优秀教案1-柱锥台球的结构特征

合集下载

柱锥台球的结构特征说

柱锥台球的结构特征说
柱锥台球的结构特征说
柱锥台球是一种特殊形状的台球,它具有独特的结构和设计特点。本文将介 绍柱锥台球的定义、材质、尺寸以及其不同部分的功能。
柱锥台球的定义和背景
柱锥台球是一种台球变种,起源于亚洲地区。它的形状像一个倒置的圆锥, 顶端较宽,底端较窄。柱锥台球受到许多台球爱好者的喜爱,因为它提供了 独特的挑战和游戏体验。
柱锥台球的材质和尺寸
柱锥台球通常由优质的木材制成,如硬木或竹子。它的尺寸根据比赛规则而 定,通常有标准的直径和高度要求。这种材质和尺寸选择旨在提供良好的击 球效果和稳定性。
柱锥台球的不同部分及其功能
顶部
顶部是柱锥台球的最宽部分, 它提供了更大的击球目标, 容纳了其他球的位置。
腰部
腰部是柱锥台球的中间部分, 它连接了顶部和底部,提供 了结构支撑和稳定性。
底部
底部是柱锥台球的最窄部分, 它注重稳定性和平衡,确保 柱锥台球在击球过程中不易 倒翻。
柱锥台球的装配和使用方法
1
装配
பைடு நூலகம்
将柱锥台球放置在台球桌上,确保其稳定。
2
击球
使用球杆将其他球击打到柱锥台球上,目标是使其他球稳定地停留在柱锥台球的不同部分。
3
计分
根据比赛规则和不同部分的计分方式,计算得分并确定赢家。
单人对战或团队对抗 根据击球结果和不同部分的计分规则 通常为一定的局数或时间限制
柱锥台球的未来发展和趋势
技术革新
随着科技的不断进步,柱锥台球 可能会发展出新的材料和装配方 式,提供更好的游戏体验。
全球影响
社交媒体传播
柱锥台球的受欢迎程度正在增加, 可能会出现更多的全球比赛和专 业选手。
通过社交媒体平台的推广,柱锥 台球有望吸引更多的玩家和观众。

柱、锥、台、球的结构特征

柱、锥、台、球的结构特征

为旋转轴,其余两边旋转形成的曲面所围成的
几何体叫做圆锥。
A


母线


侧面


C
B
底面

征 圆锥用表示它的轴的字母表示
圆锥和棱锥统称为锥体
棱台与圆台的结构特征
棱台:用一个平行于棱锥底面的平面去截棱锥, 底面与截面之间的部分叫做棱台。 圆台:用一个平行于圆锥底面的平面去截圆 锥,底面与截面之间的部分叫做圆台。
上底面
下底面
棱台和圆台统称为台体。
球的结构特征
球:以半圆的直径所在的直线为旋转轴,半圆 面旋转一周形成的几何体叫做球体。
球心
A
直径
大圆
O
C
B
例题 长方体AC1中,AB=3,BC=2,BB1=1,
由A到C1在长方体表面上的最短距离是多少?
D1
C1
A1
B1
D
C
A
B
D1
C1
A1
B1
C1
B1
C1
A1
B1 A
2、柱、锥、台的侧面展开是立体几何问题转化为平 面几何问题处理的重要手段之一,圆锥的侧面展开图 是扇形,其圆心角为3600· r (其中r、l分别是圆锥
l
的底面半径和母线长),一些圆台问题往往需要利用 圆锥来解决。
BC
A1
D1
A
B
A
D
练习: 1、下列命题是真命题的是( A) A 以直角三角形的一直角边所在的直线为轴 旋转所得的几何体为圆锥;
B 以直角梯形的一腰所在的直线为轴旋转所 得的旋转体为圆柱;
C 圆柱、圆锥、棱锥的底面都是圆;
D 有一个面为多边形,其他各面都是三角形 的几何体是棱锥。 2、过球面上的两点作球的大圆,可以作 ( 1或无数多 )个。

优秀教案2-柱锥台球的结构特征(2)

优秀教案2-柱锥台球的结构特征(2)

1.1.1柱、锥、台、球的结构特征(2)教材分析本节内容是必修第二册第一章第一节空间几何体的结构特征的第二节内容,在认识棱柱、棱锥、棱台的结构特征的基础上让学生感受大量空间实物及模型认识球和简单组合体的结构特征是本节的重点,圆柱、圆锥、圆台、球的结构特征的概括总结是本节的难点。

在本节授课中,主要通过对生活中事物联系课本知识,培养学生主动探索、勇于发现的求知精神;养成细心观察、认真分析、善于总结的良好思维习惯.课时分配本节内容用1课时的时间完成,主要探究和概括圆柱、圆锥、圆台、球和简单组合体的结构特征.教学目标重点:让学生感受大量空间实物及模型认识圆柱、圆锥、圆台、球和简单组合体的结构特征.难点:圆柱、圆锥、圆台、球和简单组合体的结构特征的概括.知识点:圆柱、圆锥、圆台、球和简单组合体的结构特征.能力点:会表示旋转体;能判断组合体是由哪些简单几何体构成的;观察、概括能力.教育点:培养学生主动探索、勇于发现的求知精神;养成细心观察、认真分析、善于总结的良好思维习惯.拓展点:培养学生的空间想象能力和对空间中平行和垂直关系的感觉.教具准备多媒体课件,实物模型教具课堂模式学案导学一、复习引入【师生活动】教师提问,借助模型帮助学生回顾多面体和旋转体的定义和棱柱、棱锥、棱台的结构特征。

【设计意图】让学生巩固复习多面体的结构特征,体会多面体与选择体构成的不同,从而以不同方式探究、认识旋转体的结构特征.【设计说明】给学生实物模型更有助于学生形成立体的想象图形.二、探究新知探究1:圆柱的结构特征[师生活动]师生共同观察讨论圆柱的结构特征和构成方式,以教师引导、展示实物和图片为辅,学生观察、讨论总结为主.师:在(1)(3)(4)(6)(8)(10)(11)(12)这些旋转体中,观察(1)(8)具有什么样的共同外部特征?,(1)(8)[设计意图]让学生在仔细观察,细心分析后从外部特征和构成方式两方面得出圆柱的结构特征,对圆柱的特征有进一步的认识.生:(1)(8)是圆柱,它们有两个平行的平面是等大的圆面,还有一个曲面.师:你能说出它们是什么平面图形通过怎样的旋转得到的旋转体吗?生:圆柱是以矩形的一边所在直线为旋转轴,其余各边旋转而形成的的曲面所围成的旋转体.师:旋转轴叫圆柱的轴;垂直于旋转轴的边旋转而成的圆面叫做圆柱的底面;平行于圆柱轴的边旋转而成的面叫圆柱的侧面,圆柱的侧面又称圆柱的面;无论转到什么位置,不垂直于轴的边都叫圆柱侧面的母线。

