最新人教版八年级数学初二上册第15章分式同步单元检测试题附答案

合集下载

人教版八年级上数学第15章 分式单元检测(含答案)(含答案)

人教版八年级上数学第15章 分式单元检测(含答案)(含答案)

数学人教版八年级上第十五章 分式单元检测一、选择题(本大题共8小题,每小题4分,共32分.在每小题所给的4个选项中,只有一项是符合题目要求的,请将正确答案的代号填在题后括号内)1.在2a b -,(3)x x x +,5πx +,a b a b +-中,是分式的有( ). A .1个B .2个C .3个D .4个 2.如果把分式2x x y+中的x 和y 都扩大2倍,那么分式的值( ). A .不变B .扩大2倍C .扩大4倍D .缩小2倍 3.分式22x y x y-+有意义的条件是( ). A .x ≠0 B .y ≠0C .x ≠0或y ≠0D .x ≠0且y ≠04.下列分式中,计算正确的是( ).A .2()23()3b c a b c a +=+++ B .222a b a b a b +=++ C .22()1()a b a b -=-+ D .2212x y xy x y y x -=--- 5.化简211a a a a --÷的结果是( ). A .1a B .a C .a -1 D .11a - 6.化简21131x x x +⎛⎫- ⎪--⎝⎭·(x -3)的结果是( ). A .2B .21x -C .23x -D .41x x -- 7.化简1111x x -+-,可得( ). A .221x - B .221x -- C .221x x - D .221x x -- 8.甲、乙两班学生植树造林,已知甲班每天比乙班多植5棵树,甲班植80棵树所用的天数与乙班植70棵树所用的天数相等,若设甲班每天植树x 棵,则根据题意列出的方程是( ).A .80705x x =-B .80705x x =+C .80705x x =+D .80705x x =- 二、填空题(本大题共8小题,每小题4分,共32分.把答案填在题中横线上)9.当x =__________时,分式13x -无意义. 10.化简:22x y x y x y---=__________. 11.随着电子制造技术的不断进步,电子元件的尺寸大幅度缩小,在芯片上某种电子元件大约只占0.000 000 7 mm 2,这个数用科学记数法表示为__________ mm 2. 12.已知x =2 012,y =2 013,则(x +y )·2244x y x y+-=__________. 13.观察下列各等式:1111212=-⨯,1112323=-⨯,1113434=-⨯,…,根据你发现的规律计算:2222122334(1)n n +++⋅⋅⋅+⨯⨯⨯+=__________(n 为正整数). 14.甲计划用若干天完成某项工作,在甲独立工作两天后,乙加入此项工作,且甲、乙两人工效相同,结果提前两天完成任务,设甲计划完成此项工作的天数是x ,则x 的值是__________.15.含有同种果蔬但浓度不同的A ,B 两种饮料,A 种饮料重40千克,B 种饮料重60千克,现从这两种饮料中各倒出一部分,且倒出部分的重量相同,再将每种饮料所倒出的部分与另一种饮料余下的部分混合.如果混合后的两种饮料所含的果蔬浓度相同,那么从每种饮料中倒出的相同的重量是__________千克.16.某市为治理污水,需要铺设一段全长为300 m 的污水排放管道.铺设120 m 后,为了尽量减少施工对城市交通所造成的影响,后来每天铺设管道的长度比原计划增加20%,结果共用30天完成这一任务.求原计划每天铺设管道的长度.如果设原计划每天铺设x m 管道,那么根据题意,可得方程__________.三、解答题(本大题共5小题,共36分)17.(本题满分6分)化简:32322222b b ab b a b a a b ab b a++÷--+-. 18.(本题满分6分)已知x -3y =0,求2222x y x xy y +-+·(x -y )的值. 19.(本题满分10分,每小题5分)解方程:(1)271326x x x +=++; (2)11222x x x -=---.20.(本题满分7分)已知y =222693393x x x x x x x +++÷-+--.试说明不论x 为任何有意义的值,y 的值均不变.21.(本题满分7分)为抗旱救灾,某部队计划为驻地村民新修水渠3 600米,为了水渠能尽快投入使用,实际工作效率是原计划工作效率的1.8倍,结果提前20天完成修水渠任务.问原计划每天修水渠多少米?参考答案1.B 点拨:(3)x x x +和a b a b+-是分式,故选B. 2.A 3.C 点拨:若分式22x y x y-+有意义,则x 2+y 2≠0,所以x ≠0或y ≠0.故选C. 4.D 点拨:2222212(2)()x y x y x y xy x y x xy y x y y x ---===----+---,故选D. 5.B 点拨:221111a a a a a a a a ---÷=⨯-=a .故选B. 6.B 点拨:21131x x x +⎛⎫- ⎪--⎝⎭·(x -3)=1-211x x +-·(x -3)=1-22223222111x x x x x x --+==---.故选B. 7.B 点拨:原式=2211112(1)(1)(1)(1)11x x x x x x x x x x -+----==-+-+---.故选B. 8.D9.3 点拨:当x =3时,分式的分母为0,分式无意义.10.x +y 点拨:2222()()x y x y x y x y x y x y x y x y-+--==----=x +y . 11.7×10-7 12.-1 点拨:(x +y )·2244x y x y +-=(x +y )·222222()()x y x y x y ++-=(x +y )·221x y -=(x +y )·11()()x y x y x y=+--, 当x =2 012,y =2 013时,原式=1120122013x y =--=-1. 13.21n n + 点拨:222122334++⨯⨯⨯+…+211112(1)122334(1)n n n n ⎡⎤=+++⋅⋅⋅+⎢⎥+⨯⨯⨯+⎣⎦ =1111111121223341n n ⎛⎫-+-+-+⋅⋅⋅+- ⎪+⎝⎭=122111n n n ⎛⎫-= ⎪++⎝⎭. 14.6 点拨:由题意得24x x x x--+=1,解得x =6,检验知x =6是原分式方程的根且符合题意.15.24 点拨:设A 种饮料浓度为a ,B 种饮料浓度为b ,倒出的重量为x 千克,由题意得(40)(60)4060bx a x ax b x +-+-=,解得x =24. 16.12030012030(120%)x x -+=+(或1201801.2x x +=30) 点拨:根据题意可得题中的相等关系为前后两次铺设共用的时间等于30天,铺设120 m 后每天的工效为1.2x m ,铺设120 m 所用时间为120x 天,后来所用时间为3001201.2x -天,因此可列方程1206001201.2x x-+=30. 17.解:原式=322()(2)()()b b b a b a b a a ab b a b a b ++÷--+-+- =32()()()()b b b a b a b a a b a b a b ++÷---+- =32()()()()b b a b a b a b a a b b a b -+-+⋅--+ =22()()()b b ab b a b a a b a a b a a b -=----- =2()ab b b a a b a-=-. 18.解:2222x y x xy y +-+·(x -y )=22()x y x y +-·(x -y )=2x y x y +-. 当x -3y =0时,x =3y .原式=677322y y y y y y +==-. 19.解:(1)去分母,得2x ×2+2(x +3)=7,解得,x =16, 经检验,x =16是原方程的解. (2)方程两边同乘(x -2)得,1-x =-1-2(x -2),解得,x =2.检验,当x =2时,x -2=0,所以x =2不是原方程的根,所以原分式方程无解.20.解:2269(3)393x x x x y x x x ++-=÷-+-+=2(3)(3)3 (3)(3)3x x xxx x x+-⨯-+ +-+=x-x+3=3.所以不论x为任何有意义的值,y的值均不变,其值为3. 21.解:设原计划每天修水渠x米.根据题意得360036001.8x x-=20,解得x=80,经检验:x=80是原分式方程的解.答:原计划每天修水渠80米.。

人教版八年级数学上第15章分式同步单元检测试题附答案.doc

人教版八年级数学上第15章分式同步单元检测试题附答案.doc

人教版八年级数学 第15章 分式 同步检测试题(全卷总分100分) 姓名 得分一、选择题(每小题3分,共30分)1.下列式子:-3x ,2a ,x 2-y 2xy ,-a 2π,x -1y 2,a -2b ,其中是分式的个数有( )A .2个B .3个C .4个D .5个2.将分式2x 2x +y中x ,y 的值都扩大10倍,则分式的值( )A .扩大到原来的10倍B .缩小到原来的110 C .扩大到原来的100倍 D .不变 3.分式a x ,x +yx 2-y 2,a -b a 2-b 2,x +y x -y中,最简分式有( )A .1个B .2个C .3个D .4个 4.下列运算正确的是( )A.-x -y -x +y =x -y x +y B.a 2-b 2(a -b )2=a -ba +bC.a 2-b 2(a -b )2=a +b a -bD.x -11-x 2=1x +1 5.计算2x x +3+6x +3,其结果是( )A .2B .3C .x +2D .2x +6 6.将数字2.03×10-3化为小数是( C )A .0.203B .0.020 3C .0.002 03D .0.000 203 7.化简:a +1a 2-2a +1÷(1+2a -1)=( )A .1a -1 B .1a +1 C .1a 2-1 D .1a 2+18.为了帮助遭受自然灾害的地区重建家园,某学校号召同学们自愿捐款.已知第一次捐款总额为4 800元,第二次捐款总额为5 000元,第二次捐款人数比第一次多20人,而且两次人均捐款额恰好相等.如果设第一次捐款人数为x 人,那么x 满足的方程是( )A .4 800x =5 000x -20B .4 800x =5 000x +20C .4 800x -20=5 000xD .4 800x +20=5 000x9.若2a =3b =4c ,且abc≠0,则a +bc -2b的值是( ) A .2 B .-2 C .3 D .-310.若分式方程3x x +1=mx +1+2无解,则m =( )A .-1B .-3C .0D .-2 二、填空题(每小题3分,共18分)11.当x = 时,分式3x -2无意义.12.(重庆中考)计算:3-8+(13)-2+(π-1)0= .13.化简:(2x x -3-x x +3)·x 2-9x = .14.如图,点A ,B 在数轴上,它们所表示的数分别是-4,4x -45x +1,且点A 到原点的距离是点B 到原点距离的2倍,则x = .15.分式方程1x -1=ax 2-1的解是x =0,则a = . 16.观察规律并填空.(1-122)=12·32=34; (1-122)(1-132)=12·32·23·43=12·43=23;(1-122)(1-132)(1-142)=12·32·23·43·34·54=12·54=58;(1-122)(1-132)(1-142)(1-152)=12·32·23·43·34·54·45·65=12·65=35;…(1-122)(1-132)(1-142) (1)1n2)=(用含n的代数式表示,n是正整数,且n≥2).三、解答题(共52分) 17.(12分)计算:(1)(2x-3y2)-2÷(x-2y)3;(2)4-xx-2÷(x+2-12x-2).18.(12分)解分式方程:(1)2xx+1-1=1x+1;(2)x+4x(x-1)=3x-1.19.(9分)(锦州中考)先将(1-1x)÷x-1x2+2x化简,然后请自选一个你喜欢的x值代入求值.20.(9分)对于代数式1x-2和32x+1,你能找到一个合适的x值,使它们的值相等吗?写出你的解题过程.21.(10分)某商家预测一种应季衬衫能畅销市场,就用13 200元购进了一批这种衬衫,面市后果然供不应求,商家又用28 800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.(1)该商家购进的第一批衬衫是多少件?(2)若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完利润率不低于25%(不考虑其他因素),那么每件衬衫的标价至少是多少元?人教版八年级数学 第15章 分式 同步检测试题参考答案一、选择题(每小题3分,共30分)1.下列式子:-3x ,2a ,x 2-y 2xy ,-a 2π,x -1y 2,a -2b ,其中是分式的个数有( C )A .2个B .3个C .4个D .5个2.将分式2x 2x +y中x ,y 的值都扩大10倍,则分式的值( A )A .扩大到原来的10倍B .缩小到原来的110 C .扩大到原来的100倍 D .不变 3.分式a x ,x +yx 2-y 2,a -b a 2-b 2,x +y x -y中,最简分式有( B )A .1个B .2个C .3个D .4个 4.下列运算正确的是( C )A.-x -y -x +y =x -y x +y B.a 2-b 2(a -b )2=a -ba +bC.a 2-b 2(a -b )2=a +b a -bD.x -11-x 2=1x +1 5.计算2x x +3+6x +3,其结果是( A )A .2B .3C .x +2D .2x +6 6.将数字2.03×10-3化为小数是( C )A .0.203B .0.020 3C .0.002 03D .0.000 203 7.化简:a +1a 2-2a +1÷(1+2a -1)=( A )A .1a -1 B .1a +1 C .1a 2-1 D .1a 2+18.为了帮助遭受自然灾害的地区重建家园,某学校号召同学们自愿捐款.已知第一次捐款总额为4 800元,第二次捐款总额为5 000元,第二次捐款人数比第一次多20人,而且两次人均捐款额恰好相等.如果设第一次捐款人数为x 人,那么x 满足的方程是( B )A .4 800x =5 000x -20B .4 800x =5 000x +20C .4 800x -20=5 000xD .4 800x +20=5 000x9.若2a =3b =4c ,且abc≠0,则a +bc -2b的值是( B ) A .2 B .-2 C .3 D .-310.若分式方程3x x +1=mx +1+2无解,则m =( B )A .-1B .-3C .0D .-2 二、填空题(每小题3分,共18分)11.当x = 2 时,分式3x -2无意义.12.(重庆中考)计算:3-8+(13)-2+(π-1)0= 8 .13.化简:(2x x -3-x x +3)·x 2-9x = x +9 .14.如图,点A ,B 在数轴上,它们所表示的数分别是-4,4x -45x +1,且点A 到原点的距离是点B 到原点距离的2倍,则x = -1 .15.分式方程1x -1=ax 2-1的解是x =0,则a = 1 . 16.观察规律并填空.(1-122)=12·32=34; (1-122)(1-132)=12·32·23·43=12·43=23;(1-122)(1-132)(1-142)=12·32·23·43·34·54=12·54=58;(1-122)(1-132)(1-142)(1-152)=12·32·23·43·34·54·45·65=12·65=35;…(1-122)(1-132)(1-142) (1)1n2)=n+12n(用含n的代数式表示,n是正整数,且n≥2).三、解答题(共52分) 17.(12分)计算:(1)(2x-3y2)-2÷(x-2y)3;解:原式=14x6y-4÷x-6y3=x124y7.(2)4-xx-2÷(x+2-12x-2).解:原式=4-xx-2÷(x2-4x-2-12x-2)=4-xx-2÷x2-4-12x-2=4-xx-2·x-2(x+4)(x-4)=-1x+4.18.(12分)解分式方程:(1)2xx+1-1=1x+1;解:方程两边乘x+1,得2x-x-1=1. 解得x=2.经检验,x=2是原方程的解.(2)x+4x(x-1)=3x-1.解:方程两边乘x(x-1),得x+4=3x. 解得x=2.经检验,x=2是原方程的解.19.(9分)(锦州中考)先将(1-1x)÷x-1x2+2x化简,然后请自选一个你喜欢的x值代入求值.解:原式=x-1x÷x-1x2+2x=x-1x·x(x+2)x-1=x+2.当x=10时,原式=10+2=12.(注意:x不能取0,1,-2)20.(9分)对于代数式1x-2和32x+1,你能找到一个合适的x值,使它们的值相等吗?写出你的解题过程.解:能.根据题意,令1x-2=32x+1,则有2x+1=3(x-2).解得x=7.经检验,x=7是1x-2=32x+1的解.即当x=7时,两代数式的值相等.21.(10分)某商家预测一种应季衬衫能畅销市场,就用13 200元购进了一批这种衬衫,面市后果然供不应求,商家又用28 800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.(1)该商家购进的第一批衬衫是多少件?(2)若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完利润率不低于25%(不考虑其他因素),那么每件衬衫的标价至少是多少元?解:(1)设该商家购进的第一批衬衫是x件,则购进的第二批衬衫是2x件,由题意可得28 8002x-x13200=10,解得x=120.经检验x=120是原方程的根.答:该商家购进的第一批衬衫是120件.(2)设每件衬衫的标价至少是a元.由(1)得第一批的进价为:13 200÷120=110(元/件),第二批的进价为:120元/件.由题意可得120(a-110)+(240-50)(a-120)+50(0.8a-120)≥25%×(13 200+28 800).解得a≥150.答:每件衬衫的标价至少是150元.。

人教版八年级上册数学第15章《分式》单元测试卷(含答案解析)

人教版八年级上册数学第15章《分式》单元测试卷(含答案解析)

