重庆市高三数学上学期期中试题 理 新人教A版
高三数学人教版A版数学(理)高考一轮复习教案空间几何体的表面积与体积
第二节空间几何体的表面积与体积表面积与体积了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式).知识点一空间几何体的表面积1.多面体的表(侧)面积多面体的各个面都是平面,则多面体的侧面积就是所有侧面的面积之和,表面积是侧面积与底面面积之和.2.旋转体的表(侧)面积名称侧面积表面积圆柱(底面半径r,母线长l)2πrl 2πr(l+r)圆锥(底面半径r,母线长l)πrl πr(l+r) 圆台(上、下底面半径r1,r2,母线长l)π(r1+r2)l π(r1+r2)l+π(r21+r22)球(半径为R)4πR2易误提醒(1)几何体的侧面积是指(各个)侧面面积之和,而表面积是侧面积与所有底面面积之和.(2)对侧面积公式的记忆,最好结合几何体的侧面展开图来进行,要特别留意根据几何体侧面展开图的平面图形的特点来求解相关问题.(3)组合体的表面积应注意重合部分的处理.[自测练习]1.正六棱柱的高为6,底面边长为4,则它的表面积为()A.48(3+3)B.48(3+23)C.24(6+2) D.144解析:正六棱柱的侧面积S侧=6×6×4=144,底面面积S底=2×6×34×42=483,S表=144+483=48(3+3).答案:A2.如图所示是一个几何体的三视图,根据图中数据,可得该几何体的表面积是()A .8+4 2B .10πC .11πD .12π解析:由三视图可知几何体是半径为1的球和底面半径为1,高为3的圆柱,故其表面积应为球的表面积与圆柱的表面积面积之和,即S =4π+2π+2π×3=12π,故选D.答案:D知识点二 空间几何体的体积空间几何体的体积(h 为高,S 为下底面积,S ′为上底面积) (1)V 柱体=Sh . (2)V 锥体=13Sh .(3)V 台体=13h (S +SS ′+S ′).(4)V 球=43πR 3(球半径是R ).易误提醒 (1)求一些不规则几何体的体积常用割补的方法将几何体转化成已知体积公式的几何体进行解决.(2)求与三视图有关的体积问题注意几何体还原的准确性及数据的准确性.[自测练习]3.已知某个几何体的三视图如图所示,根据图中标出的尺寸(单位:cm)可得这个几何体的体积是( )A.43 cm 3 B.83 cm 3 C .3 cm 3D .4 cm 3解析:由三视图可知该几何体是一个底面为正方形(边长为2)、高为2的四棱锥,如图所示.由四棱锥的体积公式知所求几何体的体积V =83cm 3.答案:B4.某一容器的三视图如图所示,则该几何体的体积为________.解析:依题意,题中的几何体是从一个棱长为2的正方体中挖去一个圆锥,其中该圆锥的底面半径是1、高是2,因此题中的几何体的体积等于23-13π×12×2=8-2π3.答案:8-2π3考点一 空间几何体的表面积|1.(2015·高考福建卷)某几何体的三视图如图所示,则该几何体的表面积等于( )A .8+2 2B .11+2 2C .14+2 2D .15解析:由题中三视图可知,该几何体是底面为直角梯形、高为2的直四棱柱,所以其表面积为S 表面积=S 侧面积+2S 下底面积=(1+1+2+2)×2+2×12×(1+2)×1=11+22,故选B.答案:B2.(2015·高考课标全国卷Ⅰ)圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r =( )A .1B .2C .4D .8解析:由三视图可知,此组合体是由半个圆柱与半个球体组合而成,其表面积为πr 2+2πr 2+4r 2+2πr 2=20π+16,所以r =2.答案:B3.(2016·昆明模拟)一个圆锥过轴的截面为等边三角形,它的顶点和底面圆周在球O 的球面上,则该圆锥的表面积与球O 的表面积的比值为________.解析:设等边三角形的边长为2a ,则S 圆锥表=12·2πa ·2a +πa 2=3πa 2.又R 2=a 2+(3a -R )2(R 为球O 的半径),所以R =233a ,故S 球表=4π·⎝⎛⎭⎫233a 2=16π3a 2,故其表面积比为916. 答案:916(1)由三视图求相关几何体的表面积:,给出三视图时,依据“正视图反映几何体的长和高,侧视图反映几何体的高和宽,俯视图反映几何体的长和宽”来确定表面积公式中涉及的基本量.(2)根据几何体(常规几何体、组合体或旋转体)的特征求表面积:①求多面体的侧面积时,应对每一个侧面分别求解后再相加;求旋转体的侧面积时,一般要将旋转体展开为平面图形后再求面积.②对于组合体,要弄清它是由哪些简单几何体组成的,要注意“表面(和外界直接接触的面)”的定义,以确保不重复、不遗漏.考点二 空间几何体的体积|(1)(2015·高考山东卷)已知等腰直角三角形的直角边的长为2,将该三角形绕其斜边所在的直线旋转一周而形成的曲面所围成的几何体的体积为( )A.22π3B.42π3C .22πD .42π(2)(2015·辽宁五校联考)某几何体的三视图如图所示,则该几何体的体积是________.[解析] (1)由题意,该几何体可以看作是两个底面半径为2、高为2的圆锥的组合体,其体积为2×13×π×(2)2×2=423π.(2)由三视图知,该几何体为长方体去掉一个三棱锥,其体积V =2×2×3-13×⎝⎛⎭⎫12×2×1×3=11.[答案] (1)B (2)11空间几何体体积问题的三种类型及解题策略(1)求简单几何体的体积.若所给的几何体为柱体、锥体或台体,则可直接利用公式求解.(2)求组合体的体积.若所给定的几何体是组合体,不能直接利用公式求解,则常用转换法、分割法、补形法等进行求解.(3)求以三视图为背景的几何体的体积.应先根据三视图得到几何体的直观图,然后根据条件求解.(2015·绵阳模拟)一个机器零件的三视图如图所示,其中俯视图是一个半圆内切于边长为2的正方形,则该机器零件的体积为( )A .8+π3B .8+2π3C .8+8π3D .8+16π3解析:依题意得,该机器零件的形状是在一个正方体的上表面放置了一个14的球体,其中正方体的棱长为2,相应的球半径是1,因此其体积等于23+14×43π×13=8+π3,选A.答案:A考点三 与球有关的切、接问题|与球相关的切、接问题是高考命题的热点,也是考生的难点、易失分点.命题角度多变.归纳起来常见的命题角度有:1.四面体的外接球. 2.四棱锥的外接球. 3.三棱柱的外接球. 4.圆锥的内切球与外接球. 5.四面体的内切球. 探究一 四面体的外接球问题1.(2016·唐山模拟)正三棱锥的高和底面边长都等于6,则其外接球的表面积为( ) A .64π B .32π C .16π D .8π解析:如图,作PM ⊥平面ABC 于点M ,则球心O 在PM 上,PM =6,连接AM ,AO ,则OP =OA =R (R 为外接球半径),在Rt △OAM 中,OM =6-R ,OA =R ,又AB =6,且△ABC 为等边三角形,故AM =2362-32=23,则R 2-(6-R )2=(23)2,则R =4,所以球的表面积S =4πR 2=64π.答案:A探究二 四棱锥的外接球问题2.已知四棱锥P -ABCD 的顶点都在球O 的球面上,底面ABCD 是矩形,平面P AD ⊥底面ABCD ,△P AD 为正三角形,AB =2AD =4,则球O 的表面积为( )A.323π B .32π C .64πD.643π 解析:依题意,AB ⊥平面P AD 且△P AD 是正三角形,过P 点作AB 的平行线,交球面于点E ,连接BE ,CE ,则可得到正三棱柱APD -BEC .因为△P AD 是正三角形,且AD =2,所以△P AD 的外接圆半径是23,球O 的半径R =22+⎝⎛⎭⎫232=43,球O 的表面积S =4πR 2=64π3,故选D.答案:D探究三 三棱柱的外接球问题3.(2016·长春模拟)已知三棱柱ABC -A 1B 1C 1的底面是边长为6的正三角形,侧棱垂直于底面,且该三棱柱的外接球的表面积为12π,则该三棱柱的体积为________.解析:设球半径为R ,上,下底面中心设为M ,N ,由题意,外接球心为MN 的中点,设为O ,则OA =R ,由4πR 2=12π,得R =OA =3,又易得AM =2,由勾股定理可知,OM =1,所以MN =2,即棱柱的高h =2,所以该三棱柱的体积为34×(6)2×2=3 3. 答案:3 3探究四 圆锥的内切球与外接球问题4.(2016·嘉兴模拟)若圆锥的内切球与外接球的球心重合,且内切球的半径为1,则圆锥的体积为________.解析:过圆锥的旋转轴作轴截面,得截面△ABC 及其内切圆⊙O 1和外接圆⊙O 2,且两圆同圆心,即△ABC 的内心与外心重合,易得△ABC 为正三角形,由题意知⊙O 1的半径为r =1,∴△ABC 的边长为23,圆锥的底面半径为3,高为3,∴V =13×π×3×3=3π.答案:3π探究五 四面体的内切球问题5.若一个正四面体的表面积为S 1,其内切球的表面积为S 2,则S 1S 2=________.解析:设正四面体棱长为a ,则正四面体表面积为S 1=4·34·a 2=3a 2,其内切球半径为正四面体高的14,即r =14·63a =612a ,因此内切球表面积为S 2=4πr 2=πa 26,则S 1S 2=3a 2π6a 2=63π. 答案:63π求解与球有关的切、接问题的关键点解决球与其他几何体的切、接问题,关键在于仔细观察、分析,弄清相关元素的关系和数量关系,选准最佳角度作出截面(要使这个截面尽可能多地包含球、几何体的各种元素以及体现这些元素之间的关系),达到空间问题平面化的目的.21.补形法在空间几何体的体积、面积中的应用【典例】 已知某几何体的三视图如图所示,则该几何体的体积为( )A.8π3 B .3π C.10π3D .6π[思维点拨] 可考虑将几何体补完整,再分析求解.[解析] 法一:由三视图可知,此几何体(如图所示)是底面半径为1,高为4的圆柱被从母线的中点处截去了圆柱的14,所以V =34×π×12×4=3π.法二:由三视图可知,此几何体是底面半径为1,高为4的圆柱从母线的中点处截去了圆柱的14,直观图如图(1)所示,我们可用大小与形状完全相同的补成一个半径为1,高为6的圆柱,如图(2)所示,则所求几何体的体积为V =12×π×12×6=3π.[答案] B[方法点评] 某些空间几何体是某一个几何体的一部分,在解题时,把这个几何体通过“补形”补成完整的几何体或置于一个更熟悉的几何体中,巧妙地破解空间几何体的体积问题,这是一种重要的解题策略——补形法.常见的补形法有对称补形、联系补形与还原补形.对于还原补形,主要涉及台体中“还台为锥”问题.[跟踪练习] (2015·沈阳模拟)已知四面体P -ABC 的四个顶点都在球O 的球面上,若PB ⊥平面ABC ,AB ⊥AC ,且BC =1,PB =AB =2,则球O 的表面积为( )A .7πB .8πC .9πD .10π解析:依题意,记题中的球的半径是R ,可将题中的四面体补形成一个长方体,且该长方体的长、宽、高分别是2、1、2,于是有(2R )2=12+22+22=9,4πR 2=9π,所以球O 的表面积为9π,选C.答案:CA 组 考点能力演练1.(2016·长春模拟)如图,网格纸上小正方形的边长为1,粗线画出的是某多面体的三视图,则该多面体的体积为( )A.323 B .64 C.3233 D.643解析:由三视图可知,该多面体是一个四棱锥,且由一个顶点出发的三条棱两两垂直,长度都为4,∴其体积为13×4×4×4=643,故选D.答案:D2.如图是某几何体的三视图,其中正视图是一个正三角形,则这个几何体的外接球的表面积为( )A.16π3B.8π3 C .43π D .23π解析:由对称性可知外接球球心在侧视图中直角三角形的高线上,设外接球的半径为R ,则(3-R )2+12=R 2,R =233,其表面积S =4πR 2=4π⎝⎛⎭⎫2332=16π3.答案:A3.(2016·唐山模拟)某几何体的三视图如图所示,则该几何体的体积为( ) A .8π+16 B .8π-16 C .8π+8 D .16π-8解析:由三视图可知:几何体为一个半圆柱去掉一个直三棱柱.半圆柱的高为4,底面半圆的半径为2,直三棱柱的底面为斜边是4的等腰直角三角形,高为4,故几何体的体积V =12π×22×4-12×4×2×4=8π-16.答案:B4.某几何体的三视图如图所示,则该几何体的体积为( )A.2π B .22π C.π3 D.2π3解析:依题意得,该几何体是由两个相同的圆锥将其底面拼接在一起所形成的组合体,其中该圆锥的底面半径与高均为1,因此题中的几何体的体积等于2×13π×12×1=2π3,选D.答案:D5.四面体ABCD 的四个顶点都在球O 的球面上,AB ⊥平面BCD ,△BCD 是边长为3的等边三角形.若AB =2,则球O 的表面积为( )A.323π B .12π C .16π D .32π 解析:设球心为O ,球心在平面BCD 的投影为O 1,则OO 1=AB2=1,因为△BCD 为等边三角形,故DO 1=23×323=3,因为△OO 1D 为直角三角形,所以球的半径R =OD =OO 21+O 1D 2=2,球O 的表面积S =4πR 2=16π,故选C.答案:C6.已知某四棱锥,底面是边长为2的正方形,且俯视图如图所示.若该四棱锥的侧视图为直角三角形,则它的体积为________.解析:由俯视图可知,四棱锥顶点在底面的射影为O (如图),又侧视图为直角三角形,则直角三角形的斜边为BC =2,斜边上的高为SO =1,此高即为四棱锥的高,故V =13×2×2×1=43.答案:437.(2016·台州模拟)某几何体的三视图如图所示,则该几何体的表面积为________.解析:该简单组合体由半球加上圆锥构成,故所求表面积S =4π×422+12×2π×4×5=52π.答案:52π8.(2016·南昌一模)已知直三棱柱ABC -A 1B 1C 1中,∠BAC =90°,侧面BCC 1B 1的面积为2,则直三棱柱ABC -A 1B 1C 1外接球表面积的最小值为________.解析:如图所示,设BC ,B 1C 1的中点分别为F ,E ,则知三棱柱ABC -A 1B 1C 1外接球的球心为线段EF 的中点O ,且BC ×EF =2.设外接球的半径为R ,则R 2=BF 2+OF 2=⎝⎛⎭⎫BC 22+⎝⎛⎭⎫EF 22=BC 2+EF 24≥14×2BC ×EF =1,当且仅当BC =EF =2时取等号.所以直三棱柱ABC -A 1B 1C 1外接球表面积的最小值为4π×12=4π.答案:4π9.已知某锥体的三视图(单位:cm)如图所示,求该锥体的体积.解:由三视图知,原几何体是一个五面体,由一个三棱柱截去一个四棱锥得到,其体积为V =V 三棱柱-V 四棱锥=12×2×2×2-13×12×(2+1)×2×2=2.10.已知一个几何体的三视图如图所示. (1)求此几何体的表面积;(2)如果点P ,Q 在正视图中所示位置:P 为所在线段中点,Q 为顶点,求在几何体表面上,从P 点到Q 点的最短路径的长.解:(1)由三视图知:此几何体是一个圆锥加一个圆柱,其表面积是圆锥的侧面积、圆柱的侧面积和圆柱的一个底面积之和.S 圆锥侧=12(2πa )·(2a )=2πa 2,S 圆柱侧=(2πa )·(2a )=4πa 2,S 圆柱底=πa 2, 所以S 表面=2πa 2+4πa 2+πa 2=(2+5)πa 2.(2)沿P 点与Q 点所在母线剪开圆柱侧面,如图.则PQ =AP 2+AQ 2=a 2+(πa )2=a1+π2,所以从P 点到Q 点在侧面上的最短路径的长为a1+π2.B 组 高考题型专练1.(2015·高考陕西卷)一个几何体的三视图如图所示,则该几何体的表面积为( )A .3πB .4πC .2π+4D .3π+4解析:由所给三视图可知,该几何体是圆柱从底面圆直径处垂直切了一半,故该几何体的表面积为12×2π×1×2+2×12×π×12+2×2=3π+4,故选D.答案:D2.(2015·高考全国卷Ⅱ)已知A ,B 是球O 的球面上两点,∠AOB =90°,C 为该球面上的动点.若三棱锥O -ABC 体积的最大值为36,则球O 的表面积为( )A .36πB .64πC .144πD .256π解析:三棱锥V O -ABC =V C -OAB=13S △OAB×h ,其中h 为点C 到平面OAB 的距离,而底面三角形OAB 是直角三角形,顶点C 到底面OAB 的最大距离是球的半径,故V O -ABC =V C -OAB =13×12×R 3=36,其中R 为球O 的半径,所以R =6,所以球O 的表面积为S =4π×36=144π. 答案:C3.(2015·高考课标卷Ⅱ)一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为( )A.18 B.17 C.16D.15解析:如图,不妨设正方体的棱长为1,则截去部分为三棱锥A -A 1B 1D 1,其体积为16,又正方体的体积为1,则剩余部分的体积为56,故所求比值为15.故选D.答案:D4.(2015·高考浙江卷)某几何体的三视图如图所示(单位:cm),则该几何体的体积是( )A .8 cm 3B .12 cm 3 C.323cm 3 D.403cm 3 解析:该几何体的体积V =23+13×22×2=323(cm 3).答案:C5.(2015·高考四川卷)在三棱柱ABC -A 1B 1C 1中,∠BAC =90°,其正视图和侧视图都是边长为1的正方形,俯视图是直角边的长为1的等腰直角三角形.设点M ,N ,P 分别是棱AB ,BC ,B 1C 1的中点,则三棱锥P -A 1MN 的体积是________.解析:因为M ,N ,P 分别是棱AB ,BC ,B 1C 1的中点,所以MN ∥AC ,NP ∥CC 1, 所以平面MNP ∥平面CC 1A 1A ,所以A 1到平面MNP 的距离等于A 到平面MNP 的距离.根据题意有∠MAC =90°,AB =1, 可得A 到平面MNP 的距离为12.又MN =12,NP =1,所以VP -A 1MN =V A -MNP =13S △MNP ×12=13×12×12×1×12=124. 答案:124。
高三数学人教版A版数学(理)高考一轮复习教案空间向量及其运算1
第六节空间向量及其运算空间向量及其应用(1)理解直线的方向向量与平面的法向量.(2)能用向量语言表述直线与直线、直线与平面、平面与平面的垂直、平行关系.(3)能用向量方法证明有关直线和平面位置关系的一些定理(包括三垂线定理).(4)能用向量方法解决直线与直线、直线与平面、平面与平面的夹角的计算问题,了解向量方法在研究立体几何问题中的应用.知识点一空间向量的有关概念1.空间向量的有关概念(1)空间向量:在空间中,具有大小和方向的量叫作空间向量,其大小叫作向量的长度或模.(2)相等向量:方向相同且模相等的向量.(3)共线向量:如果表示空间向量的有向线段所在的直线平行或重合,则这些向量叫作共线向量或平行向量,a平行于b记作a∥b.(4)共面向量:平行于同一平面的向量叫作共面向量.2.空间向量中的有关定理(1)共线向量定理:对空间任意两个向量a,b(b≠0),a∥b⇔存在λ∈R,使a=λb.(2)共面向量定理:若两个向量a,b不共线,则向量p与向量a,b共面⇔存在唯一的有序实数对(x,y),使p=x a+y b.(3)空间向量基本定理:如果三个向量a,b,c不共面,那么对空间任一向量p,存在一x,y,z使得p=x a+y b+z c.其中{a,b,c}叫作空间的一个基底.个唯一的有序实数组{}3.两个向量的数量积(1)非零向量a,b的数量积a·b=|a||b|cos〈a,b〉.(2)空间向量数量积的运算律①结合律:(λa)·b=λ(a·b);②交换律:a·b=b·a;③分配律:a·(b+c)=a·b+a·c.易误提醒(1)共线向量与共面向量区别时注意,平行于同一平面的向量才能为共面向量.(2)空间任意三个不共面的向量都可构成空间的一个基底.(3)由于0与任意一个非零向量共线,与任意两个非零向量共面,故0不能作为基向量. (4)基底选定后,空间的所有向量均可由基底唯一表示.[自测练习]1.已知空间四边形OABC 中,OA →=a ,OB →=b ,OC →=c ,点M 在OA 上,且OM =2MA ,N 为BC 中点,则MN →=( )A.12a -23b +12c B .-23a +12b +12cC.12a +12b -12cD.23a +23b -12c 解析:如图所示, MN →=MA →+AB →+BN → =13OA →+(OB →-OA →)+12BC → =OB →-23OA →+12(OC →-OB →)=12OB →-23OA →+12OC →=-23a +12b +12c .答案:B2.已知a =(λ+1,0,2),b =(6,2μ-1,2λ),若a ∥b ,则λ与μ的值可以是( ) A .2,12B .-13,12C .-3,2D .2,2解析:∵a ∥b ,∴b =k a ,即(6,2μ-1,2λ)=k (λ+1,0,2), ∴⎩⎪⎨⎪⎧6=k (λ+1),2μ-1=0,2λ=2k ,解得⎩⎪⎨⎪⎧ λ=2,μ=12,或⎩⎪⎨⎪⎧λ=-3,μ=12.答案:A知识点二 空间向量的坐标表示及其应用 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3).向量表示 坐标表示 数量积 a ·b a 1b 1+a 2b 2+a 3b 3 共线 a =λb (b ≠0) a 1=λb 1,a 2=λb 2,a 3=λb 3 垂直 a ·b =0(a ≠0,b ≠0)a 1b 1+a 2b 2+a 3b 3=0模 |a |a 21+a 22+a 23夹角 〈a ,b 〉(a ≠0,b ≠0)cos 〈a ,b 〉=a 1b 1+a 2b 2+a 3b 3a 21+a 22+a 23·b 21+b 22+b 23易误提醒 (1)空间向量的坐标运算与坐标原点的位置选取无关,这是因为一个确定的几何体,其“线线”夹角、“点点”距离都是固定的,坐标系的位置不同,只会影响其计算的繁简.(2)进行向量的运算时,在能建系的情况下尽量建系,将向量运算转化为坐标运算. 必备方法 用空间向量解决几何问题的一般步骤: (1)适当的选取基底{a ,b ,c }. (2)用a ,b ,c 表示相关向量. (3)通过运算完成证明或计算问题.[自测练习]3.在空间直角坐标系中,已知点A (1,0,2),B (1,-3,1),点M 在y 轴上,且M 到A 与到B 的距离相等,则M 的坐标是________.