柱锥台球的结构特征

柱锥台球的结构特征

柱、锥、台、球的结构特征一、学习目标1.知识与技能:(1)通过实物操作,增强学生的直观感知。

(2)能根据几何结构特征对空间物体进行分类。

(3)会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。

(4)会表示有关于几何体以及柱、锥、台的分类。

学习过程(一)创设情景,揭示课题1在我们周围中有不少有特色的建筑物,你能举出一些例子吗?这些建筑的几何结构特征如何?2、展示具有柱、锥、台、球结构特征的空间物体。

问题:请根据某种标准对以上空间物体进行分类。

(二)、研探新知空间几何体:多面体(面、棱、顶点):棱柱、棱锥、棱台;旋转体(轴):圆柱、圆锥、圆台、球。

1、棱柱的结构特征:(1)观察棱柱的几何物体以及投影出棱柱的图片,思考:它们各自的特点是什么?共同特点是什么?(2)棱柱的概念:(3)棱柱的表示法及分类:(4)相关概念:底面(底)、侧面、侧棱、顶点。

2、棱锥、棱台的结构特征:棱锥、棱台的结构特征、相关概念、分类以及表示:棱锥:棱台:3、圆柱的结构特征:4、圆锥、圆台、球的结构特征,以及相关概念和表示5、柱体、锥体、台体的概念及关系:探究:棱柱、棱锥、棱台都是多面体,它们在结构上有哪些相同点和不同点?三者的关系如何?当底面发生变化时,它们能否互相转化?圆柱、圆锥、圆台呢?6、简单组合体的结构特征:(1)简单组合体的构成:由简单几何体拼接或截去或挖去一部分而成。

(2)说出组成这些物体的几何结构特征。

(3)列举身边物体,说出它们是由哪些基本几何体组成的。

(三)排难解惑,发展思维1、有两个面互相平行,其余后面都是平行四边形的几何体是不是棱柱?2、棱柱的何两个平面都可以作为棱柱的底面吗?3、圆柱可以由矩形旋转得到,圆锥可以由直角三角形旋转得到,圆台可以由什么图形旋转得到?如何旋转?(四)巩固深化练习:课本P7 练习1、2;课本P8 习题1.1 第1、2、3、4、5题(五)归纳整理:由学生整理学习了哪些内容(六)课后思考题:课本P8 习题1.1 B组第1、2题1.2.1 空间几何体的三视图一、学习目标1.掌握画三视图的基本技能,丰富学生的空间想象力。

优秀教案1柱锥台球的结构特征

优秀教案1柱锥台球的结构特征

第一章空间几何体1.1空间几何体的结构1.1.1柱、锥、台、球的结构特征(1)教材分析几何学是研究现实世界中物体的形状、大小和位置关系的学科.空间几何体是几何学的重要组成部分,是第二章研究空间点、线、面位置关系的载体,对于培养和发展学生的空间想象能力,推理论证能力、运用图形语言进行交流的能力有着十分重要的作用.第一章空间几何体的第一节空间几何体的结构包括两节内容.本节课是第一节的第一课时,介绍了棱柱、棱锥、棱台等多面体的结构特征,是学习第二节简单组合体的结构特征的基础,同时体会和旋转体的区别.课时分配本节是空间几何体的第一节,用2课时完成,第1课时主要讲解棱柱、棱锥、棱台的结构特征.教学目标重点:让学生感受大量空间实物及模型、概括出棱柱、棱锥、棱台的结构特征.难点:棱柱、棱锥、棱台的结构特征的概括.知识点:让学生观察、讨论、归纳、概括所学的知识.能力点:培养学生的空间想象能力和抽象概括能力.自主探究点:通过实物操作,增强学生的直观感知.拓展点:会用语言概述棱柱、棱锥、棱台的结构特征.教具准备多媒体课件,教具课堂模式课前自主预习,完成精讲精练自主学习;课堂总结引导式教学.一、引入新课【问题】在我们生活中有不少有特色的建筑物,你能举一些例子吗?这些建筑的几何结构特征如何?【师生活动】教师借助多媒体动态演示不同的建筑,引导学生观察这些建筑物的几何特征;学生积极思考并回答教师提出的问题;最后教师总结所举的建筑物基本上都是由这些几何体组合而成的(展示具有棱柱、棱锥、棱台结构特征的空间物体),引出本节课的课题。