人教版八年级上册数学第15章《分式》单元测试卷一.选择题(共10小题,满分30分)1.下列式子中,属于分式的是()A.B.C.D.2.分式的值是零,则x的值为()A.3B.﹣3C.3或﹣3D.03.已知某新型感冒病毒的直径约为0.000002022米,将0.000002022用科学记数法表示为()A.2.022×10﹣5B.0.2022×10﹣5C.2.022×10﹣6D.20.22×10﹣74.计算的结果是()A.B.C.D.5.在①x2﹣x+,②﹣3=a+4,③+5x=6,④=1中,其中关于x的分式方程的个数为()A.1B.2C.3D.46.如果把分式中的x、y的值都扩大2倍,那么分式的值()A.扩大2倍B.扩大4倍C.扩大6倍D.不变7.若将分式与通分,则分式的分子应变为()A.6m2﹣6mn B.6m﹣6nC.2(m﹣n)D.2(m﹣n)(m+n)8.分式,的最简公分母是()A.a B.ab C.3a2b2D.3a3b39.计算结果等于2的是()A.|﹣2|B.﹣|2|C.2﹣1D.(﹣2)0 10.已知,则的值是()A.66B.64C.62D.60二.填空题(共10小题,满分30分)11.分式的最简公分母是.12.要使分式有意义,则分式中的字母b满足条件.13.若表示一个整数,则整数x可取的个数有个.14.约分:=.15.方程的解是.16.若解分式方程产生增根,则m=.17.用漫灌方式给绿地浇水,a天用水10吨,改用喷灌方式后,10吨水可以比原来多用5天,那么喷灌比漫灌平均每天节约用水吨.18.已知若x﹣=3,则x2+=.19.将分式化为最简分式,所得结果是.20.扶贫工作小组对果农进行精准扶贫,帮助果农将一种有机生态水果拓宽了市场.与去年相比,今年这种水果的产量增加了1000千克,每千克的平均批发价比去年降低了1元,批发销售总额比去年增加了20%.已知去年这种水果批发销售总额为10000元,则这种水果今年每千克的平均批发价是元.三.解答题(共7小题,满分90分)21.神舟十三号飞船搭载实验项目中,四川省农科院生物技术研究所共有a粒水稻种子,每粒种子质量大约0.0000325千克;甘肃省天水市元帅系苹果的b粒干燥种粒,每粒种子质量大约0.002275千克,参与航天搭载诱变选育.(1)用科学记数法表示上述两个数.(2)若参与航天搭载这两包种子的质量相等,求的值.(3)若这两包种子的质量总和为1.04千克,水稻种子粒数是苹果种子粒数10倍,求a,b的值.22.若式子无意义,求代数式(y+x)(y﹣x)+x2的值.23.下列分式中,哪些是最简分式?,,;,,,.24.(1)计算:;(2)解不等式组:.25.若关于x 的方程有增根,求实数m的值.26.一船在河流上游A港顺流而下直达B港,用一个小时将货物装船后返航,已知船在静水中的速度是50千米/时,A、B两地距离为150千米,则该船从A港出发到返回A港共用了7.25小时,如果设水流速度是x千米/时,那么x应满足怎样的方程?27.阅读理解材料:为了研究分式与分母x的变化关系,小明制作了表格,并得到如下数据:x…﹣4﹣3﹣2﹣101234…10.50.0.25……﹣0.25﹣0.﹣0.5﹣1无意义从表格数据观察,当x>0时,随着x 的增大,的值随之减小,并无限接近0;当x<0时,随着x 的增大,的值也随之减小.材料2:对于一个分子、分母都是多项式的分式,当分母的次数高于分子的次数时,我们把这个分式叫做真分式.当分母的次数不低于分子的次数时,我们把这个分式叫做假分式.有时候,需要把一个假分式化成整式和真分式的代数和,像这种恒等变形,称为将分式化为部分分式.如:.根据上述材料完成下列问题:(1)当x>0时,随着x的增大,1+的值(增大或减小);当x<0时,随着x的增大,的值(增大或减小);(2)当x>1时,随着x的增大,的值无限接近一个数,请求出这个数;(3)当0≤x≤2时,求代数式值的范围.。

RJ人教版八年级上册第十五章《分式》单元测试卷内有答案与解析

RJ人教版八年级上册第十五章《分式》单元测试卷内有答案与解析

第十五章《分式》单元测试卷 (时间:120 分钟满分:120 分)第Ⅰ卷选择题 (共42 分)一、选择题(本大题共16个小题,1~6小题,每小题2 分;7~16 小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将答案填入后面的括号里) 1.给出下列式子:①24x +;②3xy+yz ;③199;④ab;⑤6m n+.其中是分式的是 【 】A.①③④B.①②⑤C.③⑤D.①④ 2.下列说法中,正确的是【 】A.形如AB的式子叫分式 B.分母不等于0,分式有意义 C.分式的值等于0,分式无意义 D.分子等于0,分式的值就等于0 3.如果分式31x - 有意义,则x 的取值范围是 【 】A.全体实数B.x=1C.x ≠1D.x=04.将分式121132a b a b +-的分子和分母中的各项系数都化为整数,应为 【 】A. 3632a b a b +-B.2323a b a b +-C.3623a b a b+-D.3623a ba b--5.如果分式2xx-的值为零,那么x 的值为【 】A.-2B.0C.1D.2 6.下列分式中与分式-xx y-的值相等的是【 】A.xx y ---B.x x y - C.-x y x- D.x x y+ 7.下列分式中是最简分式的是【 】A.221x x + B.24xC.211x x --D.11xx -- 8.对于非零的实数a 、b ,规定a ⊕b=1b- 1a .若2⊕(2x-1)=1,则x=【 】A.56B.54C.32D.-169.设k=(甲图中阴影部分面积):(乙图中阴影部分面积)(a >b >0),则有【 】A.k >2B.1<k <2C.12<k <1D.0<k <1210.若113⨯+ 135⨯ +157⨯ +…+1(21)(21)n n -⨯+的值为1735,则正整数n 的值是【 】A.16B.17C.18D.19 11.已知x ≠0,y ≠0,且x ,y 满足x 2-4xy+4y 2=0,则x yx y-+ 的值为【 】A.-13B.-13yC.13D.13y12.关于x 的分式方程2334ax a x +=-的根为x=1,则a 的取值为【 】A.1B.3C.-1D.-3 13.下列运算正确的是【 】A.(11x -)0=0(x ≠1) B.(1x )6÷(1x )3=(1x)2C.(1x )2·(1x )3=(1x)6D.x -p= 1x p (x ≠0,p 为正整数)14.父子两人沿周长为a 的2周骑自行车匀速行驶.同向行驶时父亲不时超过儿子,而反向行驶时相遇的频率增大为11 倍.已知儿子的速度为v ,则父亲的速度为【 】A.1.1vB.1.2vC.1.3vD.1.4v 15.某工厂生产一种零件,计划在20 天内完成,若每天多生产4 个,则15 天完成且还多生产10 个.设原计划每天生产x 个,根据题意可列分式方程为【 】A.20104x x ++ =15B.20104x x -+ =15C. 20104x x +- =15D.20104x x -- =1516.观察一列有规律的数:13,28,1315,424,535,….根据其规律可知第n 个数应该是【 】 A.2(1)1n n ++B.2(1)n n +C.21(1)1n ++ D.22n n n-第Ⅱ卷非选择题 (共78 分)二、填空题(本大题共4个小题,每小题3分,共12分.把答案填入题内的横线上)17.如果a b=2,则2222a ab b a b-++= .18.若22223a a b b ⎛⎫⎛⎫÷= ⎪⎪ ⎪⎝⎭⎝⎭,则a 4b 4的值是 . 19.关于x 的分式方程7311mx x +=--有增根,则m 为 . 20.小成每周末要到距离家5 km 的体育馆打球,他骑自行车前往体育馆比乘汽车多用10 min ,乘汽车的速度是骑自行车速度的2倍.设骑自行车的速度为x km/h ,根据题意列方程为________________. 三、解答题(本大题共6 个小题,共66 分.解答应写出文字说明、证明过程或演算步骤) 21.(本小题满分9 分) 先化简,再求值:21112aa a a a⎛⎫+÷ ⎪+⎝⎭++,其中-1. 22.(本小题满分10 分) 在等式24111+=-+的两个方格内分别填入一个数使等式成立,要求这两个数互为相反数,则第一个方格内的数是多少? 23.(本小题满分10 分) 若m 使关于x 的方程011x m xx x +-=-+产生增根,求m 的值. 24.(本小题满分11 分)一水池有一进水管和一排水管,开进水管注满水池需(a+2)h ,开排水管把一池水放完需(b-1)h.如果池中无水,先开进水管2h 后,再关闭进水管,打开排水管,问: (1)需多少时间才能把水池的水排完?(列出式子即可) (2)当a=2,b=1.5时,需多少时间才能把水池的水排完? 25.(本小题满分12 分)乌梅是郴州的特色时令水果.乌梅一上市,水果店的小李就用3 000 元购进了一批乌梅,前两天以高于进价40% 的价格共卖出150 kg ,第三天她发现市场上乌梅数量陡增,而自己的乌梅卖相已不大好,于是果断地将剩余乌梅以低于进价20%的价格全部售出,前后一共获利750 元,求小李所进乌梅的数量. 26.(本小题满分14 分) 阅读下列材料:方程1111123x x x x -=-++-的解为x=1; 方程1111134x x x x -=----的解为x=2;方程11111245x x x x -=-----的解为x=3; ……(1)请你观察上述方程与解的特征,写出能反映上述方程一般规律的方程,并求出这个方程的解; (2)根据(1)中所求得的结论,写出一个解为x=-5 的分式方程. 答案 一、1.D 点拨:根据分式定义,分母中应含有字母.2.B 点拨:选项A 中,缺少条件B ≠0;选项C 中,分式有无意义只须看分母是否为0;当分子等于0,分母不等于0 时,分式的值才为0.3.C 点拨:由x-1≠0 得,x ≠1.4.C 点拨:分子分母同乘以6 即可.5.D 点拨:由2-x=0 得x=2.6.B 点拨:x x x y x y -=--+;x xy x x y=--7.A 点拨:2421111;;121111x x x x x x x x --====-+-+-. 8.A 点拨:a ⊕b=1b -1a.若2⊕(2x-1)=11122x -=,解得x=56.9.B 点拨:k=()()()2212a b a b a b a b ba ab a a b a a+--+===+--,∵a >b ,∴0<a b <1,∴1<k<2.10.B 点拨:∵()()1111()212122121n n n n =--⨯+-+,∴111133557++⨯⨯⨯ +…+()()111111111(1)21212335572121n n n n =-+-+-++--⨯+-+=111217(1)2212212135n n n n n -=⨯==+++,∴n=17. 11.C 点拨:由x 2-4xy+4y 2=0,得x=2y ,则21233x y y y y x y y y y --===++. 12.D 点拨:把x=1 代入方程得23314a a +=-,解得a=-3.13.D 点拨:(11x -)0=1(x ≠1);(1x )6÷(1x )3=(1x )3;(1x )2·(1x )3=(1x)5.14.B 点拨:设父亲的速度为x ,则由题意得:11()x v x va a-+=,解得x=1.2v. 15.A 16.A 二、17.35点拨:由ab=2 得a=2b ,则222222222424a ab b b b b a b b b-+-+=++=35. 18.9 点拨:2442222222()()3a a a b a b b b b a ÷=⨯==,则a 4b 4=32=9.19.7 点拨:将原分式方程化为整式方程得7+3(x-1)=m ,∵分式方程有增根,则增根为x=1,将x=1 代入整式方程得m=7. 20.55126x x -= 三、21.解:化简,得原式=a+1.当 -1 时,原式 .22.解:设第一个方格内的数为x ,则第二个方格内的数为原x ,依题意可得分式方程:24111x x+=--,解得x=-1,经检验知x=-1 是该方程的根,故第一个方格内的数是原1. 23.解:m=-1. 24.解:(1)(2121a b ÷+- )h.(2)14h.25.解:设小李所进乌梅的数量为x kg ,根据题意,得150×3000x ·40%-(x-150)·3000x·20%=750,解得:x=200.经检验x=200 是原方程的解且符合题意.答:小李所进乌梅的数量为200 kg.26.解:(1)方程与解的特征是:方程共四项,分子都是1,左边两项与右边两项都是差的形式,且分母相差1,从整体上看四个分母中,若其解的代数式放在中间,则依次递减1,所以一般规律方程是:1111134x a x a x a x a -=-++-+-+-(a 取整数),其解是x=-a+2.检验:对方程两边分别通分,得2211(21)(1)(27)(3)(4)x a x a a x a x a a --=+-+-+-+--所以(2a-7)·x+(a-3)(a -4)=(2a-1)x+a (a-1).所以x=-a+2. (2)解为x=-5 的分式方程是11117643x x x x -=-++++.。

人教版八年级数学上册 第15章 分式 单元检测试题(有答案)

人教版八年级数学上册   第15章 分式 单元检测试题(有答案)

第15章 分式 单元检测试题(满分120分;时间:120分钟)真情提示:亲爱的同学,欢迎你参加本次考试,祝你答题成功!题号 一 二 三 总分 得分一、 选择题 (本题共计 10 小题 ,每题 3 分 ,共计30分 , ) 1. 计算1x−2+2x+2+44−x 2的结果是( )A.3x+2B.3x−2C.3x+2x 2−4D.3x−10x 2−42. 化简(1+1a−1)÷aa 2−2a+1的结果是( ) A.a +1 B.a =0 C.a >4 D.a −13. 若分式x+2x−2有意义,则x 的取值范围是( ) A.x ≥2 B.x >2 C.x ≠2 D.x ≠−24. 若分式1x−3有意义,则x 的取值范围是( ) A.x >3 B.x ≠3 C.x ≠0 D.x ≠−35. 若代数式 a+1a−1在实数范围内有意义,则实数a 的取值范围是( ) A.a ≥1 B.a ≠1C.a <1D.a =−16. 分式1a 2−b 2和1a+b 的最简公分母是( )A.a +bB.a −bC.a 2−b 2D.a 2+b 27. 如果把分式aba+2b中的a 、b 都扩大3倍,那么分式的值一定( )A.是原来的1倍B.是原来的3倍C.是原来的6倍D.不变8. 如果把3x−2y5x+7y 中的x ,y 都扩大10倍,则分式的值( ) A.扩大10倍 B.不变C.由x ,y 的值确定D.缩小到原来的1109. (x −1+y −1)−1=( ) A.x =y B.1x+yC.xyx+yD.x+yxy10. 设3x−2y x+y=2,则(3x+2y)2−(x−3y)2(4x−y)2−(2x+2y)2=( ) A.3925B.−3925C.3920D.−3920二、 填空题 (本题共计 10 小题 ,每题 3 分 ,共计30分 , )11. 下列4个分式:①a+3a 2+3;②x−yx 2−y 2;③m2m 2n ;④2m+1,中最简分式有________个.12. m+2m−1,5m+2的最简公分母是________,通分的结果为________.13. 在下列方程:①23x 2=1、②2π−x 2=1、③23x=x 、④1x−2+3=x−1x−2、⑤1x=0中,分式方程的个数有________.14. 分式32(x+1),2x5(1−x),1−2xx 2−1的最简公分母是________.15. 若方程2x−3=1x−k的根为正数,则k 的取值范围是________.16. 如果把分式2a a+b 中的a ,b 都扩大2倍,那么分式的值________.17. 当x ________时,分式x 2−4x+2无意义.若分式|a|−2(a−2)(a+3)的值为0,则a =________.18. 给定一列分式x 3y ,−x 5y 2,x 7y 3,−x 9y 4,…,则第n 个分式为:________.19. 当x ________时,分式2x−32x+3有意义;当x ________时,分式|x|−1x 2+2x+1的值为零.20. 如果对任意实数x ,等式:(1−2x)10=a 0+a 1x +a 2x 2+a 3x 3+...+a 10x 10都成立,那么(a 0+a 1)+(a 0+a 2)+(a 0+a 3)+...+(a 0+a 10)=________.(用数字作答) 三、 解答题 (本题共计 6 小题 ,共计60分 , ) 21. 解分式方程:x 2+1x−2xx 2+1+1=0.22. 化简: (1)2x x−2−2x+3(2)x+yxy−y 2⋅x 2−y 2x 2+2xy+y 2.23. 已知ab =56,bc=43,求a+bb−c的值.24. 甲地到乙地原来每隔45m要安装一根电线杆,加上两端的两根一共有53根电线杆.现在改成每隔60m安装一根电线杆,除两端两根不需移动外,中途还有多少根不必移动?25. 为改善生态环境,防止水土流失,某村计划在荒坡上种树.由于青年志愿者的支援,每天比原计划多种25%,结果提前5天完成任务,原计划多少天种完树?26. 甲乙两人分别从距目的地6千米和10千米的两地同时出发,甲乙的速度比是3:4,结果甲比乙提前20分钟到达目的地,求甲、乙两人的速度.参考答案一、选择题(本题共计10 小题,每题 3 分,共计30分)1.【答案】A【解答】解:原式=x+2+2(x−2)−4(x+2)(x−2)=3(x−2) (x+2)(x−2)=3x+2,故选A 2.【答案】D【解答】解:原式=a−1+1a−1×(a−1)2a=a−1.故选D.3.【答案】C【解答】解:由题意得:x−2≠0,解得:x≠2,故选:C.4.【答案】B【解答】解:∵ 分式1x−3有意义,∵ x−3≠0,∵ x≠3.故选B.5.【答案】B【解答】解:根据题意得,a−1≠0,解得a≠1.故选B.6.【答案】C【解答】解:因为a2−b2=(a−b)(a+b),所以分式1a2−b2和1a+b的最简公分母是a2−b2,故选:C.7.【答案】B【解答】解:根据题意得3a×3b 3a+2×3b =9ab3(a+2b)=3aba+2b,∵ 分式的值是原来的3倍.故选B.8.【答案】B【解答】解:分别用10x和10y去代换原分式中的x和y,得3x−2y5x+7y =30x−20y50x+70y=10(3x−2y)10(5x+7y)=3x−2y5x+7y,则分式的值不变.故选B.9.【答案】C【解答】解:原式=(1x +1y )−1=(x+y xy )−1=xyx+y .故选C . 10. 【答案】 A 【解答】 解:3x−2y x+y=2,∵ 3x −2y =2x +2y , ∵ x =4y , ∵ 原式=(12y+2y)2−(4y−3y)2(16y−y)2−(8y+2y)2=3925.故选A .二、 填空题 (本题共计 10 小题 ,每题 3 分 ,共计30分 ) 11.【答案】2【解答】解:①a+3a 2+3是最简分式;②x−yx 2−y 2=x−y(x+y)(x−y)=1x+y ,不是最简分式; ③m2m n =12mn ,不是最简分式; ④2m+1是最简分式;最简分式有①④,共2个; 故答案为:2. 12. 【答案】 (m −1)(m +2),(m+2)2(m−1)(m+2),5(m−1)(m−1)(m+2)【解答】解:设边形有n 条, 解得n8.180∘8−2)1080∘, 故C . 13.【答案】3【解答】解:分式方程有:③④⑤,故答案为3.14.【答案】10(x+1)(x−1)【解答】解:2,5,1的最小公倍数是10,三个分式的公因式是(x+1)(x−1).所以最简公分母是:10(x+1)(x−1).15.【答案】k>32且k≠3【解答】解:去分母得,2(x−k)=x−3,解得x=2k−3,因为方程是正数根,所以2k−3>0,解得k>32,又因为原式是分式方程,所以x≠3且x−k≠0,即k≠3.故k的取值范围是k>32且k≠3.16.【答案】不变【解答】解:依题意,原式变为:2×2a2a+2b =2aa+b,因此分式的值不变.故答案为不变.17.【答案】=−2,−2【解答】解:∵ 分式x 2−4x+2无意义,∵ x+2=0,解得x=−2.∵ 分式|a|−2(a−2)(a+3)的值为0,∵ {|a|−2=0(a−2)(a+3)≠0,解得a=−2.故答案为:=−2,−2.18.【答案】(−1)n+1x2n+1 y n【解答】解:分子的x的指数是2n+1,分母y的指数是n,式子的符号是(−1)n+1,∵ 第n个分式为:(−1)n+1x 2n+1y n.19.【答案】≠−32,1【解答】解:由分式2x−32x+3有意义,得2x+3≠0,解得x≠−32,由分式|x|−1x2+2x+1的值为零得|x|−1=0且x2+2x+1≠0.解得x=1.故答案为:≠−32,1.20.【答案】10【解答】解:由题意可知:当x=0时,(1−2x)10=1=a0+a1x+a2x2+a3x3+...+a10x10=a0.当x=1时,(1−2x)10=1=a0+a1x+a2x2+a3x3+...+a10x10=a0+a1+ a2+...+a9+a10.所以(a0+a1)+(a0+a2)+(a0+a3)+...+(a0+a10)=a0+a1+a2+...+a9+a10+9a0=1+9=10.故答案为:10.三、解答题(本题共计6 小题,每题10 分,共计60分)21.【答案】解:令y=x 2+1x,∵ 原方程转化为:y−2y+1=0,方程两边同乘y得:y2+y−2=0,解得:y1=−2,y2=1,经检验:y1=−2,y2=1,是方程y−2y+1=0的解,当y=−2时,即x 2+1x=−2,解得:x=−1,经检验,x=−1是方程的解;当y=1时,即x 2+1x=1,此时方程无解;∵ 分式方程:x2+1x −2xx+1+1=0的解为:x=1.【解答】解:令y=x 2+1x,∵ 原方程转化为:y−2y+1=0,方程两边同乘y得:y2+y−2=0,解得:y1=−2,y2=1,经检验:y1=−2,y2=1,是方程y−2y+1=0的解,当y=−2时,即x 2+1x=−2,解得:x=−1,经检验,x=−1是方程的解;当y=1时,即x 2+1x=1,此时方程无解;∵ 分式方程:x2+1x −2xx2+1+1=0的解为:x=1.22.解:(1)原式=2x(x+3)−2(x−2)(x−2)(x+3)=2x2+4x+4(x−2)(x+3);(2)原式=x+yy(x−y)×(x+y)(x−y)(x+y)2=1y.【解答】解:(1)原式=2x(x+3)−2(x−2)(x−2)(x+3)=2x2+4x+4(x−2)(x+3);(2)原式=x+yy(x−y)×(x+y)(x−y)(x+y)2=1y.23.【答案】解:由ab =56,bc=43,得a=56b,c=34b.a+b b−c =56b+bb−34b=11614=223.【解答】解:由ab =56,bc=43,得a=56b,c=34b.a+b b−c =56b+bb−34b=11614=223.24.【答案】解:由题意得:甲地到乙地距离为:45×(53−1)=2340(m),∵ 45与60的最小公倍数为180,∵ 2340÷180=13,∵ 除两端两根不需移动外,中途还有13−1=12根不必移动.【解答】解:由题意得:甲地到乙地距离为:45×(53−1)=2340(m),∵ 45与60的最小公倍数为180,∵ 2340÷180=13,∵ 除两端两根不需移动外,中途还有13−1=12根不必移动.25.解:设原计划x天种完树,一共种y棵数,则yx−5=yx×(1+25%),解得x=25,经检验,x=25是原方程的根,答:原计划25天种完树.【解答】解:设原计划x天种完树,一共种y棵数,则yx−5=yx×(1+25%),解得x=25,经检验,x=25是原方程的根,答:原计划25天种完树.26.【答案】解:设甲的速度为3x千米/时,则乙的速度为4x千米/时.根据题意,得63x +13=104x,解得x=1.5.经检验,x=1.5是原方程的根.所以甲的速度为3x=4.5千米/时,乙的速度为4x=6千米/时.【解答】解:设甲的速度为3x千米/时,则乙的速度为4x千米/时.根据题意,得63x +13=104x,解得x=1.5.经检验,x=1.5是原方程的根.所以甲的速度为3x=4.5千米/时,乙的速度为4x=6千米/时.。