解析:设M (0,y,0),由|MA |=|MB |得(1-0)2+(0-y )2+(2-0)2=(1-0)2+(-3-y )2+(1-0)2,解得y =-1.∴M (0,-1,0).答案:(0,-1,0)考点一 空间向量的线性运算|1.设三棱锥O -ABC 中,OA →=a ,OB →=b ,OC →=c ,G 是△ABC 的重心,则OG →等于( ) A .a +b -c B .a +b +c C.12(a +b +c ) D.13(a +b +c )解析:如图所示,OG →=OA →+AG →=OA →+13(AB →+AC →)=OA →+13(OB →-OA →+OC →-OA →)=13(a +b +c ).答案:D2.如图所示,已知空间四边形O -ABC ,其对角线为OB ,AC ,M ,N 分别为OA 、BC 的中点,点G 在线段MN 上,且MG →=2GN →,若OG →=xOA →+yOB →+zOC →,则x ,y ,z 的值分别为________.解析:∵OG →=OM →+MG →=12OA →+23MN →=12OA →+23(ON →-OM →)=12OA →+23ON →-23OM →=12OA →+23×12(OB →+OC →)-23×12OA →=16OA →+13OB →+13OC →,又OG →=xOA →+yOB →+zOC →, 根据空间向量的基本定理,x =16,y =z =13.答案:16,13,13(1)选定空间不共面的三个向量作基向量,并用它们表示出指定的向量,是用向量解决立体几何问题的基本要求.(2)空间向量问题实质上是转化为平面向量问题来解决的,即把空间向量转化到某一个平面上,利用三角形法则或平行四边形法则来解决.考点二 共线向量与共面向量定理的应用|已知E ,F ,G ,H 分别是空间四边形ABCD 中边AB ,BC ,CD ,DA 的中点. (1)求证:E ,F ,G ,H 四点共面; (2)求证:BD ∥平面EFGH ;(3)设M 是EG 和FH 的交点,求证:对空间任一点O ,有OM →=14(OA →+OB →+OC →+OD →).[证明] (1)连接BG ,则EG →=EB →+BG →=EB →+12(BC →+BD →)=EB →+BF →+EH →=EF →+EH →,由共面向量定理知,E ,F ,G ,H 四点共面.(2)因为EH →=AH →-AE →=12AD →-12AB →=12(AD →-AB →)=12BD →,所以EH ∥BD .又EH ⊂平面EFGH ,BD ⊄平面EFGH , 所以BD ∥平面EFGH .(3)任取一点O ,并连接OM ,OA ,OB ,OC ,OD ,OE ,OG . 由(2)知EH →=12BD →,同理FG →=12BD →,所以EH →=FG →,即EH 綊FG , 所以四边形EFGH 是平行四边形, 所以EG ,FH 被点M 平分.故OM →=12(OE →+OG →)=12OE →+12OG →=12⎣⎡⎦⎤12(OA →+OB →)+12⎣⎡⎦⎤12(OC →+OD →)=14(OA →+OB →+OC →+OD →).证明点共面问题可转化为证明向量共面问题,如要证明P ,A ,B ,C 四点共面,只要能证明P A →=xPB →+yPC →或对空间任一点O ,有OA →=OP →+xPB →+yPC →或OP →=xOA →+yOB →+zOC →(x +y +z =1)即可.共面向量定理实际上也是三个非零向量所在直线共面的充要条件.1.已知A 、B 、C 三点不共线,对平面ABC 外的任一点O ,若点M 满足OM →=13(OA →+OB→+OC →).(1)判断MA →、MB →、MC →三个向量是否共面; (2)判断点M 是否在平面ABC 内. 解:(1)由已知OA →+OB →+OC →=3 OM →, ∴OA →-OM →=(OM →-OB →)+(OM →-OC →), 即MA →=BM →+CM →=-MB →-MC →, ∴MA →,MB →,MC →共面.(2)由(1)知MA →,MB →,MC →共面且过同一点M ,所以四点M ,A ,B ,C 共面,从而点M 在平面ABC 内.考点三 利用空间向量证明平行、垂直|如图所示的长方体ABCD -A 1B 1C 1D 1中,底面ABCD 是边长为2的正方形,O 为AC 与BD 的交点,BB 1=2,M 是线段B 1D 1的中点.(1)求证:BM ∥平面D 1AC ; (2)求证:OD 1⊥平面AB 1C .[证明] (1)建立如图所示的空间直角坐标系,则点O (1,1,0),D 1(0,0,2), ∴OD 1→=(-1,-1,2), 又点B (2,2,0),M (1,1,2), ∴BM →=(-1,-1,2),∴OD 1→=BM →.又∵OD 1与BM 不共线, ∴OD 1∥BM .∵OD 1⊂平面D 1AC ,BM ⊄平面D 1AC , ∴BM ∥平面D 1AC .(2)连接OB 1,点B 1(2,2,2),A (2,0,0),C (0,2,0), ∵OD 1→·OB 1→=(-1,-1,2)·(1,1,2)=0, OD 1→·AC →=(-1,-1,2)·(-2,2,0)=0,∴OD 1→⊥OB 1→, OD 1→⊥AC →,即OD 1⊥OB 1,OD 1⊥AC , 又OB 1∩AC =O ,∴OD 1⊥平面AB 1C .(1)设直线l 1的方向向量为v 1=(a 1,b 1,c 1),l 2的方向向量为v 2=(a 2,b 2,c 2),则l 1∥l 2⇔v 1∥v 2⇔(a 1,b 1,c 1)=k (a 2,b 2,c 2)(k ∈R ).(2)设直线l 的方向向量为v =(a 1,b 1,c 1),平面α的法向量为n =(a 2,b 2,c 2),则l ∥α⇔v ⊥n ⇔a 1a 2+b 1b 2+c 1c 2=0,l ⊥α⇔v ∥n ⇔(a 1,b 1,c 1)=k (a 2,b 2,c 2)(k ∈R ).(3)设平面α的法向量为n 1=(a 1,b 1,c 1),平面β的法向量为n 2=(a 2,b 2,c 2),则α∥β⇔n 1∥n 2,α⊥β⇔n 1⊥n 2.2.在长方体ABCD -A 1B 1C 1D 1中,AA 1=2AB =2BC ,E ,F ,E 1分别是棱AA 1,BB 1,A 1B 1的中点.(1)求证:CE ∥平面C 1E 1F ; (2)求证:平面C 1E 1F ⊥平面CEF .证明:以D 为原点,DA ,DC ,DD 1所在的直线为x 轴,y 轴,z 轴建立空间直角坐标系D -xyz ,设BC =1,则C (0,1,0),E (1,0,1),C 1(0,1,2),F (1,1,1),E 1⎝⎛⎭⎫1,12,2.(1)设平面C 1E 1F 的法向量n =(x ,y ,z ). ∵C 1E 1→=⎝⎛⎭⎫1,-12,0,FC 1→=(-1,0,1), ∴⎩⎪⎨⎪⎧ n ·C 1E 1→=0,n ·FC 1→=0,即⎩⎪⎨⎪⎧x -12y =0,-x +z =0.令x =1,得n =(1,2,1).∵CE →=(1,-1,1),n ·CE →=1-2+1=0, ∴CE ⊥n .又∵CE ⊄平面C 1E 1F , ∴CE ∥平面C 1E 1F .(2)设平面EFC 的法向量为m =(a ,b ,c ), 由EF →=(0,1,0),FC →=(-1,0,-1), ∴⎩⎪⎨⎪⎧m ·EF →=0,m ·FC →=0,即⎩⎪⎨⎪⎧b =0,-a -c =0.令a =-1,得m =(-1,0,1).∵m ·n =1×(-1)+2×0+1×1=-1+1=0, ∴平面C 1E 1F ⊥平面CEF .16.混淆空间“向量平行”与“向量同向”致错【典例】 已知向量a =(1,2,3),b =(x ,x 2+y -2,y ),并且a ,b 同向,则x ,y 的值分别为________.[解析] 由题意知a ∥b ,所以x 1=x 2+y -22=y 3,即⎩⎪⎨⎪⎧y =3x ,x 2+y -2=2x , 解得⎩⎪⎨⎪⎧ x =1,y =3,或⎩⎪⎨⎪⎧x =-2,y =-6.当⎩⎪⎨⎪⎧x =-2,y =-6,时,b =(-2,-4,-6)=-2a ,所以a ,b 两向量反向,不符合题意,舍去.当⎩⎪⎨⎪⎧ x =1,y =3,时,b =(1,2,3)=a ,a 与b 同向,所以⎩⎪⎨⎪⎧x =1,y =3. [答案] x =1,y =3[易误点评] 只考虑a ∥b ,忽视了同向导致求解多解.[防范措施] 两向量平行和两向量同向不是等价的,同向是平行的一种情况,两向量同向能推出两向量平行,但反之不成立,也就是说两向量同向是两向量平行的充分不必要条件.[跟踪练习] (2015·成都模拟)已知a =(λ+1,0,2),b =(6,2u -1,2λ),若a ∥b ,则λ与u 的值可以是( )A .2,12B .-13,12C .-3,2D .2,2解析:由a ∥b 验证当λ=2,u =12时成立.答案:AA 组 考点能力演练1.(2015·深圳模拟)已知三棱锥O -ABC ,点M ,N 分别为AB ,OC 的中点,且OA →=a ,OB →=b ,OC →=c ,用a ,b ,c 表示MN →,则MN →等于( )A.12(b +c -a ) B.12(a +b -c ) C.12(a -b +c ) D.12(c -a -b ) 解析:MN →=MA →+AO →+ON →=12(c -a -b ).答案:D2.已知四边形ABCD 满足:AB →·BC →>0,BC →·CD →>0,CD →·DA →>0,DA →·AB →>0,则该四边形为( )A .平行四边形B .梯形C .长方形D .空间四边形解析:由AB →·BC →>0,BC →·CD →>0,CD →·DA →>0,DA →·AB →>0,知该四边形一定不是平面图形,故选D.答案:D3.已知a =(2,-1,3),b =(-1,4,-2),c =(7,5,λ).若a ,b ,c 三向量共面,则实数λ等于( )A.627B.637C.607D.657解析:由题意得c =t a +μb =(2t -μ,-t +4μ,3t -2μ),∴⎩⎪⎨⎪⎧7=2t -μ,5=-t +4μ,λ=3t -2μ.∴⎩⎪⎨⎪⎧t =337,μ=177,λ=657.答案:D4.(2016·东营质检)已知A (1,0,0),B (0,-1,1),OA →+λOB →与OB →的夹角为120°,则λ的值为( )A .±66B.66C .-66D .±6解析:OA →+λOB →=(1,-λ,λ), cos 120°=λ+λ1+2λ2·2=-12,得λ=±66.经检验λ=66不合题意,舍去,∴λ=-66. 答案:C5.设A (3,3,1),B (1,0,5),C (0,1,0),AB 的中点为M ,则|CM |等于( ) A.534 B.532 C.532D.132解析:设M (x ,y ,z ),则x =3+12=2,y =3+02=32,z =1+52=3,即M ⎝⎛⎭⎫2,32,3,|CM |=(2-0)2+⎝⎛⎭⎫32-12+(3-0)2=532.故选C. 答案:C6.(2016·合肥模拟)向量a =(2,0,5),b =(3,1,-2),c =(-1,4,0),则a +6b -8c =________. 解析:由a =(2,0,5),b =(3,1,-2),c =(-1,4,0),∴a +6b -8c =(28,-26,-7). 答案:(28,-26,-7)7.已知向量a ,b 满足条件:|a |=2,|b |=2,且a 与2b -a 互相垂直,则a 与b 的夹角为________.解析:由于a 与2b -a 互相垂直,则a ·(2b -a )=0,即2a·b -|a |2=0,所以2|a ||b |cos a ,b -|a |2=0,则42cosa ,b -4=0,则cos a ,b=22,所以a 与b 的夹角为45°. 答案:45°8.空间四边形OABC 中,OB =OC ,且∠AOB =∠AOC =π3,则cos OA →,BC →的值为________.解析:OA →·BC →=OA →·(OC →-OB →)=OA →·OC →-OA →·OB →=|OA →||OC →|cos OA →,OC→-|OA →||OB→|·cos OA →,OB →.∵OB =OC ,∠AOB =∠AOC =π3,∴OA →·BC →=0,即OA →⊥BC →,∴cos OA →,BC →=0.答案:09.(2016·唐山模拟)已知空间三点A (-2,0,2),B (-1,1,2),C (-3,0,4),设a =AB →,b=AC →.(1)求a 和b 夹角的余弦值.(2)设|c |=3,c ∥BC →,求c 的坐标.解:(1)因为AB →=(1,1,0),AC →=(-1,0,2),所以a ·b =-1+0+0=-1,|a |=2,|b |= 5.所以cos 〈a ,b 〉=a ·b |a ||b |=-12×5=-1010. (2)BC →=(-2,-1,2).设c =(x ,y ,z ),因为|c |=3,c ∥BC →,所以x 2+y 2+z 2=3,存在实数λ使得c =λBC →,即⎩⎪⎨⎪⎧ x =-2λ,y =-λ,z =2λ联立解得⎩⎪⎨⎪⎧ x =-2,y =-1,z =2,λ=1,或⎩⎪⎨⎪⎧ x =2,y =1,z =-2,λ=-1,所以c =±(-2,-1,2).10.(2016·太原模拟)如图,直三棱柱ABC -A 1B 1C 1,底面△ABC 中,CA =CB =1,∠BCA =90°,棱AA 1=2,M ,N 分别是A 1B 1,A 1A 的中点.(1)求BN →的模.(2)求cos 〈BA 1→,CB 1→〉的值.(3)求证:A 1B ⊥C 1M .解:如图,建立空间直角坐标系.(1)依题意得B (0,1,0),N (1,0,1),所以|BN →|=(1-0)2+(0-1)2+(1-0)2= 3.(2)依题意得A 1(1,0,2),B (0,1,0),C (0,0,0),B 1(0,1,2).所以BA 1→=(1,-1,2),CB 1→=(0,1,2),BA 1→·CB 1→=3,|BA 1→|=6,|CB 1→|=5,所以cos 〈BA 1→,CB 1→〉=BA 1→·CB 1→|BA 1→||CB 1→|=11030. (3)依题意,得C 1(0,0,2),M ⎝⎛⎭⎫12,12,2,A 1B →=(-1,1,-2),C 1M →=⎝⎛⎭⎫12,12,0. 所以A 1B →·C 1M →=-12+12+0=0, 所以A 1B →⊥C 1M →.所以A 1B ⊥C 1M .B 组 高考题型专练1.(2014·高考广东卷)已知向量a =(1,0,-1),则下列向量中与a 成60°夹角的是( )A .(-1,1,0)B .(1,-1,0)C .(0,-1,1)D .(-1,0,1)解析:经检验,选项B 中向量(1,-1,0)与向量a =(1,0,-1)的夹角的余弦值为12,即它们的夹角为60°,故选B.答案:B2.(2014·高考江西卷)如图,在长方体ABCD -A 1B 1C 1D 1中,AB =11,AD =7,AA 1=12.一质点从顶点A 射向点E (4,3,12),遇长方体的面反射(反射服从光的反射原理),将第i -1次到第i 次反射点之间的线段记为L i (i =2,3,4),L 1=AE ,将线段L 1,L 2,L 3,L 4竖直放置在同一水平线上,则大致的图形是( )解析:由对称性知质点经点E 反射到平面ABCD 的点E 1(8,6,0)处.在坐标平面xAy 中,直线AE 1的方程为y =34x ,与直线DC 的方程y =7联立得F ⎝⎛⎭⎫283,7,0.由两点间的距离公式得E 1F =53, ∵tan ∠E 2E 1F =tan ∠EAE 1=125,∴E 2F =E 1F ·tan ∠E 2E 1F =4.∴E 2F 1=12-4=8.∴L 3L 4=E 1E 2E 2E 3=E 2F E 2F 1=48=12.故选C.答案:C3.(2015·高考浙江卷)已知e 1,e 2是空间单位向量,e 1·e 2=12.若空间向量b 满足b ·e 1=2,b ·e 2=52,且对于任意x ,y ∈R ,|b -(x e 1+y e 2)|≥|b -(x 0e 1+y 0e 2)|=1(x 0,y 0∈R ),则x 0=________,y 0=________,|b |=________.解析:∵e 1,e 2是单位向量,e 1·e 2=12,∴cos 〈e 1,e 2〉=12,又∵0°≤〈e 1,e 2〉≤180°,∴〈e 1,e 2〉=60°.不妨把e 1,e 2放到空间直角坐标系O -xyz 的平面xOy 中,设e 1=(1,0,0),则e 2=⎝⎛⎭⎫12,32,0,再设OB →=b =(m ,n ,r ),由b ·e 1=2,b ·e 2=52,得m =2,n =3,则b =(2,3,r ).而x e 1+y e 2是平面xOy 上任一向量,由|b -(x e 1+y e 2)|≥1知点B (2,3,r )到平面xOy 的距离为1,故可得r =1.则b =(2,3,1),∴|b |=2 2.又由|b -(x e 1+y e 2)|≥|b -(x 0e 1+y 0e 2)|=1知x 0e 1+y 0e 2=(2,3,0),解得x 0=1,y 0=2. 答案:1,2,22。
高三数学人教版A版数学(理)高考一轮复习教案对数与对数函数1
第六节 对数与对数函数对数与对数函数(1)理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用.(2)理解对数函数的概念;理解对数函数的单调性,掌握函数图象通过的特殊点. (3)知道对数函数是一类重要的函数模型.(4)了解指数函数y =a x 与对数函数y =log a x 互为反函数(a >0,且a ≠1). 知识点一 对数及对数运算 1.对数的定义一般地,如果a x =N (a >0,且a ≠1),那么数x 叫作以a 为底N 的对数,记作x =log a _N ,其中a 叫作对数的底数,N 叫作真数.2.对数的性质 (1)log a 1=0,log a a =1. (2)a log a N =N ,log a a N =N . (3)负数和零没有对数. 3.对数的运算性质如果a >0,且a ≠1,M >0,N >0,那么 (1)log a (MN )=log a M +log a N . (2)log aMN=log a M -log a N . (3)log a M n =n log a M (n ∈R ).(4)换底公式log a b =log m blog m a (a >0且a ≠1,b >0,m >0,且m ≠1).必记结论1.指数式与对数式互化:a x =N ⇔x =log a N . 2.对数运算的一些结论:①log am b n =nm log a b .②log a b ·log b a =1.③log a b ·log b c ·log c d =log a d .易误提醒 在运算性质log a M n =n log a M 中,易忽视M >0.[自测练习]1.(2015·临川一中模拟)计算⎝⎛⎭⎫lg 1125-lg 82÷4-12=________. 解析:本题考查指数和对数的运算性质.由题意知原式=(lg 5-3-lg 23)2÷2-1=(-3lg 5-3lg 2)2×2=9×2=18.答案:18 2.lg427-lg 823+lg 75=________. 解析:原式=lg 4+12lg 2-lg 7-23lg 8+lg 7+12lg 5=2lg 2+12(lg 2+lg 5)-2lg 2=12.答案:12知识点二 对数函数定义、图象与性质定义函数y =log a x (a >0,且a ≠1)叫作对数函数图 象a >10<a <1性 质定义域:(0,+∞)值域:R当x =1时,y =0,即过定点(1,0)当0<x <1时, y ∈(-∞,0); 当x >1时, y ∈(0,+∞) 当0<x <1时, y ∈(0,+∞); 当x >1时, y ∈(-∞,0) 在(0,+∞)上为增函数在(0,+∞)上为减函数易误提醒 解决与对数函数有关的问题时易漏两点: (1)函数的定义域. (2)对数底数的取值范围. 必记结论1.底数的大小决定了图象相对位置的高低;不论是a >1还是0<a <1,在第一象限内,自左向右,图象对应的对数函数的底数逐渐变大.2.对数函数y =log a x (a >0,且a ≠1)的图象过定点(1,0),且过点(a,1),⎝⎛⎭⎫1a ,-1,函数图象只在第一、四象限.[自测练习]3.已知a >0,a ≠1,函数y =a x 与y =log a (-x )的图象可能是( )解析:函数y =log a (-x )的图象与y =log a x 的图象关于y 轴对称,符合条件的只有B. 答案:B4.函数y =log a x (a >0,且a ≠1)在[2,4]上的最大值与最小值的差是1,则a 的值为________.解析:(1)当a >1时,函数y =log a x 在[2,4]上是增函数,所以log a 4-log a 2=1,即log a 42=1,所以a =2. (2)当0<a <1时,函数y =log a x 在[2,4]上是减函数,所以log a 2-log a 4=1,即log a 24=1,所以a =12.由(1)(2)知a =2或a =12.答案:2或12考点一 对数式的化简与求值|1.(2015·内江三模)lg51 000-823=( )A.235 B .-175 C .-185 D .4 解析:lg 51 000-823=lg 1035-(23)23=35-4=-175.答案:B2.(log 23)2-4log 23+4+log 2 13=( )A .2B .2-2log 2 3C .-2D .2log 2 3-2解析:(log 23)2-4log 23+4=(log 23-2)2=2-log 23,又log 213=-log 23,两者相加即为B.答案:B3.(2015·高考浙江卷)若a =log 43,则2a +2-a =________. 解析:原式=2log 4 3+2-log 4 3=3+13=433.答案:433对数运算的一般思路(1)首先利用幂的运算把底数或真数进行变形,化成分数指数幂的形式,使幂的底数最简,然后正用对数运算性质化简合并.(2)将对数式化为同底数对数的和、差、倍数运算,然后逆用对数的运算性质,转化为同底对数真数的积、商、幂的运算.考点二 对数函数图象及应用|(1)(2016·福州模拟)函数y =lg |x -1|的图象是( )[解析] 因为y =lg |x -1|=⎩⎪⎨⎪⎧lg (x -1),x >1,lg (1-x ),x <1.