MAX5922CEUI+中文资料
MAX5923EUP+;MAX5923EUP+T;中文规格书,Datasheet资料
+60V Simple Swapper Hot-Swap Switch
General Description
The MAX5923 is a fully integrated Simple Swapper™ hot-swap switch for positive supply rails. The device allows the safe insertion and removal of circuit cards into live backplanes or ports without causing glitches on the power-supply rail. The device also monitors various circuit parameters and disconnects the load if a fault condition occurs, alerting the host with a logiclevel FAULT output. The MAX5923 operates over the +16V to +60V input voltage range. During startup, an integrated 0.45Ω power MOSFET regulates the current and voltage between the backplane power source and the load. After startup, the MOSFET is fully enhanced to reduce its on-resistance. To ensure robust operation, the MAX5923 contains built-in safety features that monitor fault conditions and prevent damage to the internal MOSFET. The MAX5923 monitors three parameters for fault conditions: zero current, overcurrent, and thermal overload. The output overcurrent limit counts the time the MAX5923 spends in an overcurrent condition and shuts down the pass transistor if the current limit is exceeded for the overcurrent time limit. The zero-current detection counts the time the output current is below the zero-current threshold and shuts down the pass transistor if the counter reaches the zero-current time limit. The thermal monitoring feature shuts down the pass transistor if the die temperature reaches the overtemperature limit. A fault logic output indicates when an overtemperature or an overcurrent condition has occurred and a zero-current logic output indicates if there is a zero-current condition. An undervoltage detection circuitry keeps the pass transistor off until the input voltage is above the undervoltage lockout (UVLO) threshold, which is internally set or can be set externally with a resistive divider. A power-OK (POK) output is provided to signal when the output voltage has reached to within 0.75V of the input voltage. An Enable input allows the host system to disconnect the system from the load and/or reset a fault condition by toggling Enable. The MAX5923 is available in a 20-pin TSSOP package and operates in the extended -40°C to +85°C temperature range. o 0.45Ω Integrated Power Switch o Programmable Output Current Up to 800mA o Over/Undercurrent-Limit Detection o Input Logic Signals Compatible with 1.8V to 5V CMOS Logic o Separate Analog and Digital Grounds with Up to ±4V Offset o Power-OK Status Output o Overcurrent Protection with Status Outputs o Built-In Thermal Shutdown o Internal Switch Protection Circuitry o Current-Limit Foldback with Timeout and DutyCycle Control o Latch or Autorestart Fault Management
APL5912中文资料
C1 (pF) 27 36 68
Absolute Maximum Ratings
Symbol VCNTL VIN VI/O VPOK PD PPEAK TJ TSTG TSDR VESD Parameter VCNTL Supply Voltage (VCNTL to GND) VIN Supply Voltage (VIN to GND) EN and FB to GND POK to GND Average Power Dissipation Peak Power Dissipation (<20mS) Junction Temperature Storage Temperature Soldering Temperature, 10 Seconds Minimum ESD Rating (Human Body Mode) Rating -0.3 ~ 7 -0.3 ~ 3.3 -0.3 ~ VCNTL+0.3 -0.3 ~ 7 3 20 150 -65 ~ 150 300 ±2 Unit V V V V W W
APL5912 KA :
APL5912 XXXXX
Note: ANPEC lead-free products contain molding compounds/die attach materials and 100% matte tin plate termination finish; which are fully compliant with RoHS and compatible with both SnPb and lead-free soldiering operations. ANPEC lead-free products meet or exceed the lead-free requirements of IPC/JEDEC J STD-020C for MSL classification at lead-free peak reflow temperature.
max9722中文资料
AAX
0.8mm)
MAX9722AEUE -40°C to +85°C 16 TSSOP
—
16 Thin QFN-EP*
MAX9722BETE -40°C to +85°C (3mm ✕ 3mm ✕
AAY
0.8mm)
MAX9722BEUE -40°C to +85°C 16 TSSOP
—
*EP = Exposed paddle.
________________________________________________________________ Maxim Integrated Products 1
本文是 Maxim正式英文资料的译文,Maxim不对翻译中存在的差异或由此产生的错误负责。请注意译文中可能存在文字组织或 翻译错误,如需确认任何词语的准确性,请参考 Maxim提供的英文版资料。 索取免费样品和最新版的数据资料,请访问 Maxim的主页:。
16-Pin Thin QFN (derate 14.7mW/°C above +70°C)....1176mW 16-Pin TSSOP (derate 9.4mW/°C above +70°C) .........755mW Junction Temperature ......................................................+150°C Operating Temperature Range............................-40°C to +85°C Storage Temperature Range .............................-65°C to +150°C Lead Temperature (soldering, 10s) .................................+300°C
MAXIM命名规则
MAXIM(美信)命名规则MAXIM前缀是“MAX”。
DALLAS则是以“DS”开头。
MAX×××或MAX××××说明:1后缀CSA、CWA 其中C表示普通级,S表示表贴,W表示宽体表贴。
2 后缀CWI表示宽体表贴,EEWI宽体工业级表贴,后缀MJA或883为军级。
3 CPA、BCPI、BCPP、CPP、CCPP、CPE、CPD、ACPA后缀均为普通双列直插。
举例MAX202CPE、CPE普通ECPE普通带抗静电保护MAX202EEPE 工业级抗静电保护(-45℃-85℃)说明 E指抗静电保护MAXIM数字排列分类1字头模拟器 2字头滤波器 3字头多路开关4字头放大器 5字头数模转换器 6字头电压基准7字头电压转换 8字头复位器 9字头比较器DALLAS命名规则例如DS1210N.S. DS1225Y-100INDN=工业级S=表贴宽体 MCG=DIP封Z=表贴宽体 MNG=DIP工业级IND=工业级 QCG=PLCC封 Q=QFP下面是MAXIM的命名规则:三字母后缀:例如:MAX358CPDC = 温度范围P = 封装类型D = 管脚数温度范围:C = 0℃ 至70℃ (商业级)I = -20℃ 至+85℃ (工业级)E = -40℃ 至+85℃ (扩展工业级)A = -40℃ 至+85℃ (航空级)M = -55℃ 至+125℃ (军品级)封装类型:A SSOP(缩小外型封装)B CERQUADC TO-220, TQFP(薄型四方扁平封装)D 陶瓷铜顶封装E 四分之一大的小外型封装F 陶瓷扁平封装H 模块封装, SBGA(超级球式栅格阵列, 5x5 TQFP) 四字母后缀:例如:MAX1480ACPIA = 指标等级或附带功能C = 温度范围P = 封装类型I = 管脚数温度范围:C = 0℃ 至70℃ (商业级)I = -20℃ 至+85℃ (工业级)E = -40℃ 至+85℃ (扩展工业级)A = -40℃ 至+85℃ (航空级)M = -55℃ 至+125℃ (军品级)封装类型:A SSOP(缩小外型封装)B CERQUADC TO-220, TQFP(薄型四方扁平封装)D 陶瓷铜顶封装E 四分之一大的小外型封装F 陶瓷扁平封装H 模块封装, SBGA(超级球式栅格阵列, 5x5 TQFP) J CERDIP (陶瓷双列直插)K TO-3 塑料接脚栅格阵列L LCC (无引线芯片承载封装)M MQFP (公制四方扁平封装)N 窄体塑封双列直插P 塑封双列直插Q PLCC (塑料式引线芯片承载封装)R 窄体陶瓷双列直插封装(300mil)S 小外型封装T TO5,TO-99,TO-100U TSSOP,μMAX,SOTW 宽体小外型封装(300mil)X SC-70(3脚,5脚,6脚)Y 窄体铜顶封装Z TO-92,MQUAD/D 裸片/PR 增强型塑封/W 晶圆管脚数:A: 8B: 10,64C: 12,192D: 14E: 16F: 22,256G: 24H: 44I: 28J: 32K: 5,68L: 40M: 7,48 N: 18O: 42 P: 20Q: 2,100 R: 3,84S: 4,80 T: 6,160U: 60 V: 8(圆形)W: 10(圆形) X: 36Y: 8(圆形) Z: 10(圆形)。
MAX232中文资料,MAX232CPE,MAX232EPE,MAX232ECPE,规格书,MAXIM代理商,datasheet,PDF
19-4323; Rev 15; 13;5V ޥ٫Ăۂ لRS-232 ഝڑಹ/ेฏಹ
________________________________ ݣะ
MAX220–MAX249࿅઼ഝڑಹ /ेฏಹLjከཛྷEIA/TIA232EჾࣆV.28/V.24ဳेਊහࣜLjᅐದกྐۨ໗ ޥ±12V ٫ᆚوᄮᅋă
ሦဗಹऔ໎Ӽคࠩ٫֠ޥ٫࿅༇Ljሦกᅑᅢದّڱߔࠞޢ ன৹ჾटࠞޢऋဏ ف5μW ჾăMAX225ĂMAX233Ă MAX235 ჾࣆ MAX245/MAX246/MAX247 ԥၖე༶ԩᆐ औLj༚ऌᅋᅢᄩฺ٫ଁғஎࢵᅘوᄮᅋă
1.0 (0.1) 0.1 — — 1.0 (0.1) — 1.0 (0.1) 1.0 (0.1) 1.0 (0.1) 1.0 (0.1)
1.0 1.0 (0.1) 0.1 0.1 1.0 — — — 1.0 1.0
SHDN & ThreeState No Yes Yes Yes Yes No
No No No No No Yes Yes No No No
_____________________________________________________________________ ၭျӹ
Part Number MAX220 MAX222 MAX223 (MAX213) MAX225 MAX230 (MAX200) MAX231 (MAX201)
MAX232 (MAX202) MAX232A MAX233 (MAX203) MAX233A MAX234 (MAX204) MAX235 (MAX205) MAX236 (MAX206) MAX237 (MAX207) MAX238 (MAX208) MAX239 (MAX209)
MAXIM 化数字电位器MAX5481, MAX5482, MAX5483, MAX548 说明书
ENGLISH•简体中文•日本語•概述状况状况:生产中。
下载Notes MAX5481Linear13-WireSerial SPINon-Volatile102410253519.6$1.95@1kMAX548250$1.95 @1kMAX548310$1.95 @1kMAX548450$1.95 @1k查看所有Digital Potentiometers (128)引脚配置相关产品MAX5494,MAX5495,MAX5496, ...10位、双路、非易失、线性变化数字电位器类似产品:浏览其它类似产品线查看所有Digital Potentiometers (128产品)顶标MAX5481顶标MAX5482顶标MAX5483顶标MAX5484新品发布[ 2005-08-03 ]应用工程师帮助选型,下个工作日回复参数搜索应用帮助概述技术文档定购信息概述关键特性应用/使用关键指标图表注释、注解相关产品数据资料应用笔记评估板设计指南可靠性报告软件/模型价格与供货样品在线订购封装信息无铅信息参考文献: 19-3708 Rev. 4; 2008-03-12本页最后一次更新: 2008-03-27联络我们:信息反馈、提出问题 • 对该网页的评价 • 发送本网页 • 隐私权政策 • 法律声明 © 2010 Maxim Integrated Products版权所有General DescriptionThe MAX5481–MAX5484 10-bit (1024-tap) nonvolatile,linear-taper, programmable voltage-dividers and vari-able resistors perform the function of a mechanical potentiometer, but replace the mechanics with a pin-configurable 3-wire serial SPI™-compatible interface or up/down digital interface. The MAX5481/MAX5482 are 3-terminal voltage-dividers and the MAX5483/MAX5484are 2-terminal variable resistors.The MAX5481–MAX5484 feature an internal, non-volatile, electrically erasable programmable read-only memory (EEPROM) that stores the wiper position for ini-tialization during power-up. The 3-wire SPI-compatible serial interface allows communication at data rates up to 7MHz. A pin-selectable up/down digital interface is also available.The MAX5481–MAX5484 