MIDAS弯桥 计算书

合集下载

midas曲梁计算书

midas曲梁计算书

上部结构纵向计算A匝道A0~A4联4X30m(8.8m宽)计算依据及标准如下:设计方提供的初步设计图纸及设计原则《公路工程技术标准》JTG B01—2003《公路桥涵设计通用规范》JTG D60—2004《公路钢筋混凝土及预应力混凝土桥涵设计规范》JTG 025—86注:在设计方提供的施工图图纸中,该联中支点A1~A3处支座均为固定支座,经程序试算后应力及内力结果都与目标结果相差很远,也不符合一般连续梁支座常规布置形式,经调试支座布置形式后,建立此模型。

(一)主梁纵向计算1、计算内容根据设计方提供的主梁结构和预应力钢筋的设计图,按照《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62-2004)的要求,对结构持久状况截面极限承载能力、正常使用极限状态的截面抗裂、挠度以及使用阶段构件的应力等内容进行了全面的验算。

2、计算模型纵向计算按杆系理论,采用midas civil 2006进行分析,将箱梁纵向作为平面梁单元进行离散;并考虑支座布置及荷载横向分配等因素,考虑满堂支架上现浇、张拉等施工过程。

1)离散模型计算模型结构离散图见下图所示,共78个节点,70个单元。

图10.4.1-1 结构离散图2)材料混凝土:主梁采用C50混凝土,弹性模量E=3.45×104MPa,fck=32.4MPa,ftk=2.65 MPa,fcd=22.4 MPa,ftd=1.83 MPa。

普通钢筋:HRB335预应力钢束:采用Φj15.24钢绞线,弹性模量195000MPa,张拉控制应力0.75fpk=0.75×1860=1395MPa,松弛比0.035,孔道摩阻系数0.3,偏差系数0.0015,一端锚具回缩6mm。

3、计算参数1)恒载一期恒载:按构件实际截面计入,混凝土容重γ=26.25KN/m3(考虑5%的施工误差);二期恒载(公路桥面桥面系):沥青混凝土铺装厚度18cm,容重γ=25KN/m3,行车道宽8m;地袱栏杆每侧:单条每延米12.5KN/m;则:∑q=0.18X8x25+2x12.5=61KN/m横隔板:(厚50cm)Pt1::6.8KN支座沉陷:按5mm考虑。

现浇连续弯桥midas计算书

现浇连续弯桥midas计算书

**高速公路结构设计计算书中国北京二〇二〇年六月七日目录1.设计资料 (1)1.1桥跨 (1)1.2梁 (1)1.3荷载 (1)1.1.1.恒载 (1)1.1.2.活载 (1)1.1.3.温度荷载 (1)1.1.4.支座沉降 (1)1.1.5.荷载组合 (1)1.4主要材料设计参数表 (2)2.设计依据 (2)2.1规范条文 (2)2.2软件工具 (2)3.上部结构总体计算 (3)3.1计算模式 (3)3.2持久状况承载能力极限状态计算 (3)3.3持久状况应力计算 (5)3.4持久状况正常使用极限状态短期抗裂计算 (7)3.5持久状况正常使用极限状态长期抗裂计算 (9)3.6持久状况正常使用极限状态主拉应力抗裂验算 (10)4.上部结构横向计算 (11)4.1桥墩墩顶横梁 (11)4.1.1计算模式 (11)4.1.2持久状况承载能力极限状态计算 (12)4.1.3持久状况正常使用极限状态抗裂计算 (13)4.2桥台横梁 (13)4.2.1 (13)4.2.2持久状况承载能力极限状态计算 (13)4.2.3持久状况正常使用极限状态抗裂计算 (14)5.下部结构计算 (14)5.1桥墩墩柱 (14)5.1.1持久状况承载能力极限状态计算 (14)5.1.2持久状况正常使用极限状态抗裂计算 (15)5.2桥墩桩基础 (15)1.设计资料1.1桥跨桥型布置为3×38+27m现浇预应力混凝土连续箱梁。

按A类预应力混凝土构件验算1.2梁箱梁高2.3m1.3荷载1.1.1.恒载A.一期恒载包括主梁自重,混凝土主梁按照实际断面尺寸取值,容重取26kN/ m3,主梁横隔板以集中力计入。

B.二期恒载二期恒载包括人行道、栏杆和桥面铺装:桥面铺装采用15m整体化混凝土,钢筋混凝土容重为26kN/m3。

栏杆或防撞护栏:栏杆二期恒载13.2 kN/m;防撞护栏二期恒载35.1kN/m;1.1.2.活载A.汽车荷载公路-I级,汽车荷载的横向分布系数:边梁:0.816;中梁:0.679。

迈达斯(midas)计算

迈达斯(midas)计算

迈达斯(midas)计算潇湘路连续梁门洞调整后⽀架计算书1概述原《潇湘路(32+48+32)m连续梁施⼯⽅案》中,门洞条形基础中⼼间距为7.5⽶,现根据征迁⼈员反映,为满⾜门洞内机动车辆通⾏需求,需将条形基础中⼼间距调整⾄8.5⽶。

现对门洞结构体系进⾏计算,调整后门洞横断⾯如图1-1所⽰。

图1-1调整后门洞横断⾯图门洞纵断⾯不作改变如图1-2所⽰。

图1-2门洞总断⾯图门洞从上⾄下依次是:I40⼯字钢、双拼I40⼯字钢、Ф426*6钢管(内部灌C20素混凝⼟),各结构构件纵向布置均与原⽅案相同。

2主要材料⼒学性能(1)钢材为Q235钢,其主要⼒学性能取值如下:抗拉、抗压、抗弯强度:[ =125MpaQ235:[σ]=215Mpa, ](2)混凝⼟采⽤C35混凝⼟,其主要⼒学性能取值如下:弹性模量:E=3.15×104N/mm2。

抗压强度设计值:f c=14.3N/mm2抗拉强度设计值:f t=1.43N/mm2(3)承台主筋采⽤HRB400级螺纹钢筋,其主要⼒学性能如下:抗拉强度设计值:f y=360N/mm2。

(4)箍筋采⽤HPB300级钢筋,其主要⼒学性能如下:抗拉强度设计值:f y=270N/mm23门洞结构计算3.1midas整体建模及荷载施加Midas整体模型如图3.1-1所⽰。