当x =1时,函数无意义,故排除B 、D. 又当x =2或0时,y =0,所以A 项符合题意. [答案] A(2)当0<x ≤12时,4x <log a x ,则a 的取值范围是( )A.⎝⎛⎭⎫0,22 B.⎝⎛⎭⎫22,1C .(1,2)D .(2,2)[解析] 法一:构造函数f (x )=4x 和g (x )=log a x ,当a >1时不满足条件,当0<a <1时,画出两个函数在⎝⎛⎦⎤0,12上的图象,可知,f ⎝⎛⎭⎫12<g ⎝⎛⎭⎫12,即2<log a 12,则a >22,所以a 的取值范围为⎝⎛⎭⎫22,1.法二:∵0<x ≤12,∴1<4x ≤2,∴log a x >4x >1,∴0<a <1,排除选项C ,D ;取a =12,x =12,则有412=2,log 12 12=1,显然4x <log a x 不成立,排除选项A.[答案] B应用对数型函数的图象可求解的两类问题(1)对一些可通过平移、对称变换作出其图象的对数型函数,在求解其单调性(单调区间)、值域(最值)、零点时,常利用数形结合思想.(2)一些对数型方程、不等式问题常转化为相应的函数图象问题,利用数形结合法求解.1.已知函数f (x )=⎩⎪⎨⎪⎧|lg x |,0<x ≤10,-12x +6,x >10,若a ,b ,c 互不相等,且f (a )=f (b )=f (c ),则abc 的取值范围是( )A .(1,10)B .(5,6)C .(10,12)D .(20,24)解析:作出f (x )的大致图象,不妨设a <b <c ,因为a ,b ,c 互不相等,且f (a )=f (b )=f (c ),由函数的图象可知10<c <12,且|lg a |=|lg b |,因为a ≠b ,所以lg a =-lg b ,可得ab =1,所以abc =c ∈(10,12).答案:C考点三 对数函数性质及应用|已知函数f (x )=log a (x +1)-log a (1-x ),a >0且a ≠1. (1)求f (x )的定义域;(2)判断f (x )的奇偶性并予以证明; (3)当a >1时,求使f (x )>0的x 的解集. [解] (1)要使函数f (x )有意义,则⎩⎪⎨⎪⎧x +1>0,1-x >0,解得-1<x <1. 故所求函数f (x )的定义域为(-1,1).(2)由(1)知f (x )的定义域为(-1,1), 且f (-x )=log a (-x +1)-log a (1+x ) =-[log a (x +1)-log a (1-x )]=-f (x ), 故f (x )为奇函数.(3)因为当a >1时,f (x )在定义域(-1,1)内是增函数, 所以f (x )>0⇔x +11-x >1,解得0<x <1.所以使f (x )>0的x 的解集是(0,1).利用对数函数的性质研究对数型函数性质,要注意以下四点:一是定义域;二是底数与1的大小关系;三是如果需将函数解析式变形,一定确保其等价性;四是复合函数的构成,即它是由哪些基本初等函数复合而成的.2.已知函数f (x )=log a (8-ax )(a >0,a ≠1),若f (x )>1在区间[1,2]上恒成立,求实数a 的取值范围.解:当a >1时,f (x )=log a (8-ax )在[1,2]上是减函数, 由f (x )>1恒成立, 则f (x )min =log a (8-2a )>1, 解之得1<a <83.若0<a <1时,f (x )在x ∈[1,2]上是增函数, 由f (x )>1恒成立, 则f (x )min =log a (8-a )>1, 且8-2a >0,∴a >4,且a <4,故不存在.综上可知,实数a 的取值范围是⎝⎛⎭⎫1,83. 5.插值法比较幂、对数大小【典例】 (1)设a =0.50.5,b =0.30.5,c =log 0.3 0.2,则a ,b ,c 的大小关系是( ) A .c <b <aB .a <b <cC .b <a <cD .a <c <b(2)已知a =5log 23.4,b =5log 43.6,c =⎝⎛⎭⎫15log 30.3,则( ) A .a >b >c B .b >a >c C .a >c >bD .c >a >b(3)已知函数y =f (x )的图象关于y 轴对称,且当x ∈(-∞,0)时,f (x )+xf ′(x )<0成立,a =(20.2)·f (20.2),b =(log π3)·f (log π3),c =(log 39)·f (log 39),则a ,b ,c 的大小关系是( )A .b >a >cB .c >a >bC .c >b >aD .a >c >b[思路点拨] (1)利用幂函数y =x 0.5和对数函数y =log 0.3x 的单调性,结合中间值比较a ,b ,c 的大小;(2)化成同底的指数式,只需比较log 23.4、log 43.6、-log 3 0.3=log 3 103的大小即可,可以利用中间值或数形结合进行比较;(3)先判断函数φ(x )=xf (x )的单调性,再根据20.2,log π3,log 39的大小关系求解. [解析] (1)根据幂函数y =x 0.5的单调性, 可得0.30.5<0.50.5<10.5=1,即b <a <1; 根据对数函数y =log 0.3x 的单调性, 可得log 0.30.2>log 0.30.3=1,即c >1. 所以b <a <c .(2)c =⎝⎛⎭⎫15log 3 0.3=5-log 3 0.3=5log 3 103. 法一:在同一坐标系中分别作出函数y =log 2 x ,y =log 3x ,y =log 4x 的图象,如图所示. 由图象知: log 2 3.4>log 3 103>log 43.6. 法二:∵log 3 103>log 33=1,且103<3.4, ∴log 3103<log 3 3.4<log 2 3.4. ∵log 4 3.6<log 4 4=1,log 3103>1,∴log 4 3.6<log 3 103. ∴log 2 3.4>log 3103>log 4 3.6. 由于y =5x 为增函数,∴5log 2 3.4>5log 3103>5log 4 3.6. 即5log 2 3.4>⎝⎛⎭⎫15log 3 0.3>5log 4 3.6,故a >c >b . (3)因为函数y =f (x )关于y 轴对称, 所以函数y =xf (x )为奇函数.因为[xf (x )]′=f (x )+xf ′(x ),且当x ∈(-∞,0)时, [xf (x )]′=f (x )+xf ′(x )<0,则函数y =xf (x )在(-∞,0)上单调递减; 因为y =xf (x )为奇函数,所以当x ∈(0,+∞)时,函数y =xf (x )单调递减. 因为1<20.2<2,0<log π3<1,log 39=2,所以0<log π 3<20.2<log 3 9,所以b >a >c ,选A. [答案] (1)C (2)C (3)A[方法点评] (1)比较幂、对数的大小可以利用数形结合和引入中间量利用函数单调性两种方法.(2)解题时要根据实际情况来构造相应的函数,利用函数单调性进行比较,如果指数相同,而底数不同则构造幂函数,若底数相同而指数不同则构造指数函数,若引入中间量,一般选0或1.[跟踪练习] 设a >b >0,a +b =1且x =⎝⎛⎭⎫1a b,y =log ⎝⎛⎭⎫1a +1b ab ,z =log 1b a ,则x ,y ,z 的大小关系是( )A .y <x <zB .z <y <xC .y <z <xD .x <y <z解析:用中间量比较大小.由a >b >0,a +b =1,可得0<b <12<a <1,所以1b >2>1a >1,所以x =⎝⎛⎭⎫1a b>1,y =log ⎝⎛⎭⎫1a +1b ab =log ⎝⎛⎭⎫1ab ab =-1,0>z =log 1b a >log 1bb =-1,则y<z <x ,故选C.答案:CA 组 考点能力演练1.函数f (x )=log a |x |+1(0<a <1)的图象大致为( )解析:由函数f (x )的解析式可确定该函数为偶函数,图象关于y 轴对称.设g (x )=log a |x |,先画出x >0时,g (x )的图象,然后根据g (x )的图象关于y 轴对称画出x <0时g (x )的图象,最后由函数g (x )的图象向上整体平移一个单位即得f (x )的图象,结合图象知选A.答案:A2.设a =30.5,b =0.53,c =log 0.5 3,则a ,b ,c 的大小关系为( ) A .b <c <a B .b <a <c C .c <b <aD .c <a <b解析:因为a =30.5>30=1,0<b =0.53<0.50=1,c =log 0.5 3<log 0.5 1=0,所以c <0<b <1<a ,故选C.答案:C3.(2015·郑州二检)若正数a ,b 满足2+log 2a =3+log 3b =log 6 (a +b ),则1a +1b 的值为( )A .36B .72C .108D.172解析:设2+log 2a =3+log 3b =log 6(a +b )=k ,可得a =2k -2,b =3k -3,a +b =6k ,所以1a +1b =a +b ab =6k 2k -23k -3=108.所以选C. 答案:C4.(2015·长春质检)已知函数f (x )=log a |x |在(0,+∞)上单调递增,则( ) A .f (3)<f (-2)<f (1) B .f (1)<f (-2)<f (3) C .f (-2)<f (1)<f (3) D .f (3)<f (1)<f (-2)解析:因为f (x )=log a |x |在(0,+∞)上单调递增,所以a >1,f (1)<f (2)<f (3). 又函数f (x )=log a |x |为偶函数,所以f (2)=f (-2),所以f (1)<f (-2)<f (3). 答案:B5.已知函数f (x )=log 2 ⎝⎛⎭⎫21-x +t 是奇函数,则使f (x )<0的x 的取值范围是( )A .(-1,0)B .(0,1)C .(-∞,0)D .(-∞,0)∪(1,+∞)解析:由f (-x )=-f (x )得log 2 ⎝ ⎛⎭⎪⎫21+x +t =-log 2 ⎝ ⎛⎭⎪⎫21-x +t ,所以21+x +t =121-x +t,整理得1-x 2=(2+t )2-t 2x 2,可得t 2=1且(t +2)2=1,所以t =-1,则f (x )=log 21+x1-x<0,即⎩⎪⎨⎪⎧1+x1-x>01+x 1-x <1,解得-1<x <0.答案:A6.(2015·深圳一模)lg 2+lg 5+20+⎝⎛⎭⎫5132×35=________. 解析:lg 2+lg 5+20+⎝⎛⎭⎫5132×35=lg 10+1+523×513=32+5=132. 答案:1327.若log a (a 2+1)<log a 2a <0,则实数a 的取值范围是________. 解析:∵a 2+1>1,log a ()a 2+1<0,∴0<a <1. 又log a 2a <0,∴2a >1,∴a >12.∴实数a 的取值范围是⎝⎛⎭⎫12,1.答案:⎝⎛⎭⎫12,18.(2015·成都摸底)关于函数f (x )=lg x 2+1x,有下列结论: ①函数f (x )的定义域是(0,+∞);②函数f (x )是奇函数;③函数f (x )的最小值为lg 2;④当x >0时,函数f (x )是增函数.其中正确结论的序号是________(写出所有你认为正确的结论的序号).解析:函数f (x )=lg x 2+1x的定义域为(0,+∞),其为非奇非偶函数,即得①正确,②不正确;由f (x )=lg x 2+1x =lg ⎝⎛⎭⎫x +1x ≥lg ⎝⎛⎭⎫2 x ×1x =lg 2,得③正确;函数u =x +1x 在x ∈(0,1)时为减函数,在x ∈(1,+∞)时为增函数,函数y =lg u 为增函数,所以函数f (x )在x ∈(0,1)时为减函数,在x ∈(1,+∞)时为增函数,即得命题④不正确.故应填①③.答案:①③9.设f (x )=log a (1+x )+log a (3-x )(a >0,a ≠1),且f (1)=2.(1)求a 的值及f (x )的定义域;(2)求f (x )在区间⎣⎡⎦⎤0,32上的最大值. 解:(1)∵f (1)=2,∴log a 4=2(a >0,a ≠1),∴a =2.由⎩⎪⎨⎪⎧1+x >0,3-x >0,得x ∈(-1,3), ∴函数f (x )的定义域为(-1,3).(2)f (x )=log 2(1+x )+log 2(3-x )=log 2(1+x )(3-x )=log 2[-(x -1)2+4],∴当x ∈(-1,1]时,f (x )是增函数;当x ∈(1,3)时,f (x )是减函数,∴函数f (x )在⎣⎡⎦⎤0,32上的最大值是f (1)=log 24=2. 10.已知f (x )=log a x (a >0且a ≠1),如果对于任意的x ∈⎣⎡⎦⎤13,2都有|f (x )|≤1成立,求a的取值范围.解:由已知f (x )=log a x ,当0<a <1时,⎪⎪⎪⎪f ⎝⎛⎭⎫13-|f (2)|=log a 13+log a 2=log a 23>0, 当a >1时,⎪⎪⎪⎪f ⎝⎛⎭⎫13-|f (2)|=-log a 13-log a 2=-log a 23>0,故⎪⎪⎪⎪f ⎝⎛⎭⎫13>|f (2)|总成立.则y =|f (x )|的图象如图. 要使x ∈⎣⎡⎦⎤13,2时恒有|f (x )|≤1,只需⎪⎪⎪⎪f ⎝⎛⎭⎫13≤1,即-1≤log a 13≤1,即log a a -1≤log a 13≤log a a , 当a >1时,得a -1≤13≤a ,即a ≥3; 当0<a <1时,得a -1≥13≥a ,得0<a ≤13. 综上所述,a 的取值范围是⎝⎛⎦⎤0,13∪[3,+∞). B 组 高考题型专练1.(2014·高考福建卷)若函数y =log a x (a >0,且a ≠1)的图象如图所示,则下列函数图象正确的是( )解析:由y =log a x 的图象可知log a 3=1,所以a =3.对于选项A :y =3-x =⎝⎛⎭⎫13x 为减函数,A 错误;对于选项B :y =x 3,显然满足条件;对于选项C :y =(-x )3=-x 3在R 上为减函数,C 错误;对于选项D :y =log 3(-x ),当x =-3时,y =1,D 错误.故选B.答案:B2.(2014·高考山东卷)已知函数y =log a (x +c )(a ,c 为常数,其中a >0,a ≠1)的图象如图,则下列结论成立的是( )A .a >1,c >1B .a >1,0<c <1C .0<a <1,c >1D .0<a <1,0<c <1解析:由题图可知,函数在定义域内为减函数,所以0<a <1.又当x =0时,y >0,即log a c >0,所以0<c <1.答案:D3.(2015·高考北京卷)如图,函数f (x )的图象为折线ACB ,则不等式f (x )≥log 2 (x +1)的解集是( )A .{x |-1<x ≤0}B .{x |-1≤x ≤1}C .{x |-1<x ≤1}D .{x |-1<x ≤2}解析:在平面直角坐标系中作出函数y =log 2(x +1)的图象如图所示.所以f (x )≥log 2 (x +1)的解集是{x |-1<x ≤1},所以选C.答案:C4.(2015·高考浙江卷)log 2 22=________,2log 2 3+log 4 3=________. 解析:log 222=log 22-12=-12,2log 2 3+log 4 3=232log 2 3=2log 2 332=27=3 3. 答案:-12 3 3 5.(2015·高考北京卷)2-3,312,log 25三个数中最大的数是________. 解析:因为2-3=123=18,312=3≈1.732,而log 24<log 25,即log 25>2,所以三个数中最大的数是log 25.答案:log 25。
2022高三总复习人教A版数学(理)配套练习:第5章第1讲
(金榜教程)2022高三总复习人教A版数学(理)配套练习:第5章第1讲(时刻:45分钟分值:100分)一、选择题1. 下列四个关于数列的说法:①数列能够看成一个定义在N*(或它的有限子集{1,2,…,n})上的函数;②数列的项数是有限的;③数列若用图象表示,从图象上看差不多上一群孤立的点;④数列的通项公式是唯独的.其中正确说法的序号是()A. ①②③B. ②③④C. ①③D. ①②③④答案:C解析:∵②中数列项数能够有无限项,故②错.④中数列的通项公式不一定唯独,有的有多个,故④错.①③正确.故选C.2. [2021·陕西五校模拟]已知数列{an}的前n项和为Sn,且Sn=2an-2,则a2等于()A. 4B. 2C. 1D. -2答案:A解析:∵Sn=2an-2,∴S1=a1=2a1-2.即a1=2,又S2=a1+a2=2a2-2,∴a2=4.3. [2021·西安模拟]已知数列2,5,22,11,…,则25在那个数列中的项数为()A. 6B. 7C. 19D. 11答案:B解析:设2,5,8,11,…形成的数列为{an},被开方数形成的数列为{bn},从形式上讲,每一项都有二次根号,被开方数为2,5,8,11,…,易归纳出数列{bn}的一个通项公式为bn =3n -1,因此an =3n -1,25=20=3n -1,解得n =7,因此25是那个数列的第7项.4. [2021·金版原创]已知数列{an}满足an +1=11-an,若a1=12,则a 2021=( )A. 12B. 2C. -1D. 1答案:B解析:由a1=12,an +1=11-an 得a2=11-a1=2,a3=11-a2=-1,a4=11-a3=12,a5=11-a4=2,…,因此a3n +1=12,a3n +2=2,a3n +3=-1,因此a2021=a3×670+2=2,故选B.5. [2021·济宁质检]已知Sn 是数列{an}的前n 项和,Sn +Sn +1=an +1(n ∈N*),则此数列是( )A. 递增数列 B . 递减数列C. 常数列D. 摆动数列答案:C解析:∵Sn +Sn +1=an +1,∴当n ≥2时,Sn -1+Sn =an.两式相减得an +an +1=an +1-an ,∴an =0(n ≥2).当n =1时,a1+(a1+a2)=a2,∴a1=0,∴an =0(n ∈N*),故选C.6. [2021·赤峰模拟]已知数列{an}的通项公式为an =(n +2)(78)n ,则当an 取得最大值时,n 等于( )A. 5B. 6C. 5或6 D . 7答案:C 解析:由题意知⎩⎪⎨⎪⎧ an ≥an -1,an ≥an +1, ∴⎩⎪⎨⎪⎧ n +278n ≥n +178n -1,n +278n ≥n +378n +1.∴⎩⎪⎨⎪⎧ n ≤6,n ≥5.∴n =5或6.二、填空题7. 在数列{an}中,a1=1,an +1=2nan(n ∈N*),则数列{an}的通项公式为an =________.答案:2n n -12 解析:由题意知,an +1an =2n ,an an -1=2n -1,an -1an -2=2n -2,…,a2a1=2,又a1=1, 因此an =an an -1·an -1an -2·…·a2a1·a1=2n -1·…·2·1=2n n -12. 8. [2021·唐山模拟]在数列{an}中,a1=1,an +1-an =2n +1,则数列的通项an =________.答案:n2解析:∵an +1-an =2n +1.∴an =(an -an -1)+(an -1-an -2)+…+(a3-a2)+(a2-a1)+a1=(2n -1)+(2n -3)+…+5+3+1=n2(n ≥2).当n =1时,也适用an =n2.9. [2021·海口质检]如图是同样规格的黑、白两色正方形瓷砖铺设的若干图案,则按此规律第23个图案中需用黑色瓷砖________块.答案:100解析:用an 表示第n 个图的黑色瓷砖块数,则a1=12,a2=16,a3=20,…,由此可得{an}是以12为首项,以4为公差的等差数列.∴a23=a1+(23-1)×4=12+22×4=100.三、解答题10. 已知下列数列{an}的前n 项和Sn ,求{an}的通项公式:(1)Sn =2n2-3n ;(2)Sn =3n +2.解:(1)当n =1时,a1=S1=2-3=-1,当n ≥2时,an =Sn -Sn -1=(2n2-3n)-[2(n -1)2-3(n -1)]=4n -5, 由于a1也适合此等式,∴an =4n -5.(2)当n =1时,a1=S1=5,当n ≥2时,an =Sn -Sn -1=(3n +2)-(3n -1+2)=2·3n -1.∴an =⎩⎪⎨⎪⎧ 5, n =1,2·3n -1 n ≥2. 11. [2021·宜春月考]数列{an}的通项公式是an =n2-7n +6.(1)那个数列的第4项是多少?(2)150是不是那个数列的项?若是那个数列的项,它是第几项?(3)该数列从第几项开始各项差不多上正数?解:(1)当n =4时,a4=42-4×7+6=-6.(2)令an =150,即n2-7n +6=150,解得n =16,即150是那个数列的第16项.(3)令an =n2-7n +6>0,解得n>6或n<1(舍),∴从第7项起各项差不多上正数.12. [2021·金版原创]已知数列{an}满足a1=1,an =a1+12a2+13a3+…+1n -1an -1(n>1). (1)求数列{an}的通项公式;(2)若an =2021,求n.解:(1)∵a1=1,且an =a1+12a2+13a3+…+1n -1an -1(n>1). ∴a2=a1=1,an +1=a1+12a2+13a3+…+1n -1an -1+1n an(n ≥1). ∴an +1-an =1n an(n ≥2). ∴an +1=n +1n an , ∴an +1n +1=an n (n ≥2). ∴an n =an -1n -1=…=a22=12, ∴an =n 2(n ≥2). ∴an =⎩⎨⎧ 1n =1n 2 n ≥2. (2)∵an =n 2=2021,∴n =4026.。
高三数学一轮复习 第三章 第7讲 抽象函数课件 理 新人教A版
(4)由f(x)·f(2x-x2)>1,f(0)=1得 f(3x-x2)>f(0). 又f(x)是R上的增函数,∴3x-x2>0.∴0<x<3.