最新人教版八年级数学上册第15章同步测试题及答案

最新人教版八年级数学上册第15章同步测试题及答案

最新人教版八年级数学上册第15章同步测试题及答案15.1 分式15.1.1 从分数到分式一、选择题1、下列说法正确的是( )A.如果A 、B 是整式,那么BA 就叫做分式 B.分式都是有理式,有理式都是分式C.只要分式的分子为零,分式的值就为零D.只要分式的分母为零,分式就无意义2、下列各式:①312-x ;②x x 22;③21x ;④πv .其中分式有( ) A.1个 B.2个 C.3个 D.4个3、分式31x a x +-中,当x=-a 时,下列结论正确的是( ) A .分式的值为零 B .分式无意义 C .若a ≠-13时,分式的值为零 D .若a ≠13时,分式的值为零 4、使分式||1x x -无意义,x 的取值是( ) A .0 B .1 C .-1 D .±15、下列各式中,无论x 取何值,分式都有意义的是( )A .121x +B .21x x +C .231x x + D .2221x x + 6、若分式23x x -的值为负,则x 的取值是( ) A.x <3且x ≠0 B.x >3 C.x <3 D.x >-3且x ≠07、如果代数式1-x x 有意义,那么x 的取值为( ) A.x ≥0 B.x ≠0 C.x >0 D.x ≥0且x ≠1二、填空题8、当x=________时,分式xx x -2的值为0. 9、当m________时,分式mm 4127-+有意义.10、当x=____________时,分式2)2(--x x x 无意义. 三、解答题11、要使分式221y x x -+的值为零,x 和y 的取值范围是什么?12、已知y=123x x --,x 取哪些值时:(1)y 的值是正数;(2)y 的值是负数;(3)y 的值是零;(4)分式无意义.参考答案1.D2.B3.D4.D5.D6.A7.D8. 19.≠1410. 2 11.解:因为分式221y x x -+的值为零, 所以22100x x y +=⎧⎨-≠⎩, 解得:x=-1且22x y ≠,所以x=-1且y ≠±1.12.解:(1)当y 的值是正数时, 10230x x ->⎧⎨->⎩或10230x x -<⎧⎨-<⎩. 当10230x x ->⎧⎨->⎩时,无解;当10230x x -<⎧⎨-<⎩时, 解得213x <<. (2) 当y 的值是负数时,10230x x ->⎧⎨-<⎩或10230x x -<⎧⎨->⎩. 当10230x x ->⎧⎨-<⎩时,x>1;当10230x x -<⎧⎨->⎩时,23x <. (3)当y 的值是0时,10230x x -=⎧⎨-≠⎩, 解得x=1.(4)当分式无意义时,2-3x=0,解得x=23.15.1.2 分式的基本性质一、选择题1、在下列四组求最简公分母的分式中,其中求错了的一组是()A. 与的最简公分母是B. 与的最简公分母是C. 与的最简公分母是D. 与的最简公分母是2、下列等式成立的是( )A. B.C. D.3、分式可变形为()A. B.C. D.4、把分式中的分子、分母的、同时扩大倍,那么分式的值()A. 扩大倍B. 缩小倍C. 变为原来的D. 不改变5、对分式通分时,最简公分母是()A. B. C. D.6、下列分式是最简分式的是()A. B.C. D.7、化简的结果是()A. B.C. D.8、分式与下列分式相等的是()A. B.C. D.二、填空题9、化简分式的结果是________.10、不改变分式的值,把分子、分母的系数化为整数:______.11、分式与的最简公分母是_____.12、若,则____________.三、解答题13、约分:.14.参考答案1.B2.C3.D4.D5.D6.B7.B8.B9. 10. 11. 12.13.解:14.15.2 分式的运算基础巩固1.一种花瓣的花粉颗粒直径约为0.000 006 5米,0.000 006 5用科学记数法表示为( ).A.6.5×10-5B.6.5×10-6C.6.5×10-7D.65×10-62.化简2221121a aa a a a+-÷--+的结果是( ).A.1aB.a C.11aa+-D.11aa-+3.化简:2332x y xz yzz y x⎛⎫⎛⎫⎛⎫⋅⋅⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭等于( ).A.232y zxB.xy4z2C.xy4z4D.y5z4.计算37444x x y yx y y x x y++----等于( ).A.264x yx y+--B.264x yx y+-C .-2D .2 5.化简111a ⎛⎫+ ⎪-⎝⎭÷221a a a -+的结果是( ). A .a +1 B .11a - C .1a a - D .a -16.若m 等于它自身的倒数,则分式22444m m m ++-÷222m m m +-的值为__________. 7.化简22221221121x x x x x x x x x +----÷--++的结果是__________. 能力提升8.已知a +b =3,ab =1,则a b b a+的值等于__________.9.先化简,再求值:35222x x x x -⎛⎫÷+- ⎪--⎝⎭,其中x =-4.10.特殊的问题中往往蕴含有一些规律与技巧,当一个问题出现时,不妨先观察一下问题的特征,探究出规律再应用于解题,这是数学中常用的“特殊——一般——应用”方法.请先阅读材料,再解题.计算1111(1)x x x x -=++, 即有111(1)1x x x x =-++. 试用上式计算:111112233420122013+++⋅⋅⋅+⨯⨯⨯⨯.11.有这样一道题:“计算2222111x x xxx x x-+-÷--+的值,其中x=2 004”甲同学把“x=2 004”错抄成“x=2 040”,但他的计算结果也正确,你说这是怎么回事?12.已知两个分式:A=24 4x-,B=1122x x++-,其中x≠±2,下面有三个结论:①A=B;②A·B=1;③A+B=0.请问哪个正确?为么?参考答案1.B2.A 分析:原式=21(1)1(1)(1)(1)a aa a a a a+-⋅=-+-,故选A.3.B 分析:原式=3362337542232662()()()x y xz yz x y xz y z x y zz y x z y x x yz⋅⋅=⋅⋅==xy4z2.4.D 分析:37444x x y yx y y x x y++----=373()74444x x y y x x y yx y x y x y x y+-+---=----=282(4)44x y x yx y x y--=--=2.故选D.5.D 分析:111a⎛⎫+⎪-⎝⎭÷221aa a-+=2211(1)(1)111a a a aa a a a a---⎛⎫+⋅=⋅⎪---⎝⎭=a-1.6.±1 分析:222442214(2)(2)(2)m m m m mm m m m m m+++-÷⋅=-+-+.因为m等于它自身的倒数,所以m=±1,把m=±1代入,得1m=±1.7.11x-分析:22221221121x x x x xx x x x+----÷--++=21(2)(1)(2)1(1)(1)(1)x x x x xx x x x+-+--÷-+-+=21(2)(1)1(1)(1)(1)(2)x x x xx x x x x+-+-⋅-+-+-=1111111x x x xx x x x++--==----.8.7 分析:22()23211a b a b ab b a ab +--⨯+===7. 9.解:原式=2345222x x x x x ⎛⎫--÷- ⎪---⎝⎭=3212(3)(3)3x x x x x x --⋅=--++. 当x =-4时,原式=143-+=-1. 10.解:111111111112233420122013122334+++⋅⋅⋅+=-+-+-⨯⨯⨯⨯+…+12012-12013=1-12013=20122013. 11.解:因为2222111x x x x x x-+-÷-+-x =x -x =0, 所以x 取使原式有意义的任何值,原式的值都为0.所以甲同学计算结果也正确.12.解:③正确.理由:因为B =2112(2)422(2)(2)4x x x x x x x --+-==-+-+--,所以A +B =224444x x ---=0.15.3 分式方程一、选择题1.方程的解为( ). A.2B.1C.-2D.-1 2.解分式方程,可得( ). A.x =1B.x =-1C.x =3D.无解 3.要使的值和的值互为倒数,则x 的值为( ). A.0 B.-1 C. D.14.已知,若用含x 的代数式表示y ,则以下结果正确的是( ). A. B.y =x +2 C. D.y =-7x -25.若关于x 的方程有增根,则k 的值为( ). 132+=x x 12112-=-x x 54--x x xx --424214321--=+-y y x x 310+=x y 310x y -=xk x --=-1113A.3B.1C.0D.-1 6.若关于x 的方程有正数解,则( ). A.m >0且m ≠3B.m <6且m ≠3C.m <0D.m >67.完成某项工作,甲独做需a 小时,乙独做需b 小时,则两人合作完成这项工作的80%,所需要的时间是( ).A.小时B.小时C.小时D.小时 8.a 个人b 天可做c 个零件(设每人速度一样),则b 个人用同样速度做a 个零件所需天数是( ).A.B. C. D. 二、填空题 9.当x =______时,两分式与的值相等. 10.关于x 的方程的解为______. 11.当a =______时,关于x 的方程的根是1. 12.若方程有增根,则增根是______. 13.关于x 的方程的解是负数,则a 的取值范围为____________. 14.一艘轮船在静水中的最大航速为20千米/时,它在江水中航行时,江水的流速为v 千米/时,则它以最大航速顺流航行s 千米所需的时间是______.三、解方程15.323-=--x m x x )(54b a +)11(54b a +)(54b a ab +b a ab +c a 22a c a c 22c a 44-x 13-x 324+=-b x a 4532=-+x a ax 114112=---+x x x 11=+x a .32121=-+--x x x16.17.四、列方程解应用题18.甲工人工作效率是乙工人工作效率的倍,他们同时加工1500个零件,甲比乙提前18小时完工,问他们每人每小时各加工多少个零件?19.甲、乙两地相距50km ,A 骑自行车,B 乘汽车,同时从甲城出发去乙城.已知汽车的速度是自行车速度的2.5倍,B 中途休息了0.5小时还比A 早到2小时,求自行车和汽车的速度.⋅+=+--1211422x x x x x ⋅-+=+-x x x x x 2531621220.某一工程,在工程招标时,接到甲、乙两个工程队的投标书.工程领导小组根据甲、乙两队的投标书测算,若由甲工程队单独完成这项工程,刚好如期完成;若由乙工程队单独完成此项工程,则要比规定工期多用6天.现先由甲、乙两队合做3天,余下的工程再由乙队单独完成,也正好如期完成.求该工程规定的工期天数.参考答案1.A 2.D 3.B 4.C 5.A 6.B 7.C 8.A9.-8 10. 11. 12.x =1 13.a <1且a ≠0. 14.小时. 15.无解. 16. 17.无解. 18.解:设乙的工作效率为x 个/时,甲的工作效率为个/时. .解得.经检验,x =50是原方程的根. 答:甲每小时加工125个,乙每小时加工50个.19.解:设自行车的速度为x 千米/时,汽车的速度为2.5x 千米/时..解得x =12.经检验x =12是原方程的根. 答:自行车的速度为12km/时,汽车的速度为30km/时. 20.解:设该工程规定的工期天数为x ,则甲工程队单独做x 天完成该工程,乙工程队单独做(x+6)天完成该工程.根据题意得:解得:x=6. 经检验,x=6是原方程的根,且符合题意.答:该工程规定的工期天数是6.⋅--=462b a x ⋅-=317a 20+v s ⋅-=21x x 25182515001500+=x x 50=x xx 502215.250=++。

人教版八年级数学上册第十五章《分式》单元测试题(含答案)

人教版八年级数学上册第十五章《分式》单元测试题(含答案)

