《全等三角形的判定(SSS)》教案
《三角形全等的判定(SSS)》教案
11.2.1《三角形全等的判定(SSS)》今天我讲课的题目是《三角形全等的判定》(SSS)。
本节课是人教版《义务教育课程标准实验教科书》八年级上册第十一章第二节第一课时的内容。
1.教材的地位与作用:三角形全等的判定是中学教学重要内容之一,是空间与图形的基础知识。
本节内容是学生在认识三角形的基础上,学习了全等三角形的概念、全等三角形的性质后展开的,是证明线段相等、角相等的重要方法,是今后学习多边形等知识的基础。
本节课是三角形全等的判定的第1课时,将为下节课探索三角形全等的其它判定方法打下坚实的基础;同时为今后探索三角形相似的条件提供很好的模式和方法。
2.教学重点难点2.1教学重点:通过探索三角形全等的“边边边”条件,可以让学生经历和体验知识的形成过程,了解数学研究问题的方法,领会数学思想,获得数学活动的经验。
同时提高探究、发现和创新的能力,因此本节课的教学重点为掌握三角形全等的“边边边”的条件。
2.2教学难点:八年级学生年龄、生理及心理特征还不具备独立系统地推理论证几何问题的能力,思维有局限性,考虑问题还不够全面;在此基础上我确定本节课的教学难点为“三角形全等判定的探索过程”和“三角形全等判定的应用”。
3.教学目标(四维目标)1.知识与技能:掌握三角形全等的"边边边"条件, 能初步应用“边边边”条件判定两个三角形全等。
2.数学思考:经历探索三角形全等判定的过程,体验分类讨论的数学思想,体验用操作、归纳得出数学结论的过程。
3.问题解决:通过探究三角形全等的条件的活动,培养学生合作交流的意识以及发现问题的能力。
让学生学会思考、并注重书写格式的养成。
4.情感态度:通过探究三角形全等的条件的活动,培养学生合作交流的意识和大胆猜想、乐于探究的良好品质。
4.学情分析本节课以全等三角形定义和性质为载体,逐步探究出三角形全等“SSS”的判定方法,它是两个三角形间最简单、最常见的关系。
我所面对的学生是八年级的学生,他们的接受能力比七年级学生强,思维也更加的开阔,但独立解题能力比较差,需要在课堂上进一步的加强与引导,特制订了以下的教法和学法。
全等三角形的判定(SSS)说课稿
全等三角形的判定(SSS)第一课时一、教材分析:(一)本节内容在全书和章节的地位本节内容选自人教版初中数学八年级上册第十一章,本课是探索三角形全等条件的第一课时,是在学习了全等三角形的概念,全等三角形的性质后展开的。
对于全等三角形的研究,实际是平面几何对封闭的两个图形关系研究的第一步,它是两个三角形间最简单、最常见的关系,它不仅是下节课探索三角形全等其它条件的基础,还是证明线段相等、角相等的重要依据,同时也为今后探索直角三角形全等的条件以及三角形相似的条件提供很好的模式和方法。
因此,本节课的知识具有承前启后的作用,占有相当重要的地位。
(二)三维教案目标1.知识与能力目标因为是第一课时,本节课主要给学生讲解全等三角形的“SSS”判定公理,同时理解三角形的稳定性,能用三角形全等解决一些现实问题,熟悉掌握“SSS”|的判定方法,能够自主探索,动手操作,在过程中体会到自主学习索取知识的乐趣,从而启发学生学习数学的方式,为下节课打下基础。
2.过程与方法目标通过分解三角形的各个边和角,两个三角形做对比,用问题分解法求解,探索全等三角形的全等条件,经历认知探知过程,体会挖掘知识的过程。
通过两个三角形边与角的对比发现全等三角形的判定条件“SSS”,锻炼学生分析问题,解决问题的能力。
3.情感态度与价值观培养学生勇于探索、团结协作的精神,积累数学活动的经验。
(三)重点与难点1.教案难点认识三角形全等的发现过程以及边边边的辨析。
能够对运用三角形判定公理“SSS”解决三角形全等问题,对三角形其他定理的拓展与思考,了解三角形的稳定性。
2.教案重点利用性质和判定,关键是学会准确地找出两个全等三角形中的对应边与对应角。
准确理解“SSS”三角形判定的公理,规范书写全等三角形的证明;二、教法与学情分析1.教法分析数学是一门培养人的思维,发展人的思维的重要学科,因此在教案中,不仅要使学生知其然,而且还要使学生知其所以然。
针对初二年纪学生的认知结构和心理特征,和本节课的特色。
三角形全等的判定(SSS) 教案