【设计说明】教师借助不同的建筑物,提出新的问题,有利于开阔学生的视野,引起学生的思考,并激发学生的学习兴趣.二、探究新知1.分析空间几何体的结构特征、分类归纳图1. 1-1【师生活动】教师出示投影片图1. 1-1,按小组分给学生实物,引导学生从空间几何体的名称,结构特征,与平面图形的联系以及组成几何体的每个面的特点,面与面的关系等方面进行观察、思考,学生讨论并尝试回答,教师引导学生观察(2)(5)(7)(9)(13)(14)(15)(16)与(1)(3)(4)(6)(8)(10)(11)(12)的不同,然后给出多面体的定义和旋转体的定义,教师要在引导学生感知其形成过程的基础上加以理解.一般地,我们把由若干个平面多边形围成的几何体叫做多面体.围成多面体的各个多边形叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点.我们把由一个平面图形绕它所在平面内的一条定直线旋转所形成的封闭几何体叫做旋转体.这条定直线叫做旋转体的轴.【设计意图】通过具体的实物及实物图象,引导学生主动地对图形及实物进行观察、分析、比较,并由图形的特点进行分类,根据不同类别图形的特点,抽象概括出多面体的定义,培养学生的观察、分类、概括能力.2.棱柱的结构特征【问题】通过观察图1. 1-1中的(2)(5)(7)(9),你能根据其结构特点概括出棱柱的定义吗?【师生活动】学生分成小组对这两种模型进行观察、讨论,概括出这两种几何体的结构特点,并由此得出棱柱的定义.一般地,有两个面互相平行;其余各面都是四边形,并且每相邻的两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱.两个相互平行的面叫底面;其余各面叫棱柱的侧面;相邻侧面的 公共边叫棱柱的侧棱;侧面与底面的公共顶点叫棱柱的顶点.棱柱的分类:底面是三角形、四边形、五边形……的棱柱分别叫做三棱柱、四棱柱、五棱柱……. 棱柱的表示:底面各顶点的字母表示棱柱,如图1.1 -2可表示为 六棱柱ABCDEF A B C D E F ''''''-教师出示投影片图1.1 -2,学生进一步落实棱柱的结构特征. 图1.1 -2 【设计说明】通过引导学生对长方体的包装盒、螺丝帽模型等具体的实物进行观察、比较、分析,一方面进一步感知多面体的定义,另一方面可引导学生抽象出棱柱的定义,分析其结构上的共同点,分类的原则,培养学生的观察、分析、解决问题的能力.C′ B′ E′ A′ D′ F′ 侧面 D E 侧棱 F C 顶点 BA 底面3.棱锥的结构特征【师生活动】教师出示投影片图1. 1-1,引导学生通过观察(14)、(15),指出其结构特点与棱柱的区别与联系,由学生通过合作学习,自己归纳出棱锥的结构特点,学生分组讨论,通过比较分析,得到(14)、(15)与棱柱的共同点是,其各个面均由平面图形围成,不同点是只有一个面是多边形,其余各面都是三角形,并且这些三角形都有一个公共顶点.一般地,有一个面是多边形;其余各面都是有一个公共顶点的三角形,由这些面所围成的多面体叫做棱锥.这个多边形 面叫做棱锥的底面或底;有公共顶点的各个三角形面叫做棱锥 的侧面;各侧面的公共顶点叫做棱锥的顶点;相邻侧面的公共 边叫做棱锥的侧棱. 棱锥的分类:底面是三角形、四边形、五边形……的棱锥 分别叫做三棱锥、四棱锥、五棱锥……. 棱锥的表示:用表示顶点和底面各顶点的字母来表示,如图1. 1-3可表示为四棱锥S-ABCD .图1. 1-3【设计说明】通过引导学生把投影片图1.1-1中(14)、(15)的结构特点与棱柱的结构特点进行分析总结,让学生利用类比的思维方法,探索出棱锥的定义、结构特点以及表示方法,培养学生自主探索的学习习惯和分析问题、解决问题的能力.4.棱台的结构特征【问题】出示投影片图1.1—1中(13)、(16),通过与棱柱、棱锥的结构特点相比较,你能得到棱台的概念、结构名称及分类标准吗?【师生活动】学生自主发言,教师及时点评得出棱台的定义、结构名称、分类标准以及表示方法,可以借助投影片图1. 1-4,让学生对棱台的结构名称进一步地认识,另外注意结合棱柱及棱锥的结构名称、分类标准及表示方法理解认识棱台的结构名称、分类标准以及表示方法.在学习时一定要注意比较方法的运用,尤其要注意棱台与棱锥结构特点的区别与联系.用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分,这样的多面体叫做棱台.原棱锥的底面和截面分别叫做棱台的下底面和上底面.棱台的分类:底面是三角形、四边形、五边形……的棱台分别叫做三棱台、四棱台、五棱台…….棱台的表示:用各底面顶点字母表示,如图1.1-4可表示为四棱台ABCD A B C D ''''-.图1. 1-4【设计说明】通过学生对投影片图1. 1-1中(13)、(16)进行观察、分析,类比与棱柱及棱锥的联系与区别,得出棱台的概念、结构名称以及分类标准,培养学生自主学习能力及独立思考的习惯.通过比较进行学习,便于知识的建构.三、理解新知深化棱柱、棱锥、棱台的概念,掌握各自的结构特点.1、观察螺杆头部模型,有多少对平行的平面?能作为棱柱底面的有几对?底面 棱椎的顶点侧面 S D C侧棱解析:平行平面共有四对,但能作为棱柱底面的只有一对,即上下两个平行平面.老师引导学生探究:棱柱的哪些平行的面能作为底面,此时侧面是什么?哪些平行的平面不能作为底面?2、下列说法正确的是(B )A .由五个平面围成的多面体只能是四棱柱B .棱锥最少有四个顶点C .仅有一组对面平行的六面体是棱台D .一个面是多边形,其余各面是三角形的几何体是棱锥【设计说明】把学生的注意力引导到用概念进行判断上来,即看所给的几何体是否符合棱柱或棱锥、棱台定义的条件.四、运用新知例1、如图,过BC 的截面截去长方形的一角,所得的几何体是不是棱柱?解析:以A ABB ''和D DCC ''为底即知所得几何体是棱柱.【师生活动】有的学生可能会认为不是棱柱,因为如果选择上下两平面为底,则不符合棱柱结构特征的第二条.例2、已知长方体的长宽高之比是4:3:2614cm,则长宽高分别是多少?解析:设长方体的长为4a 222(4)(3)(26)7a a a a ++=所以 7142a a ==长方体的长宽高分别是8,6,6cm cm cm .【设计意图】体会立体几何中的数形结合思想.五、课堂小结教师提问:本节课我们学习了哪些知识,涉及到哪些数学思想方法?学生作答:棱柱、棱锥、棱台结构特征和有关概念.教师总结: 1、注意观察分析立体图形的特征,培养空间想象能力;2、归纳、类比和数形结合的思想方法. 【设计意图】通过对本节课的小结,让学生建构自己的知识树.六、布置作业必做题:教科书第8~9页,习题1. 1A 组第1、2题并观察身边的物体,举出一些具有棱锥、棱台、圆台、球体特征的物体,说明它们各自具有的特征选做题:1.已知棱长为a ,底面是正方形的四棱锥,求它底面上的高.2.已知一个正四棱台的两底面的面积分别为16和25,则这个棱台的高与截得该棱台的棱锥的高的比为 .3.下列三个命题,其中正确的有( )(1)用一个平面去截棱锥,棱锥底面和截面之间的部分是棱台;(2)两个地面平行且相似,其余各面都是梯形的多面体是棱台;(3)有两个面互相平行,其余四个面都是等腰梯形的六面体是棱台.七、教后反思本节课先展示大量几何体的实物、模型、图片等,让学生直观感受空间几何体的整体结构,然后再引导学生抽象出空间几何体的结构特征,之所以这样安排,是因为先从总体上认识空间几何体,再深入细节(点、直线、平面之间的位置关系)的认识,更符合学生的认识规律.本节亮点在于始终以学生为中心,给学生留下足够的时间供其操作、思考、交流,学生的探索及自主学习能力都能得到提高.本节不足之处是学生可能对棱柱与棱台定义中两面平行产生疑惑,面面平行是第二章的内容,学生还没有学习,可能对具体什么是面面平行,两面平行又会有什么性质结论不清楚,比较含糊,而在课堂上没有及时利用实物举例帮助学生解惑.比如:教室的屋顶与地面,学生课桌与地面等,让学生对它们进行描述,这样帮助学生形成“面面平行”的直观认识的话,教学效果更好.课下还需要对备课细节多琢磨,多从学生角度考虑教学设计,以提高教学质量.八、板书设计。