人教版八年级数学上册第十五章《分式》单元测试题(含答案)一、选择题(每小题3分,共24分)1.在式子x y 3,πa ,13+x ,31+x ,a a 2中,分式有( ) A .1个 B .2个 C .3个 D .4个2.分式32+x x 无意义的条件是( ) A .x≠—3 B . x=-3 C .x=0 D .x=33.下列各分式中与分式ba a --的值相等是( ) A .b a a -- B .b a a +- C .a b a - D .—a b a - 4.计算(2-a a —2+a a )·a a 24-的结果是( ) A . 4 B . -4 C .2a D .-2a5.分式方程2114339x x x +=-+-的解是( ) A .x=-2 B .x=2 C . x=±2 D .无解6.把分式(0)xy x y x y+≠+中的x ,y 都扩大3倍,那么分式的值( ) A .扩大为原来的3倍 B .缩小为原来的13C .扩大为原来的9倍D .不变 7.若分式34922+--x x x 的值为0,则x 的值为( ) A .3 B .3或-3 C .-3 D .08.某厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后因客户要求需提前5 天交货.设每天应多做x 件,则x 应满足的方程为 ( )A .72072054848x -=+ B .72072054848x+=+ C .720720548x -= D .72072054848x -=+ 二、填空题(每小题4分,共32分)9.当x= 时,分式22x x --值为零.10.计算.2323()a b a b --÷= .11.用科学记数法表示0.002 014= . 12.分式222439x x x x --与的最简公分母是____ ______. 13.若方程322x m x x-=--无解,则m =__________________. 14.已知a 1-b 1=21,则b a ab -的值为________________. 15.若R 1=11R +21R (R 1≠R 2),则表示R 1的式子是________________. 16.(2013年泰安)某电子元件厂准备生产4600个电子元件,甲车间独立生产一半后,由于要尽快投入市场,乙车间也加入了该电子元件的生产.若乙车间每天生产的电子元件个数是甲车间的1.3倍,结果用33天完成任务.问:甲车间每天生产电子元件多少个?在这个问题中设甲车间每天生产电子元件x 个,根据题意可得方程为________________.三、解答题(共64分)17.(14分)计算:(1)(2x -3y 2)-2÷(x -2y )3; (2)21+-x x ÷41222-+-x x x +11-x .18.(8分)先化简,再求值:211122x x x -⎛⎫-÷ ⎪++⎝⎭,其中2x =.19.(8分)解方程21124x x x -=--.20.(10分)先仔细看(1)题,再解答(2)题.(1)a 为何值时,方程 3x x -= 2 + 3a x -会产生增根? 解:方程两边乘(x-3),得x = 2(x-3)+a①.因为x=3是原方程的增根,•但却是方程①的解,所以将x=3代入①,得3=2×(3-3)+a ,所以a=3.(2)当m 为何值时,方程1y y --2m y y -=1y y-会产生增根?25.(12分)贵港市在旧城改造过程中,需要整修一段全长2400米的道路,为了尽量减少施工对城市交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8小时完成任务,求原计划每小时修路的长度.26.(12分)荷花文化节前夕,我市对观光路工程招标时,接到甲、乙两个工程队的投标书,甲、乙施工一天的工程费用分别为1.5万元和1.1万元,市政局根据甲、乙两队的投标书测算,有三种施工方案.(1)甲队单独做这项工程刚好如期完成.(2)乙队单独做这项工程,要比规定日期多5天.(3)若甲、乙两队合作4天后,余下的工程由乙队单独做,也正好如期完成.在确保如期完成的情况下,你认为哪种方案最节省工程款,通过计算说明理由.第十五章 分式测试题参考答案一、1. C 2. B 3. C 4. B 5. B 6. A 7. C 8. D二、9.-2 10.a 4b 6 11.-2.014×10-3 12.x(x+3)(x-3) 13.114.-2 15.R 1=RR RR -22 16.333.123002300=++x x x 三、17.(1)7124yx . (2)1. 18.原式=11-x .代入x=2,得原式=1. 19.x=-23. 20.解:方程两边乘y (y-1),得y 2-m=(y-1)2.化简,得m=2y -1.因为y=0和y=1都是原方程的的增根,但却是化简后整式方程的解.故将y=0和y=1分别代入m=2y -1,得m=-1或m=1.所以m =±1.21.解:设原计划每小时修路x 米,根据题意,得8%)201(24002400=+-xx . 解得50=x .经检验.x=50是原方程的解,且符合题意.答:原计划每小时修路50米.22.解:设工程期为x 天,则甲队单独完成用x 天,乙队单独完成用(x +5)天. 根据题意,得415x x x +=+. 解得x=20.经检验,x=20是原方程的解,且符合题意.所以在不耽误工期的情况下,有方案(1)和方案(3)两种方案合乎要求.方案(1)需工程款1.5×20=30(万元),方案(3)需工程款1.5×4+1.1×20=28(万元). 故方案(3)最节省工程款且不误期.人教版八年级上册第十五章分式单元检测(含答案)一、单选题1.在5x ,38a ,2π,1x a -中,属于分式的个数为( ) A .0个B .1个C .2个D .3个 2.下列分式为最简分式的是( )A .11a a --B .235xy y xy -C .22m n n m +-D .22a b a b++ 3.下列各式中,变形不正确的是( )A .2233x x=-- B .66a a b b -=- C .3344x x y y -=- D .5533n n m m --=- 4.计算322b b 1·a a b⎛⎫⎛⎫÷ ⎪ ⎪⎝⎭⎝⎭的值为 ( ) A .222b a B .6ab 2 C .8a D .15.计算:22m-1m -1m m÷的结果是 ( ) A .m m 1+ B .1m C .m-1 D .1m-16.若111u v f+=,则用u 、v 表示f 的式子应该是( ) A .u v uv + B .uv u v + C .v u D .u v7.若234a b c ==,则2222232a bc c a ab c-+--的值是( ) A .13 B .13- C .12 D .12- 8.纳米材料多被应用于建筑、家电等行业,实际上,纳米(nm)是一种长度的度量单位:1纳米=0.000000001米,用科学记数法表示0.12纳米应为( )A.0.12×10-9米B.0.12×10-8米C.1.2×10-10米D.1.2×10-8米 9.计算20140的结果是( )A .1B .0C .2014D .﹣1 10.当m 为何值时,方程会产生增根( ) A.2 B.-1 C.3 D.-311.下列各式中,是分式方程的是( )A.x+y=5B.C.D.12.已知一汽船在顺流中航行46千米和逆流中航行34千米,共用去的时间,正好等于它在静水中航行80千米用去的时间,且水流速度是2千米/时,求汽船在静水中的速度,若设汽船在静水中速度为x 千米/时,则所列方程正确的是( ) A.+= B.+= C.=- D.=+二、填空题13.当x =_________时,分式242x x -+的值为0. 14.当x =__________时,分式3x x-无意义. 15.若a+b=1,且a ∶b=2∶5,则2a-b=____________.16.计算:(12)﹣2+(﹣2)3﹣20110=__________.三、解答题17.解方程:(1)233011x x x +-=--;(2)1433162x x -=--. 18.计算:①()223·14a aa a a ----; ②211a a a ---; ③225611x x x x x+⎛⎫-÷ ⎪--⎝⎭ 19.22322222244(82)25356a b ab b b a b b ab a b ab a ++-÷⋅---+,其中12a =-,14b =. 20.某书商去图书批发市场购买某本书,第一次用12000元购书若干本,并把该书按定价7元/本出售,很快售完,由于该书畅销,书商又去批发市场采购该书,第二次购书时,每本书批发价已比第一次提高了20%,他用15000元所购书数量比第一次多了100本. (1)求第一次购书的进价是多少元一本?第二次购进多少本书?(2)若第二次购进书后,仍按原定价7元/本售出2000本时,出现滞销,书商便以定价的n 折售完剩余的书,结果第二次共盈利100m 元(n 、m 为正整数),求相应的n 、m 的值.答案1.C 2.D 3.D 4.C 5.A 6.B 7.C 8.C 9.A10.C 11.D 12.B 13.2 14.315.-1 716.﹣517.(1)x=0;(2)23 x=.18.①11aa-+;②11a-;③-5x19.242a ba b+-+,020.(1)第一次购书的进价为5元/本,且第二次买了2500本;(2)当n=4时,m=4;当n=6时,m=11;当n=8时,m=18人教版八年级上数学第十五章分式单元测试(解析)一、选择题(每小题3分,共24分)1.若代数式在实数范围内有意义,则实数x的取值范围是( )A.x<3B.x>3C.x≠3D.x=32.下列等式成立的是( )A.+=B.=C.=D.=-3.下列运算结果为x-1的是( )A.1-B.·C.÷D.4.化简+的结果是( )A.m+nB.n-mC.m-nD.-m-n5.当x=6,y=3时,代数式·的值是( )A.2B.3C.6D.96.计算÷-的结果为( )A. B. C. D.a7.甲、乙两人同时从A地出发到B地,如果甲的速度v保持不变,而乙先用v的速度到达中点,再用2v的速度到达B地,则下列结论中正确的是( )A.甲、乙同时到达B地B.甲先到达B地C.乙先到达B地D.谁先到达B地与v有关8.(2016黑龙江龙东中考)关于x的分式方程=3的解是正数,则字母m的取值范围是( )A.m>3B.m<3C.m>-3D.m<-3二、填空题(每小题3分,共24分)9.某种电子元件的面积大约为0.000 000 69平方毫米,将0.000 000 69这个数用科学记数法表示为.10.当x= 时,分式的值为0.11.某市为治理污水,需要铺设一段全长600 m的污水排放管道.铺设120 m后,为加快施工速度,后来每天比原计划增加20 m,结果共用11天完成这一任务,求原计划每天铺设管道的长度.如果设原计划每天铺设x m管道,那么根据题意,可列方程: .12.计算:÷= .13.如图15-4-1,点A、B在数轴上,它们所对应的数分别是-4、,且点A、B到原点的距离相等,则x= .图15-4-114.甲、乙二人做某种机械零件,已知甲是技术能手,每小时比乙多做3个,甲做30个所用的时间与乙做20个所用的时间相等,那么甲每小时做个零件.15.计算(x+1)的结果是.16.若a2+5ab-b2=0,则-的值为.三、解答题(共52分)17.(4分)化简:-.18.(5分)计算:÷.19.(6分)(2016山东菏泽中考)列方程或方程组解应用题:为了响应“十三五”规划中提出的绿色环保的倡议,某校文印室提出了每个人都践行“双面打印,节约用纸”.已知打印一份资料,如果用A4厚型纸单面打印,总质量为400克,将其全部改成双面打印,用纸将减少一半;如果用A4薄型纸双面打印,这份资料的总质量为160克.已知每页薄型纸比厚型纸轻0.8克,求A4薄型纸每页的质量.(墨的质量忽略不计)20.(6分)先化简,再求值:÷·,其中a=-,b=.21.(7分)解分式方程:(1)(2016广西贵港中考)+1=-;(2)(2016湖北天门中考)=-1.22.(6分)(2015四川广元中考)先化简:÷,然后解答下列问题:(1)当x=3时,求代数式的值;(2)原代数式的值能等于-1吗?为什么?23.(8分)(2016辽宁铁岭中考)先化简,再求值:÷-,其中a=(3-)0+-.24.(10分)(2016新疆乌鲁木齐中考)某商场用24 000元购入一批空调,然后以每台3 000元的价格销售,因天气炎热,空调很快售完;商场又以52 000元的价格再次购入该种型号的空调,数量是第一次购入的2倍,但购入的单价上调了200元,每台的售价也上调了200元.(1)商场第一次购入的空调每台进价是多少元?(2)商场既要尽快售完第二次购入的空调,又要在这两次空调销售中获得的利润率不低于22%,打算将第二次购入的部分空调按每台九五折出售,最多可将多少台空调打折出售?第十五章分式答案解析满分:100分;限时:60分钟一、选择题(每小题3分,共24分)1.若代数式在实数范围内有意义,则实数x的取值范围是( )A.x<3B.x>3C.x≠3D.x=3答案 C 由分式有意义的条件得x-3≠0,解得x≠3.故选C.2.下列等式成立的是( )A.+=B.=C.=D.=-答案 C +=,所以A错误;=不成立,所以B错误;==,所以C正确;=-,所以D错误,故选C.3.下列运算结果为x-1的是( )A.1-B.·C.÷D.答案 B 选项A的运算结果为,选项B的运算结果为x-1,选项C的运算结果是,选项D的运算结果为x+1.故选B.4.化简+的结果是( )A.m+nB.n-mC.m-nD.-m-n答案 A +=-==m+n,故选A.5.当x=6,y=3时,代数式·的值是( )A.2B.3C.6D.9答案 C ·=·=.当x=6,y=3时,原式==6.6.计算÷-的结果为( )A. B. C. D.a答案 C ÷-=÷-=×-=-=,故选C.7.甲、乙两人同时从A地出发到B地,如果甲的速度v保持不变,而乙先用v的速度到达中点,再用2v的速度到达B地,则下列结论中正确的是( )A.甲、乙同时到达B地B.甲先到达B地C.乙先到达B地D.谁先到达B地与v有关答案 B 设从A地到B地的距离为2s,∵甲的速度v保持不变,∴甲所用时间为,∵乙先用v的速度到达中点,再用2v的速度到达B地,∴乙所用时间为+=+,∵s>0,v>0,∴+>,故甲先到达B地.8.(2016黑龙江龙东中考)关于x的分式方程=3的解是正数,则字母m的取值范围是( )A.m>3B.m<3C.m>-3D.m<-3答案D解分式方程,得x=-3-m,∵方程的解为正数,∴-3-m>0,解得m<-3,∵x+1≠0,∴x≠-1,∴-3-m≠-1,解得m≠-2,∴m<-3,故选D.二、填空题(每小题3分,共24分)9.某种电子元件的面积大约为0.000 000 69平方毫米,将0.000 000 69这个数用科学记数法表示为.答案 6.9×10-7解析0.000 000 69=6.9×10-7.10.当x= 时,分式的值为0.答案 2解析分式的值为0,则即所以当x=2时,原分式的值为0.11.某市为治理污水,需要铺设一段全长600 m的污水排放管道.铺设120 m后,为加快施工速度,后来每天比原计划增加20 m,结果共用11天完成这一任务,求原计划每天铺设管道的长度.如果设原计划每天铺设x m管道,那么根据题意,可列方程: .答案+=11解析根据题意,可列方程为+=11.12.计算:÷= .答案解析原式=a4b2c-2÷=a4b2c-2÷=b6c-2=.13.如图15-4-1,点A、B在数轴上,它们所对应的数分别是-4、,且点A、B到原点的距离相等,则x= .图15-4-1答案解析由题意,得=4,解得x=,经检验,x=是方程=4的解.14.甲、乙二人做某种机械零件,已知甲是技术能手,每小时比乙多做3个,甲做30个所用的时间与乙做20个所用的时间相等,那么甲每小时做个零件. 答案9解析设甲每小时做x个零件,则乙每小时做(x-3)个零件,根据题意可得=,解得x=9.经检验,x=9是方程的解,且符合题意.因此甲每小时做9个零件.15.计算(x+1)的结果是.答案x解析(x+1)=(x+1)=(x+1)=x.16.若a2+5ab-b2=0,则-的值为.答案 5解析由a2+5ab-b2=0,得b2-a2=5ab,∴-===5.三、解答题(共52分)17.(4分)化简:-.解析原式=-=-==1.18.(5分)计算:÷.解析原式=·=·=·=.19.(6分)(2016山东菏泽中考)列方程或方程组解应用题:为了响应“十三五”规划中提出的绿色环保的倡议,某校文印室提出了每个人都践行“双面打印,节约用纸”.已知打印一份资料,如果用A4厚型纸单面打印,总质量为400克,将其全部改成双面打印,用纸将减少一半;如果用A4薄型纸双面打印,这份资料的总质量为160克.已知每页薄型纸比厚型纸轻0.8克,求A4薄型纸每页的质量.(墨的质量忽略不计)解析设A4薄型纸每页的质量为x克,则厚型纸每页的质量为(x+0.8)克.根据题意,得×=.解得,x=3.2.经检验,x=3.2是原分式方程的根,且符合题意.答:A4薄型纸每页的质量为3.2克.20.(6分)先化简,再求值:÷·,其中a=-,b=.解析÷·=··=··=.当a=-,b=时,原式==-6.21.(7分)解分式方程:(1)(2016广西贵港中考)+1=-;(2)(2016湖北天门中考)=-1.解析(1)去分母,得x-3+x-2=-3,移项,得x+x=-3+3+2,合并同类项,得2x=2,系数化为1,得x=1,经检验,x=1为原分式方程的根,∴分式方程的解为x=1.(2)两边同时乘(x+1)(x-1),得3(x-1)=x(x+1)-(x+1)(x-1),解得x=2. 检验:当x=2时,(x+1)(x-1)=(2+1)(2-1)=3≠0,∴原方程的解为x=2.22.(6分)(2015四川广元中考)先化简:÷,然后解答下列问题:(1)当x=3时,求代数式的值;(2)原代数式的值能等于-1吗?为什么? 解析原式=·=·=.(1)当x=3时,原式=2.(2)不能.理由:如果=-1,那么x+1=-x+1,则x=0,当x=0时,原代数式中的除式=0,矛盾, ∴原代数式的值不能等于-1.23.(8分)(2016辽宁铁岭中考)先化简,再求值:÷-,其中a=(3-)0+-.解析 原式=÷- =×- =- =,∵a=(3-)0+-=1+3-1=3,∴原式===-.24.(10分)(2016新疆乌鲁木齐中考)某商场用24 000元购入一批空调,然后以每台3 000元的价格销售,因天气炎热,空调很快售完;商场又以52 000元的价格再次购入该种型号的空调,数量是第一次购入的2倍,但购入的单价上调了200元,每台的售价也上调了200元.(1)商场第一次购入的空调每台进价是多少元?(2)商场既要尽快售完第二次购入的空调,又要在这两次空调销售中获得的利润率不低于22%,打算将第二次购入的部分空调按每台九五折出售,最多可将多少台空调打折出售? 解析 (1)设第一次购入的空调每台进价是x 元,依题意,得=2×,解得x=2 400,经检验,x=2 400是原方程的解.答:第一次购入的空调每台进价为2 400元.(2)第一次购进空调的数量为24 000÷2 400=10台,总收入为3 000×10=30 000元, 第二次购进空调的数量为52 000÷(2 400+200)=20台,不妨设打折售出y 台空调, 则总收入为(3 000+200)·(20-y)+(3 000+200)·0.95y=(64 000-160y)元.两次空调销售的总利润为[30 000+(64 000-160y)]-(24 000+52 000)=(18 000-160y)元, 依题意,得18 000-160y≥(24 000+52 000)×22%,解得y≤8.答:最多可将8台空调打折出售.人教版八年级上第十五章《分式》单元检测卷(含答案)一、选择题(每题3分,共30分)1.(2019·常州)若代数式x +1x -3有意义,则实数x 的取值范围是( )A .x =-1B .x =3C .x ≠-1D .x ≠3 2.如果把xy x y+中的x 与y 都扩大10倍,那么这个代数式的值() A .不变 B .扩大20倍C .扩大10倍D .缩小为原来的110 3.计算22x y y y x x -⎛⎫÷⋅ ⎪⎝⎭的结果是() A .2x y B .y x C .2x y - D .-x4.已知a =2-2,b =1)0,c =(-1)3,则a ,b ,c 的大小关系是( )A .a >b >cB .b >a >cC .c >a >bD .b >c >a5.花粉的质量很小,一粒某种植物花粉的质量约为0.000037毫克,已知1克=1000毫克,那么0.000037毫克可以用科学记数法表示为( )A .3.7×10-5克B .3.7×10-6克C .3.7×10-7克D .3.7×10-8克6.若(244a -+12a-)⋅w =1,则w =( ) A .a +2(a ≠-2) B .-a +2(a ≠2)C .a -2(a ≠2)D .-a -2(a ≠-2)7.分式方程11x --21x +=211x -的解是( ) A .x =0 B .x =-1 C .x =±1 D .无解 8.若分式22-x 与1互为相反数,则x 的值为( ) A .2B .-2C .1D .-19.(2019·十堰)十堰即将跨入高铁时代,钢轨铺设任务也将完成.现还有6000米的钢轨需要铺设,为确保年底通车,如果实际施工时每天比原计划多铺设20米,就能提前15天完成任务.设原计划每天铺设钢轨x 米,则根据题意所列的方程是( )A.6000x -6000x +20=15 B.6000x +20-6000x =15 C.6000x -6000x -15=20 D.6000x -15-6000x=20 10.已知关于x 的方程22x m x +-=3的解是正数,则m 的取值范围为( ) A .m <-6B .m >-6C .m >-6且m ≠-4D .m ≠-4二、填空题(每题3分,共18分)11.如果分式11x x +-的值为0,那么x 的值为______. 12.某中学图书馆添置图书,用240元购进一种科普书,同时用200元购进一种文学书.由于科普书的单价比文学书的单价高出一半,因此学校所购买的文学书比科普书多4本.求文学书的单价.设这种文学书的单价为x 元,则根据题意,所列的方程是______.13.计算:(-2xy -1)-3=______.14.(2019·绥化)当a =2018时,代数式⎝⎛⎭⎫a a +1-1a +1÷a -1(a +1)2的值是________. 15.若(x -y -2)2+│xy +3│=0,则(3x x y --2x x y -)÷1y的值是. 16.(2019·齐齐哈尔)关于x 的分式方程2x -a x -1-11-x=3的解为非负数,则a 的取值范围为_____________.三、解答题(共52分)17.(12分)(1)计算1-2a b a b -+÷222244a b a ab b -++;(2) (2019·枣庄)先化简,再求值:x 2x 2-1÷⎝⎛⎭⎫1x -1+1,其中x 为整数且满足不等式组⎩⎪⎨⎪⎧x -1>1,5-2x ≥-2.18.(12分)解方程:(1)32x x ++22x -=3;(2)241x -+21x x +-=-1.19.(8分)先化简2249xx--÷(1-13x-),再从不等式2x-3<7的正整数解中选一个使原式有意义的数代入求值.20.(8分)(2019·黄冈)为了对学生进行革命传统教育,红旗中学开展了“清明节祭扫”活动.全校学生从学校同时出发,步行4000米到达烈士纪念馆.学校要求九(1)班提前到达目的地,做好活动的准备工作.行走过程中,九(1)班步行的平均速度是其他班的1.25倍,结果比其他班提前10分钟到达.分别求九(1)班、其他班步行的平均速度.21.(12分)一项工程,甲队单独做需40天完成,若乙队先做30天后,甲、乙两队一起合做20天恰好完成任务,请问:(1)乙队单独做需要多少天才能完成任务?(2)现将该工程分成两部分,甲队做其中一部分工程用了x天,乙队做另一部分工程用了y天,若x,y都是正整数,且甲队做的时间不到15天,乙队做的时间不到70天,那么两队实际各做了多少天?参考答案1.D2.A3.D4.B5.D6.D7.D8.D9.A 10.C 11.-112.45.1240200=-xx 13.-338xy 14.201915.-23 16.a ≤4且a ≠3 17.(1)-b a b+. (2)由⎩⎪⎨⎪⎧x -1>1,5-2x ≥-2得2<x ≤72. ∵x 为整数,∴x =3,∴x 2x 2-1÷⎝⎛⎭⎫1x -1+1=x 2()x +1()x -1÷1+x -1x -1=x 2()x +1()x -1×x -1x =x x +1=34. 18.(1)x =4.(2)x =31.19.答案不唯一,略20.解:设其他班步行的平均速度为x 米/分,则九(1)班步行的平均速度为1.25x 米/分.依题意,得4000x -40001.25x=10,解得x =80, 经检验,x =80是原方程的解,且符合题意,∴1.25x =100.答:九(1)班步行的平均速度为100米/分,其他班步行的平均速度为80米/分.21. (1)乙队单独做需要100天才能完成任务.(2)甲、乙两队实际分别做了14天和65天.。