are ideal for applications requiring digitally controlled potentiometers. Two end-to-end resistance values are available (10k Ωand 50k Ω) in a voltage-divider or a variable-resistor configuration (see the Selector G uide ). The nominal resistor temperature coefficient is 35ppm/°C end-to-end, and only 5ppm/°C ratiometric, making these devices ideal for applications requiring low-temperature-coefficient voltage-dividers,such as low-drift, programmable gain-amplifiers.The MAX5481–MAX5484 operate with either a +2.7V to +5.25V single power supply or ±2.5V dual power sup-plies. These devices consume 400µA (max) of supply current when writing data to the nonvolatile memory and 1.0µA (max) of standby supply current. The MAX5481–MAX5484 are available in a space-saving (3mm x 3mm), 16-pin TQFN, or a 14-pin TSSOP pack-age and are specified over the extended (-40°C to +85°C) temperature range.ApplicationsFeatures♦1024 Tap Positions♦Power-On Recall of Wiper Position from Nonvolatile Memory♦16-Pin (3mm x 3mm x 0.8mm) TQFN or 14-Pin TSSOP Package♦35ppm/°C End-to-End Resistance Temperature Coefficient♦5ppm/°C Ratiometric Temperature Coefficient ♦10kΩand 50kΩEnd-to-End Resistor Values♦Pin-Selectable SPI-Compatible Serial Interface or Up/Down Digital Interface ♦1µA (max) Standby Current♦Single +2.7V to +5.25V Supply Operation ♦Dual ±2.5V Supply OperationMAX5481–MAX548410-Bit, Nonvolatile, Linear-Taper DigitalPotentiometers________________________________________________________________Maxim Integrated Products1Ordering InformationPin Configurations19-3708; Rev 5; 4/10For pricing delivery, and ordering information please contact Maxim Direct at 1-888-629-4642,or visit Maxim’s website at .Selector Guide appears at end of data sheet.SPI is a trademark of Motorola, Inc.temperature range.+Denotes a lead(Pb)-free/RoHS-compliant package.*EP = Exposed pad.Ordering Information continued at end of data sheet.Gain and Offset AdjustmentLCD Contrast Adjustment Pressure SensorsLow-Drift Programmable Gain AmplifiersMechanical Potentiometer ReplacementM A X 5481–M A X 548410-Bit, Nonvolatile, Linear-Taper Digital PotentiometersABSOLUTE MAXIMUM RATINGSStresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.V DD to GND...........................................................-0.3V to +6.0V V SS to GND............................................................-3.5V to +0.3V V DD to V SS .............................................................-0.3V to +6.0V H, L, W to V SS ..................................(V SS - 0.3V) to (V DD + 0.3V)CS , SCLK(INC ), DIN(U/D ), SPI/UD to GND..-0.3V to (V DD + 0.3V)Maximum Continuous Current into H, L, and WMAX5481/MAX5483.........................................................±5mA MAX5482/MAX5484......................................................±1.0mA Maximum Current into Any Other Pin...............................±50mAContinuous Power Dissipation (T A = +70°C)16-Pin TQFN (derate 17.5mW/°C above +70°C).....1398.6mW 14-Pin TSSOP (derate 9.1mW/°C above +70°C)..........727mW Operating Temperature Range ...........................-40°C to +85°C Junction Temperature......................................................+150°C Storage Temperature Range.............................-60°C to +150°C Lead Temperature (soldering, 10s).................................+300°C Soldering Temperature (reflow).......................................+260°CELECTRICAL CHARACTERISTICSMAX5481–MAX548410-Bit, Nonvolatile, Linear-Taper DigitalPotentiometers_______________________________________________________________________________________3ELECTRICAL CHARACTERISTICS (continued)(V DD = +2.7V to +5.25V, V SS = V GND = 0V, V H = V DD , V L = 0V, T A = -40°C to +85°C, unless otherwise noted. Typical values are at V DD = +5.0V, T A = +25°C, unless otherwise noted.) (Note 1)M A X 5481–M A X 548410-Bit, Nonvolatile, Linear-Taper Digital Potentiometers 4_______________________________________________________________________________________TIMING CHARACTERISTICSNote 2:The DNL and INL are measured with the device configured as a voltage-divider with H = V DD and L = V SS . The wiper termi-nal (W) is unloaded and measured with a high-input-impedance voltmeter.Note 3:The DNL_R and INL_R are measured with D.N.C. unconnected and L = V SS = 0V. For V DD = +5V, the wiper terminal is dri-ven with a source current of I W = 80µA for the 50k Ωdevice and 400µA for the 10k Ωdevice. For V DD = +3V, the wiper termi-nal is driven with a source current of 40µA for the 50k Ωdevice and 200µA for the 10k Ωdevice.Note 4:The wiper resistance is measured using the source currents given in Note 3.Note 5:The device draws higher supply current when the digital inputs are driven with voltages between (V DD - 0.5V) and (V GND +0.5V). See Supply Current vs. Digital Input Voltage in the Typical Operating Characteristics .Note 6:Wiper settling test condition uses the voltage-divider configuration with a 10pF load on W. Transition code from 00000 00000to 01111 01111 and measure the time from CS going high to the wiper voltage settling to within 0.5% of its final value.MAX5481–MAX548410-Bit, Nonvolatile, Linear-Taper DigitalPotentiometers_______________________________________________________________________________________5-1.0-0.6-0.8-0.2-0.40.200.40.80.61.002563841285126407688961024DNL vs. CODE (MAX5483)CODED N L (L S B )V DD = 2.7V-1.0-0.6-0.8-0.2-0.40.200.40.80.61.002563841285126407688961024DNL vs. CODE (MAX5483)CODED N L (L S B )V DD = 5V-2.0-1.0-1.50-0.50.51.01.5 2.0INL vs. CODE (MAX5483)I N L (L S B )V DD = 2.7V02563841285126407688961024CODE-2.0-1.0-1.50-0.50.51.01.5 2.0INL vs. CODE (MAX5483)I N L (L S B )V DD = 3V2563841285126407688961024CODE-2.0-1.0-1.50-0.50.51.01.5 2.0INL vs. CODE (MAX5483)I N L (L S B )V DD = 5V02563841285126407688961024CODE-1.0-0.6-0.8-0.2-0.40.200.40.80.61.002563841285126407688961024DNL vs. CODE (MAX5481)CODED N L (L S B )-1.0-0.6-0.8-0.2-0.40.200.40.80.61.002563841285126407688961024DNL vs. CODE (MAX5481)CODED N L (L S B )V DD = 5V-1.0-0.6-0.8-0.2-0.40.200.40.80.61.002563841285126407688961024INL vs. CODE (MAX5481)CODEI N L (L S B )-1.0-0.6-0.8-0.2-0.40.200.40.80.61.002563841285126407688961024INL vs. CODE (MAX5481)CODEI N L (L S B )Typical Operating Characteristics(V DD = 5.0V, V SS = 0V, T A = +25°C, unless otherwise noted.)M A X 5481–M A X 548410-Bit, Nonvolatile, Linear-Taper Digital Potentiometers 6_______________________________________________________________________________________-1.0-0.6-0.8-0.2-0.40.200.40.80.61.002563841285126407688961024DNL vs. CODE (MAX5484)CODED N L (L S B )-1.0-0.6-0.8-0.2-0.40.200.40.80.61.002563841285126407688961024DNL vs. CODE (MAX5484)CODED N L (L S B )-1.0-0.6-0.8-0.2-0.40.200.40.80.61.002563841285126407688961024INL vs. CODE (MAX5484)CODEI N L (L S B )-1.0-0.6-0.8-0.2-0.40.200.40.80.61.002563841285126407688961024INL vs. CODE (MAX5484)CODEI N L (L S B )-1.0-0.6-0.8-0.2-0.40.200.40.80.61.002563841285126407688961024DNL vs. CODE (MAX5482)CODED N L (L S B )-1.0-0.6-0.8-0.2-0.40.200.40.80.61.002563841285126407688961024DNL vs. CODE (MAX5482)CODED N L (L S B )-1.0-0.6-0.8-0.2-0.40.200.40.80.61.002563841285126407688961024INL vs. CODE (MAX5482)CODEI N L (L S B )V DD = 2.7V-1.0-0.6-0.8-0.2-0.40.200.40.80.61.02563841285126407688961024INL vs. CODE (MAX5482)CODEI N L (L S B )V DD = 5V02010403050607080WIPER RESISTANCE vs. CODE (VARIABLE RESISTOR, T A = -40°C)M A X 5481 t o c 18R W (Ω)2563841285126407688961024CODETypical Operating Characteristics (continued)(V DD = 5.0V, V SS = 0V, T A = +25°C, unless otherwise noted.)MAX5481–MAX5484Typical Operating Characteristics (continued)(V DD = 5.0V, V SS = 0V, T A = +25°C, unless otherwise noted.)10-Bit, Nonvolatile, Linear-Taper DigitalPotentiometers_______________________________________________________________________________________702010403050607080WIPER RESISTANCE vs. CODE (VARIABLE RESISTOR, T A = +25°C)M A X 5481 t oc 19R W (Ω)2563841285126407688961024CODE2010403050607080WIPER RESISTANCE vs. CODE (VARIABLE RESISTOR, T A = +85°C)M A X 5481 t o c 20R W (Ω)2563841285126407688961024CODE10302050604070W-TO-L