(1)指数函数型抽象函数的一般(yībān)步骤为f(0)=1⇒
f(-x)=f1x⇒f(x-y)=ffxy⇒单调性.
(2)小技巧(jìqiǎo)判断单调性:设x1>x2,x1-x2>0, 则f(x1-x2)>1.f(x1)=f(x2+x1-x2)=f(x2)f(x1-x2)>f(x2), 得到函数是增函数.
f(1)=f12+12=f12+f12=2f12. f(2)=f(1+1)=f(1)+f(1)=2f(1),∴f(1)=12f(2). f(x)f(-x)=-[f(x)]2≤0,故选 D.
第九页,共22页。
考点2 对数函数型抽象(chōuxiàng)函数 例2:已知函数f(x)的定义域为{x|x∈R,且x≠0},对定义域内的任意x1, x2,都有f(x1·x2)=f(x1)+f(x2),且当x>1时f(x)>0,f(2)=1.
(1)求证(qiúzhèng):f(x)是偶函数; (2)求证(qiúzhèng):f(x)在(0,+∞)上是增函数; (3)解不等式 f(2x2-1)<2.
解:(1) 对定义域内的任意x1,x2都有 f(x1·x2)=f(x1)+f(x2),令x1=x,x2=-1, 则有f(-x)=f(x)+f(-1).
A.奇函数 B.偶函数 C.既是奇函数,又是偶函数 D.既不是(bùshi)奇函数,又不是(bùshi)偶函数
第三页,共22页。
2.函数(hánshù) f(x)满足 f(x)·f(x+2)=13,若 f(1)=2,则 f(99)=(C )
人教A版数学课本优质习题总结训练-选择性必修二-2025届高三数学一轮复习
人教A 版数学课本优质习题总结训练——选择性必修二P181.在等差数列{a n }中,a n =m ,a m =n ,且n ≠m ,求a m +n .P232.已知一个等差数列的项数为奇数,其中所有奇数项的和为290,所有偶数项的和为261.求此数列中间一项的值以及项数.P243.已知数列{a n }的前n 项和212343n S n n =++.求这个数列的通项公式.4.已知数列{a n }的通项公式为2215n n a n -=-,前n 项和为n S .求n S 取得最小值时n 的值.P255.(1)求从小到大排列的前n 个正偶数的和.(2)求从小到大排列的前n 个正奇数的和.(3)在三位正整数的集合中有多少个数是5的倍数?求这些数的和.(4)在小于100的正整数中,有多少个数被7除余2?这些数的和是多少?6.已知一个多边形的周长等于158cm ,所有各边的长成等差数列,最大的边长为44cm ,公差为3cm ,求这个多边形的边数.7.已知两个等差数列2,6,10,…,190及2,8,14,…,200,将这两个等差数列的公共项按从小到大的顺序组成一个新数列.求这个新数列的各项之和.P268.如图的形状出现在南宋数学家杨辉所著的《详解九章算法·商功》中,后人称为“三角垛”“三角垛”的最上层有1个球,第二层有3个球,第三层有6个球……设各层球数构成一个数列{a n }.(1)写出数列{a n }的一个递推公式;(2)根据(1)中的递推公式,写出数列{a n }的一个通项公式.P349.已知数列{a n }的通项公式为33n n n a =,求使n a 取得最大值时的n 的值.P3710.已知a ≠b ,且0ab ≠.对于N*n ∈,证明:111221n n n n n n na b a a b a b ab b a b ++----+++++=- .11.如果一个等比数列前5项的和等于10,前10项的和等于50,那么这个数列的公比等于多少?P4012.一个乒乓球从1m 高的高度自由落下,每次落下后反弹的高度都是原来高度的0.61倍.(1)当它第6次着地时,经过的总路程是多少(精确到1cm )(2)至少在第几次着地后,它经过的总路程能达到400cm ?13.求和:(1)(12235)(435)(235)n n ----⨯+-⨯++-⨯ ;(2)21123n x x nx -++++ .P4114.已知S n 是等比数列{a n }的前n 项和,S 3,S 9,S 6成等差数列.求证:2a ,a 8,a 5成等差数列.15.求下列数列的一个通项公式和一个前n 项和公式:1,11,111,1111,11111,….16.在数列{a n }中,已知a n +1+a n =3·n 2,a 1=1.(1)求证:{a n -2n }是等比数列.(2)求数列{a n }的前n 项和S n .17.已知数列{a n }的首项135a =,且满足1321n n n a a a +=+.(1)求证:数列11n a ⎧⎫-⎨⎬⎩⎭为等比数列.(2)若1231111100n a a a a ++++< ,求满足条件的最大整数n .18.已知数列{a n }为等差数列,a 1=1,a 3=22+1,前n 项和为n S ,数列{b n }满足n n S b n=,求证:(1)数列{b n }为等差数列;(2)数列{a n }中的任意三项均不能构成等比数列.P5519.已知数列{a n }为等比数列,a 1=1024,公比12q =.若n T 是数列{a n }的前n 项积,求n T 的最大值.20.《莱茵德纸草书》是世界上最古老的数学著作之一.书中有这样一道题目:把100个面包分给5个人,使每个人所得成等差数列,且使较大的三份之和的17是较小的两份之和,则最小的一份为()A .53B .103C .56D .11621.如图,雪花形状图形的作法是:从一个正三角形开始,把每条边分成三等份,然后以各边的中间一段为底边分别向外作正三角形,再去掉底边.反复进行这一过程,就得到一条“雪花”状的曲线.设原正三角形(图①)的边长为1,把图①,图②,图③,图④中图形的周长依次记为C 1,C 2,C 3,C4,则C 4=()A .649B .1289C .6427D .12827P5622.任取一个正整数,若是奇数,就将该数乘3再加上1;若是偶数,就将该数除以2.反复进行上述两种运算,经过有限次步骤后,必进入循环圈1→4→2→1.这就是数学史上著名的“冰雹猜想”(又称“角谷猜想”等).如取正整数6m =,根据上述运算法则得出6→3→10→5→16→8→4→2→1,共需经过8个步骤变成1(简称为8步“雹程”).现给出冰雹猜想的递推关系如下:已知数列{}n a 满足:1a m =(m 为正整数),1,231,n n n n n a a a a a +⎧⎪=⎨⎪+⎩当为偶数时当为奇数时.(1)当17m =时,试确定使得a n =1需要多少步雹程;(2)若a 8=1,求m 所有可能的取值集合M .23.已知等差数列{a n }的前n 项和为n S ,且424S S =,21*)2(n n a a n N =+∈.(1)求数列{a n }的通项公式;(2)若13n n b -=,令n n n c a b =,求数列{}n c 的前n 项和n T .24.已知等比数列{a n }的前n 项和为n S ,且12*()2n n a S n N +=+∈.(1)求数列{a n }的通项公式.(2)在a n 与a n +1之间插入n 个数,使这n +2个数组成一个公差为d n 的等差数列,在数列{d n }中是否存在3项d m ,d k ,d p ,(其中m ,k ,p 成等差数列)成等比数列?若存在,求出这样的3项,若不存在,请说明理由.25.类比等差数列和等比数列的定义、通项公式、常用性质等,发现它们具有如下的对偶关系:只要将等差数列的一个关系式中的运算“+”改为“×”改为“÷”,正整数倍改为正整数指数幂,相应地就可得到等比数列中一个形式相同的关系式,反之也成立.(1)根据上述说法,请你参照下表给出的信息推断出相关的对偶关系式;名称等差数列{a n }等比数列{b n }定义a n +1-a n =d 通项公式b n =b 1q n -1=b m q n -m 常用性质①a 1+a n =a 2+a n -1=a 3+a n -2=…②a n -k +a n +k =2a n (n >k )③④①②③若,,(),*m n k l m n k l N +=+∈,则n m k lb b b b =④b 1b 2……b n =(b 1b n )n 2(2)在等差数列{a n }中,若20180a =,则有12124035*,4()035n n a a a a a a n N n -++⋯+=++⋯+∈<.相应地,在等比数列{b n }中,若20191b =,请你类比推测出对偶的等式,并加以证明.P5726.在2015年苏州世乒赛期间,某景点用乒乓球堆成若干堆“正三棱锥”形的装饰品,其中第1堆只有1层,就一个球;第2,3,4,…堆最底层(第一层)分别按图中所示方式固定摆放,从第二层开始,每层的小球自然垒放在下一层之上,第n 堆第n 层就放一个乒乓球.记第n 堆的乒乓球总数为f (n ).(1)求出f (2);(2)试归纳出f (n +1)与f (n )的关系式,并根据你得到的关系式探求f (n )的表达式.参考公式:222112(1)(21)6n n n n +++=++ .27.有理数都能表示成(,m m n Z n ∈,且0n ≠,m 与n 互质)的形式,进而有理数集|Q={,m m n Z n ∈且0n ≠,m 与n 互质}.任何有理数m n 都可以化为有限小数或无限循环小数.反之,任一有限小数也可以化为m n的形式,从而是有理数;那么无限循环小数是否为有理数?思考下列问题:(1)1.2是有理数吗?请说明理由.(2)1.24 是有理数吗?请说明理由.28.平面上有,()3n n N n ∈≥个点,其中任何三点都不在同一条直线上.过这些点中任意两点作直线,这样的直线共有多少条?证明你的结论.P7029.函数y =f (x )的图象如图所示,它的导函数为y =f’(x ),下列导数值排序正确的是()A .f’(1)>f’(2)>f’(3)>0B .f’(1)<f’(2)<f’(3)<0C .0<f’(1)<f’(2)<f’(3)D .f’(1)>f’(2)>0>f’(3)P8130.已知函数f (x )满足()(cos 4f x f x x π'=-,求f (x )在4x π=的导数.P9831.用测量工具测量某物体的长度,由于工具的精度以及测量技术的原因,测得n 个数据1a ,2a ,3a ,…,n a .证明:用n 个数据的平均值11n i i x a n ==∑表示这个物体的长度,能使这n 个数据的方差211()()n i i f x x a n ==-∑最小.P10332.已知函数y =f (x )的图象是下列四个图象之一,且其导函数y =f′(x )的图象如图所示,则该函数的图象是()A .B .C .D .P10433.已知函数2()()f x x x c =-在2x =处有极大值,求c 的值.34.用总长14.8m 的钢条制作一个长方体容器的框架,若制作的容器的底面的一边长比另一边长0.5m .那么高为多少时,容器的容积最大?并求出它的最大容积?35.用半径为R 的圆形铁皮剪出一个圆心角为α的扇形,制成一个圆锥形容器,扇形的圆心角α为多大时,容器的容积最大?36.作函数(21)1x e x y x -=-的大致图象.37.1.已知函数()()()e ln R x f x x m =-+∈,证明:当2m ≤时,()0f x >.38.已知函数()()2e 2e x xf x a a x =+--.(1)讨论f (x )的单调性;(2)若f (x )有两个零点,求a 的取值范围.-选择性必修二结束-。
(新课标)高考数学模拟系列(二)试题 理 新人教A版
12023年高考模拟系列试卷(二) 数学试题【新课标版】(理科)1.本试卷分第一卷(阅读题)和第二卷(表达题)两局部。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.作答时,将答案写在答题卡上。
写在本试卷上无效。
3.考试完毕后,将本试卷和答题卡一并交回。
第一卷(选择题,共60分)一、此题共12小题,每题5分,共60分,在每题给出的四个选项中只有一个选项是符合题目要求的1、设集合{}21,M x x x =-≤∈R ,{}21,02N y y x x ==-+≤≤,那么()RM N ⋂等于( )A .RB .{}|1x x R x ∈≠且C .{}1D .∅2、在复平面内,复数2013ii 1iz =+-表示的点所在的象限是( ) A .第一象限 B .第二象限C .第三象限D .第四象限3、假设sin601233,log cos60,log tan 30a b c ===,那么( )A .a b c >>B .b c a >>C .c b a >>D .b a c >>4、设数列{}n a 是公差不为零的等差数列,它的前n 项和为n S ,且1S 、2S 、4S 成等比数列,那么41a a 等于( ) A .6B .7C .4D .35、已知点()1,0A -和圆222x y +=上一动点P ,动点M 满足2MA AP =,那么点M 的轨迹方程是( )A .()2231x y -+=B .223()12x y -+=C .2231()22x y -+= D .223122x y ⎛⎫+-= ⎪⎝⎭6、命题“存在,αβ∈R ,使22sin()sin()sin sin αβαβαβ+-≥-”的否认为( )A .任意,αβ∈R ,使22sin()sin()sin sin αβαβαβ+-≥- B .任意,αβ∈R ,使22sin()sin()sin sin αβαβαβ+-<- C .存在,αβ∈R ,使22sin()sin()sin sin αβαβαβ+-<- D .存在,αβ∈R ,使22sin()sin()sin sin αβαβαβ+-≤- 7、设a b <,函数()()2y x a x b =--的图象可能是( )28、程序框图如下:如果上述程序运行的结果S 的值比2023小,假设使输出的S 最大,那么判断框中应填入( ) A .10k ≤ B .10k ≥ C .9k ≤ D .9k ≥9、图为一个空间几何体的三视图,其中俯视图是下边一个等边三角形,其内切圆的半径是1,正视图和侧视图是上边两个图形,数据如图,那么此几何体的体积是( )A .1533π+B .21533π+C .3033π+D .43033π+ 10、在9212x x ⎛⎫- ⎪⎝⎭的展开式中,常数项为( )A .5376-B .5376C .84-D .8411、如果点P 在平面区域220140x y x x y -+≤⎧⎪≥-⎨⎪+-≤⎩上,点Q 在曲线(x -1)2+(y -1)2=1上,那么|PQ |的最小值为( )A .5-1B .355 C .3515- D .523-1 12、已知椭圆C :22221(0)x ya b a b+=>>的左右焦点为12,F F ,过2F 的直线与圆222()()x a y b b -+-=相切于点A ,并与椭圆C 交与不同的两点P ,Q ,如图,假设A 为线段PQ 的靠近P 的三等分点,那么椭圆的离心率为 ( )3A .23B .33C .53D .73第二卷(非选择题,共90分)二、填空题:本大题共4小题,每题4分,共16分,把答案填在题中横线上 13、由曲线23y x =-和直线2y x =所围成的面积为 。
人教版高一数学上学期期中考试试题及详细答案解析全文
人教版高一数学上学期期中考试数学试题(满分150分时间120分钟)一、单选题(12小题,每题5分)。
1.已知集合(){}{}0222>==-==x ,y x B ,x x lg y x A x,是实数集,则()A.B.C.D.以上都不对2.下列函数中,是偶函数且在上为减函数的是()A.2xy = B.xy -=2C.2-=x y D.3xy -=3.下列各组函数中,表示同一函数的是()A.2xy =和()2x y =B.()12-=x lg y 和()()11-++=x lg x lg y C.2x log y a =和xlog y a 2= D.x y =和xa alog y =4.已知3110220230...c ,b ,.log a ===,则c ,b ,a 的大小关系是()A.cb a << B.b ac << C.bc a << D.ac b <<5.在同一直角坐标系中,函数()()()x log x g ,x x x f a a=≥=0的图像可能是()A. B. C. D.6.若132=log x ,则x x 93+的值为()A.3B.C.6D.7.函数()x x x f 31+-=的单调递增区间是()A.B.C.D.8.某同学求函数()62-+=x x ln x f 零点时,用计算器算得部分函数值如下表所示:则方程062=-+x x ln 的近似解(精确度0.1)可取为()A.2.52B.2.625C.2.66D.2.759.函数()xx lg x f 1-=的零点所在的区间是()A.(0,1)B.(1,10)C.(10,100)D.(100,+∞)10.已知函数()2211xxx f -+=,则有()A.()x f 是奇函数,且()x f x f -=⎪⎭⎫⎝⎛1 B.()x f 是奇函数,且()x f x f =⎪⎭⎫⎝⎛1C.()x f 是偶函数,且()x f x f -=⎪⎭⎫⎝⎛1 D.()x f 是偶函数,且()x f x f =⎪⎭⎫⎝⎛111.如图,向放在水槽底部的烧杯注水(流量一定),注满烧杯后,继续注水,直至注满水槽,水槽中水面上升高度h 与注水时间t 之间的函数关系,大致是()A. B. C. D.12.已知函数()⎪⎩⎪⎨⎧>+-≤<=0621100x ,x x x ,x lg x f ,若a ,b ,c 均不相等,且()()()c f b f a f ==,则abc的取值范围是A.(1,10)B.(5,6)C.(10,12)D.(20,24)二、填空题(4小题,每题5分)13.若对数函数()x f 与幂函数()x g 的图象相交于一点(2,4),则()()=+44g f ________.14.对于函数f (x )的定义域中任意的x 1,x 2(x 1≠x 2),有如下结论:①f (x 1+x 2)=f (x 1)f (x 2);②f (x 1x 2)=f (x 1)+f (x 2);③()()02121>--x x x f x f .当f (x )=e x 时,上述结论中正确结论的序号是______.15.已知3102==b,lg a ,用a,b 表示=306log _____________.16.设全集{}654321,,,,,U =,用U 的子集可表示由10,组成的6位字符串,如:{}42表示的是第2个字符为1,第4个字符为1,其余均为0的6位字符串010100,并规定空集表示的字符串为000000.(1)若,则M C U 表示6位字符串为_____________.(2)若,集合表示的字符串为101001,则满足条件的集合的个数为____个.三、解答题。
高中高三数学上学期周测试卷 理(1.22,含解析)-人教版高三全册数学试题