柱锥台球的结构特征

柱锥台球的结构特征

违例处理
• 犯规,需要被罚分或者 对手得到一个短杆
• 没有犯规,但没有打进 目标球,需要由对手发 球
边角球和中袋球的投掷技巧
边角球技巧
轻微的调整发力方式、杆的角度和击球位置,就能 够轻松打入边袋。
中袋球技巧
需要将目标点放在中心牵引点上,在左右两侧分别 安放辅助杆。
柱锥台球的比赛形式
1
单人比赛模式
杆尖
杆尖的材质、种类和不同用途。
其他附件
杆袋、伸缩杆等其他的辅助器材。
球杆材质的选择
1 木质球杆
传统的材质,手感好,重量适中,适合一般玩家。
2 碳素球杆
3 合金球杆
轻便,强度高,适合职业选手或高手。
重量大,手感独特,适合力量型玩家。
球杆的长度和重量
1
长度
标准长度为57英寸,适合普通玩家。职业选手会根据自己的身高和姿势适当调整。
大师赛的历史和名人堂介绍
年份 1963 1975 1985 1993
地点 纽约 东京 伦敦 谢菲尔德
冠军 莱斯利 卡尔·弗金 史蒂夫·戴维斯 斯蒂芬·亨德利
大师赛名人堂入选人员包括史蒂夫·戴维斯、亨德利、特里·格里芬、约翰·帕勒特等杰出选手。
柱锥台பைடு நூலகம்的结构特征
柱锥台球是一项极富技巧性的运动,需要掌握诸多技巧和规则才能获得成功, 让我们一起了解并探讨它的结构特征。
柱锥台球的基本结构
球桌
球桌的尺寸和标准

球的大小和重量,不同类型的球
球架
球架和球的排列方式
粉盒
粉盒和粉的作用
球杆的组成与结构
杆身
杆身的长短、粗细和形状。
杆柄
杆柄的材质、杆柄上的特殊材质和不同握法。

【高中数学】1.1.1柱锥台球的结构特征

【高中数学】1.1.1柱锥台球的结构特征

【高中数学】1.1.1柱锥台球的结构特征【高中数学】1.1.1柱、锥、台、球的结构特征一、教学目标1.知识与技能(1)通过物理操作增强学生的直觉。

(2)能根据几何结构特征对空间物体进行分类。

(3)能够用语言总结棱镜、金字塔、圆柱体、圆锥体、金字塔、圆锥体和球的结构特征。

(4)会表示有关于几何体以及柱、锥、台的分类。

2.过程和方法(1)让学生通过直观感受空间物体,从实物中概括出柱、锥、台、球的几何结构特征。

(2)让学生观察、讨论、总结和总结所学内容。

3.情感态度与价值观(1)让学生感受到空间几何是围绕现实生活而存在的,提高学生的学习积极性,同时提高学生的观察能力。

(2)培养学生的空间想象能力和抽象括能力。

二、教学重点和难点重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征。

难度:概括圆柱、圆锥体、平台和球体的结构特征。

三、教学用具(1)学习、观察和思考。

(2)实物模型、投影仪四、教学理念(一)创设情景,揭示课题1.老师问了一个问题:我们的生活周围有许多与众不同的建筑。

你能举几个例子吗?这些建筑的几何特征是什么?引导学生回忆、举例和相互交流。

教师及时评价学生的活动。

2.所举的建筑物基本上都是由这些几何体组合而成的,(展示具有柱、锥、台、球结构特征的空间物体),你能通过观察。

根据某种标准对这些空间物体进行分类吗?这是我们所要学习的内容。

(二)研究和探索新知识1.引导学生观察物体、思考、交流、讨论,对物体进行分类,分辩棱柱、圆柱、棱锥。

2.观察棱镜的几何对象和投影棱镜的图片。

它们各自的特点是什么?他们的共同特点是什么?3.组织学生分组讨论,每小组选出一名同学发表本组讨论结果。

在此基础上得出棱柱的主要结构特征。

(1)有两个面互相平行;(2)其余各面都是平行四边形;(3)每相邻两上四边形的公共边互相平行。

概括出棱柱的概念。

4.教师和学生结合图形,共同获得棱镜的相关概念和棱镜的表示。

5.提出问题:各种这样的棱柱,主要有什么不同?可不可以根据不同对棱柱分类?请列出你周围学习过几何特征的物体,并说出构成这些物体的几何特征?它们由什么基本几何组成?6.以类似的方法,让学生思考、讨论、概括出棱锥、棱台的结构特征,并得出相关的概念,分类以及表示。

高中数学人教版必修柱锥台球的结构特征教案(系列一)

高中数学人教版必修柱锥台球的结构特征教案(系列一)

