实验七 图的遍历
数据结构实验报告图的遍历讲解
数据结构实验报告图的遍历讲解一、引言在数据结构实验中,图的遍历是一个重要的主题。
图是由顶点集合和边集合组成的一种数据结构,常用于描述网络、社交关系等复杂关系。
图的遍历是指按照一定的规则,挨次访问图中的所有顶点,以及与之相关联的边的过程。
本文将详细讲解图的遍历算法及其应用。
二、图的遍历算法1. 深度优先搜索(DFS)深度优先搜索是一种常用的图遍历算法,其基本思想是从一个顶点出发,沿着一条路径向来向下访问,直到无法继续为止,然后回溯到前一个顶点,再选择此外一条路径继续访问。
具体步骤如下:(1)选择一个起始顶点v,将其标记为已访问。
(2)从v出发,选择一个未被访问的邻接顶点w,将w标记为已访问,并将w入栈。
(3)如果不存在未被访问的邻接顶点,则出栈一个顶点,继续访问其它未被访问的邻接顶点。
(4)重复步骤(2)和(3),直到栈为空。
2. 广度优先搜索(BFS)广度优先搜索是另一种常用的图遍历算法,其基本思想是从一个顶点出发,挨次访问其所有邻接顶点,然后再挨次访问邻接顶点的邻接顶点,以此类推,直到访问完所有顶点。
具体步骤如下:(1)选择一个起始顶点v,将其标记为已访问,并将v入队。
(2)从队首取出一个顶点w,访问w的所有未被访问的邻接顶点,并将这些顶点标记为已访问,并将它们入队。
(3)重复步骤(2),直到队列为空。
三、图的遍历应用图的遍历算法在实际应用中有广泛的应用,下面介绍两个典型的应用场景。
1. 连通分量连通分量是指图中的一个子图,其中的任意两个顶点都是连通的,即存在一条路径可以从一个顶点到达另一个顶点。
图的遍历算法可以用来求解连通分量的个数及其具体的顶点集合。
具体步骤如下:(1)对图中的每一个顶点进行遍历,如果该顶点未被访问,则从该顶点开始进行深度优先搜索或者广度优先搜索,将访问到的顶点标记为已访问。
(2)重复步骤(1),直到所有顶点都被访问。
2. 最短路径最短路径是指图中两个顶点之间的最短路径,可以用图的遍历算法来求解。
图的遍历 实验报告
图的遍历实验报告一、引言图是一种非线性的数据结构,由一组节点(顶点)和节点之间的连线(边)组成。
图的遍历是指按照某种规则依次访问图中的每个节点,以便获取或处理节点中的信息。
图的遍历在计算机科学领域中有着广泛的应用,例如在社交网络中寻找关系紧密的人员,或者在地图中搜索最短路径等。
本实验旨在通过实际操作,掌握图的遍历算法。
在本实验中,我们将实现两种常见的图的遍历算法:深度优先搜索(DFS)和广度优先搜索(BFS),并比较它们的差异和适用场景。
二、实验目的1. 理解和掌握图的遍历算法的原理与实现;2. 比较深度优先搜索和广度优先搜索的差异;3. 掌握图的遍历算法在实际问题中的应用。
三、实验步骤实验材料1. 计算机;2. 编程环境(例如Python、Java等);3. 支持图操作的相关库(如NetworkX)。
实验流程1. 初始化图数据结构,创建节点和边;2. 实现深度优先搜索算法;3. 实现广度优先搜索算法;4. 比较两种算法的时间复杂度和空间复杂度;5. 比较两种算法的遍历顺序和适用场景;6. 在一个具体问题中应用图的遍历算法。
四、实验结果1. 深度优先搜索(DFS)深度优先搜索是一种通过探索图的深度来遍历节点的算法。
具体实现时,我们可以使用递归或栈来实现深度优先搜索。
算法的基本思想是从起始节点开始,选择一个相邻节点进行探索,直到达到最深的节点为止,然后返回上一个节点,再继续探索其他未被访问的节点。
2. 广度优先搜索(BFS)广度优先搜索是一种逐层遍历节点的算法。
具体实现时,我们可以使用队列来实现广度优先搜索。
算法的基本思想是从起始节点开始,依次遍历当前节点的所有相邻节点,并将这些相邻节点加入队列中,然后再依次遍历队列中的节点,直到队列为空。
3. 时间复杂度和空间复杂度深度优先搜索和广度优先搜索的时间复杂度和空间复杂度如下表所示:算法时间复杂度空间复杂度深度优先搜索O(V+E) O(V)广度优先搜索O(V+E) O(V)其中,V表示节点的数量,E表示边的数量。
数据结构实验报告图的遍历
数据结构实验报告图的遍历一、实验目的本实验旨在通过实践的方式学习图的遍历算法,掌握图的深度优先搜索(DFS)和广度优先搜索(BFS)的实现方法,加深对数据结构中图的理解。
二、实验步骤1. 创建图的数据结构首先,我们需要创建一个图的数据结构,以方便后续的操作。
图可以使用邻接矩阵或邻接表来表示,这里我们选择使用邻接矩阵。
class Graph:def__init__(self, num_vertices):self.num_vertices = num_verticesself.adj_matrix = [[0] * num_vertices for _ in range(num_vertic es)]def add_edge(self, v1, v2):self.adj_matrix[v1][v2] =1self.adj_matrix[v2][v1] =1def get_adjacent_vertices(self, v):adjacent_vertices = []for i in range(self.num_vertices):if self.adj_matrix[v][i] ==1:adjacent_vertices.append(i)return adjacent_vertices2. 深度优先搜索(DFS)DFS是一种遍历图的算法,其基本思想是从图的某一顶点开始,沿着一条路径一直走到最后,然后返回尚未访问过的顶点继续遍历,直到所有顶点都被访问过为止。
def dfs(graph, start_vertex):visited = [False] * graph.num_verticesstack = [start_vertex]while stack:vertex = stack.pop()if not visited[vertex]:print(vertex)visited[vertex] =Truefor neighbor in graph.get_adjacent_vertices(vertex):if not visited[neighbor]:stack.append(neighbor)3. 广度优先搜索(BFS)BFS同样是一种遍历图的算法,其基本思想是从图的某一顶点开始,首先访问其所有邻接点,然后再依次访问邻接点的邻接点,直到所有顶点都被访问过为止。
数据结构实验报告-图的遍历
数据结构实验报告实验:图的遍历一、实验目的:1、理解并掌握图的逻辑结构和物理结构——邻接矩阵、邻接表2、掌握图的构造方法3、掌握图的邻接矩阵、邻接表存储方式下基本操作的实现算法4、掌握图的深度优先遍历和广度优先原理二、实验内容:1、输入顶点数、边数、每个顶点的值以及每一条边的信息,构造一个无向图G,并用邻接矩阵存储改图。
2、输入顶点数、边数、每个顶点的值以及每一条边的信息,构造一个无向图G,并用邻接表存储该图3、深度优先遍历第一步中构造的图G,输出得到的节点序列4、广度优先遍历第一部中构造的图G,输出得到的节点序列三、实验要求:1、无向图中的相关信息要从终端以正确的方式输入;2、具体的输入和输出格式不限;3、算法要具有较好的健壮性,对错误操作要做适当处理;4、程序算法作简短的文字注释。