RESISTANCE vs. CODE(MAX5484)R W L (k Ω)02563841285126407688961024CODE02641012814W-TO-L RESISTANCE vs. CODE(MAX5483)R W L (k Ω)2563841285126407688961024CODE18.018.519.019.520.020.521.021.522.0012345WIPER RESISTANCE vs. WIPER VOLTAGE(VARIABLE RESISTOR)WIPER VOLTAGE (V)R W (Ω)-2.0-1.5-1.0-0.500.51.01.52.0-40-1510356085END-TO-END (R HL ) % CHANGE vs. TEMPERATURE (VOLTAGE-DIVIDER)M A X 5481 t o c 24TEMPERATURE (°C)E N D -T O -E N D R E S I S T A N C E C H A N G E (%)-2.0-1.5-1.0-0.500.51.01.52.0-40-1510356085WIPER-TO-END RESISTANCE (R WL ) % CHANGE vs. TEMPERATURE (VARIABLE RESISTOR)TEMPERATURE (°C)W I P E R -T O -E N D R E S I S T A N C E C H A N G E (%)00.30.90.61.21.5-4010-15356085STANDBY SUPPLY CURRENTvs. TEMPERATURETEMPERATURE (°C)I D D (μA )DIGITAL SUPPLY CURRENT vs. DIGITAL INPUT VOLTAGEDIGITAL INPUT VOLTAGE (V)I D D (μA )4.54.03.53.02.52.01.51.00.5110100100010,0000.15.0M A X 5481–M A X 548410-Bit, Nonvolatile, Linear-Taper Digital Potentiometers Typical Operating Characteristics (continued)(Circuit of Figure 1, T A = +25°C, unless otherwise noted.)1μs/divTAP-TO-TAP SWITCHING TRANSIENTRESPONSE (MAX5481)V W(AC-COUPLED)20mV/divCS 2V/divH = V DD , L = GND C W = 10pFFROM CODE 01 1111 1111TO CODE 10 0000 00004μs/divTAP-TO-TAP SWITCHING TRANSIENTRESPONSE (MAX5482)V W(AC-COUPLED)20mV/divCS 2V/divH = V DD , L = GND C W = 10pFFROM CODE 01 1111 1111TO CODE 10 0000 0000WIPER RESPONSE vs. FREQUENCY(MAX5481)FREQUENCY (kHz)G A I N (d B )100101-20-15-10-5-250.11000WIPER RESPONSE vs. FREQUENCY(MAX5482)FREQUENCY (kHz)G A I N (d B )100101-20-15-10-50-250.11000THD+N vs. FREQUENCY(MAX5481)FREQUENCY (kHz)T H D +N (%)1010.10.0010.010.11100.00010.01100THD+N vs. FREQUENCY(MAX5482)FREQUENCY (kHz)T H D +N (%)1010.10.0010.010.11100.00010.0110004020806012010014018016020002563841285126407688961024RATIOMETRIC TEMPERATURE COEFFICIENT vs. CODECODER A T I O M E T R I C T E M P C O (p p m )100300200500600400700VARIABLE-RESISTOR TEMPERATURECOEFFICIENT vs. CODET C V R (p p m )02563841285126407688961024CODE10-Bit, Nonvolatile, Linear-Taper DigitalPotentiometersPin DescriptionMAX5481–MAX5484M A X 5481–M A X 548410-Bit, Nonvolatile, Linear-Taper Digital Potentiometers Pin Description (continued)(MAX5483/MAX5484 Variable Resistors)MAX5481–MAX548410-Bit, Nonvolatile, Linear-Taper DigitalPotentiometersFunctional DiagramsM A X 5481–M A X 548410-Bit, Nonvolatile, Linear-Taper Digital Potentiometers Detailed DescriptionThe MAX5481/MAX5482 linear programmable voltage-dividers and the MAX5483/MAX5484 variable resistors feature 1024 tap points (10-bit resolution) (see the Functional Diagrams ). These devices consist of multi-ple strings of equal resistor segments with a wiper con-tact that moves among the 1024 points through a pin-selectable 3-wire SPI-compatible serial interface or up/down interface. The MAX5481/MAX5483 provide a total end-to-end resistance of 10k Ω, and the MAX5482/MAX5484 have an end-to-end resistance of 50k Ω. The MAX5481/MAX5482 allow access to the high, low, and wiper terminals for a standard voltage-divider configuration.MAX5481/MAX5482 ProgrammableVoltage-DividersThe MAX5481/MAX5482 programmable voltage-dividers provide a weighted average of the voltage between the H and L inputs at the W output. Both devices feature 10-bit resolution and provide up to 1024 tap points between the H and L voltages. Ideally,the V L voltage occurs at the wiper terminal (W) when all data bits are zero and the V H voltage occurs at the wiper terminal when all data bits are one. The step size (1 LSB) voltage is equal to the voltage applied across terminals H and L divided by 210. Calculate the wiper voltage V Was follows:Functional Diagrams (continued)MAX5481–MAX548410-Bit, Nonvolatile, Linear-Taper DigitalPotentiometerswhere D is the decimal equivalent of the 10 data bits writ-ten (0 to 1023), V HL is the voltage difference between the H and L terminals:The MAX5481 includes a total end-to-end resistance value of 10k Ωwhile the MAX5482 features an end-to-end resistance value of 50k Ω. These devices are not intended to be used as a variable resistor . Wiper cur-rent creates a nonlinear voltage drop in series with the wiper. To ensure temperature drift remains within speci-fications, do not pull current through the voltage-divider wiper. Connect the wiper to a high-impedance node.Figures 1 and 2 show the behavior of the MAX5481’s resistance from W to H and from W to L. This does not apply to the variable-resistor devicesMAX5483/MAX5484 Variable ResistorsThe MAX5483/MAX5484 provide a programmable resistance between W and L. The MAX5483 features a total end-to-end resistance value of 10k Ω, while the MAX5484 provides an end-to-end resistance value of 50k Ω. The programmable resolution of this resistance is equal to the nominal end-to-end resistance divided by 1024 (10-bit resolution). For example, each nominal segment resistance is 9.8Ωand 48.8Ωfor the MAX5483and the MAX5484, respectively.wiper position from the 1024 possible positions, result-ing in 1024 values for the resistance from W to L.Calculate the resistance from W to L (R WL ) by using the where D is decimal equivalent of the 10 data bits writ-ten, R W-L is the nominal end-to-end resistance, and R Z is the zero-scale error. Table 1 shows the values of R WL at selected codes for the MAX5483/MAX5484.Digital InterfaceConfigure the MAX5481–MAX5484 by a pin-selectable,3-wire, SPI-compatible serial data interface or an up/down interface. Drive SPI/UD high to select the 3-wire SPI-compatible interface. Pull SPI/UD low to select the up/down interface.V FSE V andV ZSE V FSE HL ZSE HL =⎡⎣⎢⎤⎦⎥=⎡⎣⎢⎤⎦⎥10241024,Figure 1. Resistance from W to H vs. Code (10k ΩVoltage-Divider)Figure 2. Resistance from W to L vs. Code (10k ΩVoltage-Divider)M A X 5481–M A X 548410-Bit, Nonvolatile, Linear-Taper Digital Potentiometers SPI-Compatible Serial InterfaceDrive SPI/UD high to enable the 3-wire SPI-compatible serial interface (see Figure 3). This write-only interface contains three inputs: chip select (CS ), data in (DIN(U/D )), and data clock (SCLK(INC )). Drive CS low to load the data at DIN(U/D ) synchronously into the shift register on each SCLK(INC ) rising edge.The WRITE command (C1, C0 = 00) requires 24 clock cycles to transfer the command and data (Figure 4a).The COPY commands (C1, C0 = 10 or 11) use either eight clock cycles to transfer the command bits (Figure 4b) or 24 clock cycles with the last 16 data bits disre-garded by the device.After loading the data into the shift register, drive CS high to latch the data into the appropriate control regis-ter. Keep CS low during the entire serial data stream to avoid corruption of the data. Table 2 shows the com-mand decoding.Write Wiper RegisterData written to this register (C1, C0 = 00) controls the wiper position. The 10 data bits (D9–D0) indicate the position of the wiper. For example, if DIN(U/D ) = 00 00000000, the wiper moves to the position closest to L. If DIN(U/D ) = 11 1111 1111, the wiper moves closest to H.This command writes data to the volatile random access memory (RAM), leaving the NV register unchanged. When the device powers up, the data stored in the NV register transfers to the wiper register,moving the wiper to the stored position. Figure 5 shows how to write data to the wiper register.Table 2. Command Decoding*X = Don’t care.Figure 3. SPI-Compatible Serial-Interface Timing Diagram (SPI/UD = 1)10-Bit, Nonvolatile, Linear-Taper DigitalPotentiometers ArrayMAX5481–MAX5484Figure4. Serial SPI-Compatible Interface FormatFigure5. Write Wiper Register OperationM A X 5481–M A X 548410-Bit, Nonvolatile, Linear-Taper Digital Potentiometers Copy Wiper Register to NV RegisterThe copy wiper register to NV register command (C1,C0 = 10) stores the current position of the wiper to the NV register for use at power-up. Figure 6 shows how to copy data from wiper register to NV register. The oper-ation takes up to 12ms (max) after CS goes high to complete and no other operation should be performed until completion.Copy NV Register to Wiper RegisterThe copy NV register to wiper register (C1, C0 = 11)restores the wiper position to the current value stored in the NV register. Figure 7 shows how to copy data from the NV register to the wiper register.Digital Up/Down InterfaceFigure 8 illustrates an up/down serial-interface timing diagram. In digital up/down interface mode (SPI/UD =0), the logic inputs CS , DIN(U/D ), and SCLK(INC ) con-trol the wiper position and store it in nonvolatile memory (see Table 3). The chip-select (CS ) input enables the serial interface when low and disables the interface when high. The position of the wiper is stored in the nonvolatile register when CS transitions from low to high while SCLK(INC ) is high.When the serial interface is active (CS low), a high-to-low (falling edge) transition on SCLK(INC ) increments or decrements the internal 10-bit counter depending on the state of DIN(U/D ). If DIN(U/D ) is high, the wiper increments. If DIN(U/D ) is low, the wiper decrements.The device stores the value of the wiper position in the nonvolatile memory when CS transitions from low to high while SCLK(INC ) is high. The host system can disablethe serial interface and deselect the device without stor-ing the latest wiper position in the nonvolatile memory by keeping SCLK(INC ) low while taking CS high.Upon power-up, the MAX5481–MAX5484 load the value of nonvolatile memory into the wiper register, and set the wiper position to the value last stored.Figure 6. Copy Wiper Register to NV Register OperationFigure 7. Copy NV Register to Wiper Register OperationMAX5481–MAX548410-Bit, Nonvolatile, Linear-Taper DigitalPotentiometersStandby ModeThe MAX5481–MAX5484 feature a low-power standby mode. When the device is not being programmed, it enters into standby mode and supply current drops to 0.5µA (typ).Nonvolatile MemoryThe internal EEPROM consists of a nonvolatile register that retains the last value stored prior to power-down.The nonvolatile register is programmed to midscale at the factory. The nonvolatile memory is guaranteed for 50 years of wiper data retention and up to 200,000wiper write cycles.Power-UpUpon power-up, the MAX5481–MAX5484 load the data stored in the nonvolatile wiper register into the volatile wiper register, updating the wiper position with the data stored in the nonvolatile wiper register.Applications InformationThe MAX5481–MAX5484 are ideal for circuits requiring digitally controlled adjustable resistance, such as LCD contrast control (where voltage biasing adjusts the dis-play contrast), or programmable filters with adjustable gain and/or cutoff frequency.Positive LCD Bias ControlFigures 9 and 10 show an application where a voltage-divider or a variable resistor is used to make an adjustable, positive LCD-bias voltage. The op amp pro-vides buffering and gain to the voltage-divider network made by the programmable voltage-divider (Figure 9) or to a fixed resistor and a variable resistor (see Figure 10).Programmable Gain and Offset AdjustmentFigure 11 shows an application where a voltage-divider and a variable resistor are used to make a programma-ble gain and offset adjustment.Figure 8. Up/Down Serial-Interface Timing Diagram (SPI/UD = 0)M A X 5481–M A X 548410-Bit, Nonvolatile, Linear-Taper Digital Potentiometers 18______________________________________________________________________________________Programmable FilterFigure 12 shows the configuration for a 1st-order pro-grammable filter using two variable resistors. Adjust R2for the gain and adjust R3 for the cutoff frequency. Use the following equations to estimate the gain (G) and the 3dB cutoff frequency (f C):Figure 10. Positive LCD Bias Control Using a Variable ResistorFigure 12. Programmable FilterFigure 11. Programmable Gain/Offset AdjustmentFigure 9. Positive LCD Bias Control Using a Voltage-DividerMAX5481–MAX548410-Bit, Nonvolatile, Linear-Taper DigitalPotentiometers______________________________________________________________________________________19Chip InformationPROCESS: BiCMOSSelector GuidePin Configurations (continued)Ordering Information (continued)Note: All devices are specified over the -40°C to +85°C operating temperature range.+Denotes a lead(Pb)-free/RoHS-compliant package.*EP = Exposed pad.Package InformationFor the latest package outline information and land patterns, go to /packages . Note that a “+”, “#”, or “-” in the package code indicates RoHS status only. Package draw-ings may show a different suffix character, but the drawing per-tains to the package regardless of RoHS status.M A X 5481–M A X 548410-Bit, Nonvolatile, Linear-Taper Digital Potentiometers Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.20____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600©2010 Maxim Integrated ProductsMaxim is a registered trademark of Maxim Integrated Products, Inc.。
MAX262中文资料
M A X262中文资料(总5页) -CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除在电子电路中,滤波器是不可或缺的部分,其中有源滤波器更为常用。
一般有源滤波器由运算放大器和RC元件组成,对元器件的参数精度要求比较高,设计和调试也比较麻烦。
美国Maxim公司生产的可编程滤波器芯片MAX262可以通过编程对各种低频信号实现低通、高通、带通、带阻以及全通滤波处理,且滤波的特性参数如中心频率、品质因数等,可通过编程进行设置,电路的外围器件也少。
本文介绍MAX262的情况以及由它构成的程控滤波器电路。
1 MAX262芯片介绍MAX262芯片是Maxim公司推出的双二阶通用开关电容有源滤波器,可通过微处理器精确控制滤波器的传递函数(包括设置中心频率、品质因数和工作方式)。
它采用CMOS工艺制造,在不需外部元件的情况下就可以构成各种带通、低通、高通、陷波和全通滤波器。
图1是它的引脚排列情况。
图1 MAX262引脚V+ ——正电源输入端。
V- ——负电源输入端。
GND ——模拟地。
CLKA ——外接晶体振荡器和滤波器A 部分的时钟输入端,在滤波器内部,时钟频率被2分频。
CLKB ——滤波器B 部分的时钟输入端,同样在滤波器内部,时钟频率被2分频。
CLKOUT ——晶体振荡器和R-C振荡的时钟输出端。
OSCOUT ——与晶体振荡器或R-C振荡器相连,用于自同步。
INA、INB ——滤波器的信号输入端。
BPA、BPB——带通滤波器输出端。
LPA、LPB——低通滤波器输出端。
HPA、HPB——高通、带阻、全通滤波器输出端。
WR ——写入有效输入端。
接V+时,输人数据不起作用;接V-时,数据可通过逻辑接口进入一个可编程的内存之中,以完成滤波器的工作模式、f0及Q的设置。
此外,还可以接收TTL电平信号,并上升沿锁存输人数据。
A0、A1、A2、A3 ——地址输人端,可用来完成对滤波器工作模式、f0和Q的相应设置。
MAX5921AEVKIT中文资料
19-2971; Rev 0; 8/03
MAX5921A Evaluation Kit
General Description
The MAX5921A evaluation kit (EV kit) is a fully assembled and tested surface-mount circuit board that provides current-limiting and multilevel fault protection using the MAX5921A hot-swap controller. The EV kit demonstrates the autoretry, configurable input undervoltage, overvoltage, and overcurrent monitoring features of the MAX5921A. The MAX5921A controls an external N-channel MOSFET to provide load-current regulation. The EV kit circuit undervoltage and overvoltage thresholds are configured to -32V and -80V, respectively, which makes the EV kit well suited for -48V telecom systems. The input operating voltage range is -20V to -80V (-48V rail systems). The EV kit is designed to withstand -100V input transients. The current-limiting threshold is configured for 1.8A output current. The EV kit can also be used to evaluate different versions of the MAX5920, MAX5921, or MAX5939 hotswap controllers after removing the MAX5921A. The MAX5920A/B are pin- and function-compatible with the LT4250 hot-swap controllers and pin-compatible with LT1640. Warning: The MAX5921A EV kit is designed to operate with high voltages. Dangerous voltages are present on this EV kit and on equipment connected to it. Users who power up this EV kit or power the sources connected to it must be careful to follow safety procedures appropriate to working with high-voltage electrical equipment. Under severe fault or failure conditions, this EV kit may dissipate large amounts of power, which could result in the mechanical ejection of a component or of component debris at high velocity. Operate this kit with care to avoid possible personal injury. The EV kit user should not probe the circuit with an oscilloscope probe and ground clip unless they have “high-voltage, hot-swap experience.”
MAX2680-MAX2682中文资料
ICC
ICC VIH VIL ISHDN
MAX2680 MAX2681 MAX2682 SHDN = 0.5V
0 < SHDN < VCC
5.0
7.7
8.7
12.7
mA
15.0 21.8
0.05
5
µA
2.0
V
0.5
V
0.2
µA
AC ELECTRICAL CHARACTERISTICS
(MAX2680/1/2 EV Kit, VCC = SHDN = +3.0V, TA = +25°C, unless otherwise noted. RFIN and IFOUT matched to 50Ω. PLO = -5dBm, PRFIN = -25dBm.)
DC ELECTRICAL CHARACTERISTICS
(VCC = +2.7V to +5.5V, SHDN = +2V, TA = TMIN to TMAX unless otherwise noted. Typical values are at VCC = +3V and TA = +25°C. Minimum and maximum values are guaranteed over temperature by design and characterization.)
