称为随机 信号或不确定信号。电子系统中的起伏热噪声、雷 电干扰信号就是两种典型的随机信号。
解:两个周期信号x(t),y(t)的周期分别为T1和T2,若其 周期之比T1/T2为有理数,则其和信号x(t)+y(t)仍然是周 期信号,其周期为T1和T2的最小公倍数。 (1)sin2t是周期信号,其角频率和周期分别为
3. 信号(signal):
信号是信息的载体。通过信号传递信息。
为了有效地传播和利用信息, 常常需要将信息转换成便于传输 和处理的信号。
信号我们并不陌生,如刚才铃 声—声信号,表示该上课了;
十字路口的红绿灯—光信号, 指挥交通;
电视机天线接受的电视信息— 电信号;
广告牌上的文字、图象信号等 等。
第1-3页
等都可以看成信号。信号的概念与系统的概念常常
紧密地联系在一起。
系统的基本作用是对输 输入信号 入信号进行加工和处理,将 其转换为所需要的输出信号。 激励
输出信号
系统
响应
第1-4页
-
4

©西安电子科技大学电路与系统教研中心
信号与系统 电子教案
第一章 信号与系统
1.2 信号的描述和分类
一、信号的描述
信号是信息的一种物理体现。它一般是随时间 或位置变化的物理量。
信号,简称离散信号。实际中也常称为数字信号。
这里的“离散”指信号的定义域—时间是离散的,
它只在某些规定的离散瞬间给出函数值,其余时间无定
义如。右图的f(t)仅在一些离散时刻
tk(k = 0,±1,±2,…)才有定义,
f(t)
其余时间无定义。
2
相邻离散点的间隔Tk=tk+1-tk可 1
ቤተ መጻሕፍቲ ባይዱ
2 1
以相等也可不等。通常取等间隔T, 离散信号可表示为f(kT),简写为 t-1
1.4 阶跃函数和冲激函数
一、连续系统 二、离散系统
1.7 LTI系统分析方法概
一、阶跃函数

二、冲激函数
点击目录
第1-1页
,进入相关章节

-
1
©西安电子科技大学电路与系统教研中心
信号与系统 电子教案
第一章 信号与系统
1.1 绪论
什么是信号?什么是系统?为什么把这两个概念 连在一起?
一、信号的概念
1. 消息(message):
人们常常把来自外界的各种报道统称为消息。
2. 信息(information): 它是信息论中的一个术语。
通常把消息中有意义的内容称为信息。 本课程中对“信息”和“消息”两词不加严格 区分。
第1-2页
-
2

©西安电子科技大学电路与系统教研中心
信号与系统 电子教案
1.1 绪论
-
3

©西安电子科技大学电路与系统教研中心
信号与系统 电子教案
1.1 绪论
二、系统的概念
信号的产生、传输和处理需要一定的物理装置,
这样的物理装置常称为系统。
一般而言,系统(system)是指若干相互关联的
事物组合而成具有特定功能的整体。
如手机、电视机、通信网、计算机网等都可以
看成系统。它们所传送的语音、音乐、图象、文字
信号按物理属性分:电信号和非电信号。它们 可以相互转换。电信号容易产生,便于控制,易于 处理。本课程讨论电信号---简称“信号”。
电信号的基本形式:随时间变化的电压或电流。
描述信号的常用方法(1)表示为时间的函数 (2)信号的图形表示--波形
“信号”与“函数”两词常相互通用。
第1-5页
-
5

©西安电子科技大学电路与系统教研中心
这里的“连续”指函数的定义域—时间是连续 的,但可含间断点,至于值域可连续也可不连续。
值域连 续
f1(t) =sin(πt)
1
o1 -1
2t
f2(t) 1
o1 2 t -1
值域不 连续
第1-7页
-
7

©西安电子科技大学电路与系统教研中心
信号与系统 电子教案
1.2 信号的描述和分类
离散时间信号:
仅在一些离散的瞬间才有定义的信号称为离散时间
o
t1 t2 t3 t4
t
f(k),这种等间隔的离散信号也常
-1.5
称为序列。其中k称为序号。
第1-8页
-
8

©西安电子科技大学电路与系统教研中心
信号与系统 电子教案
1.2 信号的描述和分类
上述离散信号可简画为
f(k)
2
2
1
1
-1 o 1 2 3 4 k
-1 .5
或写为
用表达式可写为 1 ,
2,
信号与系统 电子教案
第一章 信号与系统
1.1 绪 言
一、信号的概念 二、系统的概念
三、冲激函数的性质
四、序列δ(k)和ε(k)
1.2 信号的描述与分类 1.5 系统的性质及分类
一、信号的描述 二、信号的分类
一、系统的定义 二、系统的分类及性质
1.3 信号的基本运算
1.6 系统的描述
一、加法和乘法 二、时间变换
研究确定信号是研究随机信号的基础。本课程 只讨论确定信号。
第1-6页
-
6

©西安电子科技大学电路与系统教研中心
信号与系统 电子教案
1.2 信号的描述和分类
2. 连续信号和离散信号 根据信号定义域的特点可分
为连续时间信号和离散时间信号。
(1)连续时间信号:
在连续的时间范围内(-∞<t<∞)有定义的信号 称为连续时间信号,简称连续信号。实际中也常称 为模拟信号。
相关文档
最新文档