新人教版八年级数学上册第十五章《分式》单元测试卷及答案

新人教版八年级数学上册第十五章《分式》单元测试卷及答案

新人教版八年级数学上册第十五章《分式》单元测试试卷及答案一、选择题1、若代数式有意义,则实数x的取值范围是()A.x=0 B.x=3 C.x≠0 D.x≠32、若分式的值为0,则x的值为 ( )A.2 B.2 C.-2 D.03、分式、与的最简公分母是 ( )A. B. C. D.4、若中的和的值都缩小2倍,则分式的值()A.缩小2倍 B.缩小4倍 C.扩大2倍 D.扩大4倍5、已知x2﹣3x﹣4=0,则代数式的值是()A.3 B.2 C. D.6、(2017临沂)甲、乙二人做某种机械零件,已知甲每小时比乙多做6个,甲做90个所用时间与乙做60个所用时间相等,求甲、乙每小时各做零件多少个.如果设乙每小时做x个,那么所列方程是()A. B. C. D.7、方程的根为A.或3 B. C.3 D.1或8、(2016黑龙江省齐齐哈尔市)若关于x的分式方程的解为正数,则满足条件的正整数m的值为()A.1,2,3 B.1,2 C.1,3 D.2,39、3-去分母,得().A.3-2(5x+7)=-(x+17) B.12-2(5x+7)=-x+17 C.12-2(5x+7)=-(x+17) D.12-10x+14=-(x+17)10、某店在开学初用880元购进若干个学生专用科学计算器,按每个50元出售,很快就销售一空,据了解学生还急需3倍这种计算器,于是又用2580元购进所需计算器,由于量大每个进价比上次优惠1元,该店仍按每个50元销售,最后剩下4个按九折卖出.这笔生意该店共盈利()元.A.508 B.520 C.528 D.560二、填空题11、计算_______________.12、函数的自变量x的取值范围是________.13、计算的结果为__________.14、计算:=________.15、已知:,则=_________.16、某商场销售一种商品,第一个月将此商品的进价提高20%作为销售价,共获利1200元,第二个月商场搞促销活动,将此商品的进价提高15%作为销售价,第二个月的销售量比第一个月增加了80件,并且商场第二个月比第一个月多获利300元.设此商品的进价是x元,则可列方程________.17、(2017黄冈)化简:=______.18、当x=_____时,分式的值为0.19、已知9x-6x+1=0,则代数式3x+的值为________20、若代数式的值为零,则代数式(a+2)(a2-1)-24的值是_________.三、计算题21、(1)计算:(2017-π)0-+|-2|;(2)化简:.22、解方程:.23、先化简,再求值:,其中.24、先化简,再求值:其中x=.四、解答题(题型注释)25、为了防止水土流失,某村开展绿化荒山活动,计划经过若干年使本村绿化总面积新增360万平方米.自2014年初开始实施后,实际每年绿化面积是原计划的1.6倍,这样可提前4年完成任务.问实际每年绿化面积多少万平方米?26、小军家距学校5千米,原来他骑自行车上学,学校为保障学生安全,新购进校车接送学生.若校车的速度是他骑车速度的2倍,则现在小军乘校车上学可以从家晚10分钟出发,结果与原来到校时间相同,试求小军骑车的速度.27、今年某中学到鹅鼻嘴公园植树,已知该中学离公园约15km,部分学生骑自行车出发40分钟后,其余学生乘汽车出发,汽车速度是自行车速度的3倍,全体学生同时到达,设自行车的速度为v km/h.(1) 求v的值;(2) 植树活动完成后,由于学生比较劳累,骑自行车的学生的速度变为原来的,汽车速度不变,为了使两批学生同时到达学校,那么骑自行的学生应该提前多少时间出发.参考答案1、D2、B3、B4、C5、D6、B7、C8、C9、C10、B11、12、x>213、x+114、2a+1215、1516、17、118、219、220、-2421、(1)-1 (2)22、x=0.23、2-24、25、实际每年绿化面积为54万平方米.26、1527、(1) ;(2)骑自行车的学生应提前出发.【解析】1、分析:根据分式有意义的条件进行求解即可.详解:由题意得,x﹣3≠0,解得,x≠3,故选:D.点睛:此题考查了分式有意义的条件.注意:分式有意义的条件事分母不等于零,分式无意义的条件是分母等于零.2、分析:要使一个分式的值为零,则必须满足分式的分子为零,分母不为零,根据性质即可求出答案.详解:根据题意可得:,解得:x=2,故选B.点睛:本题主要考查的是分式的性质,属于基础题型.要使分式有意义,则必须满足分式的分母不为零;要使一个分式的值为零,则必须满足分式的分子为零,分母不为零.3、分析:最简公分母通常取各分母系数的最小公倍数与字母因式的最高次幂的积,根据定义即可得出答案.详解:根据题意可得最简公分母为:12abc,故选B.点睛:本题主要考查的就是最简公分母的求法,属于基础题型.理解最简公分母的定义是解决这个问题的关键.4、分析:依题意分别用和去代换原分式中的x和y,利用分式的基本性质化简即可.详解:分别用和去代换原分式中的x和y得,,∴分式的值变为原来的2倍.故选C.点睛:本题主要考查分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.解题的关键是抓住分子、分母变化的倍数,解此类题首先把字母变化后的值代入式子中,然后约分,再与原式比较,最终得出结论.5、x2-3x-4=0,(x-4)(x+1)=0,解得x1=4,x2=-1,∵x2-x-4≠0,∴x≠4,∴当x=-1时,原式=.故选D.点睛:本题在解出x代入分式的时候一定要考虑分式有意义的条件即分母不为0.6、解:设乙每小时做x个,则甲每小时做(x+6)个,根据甲做90个所用时间与乙做60个所用时间相等,得:,故选B.7、分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.详解:去分母得:3=x2+x﹣3x,解得:x=﹣1或x=3,经检验x=﹣1是增根,分式方程的根为x=3.故选C.点睛:本题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.8、试题解析:等式的两边都乘以(x﹣2),得:x=2(x﹣2)+m,解得x=4﹣m,x=4﹣m≠2,由关于x的分式方程的解为正数,得:m=1,m=3,故选C.点睛:本题考查了分式方程的解,利用等式的性质得出整式方程是解题关键,注意要检验分式方程的根.9、试题解析:方程两边同乘以4得,12-2(5x+7)=-(x+17).A.第一项3没有乘以公分母4;B.等号右边去括号未变号;C.正确;D. 等号左边去括号未变号.故选C.点睛: 本题主要考查一元一次方程的解法,去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.10、试题分析:设第一次购进计算器x个,则第二次购进计算器3x个,根据每个进价比上次优惠1元,求出购进计算器的个数,再根据总售价﹣成本=利润,即可得出答案.解:设第一次购进计算器x个,则第二次购进计算器3x个,根据题意得:=+1,解得:x=20,经检验x=20是原方程的解,则这笔生意该店共盈利:[50×(20+60﹣4)+4×50×90%]﹣(880+2580)=520(元);故选B.考点:分式方程的应用.11、分析:根据绝对值的定义可知,负指数幂的运算法则可知,再由实数的运算法则计算即可.详解:原式=.点睛:本题考察了去绝对值符号、负指数幂.12、根据题意得,x﹣2>0,解得x>2.故答案是:x>2.13、=.故答案是:x+1.14、原式====2a+12.故答案为2a+12.点睛:分式混合运算的步骤:先乘方,再乘除,最后加减,有括号的要先算括号内的.注意分式化简的最后结果是最简分式.15、【分析】利用等式性质两边除以a,得;同时平方得;再利用乘法公式,原式化为:,再代入求值.【详解】等式两边除以a,得:,所以,,所以,,所以,,所以,原式===15【点睛】此题考核知识点:等式的性质;整式乘法公式.解题的关键在于:灵活运用等式基本性质对等式进行变形,灵活运用整式乘法公式.16、分析:求的是单价,总价明显,一定是根据数量来列等量关系.本题的关键描述语是:第二个月的销售量比第一个增加了80件.等量关系为:第二个月的销售量-第一个月的销售量,算出后可得到此商品的进价.详解:解:设此商品进价是x元.,则有,故答案为:.点睛:本题考查了分式方程的应用,应用题中一般有三个量,求一个量,明显的有一个量,一定是根据另一量来列等量关系的.本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.17、原式===1,故答案为:1.18、=0,则19、9x2-6x+1=0利用完全平方公式对方程左侧的整式进行因式分解,得 (3x-1)2=0,∴3x-1=0,∴.当时,.故本题应填写:2.20、因为=0,所以-1=0且a2+a-2≠0,解得a=±1,且a≠1,a≠-2,所以a=-1.将a=-1代入(a+2)(a2-1)-24得(-1+2)×(1-1)-24=-24.故答案为:-24.点睛:分式为零的条件是:分子为零且分母不为零.21、分析:(1)根据零指数幂、负整数指数幂、绝对值分别求出每个部分的值,再代入求出即可;(2)先算减法和分解因式,把除法变成乘法,最后根据分式的乘法法则进行计算即可.本题解析:解:(1)原式=1-4+2=-1.(2)原式=÷==·=.22、方程两边同时乘以:得:,解得:,检验:当时,,∴是原方程的解.点睛:解分式方程的“基本思想是去分母化分式方程为整式方程”,所以我们第一步要去分母,这时需注意方程两边各项要同时乘以最简公分母,不要漏乘;第二需注意解分式方程可能会产生增根,所以最后必须检验.23、试题分析:可先将小括号里的通分化简,然后将除法转化为乘法进行进一步化简。

人教版八年级上册数学 第十五章分式同步复习题(含详细答案)

人教版八年级上册数学 第十五章分式同步复习题(含详细答案)

人教版八年级上册数学第十五章分式复习题一.选择题1.关于x的分式方程﹣=0的解为()A.﹣3 B.﹣2 C.2 D.32.某学校食堂需采购部分餐桌,现有A、B两个商家,A商家每张餐桌的售价比B商家的优惠13元.若该校花费2万元采购款在B商家购买餐桌的张数等于花费1.8万元采购款在A商家购买餐桌的张数,则A商家每张餐桌的售价为()A.117元B.118元C.119元D.120元3.使分式的值为0,这时x应为()A.x=±1 B.x=1C.x=1 且x≠﹣1 D.x的值不确定4.一个圆柱形容器的容积为Vm3,开始用一根小水管向容器内注水,水面高度达到容器高度一半后,改用一根口径为小水管2倍的大水管注水,向容器中注满水的全过程共用时间t 分钟.设小水管的注水速度为x立方米/分钟,则下列方程正确的是()A.+=t B.+=tC.•+•=t D.+=t5.春节期间,文具店的一种笔记本8折优惠出售.某同学发现,同样花12元钱购买这种笔记本,春节期间正好可比春节前多买一本.这种笔记本春节期间每本的售价是()A.2元B.3元C.2.4元D.1.6元6.已知关于x的方程的解是正整数,且k为整数,则k的值是()A.0 B.﹣2 C.0或6 D.﹣2或67.已知,则的值为()A.5 B.6 C.7 D.88.已知关于x的方程=3的解是负数,那么m的取值范围是()A.m>﹣6且m≠﹣2 B.m<﹣6 C.m>﹣6且m≠﹣4 D.m<﹣6且m≠﹣29.要使分式有意义,x的取值是()A.x≠1 B.x≠﹣1 C.x≠±1 D.x≠±1且x≠﹣2 10.随着电子技术的不断进步,电子元件的尺寸大幅度缩小,在芯片上某种电子元件大约只占有面积0.00000065mm2,0.00000065用科学记数法表示为()A.6.5×107B.6.5×10﹣6C.6.5×10﹣8D.6.5×10﹣711.下列各式中,正确的是()A.B.C.=b+1 D.=a+b12.如果分式方程无解,则a的值为()A.﹣4 B.C.2 D.﹣213.已知关于x的分式方程的解为正数,则k的取值范围为()A.﹣2<k<0 B.k>﹣2且k≠﹣1 C.k>﹣2 D.k<2且k≠1 14.某车间接了生产12000只口罩的订单,加工4800个口罩后,采用了的新的工艺,效率是原来的1.5倍,任务完成后发现比原计划少用了2个小时.设采用新工艺之前每小时可生产口罩x个,依据题意可得方程()A.=2B.=2C.=2D.=2二.填空题15.分式的值比分式的值大3,则x的值为.16.若关于x的分式方程,有负数解,则实数a的取值范围是.17.已知分式,当x=1时,分式无意义,则a=.18.清代诗人袁枚的一首诗《苔》中写到:“白日不到处,青春恰自来.苔花如米小,也学牡丹开”,若苔花的花粉直径约为0.0000084米,用科学记数法表示为米.19.对和进行通分,需确定的最简公分母是.20.已知关于x的分式方程+=.若方程有增根,则m的值为.三.解答题21.计算(1)﹣(2)+﹣(3)(+)÷22.化简求值:,其中x=.23.中国是最早发现并利用茶的国家,形成了具有独特魅力的茶文化.2020年5月21日以“茶和世界共品共享”为主题的第一届国际茶日在中国召开.某茶店用4000元购进了A 种茶叶若干盒,用8400元购进B种茶叶若干盒,所购B种茶叶比A种茶叶多10盒,且B 种茶叶每盒进价是A种茶叶每盒进价的1.4倍.(1)A,B两种茶叶每盒进价分别为多少元?(2)第一次所购茶叶全部售完后,第二次购进A,B两种茶叶共100盒(进价不变),A 种茶叶的售价是每盒300元,B种茶叶的售价是每盒400元.两种茶叶各售出一半后,为庆祝国际茶日,两种茶叶均打七折销售,全部售出后,第二次所购茶叶的利润为5800元(不考虑其他因素),求本次购进A,B两种茶叶各多少盒?24.甲、乙两个服装厂加工同种型号的防护服,甲厂每天加工的数量是乙厂每天加工数量的1.5倍,两厂各加工600套防护服,甲厂比乙厂要少用4天.(1)求甲、乙两厂每天各加工多少套防护服?(2)已知甲、乙两厂加工这种防护服每天的费用分别是150元和120元,疫情期间,某医院紧急需要3000套这种防护服,甲厂单独加工一段时间后另有安排,剩下任务只能由乙单独完成.如果总加工费不超过6360元,那么甲厂至少要加工多少天?25.新型冠状病毒肺炎疫情发生后,全社会积极参与疫情防控工作,某市为了尽快完成100万只口罩的生产任务,安排甲、乙两个大型工厂完成.已知甲厂每天能生产口罩的数量是乙厂每天能生产口罩的数量的1.5倍,并且在独立完成60万只口罩的生产任务时,甲厂比乙厂少用5天.问至少应安排两个工厂工作多少天才能完成任务?参考答案一.选择题1.解:去分母得:2x﹣6﹣5x=0,解得:x=﹣2,经检验x=﹣2是分式方程的解,故选:B.2.解:设A商家每张餐桌的售价为x元,则B商家每张餐桌的售价为(x+13),根据题意列方程得:=,解得:x=117,经检验:x=117是原方程的解.故选:A.3.解:∵分式的值为0,∴x2﹣1=0,且x+1≠0,解得:x=1.故选:B.4.解:设小水管的注水速度为x立方米/分钟,可得:,故选:C.5.解:设这种笔记本节日前每本的售价是x元,根据题意得:,解得:x=3,经检验,x=3是原方程的解,∴0.8x=0.8×3=2.4(元),答:这种笔记本节日期间每本的售价是2.4元,故选:C.6.解:方程去分母,得9﹣3x=kx,即kx+3x=9,∴x=因为原分式方程的解为正整数,且x≠3.所以x==1、2、4、5、6、7、8、9,又因为k为整数,所以k=﹣2或6.故选:D.7.解:∵,∴(a+)2=9,即a2+2+=9,则=7,故选:C.8.解:去分母,得2x﹣m=3x+6,∴x=﹣m﹣6.由于方程的解为负数,∴﹣m﹣6<0且﹣m﹣6≠﹣2,解得m>﹣6且m≠﹣4.故选:C.9.解:要使分式有意义,则x+1≠0,解得:x≠﹣1,故选:B.10.解:0.00000065=6.5×10﹣7.故选:D.11.解:与在a=0或a=b时才成立,故选项A不正确;==,故选项B正确;=b+,故选项C不正确;不能化简,故选项D不正确;故选:B.12.解:去分母得:x=2(x﹣4)﹣a解得:x=a+8根据题意得:a+8=4解得:a=﹣4.故选:A.13.解:去分母得:x﹣2(x﹣1)=k,去括号得:x﹣2x+2=k,解得:x=2﹣k,由分式方程的解为正数,得到2﹣k>0,且2﹣k≠1,解得:k<2且k≠1,故选:D.14.解:设采用新工艺之前每小时可生产口罩x个,则采用新工艺之后每小时可生产口罩1.5x个,依题意,得:﹣=2.故选:D.二.填空题(共6小题)15.解:根据题意得:﹣=3,去分母得:x﹣3﹣1=3x﹣6,移项合并得:﹣2x=﹣2,解得:x=1,经检验x=1是分式方程的解,故答案为:1.16.解:,分式方程去分母得:1﹣x﹣3=a,移项合并得:﹣x=a+2,解得:x=﹣a﹣2,∵分式方程的解为负数,∴﹣a﹣2<0且﹣a﹣2+3≠0,解得:a>﹣2且a≠1.故答案为:a>﹣2且a≠1.17.解:把x=1代入得:,此时分式无意义,∴a﹣3=0,解得a=3.故答案为:3.18.解:0.0000084=8.4×10﹣6,故答案为:8.4×10﹣6.19.解:分式和的分母分别是2(x+y)、(x+y)(x﹣y).则最简公分母是2(x+y)(x﹣y).故答案是:2(x+y)(x﹣y).20.解:若原分式方程有增根,则(x+2)(x﹣2)=0,所以x=﹣2 或x=2,当x=﹣2 时,﹣2m=﹣8.得m=4,当x=2 时,2m=﹣8.得m=﹣4,所以若原分式方程有增根,则m=±4;故答案为:±4.三.解答题(共5小题)21.解:(1)﹣=+=;(2)+﹣=+﹣===﹣;(3)(+)÷=•=x﹣1.22.解:原式=•==﹣x(x+1)=﹣x2﹣x当x=时,原式=﹣2﹣.23.解:(1)设A种茶叶每盒进价为x元,则B种茶叶每盒进价为1.4x元,依题意,得:﹣=10,解得:x=200,经检验,x=200是原方程的解,且符合题意,∴1.4x=280.答:A种茶叶每盒进价为200元,B种茶叶每盒进价为280元.(2)设第二次购进A种茶叶m盒,则购进B种茶叶(100﹣m)盒,依题意,得:(300﹣200)×+(300×0.7﹣200)×+(400﹣280)×+(400×0.7﹣280)×=5800,解得:m=40,∴100﹣m=60.答:第二次购进A种茶叶40盒,B种茶叶60盒.24.解:(1)设乙厂每天加工x套防护服,则甲厂每天加工1.5x套防护服,根据题意,得﹣=4.解得x=50.经检验:x=50是所列方程的解.则1.5x=75.答:甲厂每天加工75套防护服,乙厂每天加工50套防护服;(2)设甲厂要加工m天,根据题意,得150m+120×≤6360.解得m≥28.答:甲厂至少要加工28天.25.解:设乙厂每天能生产口罩x万只,则甲厂每天能生产口罩1.5x万只,依题意,得:﹣=5,解得:x=4,经检验,x=4是原方程的解,且符合题意,∴1.5x=6.再设应安排两个工厂工作y天才能完成任务,依题意,得:(6+4)y≥100,解得:y≥10.答:至少应安排两个工厂工作10天才能完成任务.。