三角形全等的判定(SSS)教案三边对应相等的两个三角形全等(简写成“边边边”或“SSS”).两边和它们的夹角对应相等的两个三角形全等(简写成“边角边”或“SAS•”). 两角和它们的夹边对应相等的两个三角形全等(简写成“角边角”或“ASA”). 两个角和其中一个角的对边对应相等的两个三角形全等(简与成AAS).斜边和一条直角边对应相等的两个直角三角形全等(简写成“斜边、直角边”或“HL”).角的平分线上的点到角的两边的距离相等.(性质定理)到角的两边的距离相等的点在角的平分线上.(判定定理)教学内容本节课主要内容是探索三角形全等的条件(SSS),•及利用全等三角形进行证明.教学目标1.知识与技能了解三角形的稳定性,会应用“边边边”判定两个三角形全等.2.过程与方法经历探索“边边边”判定全等三角形的过程,解决简单的问题.3.情感、态度与价值观培养有条理的思考和表达能力,形成良好的合作意识.重、难点与关键1.重点:掌握“边边边”判定两个三角形全等的方法.2.难点:理解证明的基本过程,学会综合分析法.3.关键:掌握图形特征,寻找适合条件的两个三角形.教具准备一块形状如图1所示的硬纸片,直尺,圆规.(1) (2)教学方法采用“操作──实验”的教学方法,让学生亲自动手,形成直观形象.教学过程一、设疑求解,操作感知【教师活动】(出示教具)问题提出:一块三角形的玻璃损坏后,只剩下如图2所示的残片,•你对图中的残片作哪些测量,就可以割取符合规格的三角形玻璃,与同伴交流.【学生活动】观察,思考,回答教师的问题.方法如下:可以将图1•的玻璃碎片放在一块纸板上,然后用直尺和铅笔或水笔画出一块完整的三角形.如图2,•剪下模板就可去割玻璃了.【理论认知】如果△ABC≌△A′B′C′,那么它们的对应边相等,对应角相等.•反之,•如果△ABC 与△A′B′C′满足三条边对应相等,三个角对应相等,即AB=A′B′,BC=B′C′,CA=C′A′,∠A=∠A′,∠B=∠B′,∠C=∠C′.这六个条件,就能保证△ABC≌△A′B′C′,从刚才的实践我们可以发现:•只要两个三角形三条对应边相等,就可以保证这两块三角形全等.信不信?【作图验证】(用直尺和圆规)先任意画出一个△ABC,再画一个△A′B′C′,使A′B′=AB,B′C′=BC,C′A′=CA.把画出的△A′B′C′剪下来,放在△ABC上,它们能完全重合吗?(即全等吗)【学生活动】拿出直尺和圆规按上面的要求作图,并验证.(如课本图11.2-2所示)画一个△A′B′C′,使A′B′=AB′,A′C′=AC,B′C′=BC:1.画线段取B′C′=BC;2.分别以B′、C′为圆心,线段AB、AC为半径画弧,两弧交于点A′;3.连接线段A′B′、A′C′.【教师活动】巡视、指导,引入课题:“上述的生活实例和尺规作图的结果反映了什么规律?”【学生活动】在思考、实践的基础上可以归纳出下面判定两个三角形全等的定理.(1)判定方法:三边对应相等的两个三角形全等(简写成“边边边”或“SSS”).(2)判断两个三角形全等的推理过程,叫做证明三角形全等.【评析】通过学生全过程的画图、观察、比较、交流等,逐步探索出最后的结论──边边边,在这个过程中,学生不仅得到了两个三角形全等的条件,同时增强了数学体验.二、范例点击,应用所学【例1】如课本图11.2─3所示,△ABC 是一个钢架,AB=AC ,AD 是连接点A 与BC 中点D 的支架,求证△ABD ≌△ACD .(教师板书)【教师活动】分析例1,分析:要证明△ABD ≌△ACD ,可看这两个三角形的三条边是否对应相等.证明:∵D 是BC 的中点,∴BD=CD在△ABD 和△ACD 中,,.AB AC BD CD AD AD =⎧⎪=⎨⎪=⎩∴△ABD ≌△ACD (SSS ).【评析】符号“∵”表示“因为”,“∴”表示“所以”;从例1可以看出,•证明是由题设(已知)出发,经过一步步的推理,最后推出结论(求证)正确的过程.书写中注意对应顶点要写在同一个位置上,哪个三角形先写,哪个三角形的边就先写.三、实践应用,合作学习【问题思考】已知AC=FE ,BC=DE ,点A 、D 、B 、F 在直线上,AD=FB (如图所示),要用“边边边”证明△ABC ≌△FDE ,除了已知中的AC=FE ,BC=DE 以外,还应该有什么条件?怎样才能得到这个条件?【教师活动】提出问题,巡视、引导学生,并请学生说说自己的想法.【学生活动】先独立思考后,再发言:“还应该有AB=FD ,只要AD=FB 两边都加上DB 即可得到AB=FD.”【教学形式】先独立思考,再合作交流,师生互动.四、随堂练习,巩固深化课本P8练习.【探研时空】如图所示,AB=DF,AC=DE,BE=CF,BC与EF相等吗?•你能找到一对全等三角形吗?说明你的理由.(BC=EF,△ABC≌△DFE)五、课堂总结,发展潜能1.全等三角形性质是什么?2.正确地判断出全等三角形的对应边、对应角,•利用全等三角形处理问题的基础,你是怎样掌握判断对应边、对应角的方法?3.“边边边”判定法告诉我们什么呢?•(答:只要一个三角形三边长度确定了,则这个三角形的形状大小就完全确定了,这就是三角形的稳定性)六、布置作业,专题突破1.课本P15习题11.2第1,2题.2.选用课时作业设计.板书设计把黑板平均分成三份,左边部分板书“边边边”判定法,中间部分板书例题,右边部分板书练习.疑难解析证明中的每一步推理都要有根据,不能“想当然”,这些根据,可以是已知条件,也可以是定义、公理、已学过的重要结论.。