图3.1-1MIDAS整体模型图midas荷载加载横断⾯图如图3.1-2所⽰。

3.1-2荷载加载横断⾯图荷载加载纵断⾯如图3.1-3所⽰。

图3.1-3荷载加载纵断⾯图3.2整体受⼒分析整体模型受⼒分析如图5.2-1~5.2-3所⽰。

图5.2-1门洞整体位移等值线图5.2-2门洞整体组合应⼒云图图5.2-3门洞整体剪应⼒云图由模型分析可得,模型最⼤位移D=3.2mm<[l/600]=14.1mm,组⼤组合应⼒σ=144.2Mpa<[σ]=215Mpa,最⼤剪应⼒σ=21.6Mpa<[σ]=125Mpa 门洞整体强度、刚度均满⾜要求。

现浇箱梁midas结构计算书

现浇箱梁midas结构计算书

从化至东莞高速公路第一合同段沙浦枢纽立交广惠高速跨线桥左幅第四联连续箱梁验算报告计算复核审核二〇一〇年六月目录1工程概况 (1)1.1概述 (1)1.2主要设计标准 (1)1.3主要材料 (2)1.4结构形式简述 (2)2计算模型及计算参数选取 (3)2.1计算模型建立 (3)2.2计算荷载 (5)2.3计算工况及验算内容 (7)3上部结构计算 (9)3.1计算模型 (9)3.2短暂状况构件应力验算 (10)3.3上部结构计算小结 (24)4 横梁计算 (25)广惠高速跨线桥左幅第四联连续箱梁验算报告1工程概况1.1概述本联为跨径组合为(3×25)m的连续箱梁,上部结构采用连续箱梁,梁高等高为1.6m,悬臂宽度2.3m,桥面横坡通过箱梁整体旋转形成,箱梁顶、底板始终保持平行,边腹板保持2.75:1的斜率不变。

箱梁顶宽16.25m,采用单箱双室。

本桥预应力砼连续箱梁按照部分预应力混凝土A类构件设计。

下部结构采用板式桥墩,支座采用盆式支座。

1.2主要设计标准(1)设计荷载:公路—I级;(2)桥面宽度:桥宽16.25米;(4)横坡:2%。

(5)地震加速度为0.05g,对应地震基本烈度Ⅵ度;广东省公路勘察规划设计院/北京交科公路勘察设计研究院1(6)环境类别:Ⅰ类环境(7)安全等级:一级1.3主要材料(1)混凝土现浇箱梁采用C50砼;护栏采用C30砼。

具体以细部图纸为准。

(2)钢筋钢筋应符合GB13013-1991和GB1499-1998的规定。

凡钢筋直径≥12mm者,均采用HRB335钢筋;凡钢筋直径<12mm者,均采用热轧R235钢筋。

(3)钢绞线钢绞线采用GB/T5224-2003标准生产的低松弛高强度钢绞线。

单根钢绞线直径15.20mm,公称面积140mm2,标准强度1860MPa,弹性模量1.95×105MPa。

1.4结构形式简述本联组合跨径为(3×25)m ,上部结构均采用预应力混凝土斜腹板连续箱梁。

迈达斯中弯桥模型的建立

迈达斯中弯桥模型的建立
16.连接节点1和11
图 3.13 建立梁单元
用扩展单元功能建立桥台A1 上的板单元。
1.点击 全选
2.点击 扩展单元
3.在扩展类型上选择‘线单元→平面单元’
4.确认删除为‘’
5.在单元属性中确认单元类型为‘板单元’
6.确认材料为‘1 : 30’
7.确认厚度为‘1 : 1.000’
8.确认类型为‘厚板’
3.在旋转的复制次数里输入‘1’
4.在旋转角度里输入‘-11.5*360/2/pi/131.95’
5.确认旋转轴为‘绕z轴’
6.确认第一点为‘0, -131.95, 0’
7.点击
图 3.17 复制板单元
利用新建立的板单元在桥墩P1的左侧建立厚度从1m变化到1.3m的板单元。
1.在旋转单元里确认形式为‘复制’
图 3.19 建立1.3m厚的板单元
选择图 3.19的,在桥墩 P1 的右侧建立厚度从 1.3m变化到1m的板单元。
1.在旋转单元里确认形式为‘复制’
2.点击 多边形选择,选择图 3.19的
3.在旋转的复制次数里输入‘4’
4.在旋转角度里输入‘-0.5*360/2/pi/131.95’
5.确认旋转轴为‘绕z轴’
2.在工具条选择钩选全部(图 3.7)
3.点击
图 3.7 工具条编辑窗口
将调出的工具条拖放到用户方便的位置(图3.8)。
(a)调整工具条位置之前
(b) 调整工具条位置之后
图 3.8 排列工具条
定义材料以及截面
定义材料如下:
材料
1 : 30–板
考虑在支座处板的厚度变化按下图来定义不同的厚度(图 3.9)。
13.在旋转角度里输入‘-360/2/pi/131.95’

Midas 使用经验

Midas 使用经验

从04年工作后开始学习midas,将所作的计算挑选10个典型,由简入难做一简单总结.附图,因涉及实际设计图纸,模型未附上,仅介绍一下思路和注意事项即自己曾走的弯路。

