七年级数学上册第1课时 有理数的乘方

合集下载

初中数学七年级上册《1.5.1有理数的乘方(第一课时)》教学课件

初中数学七年级上册《1.5.1有理数的乘方(第一课时)》教学课件

2.你能迅速判断下列各幂的正负吗?
165
254
(-8)5
(-3)6
(-1)101
(-2)50
新知小结一
根据有理数乘法法则可以得出: 负数的奇次幂是______,负数的偶次幂是______. 正数的任何次幂都是______, 0的任何正整数次幂都是______.
巩固练习二 1.(-10)8 中-10叫做____数,8叫做____数. 2. -(-2)3 是________(填正数或负数).
人教版七年级上册第一章《有理数》
1.5.1有理数的乘方
学习目标
1.知道乘方、底数、幂的意义,会读乘方算式,会进行 有理数乘方运算. 2.经历乘方符号法则的探究过程,知道乘方的符号法则. 3.能够进行有理数混合运算.
一 内容感知
知识探究一
1.边长为3cm的正方形的面积是多少?
2.棱长为3cm的正方体的体积是多少?
新知小结二
一个运算中,含有有理数的加、减、乘、除、乘方等多 种运算,称为有理数的混合运算.
做有理数的混合运算时,应注意以下运算顺序: 1.先乘方,再乘除,最后加减; 2.同级运算,从左到右进行; 3.如有括号,先做括号内的运算,按小括号、中括号、 大括号依次进行.
巩固练习三
巩固练习二
3.计算
(1)(-1)8Βιβλιοθήκη (2)(-1)7(4) 34
(5)(-2)3
(7)(-0.1)3 (8)(-10)4
(3)(-3)3 (6)(-2)4 (9)(-10)5
例1.计算
例题讲解
例题讲解
例2.观察下列三行数,回答下列问题. -2,4,-8,16,-32,64,…; ① 0,6,-6,18,-30,66,…; ② -1,2,-4,8,-16,32,….; ③ (1)第①行数按什么规律排列? (2)第②③行数与第①行数分别有什么关系?

浙教版七年级上册数学.1有理数的乘方课件

浙教版七年级上册数学.1有理数的乘方课件
• 根据上述材料,解答下列问题:
• (1)二进制中的1011相当于十进制中的多少?
• (2)二进制中的什么数相当于十进制中的8?
• 解:(1)1011=1×23+0×22+1×21+1=11,即二进制中的1011相当于 十进制中的11.
• (2)8=23=0+0×21+0×22+1×23,即二进制中的1000相当于十进制中 的8.
• C.-2乘5 D.25的相反数
• 4.13世纪数学家斐波那契的《计算书》中有这样一个问题:“在罗马 有7位老妇人,每人赶着7头毛驴,每头驴驮着7只口袋,每只口袋里装 着7个面包,每个面包附有7把餐刀,每把餐刀有7只刀鞘”,则刀鞘数 为( C )
• A.42 B.49
• C.76 D.77
6
5.在-233 中,指数是___3_____,底数是_-__23_____,其结果是__-__2_87___,它表 示____3____个__-__23____相乘.
次方”. • (2)有理数乘方的符号法则: • ①正数的任何次幂是正数,负数的奇数次幂是负数,负数的偶数次幂
是正数. • ②0的任何正整数次幂是0,00没有意义. • 注意:(1)一个数可以看作这个数本身的一次方,如5就是51,指数1通
常省略不写. • (2)当幂的底数是负数或分数时,底数应该添上括号.
9
能力提升
• 11.你吃过“拉面”吗?如果把一个面团拉开,然后对折,再拉开,再 对折,如此反复做下去,对折10次拉出的面条是( D )
• A.20根 B.10根 • C.100根 D.1024根
• 12.定义一种新的运算:a&b=ab,如2&3=23=8,那么(3&2)&2=___8_1____.

七年级数学上册(人教版)1.5.1乘方(第1课时有理数乘方的意义及运算)教学设计

七年级数学上册(人教版)1.5.1乘方(第1课时有理数乘方的意义及运算)教学设计
二、学情分析
七年级学生在学习有理数乘方这一章节之前,已经掌握了有理数的加减乘除运算,具备了一定的数学基础。但在乘方概念的理解和运用上,学生可能存在一定的困难。因此,在教学过程中,需要关注以下几点:
1.学生对乘方概念的理解程度,部分学生可能难以从本质上理解乘方的含义,需要通过具体实例和形象比喻来帮、叠加的过程,让学生直观地感受乘方的意义。同时,引导学生思考:“乘方与之前学过的乘法有什么关系?它们之间的区别是什么?”
(二)讲授新知
1.乘方的定义:讲解乘方的定义,即一个数自乘若干次,可以表示为a^n(a为底数,n为指数)。强调乘方的意义,以及正整数、负整数和零的乘方的表示方法。
七年级数学上册(人教版)1.5.1乘方(第1课时有理数乘方的意义及运算)教学设计
一、教学目标
(一)知识与技能
1.理解有理数乘方的概念,掌握有理数乘方的表示方法和运算规则。
2.能够正确计算正整数、负整数和零的乘方,并熟练运用乘方解决实际问题。
3.学会运用乘方的性质,简化有理数的运算过程,提高运算效率。
4.开放性探究题目:
-布置一道开放性探究题目,如:“探究乘方的分配律和结合律在生活中的应用”,鼓励学生主动探索、发现数学规律。
5.课后小结:
-要求学生撰写课后小结,总结本节课所学乘方知识,以及自己在学习过程中的收获和困惑。
6.阅读拓展:
-推荐阅读与乘方相关的数学故事或数学家传记,激发学生学习数学的兴趣,培养学生的数学素养。
2.学生在乘方运算过程中可能出现的错误,如符号处理不当、计算顺序混乱等,教师需引导学生总结错误原因,提高运算准确性。
3.学生在解决实际问题时,可能不知道如何运用乘方知识,需要教师设计贴近生活的例题,引导学生将乘方知识应用于实际问题中。