12.2.1三角形全等的判定(sss)(教案)
4.通过实际操作和例题解析,加深对三角形全等判定sss公理的理解和运用。
二、核心素养目标
《12.2.1三角形全等的判定(sss)(教案)》
本节课的核心素养目标旨在培养学生的以下能力:
1.空间观念与几何直观:通过sss全等判定的学习,使学生能够建立起三角形全等的直观认识,提高空间想象能力。
其次,在小组讨论和实验操作环节,学生们表现出了很高的积极性。他们通过合作交流,共同探讨三角形全等判定的应用,不仅加深了对知识点的理解,还提高了合作能力和解决问题的能力。但我也注意到,有些小组在讨论过程中,对于如何运用sss判定仍然存在一些疑问。这提示我在今后的教学中,需要更加关注学生的个体差异,给予他们针对性的指导。
举例:在复杂图形中,找到与题目相关的三角形,并从图中获取已知和求证的信息,进而运用sss判定解决问题。
(4)培养几何直观和空间观念,尤其在解决实际问题时,能够通过观察、分析图形,找到解题的关键信息。
举例:在实际问题中,通过观察和思考,发现隐藏在图形中的全等关系,从而找到解题思路。
四、教学流程
《12.2.1三角形全等的判定(sss)(教案)》
举例:在解决具体问题时,判断哪些信息是已知的,哪些需要求证,从而选择合适的全等判定方法。
(2)正确使用几何符号和术语,避免在证明过程中出现逻辑错误或符号错误。
举例:在证明过程中,要注意区分“=”、“≌”等符号,以及正确使用“对应边”、“对应角”等术语。
(3)在复杂图形中,识别并提取出全等三角形的相关信息,将实际问题转化为几何问题进行解决。
2.逻辑推理与证明能力:通过分析、归纳和推理,让学生掌握sss全等判定的逻辑基础,培养严谨的逻辑推理能力和几何证明技巧。
《全等三角形的判定(SSS)》教学设计
《全等三角形的判定(SSS)》教学设计
一、教学目标
1.理解“边边边”(SSS)判定全等三角形的方法。
2.掌握运用SSS判定方法进行三角形全等的证明。
3.培养学生的逻辑推理能力和观察分析能力。
二、教学重难点
1.重点:SSS判定方法的理解和应用。
2.难点:三角形全等证明过程的书写规范。
三、教学方法
讲授法、演示法、讨论法。
四、教学过程
1.导入
展示两个形状相同但大小不同的三角形和两个形状大小完全相同的三角形,引导学生观察并思考如何判断两个三角形全等。
2.讲解SSS判定方法
(1)通过具体实例,让学生观察当两个三角形的三条边分别相等时,这两个三角形能够完全重合,从而引出SSS判定方法。
(2)用图形和符号语言表述SSS判定方法。
3.例题讲解
(1)已知三角形的三条边的长度,证明两个三角形全等。
(2)在实际问题中,运用SSS判定方法解决问题。
4.课堂练习
让学生进行三角形全等的证明练习,巩固SSS判定方法。
5.小组讨论
讨论在证明过程中遇到的问题和解决方法。
6.总结归纳
总结SSS判定方法的要点和证明过程的注意事项。
7.作业布置
布置课后作业,要求学生运用SSS判定方法证明三角形全等。
人教版八年级上册数学教案:12.2三角形全等的判定(SSS)
D C B A c .归纳:三边对应相等的两个三角形 ,简写为“ ”或“ ”.d 、用数学语言表述:在△ABC 和'''A B C ∆中,∵''AB A B AC BC =⎧⎪=⎨⎪=⎩ ∴△ABC ≌用上面的规律可以判断两个三角形 .判断 ,叫做证明三角形全等.所以“SSS ”是证明三角形全等的一个依据.3、你能解释三角形为什么具有稳定性吗?二、合作探究1、[例]如图,△ABC 是一个钢架,AB=AC ,AD 是连结点A 与BC 中点D 的支架.求证:△ABD ≌△ACD .温馨提示:证明的书写步骤:①准备条件:证全等时要用的间接条件要先证好; ②三角形全等书写三步骤:A 、写出在哪两个三角形中,B 、摆出三个条件用大括号括起来,C 、写出全等结论。
2、尺规作图。
已知:∠AOB. 求作:∠DEF,使∠DEF=∠AOB三、成果展示如图,AB=AE ,AC=AD ,BD=CE ,求证:△ABC ≌ △ ADE 。
四、拓展延伸三、教师激励四、教师引领C 'B 'A 'C B A4 已知:如图,AD=BC,AC=BD. 求证:∠OCD=∠ODC五、教师测评五、达标检测下列说法中,错误的有()个(1)周长相等的两个三角形全等。
(2)周长相等的两个等边三角形全等。
(3)有三个角对应相等的两个三角形全等。