2024年-人教版数学八年级上册第15章——15.3《分式方程》同步练习及(含答案)3

2024年-人教版数学八年级上册第15章——15.3《分式方程》同步练习及(含答案)3
15.3 第3课时 分式方程的应用
一、选择题
1.小明和小张两人 练习 电脑打字,小明每分钟比小张少打6个字,小明打120个字所用的时间和小张打180个字所用的时间相 等。设小明打字速度为x个/分钟,则列方程正确的 是( )
A: B: C: D:
2.甲、乙两班学生植树造林,已知甲班每天比乙班多植5棵树,甲班植80棵树所用的天数与乙班植70棵树所 用的天数相等,若设甲班每天植 树x棵,则根据题意列出的方程是().
20.列方程或方程组解应用题:
据林业专家分析,树叶在光合作用后产生的分泌物能够吸附空气中的一些悬浮颗粒物,具有滞尘净化空气的作用.已知一片银杏树叶一年的平均滞尘量比一片国槐树叶一年的平均滞尘量的2倍少4毫克,若一年滞尘1000毫克所需的银杏树叶的片数与一年滞尘550毫克所需的国槐树叶的片数相同,求一片国槐树叶一年的平均滞尘量.
A. = B. = C. = D. =
5.甲队修路120 m与乙队修路100 m所用天数相同,已知甲队比乙队每天多修10 m,设甲队每天修路xm.依题意,下面所列方程正确的是
A. = B. =
C. = D. =
6.一艘轮船在静水中的最大航速为30千米/时,它沿江以最大航速顺流航行100千米所用时间,与以最大航速逆流航行60 千米所用时间相等,江水的流速为多少?设江水的流速为x千米/时,则可列方程()
18 .某工地调来72人参加挖土和运土,已知3人挖出的土1人恰好全部运走,怎么样调配劳动力才能使挖出的土能及时运走且不窝工,解决此问题可设派x人挖土,其他人运土,列方程:.
三、解答题
19.某人驾车从A地到B地,出发2小时后车子出了点毛病,耽搁了半小时修车,为了弥补耽搁的时间他将车速增加到后来的1.6倍,结果按时到达,已知A、B两地相距100千米,求某人原来驾车的速度.

人教版八年级上册数学第十五章《分式》单元测试卷(Word版,含答案)

人教版八年级上册数学第十五章《分式》单元测试卷(Word版,含答案)

人教版八年级上册数学第十五章《分式》单元测试卷(60分钟 100分)一、选择题(每小题3分,共30分)1.(南充中考)若1x =-4,则x 的值是( )A .4B .14C .-14D .-42.在第127届“广交会”上,有近26 000家厂家进行“云端销售”.其中数据26 000用科学记数法表示为( )A .26×103B .2.6×103C .2.6×104D .0.26×1053.下列式子:-5x ,1a +b,12 a 2-12 b 2,310m ,2π ,其中分式有( ) A .1个 B .2个 C .3个 D .4个4.计算1m +2 -14-m 2 ÷1m -2的结果为( ) A .0 B .1m +2 C .2m +2 D .m +2m -25.下列等式是四位同学解方程x x -1 -1=2x 1-x过程中去分母的一步,其中正确的是( )A .x -1=2xB .x -1=-2C .x -x -1=-2xD .x -x +1=-2x 6.若a =-0.32,b =-3-2,c =⎝⎛⎭⎪⎫-13 -2 ,d =⎝ ⎛⎭⎪⎫-13 0,则大小关系正确的是( ) A .a <b <c <d B .b <a <d <c C .a <d <c <d D .c <a <d <b7.若a =1,则a 2a +3 -9a +3的值为( ) A .2 B .-2 C .12 D .-128.(呼伦贝尔中考)甲、乙两人做某种机械零件,已知甲做240个零件与乙做280个零件所用的时间相等,两人每天共做130个零件.设甲每天做x 个零件,下列方程正确的是( )A .240x =280130-xB .240130-x=280x C .240x +280x =130 D .240x -130=280x9.对于两个不相等的实数a ,b ,我们规定符号Min{a ,b }表示a ,b 中的较小的值,如Min{2,4}=2,按照这个规定,方程Min ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1x -2,3x -2 =x -1x -2 -2的解为( )A .0B .0或2C .无解D .不确定10.关于x 的分式方程2x +a x +1=1的解为负数,则a 的取值范围是( ) A .a >1 B .a <1C .a <1且a ≠-2D .a >1且a ≠2二、填空题(每小题3分,共24分)11.(北京中考)若代数式1x -7有意义,则实数x 的取值范围是__ __. 12.(广州中考)方程x x +1 =32x +2的解是 . 13.(呼和浩特中考)分式2x x -2 与8x 2-2x 的最简公分母是__ __,方程2x x -2 -8x 2-2x=1的解是__ __. 14.有一个分式,三位同学分别说出了它的一个特点,甲:分式的值不可能为0;乙:分式有意义时x 的取值范围是x ≠±1;丙:当x =-2时,分式的值为1.请你写出满足上述全部特点的一个分式: .15.(嘉兴中考)数学家斐波那契编写的《算经》中有如下问题:一组人平分10元钱,每人分得若干;若再加上6人,平分40元钱,则第二次每人所得与第一次相同,求第一次分钱的人数.设第一次分钱的人数为x 人,则可列方程 .16.已知3x -4(x -1)(x -2) =A x -1 +B x -2,则实数A =__ __. 17.若(x -y -2)2+|xy +3|=0,则⎝ ⎛⎭⎪⎪⎫3x x -y -2x x -y ÷1y 的值是 . 18.数学家们在研究15,12,10这三个数的倒数时发现112 -115 =110 -112 .因此就将具有这样性质的三个数称为调和数,如6,3,2也是一组调和数.现有一组调和数x ,5,3(x >5),则x =__ __.三、解答题(共46分)19.(6分)计算或化简:(1)(-1)2 022-|-7|+9 ×(5 -π)0+⎝ ⎛⎭⎪⎫15 -1 . (2)(徐州中考)⎝ ⎛⎭⎪⎫1-1a ÷a 2-2a +12a -2. 20.(6分)解方程:(1)(遵义中考)1x -2 =32x -3. (2)(大庆中考)2x x -1 -1=4x -1. 21.(8分)(鄂州中考)先化简x 2-4x +4x 2-1 ÷x 2-2x x +1 +1x -1,再从-2,-1,0,1,2中选一个合适的数作为x 的值代入求值.22.(8分)某茶店用4 000元购进了A 种茶叶若干盒,用8 400元购进了B 种茶叶若干盒,所购B 种茶叶比A 种茶叶多10盒,且B 种茶叶每盒进价是A 种茶叶每盒进价的1.4倍.(1)A ,B 两种茶叶每盒进价分别为多少元?(2)若第一次所购茶叶全部售完后,第二次购进A ,B 两种茶叶共100盒(进价不变),A 种茶叶的售价是每盒300元,B 种茶叶的售价是每盒400元,两种茶叶各售出一半后,为庆祝元旦,两种茶叶均打七折销售,全部售出后,第二次所购茶叶的利润为5 800元(不考虑其他因素),求本次购进A ,B 两种茶叶各多少盒?。

人教版八年级数学上册第十五章《分式》单元同步检测试题(含答案)

人教版八年级数学上册第十五章《分式》单元同步检测试题(含答案)

第十五章《分式》单元检测题题号 一 二三总分21 22 23 24 25 26 27 28 分数一、选择题(共10小题,每小题3分,共30分) 1.下列各式,x x 3+,πy +5,()1432+x ,b a b a -+,)(1y x m-中,是分式的共有( )A.1个B.2个C.3个D.4个2.如果分式242--x x 的值等于0,那么( )A.2±=xB.2=xC.2-=xD.2≠x3.下列等式中不一定成立的是( )A 、 2x xy x y =B 、x y x y ππ=C 、xzyzx y = D 、()()2x x 2x y x y 22++= 4.计算a 1a 11a+--的结果为( ) A .﹣1B .1C .a 1a 1+- D .a 11a+-5.化简211a a a a --÷的结果是( ). A .1aB .aC .a -1D .11a - 6.化简21131x x x +⎛⎫- ⎪--⎝⎭·(x -3)的结果是( ). A .2B .21x - C .23x - D .41x x --7.分式除法计算:m 1m -÷2m 1m-的结果是( )A .mB .1mC .m ﹣1D .1m 1-A.A=4,B=-9B.A=7,B=1C.A=1,B=7D.A=-35,B=13 9.已知关于x 的方程22-+x mx =3的解是正数,则m 的取值范围为( ) A.m <-6 B.m >-6 C.m >-6且m≠-4 D.m≠-410.已知2x x -x+1=12,则2x +21x 的值为( ) A 、12 B 、14C 、7D 、4二、填空题(共6小题,每小题3分,共18分)11.当x ____________时,分式xx2121-+有意义.12.利用分式的基本性质填空:(1)())0(,10 53≠=a axy xy a (2)()1422=-+a a13.要使分式2x 93x 9-+的值为0,则x 可取___________14.(2014·山西)化简1x +3+6x 2-9的结果是________.15.若(x -y -2)2+|xy +3|=0,则(3x x -y -2x x -y )÷1y的值是________.16.数学家们在研究15 ,12,10这三个数的倒数时发现:112-115=110-112.因此就将具有这样性质的三个数称为调和数,如6,3,2也是一组调和数.现有一组调和数:x ,5,3(x >5),则x =________.三、解答题(共8题,共72分)17.(9分)计算或化简:(1)(-2016)0-2-2-⎝ ⎛⎭⎪⎫-12-3-(-3)2;(2)⎝ ⎛⎭⎪⎫1x 2-4+4x +2÷1x -2;(3)⎝ ⎛⎭⎪⎫a +1a +2÷⎝ ⎛⎭⎪⎫a -2+3a +2.18.(8分)解方程:(1)2x +1-1x =0;(2)x -2x +2-16x 2-4=1.19.(10分)先化简,再求值:(1)⎝ ⎛⎭⎪⎫1+x 2-4x 2-4x +4÷x 2x -2,其中x =1;(2)⎝ ⎛⎭⎪⎫1x -3-x +1x 2-1·(x -3),从不大于4的正整数中,选择一个合适的值代入x 求值.20.(8分)以下是小明同学解方程1-x x -3=13-x -2的过程.解:方程两边同时乘(x -3),得1-x =-1-2. …………………………第一步 解得x =4. ……………………………………第二步 检验:当x =4时,x -3=4-3=1≠0. ………第三步 所以,原分式方程的解为x =4. …………………第四步 (1)小明的解法从第______步开始出现错误; (2)写出解方程1-x x -3=13-x-2的正确过程.21.(10分)某新建的商场有3000m 2的地面花岗岩需要铺设,现有甲、乙两个工程队希望承包铺设地面的工程.甲工程队平均每天比乙工程队多铺50m 2,甲工程队单独完成该工程的工期是乙工程队单独完成该工程所需工期的34.求甲、乙两个工程队完成该工程的时间.22.(10分)早晨,小明步行到离家900米的学校去上学,到学校时发现眼镜忘在家中,于是他立即按原路步行回家,拿到眼镜后立即按原路骑自行车返回学校.已知小明步行从学校到家所用的时间比他骑自行车从家到学校所用的时间多10分钟,小明骑自行车的速度是步行速度的3倍.(1)求小明步行的速度(单位:米/分);(2)下午放学后,小明骑自行车回到家,然后步行去图书馆,如果小明骑自行车和步行的速度不变,小明步行从家到图书馆的时间不超过骑自行车从学校到家的时间的2倍,那么小明家与图书馆之间的路程最多是多少米?23.(11分)观察下列方程的特征及其解的特点.①x+2x=-3的解为x1=-1,x2=-2;②x+6x=-5的解为x1=-2,x2=-3;③x+12x=-7的解为x1=-3,x2=-4.解答下列问题:(1)请你写出一个符合上述特征的方程为____________,其解为____________;(2)根据这类方程的特征,写出第n个方程为________________,其解为____________;(3)请利用(2)的结论,求关于x的方程x+n2+nx+3=-2(n+2)(n为正整数)的解.参考答案一、选择题1. C2. C3. C4. B5. B6. B7.A8. B9. C 10. C 二、填空题11、21≠x 12、(1)26a 13. 3 14.1x -3 15.-32 16.2三、解答题(共8题,共72分)17.解:(1)原式=1-14+8-9=-14.(3分)(2)原式=1+4(x -2)(x +2)(x -2)·(x -2)=4x -7x +2.(6分)(3)原式=a 2+2a +1a +2÷a 2-4+3a +2=(a +1)2a +2·a +2(a +1)(a -1)=a +1a -1.(9分)18.解:(1)方程两边同乘x (x +1),得2x -(x +1)=0,解得x =1.(3分)检验:当x =1时,x (x +1)≠0.所以原分式方程的解为x =1.(4分)(2)方程两边同乘(x +2)(x -2),得(x -2)2-16=x 2-4,解得x =-2.(7分)检验:当x =-2时,(x +2)(x -2)=0,因此x =-2不是原分式方程的解.所以原分式方程无解.(8分)19.解:(1)原式=⎝ ⎛⎭⎪⎫1+x +2x -2·x -2x 2=2x x -2·x -2x 2=2x .(3分)当x =1时,原式=2.(5分)(2)原式=⎝ ⎛⎭⎪⎫1x -3-1x -1·(x -3)=x -1-x +3(x -3)(x -1)·(x -3)=2x -1.(8分)∵x 从不大于4的正整数中选取,∴x =1,2,3,4.∵要使原式有意义,则x ≠±1,3,∴可取x =4,则原式=23.(10分)20.解:(1)一(2分)(2)方程两边同时乘(x -3),得1-x =-1-2x +6,解得x =4.(7分)检验:当x =4时,x -3≠0.所以原分式方程的解为x =4.(8分)21.解:设乙工程队平均每天铺x m 2,则甲工程队平均每天铺(x +50)m 2.由题意得3000x +50=3000x ·34,解得x =150.(5分)经检验,x =150是原分式方程的解.(6分)3000x =20(天),20×34=15(天).(9分)答:甲工程队完成该工程需15天,乙工程队完成该工程需20天.(10分)22.解:(1)设小明步行的速度是x 米/分.由题意得900x =9003x+10,解得x =60.(4分)经检验,x =60是原分式方程的解.(5分)答:小明步行的速度是60米/分.(6分) (2)设小明家与图书馆之间的路程是y 米.由(1)知小明骑自行车的速度为3×60=180(米/分),根据题意可得y 60≤900180×2,解得y ≤600.(9分)答:小明家与图书馆之间的路程最多是600米.(10分)23.解:(1)答案不唯一,如x +20x =-9 x 1=-4,x 2=-5(3分)(2)x +n 2+nx =-(2n +1) x 1=-n ,x 2=-n -1(6分) (3)∵x +n 2+n x +3=-2(n +2),∴x +3+n 2+n x +3=-2(n +2)+3,∴(x +3)+n 2+nx +3=-(2n +1),∴x +3=-n 或x +3=-n -1,即x 1=-n -3,x 2=-n -4.(10分)检验:当x =-n -3时,x +3=-n ≠0,当x =-n -4时,x +3=-n -1≠0,∴原分式方程的解是x 1=-n -3,x 2=-n -4.(11分)。