第1课时有理数的乘方课件苏科版七年级数学上册

第1课时有理数的乘方课件苏科版七年级数学上册
得到2×2×2×2个细菌,…,经过24小时共分裂48次,所以由1
个这种细菌分裂的个数为48个2相乘,得到的式子这么长,写不
过来了,怎么办呢?这节课我们将要学习乘方.
预习导学
乘方的概念
阅读课本本课时开始到“例1”之前的内容,回答下列问题:
1.揭示概念:一般地,n个相同因数a相乘,即
读作

指数
a的n次方
解得a=1,b=-2,
所以(a+b)2023=(1-2)2023=(-1)2023=-1.
D.5个
2.填空:(-5)2= 25 .
3.填空:-53= -125 .
预习导学
方法归纳交流
教学中可用具体例子引导学生明白乘方其
实就是几个相同因数的乘积,同时要注意0的任何正整数次幂都
是0,一个数可以看作这个数本身的1次方.
合作探究
幂的运算
1.计算:(1)24;(2)(-3)3;(3)


;(4)
键.
合作探究
乘方的实际应用
3.有一种纸的厚度为0.1毫米,若拿两张重叠在一起,将它对
折一次后,厚度为22×0.1毫米.
(1)对折2次后,厚度为多少毫米?
(2)对折6次后,厚度为多少毫米?
解:(1)根据题意得2×22×0.1=0.8(毫米).
(2)根据题意得25×22×0.1=12.8(毫米).
合作探究
2.正数的任何次幂都是 正
,负数的偶次幂是 正数
.
数.0的任何正整数次幂都是
0 .
3.思考:-1的奇数次幂是多少?偶数次幂又是多少呢?
答:-1的奇数次幂是-1,-1的偶数次幂是1.
预习导学

2023
2

七年级数学上册有理数的乘方

七年级数学上册有理数的乘方

七年级数学上册有理数的乘方有理数的乘方是数学中一个重要的概念,它在数学运算和实际问题中都有着广泛的应用。

本文将介绍有理数的乘方的定义、规则以及解答习题的方法。

一、有理数的乘方定义及性质1. 定义:对于任意的有理数a和正整数n,a的n次方记为a^n,它表示将a连乘n次的结果。

当n为0时,任何非零有理数a的0次方都等于1,即a^0 = 1。

2. 性质:a. 乘方的运算性质:对于任意的有理数a、b和正整数m、n,有以下规则:(a) a^m × a^n = a^(m + n)(b) (a^m)^n = a^(m × n)(c) a^m ÷ a^n = a^(m - n)b. 乘方的特殊性质:(a) 任何数的1次方都等于该数本身,即a^1 = a。

(b) 非零数的负次方等于该数的倒数的正次方,即a^(-m) = 1 / (a^m)。

二、有理数的乘方计算方法1. 同底数的乘方计算:当底数相同时,可以直接将指数进行运算。

例如:计算2^3 × 2^4。

解:由乘方的运算性质(a)得知,2^3 × 2^4 = 2^(3 + 4) = 2^7。

2. 乘方与乘法的关系:乘方运算可以转化为多次乘法运算。

例如:计算3^4。

解:3^4 = 3 × 3 × 3 × 3 = 81。

3. 有理数的乘方与整数指数的乘法:有理数的乘方可以转化为整数指数的乘法。

例如:计算(-5)^3。

解:(-5)^3 = (-5) × (-5) × (-5) = -125。

4. 有理数的乘方与分数指数的开方:有理数的分数指数可以转化为开方。

例如:计算4^(2/3)。

解:4^(2/3)等于将4开3次方再平方。

4开3次方得到2,再平方得到4。

三、解答习题例题:计算下列各式的值。

1. 5^2 + 3 × 4^2 - (-2)^3解:由乘方的计算方法可得,5^2 + 3 × 4^2 - (-2)^3 = 25 + 3 × 16 - (-8) = 25 + 48 + 8 = 81。

人教版数学七年级上册第1章有理数1.5.1有理数的乘方(教案)

人教版数学七年级上册第1章有理数1.5.1有理数的乘方(教案)
举例:计算一个正方体的体积,边长为a,则体积为a^3。
2.教学难点
(1)零指数幂的理解:理解零指数幂的意义,掌握a^0 = 1(a ≠ 0)的规律。
难点解析:学生可能会对零指数幂的意义产生疑问,需要通过实例和图示等方法解释零指数幂的含义。
(2)负整数指数幂的计算:掌握负整数指数幂的计算方法,理解其与正整数指数幂的关系。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了有理数乘方的基本概念、运算法则及其在实际中的应用。通过实践活动和小组讨论,我们加深了对有理数乘方的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
五、教学反思
在本次教学过程中,我深刻体会到有理数乘方这一知识点的教学既要注重概念的理解,又要关注运算技能的培养。以下是我对这次教学的几点反思:
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与有理数乘方相关的实际问题,如计算不同形状的体积和面积。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,通过实际测量和计算来演示有理数乘方的实际应用。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
1.关于概念教学:在讲解有理数乘方的概念时,我尽量使用简洁明了的语言,并通过生活实例帮助学生理解。从学生的反馈来看,大部分同学能够较好地掌握乘方的定义,但仍有部分同学对零指数幂和负整数指数幂的概念理解不够透彻。在今后的教学中,我需要更加关注这部分学生的理解情况,通过设计更具针对性的问题,引导他们深入思考。
4.提高学生方法,提高运算速度和准确性,培养良好的数学运算习惯。
5.培养学生的数学应用意识:通过实例分析,使学生认识到数学知识在生活中的广泛应用,激发他们学习数学的兴趣,增强数学应用意识。