(4)有三边对应相等的两个三角形全等A、1B、2C、3D、4教学反思作业批改及辅导记录。
人教版数学七年级上册《三角形全等的判定(1)SSS》教案
人教版数学七年级上册《三角形全等的判定(1)SSS》教案一. 教材分析《三角形全等的判定(1)SSS》是人教版数学七年级上册的一章,主要介绍了三角形全等的判定方法之一——SSS(Side-Side-Side)。
本节课通过讲解和实例分析,让学生理解并掌握SSS判定方法,能够运用SSS证明两个三角形全等。
二. 学情分析学生在学习本节课之前,已经掌握了三角形的基本概念和性质,能够识别和判断三角形的类型。
但是,对于三角形全等的判定方法,他们可能还比较陌生。
因此,在教学过程中,需要注重引导学生理解和掌握SSS判定方法。
三. 教学目标1.让学生理解三角形全等的概念,掌握SSS判定方法。
2.培养学生运用SSS判定方法解决实际问题的能力。
3.提高学生的空间想象能力和逻辑思维能力。
四. 教学重难点1.教学重点:SSS判定方法的理解和运用。
2.教学难点:对于复杂图形的SSS判定方法的运用。
五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。
通过设置问题,引导学生自主探究和小组讨论,培养学生的解决问题能力和团队合作精神。
六. 教学准备1.准备相关的教学PPT和教学素材。
2.准备一些实际的三角形图形,用于讲解和练习。
七. 教学过程1.导入(5分钟)通过一个实际问题引出三角形全等的概念,例如:“在拼图游戏中,如何判断两个三角形是否完全一样?”让学生思考和讨论,引导学生认识到三角形全等的重要性。
2.呈现(10分钟)讲解三角形全等的定义和SSS判定方法。
通过PPT和实物图形,让学生直观地理解SSS判定方法。
举例说明SSS判定方法的应用,让学生初步掌握如何判断两个三角形全等。
3.操练(10分钟)让学生分组练习,每组提供一些实际的三角形图形,要求学生运用SSS判定方法判断两个三角形是否全等。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)通过一些综合性的题目,让学生运用SSS判定方法解决问题。
教师引导学生思考和讨论,帮助学生巩固所学知识。
【华师版八年级数学上册】《三角形全等的判定(SSS)》教案
《全等三角形的判定》教案5.边边边教学目标1.理解和掌握“S.S.S”判定方法;能运用其判定两个三角形全等。
2.能运用“S.S.S”判定方法来证明角和线段相等。
3.培养学生画图、探索,发现新知识的能力。
教学重点灵活运用SSS判定两个三角形是否全等。
教学难点让学生掌握边边边基本事实内容并学会运用。
教学方法情景教学法课前准备多媒体课时安排5课时教学过程一、导入新课问题1:如果两个三角形有三个角分别对应相等,那么这两个三角形一定全等吗?问题2:如果将上面的三个角换成三条边,结果又如何呢?现在,我们就一起来探讨研究。
二、新课学习做一做:用刻度尺和圆规画一个ΔABC,使AB=2cm,BC=3.5cm,CA=3cm。
先请几位同学说说画图思路后,教师指导,同学们动手画,教师演示并叙述书写出步骤.步骤:(1)画线段AB=2cm.(2)分别以A、B为圆心,3.5cm、3cm长为半径画两条圆弧,交于点C.(3)连结AC、BC。
△ABC即为所求。
请你结合画图、对比,说说你发现了什么?同学们各抒己见。
教师总结:给定三条线段,如果它们能组成三角形,那么所画的三角形都是全等的.这样我们就得到判定三角形全等的一种简便的方法:如果两个三角形的三条边分别对应相等,那么这两个三角形全等.简写为“边边边”,或简记为(S.S.S.)。
范例讲解如图四边形ABCD中,AD=BC,AB=DC,试说明△ABC≌△CDA.解:已知AD=BC,AB=DC,又因为AC是公共边,由(S.S.S.)全等判定法,可知△ABC≌△CDA跟踪练习如图,已知AB=CD,AD=CB,试说明∠B=∠D的理由。
证明:连结AC在△ABC与△ADC中AB=AD,BC=DC,AC=AC∴△ABC≌△ADC(SSS)∴∠B=∠D(全等三角形对应角相等)四、结论总结加强练习,巩固知识1、如图,AB DC=,AC DB=,△ABC≌△DCB全等吗?为什么?2、如图,AD是△ABC的中线,AB AC=。
人教版数学七年级上册《三角形全等的判定(SSS)》教学设计
人教版数学七年级上册《三角形全等的判定(SSS)》教学设计一. 教材分析人教版数学七年级上册《三角形全等的判定(SSS)》是初中学段几何部分的重要内容。
本节课主要引导学生探究三角形全等的判定方法,并通过实例理解“边边边”全等定理(SSS)。