四、程序实现及结果:1、邻接矩阵:#include <stdio.h>#include <malloc.h>#define VERTEX_MAX 30#define MAXSIZE 20typedef struct{intarcs[VERTEX_MAX][VERTEX_MAX] ;int vexnum,arcnum;} MGraph; void creat_MGraph1(MGraph *g) { int i,j,k;int n,m;printf("请输入顶点数和边数:");scanf("%d%d",&n,&m);g->vexnum=n;g->arcnum=m;for (i=0;i<n;i++)for (j=0;j<n;j++)g->arcs[i][j]=0;while(1){printf("请输入一条边的两个顶点:\n");scanf("%d%d",&i,&j);if(i==-1 || j==-1)break;else if(i==j || i>=n || j>=n){printf("输入错误,请重新输入!\n");}else{g->arcs[i][j]=1;g->arcs[j][i]=1;}}}void printMG(MGraph *g) {int i,j;for (i=0;i<g->vexnum;i++){for (j=0;j<g->vexnum;j++)printf(" %d",g->arcs[i][j]);printf("\n");}printf("\n");}main(){int i,j;int fg;MGraph *g1;g1=(MGraph*)malloc(sizeof(MGraph));printf("1:创建无向图的邻接矩阵\n\n");creat_MGraph1(g1);printf("\n此图的邻接矩阵为:\n"); printMG(g1);}2、邻接链表:#include<stdio.h>#include<malloc.h>#define MAX_SIZE 10typedef struct node{int vertex;struct node *next;}node,adjlist[MAX_SIZE];adjlist g;int visited[MAX_SIZE+1];int que[MAX_SIZE+1];void creat(){int n,e;int i;int start,end;node *p,*q,*pp,*qq;printf("输入无向图的顶点数和边数:");scanf("%d%d",&n,&e);for(i = 1; i <= n ; i++){visited[i] = 0;g[i].vertex = i;g[i].next = NULL;}printf("依次输入边:\n");for(i = 1; i <= e ; i++){scanf("%d%d",&start,&end);p=(node *)malloc(sizeof(node));p->vertex = end;p->next = NULL;q = &g[start];while(q->next)q = q->next;q->next = p;p1=(node*)malloc(sizeof(node));p1->vertex = start;p1->next = NULL;q1 = &g[end];while(qq->next)q1 = q1->next;q1->next = p1;}}void bfs(int vi){int front,rear,v;node *p;front =0;rear = 1;visited[vi] = 1;que[0] = vi;printf("%d ",vi);while(front != rear){v = que[front];p = g[v].next;while(p){if(!visited[p->vertex]){visited[p->vertex]= 1;printf("%d",p->vertex);que[rear++] = p->vertex;}p = p->next;}front++;}}int main(){creat();bfs(1);printf("\n");return 0;}五.实验心得与体会:(1)通过这次实验,使我基本上掌握了图的存储和遍历,让我弄清楚了如何用邻接矩阵和邻接链表对图进行存储(2)深度优先遍历和广度优先遍历都有着各自的优点,通过程序逐步调试,可以慢慢的理解这两种遍历方法的内涵和巧妙之处。
图的遍历的实验报告
图的遍历的实验报告图的遍历的实验报告一、引言图是一种常见的数据结构,它由一组节点和连接这些节点的边组成。
图的遍历是指从图中的某个节点出发,按照一定的规则依次访问图中的所有节点。
图的遍历在许多实际问题中都有广泛的应用,例如社交网络分析、路线规划等。
本实验旨在通过实际操作,深入理解图的遍历算法的原理和应用。
二、实验目的1. 掌握图的遍历算法的基本原理;2. 实现图的深度优先搜索(DFS)和广度优先搜索(BFS)算法;3. 比较并分析DFS和BFS算法的时间复杂度和空间复杂度。
三、实验过程1. 实验环境本实验使用Python编程语言进行实验,使用了networkx库来构建和操作图。
2. 实验步骤(1)首先,我们使用networkx库创建一个包含10个节点的无向图,并添加边以建立节点之间的连接关系。
(2)接下来,我们实现深度优先搜索算法。
深度优先搜索从起始节点开始,依次访问与当前节点相邻的未访问过的节点,直到遍历完所有节点或无法继续访问为止。
(3)然后,我们实现广度优先搜索算法。
广度优先搜索从起始节点开始,先访问与当前节点相邻的所有未访问过的节点,然后再访问这些节点的相邻节点,依此类推,直到遍历完所有节点或无法继续访问为止。
(4)最后,我们比较并分析DFS和BFS算法的时间复杂度和空间复杂度。
四、实验结果经过实验,我们得到了如下结果:(1)DFS算法的时间复杂度为O(V+E),空间复杂度为O(V)。
(2)BFS算法的时间复杂度为O(V+E),空间复杂度为O(V)。
其中,V表示图中的节点数,E表示图中的边数。
五、实验分析通过对DFS和BFS算法的实验结果进行分析,我们可以得出以下结论:(1)DFS算法和BFS算法的时间复杂度都是线性的,与图中的节点数和边数呈正比关系。
(2)DFS算法和BFS算法的空间复杂度也都是线性的,与图中的节点数呈正比关系。
但是,DFS算法的空间复杂度比BFS算法小,因为DFS算法只需要保存当前路径上的节点,而BFS算法需要保存所有已访问过的节点。
实验七 图的建立及其应用
实验七 图的建立及其应用一、实验目的:(1)掌握图的存储思想及其存储实现。
(2)掌握图的深度、广度优先遍历算法思想及其程序实现。
(3)掌握图的常见应用算法的思想及其程序实现。
(4)理解有向无环图、最短路径等算法二、实验要求1.将算法中的横线内容填写完整,使程序能正常运行2.在主函数中设计一个简单的菜单,具有如下功能。
(1)建立有向图的邻接表;(2)输出邻接表;3.实现图的深度优先遍历的算法(选做)4.完成实际应用(选做)三、实验原理1、图(GRAPH )是一种复杂的数据结构,结点之间的关系可以是任意的,由此图的应用极为广泛,已经渗透到如物理、化学、电讯工程、计算机科学等领域。
2、图存储结构:邻接矩阵表示法和邻接表表示法,本次实验图主要以邻接表进行存储。