10
500 MHz
Conversion Power Gain
fRF = 400MHz, fLO = 445MHz, fIF = 45MHz fRF = 900MHz, fLO = 970MHz, fIF = 70MHz fRF = 1950MHz, fLO = 1880MHz, fIF = 70MHz (Note 1) fRF = 2450MHz, fLO = 2210MHz, fIF = 240MHz
MAX962ESA中文资料
Single 3V/5V Systems
Portable/Battery-Powered Systems
Threshold Detectors/Discriminators
GPS RecLeabharlann iversLine Receivers
Zero-Crossing Detectors
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim’s website at .
元器件交易网
元器件交易网
MAX961–MAX964/MAX997/MAX999
19-1129; Rev 4; 3/99
Single/Dual/Quad, Ultra-High-Speed, +3V/+5V, Beyond-the-Rails Comparators
_________________General Description
VTRIP
VCM = - 0.1V or 5.1V,
VCC = 5V (Note 3)
µMAX, SOT23
All other packages
±2.0 ±3.5 ±2.0 ±3.5
±6.5 mV
±4.0
Input-Referred Hysteresis Input Offset Voltage
VCM = - 0.1V µMAX,
5-Pin SOT23 (derate 7.1mW/°C above +70°C).......571mW/°C 8-Pin SO (derate 5.88mW/°C above +70°C)...........471mW/°C 8-Pin µMAX (derate 4.10mW/°C above +70°C) ......330mW/°C
max2器件中文手册
max232中文资料及其应用
max232中文资料及其应用MAX232芯片是美信(MAXIM)公司专为RS-232标准串口设计的单电源电平转换芯片,使用 5v单电源供电。
器件特别适合电池供电系统,这是由于其低功耗关断模式可以将功耗减小到5uW以内。
MAX225、MAX233、MAX235以及MAX245/MAX246/MAX247不需要外部元件,推荐用于印刷电路板面积有限的应用。
MAX220–MAX249系列线驱动器/接收器,专为EIA/TIA-232E 以及V.28/V.24通信接口设计,尤其是无法提供±12V电源的应用。
当用单片机和PC机通过串口进行通信,尽管单片机有串行通信的功能,但单片机提供的信号电平和RS232的标准不一样,因此要通过max232这种类似的芯片进行电平转换。
引脚介绍:第一部分是电荷泵电路。
由1、2、3、4、5、6脚和4只电容构成。
功能是产生12v和-12v两个电源,提供给RS-232串口电平的需要。
第二部分是数据转换通道。
由7、8、9、10、11、12、13、14脚构成两个数据通道。
其中13脚(R1IN)、12脚(R1OUT)、11脚(T1IN)、14脚(T1OUT)为第一数据通道。
8脚(R2IN)、9脚(R2OUT)、10脚(T2IN)、7脚(T2OUT)为第二数据通道。
TTL/CMOS数据从T1IN、T2IN输入转换成RS-232数据从T1OUT、T2OUT送到电脑DB9插头;DB9插头的RS-232数据从R1IN、R2IN输入转换成TTL/CMOS数据后从R1OUT、R2OUT输出。
第三部分是供电。
15脚GND、16脚VCC( 5v)。
主要特点:1、符合所有的RS-232C技术标准2、只需要单一 5V电源供电3、片载电荷泵具有升压、电压极性反转能力,能够产生10V和-10V电压V 、V-4、功耗低,典型供电电流5mA5、内部集成2个RS-232C驱动器6、内部集成两个RS-232C接收器下图为MX232双串口的连接图,可以分别接单片机的串行通信口或者实验板的其它串行通信接口:max232应用电路,注意电容接法232是电荷泵芯片,可以完成两路TTL/RS-232电平的转换,它的的9、10、11、12引脚是TTL电平端,用来连接单片机的。
MAX3222EEUP中文资料
Battery-Powered Equipment Cell Phones Cell-Phone Data Cables Notebook, Subnotebook, and Palmtop Computers
Applications
Printers Smart Phones xDSL Modems
_______________Ordering Information
PART
TEMP RANGE
PINPACKAGE
PKG CODE
MAX3222ECTP MAX3222ECUP
0°C to +70°C 0°C to +70°C
20 Thin QFNEP** (5mm x 5mm) 20 TSSOP
♦ For Low-Voltage or Data Cable Applications MAX3380E/MAX3381E: +2.35V to +5.5V, 1µA, 2Tx/2Rx, RS-232 Transceivers with ±15kV ESD-Protected I/O and Logic Pins
MAX3222EEPN -40°C to +85°C 18 Plastic DIP —
MAX3232ECAE 0°C to +70°C 16 SSOP
—
MAX3232ECWE 0°C to +70°C 16 Wide SO —
MAX3232ECPE 0°C to +70°C 16 Plastic DIP —
A proprietary low-dropout transmitter output stage delivers true RS-232 performance from a +3.0V to +5.5V power supply, using an internal dual charge pump. The charge pump requires only four small 0.1µF capacitors for operation from a +3.3V supply. Each device guarantees operation at data rates of 250kbps while maintaining RS-232 output levels. The MAX3237E guarantees operation at 250kbps in the normal operating mode and 1Mbps in the MegaBaud™ operating mode, while maintaining RS-232compliant output levels.
MAX5222中文资料完整
令中。
Figure 图 3.详细的串行接口时序图
数字输入 数字输入与 CMOS 逻辑兼容。当通过 0.3 ✕ VDD 和 0.7 ✕ VDD 之间的过渡区切换逻辑 输入时,电源电流稍微增加。 微处理器接口 MAX5222 串行接口与 Microwire、SPI 和 QSPI 兼容。对于 SPI,清除 CPOL 和 CPHA 位 (CPOL=0 和 CPHA=0)。cpol=0 将非活动时 钟状态设置为零,CPHA=0 更改 SCLK 下降沿 的数据。此设置允许 SPI 以全时钟速度运行。 如果您的祄 P 上没有串行端口,则可以使用 并行端口的 3 位逐位模拟串行端口操作。只 有在必要时才操作串行时钟,从而使电压输 出处的数字馈通最小化。
工作温度范围…………-40°C 至+85°C
接 地 的 所 有 其 他 插 脚 ( 注 1 ) -0.3V 至 结温…………………………………+150°C
(VDD+0.3V)
储存温度范围……………………-65°C 至
持续功耗(Ta=+70°C)
+150°C
8 针 SOT23(在+70°C 以上减额 8.7mW/° 铅温度(焊接 10s)……………………………
CIN
Note4
10
pF
动态性能
电压输出滑移速率 电压输出稳定时间 数字馈通 和串扰
电源电压范围 电源电流
关机电源电流
SR
CL = 100pF
1
To ± 1⁄2LSB, CL = 100pF
10
All 0s to all 1s
0.25
电源
VDD
2.7
5.5
ALL INPUTS=0 IDD
MAX6192中文资料
SYMBOL
CONDITIONS
VOUT TA = +25°C
TCVOUT
MAX6190A MAX6190B MAX6190C
MAX6190A MAX6190B MAX6190C
MIN
1.248 1.246 1.244
tR
To 0.1%, COUT = 50pF
Capacitive-Load Stability Range COUT (Note 3)
0
INPUT
Supply Voltage Range
VIN
Guaranteed by line-regulation test
2.5
Quiescent Supply Current
These series-mode bandgap references draw a maximum of only 35µA quiescent supply current, making them ideal for battery-powered instruments. They offer a supply current that is virtually immune to input voltage variations. Load-regulation specifications are guaranteed for source and sink currents up to 500µA. These devices are internally compensated, making them ideal for applications that require fast settling, and are stable with capacitive loads up to 2.2nF.