2.3.1 有理数的乘方 第1课时 有理数的乘方 人教版数学七年级上册课件

2.3.1 有理数的乘方 第1课时 有理数的乘方 人教版数学七年级上册课件

叁 当堂训练
当堂训练
1.算式(- 1
A.(-
1 3
)4
3
C.-( 1 )4
)×(-
3
)×(-
1 3
)×(-
1 3
)可表示为(
B.(- 1 )×4
3
D.以上答案均不对
A

3
2.关于-74的说法正确的是( C )
A.底数是-7
B.表示4个-7相乘
C.表示4个7相乘的积的相反数
D.表示7个-4相乘
解:用带符号键 (-) 的计算器.

( (-) 8 )
5=

显示:(-8) 5 -32768.

( (-) 3 ) 显示:(-3) 6
729.

6=
所以(-8)5=-32768,(-3)6=729.
• 范例应用
议一议
观察下面两个式子有什么不同?
(-2)2与-22
2 3
2

22 3
(-2)2表示-2的平方,-22表示2的平方的相反数.
3
3
(2)-23×(-32)=-8×(-9)=72;
(3)64÷(-2)5=64÷(-32)=-2; (4)(-4)3÷(-1)200+2×(-3)4=-64÷1+2×81=98
思考:通过以上计算,对于乘除和乘方的混合运算, 你觉得有怎样的运算顺序?
先算乘方,后算乘除;如果遇到括号就先进行括号里 的运算.
新壹 课 导 入
目录
讲贰 授 新 知
当叁 堂 训 练
课肆 堂 小 结
壹 新课导入
古希腊数学家阿基米德与国王下棋,国王输了,问阿
• 新课导入基米德要什么奖赏.阿基米德对国王说:“我只要在棋盘

北师大版数学七年级上册2.9《有理数的乘方》(第1课时)教案

北师大版数学七年级上册2.9《有理数的乘方》(第1课时)教案

北师大版数学七年级上册2.9《有理数的乘方》(第1课时)教案一. 教材分析《有理数的乘方》是北师大版数学七年级上册第2.9节的内容,本节主要让学生掌握有理数的乘方运算,理解乘方的意义,并能熟练运用乘方运算解决实际问题。

教材通过引入实际例子,引导学生探究有理数乘方的规律,从而达到理解乘方概念的目的。

二. 学情分析学生在学习本节内容前,已经掌握了有理数的加减乘除运算,对数学运算有一定的基础。

但乘方运算与普通运算有所不同,需要学生理解并掌握乘方的意义和运算规律。

同时,学生可能对乘方运算感到抽象和困难,需要通过具体的例子和实际操作来帮助他们理解。

三. 教学目标1.让学生理解有理数的乘方概念,掌握有理数乘方的运算方法。

2.培养学生运用乘方运算解决实际问题的能力。

3.培养学生的数学思维能力和逻辑推理能力。

四. 教学重难点1.乘方概念的理解。

2.乘方运算的规律。

3.运用乘方运算解决实际问题。

五. 教学方法1.实例引入:通过具体的例子,引导学生探究有理数乘方的规律。

2.小组讨论:让学生分组讨论,培养学生的合作能力和交流能力。

3.练习巩固:通过大量的练习题,让学生巩固乘方运算的方法。

4.应用拓展:让学生运用乘方运算解决实际问题,培养学生的应用能力。

六. 教学准备1.准备相关的实例和练习题。

2.准备多媒体教学设备,如投影仪等。

七. 教学过程导入(5分钟)教师通过展示一个实际例子,如计算砖墙的体积,引出乘方运算的必要性。

引导学生思考如何用乘法来表示砖墙的体积,从而引入乘方概念。

呈现(10分钟)教师通过讲解和展示,呈现乘方的定义和运算规律。

引导学生理解乘方的意义,并通过具体的例子来说明乘方的运算方法。

操练(10分钟)学生分组进行练习,运用乘方运算计算给定的数值。

教师巡回指导,解答学生的疑问,并给予反馈。

巩固(10分钟)教师给出一些应用题,让学生运用乘方运算解决实际问题。

学生独立完成题目,教师选取部分学生的作业进行讲解和分析。

最新2024人教版七年级数学上册2.3.1 第1课时 乘方--教案

最新2024人教版七年级数学上册2.3.1 第1课时 乘方--教案

2.3.1 乘方第1课时乘方教学内容第1课时乘方课时1素养目标1.在现实背景中,理解有理数乘方的意义.2.能准确说出有理数乘方的底数、指数和幂,能准确地计算有理数的乘方.3.经历观察类比、归纳得出有理数乘方的概念的过程,领会重要的数学建模思想、归纳思想,形成数感、符号感,发展抽象思维.教学重点幂、底数、指数的概念及其表示,理解有理数乘法运算与乘方间的联系,处理好负数的乘方运算.教学难点准确建立底数、指数和幂三个概念,并能求幂的运算.教学准备课件.教学过程主要师生活动设计意图一、情境导入二、探究新知一、创设情境,导入新知故事:国王赏不起的米相传,古印度有位国王很喜欢下国际象棋。