教材通过生活实例引入课题,让学生在具体的情境中感受数学与实际生活的联系,激发学习兴趣。
接着,教材设计了丰富的探究活动,让学生在合作交流中掌握三角形全等的判定方法。
二. 学情分析七年级的学生已经掌握了基本的平面几何知识,具备了一定的观察、思考和动手操作能力。
但他们对全等三角形的概念及判定方法可能还较为模糊,因此需要通过实例和活动让学生深化理解。
此外,学生之间的数学基础和思维方式存在差异,因此在教学过程中要关注学生的个体差异,引导他们积极参与课堂活动。
三. 教学目标1.让学生掌握三角形全等的判定方法(SSS)。
2.培养学生的观察能力、动手操作能力和合作交流能力。
3.激发学生对数学的兴趣,感受数学与实际生活的联系。
四. 教学重难点1.教学重点:三角形全等的判定方法(SSS)。
2.教学难点:理解三角形全等判定方法的内涵和应用。
五. 教学方法1.情境教学法:通过生活实例引入课题,激发学生兴趣。
2.探究学习法:设计丰富的探究活动,让学生在合作交流中掌握知识。
3.动手操作法:引导学生动手剪拼、观察比较,加深对知识的理解。
4.引导发现法:教师引导学生发现三角形全等的规律,培养学生的观察力和思考力。
六. 教学准备1.准备三角形模型、剪刀、彩笔等教具。
2.设计好PPT,包括课题、引入实例、探究活动等。
3.准备相关练习题和拓展题。
七. 教学过程1.导入(5分钟)利用PPT展示一个生活实例: two triangles are congruent if their sides are equal in length. 引导学生观察并思考:如何判断两个三角形全等?从而引出本节课的主题:三角形全等的判定(SSS)。
三角形全等的判定(SSS)教学设计
《三角形全等的判定(SSS)》教学设计教学目标知识与技能1、掌握已知三角形的三边作三角形的方法。
2、掌握三角形全等的判定方法“SSS”,了解三角形的稳定性。
3、能利用全等三角形的判定方法解决简单实际问题。
过程与方法经历探究全等三角形判定方法“SSS”的过程,学会运用操作确认、归纳结论的思想方法。
情感、态度与价值观通过探究全等三角形判定方法“SSS”的过程,进一步感受通过操作确认在研究数学问题中的重要作用。
教学重难点重点:探究全等三角形的判定方法“SSS”的过程。
难点:灵活运用全等三角形的判定方法“SSS”解决简单问题。
教学准备多媒体课件,剪纸,圆规。
教学过程1、新课导入由一组生活中的图片导入,从而得出三角形的稳定性,教师提出疑问:三角形的三边确定了,三角形的形状和大小是不是就完全确定?二、探索新知已知:△ABC ,求作:△A`B`C`使A`B`=AB,B`C`=BC,C`A`=CA。
作法: 1.作线段B`C`=BC;2.分别以B`、C`为圆心,线段AB、AC为半径画弧,两弧交于点A`;3. 连接线段A`B` 、A`C`.则△A`B`C`即为所作三角形全等判定方法3基本事实:三边分别相等的两个三角形全等(可以简写为“边边边”或“SSS”).用符号语言表达为:在△ABC和△ DEF中AB=DEBC=EFCA=FD∴△ABC ≌△ DEF(SSS)小练习:在下面图中找出全等三角形,并说明依据3、范例学习例题已知:如图,点B、 E、 C、 F在同一条直线上, AB = DE , AC = DF,BE = CF求证:AB∥DE,AC ∥DF.4、巩固练习挑战自我1、为什么在预制的木门框上加两根木条、晃动了的椅子腿与坐板间钉一根木条?2、如图,请你编一道题,要求用到(SSS)判定△ABD≌△DCA。
3、已知:如图四边形ABCD中,AB=CD,AD=BC.求证:∠B=∠DA DB C5、小结说说你这节课的收获?六、课本112页第8、9题。
全等三角形的判定(sss)教案
全等三角形的判定(SSS)教案教师:罗梅茂一、教学目标1、知识与技能理解SSS的内容,能运用SSS全等识别法来识别三角形全等进而说明线段或角相等.2、过程与方法通过画图、几何画板演示实验、发现、应用的过程教学,树立学生知识源于实践用于实践的观念.3、情感态度与价值观使学生体会探索发现问题的过程.经历自己探索出SSS的三角形全等识别及其应用.二、重点与难点重点:三角形全等条件的探索过程. 对三角形其他定理的拓展与思考,了解三角形的稳定性。