某某省某某高中2015届高三上学期周测数学试卷(理科)(1.22)一.本大题共12小题,每小题5分,共60分,在每个小题给出的4个选项中,只有一项是符合要求的.1.设复数z1=1﹣i,z2=+i,其中i为虚数单位,则的虚部为( )A.B.C.D.考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:由题意结合复数代数形式的乘除运算化简得答案.解答:解:∵z1=1﹣i,z2=+i,∴=.∴的虚部为.故选:D.点评:本题考查了复数代数形式的乘除运算,考查了复数的基本概念,是基础题.2.已知数列{a n}的前n项和为S n,且S n=2a n﹣2,则a2等于( )A.﹣2 B.2 C.1 D.4考点:数列递推式.专题:点列、递归数列与数学归纳法.分析:利用S n=2a n﹣2,n分别取1,2,则可求a2的值.解答:解:n=1时,S1=2a1﹣2,∴a1=2,n=2时,S2=2a2﹣2,∴a2=a1+2=4.故选D.点评:本题考查数列递推式,考查学生的计算能力,属于基础题.3.“m>0”是“函数f(x)=m+log2x(x≥1)不存在零点”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件考点:必要条件、充分条件与充要条件的判断.专题:简易逻辑.分析:根据充分必要条件的定义集合对数函数的性质分别判断其充分性和必要性,从而得到答案.解答:解:若“m>0”,则函数f(x)=m+log2x>0,(x≥1),故函数f(x)不存在零点,是充分条件,若函数f(x)=m+log2x(x≥1)不存在零点,则m>0,是必要条件,故选:C.点评:本题考查了充分必要条件,考查了对数函数的性质,是一道基础题.4.已知点P(x,y)的坐标满足条件,那么点P到直线3x﹣4y﹣13=0的最小值为( )A.B.2 C.D.1考点:简单线性规划.专题:数形结合;不等式的解法及应用.分析:由约束条件作出可行域,数形结合得到最优解,由点到直线的距离公式求得点P到直线3x﹣4y﹣13=0的最小值.解答:解:由约束条件作出可行域如图,由图可知,当P与A(1,0)重合时,P到直线3x﹣4y﹣13=0的距离最小为d=.故选:B.点评:本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.5.已知双曲线kx2﹣y2=1(k>0)的一条渐近线与直线x﹣2y﹣3=0平行,则双曲线的离心率是( )A.B.C.4D.考点:双曲线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:利用已知条件求出双曲线方程中k的值,然后求解离心率即可.解答:解:双曲线kx2﹣y2=1(k>0)的一条渐近线与直线x﹣2y﹣3=0平行,可得双曲线的渐近线的斜率为:,即,解得k=,双曲线kx2﹣y2=1为:y2=1,得a=2,b=1,c=,∴双曲线的离心率为:.故选:A.点评:本题考查双曲线的简单性质的应用,离心率的求法,考查计算能力.6.一个几何体的三视图如图所示,且其侧(左)视图是一个等边三角形,则这个几何体的体积为( )A.B.C.2D.考点:由三视图求面积、体积.专题:空间位置关系与距离.分析:此几何体是底面积是S==1的三棱锥,与底面是边长为2的正方形的四棱锥构成的组合体,它们的顶点相同,底面共面,高为,即可得出.解答:解:此几何体是底面积是S==1的三棱锥,与底面是边长为2的正方形的四棱锥构成的组合体,它们的顶点相同,底面共面,高为,∴V==.点评:本题考查了三棱锥与四棱锥的三视图、体积计算公式,属于基础题.7.已知函数f(x)=sin(x+),其中x∈,若f(x)的值域是,则实数a的取值X围是( ) A.(0,] B.C.D.考点:正弦函数的图象.专题:三角函数的图像与性质.分析:先求得x+的取值X围,由x+∈时f(x)的值域是,可知≤a+≤,可解得实数a的取值X围.解答:解:∵x∈,∴x+∈,∵x+∈时f(x)的值域是,∴由函数的图象和性质可知≤a+≤,可解得a∈.故选:D.点评:本题主要考察了正弦函数的图象和性质,由函数的图象和性质得到不等式≤a+≤是解题的关键,属于基本知识的考查.8.抛物线y2=2px(p>0)的焦点为F,已知点A,B为抛物线上的两个动点,且满足∠AFB=120°.过弦AB的中点M作抛物线准线的垂线MN,垂足为N,则的最小值为( ) A.B.C.1 D.考点:抛物线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:先画出图象、做出辅助线,设|AF|=a、|BF|=b,由抛物线定义得2|MN|=a+b,由题意和余弦定理可得|AB|2=(a+b)2﹣ab,再根据基本不等式,求得|AB|2的取值X围,代入化简即可得到答案.解答:解:如右图:过A、B分别作准线的垂线AQ、BP,垂足分别是Q、P,设|AF|=a,|BF|=b,连接AF、BF,由抛物线定义,得|AF|=|AQ|,|BF|=|BP|在梯形ABPQ中,2|MN|=|AQ|+|BP|=a+b.由余弦定理得,|AB|2=a2+b2﹣2abcos120°=a2+b2+ab,配方得|AB|2=(a+b)2﹣ab,因为ab≤,则(a+b)2﹣ab≥(a+b)2﹣=(a+b)2,即|AB|2≥(a+b)2,所以≥=3,则,即所求的最小值是,故选:D.点评:本题考查抛物线的定义、简单几何性质,基本不等式求最值,余弦定理的应用等知识,属于中档题.9.已知f(x)是定义在R上的奇函数,当0≤x≤1时,f(x)=x2,当x>0时,f(x+1)=f (x)+f(1),若直线y=kx与函数y=f(x)的图象恰有7个不同的公共点,则实数k的取值X围为( )A.(2﹣2,2﹣4)B.(+2,+)C.(2+2,2+4)D.(4,8)考点:函数奇偶性的性质;抽象函数及其应用.专题:函数的性质及应用.分析:本题通过奇函数特征得到函数图象经过原点,且关于原点对称,利用f(x+1)=f(x)+f(1)得到函数类似周期性特征,从而可以画出函数的草图,再利用两个临界状态的研究,得到k的取值X围.解答:解:∵当0≤x≤1时,f(x)=x2,∴f(1)=1.∵当x>0时,f(x+1)=f(x)+f(1),∴f(x+1)=f(x)+1,∴当x∈,n∈N*时,f(x+1)=f(x﹣1)+2=f(x﹣2)+3=…=f(x﹣n)+n+1=(x﹣n)2+n+1,∵函数f(x)是定义在R上的奇函数,∴函数图象经过原点,且关于原点对称.∵直线y=kx与函数y=f(x)的图象恰有7个不同的公共点,∴当x>0时,直线y=kx与函数y=f(x)的图象恰有3个不同的公共点,∴由x>0时f(x)的图象可知:直线y=kx与函数y=f(x)的图象相切位置在x∈时,直线y=kx与函数y=f(x)的图象恰有5个不同的公共点,直线y=kx与函数y=f(x)的图象相切位置在x∈时,直线y=kx与函数y=f(x)的图象恰有9个不同的公共点,∴直线y=kx与函数y=f(x)的图象位置情况介于上述两种情况之间.∵当x∈时,由得:x2﹣(k+2)x+2=0,令△=0,得:k=.由得:x2﹣(k+4)x+6=0,令△=0,得:k=2.∴k的取值X围为().点评:本题考查了函数的奇偶性、周期性、函数图象与性质及其应用,本题有一定的综合性,属于中档题.10.设函数f(x)=e x+2x﹣4,g(x)=lnx+2x2﹣5,若实数a,b分别是f(x),g(x)的零点,则( )A.g(a)<0<f(b)B.f(b)<0<g(a)C.0<g(a)<f(b)D.f(b)<g(a)<0考点:函数零点的判定定理.专题:函数的性质及应用.分析:根据函数的解析式判断单调性,运用f(1)=e﹣2>0,g(1)=0+2﹣5<0,得出a<1,b>1,再运用单调性得出g(a)<g(1)<0,f(b)>f(1)>0,即可选择答案.解答:解:∵函数f(x)=e x+2x﹣4,g(x)=lnx+2x2﹣5,∴f(x)与g(x)在各自的定义域上为增函数,∵f(1)=e﹣2>0,g(1)=0+2﹣5<0,∴若实数a,b分别是f(x),g(x)的零点,∴a<1,b>1,∵g(a)<g(1)<0,f(b)>f(1)>0,故选:A点评:本题考查了函数的性质,运用单调性判断函数的零点的位置,再结合单调性求解即可.11.在Rt△ABC中,CA=CB=3,M,N是斜边AB上的两个动点,且,则的取值X 围为( )A.B.C.D.考点:平面向量数量积的运算.专题:平面向量及应用.分析:通过建立直角坐标系求出AB所在直线的方程,设出M,N的坐标,将=2(b﹣1)2,0≤b≤1,求出X围.解答:解:以C为坐标原点,CA为x轴建立平面坐标系,则A(3,0),B(0,3),∴AB所在直线的方程为:y=3﹣x,设M(a,3﹣a),N(b,3﹣b),且0≤a≤3,0≤b≤3不妨设a>b,∵MN=,∴(a﹣b)2+(b﹣a)2=2,∴a﹣b=1,∴a=b+1,∴0≤b≤2,∴=(a,3﹣a)•(b,3﹣b)=2ab﹣3(a+b)+9=2(b2﹣2b+3),0≤b≤2,∴b=1时有最小值4;当b=0,或b=2时有最大值6,∴的取值X围为故选:D点评:熟练掌握通过建立直角坐标系、数量积得坐标运算是解题的关键.12.设函数f1(x)=x,f2(x)=log2015x,a i=(i=1,2,3,…,2015),记I k=|f k(a2)﹣f k(a1)|+|f k(a3)﹣f k(a2)|+…+|f k(a2015)﹣f k(a2014)|,k=1,2,则( ) A.I1<I2B.I1=I2C.I2<I1D.无法确定考点:对数的运算性质.专题:函数的性质及应用.分析:由于f1(a i+1)﹣f1(a i)==.可得I1=×2014.由于f i+1(a i+1)﹣f i(a i)==.即可得出I2==log20152015.解答:解:∵f1(a i+1)﹣f1(a i)==.∴I1=|f1(a2)﹣f1(a1)|+|f1(a3)﹣f1(a2)|+…+|f1(a2015)﹣f1(a2014)|=×2014=.∵f2(a i+1)﹣f2(a i)==.∴I2=|f2(a2)﹣f2(a1)|+|f2(a3)﹣f2(a2)|+…+|f2(a2015)﹣f2(a2014)|==log20152015=1,∴I1<I2.故选:A.点评:本题考查了对数的运算法则、含绝对值符号式的运算,属于基础题.二.填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卷中横线上.13.已知等比数列{a n},前n项和为S n,,则S6=.考点:等比数列的前n项和.专题:计算题;等差数列与等比数列.分析:设等比数列{a n}的公比为q,运用通项公式,列出方程,解得公比和首项,再由求和公式,即可得到所求值.解答:解:设等比数列{a n}的公比为q,由于,即a1+a1q=,a1q3+a1q4=6,两式相除,可得,q=2,a1=.则S6==.故答案为:点评:本题考查等比数列的通项公式和求和公式,考查运算能力,属于基础题.14.设函数y=f(x)的定义域为D,若对于任意的x1,x2∈D,当x1+x2=2a时,恒有f(x1)+f (x2)=2b,则称点(a,b)为函数y=f(x)图象的对称中心.研究函数f(x)=x3+sinx+2的某一个对称中心,并利用对称中心的上述定义,可得到 (82)考点:函数的值.专题:函数的性质及应用.分析:函数f(x)=x3+sinx+1图象的对称中心的坐标为(0,2),即x1+x2=0时,总有f(x1)+f(x2)=4,再利用倒序相加,即可得到结论解答:解:∵f(x)=x3+sinx+2,∴f'(x)=3x2+cosx,f''(x)=6x﹣sinx,∴f''(0)=0,而f(x)+f(﹣x)=x3+sinx+2+﹣x3﹣sinx+2=4,函数f(x)=x3+sinx+1图象的对称中心的坐标为(0,2),即x1+x2=0时,总有f(x1)+f(x2)=4,∴…=20×4+f(0)=82.故答案为:82.点评:本题考查函数的对称性,确定函数的对称中心,利用倒序相加x1+x2=0时,总有f(x1)+f(x2)=4,是解题的关键.15.给定方程:()x+sinx﹣1=0,下列命题中:①该方程没有小于0的实数解;②该方程有无数个实数解;③该方程在(﹣∞,0)内有且只有一个实数解;④若x0是该方程的实数解,则x0>﹣1.则正确命题是②③④.考点:命题的真假判断与应用.专题:计算题;函数的性质及应用;三角函数的图像与性质.分析:根据正弦函数的符号和指数函数的性质,可得该方程存在小于0的实数解,故①不正确;根据指数函数的图象与正弦函数的有界性,可得方程有无数个正数解,故②正确;根据y=()x﹣1的单调性与正弦函数的有界性,分析可得当x≤﹣1时方程没有实数解,当﹣1<x<0时方程有唯一实数解,由此可得③④都正确.解答:解:对于①,若α是方程()x+sinx﹣1=0的一个解,则满足()α=1﹣sinα,当α为第三、四象限角时()α>1,此时α<0,因此该方程存在小于0的实数解,得①不正确;对于②,原方程等价于()x﹣1=﹣sinx,当x≥0时,﹣1<()x﹣1≤0,而函数y=﹣sinx的最小值为﹣1且用无穷多个x满足﹣sinx=﹣1,因此函数y=()x﹣1与y=﹣sinx的图象在上不可能有交点因此只要x0是该方程的实数解,则x0>﹣1.故答案为:②③④点评:本题给出含有指数式和三角函数式的方程,讨论方程解的情况.着重考查了指数函数的单调性、三角函数的周期性和有界性、函数的值域求法等知识,属于中档题.16.有n个首项都是1的等差数列,设第m个数列的第k项为a mk(m,k=1,2,3,…,n,n≥3),公差为d m,并且a1n,a2n,a3n,…,a nn成等差数列.若d m=p1d1+p2d2(3≤m≤n,p1,p2是m的多项式),则p1+p2=1.考点:等差数列的性质.专题:计算题;等差数列与等比数列.分析:先根据首项和公差写出数列的通项公式,利用通项公式表示出数列a1n,a2n,a3n,…,a nn中的第项减第2项,第3项减第4项,…,第n项减第n﹣1项,由此数列也为等差数列,得到表示出的差都相等,进而得到d n是首项d1,公差为d2﹣d1的等差数列,根据等差数列的通项公式表示出d m的通项,令p1=2﹣m,p2=m﹣1,得证,求出p1+p2即可.解答:解:由题意知a mn=1+(n﹣1)d m.则a2n﹣a1n=﹣=(n﹣1)(d2﹣d1),同理,a3n﹣a2n=(n﹣1)(d3﹣d2),a4n﹣a3n=(n﹣1)(d4﹣d3),…,a nn﹣a(n﹣1)n=(n﹣1)(d n ﹣d n﹣1).又因为a1n,a2n,a3n,a nn成等差数列,所以a2n﹣a1n=a3n﹣a2n=…=a nn﹣a(n﹣1)n.故d2﹣d1=d3﹣d2=…=d n﹣d n﹣1,即d n是公差为d2﹣d1的等差数列.所以,d m=d1+(m﹣1)(d2﹣d1)=(2﹣m)d1+(m﹣1)d2.令p1=2﹣m,p2=m﹣1,则d m=p1d1+p2d2,此时p1+p2=1.故答案为:1.点评:此题考查学生灵活运用等差数列的通项公式及前n项和公式化简求值,考查了利用函数的思想解决实际问题的能力,是一道中档题.三.解答题:本大题共5小题,共70分.17.在△ABC中,角A,B,C所对的边分别为a,b,c,已知=(1)求角C的大小,(2)若c=2,求使△ABC面积最大时a,b的值.考点:正弦定理;余弦定理.专题:解三角形.分析:(1)已知等式左边利用正弦定理化简,右边利用诱导公式变形,整理后再利用两角和与差的正弦函数公式及诱导公式变形,根据sinA不为0求出cosC的值,即可确定出C的度数;(2)利用余弦定理列出关系式,将c与cosC的值代入并利用基本不等式求出ab的最大值,进而确定出三角形ABC面积的最大值,以及此时a与b的值即可.解答:解:(1)∵A+C=π﹣B,即cos(A+C)=﹣cosB,∴由正弦定理化简已知等式得:=,整理得:2sinAcosC+sinBcosC=﹣sinCcosB,即﹣2sinAcosC=sinBcosC+cosBsinC=sin(B+C)=sinA,∵sinA≠0,∴cosC=﹣,∵C为三角形内角,∴C=;(Ⅱ)∵c=2,cosC=﹣,∴由余弦定理得:c2=a2+b2﹣2abcosC,即4=a2+b2+ab≥2ab+ab=3ab,∴ab≤,(当且仅当a=b时成立),∵S=absinC=ab≤,∴当a=b时,△ABC面积最大为,此时a=b=,则当a=b=时,△ABC的面积最大为.点评:此题考查了正弦、余弦定理,三角形的面积公式,以及基本不等式的运用,熟练掌握定理及公式是解本题的关键.18.已知四棱锥P﹣ABCD中,底面ABCD为菱形,且PD⊥底面ABCD,∠DAB=60°,E为AB的中点.(1)证明:DC⊥平面PDE;(2)若PD=AD,求面DEP与面BCP所成二面角的余弦值.考点:用空间向量求平面间的夹角;直线与平面垂直的判定.专题:空间角.分析:(1)根据底面为含有60度的菱形,得△DAB为正三角形,从而得到AB⊥DE,结合PD⊥AB 利用线面垂直判定定理,即可证出DC⊥平面PDE;(2)分别以DE,DC,DP所在直线为x,y,z轴,建立空间直角坐标系,求出面DEP与面BCP 的法向量,代入向量夹角公式,可得答案.解答:证明:(1)∵PD⊥底面ABCD,AB⊂底面ABCD,∴PD⊥AB连接DB,在菱形ABCD中,∠DAB=60°∴△DAB为等边三角形…又∵E为AB的中点∴AB⊥DE又∵PD∩DE=D∴AB⊥底面PDE…∵AB∥CD∴CD⊥底面PDE…解:(2)如图,分别以DE,DC,DP所在直线为x,y,z轴,如图建立空间直角坐标系∴….∴∴…∴∴…点评:本题考查的知识点是用空间向量求平面间的夹角,直线与平面垂直的判定,熟练掌握线面垂直的判定定理是解答(1)的关键,建立空间坐标系,将二面角问题转化为向量夹角问题,是解答的关键.19.已知数列{a n}满足a1=1,|a n+1﹣a n|=p n,n∈N*.(Ⅰ)若{a n}是递增数列,且a1,2a2,3a3成等差数列,求p的值;(Ⅱ)若p=,且{a2n﹣1}是递增数列,{a2n}是递减数列,求数列{a n}的通项公式.考点:数列的求和;数列递推式.专题:等差数列与等比数列.分析:(Ⅰ)根据条件去掉式子的绝对值,分别令n=1,2代入求出a2和a3,再由等差中项的性质列出关于p的方程求解,利用“{a n}是递增数列”对求出的p的值取舍;(Ⅱ)根据数列的单调性和式子“|a n+1﹣a n|=p n”、不等式的可加性,求出和a2n+1﹣a2n=,再对数列{a n}的项数分类讨论,利用累加法和等比数列前n项和公式,求出数列{a n}的奇数项、偶数项对应的通项公式,再用分段函数的形式表示出来.解答:解:(Ⅰ)∵数列{a n}是递增数列,∴a n+1﹣a n>0,则|a n+1﹣a n|=p n化为:a n+1﹣a n=p n,分别令n=1,2可得,a2﹣a1=p,,即a2=1+p,,∵a1,2a2,3a3成等差数列,∴4a2=a1+3a3,即4(1+p)=1+3(p2+p+1),化简得3p2﹣p=0,解得或0,当p=0时,数列a n为常数数列,不符合数列{a n}是递增数列,∴;(2)由题意可得,|a n+1﹣a n|=,则|a2n﹣a2n﹣1|=,|a2n+2﹣a2n+1|=,∵数列{a2n﹣1}是递增数列,且{a2n}是递减数列,∴a2n+1﹣a2n﹣1>0,且a2n+2﹣a2n<0,则﹣(a2n+2﹣a2n)>0,两不等式相加得a2n+1﹣a2n﹣1﹣(a2n+2﹣a2n)>0,即a2n+1﹣a2n+2>a2n﹣1﹣a2n,又∵|a2n﹣a2n﹣1|=>|a2n+2﹣a2n+1|=,∴a2n﹣a2n﹣1>0,即,同理可得:a2n+3﹣a2n+2>a2n+1﹣a2n,即|a2n+3﹣a2n+2|<|a2n+1﹣a2n|,则a2n+1﹣a2n=当数列{a n}的项数为偶数时,令n=2m(m∈N*),,,,…,,这2m﹣1个等式相加可得,==,则;当数列{a n}的项数为奇数时,令n=2m+1(m∈N*),,,…,,这2m个等式相加可得,…﹣…+=﹣=,则,且当m=0时a1=1符合,故,综上得,.点评:本题考查了等差数列的通项公式,等比数列前n项和公式、数列的单调性,累加法求数列的通项公式,不等式的性质等,同时考查数列的基础知识和化归、分类整合等数学思想,以及推理论证、分析与解决问题的能力.本题设计巧妙,题型新颖,立意深刻,是一道不可多得的好题,难度很大.20.已知动点P到定点F(1,0)和直线l:x=2的距离之比为,设动点P的轨迹为曲线E,过点F作垂直于x轴的直线与曲线E相交于A,B两点,直线l:y=mx+n与曲线E交于C,D两点,与线段AB相交于一点(与A,B不重合)(Ⅰ)求曲线E的方程;(Ⅱ)当直线l与圆x2+y2=1相切时,四边形ABCD的面积是否有最大值,若有,求出其最大值,及对应的直线l的方程;若没有,请说明理由.考点:直线与圆锥曲线的综合问题.专题:圆锥曲线中的最值与X围问题.分析:(1)设点P(x,y),由题意可得,,化简即可得出;(2)设C(x1,y1),D(x2,y2),由已知可得:,当m=0时,不合题意.当m≠0时,由直线l与圆x2+y2=1相切,可得m2+1=n2,直线与椭圆方程联立可得.利用根与系数的关系可得,再利用基本不等式的性质即可得出.