一、钢筋混凝土弯桥:刚工作后接触的第一个计算:4*20半径70m。

用gqjs直线桥、midas空间梁单元弯桥、桥博梁格法分别建模计算。

midas思路:当时做法excel中计算节点坐标,pl导入cad,dxf导入midas。

注意局部坐标系的建立,支座与主梁采用刚性连接。

仅与其他软件比较弯矩内力和支反力,未考虑支座预偏心。

二、3-30滑模施工:为与桥博作比较,截面顶面中心对齐,建模节点与梁底节点加刚性连接。

顺便做了模态分析,基频计算与规范理论计算差不多。

通过有效宽度系数考虑应力验算的有效宽度。

注意梯度温差中B的取值、支座沉降组沉降的正负、施工阶段分析中的单元组、混凝土龄期、边界组取变形后、psc设计注意施工阶段用的荷载定义为施工阶段荷载。

荷载组合中预应力乘以0.8需要手动修改,,但是psc设计用的混凝土设计中的组合系数不用修改,程序自动考虑。

当时对两个程序预应力损失的计算逐项做了一下对比,两者基本吻合。

第四项损失midas 未考虑逐根张拉。

我是在施工阶段中将预应力分组在子阶段分批张拉。

三、横向预应力:等效荷载我是定义为用户定义荷载;自动生成组合后用包络再与用户定义荷载组合。

注意1.单向张拉钢束特征值的数据;2.长期组合中仅考虑恒活载,其余可不计。

附:1.根部弯矩一般比计算值大0.15-0.3,可参考城市规范,自己酌情考虑。

2.规范中冲击系数为1.3,有疑问,一般为0.3吧,布置是否笔误。

取1.3的话,承载能力要求太高了。

四、下部结构的联合计算:1)m法对节点采用节点弹性支撑系数的计算。

2)支座刚度的计算,在墩顶考虑支座加了约束3)截面特征系数的调整:0.67或0.85。

五.小箱梁上下部联合计算:验算小箱梁预应力,计算盖梁与qlt简支计算结果作比较,结论桥梁通简支计算偏不安全。

midas连续梁计算书

midas连续梁计算书

4 gLCB4
激活
相加
整体升温( 1.400) +
降温梯度( 1.400) +
支座沉降( 0.500)
+
恒荷载( 1.200) +
钢束二次( 1.200) +
徐变二次( 1.000)
+
收缩二次( 1.000)
--------------------------------------------------------------------------------------------
本计算书模板是依据 2004 年 10 月颁布的《公路钢筋混凝土及预应力混凝土桥涵 设计规范》(JTG D62-2004)[以下简称《公桥规》]编写的。适用于公路桥梁上部结 构计算。文中以沿江高速淡水河特大桥主桥(82+2x140+82)m 连续刚构为例进行计算, 相关参数仅为参考。
望读者在使用本计算书模板的同时,一定要认真阅读《公桥规》(JTG D62-2004) 中的相关内容及要求。
(3)施工方案
纵向钢束布置情况
顶板钢束
腹板钢束
23-7φ5/19-7φ5 18x3=54 1339
23-7φ5 16x3=48
1395
中跨底板钢束
19-7φ5 11x3=33
1339
边跨底板钢 束
17-7φ5 5x3=15 1339
连续刚构采用对称逐段悬臂灌注和支架现浇两种施工方法。先托架浇注 0 号块,
由于编者水平有限,对《公桥规》(JTG D62-2004)理解还不够深透,有不少认 识有待深化,难免有缺失和错漏之处,恳请读者批评指正。
编者 2010 年 12 月

(整理)MIDAS计算弯桥及汽车荷载方法.

(整理)MIDAS计算弯桥及汽车荷载方法.

MIDAS计算弯桥及汽车荷载方法对于弯桥,可以把它简化为单根曲梁、平面梁格计算,也可以用实体单元、板单元计算。

单根曲梁模型。

优点:简单,缺点:几乎所有类型的梁单元都有刚性截面假定、因而不能考虑桥梁横截面的畸变,总体精度较低。

梁格法。

优点:可以直接输出各主梁的内力,便于利用规范进行强度验算,整体精度能满足设计要求。

缺点:它对原结构进行了面目全非的简化,大量几何参数要预先计算准备,如果由计算者手工准备,不仅工作量大,而且人为偏差较难避免。

实体单元、板单元模型。

优点:与实际模型最接近,不需要计算横截面的形心、剪力中心、翼板有效宽度,截面的畸变、翘曲自动考虑;缺点:输出的是梁横截面上若干点的应力,不能直接用于强度计算;不能直接考虑预应力问题。

1 建模以直代曲,划分的单元越多,精度越高。

2 自重梁单元内外侧长度不等造成的扭矩,可通过施加偏心均布荷载或均布扭矩来调整。

3 汽车荷载计算依据规范,按静荷载修正的方法计算。

4 车道定义车道(板单元定义车道面),车道的横向布置需由用户定义。

最好按偏载定义各车道位置,多车道的横向折减系数由程序自动计算。

程序不能自动考虑汽车荷载的纵向折减,当跨径大于150m时,用户应在定义移动荷载分析子荷载工况时,在系数中自行输入纵向折减系数。

5 注意a. 在定义车道中输入的跨度的用途有两个: 一个是程序根据输入的值按JTGD60-2004的4.3.1条自动选择公路-I级荷载Pk值、按4.3.5自动选择人群荷载标准值;二是用于计算冲击系数,当用户在分析>移动荷载分析控制中选择按输入的跨度计算冲击系数时,将按在定义车道时输入的跨度计算冲击。

b. 在定义车道时,选择跨度实始点的用途: 当用户在分析>移动荷载分析控制中选择按影响线加载长度计算冲击时,程序将根据跨度始点间的距离计算冲击。

6 连续梁桥的各跨跨度不同时,程序自动按在定义车道时输入的各跨跨度中最大值选用Pk值(偏于安全)。

大型设计院跨高速公路顶推钢箱梁midas计算书

大型设计院跨高速公路顶推钢箱梁midas计算书

目录1. 纵向计算 (1)1。

1概算 (1)1.2设计参数 (4)1。

2.1 结构重力 (4)1.2。

2 基础变位作用 (5)1。

2.3 汽车荷载、人群荷载 (5)1.2。

4 汽车荷载冲击力系数 (5)1。

2.5 温度作用 (5)1.2.6 抗震要求 (5)1。

2。

7 桥梁设计基准期 (5)1。

2.8 桥梁设计使用年限 (5)1.2.9 桥梁设计安全等级 (6)1.2.10 环境类别 (6)1.2。

11 材料性能 (6)1。

3计算分析 (6)1。

3.1 支承反力 (6)1。

3.2 刚度 (6)1.3.3 内力 (7)1.3.4 截面 (8)1.3。

5 应力 (9)2。

普通横隔板计算 (10)2.1计算模式 (10)2。

2截面及截面特性 (10)2。

3设计荷载 (10)2.3.1 结构重力 (10)2。

3。

2 汽车荷载 (11)2。

4强度检算 (11)2。

5稳定检算 (12)3。

中支点横隔板 (12)3.1计算模式 (12)3.2强度检算 (12)3。

3稳定检算 (13)4. 端支点横隔板 (13)4。

1计算模式 (13)4。

2强度检算 (14)4。

3稳定检算 (15)5。

左侧悬臂托架 (15)5。

1计算模式 (15)5.2截面及截面特性 (16)5。

3设计荷载 (16)5。

3。

1 结构重力 (16)5。

3.2 汽车荷载 (17)5。

4内力 (17)5.5强度检算 (17)5。

5。

1 正应力 (18)5.5。

2 剪应力 (18)5。

5。

3 稳定检算: (18)6. 右侧悬臂托架 (18)6。

1计算模式 (18)6.2截面及截面特性 (18)6.3设计荷载 (19)6.3。

1 结构重力 (19)6.3.2 汽车荷载 (20)6.4内力 (20)6。

5强度检算 (20)6.5.1 正应力 (20)6.5.2 剪应力 (21)6。

5.3 稳定检算: (21)7. 支承加劲肋检算 (21)7。

1计算模式 (21)7.2强度核算 (21)7。

MIDAS计算书整理-正文

MIDAS计算书整理-正文

设计常用图形结果在MIDAS中的输出MIDAS/Gen可以较全面地提供分析和设计的图形及文本结果,对于设计中常用的一些图形结果,用户可以通过本文介绍的方式进行查看和输出。