MAX232中文资料(官方版)
新一代 器件特性 ____________________________
♦ 对于低电压、集成 ESD 保护的应用 MAX3222E/MAX3232E/MAX3237E/MAX3241E/ MAX3246E:+3.0V 至 +5.5V、低功耗、速率高达 1Mbps、利用四个 0.1µF 电容实现真正的 RS-232 收发器 (MAX3246E 提供 UCSPTM 封装 )。 ♦ 对于低成本应用 MAX221E:±15kV ESD 保护、+5V、1µA、 具有 AutoShutdownTM 功能的单芯片 RS-232。
________________________________ 应用
便携式计算机 低功耗调制解调器 接口转换 电池供电 RS-232 系统 多点 RS-232 网络
_____________________________ 定购信息
PART MAX220CPE MAX220CSE MAX220CWE MAX220C/D MAX220EPE MAX220ESE MAX220EWE MAX220EJE MAX220MJE TEMP RANGE 0°C to +70°C 0°C to +70°C 0°C to +70°C 0°C to +70°C -40°C to +85°C -40°C to +85°C -40°C to +85°C -40°C to +85°C -55°C to +125°C PIN-PACKAGE 16 Plastic DIP 16 Narrow SO 16 Wide SO Dice* 16 Plastic DIP 16 Narrow SO 16 Wide SO 16 CERDIP 16 CERDIP
MAX5222 使用手册说明书
General DescriptionThe MAX5222 contains two 8-bit, buffered, voltage-out-put digital-to-analog converters (DAC A and DAC B) in a small 8-pin SOT23 package. Both DAC outputs can source and sink 1mA to within 100mV of ground and V DD . The MAX5222 operates with a single +2.7V to +5.5V supply.The device uses a 3-wire serial interface, which oper-ates at clock rates up to 25MHz and is compatible with SPI™, QSPI™, and MICROWIRE™ interface standards.The serial input shift register is 16 bits long and con-sists of 8 bits of DAC input data and 8 bits for DAC selection and shutdown control. DAC registers can be loaded independently or in parallel at the positive edge of CS.The MAX5222’s ultra-low power consumption and tiny 8-pin SOT23package make it ideal for portable and battery-powered applications. Supply current is less than 1mA and drops below 1µA in shutdown mode. In addition, the reference input is disconnected from the REF pin during shutdown, further reducing the system’s total power consumption.________________________ApplicationsDigital Gain and Offset Adjustment Programmable Current Source Programmable Voltage Source Power-Amp Bias Control VCO TuningFeatureso Operates from a Single +2.7V to +5.5V Supply o Tiny 8-Pin SOT23 Package (3mm ✕3mm)o Dual Buffered Voltage Output o Low Power Consumption0.4mA Operating Current <1µA Shutdown Current o Programmable Shutdown Mode o 25MHz, 3-Wire Serial Interfaceo SPI, QSPI, and MICROWIRE CompatibleMAX5222Dual, 8-Bit, Voltage-Output Serial DAC in 8-Pin SOT23________________________________________________________________Maxim Integrated Products1Functional DiagramPin Configuration19-1720; Rev 0; 4/00SPI and QSPI are trademarks of Motorola, Inc.MICROWIRE is a trademark of National Semiconductor Corp.Ordering InformationFor free samples and the latest literature, visit or phone 1-800-998-8800.For small orders, phone 1-800-835-8769.M A X 5222Dual, 8-Bit, Voltage-Output Serial DAC in 8-Pin SOT23 2_______________________________________________________________________________________ABSOLUTE MAXIMUM RATINGSELECTRICAL CHARACTERISTICS(V DD = +2.7V to +5.5V, REF = V DD , T A = T MIN to T MAX , unless otherwise noted. Typical values are at T A = +25°C.)Note 1:The outputs may be shorted to V DD or GND if the package power dissipation is not exceeded. Typical short-circuit current toGND is 70mA.Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.V DD to GND.............................................................-0.3V to +6V All Other Pins to GND (Note 1)..................-0.3V to (V DD + 0.3V)Continuous Power Dissipation (T A = +70°C)8-Pin SOT23 (derate 8.7mW/°C above +70°C)............696mWOperating Temperature Range ...........................-40°C to +85°C Junction Temperature......................................................+150°C Storage Temperature Range.............................-65°C to +150°C Lead Temperature (soldering, 10s).................................+300°CMAX5222Dual, 8-Bit, Voltage-Output Serial DAC in 8-Pin SOT23_______________________________________________________________________________________3Note 2:Reduced digital code range (code 24 through code 232) is due to swing limitations of the output amplifiers. See TypicalOperating Characteristics .Note 3:Reference input resistance is code dependent. The lowest input resistance occurs at code 55hex. See the Reference Inputsection.Note 4:Guaranteed by design. Not production tested.ELECTRICAL CHARACTERISTICS (continued)(V DD = +2.7V to +5.5V, REF = V DD , T A = T MIN to T MAX , unless otherwise noted. Typical values are at T A = +25°C.)TIMING CHARACTERISTICS(Figure 3, V DD = +2.7V to +5.5V, T A = T MIN to T MAX , unless otherwise noted.) (Note 4)0.400.450.500.600.550.65-5050100POSITIVE SUPPLY CURRENTvs. TEMPERATUREM A X 5222-07TEMPERATURE (°C)I D D (m A )00.10.30.20.50.40.623456SHUTDOWN SUPPLY CURRENTvs. SUPPLY VOLTAGEM A X 5222-08SUPPLY VOLTAGE (V)I D D (µA )-25-20-10-150-550.1110100100010,000REFERENCE SMALL-SIGNAL FREQUENCY RESPONSEFREQUENCY (kHz)R E L A T I V E O U T P U T (d B )M A X 5222Dual, 8-Bit, Voltage-Output Serial DAC in 8-Pin SOT23 4_________________________________________________________________________________________________________________________________Typical Operating Characteristics(V DD = +3V, T A = +25°C, unless otherwise noted.)01.00.52.01.53.02.53.50.0010.010.1110100OUTPUT VOLTAGE vs.OUTPUT SOURCE CURRENT (V DD = 3V)M A X 5222-01OUTPUT SOURCE CURRENT (mA)O U T P U T V O L T A G E (V )-0.3-0.20-0.10.20.10.30100200300INTEGRAL NONLINEARITYvs. DIGITAL CODEM A X 5222-04CODEI N L (L S B )501502502135460.00010.011100OUTPUT VOLTAGE vs.OUTPUT SOURCE CURRENT (V DD = 5V)M A X 5222-02OUTPUT SOURCE CURRENT (mA)O U T P U T V O L T A G E (V )-10020001005004003007006008000.00010.0010.010.1110OUTPUT VOLTAGEvs. OUTPUT SINK CURRENTM A X 5222-03OUTPUT SINK CURRENT (mA)O U T P U T V O L T A G E (m V )-0.10-0.050.0500.150.100.200100200300DIFFERENTIAL NONLINEARITYvs. DIGITAL CODEM A X 5222-05CODED N L (L S B )-0.15-0.20501502500.10.30.20.50.40.62345POSITIVE SUPPLY CURRENT vs. SUPPLY VOLTAGEM A X 5222-06V DD (V)I D D (m A )MAX5222Dual, 8-Bit, Voltage-Output Serial DAC in 8-Pin SOT23_______________________________________________________________________________________5Typical Operating Characteristics (continued)(V DD = +3V, T A = +25°C, unless otherwise noted.)CS = HIGH, SCLK = 5MHz50ns/divCLOCK FEEDTHROUGHCH1CH2SCLK, 5MHz 0 TO 2.9V 5V/divOUT_ 10mV/div AC-COUPLED100µs/divPOWER-UP OUTPUT GLITCHMAX5222-12CH1CH2V DD 1V/div OUT_ 50mV/divV DD = CHANGES BETWEEN 0 AND 5V RAMP TIME IS 10µs2ms/divPOWER-UP OUTPUT GLITCHMAX5222-13CH1CH2V DD 1V/div OUT_ 50mV/divV DD = CHANGES BETWEEN 0 AND 5V RAMP TIME IS 1msV REF = V DD = 3V, R L = 10k Ω, C L = 100pF2µs/divLARGE-SIGNAL OUTPUT STEP RESPONSECH1CH2CS 2V/divOUT_ 1V/divM A X 5222Dual, 8-Bit, Voltage-Output Serial DAC in 8-Pin SOT23 6_______________________________________________________________________________________Typical Operating Characteristics (continued)(V DD = +3V, T A = +25°C, unless otherwise noted.)V DD = 3V, REF = V DD , R L = 10k Ω, C L = 100pF ALL BITS OFF TO ALL BITS ON1µs/divNEGATIVE SETTLING TIME CH1CH2OUT_ 200mV/div AC-COUPLED CS 2V/divV DD = 3V, REF = V DD , R L = 10k Ω, C L = 100pF ALL BITS OFF TO ALL BITS ON 1µs/divPOSITIVE SETTLING TIMECH1CH2OUT_ 200mV/divCS 2V/div 2ms/divOUTPUT VOLTAGE NOISE (DC TO 1MHz)CH1OUTA 2mV/divAC-COUPLEDV DD = 3V, REF = V DD , NO LOAD, DIGITAL CODE = FFMAX5222Dual, 8-Bit, Voltage-Output Serial DAC in 8-Pin SOT23_______________________________________________________________________________________7Detailed DescriptionAnalog SectionThe MAX5222 contains two 8-bit, voltage-output DACs.The DACs are “inverted” R-2R ladder networks using complementary switches that convert 8-bit digital inputs into equivalent analog output voltages in propor-tion to the applied reference voltage.The MAX5222 has one reference input that is shared by DAC A and DAC B. The device includes output buffer amplifiers for both DACs and input logic for sim-ple microprocessor (µP) and CMOS interfaces. The power-supply range is from +5.5V down to +2.7V.Reference Input and DAC Output RangeThe voltage at REF sets the full-scale output of the DACs. The input impedance of the REF input is code dependent. The lowest value, approximately 8k Ω,occurs when the input code is 01010101 (55hex). The maximum value of infinity occurs when the input code is zero.I n shutdown mode, the selected DAC output is set to zero, while the value stored in the DAC register remains unchanged. This removes the load from the reference input to save power. Bringing the MAX5222 out of shut-down mode restores the DAC output voltage. Because the input resistance at REF is code dependent, the DAC’s reference source should have an output imped-ance of no more than 5Ω. The input capacitance at theREF pin is also code dependent and typically does not exceed 25pF.The reference voltage on REF can range anywhere from GND to V DD . See the Output Buffer Amplifier section for more information.Figure 1 is the DAC simplified circuit diagram.Output Buffer AmplifiersDAC A and DAC B voltage outputs are internally buffered. The buffer amplifiers have a Rail-to-Rail ®(GND to V DD ) output voltage range.Both DAC output amplifiers can source and sink up to 1mA of current. See the INL vs. Digital Code graph in the T ypical Operating Characteristics . The amplifiers are unity-gain stable with a capacitive load of 100pF or smaller. The slew rate is typically 1V/µs.Shutdown ModeWhen programmed to shutdown mode, the outputs of DAC A and DAC B are passively pulled to GND with a series 5k Ωresistor. In shutdown mode, the REF input is high impedance (2M Ωtypical) to conserve current drain from the system reference; therefore, the system reference does not have to be powered down.Coming out of shutdown, the DAC outputs return to the values kept in the registers. The recovery time is equiv-alent to the DAC settling time.______________________________________________________________Pin DescriptionRail-to-Rail is a registered trademark of Nippon Motorola, Ltd.M A X 5222Dual, 8-Bit, Voltage-Output Serial DAC in 8-Pin SOT23 8_______________________________________________________________________________________MAX5222Dual, 8-Bit, Voltage-Output Serial DAC in 8-Pin SOT23_______________________________________________________________________________________9Figure 2. 3-Wire Serial-Interface Timing DiagramTable 2. Serial-Interface Programming CommandsTable 3. Example of a 16-Bit Input WordX =Don’t care.* = Not shown, for the sake of clarity. The functions of loading and shutting down the DACs and programming the logic can be combined in a single command.Digital InputsThe digital inputs are compatible with CMOS logic.Supply current increases slightly when toggling the logic inputs through the transition zone between 0.3 ✕ V DD and 0.7 ✕ V DD .Microprocessor InterfacingThe MAX5222 serial interface is compatible with MI CROWI RE, SPI , and QSPI. For SPI , clear the CPOL and CPHA bits (CPOL = 0 and CPHA = 0). CPOL = 0sets the inactive clock state to zero, and CPHA = 0changes data at the falling edge of SCLK. This setting allows SPI to run at full clock speeds. If a serial port is not available on your µP, 3 bits of a parallel port can be used to emulate a serial port by bit manipulation.Minimize digital feedthrough at the voltage outputs by operating the serial clock only when necessary.M A X 5222Dual, 8-Bit, Voltage-Output Serial DAC in 8-Pin SOT23 10______________________________________________________________________________________Figure 3. Detailed Serial-Interface Timing DiagramMAX5222Dual, 8-Bit, Voltage-Output Serial DAC in 8-Pin SOT23______________________________________________________________________________________11Applications InformationThe MAX5222 is specified for single-supply operationwith V DD ranging from 2.7V to 5.5V, covering all com-monly used supply voltages in 3V and 5V systems.InitializationAn internal power-on reset circuit forces the outputs tozero scale and initializes all external registers to zero.This is equivalent to being in the shutdown state.Therefore, at power-up, perform an initial write opera-tion to set the outputs to the desired voltage.Power-Supply andGround ManagementGND should be connected to the highest qualityground available. Bypass VDD with a 0.1µF to 0.22µFcapacitor to GND. The reference input can be used without bypassing. For optimum line/load-transientresponse and noise performance, bypass the refer-ence input with 0.1µF to 4.7µF to GND. Careful PCboard layout minimizes crosstalk among DAC outputs,the reference, and digital inputs. Separate analog lineswith ground traces between them. Make sure that high-frequency digital lines are not routed in parallel to ana-log lines.Chip InformationTRANSISTOR COUNT: 1480PROCESS TECHNOLOGY: BiCMOSM A X 5222Dual, 8-Bit, Voltage-Output Serial DAC in 8-Pin SOT23________________________________________________________Package InformationMaxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.12____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600©2000 Maxim Integrated Products Printed USAis a registered trademark of Maxim Integrated Products.。
MAX5921AESA中文资料
Ordering Information continued at end of data sheet.