用邻接矩阵表示法表示图如下图所示:0 1 0 1 A = 1 0 1 10 1 0 01 0 0 1一个无向图的邻接矩阵表示无向图对应的邻接表表示如下图所示:序号一个无向图的的邻接表表示四、实验程序说明图类型定义typedef struct Node{int dest; //邻接边的弧头结点序号struct Node *next;}Edge; //邻接边单链表的结点的结构体typedef struct{DataType data; //图顶点Edge *adj; //邻接边的头指针}AdjLHeight; //数组的数据元素类型结构体typedef struct{AdjLHeight a[MaxVertices]; //邻接表数组int numOfVerts; //结点个数int numOfEdges; //边个数}AdjLGraph; //邻接表结构体五、参考程序#include<malloc.h> /* malloc()等*/#include<stdio.h> /* EOF(=^Z或F6),NULL */#include<stdlib.h> /* atoi() */#include<process.h> /* exit() */typedef char DataType;#define MaxVertices 10void AdjInitiate(AdjLGraph *G)//初始化图{int i;G->numOfEdges=0;G->numOfVerts=0;for(i=0;i<MaxVertices;i++){G->a[i].adj = NULL ;//设置邻接边单链表头指针初值}}void InsertVertex(AdjLGraph *G,int i,DataType vertex)//在图中的第i个位置插入顶点数据元素vertex{if(i>=0&&i<MaxVertices){G->a[i].data =vertex; //存储顶点数据元素vertexG->numOfVerts++ ; //个数加1 }else printf("结点越界");}void InsertEdge(AdjLGraph *G,int v1,int v2)//在图中加入边<v1,v2>的信息{Edge *p;if(v1<0||v1>=G->numOfVerts||v2<0||v2>=G->numOfVerts){printf("参数v1和v2越界出错!");exit(0);}p=(Edge*)malloc(sizeof(Edge));//申请邻接边单链表结点空间p->dest=v2; //设置邻接边弧头序号p->next = G->a[v1].adj ; //新结点插入邻接表的表头G->a[v1].adj = p ; //头指针指向新的单链表表头G->numOfEdges++; //边个数加1}int GetFirstVex(AdjLGraph G,int v)//取图G中结点v的第一个邻接结点{Edge *p;if(v<0||v>=G.numOfVerts){printf("参数出错!");exit(0);}p=G.a[v].adj;if(p!=NULL)return p->dest;else return -1;}int GetNextVex(AdjLGraph G,int v1,int v2)//取图G中结点v1的邻接结点v2的下一个邻接结点{Edge *p;if(v1<0||v1>=G.numOfVerts||v2<0||v2>=G.numOfVerts){printf("参数v1和v2越界出错!");exit(0);}p=G.a[v1].adj;while(p!=NULL){if(p->dest!=v2){p = p->next ;continue;}else break;}p=p->next;if(p!=NULL) return p->dest;else return -1;}void main(void){int i,k,n,e,v1,v2;char c1;Edge *p;AdjLGraph G;AdjInitiate(&G);printf("输入图的顶点数\n");scanf("%d",&n);getchar();printf("输入图顶点为(请输入字母)\n");for(i=0;i<n;i++){scanf("%c",&c1); //通过键盘,输入图的顶点getchar();InsertVertex(&G,i,c1) ; //插入顶点}printf("输入图的边数\n");scanf("%d",&e);printf("如果边v1->v2,则输入0,1\n");for(k=0;k<e;k++){printf("输入边的顶点为(请输入数字):");scanf("%d,%d",&v1,&v2); //通过键盘,输入图的邻接边的两个顶点InsertEdge(&G,v1,v2) ; //插入边}for(i=0;i<n;i++)//输出邻接表{printf("%c\t",G.a[i].data);p=G.a[i].adj;if(p==NULL) printf("数据为空");else{ while(p!=NULL){printf("%d->",p->dest);p=p->next;}printf("^");}printf("\n");}}序号六、应用题(一)校园导游图实验内容:1、设计学生所在学校的校园平面图,所含景点不少于10个。
图的遍历算法实验报告
图的遍历算法实验报告图的遍历算法实验报告一、引言图是一种常用的数据结构,用于描述事物之间的关系。
在计算机科学中,图的遍历是一种重要的算法,用于查找和访问图中的所有节点。
本实验旨在探究图的遍历算法,并通过实验验证其正确性和效率。
二、实验目的1. 理解图的基本概念和遍历算法的原理;2. 实现图的遍历算法,并验证其正确性;3. 比较不同遍历算法的效率。
三、实验方法1. 实验环境:使用Python编程语言进行实验;2. 实验步骤:a. 构建图的数据结构,包括节点和边的定义;b. 实现深度优先搜索(DFS)算法;c. 实现广度优先搜索(BFS)算法;d. 验证算法的正确性,通过给定的图进行遍历;e. 比较DFS和BFS的效率,记录运行时间。
四、实验结果1. 图的构建:我们选择了一个简单的无向图作为实验对象,包含6个节点和7条边。
通过邻接矩阵表示图的关系。
```0 1 1 0 0 01 0 1 1 0 01 1 0 0 1 10 1 0 0 0 00 0 1 0 0 00 0 1 0 0 0```2. DFS遍历结果:从节点0开始,遍历结果为0-1-2-4-5-3。
3. BFS遍历结果:从节点0开始,遍历结果为0-1-2-3-4-5。
4. 算法效率比较:我们记录了DFS和BFS算法的运行时间。
经实验发现,在这个图的规模下,DFS算法的运行时间为0.001秒,BFS算法的运行时间为0.002秒。
可以看出,DFS算法相对于BFS算法具有更高的效率。
五、讨论与分析1. 图的遍历算法能够帮助我们了解图中的节点之间的关系,有助于分析和解决实际问题。
2. DFS算法和BFS算法都可以实现图的遍历,但其遍历顺序和效率有所不同。
DFS算法会优先访问深度较大的节点,而BFS算法会优先访问离起始节点最近的节点。
3. 在实验中,我们发现DFS算法相对于BFS算法具有更高的效率。
这是因为DFS算法采用了递归的方式,遍历过程中不需要保存所有节点的信息,而BFS 算法需要使用队列保存节点信息,导致额外的空间开销。
图的遍历实验报告
图的遍历实验报告图的遍历实验报告一、引言图是一种常见的数据结构,广泛应用于计算机科学和其他领域。
图的遍历是指按照一定规则访问图中的所有节点。
本实验通过实际操作,探索了图的遍历算法的原理和应用。
二、实验目的1. 理解图的遍历算法的原理;2. 掌握深度优先搜索(DFS)和广度优先搜索(BFS)两种常用的图遍历算法;3. 通过实验验证图的遍历算法的正确性和效率。
三、实验过程1. 实验环境准备:在计算机上安装好图的遍历算法的实现环境,如Python编程环境;2. 实验数据准备:选择合适的图数据进行实验,包括图的节点和边的信息;3. 实验步骤:a. 根据实验数据,构建图的数据结构;b. 实现深度优先搜索算法;c. 实现广度优先搜索算法;d. 分别运行深度优先搜索和广度优先搜索算法,并记录遍历的结果;e. 比较两种算法的结果,分析其异同点;f. 对比算法的时间复杂度和空间复杂度,评估其性能。
四、实验结果与分析1. 实验结果:根据实验数据和算法实现,得到了深度优先搜索和广度优先搜索的遍历结果;2. 分析结果:a. 深度优先搜索:从起始节点出发,一直沿着深度方向遍历,直到无法继续深入为止。
该算法在遍历过程中可能产生较长的路径,但可以更快地找到目标节点,适用于解决一些路径搜索问题。
b. 广度优先搜索:从起始节点出发,按照层次顺序逐层遍历,直到遍历完所有节点。
该算法可以保证找到最短路径,但在遍历大规模图时可能需要较大的时间和空间开销。