有一天,他想要重赏国际象棋的发明者。

发明者说:“陛下,我不要您的重赏,只要您在我的棋盘上赏一些麦子就可以。

在棋盘的第1 个格子里放 1 粒,在第2个格子里放 2 粒,在第 3 个格子里放 4 粒,在第 4 个格子里放8 粒,依此类推,以后每一个格子里放的麦粒数都是前一个格子里放的麦粒数的2 倍,直到放满第64 个格子就行了。

” 国王觉得这个要求很容易满足,就欣然答应了。

然而,当人们开始在棋盘上放麦粒时,国王才发现问题的严重性。

提问:你知道是为什么吗?二、小组合作,探究概念和性质知识点:乘方自主探究:问题1:(1)完成下列填空,并说一说这两个式子有什么相同点?S正=_______ = ____( )V正= _______= ____ ( )设计意图:首先,由学生熟悉的游戏故事导入,以这首故事为背景提出问题,充分调动学生学习的兴趣.在讲课开始时设置悬念,等到讲完最后解决.游戏的导入,使得学生对知识点的记忆更加深刻.设计意图:以经验出发,用数形结合,理解平方,立方的概念,为后面讲解乘方做铺垫.师生活动:老师引导学生从过程→结果→单位三个方面来写出面积和体积的结果.(2) 这两个过程有什么简单的写法吗?(类比单位的写法)(3) 这种写法读作什么呢?S正= 2×2 = __________= 4 ( cm2 )V正= 2×2×2 = __________ = 8 ( cm3 )师生活动:本环节采用学生先独立思考,引导类比单位的写法,简化平方和立方的过程.问题2:类比以上研究,完成下列填空.(1) (-2)×(-2)×(-2)×(-2)×(-2) 记作________,读作_____________;师生活动:引导学生类比上述探究结果回答问题,在学生出现思维盲区时,教师给予详细分析.师追问:(-2)4与-24一样吗?为什么?(2)记作________,读作_______________.师追问:根据问题1、问题2 你能总结出什么规律?定义总结:一般地,n个相同的因数a相乘,即,记作a n ,读作a的n次方.师追问:上述的运算属于什么运算?设计意图:负数的乘方,在书写时一定要把整个负数(连同负号)用小括号括起来. 这里,(-2)×(-2)×(-2)×(-2)记作(-2)4;-(2×2×2×2)记作-24. (-2)4与-24是不相同的.设计意图:从具体到抽象的方法,引导学生理解有理数乘方的意义.总结:求n个相同因数的积的运算叫做乘方,乘方的结果叫幂.教师举例:例如:幂:a n也可以读作:a的n次方幂同时提醒学生注意:一个数可以看作是这个数本身的一次方,例如 2 就是21,指数 1 通常省略不写.填一填:(1)(-5)2的底数是_____,指数是_____,(-5)2表示 2 个_____相乘,读作_____的2 次方,也读作-5 的_____________.(2)表示______个12相乘,读作12的_____次方,也读作12的____次幂,其中12叫做____,6 叫做______ .师生活动:让学生回答问题,对学生回答过程中的失误,可以让其他同学予以指正.典例精析:例1 计算:(1) (-4)3;(2) (-2)4;(3) .设计意图:教科书在给出乘方定义的同时,还明确了幂、底数、指数这几个概念的意义. 在教学时,应结合示意图,讲清这几个概念的意义及相互关系. 应当注意,乘方是一种运算,幂是乘方的运算结果.设计意图:检测学生对乘方的定义和幂、底数、指数这几个概念的意义的掌握情况.设计意图:通过例题讲解乘方的运算的运用,同时过同例题让学生主动去探究乘方中“符号”的问题,培养学生严谨的逻辑思维能力,使学生形成对有理数乘法运算步骤的共性认教师追问:探究一:从例1,你发现负数的幂的正负有什么规律吗?归纳总结:当指数是奇数时,负数的幂是负数;当指数是偶数时,负数的幂是正数.老师追问:正数或0 的任何正整数次幂的正负有什么规律吗?师生活动:让学生自主归纳,老师在一旁指导,然后集体规范语言:根据有理数的乘法法则可以得出:1. 负数的奇次幂是负数,负数的偶次幂是正数;2. 正数的任何正整数次幂都是正数,0的任何正整数次幂都是0.例2 用计算器计算(-8)5和(-3)6.回顾导入:师生活动:让学生自主计算,自我反思与感悟数学语言.三、当堂练习,巩固所学1. 下列各组运算中,结果相等的是( )A. -32与-23B. -23与(-2)3C. -32与(-3)2D. (-3×2)2与-3×222. 如果一个数的15 次幂是负数,那么这个数的2023 次幂是_________. (填“正数”“负数”或“0”)3.填表:4. 厚度是0.1 毫米的足够大的纸,将它对折1 次后,厚度为0.2 毫米.(1) 对折3 次后,厚度为多少毫米?(2) 对折7 次后,厚度为多少毫米?(3) 利用计算器计算:对折30 次后,厚度为多少米?是否超过珠峰的高度(8848.86 米)?有理数的乘方1.幂:2.当指数是奇数时,负数的幂是负数;当指数是偶数时,负数的幂是正数.教师与学生一起回顾本节课所学的主要内容,梳理并完善知识思维导图.。