人教版八年级数学上册第十五章分式-测试题带答案

人教版八年级数学上册第十五章分式-测试题带答案

人教版数学八年级上册第十五章《分式》考试试卷(时间:120分钟 满分:120分)一、选择题(每小题3分,共30分) 1.分式x -1x +1的值为0,则x =( B )A .-1B .1C .±1D .02.将分式方程1x =2x -2去分母后得到的整式方程,正确的是( A )A .x -2=2xB .x 2-2x =2x C .x -2=x D .x =2x -4 3.化简xy -2yx 2-4x +4的结果是( D )A.x x +2 B.x x -2 C.y x +2 D.yx -24.已知a =2-2,b =(3-1)0,c =(-1)3,则a ,b ,c 的大小关系是( B ) A .a >b >c B .b >a >c C .c >a >b D .b >c >a5.一种微粒的半径是0.000041米,0.000041这个数用科学记数法表示为( B ) A .41×10-6B .4.1×10-5C .0.41×10-4D .4.1×10-46.下列运算正确的是( D ) A.aa -b -bb -a=1 B.m a -n b =m -na -bC.b a -b +1a =1a D.2a -b -a +b a 2-b 2=1a -b7.化简(1-2x +1)÷1x 2-1的结果是( B )A .(x +1)2B .(x -1)2C.1(x +1)2 D.1(x -1)28.分式方程1x -1-2x +1=4x 2-1的解是( D )A .x =0B .x =-1C .x =±1D .无解9.两个小组同时从甲地出发,匀速步行到乙地,甲乙两地相距7500米,第一组步行的速度是第二组的1.2倍,并且比第二组早15分钟到达乙地.设第二组的步行速度为x 千米/小时,根据题意可列方程是( D )A.7500x -75001.2x =15B.7500x -75001.2x =14 C.7.5x -7.51.2x =15 D.7.5x -7.51.2x =1410.已知关于x 的分式方程m x -1+31-x=1的解是非负数,则m 的取值范围是( C ) A .m >2 B .m ≥2C .m ≥2且m ≠3D .m >2且m ≠3 二、填空题(每小题3分,共18分) 11.计算:xy2xy=__y __.12.计算:(-2xy -1)-3=__-y 38x3__.13.方程2x -1x -3=1的根是x =__-2__.14.若(x -y -2)2+|xy +3|=0,则(3x x -y -2x x -y )÷1y 的值是__-32__.15.若a 2+5ab -b 2=0,则b a -a b的值为__5__.16.已知x 2-3x -4=0,则代数式x x 2-x -4的值是__12__.三、解答题(共72分) 17.(12分)计算:(1)4a 2b ÷(b 2a )-2·a b 2; (2)(a a -2-4a 2-2a )÷a +2a ;解:ab 解:1(3)a 2-b 2a ÷(a -2a -b2a ).解:a +b a -b18.(6分)x 2+x x 2-2x +1÷(2x -1-1x ).(1)化简已知分式;(2)从-2<x≤2的范围内选取一个合适的x 的整数值代入求值. 解:(1)x 2x -1(2)∵x≠±1,且x≠0,且-2<x≤2,∴x =2,将x =2代入得原式=419.(8分)解下列分式方程. (1)2x +3=1x -1; 解:x =5,经检验x =5是分式方程的解 (2)1x -2=1-x 2-x-3. 解:解得x =2.检验:x =2时,x -2=0,所以x =2不是原方程的解,∴原方程无解20.(7分)当x 为何值时,分式3-x 2-x 的值比分式1x -2的值大3?解:解得x =1.经检验,x =1是方程3-x 2-x -1x -2=3的解.即当x =1时,分式3-x2-x的值比分式1x -2的值大321.(7分)已知:[(x 2+y 2)-(x -y)2+2y(x -y)]÷4y=1,求4x 4x 2-y 2-12x +y 的值.解:∵[(x 2+y 2)-(x -y )2+2y (x -y )]÷4y =x -12y ,∴x -12y =1,∴4x4x 2-y2-12x +y=12x -y=12(x -12y )=1222.(7分)已知关于x 的方程1x -2+k x +2=3x 2-4无解,求k 的值.解:去分母,得(1+k )x =2k +1,∵方程无解,∴x =±2,将x =2代入得不成立,将x =-2代入得k =-3423.(7分)已知x 2x 2-2=3,求(11-x -11+x )÷(xx 2-1+x)的值.解:原式化简,得-2x 2.∵x 2x 2-2=3,∴x 2-2x 2=13,∴1-2x 2=13,∴-2x 2=-2324.(8分)马小虎的家距离学校1800米,一天马小虎从家去上学,出发10分钟后,爸爸发现他的数学课本忘记拿了,立即带上课本去追他,在距离学校200米的地方追上了他,已知爸爸的速度是马小虎速度的2倍,求马小虎的速度.解:设马小虎的速度为x 米/分,则爸爸的速度是2x 米/分,依题意得1800-200x=1800-2002x+10,解得x =80.经检验,x =80是原方程的根.答:马小虎的速度是80米/分25.(10分)“汉十”高速铁路襄阳段正在建设中,甲、乙两个工程队计划参与一项工程建设,甲队单独施工30天完成该项工程的13,这时乙队加入,两队还需同时施工15天,才能完成该项工程.(1)若乙队单独施工,需要多少天才能完成该项工程?(2)若甲队参与该项工程施工的时间不超过36天,则乙队至少施工多少天才能完成该项工程?解:(1)设乙队单独施工,需要x 天才能完成该项工程,∵甲队单独施工30天完成该项工程的13,∴甲队单独施工90天完成该项工程,根据题意可得:13+15(190+1x )=1,解得:x =30,检验得:x =30是原方程的根,答:乙队单独施工,需要30天才能完成该项工程 (2)设乙队参与施工y 天才能完成该项工程,根据题意可得:190×36+y ×130≥1,解得:y ≥18,答:乙队至少施工18天才能完成该项工程附赠材料:怎样提高做题效率做题有方,考试才能游刃有余提到考试,映入我眼帘的就是一大批同学在题海里埋头苦干的情景。

人教版八年级数学上册《第15章分式》单元检测卷(有答案)

人教版八年级数学上册《第15章分式》单元检测卷(有答案)

第十五章检测卷一、选择题.(每小题3分,共30分)1.下列式子 中,分式共有( ) A.2个 B.3个 C.4个 D.5个2.下列各式与yx yx -+相等的是( )3.下列计算中,错误的是( )A.(-2)0=1B.2x -2=22x C.3.2×10-3=0.0032 D.(x 2y-2)÷(x -1y 3)=xy 4.已知b a 11-=21,则ba ab -的值是( ) A.21 B.-21C.2D.-2 5.把分式方程12+-x xx =1化为整式方程正确的是( ) A.2(x+1)-x 2=1 B.2(x+1)+x 2=1 C.2(x+1)-x 2=x(x+1) D.2x-(x+1)=x(x+1) 6.分式方程v +20100=v-2060的解是( ) A.v=20 B.v=25 C.v=-5 D.v=5A.A=4,B=-9B.A=7,B=1C.A=1,B=7D.A=-35,B=13 9.已知关于x 的方程22-+x mx =3的解是正数,则m 的取值范围为( )A.m <-6B.m >-6C.m >-6且m≠-4D.m≠-410.据林业专家分析,树叶在光合作用后产生的分泌物能够吸附空气中的一些悬浮颗粒物,具有滞尘净化空气的作用.已知一片银杏树叶一年的平均滞尘量比一片国槐树叶一年的平均滞尘量的2倍少4毫克,若一年滞尘1000毫克所需的银杏树叶的片数与一年滞尘550毫克所需的国槐树叶的片数相同,求一片国槐树叶一年的平均滞尘量.若设一片国槐树叶一年的平均滞尘量为x 毫克,下列方程中正确的是( )二、填空题.(每小题3分,共24分) 11.若代数式(x+2)0-123+x 有意义,则x 的取值范围是 . 12.用科学记数法表示0.00000345是 ,用科学记数法表示的数-2.01×10-5的原数是 .13.已知ab≠0,则(a 0+b -2)-1= . 14.如果分式)2)(1(1||---x x x 的值为零,那么x= .15.若分式方程xmx x -=--223无解,则m= . 16.当x= 时,分式12-x x 的值比分式xx 1-的值大1. 17.某中学图书馆添置图书,用240元购进一种科普书,同时用200元购进一种文学书.由于科普书的单价比文学书的单价高出一半,因此学校所购买的文学书比科普书多4本.则文学书的单价是 元.18.观察分析下列方程及其解:①x+x 2=3,②x+x 6=5,③x+x 12=7;(由①x+x21⨯=1+2得x=1或x=2,②x+x 32⨯=2+3得x=2或x=3,③x+x43⨯=3+4得x=3或x=4.)找出其中的规律,求关于x 的方程x+n2+nx-3=2n+4(n 为正整数)的解是: .三、解答题.(共66分)19.(12分)计算:20.(6分)解下列分式方程:(2)在数学课上,教师对同学们说:“你们任意说出一个x的值(x≠0,1,2),我立刻就知道式子的计算结果”.请你说出其中的道理.22.(8分)甲、乙两工程队分别承担一条2千米公路的维修工作.甲队有一半时间每天维修公路x千米,另一半时间每天维修公路y千米.乙队维修前1千米公路时,每天维修x 千米;维修后1千米公路时,每天维修y千米(x≠y).(1)求甲、乙两队完成任务需要的时间;(用含x,y的代数式表示)(2)问甲、乙两队哪队先完成任务?23.(10分)当a为何值时,关于x的方程的解为负数?24.(10分)(2015·江苏苏州)甲、乙两位同学同时为校文化艺术节制作彩旗,已知甲每小时比乙多做5面彩旗,甲做60面彩旗与乙做50面彩旗所用时间相等,问甲、乙每小时各做多少面彩旗?25.(12分)(2015·浙江宁波)宁波火车站北广场将于2015年底投入使用,计划在广场内种植A,B两种花木共6600棵,若A花木数量是B花木数量的2倍少600棵.(1)求A,B两种花木的数量分别是多少棵?(2)如果园林处安排26人同时种植这两种花木,每人每天能种植A花木60棵或B花木40棵,应分别安排多少人种植A花木和B花木,才能确保同时完成各自的任务?。