MIDAS/Gen中图名的标注方法:点击“显示”按钮,“视图”下勾选“说明”,点击按钮,可以选择字体及大小,在文本栏中输入图名,点击按钮“适用”即可。

1各层构件编号简图点击单元编号按钮,显示构件的编号。

(注:点击节点编号按钮显示节点编号。

)2各层构件截面尺寸显示简图菜单“视图/显示”,选择“特性”;或者点击“显示”按钮,“特性”下勾选“特征值名称”。

(注:建议用户在给截面命名的时候表示出截面的高宽特性。

)3各层配筋简图、柱轴压比程序可以提供各层梁、柱、剪力墙的配筋简图,用户可以查看所需的配筋面积,也可以让程序进行配筋设计,输出实际配筋的结果。

菜单“设计/钢筋混凝土构件配筋设计”下,进行钢筋混凝土梁、柱、剪力墙构件配筋设计后,在“设计/钢筋混凝土结构设计结果简图”中查看。

显示的单位可以在调整。

对于柱和剪力墙构件,程序在输出所需配筋面积的同时,输出柱的轴压比(图中括号内的数值)。

4梁弹性挠度菜单“结果/位移”,MIDAS提供的是梁端节点的变形图(绝对位移)。

(注:可使用菜单“结果/梁单元细部分析”查看任意梁单元任意位置的变形、内力、应力;或者需要对梁单元进行划分,显示梁中部的位移。

)5各荷载工况下构件标准内力简图菜单“结果/内力”下,选择需要查看的构件类型,“荷载工况/荷载组合”里可选择各种荷载工况或荷载组合,查看各种构件在不同工况下的内力值和内力图。

下图显示的是恒载作用下的框架弯矩图。

6梁截面设计内力包络图除了选取某一榀框架,查看其内力图之外,MIDAS还提供平面显示的功能,特别是对于梁单元,该功能适用范围较广。

使用菜单“结果/内力/构件内力图”,在“荷载工况/荷载组合”里选择包络组合,可以查看各层梁截面设计内力包络图。

(注:也可以查看其它工况下梁的内力图。

箱梁计算书(MIDAS分析)

箱梁计算书(MIDAS分析)

连续箱梁挂蓝计算书(midas)(2009-07-04 11:47:42)一、工程简介主桥上部结构为32+68+32m三跨预应力混凝土连续箱梁,梁体自重γ取26kN/m3,跨端支座处、边垮直线段和跨中处梁高为2.8m,中支点处梁高为3.4m,梁高按圆曲线变化,圆曲线半径R=367.80m,顶板厚34cm,腹板厚分别为40cm和70cm,底板厚度由跨中的30cm按圆曲线变化至中点梁根部的60cm,中点处加厚到110cm。

节段主要参数如下表所示:由于0#块长度不够,1#选用整体挂篮施工(见设计图),荷载采用最重悬浇箱梁段A1段:90.0吨。

二、挂篮主要技术标准及参考资料1、参考《公路桥涵施工技术规范》规定,各设计参数取值如下:(1)挂篮质量控制在浇筑梁段砼质量的0.3~0.5倍之间。

(2)允许最大变形(包括吊带变形的总和):20mm(3)施工及行走时抗倾覆安全系数:2.5(4)自锚固系统的安全系数:22、参考资料(1)、通桥2008-2261A-V;(2)、《路桥施工计算手册》-人们交通出版社;(3)、《简明施工计算手册》-中国建筑工业出版社;(4)、《悬臂浇注预应力混凝土梁桥》-人们交通出版社;(5)、本挂篮采用的设计规范有:1)《铁路桥梁钢结构设计规范》(TB10002.2-2005);2)《铁路桥涵钢筋混凝土和预应力混凝土设计规范》(TB10002.3-2005);3).《钢结构设计规范》(GB50017-2003);4).《铁路桥涵设计基本规范》(TB10002.1-2005)。

3、主要材料的力学指标(1)、Q235(A3钢),屈服应力,,弹性模量;(2)、20CrMnTi,屈服应力,弹性模量。

三、结构分析及计算参数1、结构受力分析根据悬灌梁段的实际情况,挂篮分以下三种工况进行受力检算:(1)、工况一:1#梁段施工时连体挂篮的强度检算;(2)、工况二:2#梁段施工时挂篮的强度检算(2)、工况三:挂篮挠度验算;(3)、工况四:挂篮走行时抗倾覆计算。

midas连续梁计算书

midas连续梁计算书

第1章 89#~92#预应力砼连续梁桥1.1结构设计简述本桥为27+27+25.94现浇连续箱梁,断面型式为弧形边腹板大悬臂断面,根据道路总体布置要求,主梁上下行为整体断面,变宽度32.713m -35m,单箱5室结构变截面。

箱梁顶板厚度为0.22m,底板厚度0.2m;支点范围腹板厚度0.7m,跨中范围腹板厚度0.4m。

主梁单侧悬臂长度为4.85m,箱梁悬臂端部厚度为0.2m,悬臂沿弧线一直延伸至主梁底板。

主梁两侧悬臂设置0.1m后浇带,与防撞护栏同期进行浇筑。

本桥平、立面构造及断面形式如图11.1.1和图11.1.2所示。

图11.1.1 箱梁构造图图11.1.2 箱梁断面图纵向预应力采用φs15.2高强度低松弛钢绞线(Ⅱ级)(GB/T5224-1995),标准强度f=1860MPa。

中支点断面钢束布置如图11.1.3所示。

pk图11.1.3 中支点断面钢束布置图主要断面预应力钢束数量如下表墩横梁预应力采用采用φs15-19,单向张拉,如下图。

1.2主要材料1.2.1主要材料类型(1) 混凝土:主梁采用C50砼;(2) 普通钢筋:R235、HRB335钢筋;(3) 预应力体系:采用φs15.2高强度低松弛钢绞线(Ⅱ级)(GB/T5224-1995),标准强度f=1860MPa;预应力锚具采用符合GB/T14370-2002《预应力筋锚具、pk夹具和连接器》中Ⅰ类要求的优质锚具;波纹管采用符合JT/T529-2004标准的塑料波纹管。

1.2.2主要材料用量指标本桥上部结构主要材料用量指标如表11.2.2-1所示,表中材料指标均为每平米桥面的用量。

表11.2.2-1 上部结构主要材料指标1.3 结构计算分析1.3.1 计算模型结构计算模型如下图所示。

图11.3.1-1 结构模型图有效分布宽度0.50.60.70.80.912.255.49.0612.916.819.523.22730.834.337.140.94447.551.155.158.662.565.168.972.776.179.4坐标Iyy 系数图11.3.1-2 箱梁抗弯刚度折减系数示意图1.3.2 支座反力计算本桥各桥墩均设三支座。