解答:解:(1)设点P(x,y),由题意可得,,整理可得:.∴曲线E的方程是.(2)设C(x1,y1),D(x2,y2),由已知可得:,当m=0时,不合题意.当m≠0时,由直线l与圆x2+y2=1相切,可得:,即m2+1=n2,联立消去y得.,,所以,,==.当且仅当,即时等号成立,此时.经检验可知,直线和直线符合题意.点评:本题考查了椭圆的标准方程及其性质、直线与椭圆相交问题转化为方程联立可得根与系数的关系、四边形的面积计算公式、基本不等式的性质,考查了推理能力与计算能力,属于难题.21.已知函数f(x)=(x2﹣2x)lnx+ax2+2.(Ⅰ)当a=﹣1时,求f(x)在点(1,f(1))处的切线方程;(Ⅱ)当a>0时,设函数g(x)=f(x)﹣x﹣2,且函数g(x)有且仅有一个零点,若e﹣2<x<e,g(x)≤m,求m的取值X围.考点:利用导数研究曲线上某点切线方程;函数零点的判定定理.专题:导数的综合应用.分析:(Ⅰ)当a=﹣1时,求导数,可得切线斜率,求出切点坐标,即可求f(x)在(1,f (1))处的切线方程;(Ⅱ)由g(x)=f(x)﹣x﹣2=0,可得a=,令h(x)=,证明h(x)在(0,1)上单调递增,在(1,+∞)上单调递减,可得h(x)max=h(1)=1,即可求得函数g(x)有且仅有一个零点a的值,然后结合e﹣2<x<e,g(x)≤m,求出g(x)max,即可求得m的取值X围.解答:解:(Ⅰ)当a=﹣1时,f(x)=(x2﹣2x)•lnx﹣x2+2,定义域(0,+∞),∴f′(x)=(2x﹣2)•lnx+(x﹣2)﹣2x.∴f′(1)=﹣3,又f(1)=1,∴f(x)在(1,f(1))处的切线方程3x+y﹣4=0;(Ⅱ)g(x)=f(x)﹣x﹣2=0,则(x2﹣2x)•lnx+ax2+2=x+2,即a=,令h(x)=,则h′(x)=,令t(x)=1﹣x﹣2lnx,则t′(x)=,∵x>0,∴t′(x)<0,∴t(x)在(0,+∞)上是减函数,又∵t(1)=h′(1)=0,∴当0<x<1时,h′(x)>0,当x>1时,h′(x)<0,∴h(x)在(0,1)上单调递增,在(1,+∞)上单调递减,∴h(x)max=h(1)=1,∴当函数g(x)有且仅有一个零点时a=1,当a=1时,g(x)=(x2﹣2x)•lnx+x2﹣x,若e﹣2<x<e, g(x)≤m,只需证明g(x)max≤m,∴g′(x)=(x﹣1)(3+2lnx),令g′(x)=0,得x=1或x=e﹣,又∵e﹣2<x<e,∴函数g(x)在(e﹣2,e﹣)上单调递增,在(e﹣,1)上单调递减,在(1,e)上单调递增,又g(e﹣)=﹣e﹣3+2e﹣,g(e)=2e2﹣3e,∵g(e﹣)=﹣e﹣3+2e﹣<2e﹣<2e<2e(e﹣)=g(e),∴g(e﹣)<g(e),∴m≥2e2﹣3e.点评:本题考查导数知识的综合运用,考查导数的几何意义,考查函数的单调性与最值,考查分离参数法的运用,属于难题.请考生在第(22)、(23)二题中任选一题作答.如果多做,则按所做的第一题记分,答题时,用2B铅笔在答题卡上把所选题目的题号涂黑.选修4-1:几何证明选讲22.如图,过圆E外一点A作一条直线与圆E交于B,C两点,且,作直线AF与圆E相切于点F,连结EF交BC于点D,已知圆E的半径为2,∠EBC=30°(1)求AF的长;(2)求证:AD=3ED.考点:与圆有关的比例线段.专题:直线与圆.分析:(1)延长BE交圆E于点M,连结CM,则∠BCM=90°,由已知条件求出AB,AC,再由切割线定理能求出AF.(2)过E作EH⊥BC于H,得到EDH∽△ADF,由此入手能够证明AD=3ED.解答:(1)解:延长BE交圆E于点M,连结CM,则∠BCM=90°,∵BM=2BE=4,∠EBC=30°,∴,又∵,∴,∴,根据切割线定理得,即AF=3(2)证明:过E作EH⊥BC于H,∵∠EOH=∠ADF,∠EHD=∠AFD,∴△EDH∽△ADF,∴,又由题意知CH=,EB=2,∴EH=1,∴,∴AD=3ED.点评:本题考查与圆有关的线段的求法,考查两条线段间数量关系的证明,是中档题,解题时要注意切割线定理的合理运用.选修4-5:不等式选讲23.已知函数f(x)=|2x﹣1|.(1)若对任意a、b、c∈R(a≠c),都有f(x)≤恒成立,求x的取值X围;(2)解不等式f(x)≤3x.考点:绝对值不等式的解法;函数恒成立问题.专题:不等式的解法及应用.分析:(1)根据|a﹣b|+|b﹣c|≥|a﹣c|,可得≥1,再根据f(x)≤恒成立,可得f(x)≤1,即|2x﹣1|≤1,由此求得x的X围.(2)不等式即|2x﹣1|≤3x,可得,由此求得不等式的解集.解答:解:(1)∵|a﹣b|+|b﹣c|≥|a﹣b+(b﹣c)|=|a﹣c|,故有≥1,再根据f(x)≤恒成立,可得f(x)≤1,即|2x﹣1|≤1,∴﹣1≤2x﹣1≤1,求得0≤x≤1.(2)不等式f(x)≤3x,即|2x﹣1|≤3x,∴,求得x≥,即不等式的解集为{x|x≥}.点评:本题主要考查绝对值三角不等式,绝对值不等式的解法,体现了转化的数学思想,属于基础题.。
高三数学人教版A版数学(理)高考一轮复习教案 导数在函数研究中的应用
第十一节 导数在函数研究中的应用1.函数的单调性了解函数单调性和导数的关系;能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不超过三次).2.函数的极值了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(其中多项式函数一般不超过三次).知识点一 利用导数研究函数的单调性1.函数f (x )在某个区间(a ,b )内的单调性与其导数的正负有如下关系 (1)若f ′(x )>0,则f (x )在这个区间上是增加的. (2)若f ′(x )<0,则f (x )在这个区间上是减少的. (3)若f __′(x )=0,则f (x )在这个区间内是常数. 2.利用导数判断函数单调性的一般步骤 (1)求f __′(x ).(2)在定义域内解不等式f __′(x )>0或f __′(x )<0. (3)根据结果确定f (x )的单调区间. 易误提醒1.在某个区间(a ,b )上,若f ′(x )>0,则f (x )在这个区间上单调递增;若f ′(x )<0,则f (x )在这个区间上单调递减;若f ′(x )=0恒成立,则f (x )在这个区间上为常数函数;若f ′(x )的符号不确定,则f (x )不是单调函数.2.若函数y =f (x )在区间(a ,b )上单调递增,则f ′(x )≥0,且在(a ,b )的任意子区间,等号不恒成立;若函数y =f (x )在区间(a ,b )上单调递减,则f ′(x )≤0,且在(a ,b )的任意子区间,等号不恒成立.[自测练习]1.函数f (x )=x +eln x 的单调递增区间为( ) A .(0,+∞)B .(-∞,0)C .(-∞,0)和(0,+∞)D .R解析:函数定义域为(0,+∞),f ′(x )=1+ex >0,故单调增区间是(0,+∞).答案:A2.若函数f (x )=x 3+x 2+mx +1是R 上的单调增函数,则m 的取值范围是________. 解析:∵f (x )=x 3+x 2+mx +1, ∴f ′(x )=3x 2+2x +m .又∵f (x )在R 上是单调增函数,∴f ′(x )≥0恒成立,∴Δ=4-12m ≤0,即m ≥13.答案:⎣⎡⎭⎫13,+∞ 知识点二 利用导数研究函数的极值 1.函数的极大值在包含x 0的一个区间(a ,b )内,函数y =f (x )在任何一点的函数值都小于x 0点的函数值,称点x 0为函数y =f (x )的极大值点,其函数值f (x 0)为函数的极大值.2.函数的极小值在包含x 0的一个区间(a ,b )内,函数y =f (x )在任何一点的函数值都大于x 0点的函数值,称点x 0为函数y =f (x )的极小值点,其函数值f (x 0)为函数的极小值.极大值与极小值统称为极值,极大值点与极小值点统称为极值点.易误提醒 f ′(x 0)=0是x 0为f (x )的极值点的非充分非必要条件.例如,f (x )=x 3,f ′(0)=0,但x =0不是极值点;又如f (x )=|x |,x =0是它的极小值点,但f ′(0)不存在.[自测练习]3.函数f (x )的定义域为开区间(a ,b ),导函数f ′(x )在(a ,b )内的图象如图所示,则函数f (x )在开区间(a ,b )内有极小值点( )A .1个B .2个C .3个D .4个解析:导函数f ′(x )的图象与x 轴的交点中,左侧图象在x 轴下方,右侧图象在x 轴上方的只有一个,故选A.答案:A4.若函数f (x )=x 3+ax 2+3x -9在x =-3时取得极值,则a 等于( ) A .2 B .3 C .4D .5解析:f ′(x )=3x 2+2ax +3,由题意知f ′(-3)=0,即3×(-3)2+2×(-3)a +3=0,解得a =5.答案:D考点一 利用导数研究函数的单调性|(2015·高考全国卷Ⅱ)已知函数f (x )=ln x +a (1-x ). (1)讨论f (x )的单调性;(2)当f (x )有最大值,且最大值大于2a -2时,求a 的取值范围. [解] (1)f (x )的定义域为(0,+∞),f ′(x )=1x -a .若a ≤0,则f ′(x )>0, 所以f (x )在(0,+∞)单调递增. 若a >0,则当x ∈⎝⎛⎭⎫0,1a 时,f ′(x )>0; 当x ∈⎝⎛⎭⎫1a ,+∞时,f ′(x )<0. 所以f (x )在⎝⎛⎭⎫0,1a 单调递增, 在⎝⎛⎭⎫1a ,+∞单调递减.(2)由(1)知,当a ≤0时,f (x )在(0,+∞)无最大值;当a >0时,f (x )在x =1a 处取得最大值,最大值为f ⎝⎛⎭⎫1a =ln 1a +a ⎝⎛⎭⎫1-1a =-ln a +a -1. 因此f ⎝⎛⎭⎫1a >2a -2等价于ln a +a -1<0.令g (a )=ln a +a -1,则g (a )在(0,+∞)单调递增,g (1)=0. 于是,当0<a <1时,g (a )<0;当a >1时,g (a )>0. 因此,a 的取值范围是(0,1).利用导数研究函数的单调性应注意两点(1)在区间内f ′(x )>0(f ′(x )<0)是函数f (x )在此区间上为增(减)函数的充分不必要条件. (2)可导函数f (x )在(a ,b )内是增(减)函数的充要条件是:∀x ∈(a ,b ),都有f ′(x )≥0(f ′(x )≤0),且f ′(x )在(a ,b )的任何子区间内都不恒为零.1.已知函数f (x )=m ln x -12x 2(m ∈R ),求函数f (x )的单调区间.解:函数f (x )=m ln x -12x 2的定义域是(0,+∞).f ′(x )=mx -x =m -x 2x .当m ≤0时,f ′(x )≤-x 2x=-x <0,函数f (x )=m ln x -12x 2在(0,+∞)上为减函数.当m >0时,令f ′(x )=0,得:x =m 或-m (舍去). 当x ∈(0,m )时,f ′(x )>0, ∴f (x )在(0,m )上是增函数. 当x ∈(m ,+∞)时,f ′(x )<0, ∴f (x )在(m ,+∞)上是减函数.综上所述,当m ≤0时,f (x )的单调递减区间为(0,+∞),当m >0时,f (x )的单调递增区间为(0,m ),单调递减区间为(m ,+∞).考点二 已知单调性求参数范围|(2015·福州模拟)已知函数f (x )=e x 2-1e x -ax (a ∈R ).(1)当a =32时,求函数f (x )的单调区间;(2)若函数f (x )在[-1,1]上为单调函数,求实数a 的取值范围. [解] (1)当a =32时,f (x )=e x 2-1e x -32x ,f ′(x )=12e x [(e x )2-3e x +2]=12e x (e x -1)(e x -2),令f ′(x )=0,得e x =1或e x =2,即x =0或x =ln 2; 令f ′(x )>0,得x <0或x >ln 2; 令f ′(x )<0,则0<x <ln 2.∴f (x )在(-∞,0],[ln 2,+∞)上单调递增,在(0,ln 2)上单调递减. (2)f ′(x )=e x 2+1e x -a ,令e x =t ,由于x ∈[-1,1],∴t ∈⎣⎡⎦⎤1e ,e .令h (t )=t 2+1t ⎝⎛⎭⎫t ∈⎣⎡⎦⎤1e ,e , h ′(t )=12-1t 2=t 2-22t2,∴当t ∈⎣⎡⎭⎫1e ,2时,h ′(t )<0,函数h (t )为单调减函数; 当t ∈(2,e]时,h ′(t )>0,函数h (t )为单调增函数. 故h (t )在⎣⎡⎦⎤1e ,e 上的极小值点为t = 2. 又h (e)=e 2+1e <h ⎝⎛⎭⎫1e =12e +e ,∴2≤h (t )≤e +12e.∵函数f (x )在[-1,1]上为单调函数,若函数在[-1,1]上单调递增,则a ≤t 2+1t 对t ∈⎣⎡⎦⎤1e ,e 恒成立,所以a ≤2;若函数f (x )在[-1,1]上单调递减,则a ≥t 2+1t 对t ∈⎣⎡⎦⎤1e ,e 恒成立,所以a ≥e +12e,综上可得a ≤ 2或a ≥e +12e.已知函数单调性,求参数范围的两个方法(1)利用集合间的包含关系处理:y =f (x )在(a ,b )上单调,则区间(a ,b )是相应单调区间的子集.(2)转化为不等式的恒成立问题:即“若函数单调递增,则f ′(x )≥0;若函数单调递减,则f ′(x )≤0”来求解.提醒:f (x )为增函数的充要条件是对任意的x ∈(a ,b ),都有f ′(x )≥0且在(a ,b )内的任一非空子区间上f ′(x )≠0.应注意此时式子中的等号不能省略,否则漏解.2.已知函数f (x )=e x -ax (a ∈R ,e 为自然对数的底数). (1)讨论函数f (x )的单调性;(2)若a =1,函数g (x )=(x -m )f (x )-e x +x 2+x 在(2,+∞)上为增函数,求实数m 的取值范围.解:(1)函数f (x )的定义域为R ,f ′(x )=e x -a . 当a ≤0时,f ′(x )>0,∴f (x )在R 上为增函数; 当a >0时,由f ′(x )=0得x =ln a ,则当x ∈(-∞,ln a )时,f ′(x )<0,∴函数f (x )在(-∞,ln a )上为减函数, 当x ∈(ln a ,+∞)时,f ′(x )>0, ∴函数f (x )在(ln a ,+∞)上为增函数.(2)当a =1时,g (x )=(x -m )(e x -x )-e x +x 2+x , ∵g (x )在(2,+∞)上为增函数,∴g ′(x )=x e x -m e x +m +1≥0在(2,+∞)上恒成立, 即m ≤x e x +1e x -1在(2,+∞)上恒成立,令h (x )=x e x +1e x -1,x ∈(2,+∞),h ′(x )=(e x )2-x e x -2e x (e x -1)2=e x (e x -x -2)(e x -1)2. 令L (x )=e x -x -2,L ′(x )=e x -1>0在(2,+∞)上恒成立, 即L (x )=e x -x -2在(2,+∞)上为增函数, 即L (x )>L (2)=e 2-4>0,∴h ′(x )>0, 即h (x )=x e x +1e x -1在(2,+∞)上为增函数,∴h (x )>h (2)=2e 2+1e 2-1,∴m ≤2e 2+1e 2-1.考点三 利用导数研究极值|设函数f (x )=x 2-ax +b .讨论函数f (sin x )在⎝⎛⎭⎫-π2,π2内的单调性并判断有无极值,有极值时求出极值. [解] f (sin x )=sin 2x -a sin x +b =sin x (sin x -a )+b ,-π2<x <π2.[f (sin x )]′=(2sin x -a )cos x ,-π2<x <π2.因为-π2<x <π2,所以cos x >0,-2<2sin x <2.①a ≤-2,b ∈R 时,函数f (sin x )单调递增,无极值. ②a ≥2,b ∈R 时,函数f (sin x )单调递减,无极值.③对于-2<a <2,在⎝⎛⎭⎫-π2,π2内存在唯一的x 0,使得2sin x 0=a .-π2<x ≤x 0时, 函数f (sin x )单调递减;x 0≤x <π2时,函数f (sin x )单调递增.因此,-2<a <2,b ∈R 时,函数f (sin x )在x 0处有极小值 f (sin x 0)=f ⎝⎛⎭⎫a 2=b -a24.3.(2015·太原一模)已知函数f (x )=(x 2-ax +a )e x -x 2,a ∈R . (1)若函数f (x )在(0,+∞)上单调递增,求a 的取值范围; (2)若函数f (x )在x =0处取得极小值,求a 的取值范围. 解:(1)由题意得f ′(x )=x [(x +2-a )e x -2]= x e x ⎝⎛⎭⎫x +2-2e x -a ,x ∈R , ∵f (x )在(0,+∞)上单调递增, ∴f ′(x )≥0在(0,+∞)上恒成立, ∴x +2-2ex ≥a 在(0,+∞)上恒成立,又函数g (x )=x +2-2e x 在(0,+∞)上单调递增,∴a ≤g (0)=0,∴a 的取值范围是(-∞,0].(2)由(1)得f ′(x )=x e x ⎝⎛⎭⎫x +2-2e x -a ,x ∈R , 令f ′(x )=0,则x =0或x +2-2e x -a =0,即x =0或g (x )=a ,∵g (x )=x +2-2e x 在(-∞,+∞)上单调递增,其值域为R ,∴存在唯一x 0∈R ,使得g (x 0)=a ,①若x 0>0,当x ∈(-∞,0)时,g (x )<a ,f ′(x )>0;当x ∈(0,x 0)时,g (x )<a ,f ′(x )<0,∴f (x )在x =0处取得极大值,这与题设矛盾.②若x 0=0,当x ∈(-∞,0)时,g (x )<a ,f ′(x )>0;当x ∈(0,+∞)时,g (x )>a ,f ′(x )>0,∴f (x )在x =0处不取极值,这与题设矛盾.③若x 0<0,当x ∈(x 0,0)时,g (x )>a ,f ′(x )<0;当x ∈(0,+∞)时,g (x )>a ,f ′(x )>0,∴f (x )在x =0处取得极小值.综上所述,x 0<0,∴a =g (x 0)<g (0)=0, ∴a 的取值范围是(-∞,0). 8.分类讨论思想在导数中的应用【典例】 (2015·贵阳期末)已知函数f (x )=ax -ae x (a ∈R ,a ≠0).(1)当a =-1时,求函数f (x )的极值;(2)若函数F (x )=f (x )+1没有零点,求实数a 的取值范围.[思维点拨] (1)求f ′(x )后判断f (x )在(-∞,+∞)上的单调性,可求极值. (2)分类讨论f (x )在(-∞,+∞)的单调性,利用极值建立所求参数a 的不等式求解. [解] (1)当a =-1时,f (x )=-x +1e x ,f ′(x )=x -2ex . 由f ′(x )=0,得x =2.当x 变化时,f ′(x ),f (x )的变化情况如下表:所以函数f (x )的极小值为f (2)=-1e2,函数f (x )无极大值.(2)F ′(x )=f ′(x )=a e x -(ax -a )e x e 2x =-a (x -2)e x .①当a <0时,F (x ),F ′(x )的变化情况如下表:若使函数F (x )没有零点,当且仅当F (2)=ae 2+1>0,解得a >-e 2,所以此时-e 2<a <0;②当a >0时,F (x ),F ′(x )的变化情况如下表:因为F (2)>F (1)>0,且F ⎝⎛⎭⎫1-10a =e1-10a -10e1-10a <e -10e1-10a <0, 所以此时函数F (x )总存在零点. (或:当x >2时,F (x )=a (x -1)e x+1>1,当x <2时,令F (x )=a (x -1)e x+1<0,即a (x -1)+e x <0, 由于a (x -1)+e x <a (x -1)+e 2, 令a (x -1)+e 2≤0,得x ≤1-e 2a ,即x ≤1-e 2a时,F (x )<0,即F (x )存在零点)综上所述,所求实数a 的取值范围是(-e 2,0).