最新人教版八年级数学上册《第15章分式》单元测试含答案解析.doc

最新人教版八年级数学上册《第15章分式》单元测试含答案解析.doc

《第15章分式》一、选择题(本大题共8小题,每小题4分,共32分.在每小题所给的4个选项中,只有一项是符合题目要求的,请将正确答案的代号填在题后括号内)1.在,,,中,是分式的有()A.1个B.2个C.3个D.4个2.如果把分式中的x和y都扩大2倍,那么分式的值()A.不变 B.缩小2倍 C.扩大2倍 D.扩大4倍3.分式有意义的条件是()A.x≠0 B.y≠0 C.x≠0或y≠0 D.x≠0且y≠04.下列约分正确的是()A.B. =﹣1C. =D. =5.化简的结果是()A.B.a C.a﹣1 D.6.化简:的结果是()A.2 B.C.D.7.化简,可得()A.B.C.D.8.甲、乙两班参加植树造林,已知甲班每天比乙班每天多植5棵树,甲班植80棵树所用的天数与乙班植70棵树所用的天数相等,若设甲班每天植x棵,根据题意列出的方程是()A.B.C.D.二、填空题(本大题共8小题,每小题4分,共32分.把答案填在题中横线上)9.当x= 时,分式没有意义.10.化简: = .11.随着电子制造技术的不断进步,电子元件的尺寸大幅度缩小,在芯片上某种电子元件大约只占0.000 000 7(毫米2),这个数用科学记数法表示为.12.已知x=2012,y=2013,则(x+y)•= .13.观察下列各等式:,,,…根据你发现的规律,计算: = (n为正整数).14.甲计划用若干天完成某项工作,在甲独立工作两天后,乙加入此项工作,且甲、乙两人工效相同,结果提前两天完成任务.设甲计划完成此项工作的天数是x,则x的值是.15.含有同种果蔬但浓度不同的A、B两种饮料,A种饮料重40千克,B种饮料重60千克.现从这两种饮料中各倒出一部分,且倒出部分的重量相同,再将每种饮料所倒出的部分与另一种饮料余下的部分混合.如果混合后的两种饮料所含的果蔬浓度相同,那么从每种饮料中倒出的相同的重量是千克.16.某市为治理污水,需要铺设一段全长为300m的污水排放管道.铺设120m后,为了尽量减少施工对城市交通所造成的影响,后来每天的工效比原计划增加20%,结果共用30天完成这一任务、求原计划每天铺设管道的长度,如果设原计划每天铺设xm管道,那么根据题意,可得方程.三、解答题(本大题共5小题,共36分)17.化简: +.18.已知x﹣3y=0,求•(x﹣y)的值.19.解方程:(1)+1=(2)=﹣2.20.已知:,试说明不论x为任何有意义的值,y值均不变.21.某部队计划为驻地村民新修水渠3600米,为了水渠能尽快投入使用,实际工作效率是原计划工作效率的1.8倍,结果提前20天完成修水渠任务.问原计划每天修水渠多少米?《第15章分式》参考答案与试题解析一、选择题(本大题共8小题,每小题4分,共32分.在每小题所给的4个选项中,只有一项是符合题目要求的,请将正确答案的代号填在题后括号内)1.在,,,中,是分式的有()A.1个B.2个C.3个D.4个【考点】分式的定义.【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【解答】解:,这2个式子分母中含有字母,因此是分式.其它式子分母中均不含有字母,是整式,而不是分式.故选B.【点评】本题主要考查分式的概念,分式与整式的区别主要在于:分母中是否含有未知数,注意π不是字母,故不是分式.2.如果把分式中的x和y都扩大2倍,那么分式的值()A.不变 B.缩小2倍 C.扩大2倍 D.扩大4倍【考点】分式的基本性质.【分析】依题意,分别用2x和2y去代换原分式中的x和y,利用分式的基本性质化简即可.【解答】解:分别用2x和2y去代换原分式中的x和y,得==,可见新分式与原分式相等.故选A.【点评】解题的关键是抓住分子、分母变化的倍数.规律总结:解此类题首先把字母变化后的值代入式子中,然后约分,再与原式比较,最终得出结论.3.分式有意义的条件是()A.x≠0 B.y≠0 C.x≠0或y≠0 D.x≠0且y≠0【考点】分式有意义的条件.【分析】分式有意义的条件是分母不为0,则x2+y2≠0.【解答】解:只要x和y不同时是0,分母x2+y2就一定不等于0.故选C.【点评】本题考查的是分式有意义的条件:当分母不为0时,分式有意义.4.下列约分正确的是()A.B. =﹣1C. =D. =【考点】约分.【分析】根据约分的步骤把分子与分母中约去公因式,分别对每一项进行判断即可.【解答】解:A、不能约分,故本选项错误;B、=1,故本选项错误;C、不能约分,故本选项错误;D、=,故本选项正确;故选D.【点评】此题考查了约分,关键是找出分子与分母的公因式,当分子、分母是多项式时,要把分子与分母分解因式,然后再约分,同时要注意一个分式约分的结果应为最简分式即分子和分母没有公因式.5.化简的结果是()A.B.a C.a﹣1 D.【考点】分式的乘除法.【分析】本题考查的是分式的除法运算,做除法运算时要转化为乘法的运算,注意先把分子、分母能因式分解的先分解,然后约分.【解答】解: =×=a.故选B.【点评】分式乘除法的运算,归根到底是乘法的运算,当分子和分母是多项式时,一般应先进行因式分解,再约分.6.化简:的结果是()A.2 B.C.D.【考点】分式的混合运算.【分析】先把括号中的第二个分式约分,再利用乘法分配律把(x﹣3)分别与括号中的式子相乘可使计算简便.【解答】解:=(﹣)•(x﹣3)=•(x﹣3)﹣•(x﹣3)=1﹣=.故选B.【点评】归纳提炼:对于一般的分式混合运算来讲,其运算顺序与整式混合运算一样,是先乘方,再乘除,最后算加减,如果遇括号要先算括号里面的.在此基础上,有时也应该根据具体问题的特点,灵活应变,注意方法.7.化简,可得()A.B.C.D.【考点】分式的加减法.【分析】先通分,然后进行同分母分式加减运算,最后要注意将结果化为最简分式.【解答】解: ==.故选B.【点评】本题考查了分式的加减运算,题目比较容易.8.甲、乙两班参加植树造林,已知甲班每天比乙班每天多植5棵树,甲班植80棵树所用的天数与乙班植70棵树所用的天数相等,若设甲班每天植x棵,根据题意列出的方程是()A.B.C.D.【考点】由实际问题抽象出分式方程.【专题】应用题;压轴题.【分析】关键描述语是:“甲班植80棵树所用的天数比与乙班植70棵树所用的天数相等”;等量关系为:甲班植80棵树所用的天数=乙班植70棵树所用的天数.【解答】解:若设甲班每天植x棵,那么甲班植80棵树所用的天数应该表示为:,乙班植70棵树所用的天数应该表示为:.所列方程为:.故选D.【点评】列方程解应用题的关键步骤在于找相等关系.本题应该抓住“甲班植80棵树所用的天数比与乙班植70棵树所用的天数相等”的关键语.二、填空题(本大题共8小题,每小题4分,共32分.把答案填在题中横线上)9.当x= 3 时,分式没有意义.【考点】分式有意义的条件.【专题】计算题.【分析】分式无意义的条件是分母等于0.【解答】解:若分式没有意义,则x﹣3=0,解得:x=3.故答案为3.【点评】本题考查的是分式没有意义的条件:分母等于0,这是一道简单的题目.10.化简: = x+y .【考点】分式的加减法.【专题】计算题.【分析】同分母相减,分母不变,分子相减,要利用平方差公式化为最简分式.【解答】解: ==x+y.【点评】本题考查了分式的加减法法则.11.随着电子制造技术的不断进步,电子元件的尺寸大幅度缩小,在芯片上某种电子元件大约只占0.000 000 7(毫米2),这个数用科学记数法表示为7×10﹣7.【考点】科学记数法—表示较小的数.【专题】常规题型.【分析】科学记数法就是将一个数字表示成(a×10的n次幂的形式),其中1≤|a|<10,n表示整数.即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n次幂.本题0.000 000 7<1时,n为负数.【解答】解:0.000 000 7=7×10﹣7.故答案为:7×10﹣7.【点评】本题考查了用科学记数法表示一个较小的数,为a×10n的形式,注:n为负整数.12.已知x=2012,y=2013,则(x+y)•= ﹣1 .【考点】分式的化简求值.【分析】先根据分式混合运算的法则把原式进行化简,再把x、y的值代入进行计算即可.【解答】解:原式=(x+y)•=,当x=2012,y=2013时,原式==﹣1.故答案为:﹣1.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.13.观察下列各等式:,,,…根据你发现的规律,计算: = (n为正整数).【考点】分式的加减法.【专题】压轴题;规律型.【分析】本题重在理解规律,从规律中我们可以发现,中间的数值都是相反数,所以最后的结果就是,化简即可.【解答】解:原式=2(1﹣)+2(﹣)+2(﹣)…+2(﹣)=2(1﹣)=.故答案为.【点评】本题主要是利用规律求值,能够理解本题中给出的规律是解答本题的关键.14.甲计划用若干天完成某项工作,在甲独立工作两天后,乙加入此项工作,且甲、乙两人工效相同,结果提前两天完成任务.设甲计划完成此项工作的天数是x,则x的值是 6 .【考点】分式方程的应用.【专题】应用题.【分析】根据题意,得到甲、乙的工效都是.根据结果提前两天完成任务,知:整个过程中,甲做了(x﹣2)天,乙做了(x﹣4)天.再根据甲、乙做的工作量等于1,列方程求解.【解答】解:根据题意,得=1,解得x=6,经检验x=6是原分式方程的解.故答案是:6.【点评】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.本题应用的公式有:工作总量=工作时间×工效.弄清此题中每个人的工作时间是解决此题的关键.15.含有同种果蔬但浓度不同的A、B两种饮料,A种饮料重40千克,B种饮料重60千克.现从这两种饮料中各倒出一部分,且倒出部分的重量相同,再将每种饮料所倒出的部分与另一种饮料余下的部分混合.如果混合后的两种饮料所含的果蔬浓度相同,那么从每种饮料中倒出的相同的重量是24 千克.【考点】一元一次方程的应用.【专题】比例分配问题;压轴题.【分析】由题意可得现在A种饮料的重量为40千克,B种饮料的重量为60千克,可根据“混合后的两种饮料所含的果蔬浓度相同”来列等量关系.【解答】解:设原来A种饮料的浓度为a,原来B种饮料的浓度为b,从每种饮料中倒出的相同的重量是x千克.由题意,得=,化简得(5a﹣5b)x=120a﹣120b,即(a﹣b)x=24(a﹣b),∵a≠b,∴x=24.∴从每种饮料中倒出的相同的重量是24千克.故答案为:24.【点评】此题考查的知识点是一元一次方程的应用,当一些必须的量没有时,可设出相应的未知数,只把所求的量当成未知数求解.找到相应的等量关系是解决问题的关键.16.某市为治理污水,需要铺设一段全长为300m的污水排放管道.铺设120m后,为了尽量减少施工对城市交通所造成的影响,后来每天的工效比原计划增加20%,结果共用30天完成这一任务、求原计划每天铺设管道的长度,如果设原计划每天铺设xm管道,那么根据题意,可得方程或.【考点】由实际问题抽象出分式方程.【分析】所求的是原计划的工效,工作总量是300,一定是根据工作时间来列的等量关系.本题的关键描述语是:“后来每天的工效比原计划增加20%”;等量关系为:结果共用30天完成这一任务.【解答】解:因为原计划每天铺设x(m)管道,所以后来的工作效率为(1+20%)x(m),根据题意,得=30.或故答案为:或.【点评】本题考查了由实际问题抽象出分式方程.应用题中一般有三个量,求一个量,明显的有一个量,一定是根据另一量来列等量关系的.本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.本题应用的等量关系为:工作时间=按原计划的工效铺设120m的天数+后来的工效铺设的天数.三、解答题(本大题共5小题,共36分)17.化简: +.【考点】分式的混合运算.【分析】根据分式混合运算的法则进行计算即可.【解答】解:原式=+•=+==.【点评】本题考查的是分式的混合运算,熟知分式混合运算的法则是解答此题的关键.18.已知x﹣3y=0,求•(x﹣y)的值.【考点】分式的化简求值.【专题】计算题.【分析】首先将分式的分母分解因式,然后再约分、化简,最后将x、y的关系式代入化简后的式子中进行计算即可.【解答】解: =(2分)=;当x﹣3y=0时,x=3y;原式=.(8分)【点评】分式混合运算要注意先去括号;分子、分母能因式分解的先因式分解;除法要统一为乘法运算.19.(2015秋•邢台期末)解方程:(1)+1=(2)=﹣2.【考点】解分式方程.【专题】计算题.【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)去分母得:4x+2x+6=7,移项合并得:6x=1,解得:x=,经检验是分式方程的解;(2)去分母得:1﹣x=﹣1﹣2(x﹣2),去括号得:1﹣x=﹣1﹣2x+4,移项合并得:x=2,经检验x=2是增根,故原方程无解.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.20.已知:,试说明不论x为任何有意义的值,y值均不变.【考点】分式的混合运算.【专题】证明题.【分析】先把分子分母分解因式再化简约分即可.【解答】证明:==x﹣x+3=3.故不论x为任何有意义的值,y值均不变.【点评】本题主要考查了分式的混合运算能力.21.某部队计划为驻地村民新修水渠3600米,为了水渠能尽快投入使用,实际工作效率是原计划工作效率的1.8倍,结果提前20天完成修水渠任务.问原计划每天修水渠多少米?【考点】分式方程的应用.【专题】应用题.【分析】设原计划每天修水渠x米.根据“原计划工作用的时间﹣实际工作用的时间=20”这一等量关系列出方程.【解答】解:设原计划每天修水渠x米.根据题意得:,解得:x=80.经检验:x=80是原分式方程的解.答:原计划每天修水渠80米.【点评】本题考查了分式方程的应用,此题中涉及的公式:工作时间=工作量÷工效.。

八年级数学上册《第十五章 分式》单元检测卷及答案-人教版

八年级数学上册《第十五章 分式》单元检测卷及答案-人教版

八年级数学上册《第十五章 分式》单元检测卷及答案-人教版学校:___________班级:___________姓名:___________考号:___________一、选择题:(本题共8小题,每小题5分,共40分.)1.在代数式:中,分式的个数是( )A .2B .3C .4D .52.张老师和李老师住在同一个小区,离学校3000米,某天早晨,张老师和李老师分别于7点5分、7点15分离家骑自行车上班,刚好在校门口相遇,已知李老师骑车的速度是张老师的1.2倍,为了求他们各自骑自行车的速度,设张老师骑自行车的速度是 x 米/分,则可列得方程为( ) A .30003000101.2x x-= B .3000300010601.2x x -=⨯ C .30003000101.2x x -= D .3000300010601.2x x -=⨯ 3.若 2x < ,则 22x x -- 的值为( ) A .1- B .0 C .1 D .24.把分式方程12y - -12y y--=1的两边同乘y-2,约去分母,得( ) A .1-(1-y )=1 B .1+(1-y )=1C .1-(1-y )=y-2D .1+(1-y )=y-25.“行人守法,安全过街”不仅体现了对生命的尊重,也体现了公民的文明素质,更反映了城市的文明程度.如图,官渡区森林公园路口的斑马线A B C --为横穿双向行驶车道,其中8AB BC ==米,在绿灯亮时,小官共用13秒通过AC 路段,其中通过BC 路段的速度是通过AB 路段速度的1.6倍,则小官通过AB 路段的速度是( )A .0.5米/秒B .1米/秒C .1.5米/秒D .2米/秒 6.若关于x 的分式方程23x - + 3x m x +- =2有增根,则m 的值是( ) A .m=﹣1B .m=0C .m=3D .m=0或m=3 7.若代数式22()122x M x x -+÷--的化简结果为22x +,则整式M 为( ) A .x - B .x C .1x - D .1x +8.如果关于x 的不等式组 {2(a −x)≥−x −43x+42<x +1 的解集为x <﹣2,且使关于x 的分式方程 3x x - +23a x+- =2的解为非负数的所有整数a 的个数为( ) A .7个 B .6个 C .5个D .4个二、填空题:(本题共5小题,每小题3分,共15分.)9.()0220132--⨯= . 10.已知1x ﹣1y =1x y +,则y x ﹣x y ﹣2= 11.某工人在规定时间内可加工50个零件.如果每小时多加工5个零件,那么用同样时间可加工60个零件,设原来每小时可加工x 个零件,可得方程 .12.当x= 时,分式 33x x -- 的值为零。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版八年级数学 第15章 分式 同步检测试题(全卷总分100分) 姓名 得分一、选择题(每小题3分,共30分)1.下列式子:-3x ,2a ,x 2-y 2xy ,-a 2π,x -1y 2,a -2b ,其中是分式的个数有( )A .2个B .3个C .4个D .5个2.将分式2x 2x +y中x ,y 的值都扩大10倍,则分式的值( )A .扩大到原来的10倍B .缩小到原来的110 C .扩大到原来的100倍 D .不变 3.分式a x ,x +yx 2-y 2,a -b a 2-b 2,x +y x -y中,最简分式有( )A .1个B .2个C .3个D .4个 4.下列运算正确的是( )A.-x -y -x +y =x -y x +y B.a 2-b 2(a -b )2=a -ba +bC.a 2-b 2(a -b )2=a +b a -bD.x -11-x 2=1x +1 5.计算2x x +3+6x +3,其结果是( )A .2B .3C .x +2D .2x +6 6.将数字2.03×10-3化为小数是( C )A .0.203B .0.020 3C .0.002 03D .0.000 203 7.化简:a +1a 2-2a +1÷(1+2a -1)=( )A .1a -1 B .1a +1 C .1a 2-1 D .1a 2+18.为了帮助遭受自然灾害的地区重建家园,某学校号召同学们自愿捐款.已知第一次捐款总额为4 800元,第二次捐款总额为5 000元,第二次捐款人数比第一次多20人,而且两次人均捐款额恰好相等.如果设第一次捐款人数为x 人,那么x 满足的方程是( )A .4 800x =5 000x -20B .4 800x =5 000x +20C .4 800x -20=5 000xD .4 800x +20=5 000x9.若2a =3b =4c ,且abc≠0,则a +bc -2b的值是( ) A .2 B .-2 C .3 D .-310.若分式方程3x x +1=mx +1+2无解,则m =( )A .-1B .-3C .0D .-2 二、填空题(每小题3分,共18分)11.当x = 时,分式3x -2无意义.12.(重庆中考)计算:3-8+(13)-2+(π-1)0= .13.化简:(2x x -3-x x +3)·x 2-9x = .14.如图,点A ,B 在数轴上,它们所表示的数分别是-4,4x -45x +1,且点A 到原点的距离是点B 到原点距离的2倍,则x = .15.分式方程1x -1=ax 2-1的解是x =0,则a = . 16.观察规律并填空.(1-122)=12·32=34; (1-122)(1-132)=12·32·23·43=12·43=23;(1-122)(1-132)(1-142)=12·32·23·43·34·54=12·54=58;(1-122)(1-132)(1-142)(1-152)=12·32·23·43·34·54·45·65=12·65=35;…(1-122)(1-132)(1-142) (1)1n2)=(用含n的代数式表示,n是正整数,且n≥2).三、解答题(共52分) 17.(12分)计算:(1)(2x-3y2)-2÷(x-2y)3;(2)4-xx-2÷(x+2-12x-2).18.(12分)解分式方程:(1)2xx+1-1=1x+1;(2)x+4x(x-1)=3x-1.19.(9分)(锦州中考)先将(1-1x)÷x-1x2+2x化简,然后请自选一个你喜欢的x值代入求值.20.(9分)对于代数式1x-2和32x+1,你能找到一个合适的x值,使它们的值相等吗?写出你的解题过程.21.(10分)某商家预测一种应季衬衫能畅销市场,就用13 200元购进了一批这种衬衫,面市后果然供不应求,商家又用28 800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.(1)该商家购进的第一批衬衫是多少件?(2)若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完利润率不低于25%(不考虑其他因素),那么每件衬衫的标价至少是多少元?人教版八年级数学 第15章 分式 同步检测试题参考答案一、选择题(每小题3分,共30分)1.下列式子:-3x ,2a ,x 2-y 2xy ,-a 2π,x -1y 2,a -2b ,其中是分式的个数有( C )A .2个B .3个C .4个D .5个2.将分式2x 2x +y中x ,y 的值都扩大10倍,则分式的值( A )A .扩大到原来的10倍B .缩小到原来的110 C .扩大到原来的100倍 D .不变 3.分式a x ,x +yx 2-y 2,a -b a 2-b 2,x +y x -y中,最简分式有( B )A .1个B .2个C .3个D .4个 4.下列运算正确的是( C )A.-x -y -x +y =x -y x +y B.a 2-b 2(a -b )2=a -ba +bC.a 2-b 2(a -b )2=a +b a -bD.x -11-x 2=1x +1 5.计算2x x +3+6x +3,其结果是( A )A .2B .3C .x +2D .2x +6 6.将数字2.03×10-3化为小数是( C )A .0.203B .0.020 3C .0.002 03D .0.000 203 7.化简:a +1a 2-2a +1÷(1+2a -1)=( A )A .1a -1 B .1a +1 C .1a 2-1 D .1a 2+18.为了帮助遭受自然灾害的地区重建家园,某学校号召同学们自愿捐款.已知第一次捐款总额为4 800元,第二次捐款总额为5 000元,第二次捐款人数比第一次多20人,而且两次人均捐款额恰好相等.如果设第一次捐款人数为x 人,那么x 满足的方程是( B )A .4 800x =5 000x -20B .4 800x =5 000x +20C .4 800x -20=5 000xD .4 800x +20=5 000x9.若2a =3b =4c ,且abc≠0,则a +bc -2b的值是( B ) A .2 B .-2 C .3 D .-310.若分式方程3x x +1=mx +1+2无解,则m =( B )A .-1B .-3C .0D .-2 二、填空题(每小题3分,共18分)11.当x = 2 时,分式3x -2无意义.12.(重庆中考)计算:3-8+(13)-2+(π-1)0= 8 .13.化简:(2x x -3-x x +3)·x 2-9x = x +9 .14.如图,点A ,B 在数轴上,它们所表示的数分别是-4,4x -45x +1,且点A 到原点的距离是点B 到原点距离的2倍,则x = -1 .15.分式方程1x -1=ax 2-1的解是x =0,则a = 1 . 16.观察规律并填空.(1-122)=12·32=34; (1-122)(1-132)=12·32·23·43=12·43=23;(1-122)(1-132)(1-142)=12·32·23·43·34·54=12·54=58;(1-122)(1-132)(1-142)(1-152)=12·32·23·43·34·54·45·65=12·65=35;…(1-122)(1-132)(1-142) (1)1n2)=n+12n(用含n的代数式表示,n是正整数,且n≥2).三、解答题(共52分) 17.(12分)计算:(1)(2x-3y2)-2÷(x-2y)3;解:原式=14x6y-4÷x-6y3=x124y7.(2)4-xx-2÷(x+2-12x-2).解:原式=4-xx-2÷(x2-4x-2-12x-2)=4-xx-2÷x2-4-12x-2=4-xx-2·x-2(x+4)(x-4)=-1x+4.18.(12分)解分式方程:(1)2xx+1-1=1x+1;解:方程两边乘x+1,得2x-x-1=1. 解得x=2.经检验,x=2是原方程的解.(2)x+4x(x-1)=3x-1.解:方程两边乘x(x-1),得x+4=3x. 解得x=2.经检验,x=2是原方程的解.19.(9分)(锦州中考)先将(1-1x)÷x-1x2+2x化简,然后请自选一个你喜欢的x值代入求值.解:原式=x-1x÷x-1x2+2x=x-1x·x(x+2)x-1=x+2.当x=10时,原式=10+2=12.(注意:x不能取0,1,-2)20.(9分)对于代数式1x-2和32x+1,你能找到一个合适的x值,使它们的值相等吗?写出你的解题过程.解:能.根据题意,令1x-2=32x+1,则有2x+1=3(x-2).解得x=7.经检验,x=7是1x-2=32x+1的解.即当x=7时,两代数式的值相等.21.(10分)某商家预测一种应季衬衫能畅销市场,就用13 200元购进了一批这种衬衫,面市后果然供不应求,商家又用28 800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.(1)该商家购进的第一批衬衫是多少件?(2)若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完利润率不低于25%(不考虑其他因素),那么每件衬衫的标价至少是多少元?解:(1)设该商家购进的第一批衬衫是x件,则购进的第二批衬衫是2x件,由题意可得28 8002x-x13200=10,解得x=120.经检验x=120是原方程的根.答:该商家购进的第一批衬衫是120件.(2)设每件衬衫的标价至少是a元.由(1)得第一批的进价为:13 200÷120=110(元/件),第二批的进价为:120元/件.由题意可得120(a-110)+(240-50)(a-120)+50(0.8a-120)≥25%×(13 200+28 800).解得a≥150.答:每件衬衫的标价至少是150元.。

相关文档
最新文档