Pin Configuration
TOP VIEW
PWRGD (PWRGD)
1 2 3
8 7
VDD DRAIN GATE SENSE
Typical Operating Circuit and Selector Guide appear at end of data sheet.
元器件交易网
-48V Hot-Swap Controllers with External RSENSE and High Gate Pulldown Current MAX5921/MAX5939
ABSOLUTE MAXIMUM RATINGS
All Voltages Are Referenced to VEE, Unless Otherwise Noted Supply Voltage (VDD - VEE )................................-0.3V to +100V DRAIN, PWRGD, PWRGD ....................................-0.3V to +100V PWRGD to DRAIN .............................................… -0.3V to +95V PWRGD to VDD .......................................................-95V to +85V SENSE (Internally Clamped) .................................-0.3V to +1.0V GATE (Internally Clamped) ....................................-0.3V to +18V UV and OV..............................................................-0.3V to +60V Current into SENSE...........................................................+40mA Current into GATE...........................................................+300mA Current into Any Other Pin................................................+20mA Continuous Power Dissipation (TA = +70°C) 8-Pin SO (derate 5.9mW/°C above +70°C)..................471mW Operating Temperature Range ...........................-40°C to +85°C Junction Temperature .....................................................+150°C Storage Temperature Range .............................-65°C to +150°C Lead Temperature (soldering, 10s) .................................+300°C
MAX232中文资料_数据手册_参数
ቤተ መጻሕፍቲ ባይዱ
ESD保护, 5V RS-232收发器输出.所以经过PC板组装之后,机器模型与I / O端口不太相关.应用信息电容选择用于C1-C4的电容器类 型不是关键正确的操作. MAX202E,MAX206-MAX208E, MAX232E和MAX213E需要0.1μF电容, MAX232E和MAX241E需要1μF电 容 - 尽管在所有情况下电容器都可以达到10μF使用没有伤害.陶瓷,铝电解,或钽电容建议1μF建议使用电容器和陶瓷电介质 0.1μF电容.当使用小的推荐值时,修补电容值,确保电容价值不会像操作那样过度降低温度变化.如果有疑问,请使用电容器较大 (例如2倍)的标称值.电容器的有效性 TIVE串联电阻(ESR),通常在低位上升温度影响V +上的纹波量和V-.使用更大的电容(高 达10μF)来减少输出 V +和V-下的阻抗MAX232.这可能是有用的时候从V +或V-“窃取”电源. MAX232和 MAX205E具有内部电荷 泵电容. 旁路V CC 到地面至少0.1μF. 在应用中,对由此产生的电源噪声敏感 电荷泵, 通过电容去 耦V CC 到地,与电荷泵的尺寸 相同(或大于)电容器(C1-C4). V +和V-作为电源可以从V +和V-中获取少量功率,尽管这会减少驾驶员的输出摆动和噪音边际. 增加电荷泵的价值电容器(高达10μF)有助于保持性能当电源从V +或V-引出时.驱动多个接收器每个发射器都设计用来驱动一个 接收器.变送器可以并联驱动多个接收器.退出关机时的驱动程序输出驱动器输出不显示振铃或不合需要当他们从关机时出现瞬态.高 数据速率这些收发器保持RS-232±5.0V MINI-妈妈驱动器输出电压数据速率超过 120KBPS.对于120KBPS以上的数据速率,请参考发 射机输出电压与负载电容在图表中典型. 驱动器输出关闭并只吸取漏电流 - MAX232即使他们是反向驱动电压在0V和 12V.在关机时低于-0.5V,变送器输出为二极管钳位到地 面与1KΩ串联阻抗 - ANCE. RS-232接收器接收器将RS-232信号转换为CMOS逻辑产出水平.保证0.8V和2.4V接收器输入阈值比±3V严 格得多 EIA / TIA-232E规范要求的阈值.这允许接收器输入响应TTL / CMOS-逻辑电平以及RS-232电平.保证0.8V输入低阈值确保接地 短路的接收器具有逻辑1输出.该 5KΩ输入电阻接地保证了MAX232接收器其输入保持打开状态也将具有逻辑1输出.接收器输入具有 大约0.5V的滞后.这提供了干净的输出转换,即使MAX232速度很慢上升/下降时间信号,噪音适中并响起.关断时,MAX213E的R4和 R5接收器具有没有滞后.关机和启用控制 (MAX205E / MAX206E / MAX232E / MAX213E / MAX241E)在关机模式下,充电泵关闭, V +被拉低至V CC ,V-拉至接地,并且变送器输出被禁用.这减少了支持,通常为1μA(MAX213E为15μA).退出关机所需的时间 低于1MS,如如图5所示.接收器除R4和R5外,所有MAX213E接收机都被放入在关断模式下的高阻状态(见表 1A和1B). MAX213E的 R4和R5接收器依然如此功能在关机模式下.这两个清醒的,下行接收机可以监控外部活动,保持小的功耗.启用控件用于将接收器输 出插入一个高阻状态,以允许线或连接两个EIA / TIA-232E端口(或不同类型的端口) UART.它不影响RS-232驱动程序或者充电泵. MAXIM器件,ESD保护结构一样并入所有引脚以防止电 - MAX232处理过程中遇到静电放电部件.驱动器输出和接收器输入额外的防 静电保护. MAXIM的英文 - NEERS开发了先进的结构来保护这些引脚对±15KV的ESD没有损坏.该在所有状态下,ESD结构都能承受 高ESD操作,关机和关机.在ESD之后事件,MAXIM的E版本继续工作,没有闭锁,而竞争的RS-232产品可以锁定和必须断电以消除 闩锁. ESD保护可以通过各种方式进行测试;该本产品的发射机输出和接收机输入家庭的特点.