难点:寻找判定三角形全等的条件,规范书写全等三角形的证明;三、教学过程设计(一)创设情境一对三角形需形状、大小完全相同才能确定它们全等,那么能不能用较少的条件来判定三角形全等呢?展示课前准备的三角形纸片,提出问题:你能画一个三角形与它全等吗?可以利用全等三角形的定义来作图.那么是否一定需要六个条件呢?条件能否尽可能少呢?现在我们就来探究这个问题.探究一:先任意画一个△ABC,再画一个△A'B'C',使△ABC与△A'B'C'满足上述条件中的一个或两个.你画出的△A'B'C'与△ABC一定全等吗?1.只给一个条件(一组对应边相等或一组对应角相等),画出的两个三角形一定全等吗?2.给出两个条件画三角形时,有几种可能的情况,每种情况下作出的三角形一定全等吗?分别按下列条件做一做.①三角形一内角为30°,一条边为3 cm.②三角形两内角分别为30°和50°.③三角形两条边分别为4 cm、6 cm.学生分组讨论、探索、归纳,给出的两个条件可能是:一边一内角、两内角、两边.可以发现按这些条件画出的三角形都不能保证一定全等.探究二:给出三个条件画三角形,你能说出有几种可能的情况吗?归纳:有四种可能.即:三内角、三条边、两边一内角、两内角一边.在刚才的探索过程中,我们已经发现三内角不能保证三角形全等.下面我们就来逐一探索其余的三种情况.先任意画出一个△A'B'C',使A'B'=AB,B'C'=BC,C'A'=CA,把画好的△A'B'C'剪下,放到△ABC上,它们全等吗?让学生充分交流后,在教师的引导下作出△A'B'C',并通过比较得出结论:三边分别相等的两个三角形全等(可以简写成“边边边”或“SSS”).(二)合作探究1.对学生提出的解决问题的不同策略,要给予肯定和鼓励,以满足多样化的学生需要,发展学生的个性思维.2.学生动手操作,通过实践、自主探索、交流,获得新知,同时也渗透了分类的思想.3.在教师的引导下完成操作过程,通过交流,归纳得出结论,同时也明确判定三角形全等需要三个条件.教师指导1.归纳小结:三边对应相等的两个三角形全等.(简写为“边边边”或“SSS”)2.方法规律:(1)证明的书写步骤:①准备条件:证全等时要用的条件要先证好;②指明范围:写出在哪两个三角形中;③摆齐根据:摆出三个条件用大括号括起来;④写出结论:写出全等结论.(2)判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.通过练习加强对“SSS”定理的理解,和规范证明的格式。
12.2.1三角形全等的判定(SSS) 说课稿 2022—2023学年人教版数学八年级上册
12.2.1 三角形全等的判定(SSS)说课稿一、教学目标1.理解三角形全等的概念。
2.掌握使用边边边(SSS)判定法判断三角形全等的方法。
3.能够运用所学知识解决相关问题。
4.培养学生的逻辑思维和推理能力。
二、教学重点1.理解三角形全等的含义。
2.掌握使用边边边(SSS)判定法判断三角形全等的方法。
## 三、教学过程1. 导入与复习•提问:请简单回顾一下什么是全等三角形。
•学生回答:全等三角形即对应的三个边和三个角完全相等的三角形。
2. 新知呈现•引入:今天我们要学习一种判定方法,即边边边(SSS)判定法,通过该方法我们可以判断两个三角形是否全等。
•讲解:边边边(SSS)判定法是指两个三角形的三条边分别对应相等,则可以判定二者全等。
在判定时,需要注意边的对应关系。
3. 案例分析•案例1:如果两个三角形的各边分别相等,能否证明这两个三角形全等?请说明理由。
•学生回答:可以证明。
因为根据边边边(SSS)判定法,如果两个三角形的三条边分别对应相等,那么可以判定两个三角形全等。
•案例2:如果两个三角形的两边分别相等,能否证明这两个三角形全等?请说明理由。
•学生回答:不能证明。
因为边边边(SSS)判定法要求三个边都相等。
4. 示范与讲解•示例1:给定两个三角形ABC和DEF,已知AB = DE,AC = DF,BC = EF。
利用边边边(SSS)判定法证明两个三角形全等。
•讲解:我们已知两个三角形的三边对应相等,即AB对应DE,AC对应DF,BC对应EF。
根据边边边(SSS)判定法,我们可以得出这两个三角形全等。
5. 练习与巩固•练习1:已知三角形PQR和三角形XYZ,已知PQ = XY,QR = YZ。
如果三角形PQR与三角形XYZ全等,请问这两个三角形的何边相等于YZ?•学生回答:三角形PQR与三角形XYZ全等,根据边边边(SSS)判定法,我们可以得出PR = XZ,因此边PR与边XZ相等于YZ。
•练习2:给定两个三角形ABC和DEF,已知AB = DE,AC = DF,BC ≠ EF。
《全等三角形的判定(SSS)》教案
2.5.5 全等三角形的判定〔SSS 〕教学目标:1、使学生理解边边边公理的内容,能运用边边边公理证明三角形全等,为证明线段相等或角相等创造条件;2、继续培养学生画图、实验,发现新知识的能力。
重点难点:1、难点:让学生掌握边边边公理的内容和运用公理的自觉性;2、重点:灵活运用SSS 识别两个三角形是否全等。