MIDAS弯桥 计算书

MIDAS弯桥 计算书

3.1打板坡枢纽互通式立交B匝道桥本桥平面位于圆曲线(起始桩号:BK0+225.186,终止桩号:BK0+455.45,半径:710m,右偏)、缓和曲线(起始桩号:BK0+455.45,终止桩号:BK0+535.451,参数A:238.328,右偏)、缓和曲线(起始桩号:BK0+535.451,终止桩号:BK0+615.451,参数A:116.619,左偏)和圆曲线(起始桩号:BK0+615.451,终止桩号:BK0+791.296,半径:170m,左偏)上,纵断面位于R=3000m的竖曲线上;墩台径向布置。

全桥共6联:前三联采用先简支后连续T梁,后三联采用现浇箱梁(5-21.753+(22+36+22)+5-20;下部结构采用柱式墩,墩台采用桩基础。

22号桥台及14、17号桥墩采用GJZ250x350x54型四氟滑板式橡胶)支座;10、11、20、21号桥墩采用GYZ800x125型板式橡胶支座;12、13号桥墩采用固接;15、16、18、19号桥墩采用固接;其余桥墩采用GYZ600x110型板式橡胶支座.B匝道桥桥型布置图1. 第四联计算本联计算的设计规范及标准、计算参数及荷载取值等参见第一章。

本联计算采用空间梁单元模型,12#(26.6m)、13#(32.2m)桥墩采用墩梁固结,桥台及交接墩采用四氟滑板支座,桥墩位置采用圆板支座。

全桥分为150单元,其中上部结构共计92个单元,下部结构58个单元。

其中边界条件按支座设计情况模拟,本联施工方式为分段成桥,施工阶段步骤如下:施工阶段1 :第一施工阶段,持续时间30天;施工阶段2 :第二施工阶段,持续时间30天;施工阶段3 :养护60天,持续时间60天;施工阶段4 :铺装及栏杆,持续时间60天;施工阶段5 :徐变十年,持续时间3650天;为保证多联现浇箱梁能同时施工作业,梁体端部开槽张拉钢束,钢束起止点均离梁端70cm,1、92#单元及2、91#单元起止部分为普通砼结构。

迈达斯简支小箱梁计算书

迈达斯简支小箱梁计算书

修改最终版_restore计算书设计:_____________________校对:_____________________审核:_____________________2015-5-12目录一、基本信息 (3)1.1 工程概况 (3)1.2 技术标准 (3)1.3 主要规范 (3)1.4 结构概述 (3)1.5 主要材料及材料性能 (3)1.6 计算原则、内容及控制标准 (4)二、模型建立与分析 (4)2.1 计算模型 (4)2.2 主要钢筋布置图及材料用表 (5)2.3 截面特性及有效宽度 (5)2.4 荷载工况及荷载组合 (6)三、内力图 (8)3.1 内力图 (9)四、持久状况承载能力极限状态验算结果 (9)4.1 截面受压区高度 (9)4.2 正截面抗弯承载能力验算 (9)4.3 斜截面抗剪承载能力验算 (10)4.4 抗扭承载能力验算 (10)4.5 支反力计算 (11)五、持久状况正常使用极限状态验算结果 (12)5.1 结构正截面抗裂验算 (12)5.2 结构斜截面抗裂验算 (13)六、持久状况构件应力验算结果 (13)6.1 正截面混凝土法向压应力验算 (13)6.2 正截面受拉区钢筋拉应力验算 (14)6.3 斜截面混凝土的主压应力验算 (14)七、短暂状况构件应力验算结果 (15)7.1 短暂状况构件应力验算 (15)一、基本信息1.1 工程概况1.2 技术标准1.3 主要规范1)《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62-2004)2)《公路桥涵设计通用规范》(JTG D60-2004)3)《公路工程技术标准》(JTG B01-2003)4)《公路桥梁抗震设计细则》(JTG/T B02-01-2008)5)《公路桥涵地基与基础设计规范》(JTG D63-2007)6)《城市桥梁设计规范》(CJJ11-2011)1.4 结构概述1.5 主要材料及材料性能1)混凝土表格 1 混凝土表格2)普通钢筋表格 2 普通钢筋表格3)预应力材料表格 3 预应力材料表格1.6 计算原则、内容及控制标准计算书中将采用midas Civil对桥梁进行分析计算,并以《公路桥涵设计通用规范》(JTG D60-2004)和《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62-2004)为标准,按A类预应力混凝土结构进行验算。

MIDAS迈达斯_桥梁结构电算课程设计报告书

MIDAS迈达斯_桥梁结构电算课程设计报告书

结构电算课程设计设计题目:桥梁结构计算学院:轨道交通学院专业:交通工程班级:XXXXXXXX学号:XXXXXXXXXX姓名:XXX上海应用技术大学实践课程任务书指导教师(签名):教研室主任(签名):2017年 12 月 15 日 2017年 12 月 15 日目录一、建模过程 (1)1 工程介绍 (1)2 模型建立 (1)3 施加静力荷载 (6)4 施加移动荷载 (7)二、施工过程 (9)三、数据结果 (10)(1) (10)(2) (12)(3) (14)四、数据分析 (16)五、实习总结 (16)一、建模过程1 工程介绍1.1 工程简介已知某桥上部结构为(20+4×25+20)m的混凝土连续板(图1),荷载等级为公路-Ⅱ级。

当连续板成桥后进行桥面现浇防水混凝土和沥青铺展层施工。

现不计外测护墙和内侧护栏基座的作用。

沥青混凝土图1(尺寸单位:cm)1.2 施工方式采用桥下满堂支架施工。

1.3 设计资料(1)沥青自重g1=13.455 kN/m;(2)C30防水混凝土自重g2=18.125 kN/m;(3)C40混凝土自重g3=121.635 kN/m;(4)二期恒载g4=13.455+18.125=31.58kN/m。

2 模型建立2.1 定义材料和截面2.1.1 定义材料此次桥梁设计用到的是C40混凝土,所以只需在材料中选择C40混凝土,相应的数值软件内都有的,不需要额外输入(图2)。

图2 材料数据2.1.2 定义截面设计书中的主梁截面为5个圆形,然而软件中并没有相对应的截面设计,因此需要把5个圆形替换成1个面积相等的矩形,而外部的轮廓尺寸还是按照原来的截面设计,只需要改变部分的内部轮廓尺寸。