第一柱、锥、台、球的结构特征(一)教学目标1.知识与技能(1)通过实物操作,增强学生的直观感知.(2)能根据几何结构特征对空间物体进行分类.(3)会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征.(4)会表示有关于几何体以及柱、锥、台的分类.2.过程与方法(1)让学生通过直观感受空间物体,从实物中概括出柱、锥、台、球的几何结构特征.(2)让学生观察、讨论、归纳、概括所学的知识.3.情感、态度与价值观(1)使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力.(2)培养学生的空间想象能力和抽象概括能力.(二)教学重点、难点重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征.难点:柱、锥、台、球的结构特征的概括.(三)教学方法通过提出问题,学生观察空间实物及模型,先独立思考空间几何体的结构特征,然后相互讨论、交流,最后得出完整结论.例1 如图,过BC的截面截去长方形的一角,所得的几何体是不是棱柱?解析:以A′ABB′和D′DCC′为底即知所得几何体是棱柱.例2 观察螺杆头部模型,有多少对平行的平面?能作为棱柱底面的有几对?解析:略教师投影例一并读题.有的学生可能会认为不是棱柱,因为如果选择上下两平面为底,则不符合棱柱结构特征的第二条.引导学生讨论:如何判定一个几何体是不是棱柱?教学时应当把学生的注意力引导到用概念进行判断上来,即看所给的几何体是否符合棱柱定义的三个条件.教师投影例2并读题.教师引导学生分析得出,平行平面共有四对,但能作为棱柱底面的只有一对,即上下两个平行平面.引导学生探究:棱柱的哪些平行的面能作为底面,此时侧面是什么?哪些平行的平面不能作为底面?通过改变棱柱放置的位置(变式引导学生应用概念判别几何体.加深对棱柱结构特征的认识.棱锥的结构特征1.观察教材节2页的图(14)(15)它们有什么共同特征?学生进行观察、讨论、然后归纳,教师注意引导,整理.得出棱锥的结构特征,有关概从分析具体棱锥出发,通2.请类比棱柱、得出相关概念,分类及表示. 念分类及表示方法.棱锥的结构特征:1.有一个面是多边形.2.其余各面都是有一个公共点的三分形.过概括棱锥的共同特点,得出棱锥的结构特征.棱台的结构特征1.观察教材第2页中图(13)、(16思考它们可以怎样得到?有什么共同特征?2.请仿照棱锥中关于侧面、侧棱、顶点的定义,给棱台相关概念下定义.教师在学生讨论中可引导学生思考棱台可以怎样得到,从而迅速得出棱台的结构特征.由一个平行于底面的平面去截棱锥,底面与截面之间的部分.突出棱台的形成过程,把握棱台的结构特征.圆柱的结构特征观察下面这个几何体(圆柱)及得到这种几何体的方法,思考它与棱柱的共同特点,给它定个名称并下定义.教师演示,学生观察,然后学生给出圆柱的名称及定义,教师给出侧面、底面、轴的定义.以矩形一边所在直线为旋转轴,其余三边旋转而成的面所围成的旋转体叫做圆柱.圆柱和棱锥统称为柱体.突出圆柱的形成过程,把握圆柱的结构特征.圆锥的结构特征1.观察下面这个几何体(圆锥)及得到这种几何体的方法,思考它与棱锥的共同特点,给它定个名称并下定义.以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的面所围成的旋转体.突出圆锥的形成过程,把握圆锥的2.能否将轴改为斜边?圆锥与棱锥统称为锥体. 结构特征.圆台的结构特征下面这种几何体称为圆台,请思考圆台可以用什么办法得到?请在教材图119上标上圆台的轴、底面、侧面、母线.学生1:用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分.学生2:以直角梯形,垂直于底面的腰为旋转轴,其余各边旋转形成的面所围成的旋转体(教师演示)师:棱台与圆台统称为台体.开放性设计,学生推理与教师演示结合,培养学生思维发散性与灵活性,加深学生对概念理解.球的结构特征观察球的模型,思考球可以用什么办法得到?球上的点有什么共同特点.学生1:以半圆的直径所在直线为旋转思,半圆面旋转一圆形的旋转体叫做球体,简称球.(教师演示)学生2:球上的点到求心的距离等于定长.教师讲解球的球心、半径、直径、表示方法.开放性设计,学生推理与教师演示结合,培养学生思维发散性与灵活性,加深学备用例题例1 下列命题中错误的是( )A .圆柱的轴截面是过母线的截面中面积最大的一个B .圆锥的轴截面是所有过顶点的截面中面积最大的一个C .圆台的所有平行于底面的截面都是圆D .圆锥所有的轴截面是全等的等腰三角形解析圆锥的母线长相长,设为l ,若圆锥截面三角形顶角为α,圆锥轴截面三角形顶角为θ,则0<α≤θ. 当θ≤90°时,截面面积S = αsin 212l ≤θsin 212l . 当90°<θ<180°时.截面面积S ≤222190sin 21l l =︒⋅,故选B. 例2 根据下列对几何体结构特征的描述,说出几何体的名称.(1)由八个面围成,其中两个面是互相平行且全等的正六边形,其它各面都是矩形; (2)一个等腰梯形绕着两底边中点的连线所在的直线旋转180°形成的封闭曲面所围成的图形.分析要判断几何体的类型,首先应熟练掌握各类几何体的结构特征.解析(1)如图1,该几何体满足有两个面平行,其余六个面都是矩形,可使每相邻两个面的公共边都相互平行,故该几何体是六棱柱.(2)如图2,等腰梯形两底边中点的连线将梯形平分为两个直角梯形,每个直角梯形旋转180°形成半个圆台,故该几何体为圆台.点评:对于不规则的平面图形绕轴旋转问题,要对原平面图形作适当的分割,再根据圆柱、圆 锥、圆台的结构特征进行判断.例3 把一个圆锥截成圆台,已知圆台的上、下底面半径的比是1:4,母线长是10cm ,求圆锥的母线长.分析 画出圆锥的轴截面,转化为平面问题求解.解析 设圆锥的母线长为ycm ,圆台上、下底面半径分别是xcm 、4xcm.作圆锥的轴截面如图. 在Rt △SOA 中,O′A′∥OA ,∴SA′∶SA= O′A′∶OA ,即(y10)∶y=x ∶4x. ∴y=1331.∴圆锥的母线长为1331cm点评圆柱、圆锥、圆台可以看做是分别以矩形的一边、直角三角形的一直角边、直角梯形垂直于底边的腰所在的直线为旋转轴,其余各边旋转而成的曲面所围成的几何体,其轴截面分别是矩形、等腰三角形、等腰梯形,这些轴截面集中反映了旋转体的各主要元素,处理旋转体的有关问题一般要作出轴截面.图2图1图4—1—8。

柱锥台球的结构特征教案

柱锥台球的结构特征教案

1.1空间几何体的结构一、提出问题(1)过BC的截面截去长方体的一角,截去的几何体是不是棱柱,余下的几何体是不是棱柱?(2)观察长方体,共有多少对平行平面?能作为棱柱的底面的有几对?(1)观察右边的棱柱,共有多少对平行平面?能作为棱柱的底面的有几对?(4)棱柱的任何两个平行平面都可以作为棱柱的底面吗?(5)棱柱两个互相平行的面以外的面都是平行四边形吗?(6)为什么定义中要说“其余各面都是四边形,并且相邻两个四边形的公共边都互相平行,”而不是简单的只说“其余各是平行四边形呢”?例1 下列命题中错误的是()A.圆柱的轴截面是过母线的截面中面积最大的一个B.圆锥的轴截面是所有过顶点的截面中面积最大的一个C.圆台的所有平行于底面的截面都是圆D.圆锥所有的轴截面是全等的等腰三角形【解析】圆锥的母线长相长,设为l,若圆锥截面三角形顶角为α,圆锥轴截面三角形顶角为θ,则0<α≤θ.故选B.例2 根据下列对几何体结构特征的描述,说出几何体的名称.(1)由八个面围成,其中两个面是互相平行且全等的正六边形,其它各面都是矩形;(2)一个等腰梯形绕着两底边中点的连线所在的直线旋转180°形成的封闭曲面所围成的图形.【分析】要判断几何体的类型,首先应熟练掌握各类几何体的结构特征.【解析】(1)如图1,该几何体满足有两个面平行,其余六个面都是矩形,可使每相邻两个面的公共边都相互平行,故该几何体是六棱柱.(2)如图2,等腰梯形两底边中点的连线将梯形平分为两个直角梯形,每个直角梯形旋转180°形成半个圆台,故该几何体为圆台.点评:对于不规则的平面图形绕轴旋转问题,要对原平面图形作适当的分割,再根据圆柱、圆 锥、圆台的结构特征进行判断.例3 把一个圆锥截成圆台,已知圆台的上、下底面半径的比是1:4,母线长是10cm ,求圆锥的母线长.【分析】 画出圆锥的轴截面,转化为平面问题求解.【解析】 设圆锥的母线长为y cm ,圆台上、下底面半径分别是x cm 、4x cm.作圆锥的轴截面1图2图1【点评】圆柱、圆锥、圆台可以看做是分别以矩形的一边、直角三角形的一直角边、直角梯形垂直于底边的腰所在的直线为旋转轴,其余各边旋转而成的曲面所围成的几何体,其轴截面分别是矩形、等腰三角形、等腰梯形,这些轴截面集中反映了旋转体的各主要元素,处理旋转体的有关问题一般要作出轴截面.。