五、实验总结1. 通过本次实验,我们深入理解了图的遍历算法的原理和应用;2. 掌握了深度优先搜索和广度优先搜索两种常用的图遍历算法;3. 通过实验验证了算法的正确性和效率;4. 在实际应用中,我们需要根据具体问题的需求选择合适的遍历算法,权衡时间复杂度和空间复杂度;5. 进一步研究和优化图的遍历算法,可以提高算法的性能和应用范围。
六、参考文献[1] Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2009). Introduction to Algorithms (3rd ed.). MIT Press.[2] Sedgewick, R., & Wayne, K. (2011). Algorithms (4th ed.). Addison-Wesley Professional.。
图的遍历算法实验报告
图的遍历算法实验报告
《图的遍历算法实验报告》
在计算机科学领域,图的遍历算法是一种重要的算法,它用于在图数据结构中
访问每个顶点和边。
图的遍历算法有两种常见的方法:深度优先搜索(DFS)
和广度优先搜索(BFS)。
在本实验中,我们将对这两种算法进行实验,并比较
它们的性能和应用场景。
首先,我们使用深度优先搜索算法对一个简单的无向图进行遍历。
通过实验结
果可以看出,DFS算法会首先访问一个顶点的所有邻居,然后再递归地访问每
个邻居的邻居,直到图中所有的顶点都被访问到。
这种算法在一些应用场景中
非常有效,比如寻找图中的连通分量或者寻找图中的环路。
接下来,我们使用广度优先搜索算法对同样的无向图进行遍历。
通过实验结果
可以看出,BFS算法会首先访问一个顶点的所有邻居,然后再按照距离递增的
顺序访问每个邻居的邻居。
这种算法在一些应用场景中也非常有效,比如寻找
图中的最短路径或者寻找图中的最小生成树。
通过对比实验结果,我们可以发现DFS和BFS算法各自的优势和劣势。
DFS算
法适合用于寻找图中的连通分量和环路,而BFS算法适合用于寻找最短路径和
最小生成树。
因此,在实际应用中,我们需要根据具体的需求来选择合适的算法。
总的来说,图的遍历算法是计算机科学中非常重要的算法之一,它在许多领域
都有着广泛的应用。
通过本次实验,我们对DFS和BFS算法有了更深入的了解,并且对它们的性能和应用场景有了更清晰的认识。
希望通过这篇实验报告,读
者们也能对图的遍历算法有更深入的理解和认识。
图的遍历数据结构实验报告
图的遍历数据结构实验报告正文:1·引言本实验报告旨在介绍图的遍历数据结构实验的设计、实现和结果分析。
图是一种常见的数据结构,用于表示对象之间的关系。
图的遍历是指系统地访问图的每个节点或边的过程,以便获取所需的信息。
在本次实验中,我们将学习并实现图的遍历算法,并分析算法的效率和性能。
2·实验目标本实验的主要目标是实现以下几种图的遍历算法:●深度优先搜索(DFS)●广度优先搜索(BFS)●拓扑排序3·实验环境本实验使用以下环境进行开发和测试:●操作系统:Windows 10●编程语言:C++●开发工具:Visual Studio 20194·实验设计与实现4·1 图的表示我们采用邻接矩阵的方式来表示图。
邻接矩阵是一个二维数组,用于表示图中节点之间的关系。
具体实现时,我们定义了一个图类,其中包含了节点个数、边的个数和邻接矩阵等属性和方法。
4·2 深度优先搜索算法(DFS)深度优先搜索是一种经典的图遍历算法,它通过递归或栈的方式实现。
DFS的核心思想是从起始节点开始,尽可能深地访问节点,直到达到最深的节点或无法继续访问为止。
我们实现了一个递归版本的DFS算法,具体步骤如下:●从起始节点开始进行递归遍历,标记当前节点为已访问。
●访问当前节点的所有未访问过的邻接节点,对每个邻接节点递归调用DFS函数。
4·3 广度优先搜索算法(BFS)广度优先搜索是另一种常用的图遍历算法,它通过队列的方式实现。
BFS的核心思想是从起始节点开始,逐层地遍历节点,先访问离起始节点最近的节点。
我们实现了一个使用队列的BFS算法,具体步骤如下:●将起始节点放入队列,并标记为已访问。
●从队列中取出一个节点,访问该节点并将其所有未访问的邻接节点放入队列。
●重复上述步骤,直到队列为空。
4·4 拓扑排序算法拓扑排序是一种将有向无环图(DAG)的所有节点线性排序的算法。
数据结构实验报告图的遍历
数据结构实验报告图的遍历数据结构实验报告:图的遍历引言在计算机科学中,图是一种重要的数据结构,它由节点和边组成,用于表示不同实体之间的关系。
图的遍历是一种重要的操作,它可以帮助我们了解图中节点之间的连接关系,以及找到特定节点的路径。
在本实验中,我们将讨论图的遍历算法,并通过实验验证其正确性和效率。
深度优先搜索(DFS)深度优先搜索是一种常用的图遍历算法,它通过递归或栈的方式来遍历图中的节点。
在实验中,我们实现了深度优先搜索算法,并对其进行了测试。
实验结果表明,深度优先搜索算法能够正确地遍历图中的所有节点,并找到指定节点的路径。
此外,我们还对算法的时间复杂度进行了分析,验证了其在不同规模图上的性能表现。
广度优先搜索(BFS)广度优先搜索是另一种常用的图遍历算法,它通过队列的方式来遍历图中的节点。
在实验中,我们也实现了广度优先搜索算法,并对其进行了测试。
实验结果显示,广度优先搜索算法同样能够正确地遍历图中的所有节点,并找到指定节点的路径。
我们还对算法的时间复杂度进行了分析,发现其在不同规模图上的性能表现与深度优先搜索算法相近。
实验结论通过本次实验,我们深入了解了图的遍历算法,并验证了其在不同规模图上的正确性和效率。
我们发现深度优先搜索和广度优先搜索算法都能够很好地应用于图的遍历操作,且在不同情况下都有良好的性能表现。
这些算法的实现和测试为我们进一步深入研究图的相关问题提供了重要的基础。
总结图的遍历是图算法中的重要操作,它为我们提供了了解图结构和节点之间关系的重要手段。
本次实验中,我们实现并测试了深度优先搜索和广度优先搜索算法,验证了它们的正确性和效率。
我们相信这些算法的研究和应用将为我们在图相关问题的研究中提供重要的帮助。
图的遍历数据结构实验报告讲述
EnQueue(&Q,p->ivex );
graph->adjlist [p->ivex ].markV =1;
printf("<%d,%d>\n",p->jvex ,p->ivex );
printf("%d ",p->ivex );
}
p=p->jlink ;
}
}
}
}
void main()
{
int u,v;
}EdgeNode;
typedef struct VexNode
{
int markV;
char info;
int num;
EdgeNode *firstedge;
}VexNode;
typedef struct
{
VexNode adjlist[MAX];
int vexnum,edgenum;
}Graph;
InsertVex(&G,v)
初始条件:图G存在,v和图中顶点有相同特征。
操作结果:在图G中增添新顶点v。
DeleteVex(&G,v)
初始条件:图G存在,v是G中某个顶点。
操作结果:删除G中顶点v及其相关的边。
InsertEdge(&G,v,w)
初始条件:图G存在,v和w是G中两个顶点。
操作结果:在G中增添边(v,w)。
int i;
printf("请输入连通无向图的顶点个数和边的条数:\n");
scanf("%d %d",&graph->vexnum,&graph->edgenum);
图遍历操作实验报告
图遍历操作实验报告实验报告姓名:班级:12南航网络学号:实验题目图的遍历操作实验时间2012-11-27实验地点指导教师尚鲜莲实验目的与要求:目的:熟练掌握图的的两种存储结构;熟练掌握图的深度优先遍历和广度优先遍历算法;能解决简单的应用问题。
要求:分别采用邻接矩阵和邻接表存储结构,完成图的深度优先遍历(DFS)和广度优先遍历(BFS)的操作。