[思想点评] 分类讨论思想在导数研究函数的应用中运用普遍常见的分类讨论点有: (1)f ′(x )=0是否有根.(2)若f ′(x )=0有根,根是否在定义域内. (3)若f ′(x )=0有两根,两根大小比较问题.A 组 考点能力演练1.(2015·岳阳一模)下列函数中,既是奇函数又存在极值的是( ) A .y =x 3 B .y =ln(-x ) C .y =x e -xD .y =x +2x解析:A 、B 为单调函数,不存在极值,C 不是奇函数,故选D. 答案:D2.(2016·厦门质检)函数y =12x 2-ln x 的单调递减区间为( )A .(0,1)B .(0,1]C .(1,+∞)D .(0,2)解析:由题意知,函数的定义域为(0,+∞),又由y ′=x -1x ≤0,解得0<x ≤1,所以函数的单调递减区间为(0,1].答案:B3.已知函数f (x )=x 3+bx 2+cx 的图象如图所示,则x 21+x 22=( )A.23B.43C.83D.163解析:由图象可知f (x )的图象过点(1,0)与(2,0),x 1,x 2是函数f (x )的极值点,因此1+b +c =0,8+4b +2c =0,解得b =-3,c =2,所以f (x )=x 3-3x 2+2x ,所以f ′(x )=3x 2-6x +2.x 1,x 2是方程f ′(x )=3x 2-6x +2=0的两根,因此x 1+x 2=2,x 1·x 2=23,所以x 21+x 22=(x 1+x 2)2-2x 1·x 2=4-43=83,故选C.答案:C4.已知函数f (x )=x ⎝⎛⎭⎫e x -1e x ,若f (x 1)<f (x 2),则( ) A .x 1>x 2 B .x 1+x 2=0C .x 1<x 2D .x 21<x 22解析:因为f (-x )=-x ⎝ ⎛⎭⎪⎫e -x -1e -x =x ⎝⎛⎭⎫e x -1e x =f (x ),所以f (x )为偶函数.由f (x 1)<f (x 2),得f (|x 1|)<f (|x 2|)(*).又f ′(x )=e x-1e x +x ⎝⎛⎭⎫e x +1e x =e 2x(x +1)+x -1ex,当x ≥0时,e 2x (x +1)+x -1≥e 0(0+1)+0-1=0,所以f ′(x )≥0,所以f (x )在[0,+∞)上为增函数,由(*)式得|x 1|<|x 2|,即x 21<x 22,故选D.答案:D5.若函数f (x )=x 3-tx 2+3x 在区间[1,4]上单调递减,则实数t 的取值范围是( ) A.⎝⎛⎦⎤-∞,518 B .(-∞,3] C.⎣⎡⎭⎫518,+∞ D .[3,+∞)解析:f ′(x )=3x 2-2tx +3,由于f (x )在区间[1,4]上单调递减,则有f ′(x )≤0在[1,4]上恒成立,即3x 2-2tx +3≤0,即t ≥32⎝⎛⎭⎫x +1x 在[1,4]上恒成立,因为y =32⎝⎛⎭⎫x +1x 在[1,4]上单调递增,所以t ≥32⎝⎛⎭⎫4+14=518,故选C. 答案:C6.(2016·九江一模)已知函数f (x )=12x 2+2ax -ln x ,若f (x )在区间⎣⎡⎦⎤13,2上是增函数,则实数a 的取值范围为________.解析:由题意知f ′(x )=x +2a -1x ≥0在⎣⎡⎦⎤13,2上恒成立,即2a ≥-x +1x 在⎣⎡⎦⎤13,2上恒成立,∵⎝⎛⎭⎫-x +1x max =83,∴2a ≥83,即a ≥43. 答案:⎣⎡⎭⎫43,+∞7.设x 1,x 2是函数f (x )=x 3-2ax 2+a 2x 的两个极值点,若x 1<2<x 2,则实数a 的取值范围是________.解析:本题考查利用导数研究函数的极值及不等式的解法.由f ′(x )=3x 2-4ax +a 2=0得x 1=a3,x 2=a .又∵x 1<2<x 2,∴⎩⎪⎨⎪⎧a >2,a 3<2,∴2<a <6.答案:(2,6)8.(2015·兰州一模)若函数f (x )=x 2-e x -ax 在R 上存在单调递增区间,则实数a 的取值范围是________.解析:∵f (x )=x 2-e x -ax ,∴f ′(x )=2x -e x -a , ∵函数f (x )=x 2-e x -ax 在R 上存在单调递增区间,∴f ′(x )=2x -e x -a ≥0,即a ≤2x -e x 有解,设g (x )=2x -e x ,则g ′(x )=2-e x ,令g ′(x )=0,解得x =ln 2,则当x <ln 2时,g ′(x )>0,g (x )单调递增,当x >ln 2时,g ′(x )<0,g (x )单调递减,∴当x =ln 2时,g (x )取得最大值,且g (x )max =g (ln 2)=2ln 2-2,∴a ≤2ln 2-2.答案:(-∞,2ln 2-2)9.已知函数f (x )=x -2ln x -ax +1,g (x )=e x (2ln x -x ).(1)若函数f (x )在定义域上是增函数,求a 的取值范围; (2)求g (x )的最大值.解:(1)由题意得x >0,f ′(x )=1-2x +ax2.由函数f (x )在定义域上是增函数,得f ′(x )≥0,即a ≥2x -x 2=-(x -1)2+1(x >0). 因为-(x -1)2+1≤1(当x =1时,取等号), 所以a 的取值范围是[1,+∞). (2)g ′(x )=e x ⎝⎛⎭⎫2x -1+2ln x -x , 由(1)得a =2时,f (x )=x -2ln x -2x +1,且f (x )在定义域上是增函数,又f (1)=0,所以,当x ∈(0,1)时,f (x )<0,当x ∈(1,+∞)时,f (x )>0. 所以,当x ∈(0,1)时,g ′(x )>0,当x ∈(1,+∞)时,g ′(x )<0. 故当x =1时,g (x )取得最大值-e.10.(2015·安徽六校联考)设函数f (x )=(x -1)e x -kx 2(其中k ∈R ). (1)当k =1时,求函数f (x )的单调区间和极值;(2)当k ∈[0,+∞)时,证明函数f (x )在R 上有且只有一个零点.解:(1)当k =1时,f (x )=(x -1)e x -x 2,f ′(x )=e x +(x -1)e x -2x =x e x -2x =x (e x -2), 令f ′(x )=0,得x 1=0,x 2=ln 2. 当x 变化时,f ′(x ),f (x )的变化如下表:∞).f (x )的极大值为f (0)=-1,极小值为f (ln 2)= -(ln 2)2+2ln 2-2.(2)f ′(x )=e x +(x -1)e x -2kx =x e x -2kx =x (e x -2k ), 当x <1时,f (x )<0,所以f (x )在(-∞,1)上无零点. 故只需证明函数f (x )在[1,+∞)上有且只有一个零点.①若k ∈⎣⎡⎦⎤0,e2,则当x ≥1时,f ′(x )≥0,f (x )在[1,+∞)上单调递增. ∵f (1)=-k ≤0,f (2)=e 2-4k ≥e 2-2e>0, ∴f (x )在[1,+∞)上有且只有一个零点.②若k ∈⎝⎛⎭⎫e2,+∞,则f (x )在[1,ln 2k ]上单调递减,在[ln 2k ,+∞)上单调递增. f (1)=-k <0,f (k +1)=k e k +1-k (k +1)2=k [e k +1-(k +1)2], 令g (t )=e t -t 2,t =k +1>2,则g ′(t )=e t -2t , g ″(t )=e t -2,∵t >2,∴g ″(t )>0,g ′(t )在(2,+∞)上单调递增. ∴g ′(t )>g ′(2)=e 2-4>0,∴g (t )在(2,+∞)上单调递增. ∴g (t )>g (2)=e 2-4>0. ∴f (k +1)>0.∴f (x )在[1,+∞)上有且只有一个零点.综上,当k ∈[0,+∞)时,f (x )在R 上有且只有一个零点.B 组 高考题型专练1.(2015·高考重庆卷)已知函数f (x )=ax 3+x 2(a ∈R )在x =-43处取得极值.(1)确定a 的值;(2)若g (x )=f (x )e x ,讨论g (x )的单调性. 解:(1)对f (x )求导得f ′(x )=3ax 2+2x , 因为f (x )在x =-43处取得极值,所以f ′⎝⎛⎭⎫-43=0, 所以3a ·169+2·⎝⎛⎭⎫-43=16a 3-83=0,解得a =12. (2)由(1)得g (x )=⎝⎛⎭⎫12x 3+x 2e x, 故g ′(x )=⎝⎛⎭⎫32x 2+2x e x +⎝⎛⎭⎫12x 3+x 2e x =⎝⎛⎭⎫12x 3+52x 2+2x e x=12x (x +1)(x +4)e x . 令g ′(x )=0,解得x =0,x =-1或x =-4. 当x <-4时,g ′(x )<0,故g (x )为减函数; 当-4<x <-1时,g ′(x )>0,故g (x )为增函数; 当-1<x <0时,g ′(x )<0,故g (x )为减函数; 当x >0时,g ′(x )>0,故g (x )为增函数.综上知,g (x )在(-∞,-4)和(-1,0)内为减函数,在(-4,-1)和(0,+∞)内为增函数. 2.(2015·高考安徽卷)已知函数f (x )=ax (x +r )2(a >0,r >0).(1)求f (x )的定义域,并讨论f (x )的单调性; (2)若ar=400,求f (x )在(0,+∞)内的极值.解:(1)由题意知x ≠-r ,所求的定义域为(-∞,-r )∪(-r ,+∞). f (x )=ax (x +r )2=axx 2+2rx +r 2,f ′(x )=a (x 2+2rx +r 2)-ax (2x +2r )(x 2+2rx +r 2)2=a (r -x )(x +r )(x +r )4,所以当x <-r 或x >r 时,f ′(x )<0,当-r <x <r 时,f ′(x )>0,因此,f (x )的单调递减区间为(-∞,-r ),(r ,+∞);f (x )的单调递增区间为(-r ,r ). (2)由(1)的解答可知f ′(r )=0,f (x )在(0,r )上单调递增,在(r ,+∞)上单调递减. 因此,x =r 是f (x )的极大值点,所以f (x )在(0,+∞)上的极大值为f (r )=ar (2r )2=a 4r =4004=100.3.(2016·宁夏银川一中联考)函数f (x )=x 2-2ln x ,h (x )=x 2-x +a . (1)求函数f (x )的极值;(2)设函数k (x )=f (x )-h (x ),若函数k (x )在[1,3]上恰有两个不同零点,求实数a 的取值范围.解:(1)∵f ′(x )=2x -2x,令f ′(x )=0,∵x >0,∴x =1.x (0,1) 1 (1,+∞)f ′(x ) - 0 + f (x )单调递减1单调递增∴f (x )的极小值为1,无极大值.(2)∵k (x )=f (x )-h (x )=-2ln x +x -a ,k ′(x )=-2x +1.若k ′(x )=0,则x =2.当x ∈[1,2)时,k ′(x )<0;当x ∈(2,3]时,k ′(x )>0. 故k (x )在x ∈[1,2)上单调递减,在x ∈(2,3]上单调递增.∴{ k (1)≥0,k (2)<0,k (3)≥0,∴{a ≤1,a >2-2ln 2,a ≤3-2ln 3, ∴实数a 的取值范围是(2-2ln 2,3-2ln 3].。
人教新课标A版 高中数学必修4 第一章三角函数 1.5 函数y=sin(wx+φ) 同步测试A卷
人教新课标A版高中数学必修4 第一章三角函数 1.5 函数y=sin(wx+φ) 同步测试A卷姓名:________ 班级:________ 成绩:________一、单选题 (共15题;共30分)1. (2分) (2018高三上·黑龙江期中) 函数(其中)的图象如图所示,为了得到的图象,则只要将的图象()A . 向右平移个单位长度B . 向右平移个单位长度C . 向左平移个单位长度D . 向左平移个单位长度2. (2分)把函数的图象向右平移个单位,再把所得图象上各点的横坐标伸长到原来的2倍,则所得图象对应的函数解析式是()A .B .C .D .3. (2分) (2019高三上·临沂期中) 函数(其中)的图象如图所示,为了得到的图象,只需将图象()A . 向右平移个单位长度B . 向左平移个单位长度C . 向右平移个单位长度D . 向左平移个单位长度4. (2分)用“五点法”作y=2sin2x的图象是,首先描出的五个点的横坐标是()A . 0,,π,,2πB . 0,,,,πC . 0,π,2π,3π,4πD . 0,,,,5. (2分) (2020高三上·兴宁期末) 由的图象向左平移个单位,再把所得图象上所有点的横坐标伸长到原来的2倍后,所得图象对应的函数解析式为()A .B .C .D .6. (2分)函数在一个周期内的图象如图所示,则此函数的解析式是()A .B .C .D .7. (2分)要得到函数y=cos(2x+1)的图象,只需将函数y=cos2x的图象()A . 向左平移1个单位B . 向右平移1个单位C . 向左平移个单位D . 向右平移个单位8. (2分)已知函数f(x)=cos2x与g(x)=cosωx(ω>0)的图象在同一直角坐标系中对称轴相同,则ω的值为()A . 4B . 2C . 1D .9. (2分) (2017高一下·禅城期中) 三角函数y=sin(﹣2x)+cos2x的振幅和最小正周期分别为()A . ,B . ,πC . ,D . ,π10. (2分) (2016高一下·岳阳期中) 若函数y=sin(ωx+φ)(ω>0)的部分图象如图,则ω=()A . 5B . 4C . 3D . 211. (2分)用“五点法”作函数y=cos2x,x∈R的图象时,首先应描出的五个点的横坐标是()A . 0,,π,,2πB . 0,,,,πC . 0,π,2π,3π,4πD . 0,,,,12. (2分) (2016高三上·红桥期中) 函数f(x)=2sin(ωx+φ)(ω>0,﹣<φ<)的部分图象如图所示,则ω,φ的值分别是()A . 2,﹣B . 2,﹣C . 4,﹣D . 4,13. (2分)函数在区间上单调递减,且函数值从1减小到-1,那么此函数图象与y轴交点的纵坐标为()A .B .C .D .14. (2分)(2017·合肥模拟) 已知函数f(x)=Asin(ωx+ )﹣1(A>0,ω>0)的部分图象如图,则对于区间[0,π]内的任意实数x1 , x2 , f(x1)﹣f(x2)的最大值为()A . 2B . 3C . 4D . 615. (2分)(2020·海南模拟) 将函数的图象向左平移个单位长度后得到曲线,再将上所有点的横坐标伸长到原来的倍得到曲线,则的解析式为()A .B .C .D .二、填空题 (共5题;共5分)16. (1分)已知ω>0,0<φ<π,直线x=和x=是函数f(x)=sin(ωx+φ)图象的两条相邻的对称轴,则φ=________17. (1分)(2016·杭州模拟) 函数y=sin(ωx+φ)(x∈R,ω>0,0≤φ<2π)的部分图象如图,则函数表达式为________;若将该函数向左平移1个单位,再保持纵坐标不变,横坐标缩短为原来的倍得到函数g (x)=________.18. (1分) (2015高三上·河西期中) 已知角φ的终边经过点P(1,﹣2),函数f(x)=sin(ωx+φ)(ω>0)图象的相邻两条对称轴之间的距离等于,则 =________.19. (1分)(2016·新课标Ⅲ卷理) 函数y=sinx﹣ cosx的图象可由函数y=sinx+ cosx的图象至少向右平移________个单位长度得到.20. (1分) (2017高一上·安庆期末) 已知函数f(x)=sin(ωx+φ+ )(ω>0,0<φ≤ )的部分图象如图所示,则φ的值为________.三、解答题 (共5题;共25分)21. (5分) (2019高一上·郁南月考) 已知曲线y=Asin(ωx+φ)(A>0,ω>0)上的一个最高点的坐标为(,)此点与相邻最低点之间的曲线与x轴交于点(,0)且φ∈(- ,)(1)求曲线的函数表达式;(2)用“五点法”画出函数在[0,2 ]上的图象.22. (5分) (2020高一上·武汉期末) 已知函数 .(1)用五点法画出该函数在区间的简图;(2)结合所画图象,指出函数在上的单调区间.23. (5分)已知函数y=sin(2x+ )+1.(1)用“五点法”画出函数的草图;(2)函数图象可由y=sinx的图象怎样变换得到?24. (5分) (2019高一下·蛟河月考) 函数的一段图像过点,如图所示.(1)求在区间上的最值;(2)若 ,求的值.25. (5分)(2017·黑龙江模拟) 某同学将“五点法”画函数f(x)=Asin(wx+φ)(w>0,|φ|<)在某一个时期内的图象时,列表并填入部分数据,如下表:wx+φ0π2πxAsin(wx+φ)05﹣50(1)请将上述数据补充完整,填写在答题卡上相应位置,并直接写出函数f(x)的解析式;(2)将y=f(x)图象上所有点向左平移个单位长度,得到y=g(x)图象,求y=g(x)的图象离原点O 最近的对称中心.参考答案一、单选题 (共15题;共30分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、15-1、二、填空题 (共5题;共5分)16-1、17-1、18-1、19-1、20-1、三、解答题 (共5题;共25分)21-1、21-2、22-1、22-2、23-1、23-2、24-1、24-2、25-1、25-2、。
高三数学上学期模块试卷(a卷)(含解析)-人教版高三全册数学试题