教学过程:一、创设问题情境,引入新课请问同学,老师在黑板上画得两个三角形,△ABC 与△'''A B C 全等吗?你是如何识别的。
〔同学们各抒己见,如:动手用纸剪下一个三角形,剪下叠到另一个三角形上,是否完全重合;测量两个三角形的所有边与角,观察是否有三条边对应相等,三个角对应相等。
〕上一节课我们已经探讨了两个三角形只满足一个或两个边、角对应相等条件时,两个三角形不一定全等。
满足三个条件时,两个三角形是否全等呢?现在,我们就一起来探讨研究。
二、实践探索,总结规律1、问题1:如果两个三角形的三条边分别相等,那么这两个三角形会全等吗? 做一做:给你三条线段a 、b 、c ,分别为4cm 、3cm 、4.8cm ,你能画出这个三角形吗?先请几位同学说说画图思路后,教师指导,同学们动手画,教师演示并表达书写出步骤。
步骤:〔1〕画一线段AB 使它的长度等于c cm 〕.〔2〕以点A 为圆心,以线段b 〔3cm 〕的长为半径画圆弧;以点B 为圆心,以线段a 〔4cm 〕CBA的长为半径画圆弧;两弧交于点C . 〔3〕连结AC 、BC . △ABC 即为所求如果两个三角形的三条边分别对应相等,那么这两个三角形全等.简写为“边边边〞,或简记为〔SSS 〕。
2、问题2:你能用相似三角形的识别法解释这个〔SSS 〕三角形全等的识别法吗? 〔我们已经知道,三条边对应成比例的两个三角形相似,而相似比为1时,三条边就分别对应相等了,这两个三角形不但形状相同,而且大小都一样,即为全等三角形。
〕3、问题3、你用这个“SSS 〞三角形全等的识别法解释三角形具有稳定性吗? 〔只要三角形三边的长度确定了,这个三角形的形状和大小就完全确定了〕4、范例:例1 如图19。
全等三角形的判定SSS教案
全等三角形的判定SSS教案教学目标:1.了解全等三角形SSS(边-边-边)的判定条件。
2.能够判断给定三角形是否全等,能够应用SSS准则解决问题。
3.培养学生的分析和推理能力,培养学生的解决问题的能力。
教学重难点:1.教学重点:全等三角形SSS(边-边-边)的判定条件及应用。
2.教学难点:培养学生分析和推理能力,通过几何推理得到结论。
教学准备:1.准备好PPT资料,包括全等三角形的定义及SSS判定条件。
2.准备录音设备,录制课堂讲解。
3.准备习题册,用于课堂练习。
教学步骤:Step 1: 导入新知1.展示两个全等三角形的图片,引发学生对全等三角形的认识。
2.学生对全等三角形的特点进行讨论。
引导学生总结全等三角形的定义。
Step 2: 呈现新知1.展示全等三角形SSS的判定条件的PPT,并解释其含义。
2.学生观察例题,思考如何利用SSS判定条件判断两个三角形是否全等。
3.学生分享自己的思路,教师适时进行点拨。
Step 3: 实例演练1.将几个需要判断是否全等的三角形的图片呈现在PPT上,并引导学生利用SSS条件进行判断。
2.对每道题先让学生独立思考,然后找一个学生讲解解题过程,最后进行整个班的讨论,确立正确的解题思路。
3.学生互相合作,通过小组讨论来解决问题。
4.教师适时给出解答,巩固学生对应用SSS判定条件的理解。
Step 4: 拓展延伸1.针对学生掌握情况,设计一些拓展练习题,让学生更进一步运用SSS条件判断更多的全等三角形。
2.引导学生自主学习,培养学生的发现、探索和解决问题的能力。
Step 5: 总结归纳1.学生回答问题:“如何判断两个三角形全等?”2.教师总结SSS条件的判定方法。
Step 6: 课堂小结1.利用PPT总结本节课的主要内容,强调全等三角形的SSS判定条件。
2.学生自主归纳记忆,记录在笔记本上。
Step 7: 课后作业1.布置课后作业,要求学生利用SSS条件判断多个三角形是否全等,并写出解题过程。
《三角形全等的判定(SSS)》详细教案
《全等三角形的判定》教案5.边边边杨先仙教学目标1. 使学生理解基本事实“边边边”的内容,能运用“边边边”证明三角形全等,为证明线段相等或角相等创造条件。
2.继续培养学生画图、实验,发现新知识额能力。
教学重点灵活运用“S.S.S.”判定两个三角形全等。
教学难点探究三角形全等的条件。
教学过程一、自学设疑1.情境引入两个三角形有3组元素对应相等,分4种情况。
1:2边1角 2:2角1边 3:3角 4:3边前两种我们已经研究过,得到判定三角形全等的三个基本事实SAS、ASA、AAS。
如果两个三角形有三个角或三条边分别对应相等,那么这两个三角形一定全等吗?现在,我们就一起来探讨研究。
2.示纲自学1.请任意画一个等腰直角三角形。
剪下后与小组内同学对照,观察它们是否全等?据此,如果两个三角形有三个角对应相等,这两个三角形全等吗?〖不一定〗2.以这三条线段为边画一个三角形。
1—5组做(1)。