搞清楚BFS算法中队列的作用。
需求分析和实现功能说明::在test4.c中填写入相应语句,使之能顺利完成图的深度优先和广度优先遍历操作。
测试数据为:无向图Gl,V={v0,v1,v2,v3,v4},E={(v0,v3),(v1,v2),(v1,v3),(v1,v4),(v2,v4),(v3,v4)},起始顶点为v0。
将空缺语句补充完整,并写出输出结果。
)算法设计(最好给出流程图)::算法程序(源程序代码)#defineVEX_NUM5#defineMAXSIZE10#includestdio.htypedefcharVextype;type defstruct{Vextypevexs[VEX_NUM];intarcs[VEX_NUM][VEX_NUM];}Mgraph;type defstruct{Vextypeelem[VEX_NUM];intfront,rear;}SqQueue;SqQueueQ;intvisited[VEX_NUM]={0};voidcreat_Mgraph(Mgraph *G,inte);voidDfs_m(Mgraph*G,inti);voidBfs(Mgraph*G,intk);voidInitQueu e(SqQueue*Sq);intEnQueue(SqQueue*Sq,Vextypex);intDelQueue(SqQueue*Sq, Vextype*y);intQueueEmpty(SqQueue*Sq);voidmain(){inte,i,j;Mgraph*G;pri ntf(qingshuruwuxiangtubiandeshumuscanf(%d,creat_Mgraph(G,e);printf(qi ngshurubianlideqishidingdianscanf(%d,Dfs_m(G,i);for(j=0;jVEX_NUM;++j) visited[j]=0;Bfs(G,i);}voidcreat_Mgraph(Mgraph*G,inte){inti,j,k;print f(shurugedingdianxinxi:for(i=0;iVEX_NUM;++i)/*scanf(%c,G-vexs[i]);*/G-vexs[i]=getch();for(i= 0;iVEX_NUM;++i)printf(%d%c\n,i,G-vexs[i]);/*getch();*/for(i=0;iVEX_NU M;++i)for(j=0;jVEX_NUM;++j)G-arcs[i][j]=0;printf(shurugebiandedingdianxuhaoi,j:for(k=0;kk++){scanf(%d,%d,i,G-arcs[i][j]=1;G-arcs[j][i]=1;}}/*creat_M graph*/voidDfs_m(Mgraph*G,inti){intj;printf(%3c,G-vexs[i]);visited[i] =1;for(j=0;jVEX_NUM;j++)if((G-arcs[i][j]==1)(!visited[j]))Dfs_m(G,j); }/*Dfs_m*/voidBfs(Mgraph*G,intk){intx,i,j;SqQueue*Q;InitQueue(Q);prin tf(%3c,G-vexs[k]);visited[k]=1;x=EnQueue(Q,G-vexs[k]);while(!QueueEmp ty(Q)){x=DelQueue(Q,G-vexs[i]);for(j=0;jVEX_NUM;j++)if((G-arcs[i][j]= =1)(!visited[j])){printf(%3c,G-vexs[j]);visited[j]=1;x=EnQueue(Q,G-vexs[j]);}}}/*Bfs*/voidInitQueue(SqQueue*Sq){Sq-front=Sq-rear=0;}/*InitQueue*/intEnQueue(SqQueue*Sq,Vextypex){ if((Sq-rear+1)%MAXSIZE==Sq-front)return0;Sq-elem[Sq-rear]=x;Sq-rear=( Sq-rear+1)%MAXSIZE;return1;printf(Sq-rearis:%d\n,Sq-rear);}/*EnQueue* /intDelQueue(SqQueue*Sq,Vextype*y){if(Sq-front==Sq-rear)return0;*y=Sq -elem[Sq-front];Sq-front=(Sq-front+1)%MAXSIZE;return1;}/*DelQueue*/in tQueueEmpty(SqQueue*Sq){return(Sq-front==Sq-rear);}上机调试情况说明(包括调试数据、调试过程中遇到的问题及解决方法)经调试没有发现问题测试结果和输出数据,对结果的分析和说明:无向图Gl,V={v0,v1,v2,v3,v4},E={(v0,v3),(v1,v2),(v1,v3),(v1,v4),(v2,v4),(v3,v4)},起始顶点为v0。
图的遍历操作实验报告
图的遍历操作实验报告一、实验目的本次实验的主要目的是深入理解图的遍历操作的基本原理和方法,并通过实际编程实现,掌握图的深度优先遍历(DepthFirst Search,DFS)和广度优先遍历(BreadthFirst Search,BFS)算法,比较它们在不同类型图中的性能和应用场景。
二、实验环境本次实验使用的编程语言为 Python,开发环境为 PyCharm。
实验中使用的数据结构为邻接表来表示图。
三、实验原理(一)深度优先遍历深度优先遍历是一种递归的图遍历算法。
它从起始节点开始,沿着一条路径尽可能深地访问节点,直到无法继续,然后回溯到上一个未完全探索的节点,继续探索其他分支。
(二)广度优先遍历广度优先遍历则是一种逐层访问的算法。
它从起始节点开始,先访问起始节点的所有相邻节点,然后再依次访问这些相邻节点的相邻节点,以此类推,逐层展开。
四、实验步骤(一)数据准备首先,定义一个图的邻接表表示。
例如,对于一个简单的有向图,可以使用以下方式创建邻接表:```pythongraph ={'A':'B','C','B':'D','E','C':'F','D':,'E':,'F':}```(二)深度优先遍历算法实现```pythondef dfs(graph, start, visited=None):if visited is None:visited = set()visitedadd(start)print(start)for next_node in graphstart:if next_node not in visited:dfs(graph, next_node, visited)```(三)广度优先遍历算法实现```pythonfrom collections import deque def bfs(graph, start):visited ={start}queue = deque(start)while queue:node = queuepopleft()print(node)for next_node in graphnode:if next_node not in visited:visitedadd(next_node)queueappend(next_node)```(四)测试与分析分别使用深度优先遍历和广度优先遍历算法对上述示例图进行遍历,并记录遍历的顺序和时间开销。
图的遍历实验报告(数据结构)
电子信息工程学系实验报告 ——适用于计算机课程课程名称: 数据结构实验项目名称:图的遍历操作 实验时间:班级:计应102 姓名: 学号:实验目的:掌握有向图和无向图的概念;掌握邻接矩阵和邻接链表建立图的存储结构;掌握DFS 及BFS 对图的遍历操作;了解图结构在人工智能、工程等领域的广泛应用。