江苏省麒麟中学高中数学 1.1.1柱锥台球的结构特征教案 苏教版必修2

江苏省麒麟中学高中数学 1.1.1柱锥台球的结构特征教案 苏教版必修2

【教学目标】1.通过观察实物、图片,使学生理解并能归纳出柱、锥、台、球的结构特征;2.让学生自己观察,通过直观感加强理解;3.培养学生善于通过观察实物形状到归纳其性质的能力.【教学重点】让学生通过观察实物及图片概括出棱柱、棱锥、棱台、圆柱、圆锥、圆台、球的结构特征【教学难点】棱柱、棱锥、棱台、圆柱、圆锥、圆台、球的结构特征的概括.【教学过程】(一)创设情境 引入新课在我们周围存在着各种各样的物体,它们都占据着空间的一部分,如果我们只考虑这些物体的形状和大小,而不考虑其他因素,那么由这些物体抽象出来的空间图形就叫做空间几何体.本节课我们主要从结构特征方面认识几种最基本的空间几何体.观察自己书桌上和课本上的图片思考下面的问题:1.这些图片中的物体具有怎样的形状?2.日常生活中,我们把这些物体的形状叫做什么?如何描述它们的形状?3.组成这些几何体的每个面有什么特点?面与面之间有什么关系?(二)讲授新课一、两类几何体通过观察可以发现,(2)、(5)、(7)、(9)、(13)、(14)、(15)、(16)具有同样的特点:组成几何体的每个面都是平面图形,并且都是平面多边形;(1)、(3)、(4)、(6)、(8)、(10)、(11)、(12)具有同样的特点:组成它们的面不全是平面图形(学生总结).一般地,我们把有若干个平面多边形围成的几何体叫做多面体(图1).围成多面体的各个多边形叫做多面体的面,如面ABCD ,面//B BCC ;相邻两个面的公共边叫做多边形的棱,如棱AB ,棱/AA ;棱与棱的公共点叫做多面体的顶点,如顶点/,D A .如(2)、(5)、(7)、(9)、(13)、(14)、(15)、(16)这些物体都具有多面体的形状.我们把由一个平面图形绕它所在平面内的一条定直线旋转所形成的封闭几何体叫做旋转体(图2).这条定直线叫做旋转体的轴.(1)、(3)、(4)、(6)、(8)、(10)、(11)、(12)这些物体都具有旋转体的形状2.棱柱的结构特征 现在我们来观察图1的(2)、(5)他们有什么共同的结构特征?(学生看图思考后,师生共同完成) 棱柱:一般地,有两个面相互平行,期于各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面组成的多面体; / 棱 图1 轴A A 图2棱柱的面:棱柱中两个相互平行的面叫做棱柱的底面,简称底;其余各面叫做棱柱的侧面;棱柱的侧棱:相邻侧面的公共边;棱柱的顶点:侧面与地面的公共顶点.棱柱的分类:底面是三角形、四边形、五边形…的棱柱分别叫做三棱柱、四棱柱、五棱柱……棱柱的表示方法:我们用表示底面各顶点的字母表示棱柱,如图4的六棱柱表示为棱柱ABCDEF -//////F E D C B A .(可让学生观察周围的事物,找找哪些是棱柱) 3.棱锥和棱台的结构特征再观察图1的(14)、(15)与(13)、(16),这两类物体之间有什么关系?他们有哪些结构特征?(学生观察图形自己归纳总结)◇图1的(14)、(15)这样的多面体,均由平面图形围成,其中一个是多边形,其余各面都是三角形,并且这些三角形有一个公共顶点.棱锥:一般地,有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的多面体;棱锥的面:多边形是棱锥的底面,有一个公共顶点的三角形叫做棱锥的侧面; 棱锥的顶点:各侧面的公共顶点;棱锥的侧棱:相邻侧面的公共边;棱锥的分类:底面是三角形、四边形、五边形的棱锥分叫做三棱锥、四棱锥、五棱锥. 棱锥的表示方法:棱锥用表示顶点和底面各顶点的字母表示,图5的四棱锥可表示为棱锥S-ABCD.(可以师生共同完成)◇图1(13)、(16)这种几何结构的多面体,是用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分,这样的多面体(图6)叫做棱台.(让学生仿照棱锥中关于侧面、侧棱、顶点的定义说出棱台侧面、侧棱、顶点的定义,并在图中标出它们,并注意棱台的分类和表示方法)4.圆柱的结构特征如书上图1-1的(1),让学生思考它是由什么旋转而得到的.它的平面图如下(图1),我们可以 发现这个旋转体是以矩形的一边所在的直线为旋转轴,其余三边旋转形成的面所围成的旋转图1.1-4图1.1-5 图1.1-6 图1.1-7体,而此类旋转体我们称它为圆柱.圆柱的轴:旋转轴;圆柱的面:垂直于轴的边旋转而成的圆面叫做圆柱的底面;平行于轴的边旋转而成的曲面叫做圆柱的侧面;圆柱侧面的母线:无论旋转到什么位置,不垂直于轴的边都叫做母线.O/.圆柱的表示方法:圆柱用表示它的轴的字母表示,如图1可表示为圆柱O(让学生据一些生活中的实例,帮助理解)注:圆柱和棱柱统称为柱体.5.圆锥和圆台的结构特征观察书上图1-1的(6),思考它应该是由什么旋转而成的,那(10)又是由什么旋转而成的呢?它们之间有什么关系呢?(让学生借助上节课学习的棱柱和棱台的方法来学习圆锥和圆台,学生说,老师纠正)图1.1-8 图1.1-9圆锥:以直角三角形的一条直角边所在的直线为旋转轴,其余两边旋转形成的面所围成旋转体;如图2.圆台:于棱台类似,用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做圆台.如图3.圆锥、圆台都和圆柱一样有轴、底面、侧面和母线,让学生自己在两个图上标示出来.同时注意它们的表示方法.注:1.棱锥和圆锥统称为椎体;2.棱台和圆台统称为台体.(回答前面的问题)6.球的结构特征观察课本第2页的图1-1的(11)、(12),日常生活中我们叫它为球,那用数学语言怎么描述呢?它是由什么旋转而得到的呢?球体:以半圆的直径所在的直线为旋转轴,半圆面旋转一周形成的旋转体叫做球体.简称球.球心:半圆的圆心;半径:半圆的半径;直径:半圆的直径.球体的表示方法:常用表示球心的字母O表示,如图4可表示为球O.四、课堂小结本节课我们主要是通过观察实例,探究发现了棱柱、棱锥、棱台的结构特征,学习了圆柱、圆锥、圆台、球的结构特征,要能识别这几种几何体,准确地说出它们的结构特征.五、课后思考题1、棱柱、棱锥、棱台都是多面体,他们在结构上有哪些相同点和不同点?三者的关系如何?当底面发生变化时,他们能否相互转化?2、思考一下圆柱、圆锥、圆台三者之间的关系.。