S矩形=S圆=5πr²=5*π*40²=8000π cm²BI1=BI3=5d/2=5*80/2=200cm=2mHI3=S矩形/(2*BI1)=8000π/2/200=62.831cm=0.628mHI1=1.2-0.628-0.21=0.362m图3 设计截面2.2 建立节点/单元2.2.1 建立节点一般每个节点之间的间隔是2-3m,这次的桥梁的6个跨度分别是20m,25m,25m,25m,25m和20m。

MIDAS计算书整理 正文

MIDAS计算书整理 正文

设计常用图形结果在MIDAS中的输出MIDAS/Gen可以较全面地提供分析和设计的图形及文本结果,对于设计中常用的一些图形结果,用户可以通过本文介绍的方式进行查看和输出。

MIDAS/Gen中图名的标注方法:点击“显示”按钮,“视图”下勾选“说明”,点击按钮,可以选择字体及大小,在文本栏中输入图名,点击按钮“适用”即可。

1各层构件编号简图点击单元编号按钮,显示构件的编号。

(注:点击节点编号按钮显示节点编号。

)2各层构件截面尺寸显示简图菜单“视图/显示”,选择“特性”;或者点击“显示”按钮,“特性”下勾选“特征值名称”。

(注:建议用户在给截面命名的时候表示出截面的高宽特性。

)3各层配筋简图、柱轴压比程序可以提供各层梁、柱、剪力墙的配筋简图,用户可以查看所需的配筋面积,也可以让程序进行配筋设计,输出实际配筋的结果。

菜单“设计/钢筋混凝土构件配筋设计”下,进行钢筋混凝土梁、柱、剪力墙构件配筋设计后,在“设计/钢筋混凝土结构设计结果简图”中查看。

显示的单位可以在调整。

对于柱和剪力墙构件,程序在输出所需配筋面积的同时,输出柱的轴压比(图中括号内的数值)。

4梁弹性挠度菜单“结果/位移”,MIDAS提供的是梁端节点的变形图(绝对位移)。

(注:可使用菜单“结果/梁单元细部分析”查看任意梁单元任意位置的变形、内力、应力;或者需要对梁单元进行划分,显示梁中部的位移。

)5各荷载工况下构件标准内力简图菜单“结果/内力”下,选择需要查看的构件类型,“荷载工况/荷载组合”里可选择各种荷载工况或荷载组合,查看各种构件在不同工况下的内力值和内力图。

下图显示的是恒载作用下的框架弯矩图。

6梁截面设计内力包络图除了选取某一榀框架,查看其内力图之外,MIDAS还提供平面显示的功能,特别是对于梁单元,该功能适用范围较广。

使用菜单“结果/内力/构件内力图”,在“荷载工况/荷载组合”里选择包络组合,可以查看各层梁截面设计内力包络图。

(注:也可以查看其它工况下梁的内力图。

midas关于斜弯桥

midas关于斜弯桥

在剪力-柔性梁格法如果解决实际问题的方面,介绍的都不是很详细,在此希望能通过此论题的开始,起到抛砖引玉的作用,一方面为困惑的设计人员深入了解,另一方面彼此交流互相提高弯桥的设计水平。

目前解决曲线桥梁计算方法有以下几种:1、空间梁元模型法2、空间薄壁箱梁元模型法3、空间梁格模型法4、实体、板壳元模型法第一种方法,是不能考虑桥梁的横向效应的,使用时要求桥梁的宽跨比不易太大。

第二种方法,是第一种方法的改进,主要区别是采用了不同的单元模型,考虑了横向作用如翘曲和畸变。

第四种方法,是解决问题最有效的方法,能够考虑各种结构受力问题。

第三种方法,是目前设计及科研中常采用的方法,其特点是容易掌握,且对设计能保证足够的精度,其中采用比较多的方法是剪力-柔性梁格法,能充分考虑弯桥横向的受力特性。

弯桥的受力特性如下:弯桥由于弯扭耦合现象的存在,其应力和变形不再仅仅是弯矩单独的影响,这样使得外梁弯曲应力大于内梁的弯曲应力,外梁的挠度大于内梁的挠度。

一般不主张采用加大外腹板高度的箱梁截面形式来改善受力特性。

剪力-柔性梁格法的原理是当梁格节点与结构重合的点承受相同挠度和转角时,由梁格产生的内力局部静力等效与结构的内力。

其实质是将传统的一维杆单元计算模式推进到二维计算模型,用一个二维的空间网格来模拟结构的受力特性有了以上的理论知识后便可以开始弯桥的设计,步骤如下:1、截面尺寸的拟订2、模型的划分3、模型特性的计算4、结果整理,并根据内力输出结果配筋5、检算各项设计指标:设置预偏心,支承反力的调整应力、挠度、裂缝宽度、斜截面承载力检算、抗扭检算等。

现以一三跨曲线梁桥为例说明以上的设计过程。

跨径20m+25m+20m;梁高1.6m,端横梁宽1.0m,中横梁宽度均为2.0m桥面宽为:净8+2x0.5m(防撞栏);双支座径向距离5.0m,单支座设在横梁中心,曲线半径50.0m,其截面形式如下:目前弯梁桥在现代化的公路及城市道路立交中的数量逐年增加,应用已非常普遍。

MIDAS教程11m空心板MIDAS计算书

MIDAS教程11m空心板MIDAS计算书

第1章总述1.1技术标准和设计规范1.1.1技术标准(1)道路等级:公路二级(2)设计车速:60公里/小时(3)设计车道:双向2车道(4)结构设计基准期:100年(5)桥梁宽度:桥面宽度为9.5m,断面组成为:0.25m(栏杆)+0.75m(人行道)+2×3.75m(车行道)+ 0.75m(人行道)+0.25m(栏杆)=9.5m。

(6)汽车荷载等级:公路—Ⅱ级1.1.2设计规范(1)《公路工程技术标准》JTG B01-2003(2)《公路桥涵设计通用规范》JTG D60-2004(3)《公路钢筋混凝土及预应力混凝土桥涵设计规范》JTG D62-2004(4)《公路桥涵钢结构及木结构设计规范》JTJ 025-86(5)《公路桥涵施工技术规范》JTJ 041-2000(6)《公路桥涵地基与基础设计规范》JTJ 024-85(7)《公路工程基本建设项目设计文件编制办法》(1996年版)(8)其它相关的设计规范、规程1.2复核计算参数1.2.1主要材料及技术参数(1)混凝土力学指标混凝土力学指标表表 1-1(2)钢绞线力学指标钢绞线力学指标表表1-2(3)钢筋力学指标钢筋力学指标表表1-31.2.2结构计算参数结构设计参数表表 1-41.3荷载取值1.3.1永久作用(1)一期恒载现浇空心板梁以自重计入。