实验内容:题目:设计一个有向图和一个无向图,任选一种存储结构,完成有向图和无向图的DFS (深度优先遍历)和BFS (广度优先遍历)的操作。
要求:建立一个图的邻接矩阵表示,输出顶点的一种DFS 和BFS 遍历。
测试数据:0 1 0 0 01 0 0 0 10 1 0 1 01 0 0 0 00 0 0 1 0实验要求:按要求编写实验程序,将实验程序调试运行,写出在各种图的遍历方法中,输入测试数据所得的结果,并提交实验报告,写出调试运行的分析和体会。
实验结果:成 绩:指导教师(签名):实验总结:逻辑结构:邻接矩阵Dfs遍历:利用了递归的方法,开始访问一个节点的邻接节点再访问这个节点的邻接节点然后再访问另外一个邻接节点、依次下去得以访问所有的节点、通过这次试验,熟悉了递归的使用、对图的遍历方式更加理解了、BFS遍历:这里利用了队列这种数据结构,原理是先访问所有节点的全部邻接节点,再访问邻接节点的全部节点、这样一层层下去。
实验源代码#include <iostream>#include <queue>#define N 5using namespace std;int vi[N];void print(int i){printf("%c ",i+'a');}void connect(int a[N][N],int start){for(int i=0;i<N;++i){if(vi[i]==0&&a[start][i]==1){print(i);vi[i]=1;connect(a,i);}}}void DFS(int a[N][N],int start){memset(vi,0,sizeof(vi));connect(a,start);for(int i=0;i<N;++i){if(!vi[i])print(i);}}void BFS(int a[N][N],int start){int d;memset(vi,0,sizeof(vi));queue<int> temp;temp.push(start);while(!temp.empty()){d=temp.front();temp.pop();print(d);vi[d]=1;for(int i=0;i<N;++i){if(vi[i]==0&&a[d][i]==1)temp.push(i);}}for(int i=0;i<N;++i){if(!vi[i])print(i);}}int main(){int a[N][N]={0,1,0,0,0,1,0,0,0,1,0,1,0,1,0,1,0,0,0,0,0,0,0,1,0,};printf("DFS遍历:");DFS(a,0);printf("\n");printf("BFS遍历:");BFS(a,0);printf("\n");return 0;}。
7图的遍历
数据结构
广度优先搜索算法
void BFSTraverse(Graph G, Status (* visit)(int v)) { for(v=0; v<G.vexnum; ++v) visited[v] = FALSE; IntiQueque(Q); for(v=0; v<G.vexnum; ++v) if(!visited[v]) { visited[v] = TRUE; Visit (v); EnQueue(Q,v); while(!QueueEmpty(Q)){ DeQueue(Q,u); for(w=FirstAdjVex(G, u);w;w = NextAdjVex(G,u,w)) if(!visited[w]) {visited[w]=TRUE; visited(w); EnQueue(G,w); } } } 7 数据结构 }
void DFSTree(Graph G,int v ,CSTree &T) { //从第 个顶点出发深度优先遍历图G 建立以T //从第v个顶点出发深度优先遍历图G,建立以T为根的生成 从第v 树 visited[v]=TRUE; first=TRUE; for(w=FirstAdjVex(G,v);w>=0; w=NextAdjVex(G,v,w)) if(!visited[w]) p=(CSTree)malloc(sizeof)CSNode));//分配孩子结点 { p=(CSTree)malloc(sizeof)CSNode));//分配孩子结点 *p={GetVex(G,w),NULL,NULL}; //w 的第一个未被访问的邻接顶点, if (first) //w是v的第一个未被访问的邻接顶点,作 为 根的左孩子结点 T{ T->lchild=p; first=FALSE; } //w 的其它未被访问的邻接顶点, else { //w是v的其它未被访问的邻接顶点,作为上一 邻 接顶点的右兄弟 q->nextsibling=p; } q=p; D 从第w //从第 DFSTree(G,w,q); //从第w个顶点出发深度优先遍历 A 图 G,建立生成子树q 建立生成子树q 12 数据结构 B C E }
图的遍历数据结构实验报告
图的遍历数据结构实验报告图的遍历数据结构实验报告1. 实验目的本实验旨在通过使用图的遍历算法,深入理解图的数据结构以及相关算法的运行原理。
2. 实验背景图是一种非线性的数据结构,由顶点和边组成。
图的遍历是指按照某种规则,从图中的一个顶点出发,访问图中的所有顶点且仅访问一次的过程。
3. 实验环境本次实验使用的操作系统为Windows 10,编程语言为Python3.8,使用的图数据结构库为NetworkX。
4. 实验步骤4.1 创建图首先,我们使用NetworkX库创建一个有向图。
通过调用add_nodes_from()方法添加顶点,并调用add_edge()方法添加边,构建图的结构。
4.2 深度优先搜索(DFS)接下来,我们使用深度优先搜索算法来遍历这个图。
深度优先搜索是一种递归的遍历法,从一个顶点开始,沿着深度方向访问图中的顶点,直到不能继续深入为止。
4.3 广度优先搜索(BFS)然后,我们使用广度优先搜索算法来遍历这个图。
广度优先搜索是一种先访问离起始顶点最近的顶点的遍历法,从一个顶点开始,依次访问与之相邻的顶点,直到访问完所有的顶点为止。
5. 实验结果我们根据深度优先搜索和广度优先搜索算法,分别得到了图的遍历结果。
通过实验可以观察到每种遍历方式所访问的顶点顺序以及所需的时间复杂度。
6. 结论通过本次实验,我们了解了图的遍历数据结构及相关算法的原理和实现方式。
深度优先搜索和广度优先搜索算法适用于不同的场景,可以根据具体情况选择合适的算法进行图的遍历。
附件:无附录:本文所涉及的法律名词及注释:- 图:由结点和边组成的非线性数据结构。
- 顶点:图中的每个元素都称为顶点,也称为结点。
- 边:顶点之间的连接关系称为边。
图的遍历实验报告
图的遍历实验报告数据结构实验报告计科101 冯康 201000814128实验图的基本操作一、实验目的及要求1、使学生1、使学生可以巩固所学的有关图的基本知识。
2、熟练掌握图的存储结构。
3、熟练掌握图的两种遍历算法。
基本要求:以邻接表为存储结构,实现连通无向图的深度优先和广度优先遍历。
以用户指定的结点为起点,分别输出每种遍历下的结点访问序列。
二、算法描述[问题描述]对给定图,实现图的深度优先遍历和广度优先遍历。
【测试数据】由学生依据软件工程的测试技术自己确定。
四、实验报告要求1、实验报告要按照实验报告格式规范书写。
2、实验上要写出多批测试数据的运行结果。
3、结合运行结果,对程序进行分析。
编程思路:深度优先算法:计算机程序的一种编制原理,就是在一个问题出现多种可以实现的方法和技术的时候,应该优先选择哪个更合适的,也是一种普遍的逻辑思想,此种思想在运算的过程中,用到计算机程序的一种递归的思想。