高中数学教案之高一数学人教版必修二柱锥台球的结构特征新编

高中数学教案之高一数学人教版必修二柱锥台球的结构特征新编
教学过程
教学内容
备注
一、
自主学习
1.棱柱、棱锥的图形结构分别有哪几个特征
2.在空间几何体中,其他一些图形各有什么结构特征呢
二面去截棱锥,截面与底面之间的部分形成另一个多面体,这样的多面体叫做是什么.它有哪些结构特征
思考1:现实生活中有哪些物体是球状几何体
思考2:从旋转的角度分析,球是由什么图形绕哪条直线旋转而成的
高中数学教案之高一数学人教版必修二柱锥台球的结构特征新编
高一数学必修二教案
科目:数学
课题
§1.1.2柱、锥、台、球的结构特征
课型
新课
教学目标
1.通过观察实物、图片,使学生理解并能归纳出柱、锥、台、球的结构特征;
2.让学生自己观察,通过直观感加强理解;
3.培养学生善于通过观察实物形状到归纳其性质的能力.
三、
问题探究
四、
课堂检测
五、
小结评价
本节课我们主要是通过观察实例,探究发现了棱柱、棱锥、棱台的结构
特征,学习了圆柱、圆锥、圆台、球的结构特征,要能识别这几种几何体,准确地说出它们的结构特征.
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章空间几何体1.1空间几何体的结构1.1.1柱、锥、台、球的结构特征(1)教材分析几何学是研究现实世界中物体的形状、大小和位置关系的学科.空间几何体是几何学的重要组成部分,是第二章研究空间点、线、面位置关系的载体,对于培养和发展学生的空间想象能力,推理论证能力、运用图形语言进行交流的能力有着十分重要的作用.第一章空间几何体的第一节空间几何体的结构包括两节内容.本节课是第一节的第一课时,介绍了棱柱、棱锥、棱台等多面体的结构特征,是学习第二节简单组合体的结构特征的基础,同时体会和旋转体的区别.课时分配本节是空间几何体的第一节,用2课时完成,第1课时主要讲解棱柱、棱锥、棱台的结构特征.教学目标重点:让学生感受大量空间实物及模型、概括出棱柱、棱锥、棱台的结构特征.难点:棱柱、棱锥、棱台的结构特征的概括.知识点:让学生观察、讨论、归纳、概括所学的知识.能力点:培养学生的空间想象能力和抽象概括能力.自主探究点:通过实物操作,增强学生的直观感知.拓展点:会用语言概述棱柱、棱锥、棱台的结构特征.教具准备多媒体课件,教具课堂模式课前自主预习,完成精讲精练自主学习;课堂总结引导式教学.一、引入新课【问题】在我们生活中有不少有特色的建筑物,你能举一些例子吗?这些建筑的几何结构特征如何?【师生活动】教师借助多媒体动态演示不同的建筑,引导学生观察这些建筑物的几何特征;学生积极思考并回答教师提出的问题;最后教师总结所举的建筑物基本上都是由这些几何体组合而成的(展示具有棱柱、棱锥、棱台结构特征的空间物体),引出本节课的课题。