预应力混凝土容重取26kN/m 3。

(2) 二期恒载包括桥面铺装、栏杆、人行道等,以均布荷载计入。

桥面铺装:整体化层厚10cm , 10cm 的钢筋混凝土桥面铺装,容重25kN/m 3; 栏杆:两边栏杆实际重量取值。

(3) 收缩徐变收缩徐变时间取10年,即3650天。

1.3.2 可变作用 (1) 汽车荷载荷载等级:公路-Ⅱ级;冲击系数:按规范计算,车道冲击系数基频54.14=f ,冲击系数45.0=μ; 横向分布系数:采用铰接板梁法, 184.0=汽m (2) 人群荷载按照公路-Ⅱ级的人群荷载取值,204.0=人m 。

关于MIDAS里面曲线桥支座模拟

关于MIDAS里面曲线桥支座模拟

向各位达人请教,我在计算曲线桥时,当模拟横向支座(大于2个)时,采用弹性连接里面的刚性连接(支座点于主梁连接)。

算出来的支反力。

有时不能让人信服,请问大家都是怎么模拟的?这里我只说说双支座的模拟,3支座以此类推:1.不模拟支座的实际高度时-虚拟刚臂法:在实际支座位置建立两个节点,把这两个节点与对应梁上的节点分别连接,建立两个虚拟单元。

虚拟单元的材料容重设为零,弹性模量建议取值10e5~10e10。

然后对所建立的两个节点进行“一般支承”或“节点弹性支承”约束,其中后者可以模拟实际支座的刚度。

2.模拟支座的实际高度时-弹性连接法:在实际支座位置建立两个节点,节点与主梁建模点进行“刚性连接”,主节点为主梁建模点。

将这两个节点向下复制,距离为支座高度+梁高(梁截面以顶对齐时),复制生成的点与对应的点用“弹性连接”进行连接,相应的刚度参考支座厂家的产品介绍。

然后对所复制的节点用“一般支承”进行固结,即约束各个方向的转角和位移。

当然如果不用模拟支座的实际刚度时,相应的刚度可取大值,建议取值范围为10e5~10e10。

楼上的概括的很全面,一般单、两个支座时用第一种方法,多支座时就得用第二种方法了。

以下是MIDAS官方的资料,弯桥支座一般这样模拟:i. 单、双支座模拟。

在实际支座位置建立节点,定义该节点的节点局部坐标,保证约束方向与曲梁的切向或径向一致,利用弹性连接(刚性)连接支座节点与主梁节点,然后利用一般支承来定义支座节点的约束条件。

ii. 多支座模拟。

对于多支座的情况利用单、双支座的方法会导致反力结果误差较大。

因弹性连接(刚性)在程序中是一种刚度较大的梁单元,传递荷载时,也会发生微小变形,与平截面假定不符。

此时,应在实际支座的顶、底位置分别建立节点,支座底部节点采用一般支承约束(约束D-ALL),利用弹性连接(一般)来模拟支座(输入支座刚度),支座顶节点和主梁节点通过刚性连接来连接。

个人认为这样与实际情况也不见得相符合,我们以前做过一个单箱三室的箱梁,四个腹板下面分别放支座,采用刚臂连接的方法(主梁(单梁模型)与下方实际位置的四个支座采用弹性连接里面的刚接),结果位于中间的两个支座的反力相比于两边的支座非常的大,约为两侧支座的20倍左右。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.1打板坡枢纽互通式立交B匝道桥本桥平面位于圆曲线(起始桩号:BK0+225.186,终止桩号:BK0+455.45,半径:710m,右偏)、缓和曲线(起始桩号:BK0+455.45,终止桩号:BK0+535.451,参数A:238.328,右偏)、缓和曲线(起始桩号:BK0+535.451,终止桩号:BK0+615.451,参数A:116.619,左偏)和圆曲线(起始桩号:BK0+615.451,终止桩号:BK0+791.296,半径:170m,左偏)上,纵断面位于R=3000m的竖曲线上;墩台径向布置。

全桥共6联:前三联采用先简支后连续T梁,后三联采用现浇箱梁(5-21.753+(22+36+22)+5-20;下部结构采用柱式墩,墩台采用桩基础。

22号桥台及14、17号桥墩采用GJZ250x350x54型四氟滑板式橡胶)支座;10、11、20、21号桥墩采用GYZ800x125型板式橡胶支座;12、13号桥墩采用固接;15、16、18、19号桥墩采用固接;其余桥墩采用GYZ600x110型板式橡胶支座.B匝道桥桥型布置图1. 第四联计算本联计算的设计规范及标准、计算参数及荷载取值等参见第一章。

本联计算采用空间梁单元模型,12#(26.6m)、13#(32.2m)桥墩采用墩梁固结,桥台及交接墩采用四氟滑板支座,桥墩位置采用圆板支座。

全桥分为150单元,其中上部结构共计92个单元,下部结构58个单元。

其中边界条件按支座设计情况模拟,本联施工方式为分段成桥,施工阶段步骤如下:施工阶段1 :第一施工阶段,持续时间30天;施工阶段2 :第二施工阶段,持续时间30天;施工阶段3 :养护60天,持续时间60天;施工阶段4 :铺装及栏杆,持续时间60天;施工阶段5 :徐变十年,持续时间3650天;为保证多联现浇箱梁能同时施工作业,梁体端部开槽张拉钢束,钢束起止点均离梁端70cm,1、92#单元及2、91#单元起止部分为普通砼结构。

结构单元离散如下:★第四联计算结果汇总:1持久状况承载能力极限状态验算结果1.1正截面抗弯承载能力验算图表1正截面抗弯承载能力验算结果图形结论:按照《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTGD62-2004)第≤R 验算,结构重要性系数*作用效应的组合设计最大值均小于等于构件承5.1.5条γos载力设计值,满足规范要求。

1.2斜截面抗剪承载能力验算图表2斜截面抗剪承载能力验算结果图形结论:按照《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTGD62-2004)第5.1.5条γ≤R 验算,结构重要性系数*作用效应的组合设计最大值均小于等于构件承os载力设计值,满足规范要求。

按照《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTGD62-2004)第 5.2.9条进行抗剪截面验算,满足规范要求。

1.3抗扭承载能力验算图表3抗扭承载能力验算——T结果图形图表4抗扭承载能力验算——V结果图形结论:按照《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTGD62-2004)第5.1.5-1条γos≤R 验算,结构重要性系数*作用效应的组合设计最大值均小于等于构件承载力设计值,满足规范要求。

按照《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTGD62-2004)第 5.5.3条进行抗扭截面验算,满足规范要求。