七年级数学上册有理数的乘方

七年级数学上册有理数的乘方

七年级数学上册有理数的乘方教学目标:1. 理解乘方的概念,掌握有理数的乘方运算。

2. 经历对乘方概念的探索过程,体验数学与生活的联系。

3. 在学习过程中,培养独立思考、主动探索的习惯,激发对数学学习的热情。

教学重点:理解乘方的概念,掌握有理数的乘方运算。

教学难点:理解乘方概念,熟练进行有理数的乘方运算。

教学方法:1. 激活学生的前知:回顾与乘方相关的概念。

2. 教学策略:通过实例引入乘方的概念,再通过练习题进行巩固。

3. 学生活动:小组讨论,进行实践活动。

教学过程:一、导入(5分钟)1. 通过生活中的实例,引入乘方的概念。

例如,一张纸的厚度为0.1毫米,对折一次后厚度变为0.1×2毫米,对折两次后厚度变为0.1×2×2毫米,以此类推。

2. 引导学生发现,这种运算方式与之前学过的乘法类似,引出乘方的概念。

3. 提出教学目标。

二、讲授新课(25分钟)1. 讲解乘方的定义及运算方法。

2. 通过例题讲解及练习,让学生掌握乘方的运算方法。

3. 强调乘方运算的注意事项,如正负号、指数的确定等。

4. 请学生回答问题并进行讨论。

5. 进行课堂小测验,检验学生的学习效果。

三、巩固练习(15分钟)1. 让学生完成教材上的练习题,并进行巡视指导。

2. 请学生在黑板上演示解题过程,并对错误进行纠正。

3. 通过集体讨论的方式,解决学生在练习中遇到的问题。

4. 教师对学生的学习成果进行评价,并给出反馈意见。

四、归纳小结(5分钟)1. 回顾本节课学到的知识,总结重点和难点。

2. 请学生回答问题并进行讨论。

人教版七年级数学上册1.乘方——有理数的乘方运算

人教版七年级数学上册1.乘方——有理数的乘方运算
计算器显示的结果为1.44. (3)按键顺序为 ( (-) 1 7 ) ^ 7 = ,
计算器显示的结果为-410 338 673. (4)按键顺序为 2 3 × 6 ÷ 5 = ,
计算器显示的结果为27.6.
总结
知3-讲
用计算器计算时,要弄清计算器的每个按键 的作用,结合有理数运算的顺序,进行计算.
A.1
B.-1
C.2 016
D.-2 016
知2-练
4 下列等式成立的是( B )
A.(-3)2=-32
B.-23=(-2)3
C.23=(-2)3
D.32=-32
5 计算: (1)(-4)3;
(2) (-2)4;
(3) (- 2 )3.
3
(1)-64;(2)16;(3) 8 .
27
知识点 3 利用计算器计算有理数的乘方
第一章 有理数
1.5 有理数的乘方
第1课时 乘方——有理数 的乘方运算
1 课堂讲授 有理数的乘方的意义
有理数的乘方运算
利用计算器计算有理数的乘方
2 课时流程
逐点 导讲练
课堂 小结
作业 提升
复习回顾 1.如图,边长为a厘米的正方形的面积为_a_×__a_平方厘米. 2.如图,一正方体的棱长为a厘米, 则它的体积 为
(1)-(-3)3;
(2)
3 42 ;(3)源自2 33 ;
(4)
1
2 3
2
.
解:(1)-(-3)3=-(-33)=33=3×3×3=27.
(2)
3 4
2
3 4
3 4
9 16
.
(3)
2 3
3
2 3

人教版七年级上册数学第一章1.5.1《有理数的乘方》教案3

人教版七年级上册数学第一章1.5.1《有理数的乘方》教案3
负整数乘方:aⁿ(n为负整数)= 1 / (a×a×...×a)(共n个a相乘);
零的乘方:a⁰ = 1(a≠0)。
(3)有理数乘方的应用:解决实际问题,如面积、体积等计算。
2.教学难点
(1)负整数乘方的理解:学生容易对负整数乘方的概念产生混淆,难以理解负数乘方的实际意义。
举例:突破方法:通过实际例题,如(-2)²=4,让学生理解负整数乘方的含义。
(4)乘方的计算顺序:在复合运算中,乘方的计算顺序容易让学生困惑。
举例:突破方法:讲解运算法则,先乘方后乘除,如3 × a² = 3 × (a×a),而非(3×a)²。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《有理数的乘方》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要计算面积或体积的情况?”(如:计算正方形面积时需要用到边长的平方)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索有理数乘方的奥秘。
五、教学反思
在本次教学过程中,我发现学生们对有理数乘方的概念和运算法则掌握得还算不错。通过引入日常生活中的实际问题,他们能够较好地理解乘方的实际意义。然而,我也注意到在教学中存在一些需要改进的地方。
首先,对于负整数乘方和零的乘方这两个难点,虽然我通过举例和解释来帮助学生理解,但仍有部分学生感到困惑。在今后的教学中,我需要寻找更多直观、生动的教学方法,如使用教具或动画演示,让学生更直观地感受乘方的含义。
3.培养学生在探索有理数乘方规律过程中的观察能力和创新能力,提升数学直观想象和数据分析素养;
4.培养学生具备合作意识和团队精神,通过小组讨论和互动,提高人际沟通和社会交往能力。

七年级数学人教版(上册)【知识讲解】第1课时乘方

七年级数学人教版(上册)【知识讲解】第1课时乘方

13.计算: 1
(1)(-12)4. 3
解:原式=(-2)4 81
=16.
3 (2)-(-4)3×(-2)4.
27 解:原式=64×16
27 =4.
14.已知|a-1|与(b+1)2 互为相反数,求 a2 019+b2 020+(a+b)2 021 的值.
解:由题意,得|a-1|+(b+1)2=0, 因为|a-1|≥0,(b+1)2≥0, 所以|a-1|=0,(b+1)2=0,则 a-1=0,b+1=0. 解得 a=1,b=-1.所以 a+b=1+(-1)=0. 所以 a2 019+b2 020+(a+b)2 021=12 019+(-1)2 020+02 021=2.
11 (2)除方也可以转化为乘方的形式,如 2④=2÷2÷2÷2=2×2×2
11 × 2 = ( 2 )2. 试 将 下 列 运 算 结 果 直 接 写 成 乘 方 的 形 式 : ( - 3) ④