6—10组做(2)。
(1)已知三条线段4cm、5cm、6cm (2)已知三条线段8cm、9cm、10cm把你画的三角形与小组内同学对照,观察它们是否全等?由此,你有何发现?〖基本事实〗3.尝试完成例6。
〖学生展示过程〗4.补充完整72页表格中的内容。
3.展示评价1.小组依纲自学,小组讨论2.展评,师点拨判定三角形全等时最少有几组边对应相等?最多有几组边?判定三角形全等时最少有几组角对应相等?最多有几组角?3.补正提炼变式:已知:如图,AB = DC , AD = BC。
求证: ∠A = ∠C提示:需要作辅助线构造出三角形。
通过证明三角形全等得到角相等。
三.拓展运用1.导学归纳通过本节课的学习你学到了什么?〖生答〗〖基本事实:边边边〗〖判定方法:边角边,角边角,角角边,边边边〗2.拓展训练1.下列说法中错误的个数是()(1)周长相等的两个三角形全等(2)周长相等的两个等边三角形全等(3)三个角分别相等的两个三角形全等(4)三边分别相等的两个三角形全等A 1个B 2个C 3个D 4个2.根据条件分别判定下面的三角形是否全等.(1)线段AD与BC相交于点O,AO=DO,BO=CO. △ABO与△BCO;(2)AC=AD,BC=BD. △ABC与△ABD;(3)∠A=∠C,∠B=∠D. △ABO与△CDO;(4)线段AD与BC相交于点E,AE=BE,CE=DE,AC=BD.△ABC与△BAD。
《全等三角形的判定》教案
《全等三角形的判定》教案教案:全等三角形的判定(SSS)教学目标:1.理解全等三角形的定义;2.熟练掌握利用SSS(边-边-边)判定两个三角形全等的方法;3.能够应用全等三角形的判定方法解决相关问题。
教学重点:1.全等三角形的定义;2.SSS判定两个三角形全等的方法。
教学难点:1.熟练运用SSS判定方法解决问题;2.错误判断的排除。
教学准备:1.教学投影仪;2.相关教学PPT;3.白板、白板笔。
教学过程:Step 1 引入新知识1.教师用投影仪播放现实生活中两个形状相似的三角形的图片,引出全等三角形的定义。
2.教师解释全等三角形的定义:如果两个三角形的三条边分别相等,则这两个三角形是全等的。
Step 2 SSS判定方法1.教师介绍SSS判定方法:利用两个三角形的三条边的长度相等来判定它们是否全等。
2.在白板上绘制两个三角形ABC和DEF,并标注边长。
3.解释SSS判定方法的步骤:-首先,比较两个三角形对应的边AB和DE的长度,如果它们相等,则继续判定;-然后,比较对应的边AC和DF的长度,如果它们相等,则继续判定;-最后,比较对应的边BC和EF的长度,如果它们相等,那么可以断定三角形ABC和DEF是全等的。
Step 3 SSS判定实例演练1. 教师给出一个实例问题:已知三角形ABC和三角形DEF的边长分别为AB=7cm,AC=5cm,BC=6cm,DE=6cm,DF=5cm,EF=7cm,判断这两个三角形是否全等。
2.引导学生按照SSS判定方法的步骤进行判定:- 比较边AB和DE,由于它们的长度分别为7cm和6cm,所以边长不相等,可以判定三角形ABC和DEF不全等;-学生会发现另外两组对应边的长度也不相等,因此可以最终判定三角形ABC和DEF不全等。
3.教师对结果进行讲解,并指导学生如何判断两个三角形全等。
Step 4 设计练习1.教师设计一系列相关的练习题,包括SSS判定的题目和实际问题的应用题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《全等三角形的判定(SSS)》教案第一课时
邵原一中
侯欢艳
教学目标:
1.通过学生动手画一画,把所画的三角形剪下去与同伴所画的三角形进行比较,发现规律.得出判定两个三角形全等的条件(边边边公理),并运用它进行简单的说理和证明.
2.要求学生能够熟练利用边边边条件证明两个三角全等.
3.在探索判定方法的过程中,体会作图、观察、分析、猜想等研究几何问题的数学方法。
教学重点、难点
教学重点:能应用边边边条件判定两个三角形全等.
教学难点:探究三角形全等的条件.
教学过程设计
(一)知识回顾,提出问题
已知△ABC ≌△A ′B ′ C ′,找出其中相等的边与角:
思考:是否一定要满足三条边分别相等、三个角分别相等这六个条件,才能保证两个三角形全等呢?
师生活动:师提出问题,学生回答.
问题1:当满足一个条件时, △ABC 与△ABC ′全等吗?(一边或一角)师生活动:让学生独立思考.
达成共识:不一定全等.
问题2:当满足两个条件时, △ABC 与△A ′B ′C ′全等吗?
师生活动:让学生通过画图、展示交流后得出结论.
达成共识:不一定全等.A B C C ′
B ′A ′。