【设计说明】教师借助不同的建筑物,提出新的问题,有利于开阔学生的视野,引起学生的思考,并激发学生的学习兴趣.二、探究新知1.分析空间几何体的结构特征、分类归纳图1. 1-1【师生活动】教师出示投影片图1. 1-1,按小组分给学生实物,引导学生从空间几何体的名称,结构特征,与平面图形的联系以及组成几何体的每个面的特点,面与面的关系等方面进行观察、思考,学生讨论并尝试回答,教师引导学生观察(2)(5)(7)(9)(13)(14)(15)(16)与(1)(3)(4)(6)(8)(10)(11)(12)的不同,然后给出多面体的定义和旋转体的定义,教师要在引导学生感知其形成过程的基础上加以理解.一般地,我们把由若干个平面多边形围成的几何体叫做多面体.围成多面体的各个多边形叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点.我们把由一个平面图形绕它所在平面内的一条定直线旋转所形成的封闭几何体叫做旋转体.这条定直线叫做旋转体的轴.【设计意图】通过具体的实物及实物图象,引导学生主动地对图形及实物进行观察、分析、比较,并由图形的特点进行分类,根据不同类别图形的特点,抽象概括出多面体的定义,培养学生的观察、分类、概括能力.2.棱柱的结构特征【问题】通过观察图1. 1-1中的(2)(5)(7)(9),你能根据其结构特点概括出棱柱的定义吗?【师生活动】学生分成小组对这两种模型进行观察、讨论,概括出这两种几何体的结构特点,并由此得出棱柱的定义.一般地,有两个面互相平行;其余各面都是四边形,并且每相邻的两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱.两个相互平行的面叫底面;其余各面叫棱柱的侧面;相邻侧面的 公共边叫棱柱的侧棱;侧面与底面的公共顶点叫棱柱的顶点.棱柱的分类:底面是三角形、四边形、五边形……的棱柱分别叫做三棱柱、四棱柱、五棱柱……. 棱柱的表示:底面各顶点的字母表示棱柱,如图1.1 -2可表示为 六棱柱ABCDEF A B C D E F ''''''-教师出示投影片图1.1 -2,学生进一步落实棱柱的结构特征. 图1.1 -2 【设计说明】通过引导学生对长方体的包装盒、螺丝帽模型等具体的实物进行观察、比较、分析,一方面进一步感知多面体的定义,另一方面可引导学生抽象出棱柱的定义,分析其结构上的共同点,分类的原则,培养学生的观察、分析、解决问题的能力.C′ B′ E′ A′ D′ F′ 侧面 D E 侧棱 F C 顶点 BA 底面3.棱锥的结构特征【师生活动】教师出示投影片图1. 1-1,引导学生通过观察(14)、(15),指出其结构特点与棱柱的区别与联系,由学生通过合作学习,自己归纳出棱锥的结构特点,学生分组讨论,通过比较分析,得到(14)、(15)与棱柱的共同点是,其各个面均由平面图形围成,不同点是只有一个面是多边形,其余各面都是三角形,并且这些三角形都有一个公共顶点.一般地,有一个面是多边形;其余各面都是有一个公共顶点的三角形,由这些面所围成的多面体叫做棱锥.这个多边形 面叫做棱锥的底面或底;有公共顶点的各个三角形面叫做棱锥 的侧面;各侧面的公共顶点叫做棱锥的顶点;相邻侧面的公共 边叫做棱锥的侧棱. 棱锥的分类:底面是三角形、四边形、五边形……的棱锥 分别叫做三棱锥、四棱锥、五棱锥……. 棱锥的表示:用表示顶点和底面各顶点的字母来表示,如图1. 1-3可表示为四棱锥S-ABCD .图1. 1-3【设计说明】通过引导学生把投影片图1.1-1中(14)、(15)的结构特点与棱柱的结构特点进行分析总结,让学生利用类比的思维方法,探索出棱锥的定义、结构特点以及表示方法,培养学生自主探索的学习习惯和分析问题、解决问题的能力.4.棱台的结构特征【问题】出示投影片图1.1—1中(13)、(16),通过与棱柱、棱锥的结构特点相比较,你能得到棱台的概念、结构名称及分类标准吗?【师生活动】学生自主发言,教师及时点评得出棱台的定义、结构名称、分类标准以及表示方法,可以借助投影片图1. 1-4,让学生对棱台的结构名称进一步地认识,另外注意结合棱柱及棱锥的结构名称、分类标准及表示方法理解认识棱台的结构名称、分类标准以及表示方法.在学习时一定要注意比较方法的运用,尤其要注意棱台与棱锥结构特点的区别与联系.用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分,这样的多面体叫做棱台.原棱锥的底面和截面分别叫做棱台的下底面和上底面.棱台的分类:底面是三角形、四边形、五边形……的棱台分别叫做三棱台、四棱台、五棱台…….棱台的表示:用各底面顶点字母表示,如图1.1-4可表示为四棱台ABCD A B C D ''''-.图1. 1-4【设计说明】通过学生对投影片图1. 1-1中(13)、(16)进行观察、分析,类比与棱柱及棱锥的联系与区别,得出棱台的概念、结构名称以及分类标准,培养学生自主学习能力及独立思考的习惯.通过比较进行学习,便于知识的建构.三、理解新知深化棱柱、棱锥、棱台的概念,掌握各自的结构特点.1、观察螺杆头部模型,有多少对平行的平面?能作为棱柱底面的有几对?底面 棱椎的顶点侧面 S D CA B侧棱解析:平行平面共有四对,但能作为棱柱底面的只有一对,即上下两个平行平面.老师引导学生探究:棱柱的哪些平行的面能作为底面,此时侧面是什么?哪些平行的平面不能作为底面?2、下列说法正确的是(B )A .由五个平面围成的多面体只能是四棱柱B .棱锥最少有四个顶点C .仅有一组对面平行的六面体是棱台D .一个面是多边形,其余各面是三角形的几何体是棱锥【设计说明】把学生的注意力引导到用概念进行判断上来,即看所给的几何体是否符合棱柱或棱锥、棱台定义的条件.四、运用新知例1、如图,过BC 的截面截去长方形的一角,所得的几何体是不是棱柱?解析:以A ABB ''和D DCC ''为底即知所得几何体是棱柱.【师生活动】有的学生可能会认为不是棱柱,因为如果选择上下两平面为底,则不符合棱柱结构特征的第二条.例2、已知长方体的长宽高之比是4:3:2614cm,则长宽高分别是多少?解析:设长方体的长为4a 222(4)(3)(26)7a a a a ++=所以 7142a a ==长方体的长宽高分别是8,6,6cm cm cm .【设计意图】体会立体几何中的数形结合思想.五、课堂小结教师提问:本节课我们学习了哪些知识,涉及到哪些数学思想方法?学生作答:棱柱、棱锥、棱台结构特征和有关概念.教师总结: 1、注意观察分析立体图形的特征,培养空间想象能力;2、归纳、类比和数形结合的思想方法. 【设计意图】通过对本节课的小结,让学生建构自己的知识树.六、布置作业必做题:教科书第8~9页,习题1. 1A 组第1、2题并观察身边的物体,举出一些具有棱锥、棱台、圆台、球体特征的物体,说明它们各自具有的特征选做题:1.已知棱长为a ,底面是正方形的四棱锥,求它底面上的高.2.已知一个正四棱台的两底面的面积分别为16和25,则这个棱台的高与截得该棱台的棱锥的高的比为 .3.下列三个命题,其中正确的有( )(1)用一个平面去截棱锥,棱锥底面和截面之间的部分是棱台;(2)两个地面平行且相似,其余各面都是梯形的多面体是棱台;(3)有两个面互相平行,其余四个面都是等腰梯形的六面体是棱台.七、教后反思本节课先展示大量几何体的实物、模型、图片等,让学生直观感受空间几何体的整体结构,然后再引导学生抽象出空间几何体的结构特征,之所以这样安排,是因为先从总体上认识空间几何体,再深入细节(点、直线、平面之间的位置关系)的认识,更符合学生的认识规律.本节亮点在于始终以学生为中心,给学生留下足够的时间供其操作、思考、交流,学生的探索及自主学习能力都能得到提高.本节不足之处是学生可能对棱柱与棱台定义中两面平行产生疑惑,面面平行是第二章的内容,学生还没有学习,可能对具体什么是面面平行,两面平行又会有什么性质结论不清楚,比较含糊,而在课堂上没有及时利用实物举例帮助学生解惑.比如:教室的屋顶与地面,学生课桌与地面等,让学生对它们进行描述,这样帮助学生形成“面面平行”的直观认识的话,教学效果更好.课下还需要对备课细节多琢磨,多从学生角度考虑教学设计,以提高教学质量.八、板书设计。

相关文档
最新文档