(13)2
1 ;(2)⑩= 28 ;a
)= (1a)n-2

1 (3)计算:22×(-3)④÷(-2)③-(-3)②.
第一章 有理数 1.5 有理数的乘方
1.5.1 乘方
第1课时 乘方
知识点 1 有理数乘方的意义
1.32 可表示为( C )
A.3×2
B.2×2×2
C.3×3
D.3+3
2.对于-34,下列叙述正确的是( C ) A.读作-3 的 4 次幂 B.底数是-3,指数是 4 C.表示 4 个 3 相乘的积的相反数 D.表示 4 个-3 相乘的积
1 解:原式=22×(-3)2÷(-2)-[(-3)÷(-3)] =4×9×(-2)-1 =-72-1 =-73.

七年级-人教版-数学-上册-第1课时-有理数的乘方

七年级-人教版-数学-上册-第1课时-有理数的乘方

对折30次:0.1×2×2×…×2
=107 374 182.4(毫米)
=107 374.182 4(米)>8 848.86(米).
因此,连续对折30次后,纸的厚度能超过珠穆朗玛峰.
这种是相同因数的乘法,为了简便,我们把30个2相乘记作230, 读作“2的30次方”.
共30个2相乘 0.1×2×2×…×2(毫米)
根据有理数的乘法法则可以得出: 负数的奇次幂是负数,负数的偶次幂是正数. 显然,正数的任何次幂都是正数,0的任何正整 数次幂都是0.
乘方运算的两种方法: (1)将乘方转化成乘法,再根据乘法法则计算; (2)先根据乘方运算的符号法则判断幂的符号, 再计算幂的绝对值.
例3 用计算器计算(-8)5和(-3)6. 解:用带符号键 (-)的计算器.
a 底数
n 指数

例如,在94中,底数是9,指数是4,94读作“9的4次方”,或 “9的4次幂”.
一个数可以看作这个数本身的1次方.例如,5就是51.指数1 通常省略不写.
a 底数
n 指数

思考 你能区分(-a)n与-an吗? (1)(-a)n表示n个-a相乘,底数是-a,指数是n,读作
“-a的n次方”. (2)-an表示n个a相乘的乘积的相反数,底数是a,指数是n,
( (-) 8 ) ^ 5 = 显示:(-8)^5
-32768. ( (-) 3 ) ^ 6 = 显示:(-3)^6
729. 所以 (-8)5=-32 768,(-3)6=729.
有理数的乘方
乘方及相关概念
文字与符号语言 (-a)n 与-an的区别
乘方的表示
乘方运算
乘方运算符号法则 乘方运算的方法
同样:
(-2)×(-2)×(-2)×(-2)记作(-2)4,读作“-2的四次方”;

七年级上册数学第一章1.5有理数的乘方(人教版)

七年级上册数学第一章1.5有理数的乘方(人教版)