2、持久状况正常使用极限状态验算结果2.1结构正截面抗裂验算对于部分预应力A类构件,在作用(荷载)短期效应组合下,应符合下列条件:σst-σpc≤0.7f tk,但在荷载长期效应组合下:σlt-σpc≤0图表5结构正截面抗裂验算短期效应组合结果图形图表6结构正截面抗裂验算长期效应组合结果图形结论:按照《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTGD62-2004)第6.3.1-1条验算:短期效应组合满足规范要求(除去梁端普通砼应力假点外);长期效应组合满足规范要求(除去梁端普通砼应力假点外)。

2.2结构斜截面抗裂验算对于A类和B类部分预应力混凝土构件,在作用(荷载)短期效应组合下,应符合下列条件:预制构件:σtp ≤0.7ftk现场浇筑(包括预制拼装)构件:σtp ≤0.5ftk图表7结构斜截面抗裂验算结果图形结论:37 38号单元,为11#桥墩墩顶横梁处,本处为应力假点,按照《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTGD62-2004)第6.3.1-2条验算,满足规范要求(除去梁端普通砼应力假点及11#桥墩墩顶横梁位置外)。

3、持久状况构件应力验算结果,3.1正截面混凝土法向压应力验算按《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTGD62-2004)第7.1.5-1条,荷载取其标准值,汽车荷载考虑冲击系数。

受压区混凝土的最大压应力:未开裂构件:σkc +σpt≤0.5fck允许开裂构件:σcc ≤0.5fck图表8正截面混凝土法向压应力验算结果图形结论:按照《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTGD62-2004)第7.1.5条验算,满足规范要求。

3.2斜截面混凝土的主压应力验算按《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTGD62-2004)第7.1.6条,混凝土的主压应力应符合下式规定:σcp ≤0.6fck图表9斜截面混凝土的主压应力验算结果图形结论:按照《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTGD62-2004)第7.1.6条验算,满足规范要求。

4、短暂状况构件应力验算结果4.1短暂状况构件应力验算按《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTGD62-2004)第7.2.8条,截面边缘混凝土的法向压应力应符合下式规定:σtcc ≤0.70f'ck图表10短暂状况构件应力验算结果图形结论:按照《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTGD62-2004)第7.2.8条验算,满足规范要求。

由上述结论可知:本联桥梁梁体结构的抗弯、抗剪强度及应力状态均满足规范要求。

2. 第五联计算本联计算的设计规范及标准、计算参数及荷载取值等参见第一章。

本联计算采用空间梁单元模型,15#(37m)、16#(36m)桥墩采用墩梁固结,桥台及交接墩采用四氟滑板支座。

全桥分为135单元,其中上部结构共计62个单元,下部结构73个单元。

其中边界条件按支座设计情况模拟,本联施工方式为一次成桥,施工阶段步骤如下:施工阶段1 :一次成桥,持续时间30天;施工阶段2 :养护60天,持续时间60天;施工阶段3 :铺装及栏杆,持续时间60天;施工阶段4 :徐变十年,持续时间3650天;为保证多联现浇箱梁能同时施工作业,梁体端部开槽张拉钢束,钢束起止点均离梁端70cm,1、62#单元及2、61#单元起止部分为普通砼结构。

结构单元离散如下:★第五联计算结果汇总:1持久状况承载能力极限状态验算结果1.1正截面抗弯承载能力验算图表11正截面抗弯承载能力验算结果图形结论:按照《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTGD62-2004)第5.1.5条γ≤R 验算,结构重要性系数*作用效应的组合设计最大值均小于等于构件承os载力设计值,满足规范要求。

1.2斜截面抗剪承载能力验算图表12斜截面抗剪承载能力验算结果图形结论:按照《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTGD62-2004)第5.1.5条γ≤R 验算,结构重要性系数*作用效应的组合设计最大值均小于等于构件承os载力设计值,满足规范要求。

按照《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTGD62-2004)第 5.2.9条进行抗剪截面验算,满足规范要求。

1.3抗扭承载能力验算图表13抗扭承载能力验算——T结果图形结论:按照《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTGD62-2004)第5.1.5-1条γ≤R 验算,结构重要性系数*作用效应的组合设计最大值均小于等于构件os承载力设计值,满足规范要求。

按照《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTGD62-2004)第 5.5.3条进行抗扭截面验算,满足规范要求。

2、持久状况正常使用极限状态验算结果2.1结构正截面抗裂验算对于部分预应力A类构件,在作用(荷载)短期效应组合下,应符合下列条件:σst-σpc≤0.7f tk,但在荷载长期效应组合下:σlt-σpc≤0图表14结构正截面抗裂验算短期效应组合结果图形图表15结构正截面抗裂验算长期效应组合结果图形结论:按照《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTGD62-2004)第6.3.1-1条验算:短期效应组合满足规范要求(除去梁端普通砼应力假点外);长期效应组合满足规范要求(除去梁端普通砼应力假点外)。

2.2结构斜截面抗裂验算对于A类和B类部分预应力混凝土构件,在作用(荷载)短期效应组合下,应符合下列条件:预制构件:σtp ≤0.7ftk现场浇筑(包括预制拼装)构件:σtp ≤0.5ftk图表16结构斜截面抗裂验算结果图形结论:按照《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTGD62-2004)第6.3.1-2条验算,满足规范要求(除去梁端普通砼应力假点外)。

3、持久状况构件应力验算结果,3.1正截面混凝土法向压应力验算按《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTGD62-2004)第7.1.5-1条,荷载取其标准值,汽车荷载考虑冲击系数。

受压区混凝土的最大压应力:未开裂构件:σkc +σpt≤0.5fck允许开裂构件:σcc ≤0.5fck图表17正截面混凝土法向压应力验算结果图形结论:按照《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTGD62-2004)第7.1.5条验算,满足规范要求。

3.2斜截面混凝土的主压应力验算按《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTGD62-2004)第7.1.6条,混凝土的主压应力应符合下式规定:σcp ≤0.6fck图表18斜截面混凝土的主压应力验算结果图形结论:按照《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTGD62-2004)第7.1.6条验算,满足规范要求。

4、短暂状况构件应力验算结果4.1短暂状况构件应力验算按《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTGD62-2004)第7.2.8条,截面边缘混凝土的法向压应力应符合下式规定:σtcc ≤0.70f'ck图表19短暂状况构件应力验算结果图形结论:按照《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTGD62-2004)第7.2.8条验算,满足规范要求。

由上述结论可知:本联桥梁梁体结构的抗弯、抗剪强度及应力状态均满足规范要求。

3. 第六联计算本联计算的设计规范及标准、计算参数及荷载取值等参见第一章。

相关文档
最新文档