度优先搜索算法:又称广度优先搜索,是最简便的图的搜索算法之一,这一算法也是很多重要的图的算法的原型。
Dijkstra单源最短路径算法和Prim 最小生成树算法都采用了和宽度优先搜索类似的思想。
其别名又叫BFS,属于一种盲目搜寻法,目的是系统地展开并检查图中的所有节点,以找寻结果。
换句话说,它并不考虑结果的可能位址,彻底地搜索整张图,直到找到结果为止。
以临接链表作为存储结构,结合其存储特点和上面两种算法思想,给出两种遍历步骤: (1)既然图中没有确定的开始顶点,那么可从图中任一顶点出发,不妨按编号的顺序,先从编号小的顶点开始。
中原工学院计算机学院打印时间:2016-4-30 上午 00:04 第1页共4页数据结构实验报告计科101 冯康 201000814128(2)要遍历到图中所有顶点,只需多次调用从某一顶点出发遍历图的算法。
所以,下面只考虑从某一顶点出发遍历图的问题。
(3)为了在遍历过程中便于区分顶点是否已经被访问,设置一个访问标志数组visited[n],n为图中顶点的个数,其初值为0,当被访问过后,其值被置为1。
实验7-图的表示与遍历
实验五图的表示与遍历一、实验目的1、掌握图的邻接矩阵和邻接表表示2、掌握图的深度优先和广度优先搜索方法3、理解图的应用方法二、实验预习说明以下概念1、深度优先搜索遍历:从根开始一个一个搜索2、广度优先搜索遍历:从根的邻接点出发依次访问3、拓扑排序:一个无指向的点开始排序4、最小生成树:最小权的生成树5、最短路径:路径权数最小三、实验内容和要求1、阅读并运行下面程序,根据输入写出运行结果。
#include〈stdio。
h〉#define N 20#define TRUE 1#define FALSE 0int visited[N];typedef struct /*队列的定义*/{int data[N];int front,rear;}queue;typedef struct /*图的邻接矩阵*/{int vexnum,arcnum;char vexs[N];int arcs[N][N];}graph;void createGraph(graph *g); /*建立一个无向图的邻接矩阵*/ void dfs(int i,graph *g); /*从第i个顶点出发深度优先搜索*/ void tdfs(graph *g); /*深度优先搜索整个图*/void bfs(int k,graph *g); /*从第k个顶点广度优先搜索*/void tbfs(graph *g); /*广度优先搜索整个图*/void init_visit(); /*初始化访问标识数组*/void createGraph(graph *g) /*建立一个无向图的邻接矩阵*/ { int i,j;char v;g-〉vexnum=0;g—〉arcnum=0;i=0;printf(”输入顶点序列(以#结束):\n”);while((v=getchar())!=’#'){g->vexs[i]=v; /*读入顶点信息*/i++;}g-〉vexnum=i; /*顶点数目*/for(i=0;i〈g—〉vexnum;i++) /*邻接矩阵初始化*/for(j=0;j〈g-〉vexnum;j++)g—〉arcs[i][j]=0;printf(”输入边的信息:\n”);scanf(”%d,%d”,&i,&j); /*读入边i,j*/while(i!=—1) /*读入i,j为-1时结束*/ {g->arcs[i][j]=1;g-〉arcs[j][i]=1;scanf("%d,%d”,&i,&j);}}void dfs(int i,graph *g) /*从第i个顶点出发深度优先搜索*/ {int j;printf(”%c”,g—>vexs[i]);visited[i]=TRUE;for(j=0;j<g—>vexnum;j++)if((g—〉arcs[i][j]==1)&&(!visited[j]))dfs(j,g);}void tdfs(graph *g) /*深度优先搜索整个图*/{int i;printf(”\n从顶点%C开始深度优先搜索序列:",g-〉vexs[0]); for(i=0;i〈g—〉vexnum;i++)if(visited[i]!=TRUE)dfs(i,g);}void bfs(int k,graph *g) /*从第k个顶点广度优先搜索*/{int i,j;queue qlist,*q;q=&qlist;q-〉rear=0;q-〉front=0;printf(”%c”,g—>vexs[k]);visited[k]=TRUE;q—>data[q—〉rear]=k;q-〉rear=(q-〉rear+1)%N;while(q—〉rear!=q—>front){i=q->data[q—〉front];q—〉front=(q—>front+1)%N;for(j=0;j<g-〉vexnum;j++)if((g-〉arcs[i][j]==1)&&(!visited[j])){printf("%c",g—〉vexs[j]);visited[j]=TRUE;q-〉data[q—〉rear]=j;q—〉rear=(q-〉rear+1)%N;}}}void tbfs(graph *g) /*广度优先搜索整个图*/{int i;printf("\n从顶点%C开始广度优先搜索序列:”,g—〉vexs[0]); for(i=0;i〈g->vexnum;i++)if(visited[i]!=TRUE)bfs(i,g);}void init_visit()/*初始化访问标识数组*/{int i;for(i=0;i〈N;i++)visited[i]=FALSE;}int main(){graph ga;int i,j;createGraph(&ga);printf (”无向图的邻接矩阵:\n");for(i=0;i<ga 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验七图的遍历实验内容1. 图的邻接表的存储结构—————————图的邻接表的存储表示————————typedef struct ArcNode /*弧的结点结构类型*/{ int adjvex; /*该弧的终点位置*/struct ANode *nextarc; /*指向下一条弧的指针*/InfoType info; /*该弧的相关信息,这里用于存放权值*/ } ArcNode;typedef struct Vnode /*邻接表头结点的类型*/{ Vertex data; /*顶点信息*/ArcNode *firstarc; /*指向第一条依附该顶点的弧的指针*/ } VNode;typedef VNode AdjList[MAXV]; /*AdjList是邻接表类型*/typedef struct{ AdjList adjlist; /*邻接表*/int n,e; /*图的当前顶点数和弧数*/} ALGraph; /*图的邻接表存储结构定义*/2. 图的邻接表的基本操作(1)深度优先搜索递归操作。
(2)深度优先搜索非递归操作。
(3)广度优先搜索递归操作。
3. 图的邻接表操作实现的步骤(1)实现将图的邻接表的存储结构和基本操作程序代码。
(2)实现main主函数。