七年级上册数学第一章1.5有理数的乘方(人教版)1.5 有理数的乘方1.5.1 乘方第1课时乘方1.理解有理数乘方的意义.2.理解乘方运算、幂、底数等概念的意义.3.正确进行有理数乘方运算.阅读教材P41~42,思考下列问题.1.某种细胞每过30分钟便由1个分裂成2个,经过5小时后,这种细胞1个能分裂成多少个?(1)细胞每30分钟分裂一次,则5个小时共分裂10次;(2)5个小时后,细胞的个数一共有2×2×2×…×2,sd4(( 10 )个2))=1__024个,为了简便,可以记作210个.2.(1)边长为a的正方形的面积为:a2;(2)棱长为a的正方体的体积为:a3;(3)把一张纸对折1次可裁成两张,对折2次可裁成4张,问对折3次可裁成几张?用算式如何表示?如果对折10次、100次,用算式如何表示?知识探究1.求n个相同因数a的积的运算叫乘方,乘方的结果叫幂,a叫底数,n叫指数.乘方an有双重含义:(1)表示一种运算,这时读作“a的n次方”;(2)表示乘方运算的结果,这时读作“a的n次幂”.2.正数的任何次幂都是正数,0的任何正整数次幂都是0;负数的奇次幂是负数,偶次幂是正数.自学反馈1.在(-2)6中,底数是-2,指数是6,运算结果是64;在-26中,底数是2,指数是6,运算结果是-64.2.底数是-12,指数是3的幂是__-18.3.(-1)2 017=-1,02 017=0,(-0.1)4=0.000__1.在书写乘方时,若底数为负数或分数时,一定要加括号.活动1 小组讨论例1 计算:(1)(-4)3;(2)(-2)4;(3)(-23)3.解:(1)(-4)3=(-4)×(-4)×(-4)=-64.(2)(-2)4=(-2)×(-2)×(-2)×(-2)=16.(3)(-23)3=(-23)×(-23)×(-23)=-827.例2 用计算器计算(-8)5和(-3)6.解:用带符号键(—)的计算器.((—)8)∧5=显示:(-8)∧5-32768.((—)3)∧6=显示:(-3)∧6729.所以(-8)5=-32 768,(-3)6=729.活动2 跟踪训练1.(-12)4表示的意义是4个-12相乘,23×23×23×23可写成(23)4.2.计算:(-25)3=-8125;3×23=24;(3×2)3=216;(-3) 3×(-42)=432;(-324)2-324=4516.3.计算(-2)3,(-3)3,(-12)3,(-13)3,并找出其中最大的数和最小的数.解:(-2)3=-8,(-3)3=-27,(-12)3=-18,(-13)3=-127.其中最大的数为-127,最小的数为-27.4.平方得64的数是±8;立方得64的数是4.5.若a满足(2 006-a)2 008=1,则a=2__005或2__007.活动3 课堂小结1.乘方.2.乘方的计算:3.乘方的性质.第2课时有理数的混合运算1.能确定有理数加、减、乘、除、乘方混合运算的顺序.2.会进行有理数的混合运算.阅读教材P43~44,思考并回答下列问题.讨论:2×(-3)3-4÷(-13)+15中有哪几种运算?可以分几类?试着计算出结果.知识探究有理数混合运算的顺序:1.先乘方,再乘除,最后加减;2.同级运算,从左到右进行;3.如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行.自学反馈1.下列运算结果是正数的是(B)A.1+(-2)3 B.-22×(1-22).(-2)3÷(-3)2 D.-32-(-2)22.计算13×(-3)÷(-13)×3等于(B)A.1 B.9 .-3 D.273.计算(-1)2 016+(-1)2 017-(-1)2 018+02 019等于(B)A.0 B.-1 .1 D.2(1)(-1)10×2+(-2)3÷4;(2)(-5)3-3×(-12)4.解:(1)0. (2)-125316.活动1 小组讨论例1 计算:(1)2×(-3)3-4×(-3)+15;(2)(-2)3+(-3)×[(-4)2+2]-(-3)2÷(-2).解:(1)-27.(2)-5712.例2 探究规律.观察下面三行数:-2,4,16,-8,-32,64,…;①0,6,-6,18,-30,66,…;②-1,2,-4,8,-16,32,….③(1)第①行数按什么规律排列?(2)第②③行数与第①行数分别有什么关系?(3)取每行数的第10个数,计算这三个数的和.解:略.提示学生从乘方出发,在符号和绝对值两个方面研究,同时注意引导学生探究规律时要依次递进,在递进中总结规律,激励学生拿起笔大胆计算.活动2 跟踪训练(1)-0.752÷(-112)3+(-1)12×(12-13)2;(2)[(-3)2-(-5)2]÷(-2);(3)-10+8÷(-2)2-3×(-4)-15.解:(1)736.(2)8.(3)3.2.观察下列各式:1=21-1,1+2=22-1,1+2+22=23-1,….猜想:(1)1+2+22+23+…+263=264-1;(2)若n是正整数,则1+2+ 22+23+…+2n=2n+1-1.活动3 课堂小结1.运算顺序:(1)先乘方,再乘除,最后加减;(2)同级运算,从左到右进行;(3)如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行.2.探究规律.1.5.2 科学记数法1.认识比较大的数据.2.掌握科学记数法的写法.3.能用科学记数法表示比较大的数据.阅读教材P44~45,思考如何表示一些比较大的数.知识探究把一个大于10的数用科学记数法可以表示为a×10n的形式(其中a是大于或等于1且小于10的数,即1≤a<10;n等于原整数的位数减去1).自学反馈用科学记数法表示下列各数:(1)1 000 000=1×106;(2)57 000 000=5.7×107;(3)-123 000 000 000=-1.23×1011;在上面的计算中,等号左边整数的位数与右边10的指数有什么关系?用科学记数法表示一个n位整数,其中10的指数是n -1.活动1 小组讨论例用科学记数法表示下列各数:(1)中国森林面积有128 630 000公顷;(2)2008年临沂市总人口达1 022.7万人;(3)地球到太阳的距离大约是150 000 000千米;(4)光年是天学中的距离单位,1光年大约是950 000 000 000千米;(5)2008年北京奥运会门票预算收入为140 000 000美元;(6)一只苍蝇腹内的细菌多达2 800万个.(在使用科学记数法时要注意单位的转换,如1万=104,1亿=108)解:(1)1.286 3×108.(2)1.022 7×103万.(3)1.5×108.(4)9.5×1011.(5)1.4×108.(6)2.8×103万.活动2 跟踪训练1.将0.36×45×105的计算结果用科学记数法表示,正确的是(B)A.16.2×105 B.1.62×106.16.2×106 D.16.2×100 0002.1纳米相当于1根头发丝直径的六万分之一,用科学记数法表示头发丝的半径是(D)A.6×103纳米 B.6×104纳米.3×103纳米 D.3×104纳米3.若-59 600 000用科学记数法表示为a×10n,则a =-5.96,n=7.4.用科学记数法表示下列各数:(1)700 900;(2)-50 090 000;(3)人体中约有25 000 000 000 000个细胞;(4)地球离太阳约有一亿五千万米;(5)在1∶50 000 000的地图上量得两地的距离是1.3厘米,则两地的实际距离为多少米?解:(1)7.009×105.(2)-5.009×107.(3)2.5×1013.(4)1.5×108.(5)6.5×105.活动3 课堂小结1.现实生活中的大数据.2.科学记数法:1.了解近似数的概念.2.能按要求取近似数.3.体会近似数的意义及在生活中的作用.阅读教材P45~46,思考下列问题.什么样的数是近似数?近似数与准确数有哪些区别?分别试举出几个例子.知识探究近似数与准确数的接近程度可以用精确度表示.一般地,一个近似数,四舍五入到某一位,就说这个近似数精确到哪一位.自学反馈下列由四舍五入得到的近似数,各精确到哪一位?(1)0.025;(2)0.404 0;(3)1.8;(4)1.80;(5)103万; (6)1.60×104; (7)10亿; (8)10.解:(1)千分位.(2)万分位. (3)十分位.(4)百分位. (5)万位.(6)百位. (7)亿位.(8)个位.精确度的一般表示形式是精确到哪一位.活动1 小组讨论例按括号内的要求,用四舍五入法对下列各数取近似数:(1)0.015 8(精确到0.001);(2)304.35(精确到个位);(3)1.804(精确到0.1);(4)1.804(精确到0.01).解:(1)0.015 8≈0.016.(2)304.35≈304.(3)1.804≈1.8.(4)1.804≈1.80.活动2 跟踪训练1.1.90精确到百分位.2.用四舍五入法对60 340取近似值(精确到千位):60 340≈6.0×104.3.近似数6.00×103精确到十位.4.0.020 76保留四位小数约为0.020__8.5.对3.04×104精确到千位约是3.0×104.6.圆周率π=3.141 592…,精确到百分位是3.14.活动3 课堂小结精品文档1.准确数与近似数.2.按要求取近似值.11/ 11。