MAXIM6021中文资料
MAX6100EURRev. ARELIABILITY REPORTFORMAX6100EURPLASTIC ENCAPSULATED DEVICESFebruary 14, 2003MAXIM INTEGRATED PRODUCTS120 SAN GABRIEL DR.SUNNYVALE, CA 94086Written byReviewed byJim Pedicord Bryan J. Preeshl Quality Assurance Quality Assurance Reliability Lab Manager Executive DirectorConclusionThe MAX6100 successfully meets the quality and reliability standards required of all Maxim products. In addition, Maxim’s continuous reliability monitoring program ensures that all outgoing product will continue to meet Maxim’s quality and reliability standards.Table of ContentsI. ........Device Description V. ........Quality Assurance InformationII. ........Manufacturing Information VI. .......Reliability EvaluationIII. .......Packaging Information IV. .......Die Information.....AttachmentsI. Device DescriptionA. GeneralThe MAX6100 is a low-cost, low-dropout (LDO), micropower voltage references. This three-terminal reference has an output voltage option of 1.8V. It features a proprietary curvature-correction circuit and laser-trimmed, thin-filmresistors that result in a low temperature coefficient of 75ppm/°C (max) and an initial accuracy of ±0.4% (max). This device is specified over the extended temperature range (-40°C to +85°C).This series-mode voltage reference draws only 90µA of supply current and can source 5mA and sink 2mA of load current. Unlike conventional shunt-mode (two-terminal) references that waste supply current and require an external resistor, this device offers a supply current that is virtually independent of the supply voltage (with only a 4µA/Vvariation with supply voltage) and does not require an external resistor. Additionally, this internally compensated device does not require an external compensation capacitor and is stable with load capacitance. Eliminating the external compensation capacitor saves valuable board area in space-critical applications. Low dropout voltage and supply-independent, ultra-low supply current makes this device ideal for battery-operated, high-performance, low-voltage systems.The MAX6100 is available in a tiny 3-pin SOT23 packages.B. Absolute Maximum RatingsItem Rating(Voltages Referenced to GND)IN -0.3V to +13.5VOUT -0.3V to (VIN + 0.3V)Output Short-Circuit to GND or IN (VIN < 6V) ContinuousOutput Short-Circuit to GND or IN (VIN = 6V) 60sOperating Temperature Range -40°C to +85°CStorage Temperature Range -65°C to +150°CLead Temperature (soldering, 10s) +300°CContinuous Power Dissipation (TA = +70°C)3-Pin SOT23 320mWDerates above +70°C3-Pin SOT23 4.0mW/°CII. Manufacturing InformationA. Description/Function: Low-Cost, Micropower, Low-Dropout, High-Output-Current, SOT23 Voltage ReferencesB. Process: B12 (Standard 1.2 micron silicon gate CMOS)C. Number of Device Transistors: 117D. Fabrication Location: California or Oregon, USAE. Assembly Location: Malaysia or ThailandF. Date of Initial Production: March, 2001III. Packaging InformationA. Package Type: 3-Pin SOT23B. Lead Frame: Copper or Alloy 42C. Lead Finish: Solder PlateD. Die Attach: Silver-filled EpoxyE. Bondwire: Gold (1.0 mil dia.)F. Mold Material: Epoxy with silica fillerG. Assembly Diagram: # 05-0901-0179H. Flammability Rating: Class UL94-V0I. Classification of Moisture Sensitivityper JEDEC standard JESD22-112: Level 1IV. Die InformationA. Dimensions: 44 x 31milsB. Passivation: Si3N4/SiO2 (Silicon nitride/ Silicon dioxide)C. Interconnect: Aluminum/Si (Si = 1%)D. Backside Metallization: NoneE. Minimum Metal Width: 1.2 microns (as drawn)F. Minimum Metal Spacing: 1.2 microns (as drawn)G. Bondpad Dimensions: 5 mil. Sq.H. Isolation Dielectric: SiO2I. Die Separation Method: Wafer SawV. Quality Assurance InformationA. Quality Assurance Contacts: Jim Pedicord (Manager, Reliability Operations)Bryan Preeshl (Executive Director)Kenneth Huening (Vice President)B. Outgoing Inspection Level: 0.1% for all electrical parameters guaranteed by the Datasheet.0.1% For all Visual Defects.C. Observed Outgoing Defect Rate: < 50 ppmD. Sampling Plan: Mil-Std-105DVI. Reliability EvaluationA. Accelerated Life TestThe results of the 135°C biased (static) life test are shown in Table 1. Using these results, the Failure Rate (λ) is calculated as follows:λ = 1 = 1.83 (Chi square value for MTTF upper limit)MTTFλ = 6.79 x 10-9λ = 6.79 F.I.T. (60% confidence level @ 25°C)This low failure rate represents data collected from Maxim’s reliability monitor program. In addition to routine production Burn-In, Maxim pulls a sample from every fabrication process three times per week and subjects it to an extended Burn-In prior to shipment to ensure its reliability. The reliability control level for each lot to be shipped as standard product is 59 F.I.T. at a 60% confidence level, which equates to 3 failures in an 80 piece sample. Maxim performs failure analysis on any lot that exceeds this reliability control level. Attached Burn-In Schematic (Spec. # 06-5630) shows the static Burn-In circuit. Maxim also performs quarterly 1000 hour life test monitors. This data is published in the Product Reliability Report (RR-1M).B. Moisture Resistance TestsMaxim pulls pressure pot samples from every assembly process three times per week. Each lot sample must meet an LTPD = 20 or less before shipment as standard product. Additionally, the industry standard 85°C/85%RH testing is done per generic device/package family once a quarter.C. E.S.D. and Latch-Up TestingThe RF24-7die type has been found to have all pins able to withstand a transient pulse of ±1500V, per Mil-Std-883 Method 3015 (reference attached ESD Test Circuit). Latch-Up testing has shown that this device withstands a current of ±250mA.Table 1Reliability Evaluation Test ResultsMAX6100EURTEST ITEM TEST CONDITION FAILURE SAMPLE NUMBER OFIDENTIFICATION PACKAGE SIZE FAILURES Static Life Test (Note 1)Ta = 135°C DC Parameters 160 0Biased & functionalityTime = 192 hrs.Moisture Testing (Note 2)Pressure Pot Ta = 121°C DC Parameters SOT 77 0P = 15 psi. & functionalityRH= 100%Time = 168hrs.85/85 Ta = 85°C DC Parameters 77 0RH = 85% & functionalityBiasedTime = 1000hrs.Mechanical Stress (Note 2)Temperature -65°C/150°C DC Parameters 77 0Cycle 1000 Cycles & functionalityMethod 1010Note 1: Life Test Data may represent plastic DIP qualification lots.Note 2: Generic Package/Process dataAttachment #1TABLE II. Pin combination to be tested. 1/ 2/1/ Table II is restated in narrative form in 3.4 below. 2/ No connects are not to be tested. 3/ Repeat pin combination I for each named Power supply and for ground (e.g., where V PS1 is V DD , V CC , V SS , V BB , GND, +V S, -V S , V REF , etc). 3.4 Pin combinations to be tested. a.Each pin individually connected to terminal A with respect to the device ground pin(s) connected to terminal B. All pins except the one being tested and the ground pin(s) shall be open. b. Each pin individually connected to terminal A with respect to each different set of a combination of all named power supply pins (e.g., V SS1, or V SS2 or V SS3 or V CC1, or V CC2) connected to terminal B. All pins except the one being tested and the power supply pin or set of pins shall be open.c.Each input and each output individually connected to terminal A with respect to a combination of all the other input and output pins connected to terminal B. All pins except the input or output pin being tested and the combination of all the other input and output pins shall be open.Terminal A (Each pin individually connected to terminal A with the other floating) Terminal B (The common combination of all like-named pins connected to terminal B) 1. All pins except V PS1 3/ All V PS1 pins 2. All input and output pinsAll other input-output pinsMil Std 883DMethod 3015.7Notice 8TERMINAL BTERMINAL APROBE(NOTE 6) R = 1.5k Ω C = 100pf。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim’s website at .
元器件交易网
Typical Application Circuits, Selector Guide, and Pin Configuration appear at end of data sheet. ________________________________________________________________ Maxim Integrated Products 1
+48V, Single-Port Network Power Switch For Power-Over-LAN MAX5922
ABSOLUTE MAXIMUM RATINGS
(All voltages with respect to AGND_S, unless otherwise noted.) IN ............................................................................-0.3V to +76V UVLO ........................................................................-0.3V to +6V VDIG to DGND ..........................................................-0.3V to +6V OUT .......................................................-0.3V to (VDRAIN + 0.3V) DRAIN ..........................................................-0.3V to (VIN + 0.3V) RDT.........................................................................-0.3V to +12V RCL to IN ................................................................-10V to +0.3V EN, DET_DIS, DCA, CLASS, ZC_EN, and LATCH to DGND ...........................................-0.3V to +6V POK, ZC, CL0, CL1, CL2, and FAULT to DGND......-0.3V to +6V DGND ..........................................................................-5V to +5V Maximum Current into Drain .................................................0.8A Maximum Current into POK, ZC, CL0, CL1, CL2, FAULT ...20mA Continuous Power Dissipation (TA = +70°C) 28-Pin TSSOP (Derate 12.8mW/°C above +70°C) .....1026mW Operating Temperature Range ...........................-40°C to +85°C Junction Temperature ......................................................+150°C Storage Temperature Range .............................-65°C to +160°C Lead Temperature (soldering, 10s) .................................+300°C
元器件交易网
19-2708; Rev 0; 4/03
+48V, Single-Port Network Power Switch For Power-Over-LAN
General Description
The MAX5922A/B/C is a single-port network power controller with an integrated power MOSFET, operating from a +32V to +60V supply rail. The device is specifically designed for power-sourcing equipment (PSE) in powerover-LAN applications and is fully compliant to the IEEE 802.3af standard. The MAX5922 provides power devices (PD) discovery, classification, current limit, and other necessary functions for an IEEE 802.3af compliant PSE. The MAX5922 is suitable for PSE function in both switch/router systems where the power is delivered to the load through the signal pairs, and in midspan systems where the power is delivered to the load through the spare pairs. In midspan mode, a detection collision avoidance circuit (MAX5922A/C only) provides the necessary back-off timing to prevent fault detections that happen when two different PSEs try to detect and power the same PD. The MAX5922B/C have a detection disable input that can be connected high to disable the detection/classification functions or connected low to enable them. The MAX5922 features a programmable undervoltage lockout (UVLO) that keeps the device in shutdown until the input voltage exceeds a certain threshold, set to 38V (MAX5922A) or 28V (MAX5922B/C) internally. After successfully discovering and classifying a PD, the MAX5922 enters startup mode. During startup, the MAX5922 limits the output voltage and current slew rate to minimize EMI (electromagnetic interference). The MAX5922 has an integrated 0.45Ω N-channel power MOSFET that provides efficient operation and simplified system design. The MAX5922 monitors and provides current-limit protection to the load at all times. The current limit is programmable using an external current-sensing resistor. The MAX5922 features current-limit foldback and duty-cycle limit to ensure robust operation during load-fault and short-circuit conditions. Fault management allows the part to either latch-off or autorestart after a fault. The MAX5922 provides POK, ZC, and FAULT status signals to indicate output power is good, zero-current fault, and other faults (overcurrent, overtemperature), respectively. The MAX5922 is available in a 28-pin TSSOP package and is rated over the extended -40°C to +85°C temperature range. o IEEE 802.3af Compliant o +32V to +60V Wide Operating Input Range o 0.45Ω Integrated Power Switch o Power Device (PD) Detection and Classification o 100µA PD Leakage Detection Tolerant o Programmable Current Limit o Zero-Current Detection with Status Output o Detection Collision Avoidance Option for Midspan Application o Input Logic Signals Compatible with 1.8V to 5V CMOS Logic o Separate Analog and Digital Grounds with Up to ±4V Offset o Power-Good Status Output o Overcurrent and Overtemperature Protection with Status Outputs o Current-Limit Foldback with Timeout and DutyCycle Control o Latch or Autorestart Fault Management