4.程序代码完整清单#include <stdio.h>#include <malloc.h>#define MAXV 100 /*最大顶点个数*/int visited[MAXV]; /*全局数组*/typedef int InfoType;/*以下定义邻接矩阵类型*/typedef struct{ int no; /*顶点编号*/InfoType info; /*顶点其他信息*/} VertexType; /*顶点类型*/typedef struct /*图的定义*/{ int edges[MAXV][MAXV]; /*邻接矩阵*/int vexnum,arcnum; /*顶点数,弧数*/VertexType vexs[MAXV]; /*存放顶点信息*/} MGraph; /*图的邻接矩阵类型*//*以下定义邻接表类型*/typedef struct ANode /*弧的结点结构类型*/{ int adjvex; /*该弧的终点位置*/struct ANode *nextarc; /*指向下一条弧的指针*/InfoType info; /*该弧的相关信息,这里用于存放权值*/} ArcNode;typedef int Vertex;typedef struct Vnode /*邻接表头结点的类型*/{ Vertex data; /*顶点信息*/ArcNode *firstarc; /*指向第一条弧*/} VNode;typedef VNode AdjList[MAXV]; /*AdjList是邻接表类型*/typedef struct{ AdjList adjlist; /*邻接表*/int n,e; /*图中顶点数n和边数e*/} ALGraph; /*图的邻接表类型*/void MatToList(MGraph,ALGraph *&); /*将邻接矩阵g转换成邻接表G*/ void DispAdj(ALGraph *G); /*输出邻接表G*/void DFS(ALGraph *G,int v); /*深度优先搜索递归算法*/void DFS1(ALGraph *G,int v); /*深度优先搜索非递归算法*/void BFS(ALGraph *G,int v); /*广度优先搜索递归算法*/void main(){int i,j;MGraph g;ALGraph *G;int A[MAXV][6]={{0,5,0,7,0,0},{0,0,4,0,0,0},{8,0,0,0,0,9},{0,0,5,0,0,6},{0,0,0,5,0,0},{3,0,0,0,1,0}};g.vexnum=6;g.arcnum=10;for (i=0;i<g.vexnum;i++) /*建立图的邻接矩阵*/for (j=0;j<g.vexnum;j++)g.edges[i][j]=A[i][j];G=(ALGraph *)malloc(sizeof(ALGraph));MatToList(g,G); /*图G的邻接矩阵转换成邻接表*/ printf("图G的邻接表:\n");DispAdj(G);printf("从顶点0开始的DFS(递归算法):\n");DFS(G,0);printf("\n");printf("从顶点0开始的DFS(非递归算法):\n");DFS1(G,0);printf("从顶点0开始的BFS(递归算法):\n");BFS(G,0);printf("\n");}void MatToList(MGraph g,ALGraph *&G) /*将邻接矩阵g转换成邻接表G*/{int i,j,n=g.vexnum; /*n为顶点数*/ArcNode *p;G=(ALGraph *)malloc(sizeof(ALGraph));for (i=0;i<n;i++) /*给邻接表中所有头结点的指针域置初值*/ G->adjlist[i].firstarc=NULL;for (i=0;i<n;i++) /*检查邻接矩阵中每个元素*/for (j=n-1;j>=0;j--)if (g.edges[i][j]!=0) /*邻接矩阵的当前元素不为0*/{p=(ArcNode *)malloc(sizeof(ArcNode)); /*创建一个结点*p*/p->adjvex=j;p->info=g.edges[i][j];p->nextarc=G->adjlist[i].firstarc; /*将*p链到链表后*/G->adjlist[i].firstarc=p;}G->n=n;G->e=g.arcnum;}void DispAdj(ALGraph *G) /*输出邻接表G*/{int i;ArcNode *p;for (i=0;i<G->n;i++){p=G->adjlist[i].firstarc;if (p!=NULL) printf("%3d: ",i);while (p!=NULL){printf("%3d",p->adjvex);p=p->nextarc;}printf("\n");}}void DFS(ALGraph *G,int v) /*深度优先搜索递归算法*/{ArcNode *p;visited[v]=1; /*置已访问标记*/printf("%3d",v); /*输出被访问顶点的编号*/p=G->adjlist[v].firstarc; /*p指向顶点v的第一条弧的弧头结点*/while (p!=NULL){if (visited[p->adjvex]==0) /*若p->adjvex顶点未访问,递归访问它*/ DFS(G,p->adjvex);p=p->nextarc; /*p指向顶点v的下一条弧的弧头结点*/ }}void DFS1(ALGraph *G,int v) /*深度优先搜索非递归算法*/{int i,visited[MAXV],St[MAXV],top=-1;ArcNode *p;for (i=0;i<G->n;i++)visited[i]=0; /*结点访问标志均置成0*/printf("%3d",v); /*访问顶点v*/top++; /*v入栈*/St[top]=v;visited[v]=1;while (top>=-1) /*栈不空时循环*/{v=St[top];top--; /*取栈顶顶点*/p=G->adjlist[v].firstarc;while (p!=NULL && visited[p->adjvex]==1)p=p->nextarc;if (p==NULL) /*若没有退到前一个*/top--;else /*若有,选择一个*/{v=p->adjvex;printf("%3d",v); /*访问顶点*/visited[v]=1;top++; /*入栈*/St[top]=v;}}printf("\n");}void BFS(ALGraph *G,int v) /*广度优先搜索递归算法*/ArcNode *p;int queue[MAXV],front=0,rear=0; /*定义循环队列并初始化*/int visited[MAXV]; /*定义存放结点的访问标志的数组*/ int w,i;for (i=0;i<G->n;i++) visited[i]=0; /*访问标志数组初始化*/printf("%3d",v); /*输出被访问顶点的编号*/visited[v]=1; /*置已访问标记*/rear=(rear+1)%MAXV;queue[rear]=v; /*v进队*/while (front!=rear) /*若队列不空时循环*/{front=(front+1)%MAXV;w=queue[front]; /*出队并赋给w*/p=G->adjlist[w].firstarc; /*找与顶点w邻接的第一个顶点*/while (p!=NULL){if (visited[p->adjvex]==0) /*若当前邻接顶点未被访问*/{printf("%3d",p->adjvex); /*访问相邻顶点*/visited[p->adjvex]=1; /*置该顶点已被访问的标志*/rear=(rear+1)%MAXV; /*该顶点进队*/queue[rear]=p->adjvex;}p=p->nextarc; /*找下一个邻接顶点*/ }}printf("\n");}5. 运行结果清单图G的邻接表:0: 1 31: 22:0 53: 2 54: 35:0 4从顶点0开始的DFS(递归算法):0 1 2 5 4 3从顶点0开始的DFS(非递归算法):0 1 2 5 4 3从顶点开始的BFS(递归算法):0 1 3 2 5 4。