人教版七年级数学上册1.有理数的乘方(第一课时)课件

人教版七年级数学上册1.有理数的乘方(第一课时)课件

n个
n个相同因数的积的运算
剖析概念
求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂.
底数
an
指数 幂
乘方定义理解时需要关注: 1.指数n取正整数. 2.底数a可以代表所有数,可以是正数,负数,零.
3.一个数可以看作这个数本身的一次方,
例如5就是5,1 指数1通常省略不写.
剖Hale Waihona Puke 概念求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂.
引例
记作: 读作“:-2的四次方”
记作:
读作“:
的五次方”
引例
n个
记作:3n 读作“:3的n次方”
aaa a
n个
记作:a n 读作:“ a的n次方”
引例
3333
n个
aaa a
有理数的乘方(一)
复习回顾
做一做: −30
9 4
0
乘法法则: 两数相乘,同号得正,异号得负,并把绝对值相乘. 任何数与0相乘,都得0.
引例
3
3
边长为3的正方形面积
5 55
棱长为5的正方体体积
引例
记作:
读作: 3的平方
记作:
读作: 5的立方 (或5的三次方)
3次 4次
纸的 层数
2
4 8 16
层数可 表示为 2
22
23
24
... 27次
... 134217728
...
227
134217728×0.1mm=13421.7728m≈13 422m 2005年测量高度为8844.43米
8 3
想一想
与 一样吗?为什么?
-81
例题 m个

七年级数学上册2.3.1第一课时乘方-公开课优质课件

七年级数学上册2.3.1第一课时乘方-公开课优质课件


读作 -2的4次方 。
4.求 n个相同乘数的积 的运算,叫做乘方,乘方的结果叫做 幂 。
在 a n 中,a叫做 底数 ,n叫做 指数 。一个数可以看作是它
本身的 1 次方。例:5可以看作51,指数1可省略。
指数
例:
an
底数
① 4³表示 3个4相乘 ,等于 64 ,其中底
幂数
4
3
64
(是 2)4 ,指数4个是-2相乘 ,幂是 16 。
22
底数是2,展开为 2
2;
2
2
底数是
2
,展开为
2
2
5
5 5
5
55
所以当底数为分数或负数时,底数必须加括号。
例 计算:
① 43;
② 2 3 3
解:①原式=(-4)×(-4)×(-4)
= -64
②原式=
=
同步练习:
计算:
① 110; ② 17; ③ 83; ④ 53;
⑤ 02;

1
4

⑦ 104;⑧05
2
指导运用:
17 1;
1
4
1;
2 16
83 512;02 0;
53 125; 104 10000;110 1; 05 0.
思考:底数和幂的正负与指数有何关系?
总结:
1. 负数的奇次幂是负数,负数的偶次幂是正数.
2. 正数的任何次幂都是正数
3. 0的任何正整数次幂都是0. 练习:

表示 -2
,4等于 16,
小组讨论:
我们已知:
( 2)4表示4个-2相乘,等于16,其中底数是-2,
指数是4,幂是16。

2024年秋新人教版七年级上册数学教学课件 2.3.1 乘方 第1课时 有理数的乘方

2024年秋新人教版七年级上册数学教学课件 2.3.1 乘方 第1课时 有理数的乘方
例 2 用计算器计算 (-8)5 和 (-3)6. 解:用带符号键 (-) 的计算器,有
( (-) 8 )
5=
显示结果为 -32768
( (-) 3 )
6=
显示结果为 729
因此,(-8)5 = -32768,(-3)6 = 729.
练 习 【教材P52】
1.(1)(-7)8 中,底数、指数各是什么? (2)(-10)8 中,-10 叫作什么数?8 叫作什么数? (-10)读作“a 的 n 次方”; an 看作乘方的结果,也可读作“a 的 n 次幂”.
特别提醒
(1)an 表示 n 个 a 相乘,其中 a 表示相同的乘数, n 表示相同乘数的个数. (2)一个数可以看作这个数本身的 1 次方. 例如, 5 就是 51. 指数 1 通常省略不写. 指数是 2 时可读作 平方,指数是 3 时可读作立方.
思考
-24 和 (-2)4 的意义一样吗?结果一样吗? -24 的意义是 24 的相反数, (-2)4 的意义是 -2 的四次方, -24 和 (-2)4 的意义不一样. -24 = -(2×2×2×2) = -16, (-2)4 = (-2)×(-2)×(-2)×(-2) = 16, -24 和 (-2)4 的结果不一样.
指数都是 n
n 个 a 相乘的积 a
n 个 a 相乘的 积的相反数
a
n 个 -a 相乘的积 -a
-an = (-a)n,它们分别与 an 互为相反数(a ≠ 0) an = (-a)n,它们分别与 -an 互为相反数(a ≠ 0) 当 a = 0 时,an = -an = (-a)n = 0
例 题 【教材P52】
符号 规律
正数 正数的任何次幂都是正数
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档