2014-2015学年某某省某某市龙河中学高三(上)模块数学试卷(A卷)一、选择题(本大题共12小题,每小题5分,共60分)1.函数f(x)=+的定义域是()A.(﹣∞,﹣1) B.(1,+∞) C.(﹣1,1)∪(1,+∞) D.(﹣∞,+∞)2.下列各组函数中,表示同一函数的是()A. y=x,y= B. y=lgx2,y=2lgxC. y=|x|,y=()2 D. y=1,y=x03.已知集合M={x|y=ln(1﹣x)},集合N={(x,y)|y=e x,x∈R(e为自然对数的底数)},则M∩N=()A. {x|x<1} B. {x|x>1} C. {x|0<x<1} D.∅4.设,,,则()A. a<b<c B. c<b<a C. c<a<b D. b<a<c5.已知偶函数f(x)在(﹣∞,﹣2]上是增函数,则下列关系式中成立的是()A. B.C. D.6.函数f(x)=log(﹣3x+2)的单调递增区间为()A.(﹣∞,1) B.(2,+∞) C.(﹣∞,) D.(,+∞)7.f(x)为奇函数,且在(﹣∞,0)上为增函数,g(x)为偶函数且在(﹣∞,0)上为增函数则在(0,+∞)上()A.两个都是增函数 B.两个都是减函数C. f(x)为增函数g(x)为减函数 D. f(x)为减函数g(x)为增函数8.已知函数f(x)=a x在(O,2)内的值域是(a2,1),则函数y=f(x)的图象是()A. B. C. D.9.设x>y>1,0<a<1,则下列关系正确的是()A. x﹣a>y﹣a B. ax<ay C. a x<a y D. log a x>log a y10.函数y=x2与函数y=|lgx|图象的交点个数为()A. 0 B. 1 C. 2 D. 311.已知函数f(x)=x2﹣2ax+1对任意x∈(0,1]恒有f(x)≥0成立,则实数a的取值X围是()A. [1,+∞) B. [﹣,+∞) C.(﹣∞,1] D.(﹣∞,﹣]12.函数y=ax2+bx与y=(ab≠0,|a|≠|b|)在同一直角坐标系中的图象可能是()A. B. C. D.二、填空题(本大题共4小题,每小题5分,共20分)13.幂函数的图象过点(2,),则它的解析式是.14.A={x|ax2﹣3x+2=0}至多有一个元素,则a的取值X围是.15.若定义在区间(1,2)内的函数f(x)=log3a(x﹣1)满足f(x)>0,则a的取值X 围是.16.对于函数f(x)=x﹣2﹣lnx,我们知道f(3)=1﹣ln3<0,f(4)=2﹣ln4>0,用二分法求函数f(x)在区间(3,4)内的零点的近似值,我们先求出函数值f(3.5),若已知ln3.5=1.25,则接下来我们要求的函数值是f ().三、解答题(本大题共6小题,满分70分)17.已知:函数f(x)=+lg(3x﹣9)的定义域为A,集合B={x|x﹣a<0,a∈R},(1)求:集合A;(2)求:A∩B≠∅,求a的取值X围.18.已知函数f(x)=log a(ax﹣)(a>0,a≠1为常数).(1)求函数f(x)的定义域;(2)若a=2,x∈[1,9],求函数f(x)的值域.19.某工厂在政府的帮扶下,准备转型生产一种特殊机器,生产需要投入固定成本500万元,生产与销售均以百台计数,且每生产100台,还需增加可变成本1000万元.若市场对该产品的年需求量为500台,每生产m百台的实际销售收入近似满足函数R(m)=5000m﹣500m2(0≤m≤5,m∈N)(I)试写出第一年的销售利润y(万元)关于年产量x单位:百台,x≤5,x∈N*)的函数关系式;(说明:销售利润=实际销售收人一成本)(II )因技术等原因,第一年的年生产量不能超过300台,若第一年人员的年支出费用u (x)(万元)与年产量x(百台)的关系满足u(x)=500x+500(x≤3,x∈N*),问年产量x 为多少百台时,工厂所得纯利润最大?20.已知函数f(x)=a﹣(a∈R).(1)判断函数f(x)的奇偶性;(2)判断并证明函数f(x)在(0,+∞)上的单调性.21.已知函数f(x)=2a•4x﹣2x﹣1.(1)当a=1时,求函数f(x)的零点;(2)若f(x)有零点,求a的取值X围.22.已知定义域为R的函数f(x)满足f(f(x)﹣x2+x)=f(x)﹣x2+x.(I)若f(2)=3,求f(1);又若f(0)=a,求f(a);(Ⅱ)设有且仅有一个实数x0,使得f(x0)=x0,求函数f(x)的解析表达式.2014-2015学年某某省某某市龙河中学高三(上)模块数学试卷(A卷)参考答案与试题解析一、选择题(本大题共12小题,每小题5分,共60分)1.函数f(x)=+的定义域是()A.(﹣∞,﹣1) B.(1,+∞) C.(﹣1,1)∪(1,+∞) D.(﹣∞,+∞)考点:函数的定义域及其求法.专题:函数的性质及应用.分析:根据二次根式的性质,以及分母不为0,得不等式组,解出即可.解答:解:由,得x>﹣1且x≠1,故选C.点评:本题考查了二次根式的性质,求函数的定义域问题,是一道基础题.2.下列各组函数中,表示同一函数的是()A. y=x,y= B. y=lgx2,y=2lgxC. y=|x|,y=()2 D. y=1,y=x0考点:判断两个函数是否为同一函数.专题:证明题.分析:考查各个选项中的两个函数是否具有相同的定义域、值域、对应关系,否则,便不是同一个函数.解答:解:A中的两个函数具有相同的定义域、值域、对应关系,故是同一个函数.B中的两个函数定义域不同,故不是同一个函数.C中的两个函数定义域不同,故不是同一个函数.D中的两个函数定义域不同,故不是同一个函数.综上,只有A中的两个函数是同一个函数.故选 A.点评:本题考查函数的三要素,当且仅当两个函数具有相同的定义域、值域、对应关系时,才是同一个函数.3.已知集合M={x|y=ln(1﹣x)},集合N={(x,y)|y=e x,x∈R(e为自然对数的底数)},则M∩N=()A. {x|x<1} B. {x|x>1} C. {x|0<x<1} D.∅考点:对数函数的定义域;交集及其运算.专题:计算题.分析:由集合M={x|y=ln(1﹣x)}是数集,集合N={(x,y)|y=e x,x∈R}是点集,知M ∩N=Φ.解答:解:∵集合M={x|y=ln(1﹣x)}={x|1﹣x>0}={x|x<1}是数集,集合N={(x,y)|y=e x,x∈R}是点集,∴M∩N=Φ,故选D.点评:本题考查集合的交集的求法,解题时要注意对数函数的定义域的应用.4.设,,,则()A. a<b<c B. c<b<a C. c<a<b D. b<a<c考点:不等关系与不等式;指数函数的单调性与特殊点.专题:不等式的解法及应用.分析:借助于中间量0,1,即可得出结论.解答:解:∵<=0,<=1且b>0,=3,∴a<b<c,故选A.点评:本题考查大小比较,考查指数函数、对数函数的单调性,属于基础题.5.已知偶函数f(x)在(﹣∞,﹣2]上是增函数,则下列关系式中成立的是()A. B.C. D.考点:奇偶性与单调性的综合;函数单调性的性质.专题:函数的性质及应用.分析:由条件可得函数在[2,+∞)上是减函数,故自变量的绝对值越小,对应的函数值越大.再根据|4|>|﹣|>|﹣3|,可得f(﹣3)、f(﹣)、f(4)的大小关系.解答:解:由于偶函数f(x)在(﹣∞,﹣2]上是增函数,故函数在[2,+∞)上是减函数,故自变量的绝对值越小,对应的函数值越大.再根据|4|>|﹣|>|﹣3|,故有f(﹣3)<f(﹣)<f(4),故选:B.点评:本题主要考查函数的单调性和奇偶性的应用,属于中档题.6.函数f(x)=log(﹣3x+2)的单调递增区间为()A.(﹣∞,1) B.(2,+∞) C.(﹣∞,) D.(,+∞)考点:对数函数的单调性与特殊点.专题:函数的性质及应用.分析:先确定函数的定义域,进而根据一次函数和对数函数的性质,分别判断内,外函数的单调性,进而根据复合函数“同增异减”的原则,得到答案.解答:解:∵函数的定义域为﹣3x+2>0,∴x<.令u=﹣3x+2,∵f(u)=log u是减函数,要求f(x)的单调增区间,只需求u=﹣3x+2的递减区间,即(﹣∞,).故选:C点评:本题主要考查了对数函数的单调区间,复合函数的单调性,其中复合函数单调性“同增异减”的原则,是解答本题的关键,解答时易忽略函数的定义域7.f(x)为奇函数,且在(﹣∞,0)上为增函数,g(x)为偶函数且在(﹣∞,0)上为增函数则在(0,+∞)上()A.两个都是增函数 B.两个都是减函数C. f(x)为增函数g(x)为减函数 D. f(x)为减函数g(x)为增函数考点:函数奇偶性的性质.专题:函数的性质及应用.分析:运用奇函数,偶函数的定义,单调性的概念,判断.解答:解:∵f(x)为奇函数,g(x)为偶函数,∴f(﹣x)=﹣f(x),g(﹣x)=g(x),设0<x1<x2,﹣x2<﹣x1<0∵f(x)在(﹣∞,0)上为增函数,g(x)在(﹣∞,0)上为增函数,f(﹣x2)﹣f(﹣x1)<0,﹣f(x2)+f(x1)<0,f(x1)<f(x2),g(﹣x2)﹣g(﹣x1)<0,g(x2)<g(x1)∴f(x)为增函数,g(x)为减函数故选:C点评:本题考查了函数的奇偶性的定义,单调性的定义,属于容易题.8.已知函数f(x)=a x在(O,2)内的值域是(a2,1),则函数y=f(x)的图象是()A. B. C. D.考点:函数的图象.专题:函数的性质及应用.分析:利用函数的值域确定a的取值X围,进而确定指数函数的单调性.解答:解:因为f(0)=1,f(2)=a2,所以由函数f(x)=a x在(O,2)内的值域是(a2,1),得函数单调递减,即0<a<1,所以函数对应的图象为A.故选A.点评:本题主要考查指数函数的图象和性质,利用函数的值域确定函数的单调性是解决本题的关键.9.设x>y>1,0<a<1,则下列关系正确的是()A. x﹣a>y﹣a B. ax<ay C. a x<a y D. log a x>log a y考点:指数函数单调性的应用;对数函数的单调性与特殊点.专题:转化思想.分析:由y=a x(0<a<1)减函数,结合x>y>1,根据减函数的定义可得结论.解答:解:∵y=a x(0<a<1)减函数又∵x>y>1∴a x<a y故选C点评:本题主要考查指数函数,幂函数和对数函数的图象和性质,主涉及了利用其单调性来比较数的大小,还考查了转化思想.10.函数y=x2与函数y=|lgx|图象的交点个数为()A. 0 B. 1 C. 2 D. 3考点:对数函数的图像与性质.专题:函数的性质及应用.分析:在同一坐标系内画出函数y=x2与y=|lgx|的图象,可以得出图象交点的个数.解答:解:在同一坐标系内画出函数y=x2与y=|lgx|的图象,如图所示:由图象知,函数y=x2与y=|lgx|图象在(0,1)内有一个交点,在[1,+∞)上无交点.故选:B.点评:本题考查了一元二次函数与对数函数的图象与性质的问题,是容易题.11.已知函数f(x)=x2﹣2ax+1对任意x∈(0,1]恒有f(x)≥0成立,则实数a的取值X围是()A. [1,+∞) B. [﹣,+∞) C.(﹣∞,1] D.(﹣∞,﹣]考点:二次函数的性质.专题:计算题;函数的性质及应用.分析:方法一、讨论判别式小于0,或判别式大于0,区间在对称轴的左边或右边,由单调性考虑最小值不大于0,解出不等式组即可;方法二、运用参数分离,得到2a≤x在x∈(0,1]恒成立,对右边运用基本不等式,求得最小值2,解2a≤2,即可得到.解答:解法一:依题意可得△=4a2﹣4≤0,或或,解得﹣1≤a≤1,或或,即有﹣1≤a≤1,或a<﹣1或a∈∅,故实数a的取值X围是:(﹣∞,1]解法二:f(x)=x2﹣2ax+1对任意x∈(0,1]恒有f(x)≥0成立,即有2a≤x在x∈(0,1]恒成立,由于x≥2,当且仅当x=1取最小值2,则2a≤2,即有a≤1.故选C.点评:本题考查含参二次不等式恒成立问题可运用二次函数的性质和判别式,也可通过参数分离,运用基本不等式求最值,属于中档题.12.函数y=ax2+bx与y=(ab≠0,|a|≠|b|)在同一直角坐标系中的图象可能是()A. B. C. D.考点:二次函数的图象;对数函数的图像与性质.专题:压轴题;数形结合.分析:可采用反证法做题,假设A和B的对数函数图象正确,由二次函数的图象推出矛盾,所以得到A和B错误;同理假设C和D的对数函数图象正确,根据二次函数图象推出矛盾,得到C错误,D正确.解答:解:对于A、B两图,||>1而ax2+bx=0的两根为0和﹣,且两根之和为﹣,由图知0<﹣<1得﹣1<<0,矛盾,对于C、D两图,0<||<1,在C图中两根之和﹣<﹣1,即>1矛盾,C错,D正确.故选:D.点评:考查学生会利用反证法的思想解决实际问题,要求学生掌握二次函数和对数函数的图象和性质.二、填空题(本大题共4小题,每小题5分,共20分)13.幂函数的图象过点(2,),则它的解析式是y=x﹣2.考点:幂函数的概念、解析式、定义域、值域.分析:已知函数为幂函数,求其解析式,假设解析式为y=x m,幂函数图象过点(2,),只需把点代入解析式中,求出m的值即可.解答:解:设幂函数的解析式为y=x m,已知幂函数的图象过点(2,),所以2m=,即m=﹣2,所以它的解析式为y=x﹣2.故答案为y=x﹣2点评:首先明白什么是幂函数,再利用待定系数法求幂函数的解析式,是函数的基本知识.14.A={x|ax2﹣3x+2=0}至多有一个元素,则a的取值X围是a≥或a=0 .考点:元素与集合关系的判断.专题:集合.分析:分别讨论a的取值X围,利用方程根的个数即可得到结论.解答:解:若a=0,则ax2﹣3x+2=0等价为﹣3x+2=0,解得x=,此时A={}满足条件.若a≠0,当判别式△=9﹣8a=0时,即a=时,即集合A有一个元素满足条件.当判别式△=9﹣8a<0时,即a>时,即集合A有0个元素满足条件.综上:a≥或a=0,即a的取值X围是a≥或a=0,故答案为:a≥或a=0.点评:本题主要考查集合元素和集合关系的判断,利用方程根的个数是解决本题的关键.15.若定义在区间(1,2)内的函数f(x)=log3a(x﹣1)满足f(x)>0,则a的取值X 围是(0,).考点:对数函数的单调性与特殊点.专题:计算题;数形结合.分析:由x∈(1,2),先确定x﹣1的X围(0,1),再结合对数函数的图象解决即可.解答:解:因为x∈(1,2),所以x﹣1∈(0,1),由f(x)>0得0<3a<1,所以0<a<故答案为:(0,)点评:本题考查对数函数的图象和对数函数的单调性与特殊点,解答关键是数形结合,属基本题型的考查.16.对于函数f(x)=x﹣2﹣lnx,我们知道f(3)=1﹣ln3<0,f(4)=2﹣ln4>0,用二分法求函数f(x)在区间(3,4)内的零点的近似值,我们先求出函数值f(3.5),若已知ln3.5=1.25,则接下来我们要求的函数值是f ( 3.25 ).考点:二分法求方程的近似解.专题:函数的性质及应用.分析:函数f(x)=x﹣2﹣lnx在区间(3,4)上连续且单调递增,f(3)=1﹣ln3<0,f (4)=2﹣ln4>0,f(3)f(4)<0,由此可得函数的零点所在的初始区间,再计算函数值f(3.5),即可得出接下来我们要求的函数值.解答:解:函数f(x)=x﹣2﹣lnx在区间(3,4)上连续且单调递增,f(3)=1﹣ln3<0,f(4)=2﹣ln4>0,f(3)f(4)<0,故用二分法求函数f(x)=x﹣2﹣lnx的零点时,初始的区间大致可选在(3,4)上.又f(3.5)=3.5﹣2﹣ln3.5=0.25>0,∴f(3)f(3.5)<0,零点区间大致可选在(3,3.5)上,则接下来我们要求的函数值是区间(3,3.5)中点的函数值f ( 3.25).故答案为:3.25.点评:本题主要考查函数的零点的定义,二分法求方程的近似解,判断函数的零点所在的区间的方法,属于基础题.三、解答题(本大题共6小题,满分70分)17.已知:函数f(x)=+lg(3x﹣9)的定义域为A,集合B={x|x﹣a<0,a∈R},(1)求:集合A;(2)求:A∩B≠∅,求a的取值X围.考点:对数函数的定义域;集合关系中的参数取值问题.专题:函数的性质及应用.分析:(1)被开方数大于等于0,对数的真数大于0,可求出集合A.(2)由A∩B≠∅,可知A与B有公共元素,可解出实数a的取值X围.解答:解(1)∵f(x)=+lg(3x﹣9)∴4﹣x≥0且3x﹣9>0,即x≤4且x>2,则A={x|2<x≤4}(2)B={x|x﹣a<0,a∈R}={x|x<a},由A∩B≠∅,因此a>2,所以实数a的取值X围是(2,+∞).点评:本题主要考查了函数的定义域及其求法,以及并集及运算和子集的概念,属于基础题.18.已知函数f(x)=log a(ax﹣)(a>0,a≠1为常数).(1)求函数f(x)的定义域;(2)若a=2,x∈[1,9],求函数f(x)的值域.考点:对数函数的图像与性质.专题:函数的性质及应用.分析:(1)根据对数函数成立的条件,即可求函数f(x)的定义域;(2)利用换元法,令2x﹣=t,再根据函数单调性得出不等式,解得即可.解答:解:(1)∵f(x)=log a(ax﹣)∴ax﹣>0∴(a﹣1)>0,∵>0,∴a﹣1>0,∵a>0,∴>.∴x>,所以定义域为(,+∞).(2)a=2时,f(x)=log2(2x﹣),令2x﹣=t,则t=2x﹣=2(﹣)2﹣因为x∈[1,9],所以t∈[1,15],所以log21≤log2(2x﹣)≤log215,即0≤f(x)≤log215所以函数f(x)的值域为[0,log215].点评:本题主要考查复合函数的单调性以及函数的定义域和值域,考查学生的计算能力,属于基础题.19.某工厂在政府的帮扶下,准备转型生产一种特殊机器,生产需要投入固定成本500万元,生产与销售均以百台计数,且每生产100台,还需增加可变成本1000万元.若市场对该产品的年需求量为500台,每生产m百台的实际销售收入近似满足函数R(m)=5000m﹣500m2(0≤m≤5,m∈N)(I)试写出第一年的销售利润y(万元)关于年产量x单位:百台,x≤5,x∈N*)的函数关系式;(说明:销售利润=实际销售收人一成本)(II )因技术等原因,第一年的年生产量不能超过300台,若第一年人员的年支出费用u (x)(万元)与年产量x(百台)的关系满足u(x)=500x+500(x≤3,x∈N*),问年产量x 为多少百台时,工厂所得纯利润最大?考点:函数模型的选择与应用.专题:函数的性质及应用.分析:(Ⅰ)利用销售利润=实际销售收人一成本,成本=固定成本+增加成本,即可得出;(Ⅱ)利用工厂所得纯利润=工厂销售利润﹣人员的年支出费用,及二次函数的单调性即可得出.解答:解:(Ⅰ),由题意可得,y=5000x﹣500x2﹣500﹣1000x,即y=﹣500x2+4000x﹣500,(x≤5,x∈N*).(Ⅱ)设工厂所得纯利润为h(x),则h(x)=﹣500x2+4000x﹣500﹣u(x)=﹣500x2+3500x﹣1000=(x≤3,x∈N*).∴当x=3时,函数h(x)取得最大值h(3)=5000.当年产量为3百台时,工厂所得纯利润最大,最大利润为5000万元.点评:正确理解销售利润=实际销售收人一成本、成本=固定成本+增加成本、工厂所得纯利润=工厂销售利润﹣人员的年支出费用、二次函数的单调性是解题的关键.20.已知函数f(x)=a﹣(a∈R).(1)判断函数f(x)的奇偶性;(2)判断并证明函数f(x)在(0,+∞)上的单调性.考点:函数奇偶性的判断;函数单调性的判断与证明.专题:函数的性质及应用.分析:(1)首先判断函数的定义域是否关于原点对称,其次判断f(﹣x)±f(x)=0是否成立即可;(2)利用函数的单调性的定义即可判断证明.解答:解:(1)∵函数f(x)=a﹣(a∈R),定义域为实数集R.①∵f(﹣x)﹣f(x)==+==0,∴f(﹣x)=f (x)对于任意实数x都成立,∴函数f(x)是偶函数;②又f(﹣x)+f(x)=+a﹣=2a﹣×2,此式对于任意的实数x不满足f(﹣x)+f(x)=0,故此函数不是奇函数.(2)解:判断:函数f(x)在(0,+∞)上是单调递增函数.证明:任取0<x1<x2,则f(x1)﹣f(x2)==,由0<x1<x2,∴,,∴,,又,,∴f(x1)﹣f(x2)<0,∴f(x1)<f(x2),所以函数f(x)在(0,+∞)上是单调递增函数.点评:熟练掌握函数的奇偶性的判断方法和证明函数的单调性是解题的关键.21.已知函数f(x)=2a•4x﹣2x﹣1.(1)当a=1时,求函数f(x)的零点;(2)若f(x)有零点,求a的取值X围.考点:函数的零点与方程根的关系;函数的零点.专题:综合题;函数的性质及应用.分析:(1)问题转化为a=1时解方程f(x)=0;(2)f(x)有零点,则方程2a•4x﹣2x﹣1=0有解,分离出a后转化为求函数的值域问题;解答:解:(1)当a=1时,f(x)=2•4x﹣2x﹣1.令f(x)=0,即2•(2x)2﹣2x﹣1=0,解得2x=1或(舍去).∴x=0,函数f(x)的零点为x=0;(2)若f(x)有零点,则方程2a•4x﹣2x﹣1=0有解,于是2a===,∵>0,2a=0,即a>0.点评:本题考查函数的零点与方程的根的关系,考查方程的思想,属中档题.22.已知定义域为R的函数f(x)满足f(f(x)﹣x2+x)=f(x)﹣x2+x.(I)若f(2)=3,求f(1);又若f(0)=a,求f(a);(Ⅱ)设有且仅有一个实数x0,使得f(x0)=x0,求函数f(x)的解析表达式.考点:函数解析式的求解及常用方法.专题:压轴题.分析:(I)由题意知f(f(2)﹣22+2)=f(2)﹣22+2,f(1)=1,由上此可推出f(a)=a.(II)因为对任意x∈R,有f(f(x)﹣x2+x)=f(x)﹣x2+x.又因为有且只有一个实数x0,使得f(x0)=x0所以对任意x∈R,有f(x)﹣x2+x=x0,因为f(x0)=x0,所以x0﹣x02=0,故x0=0或x0=1.由此可推导出f(x)=x2﹣x+1(x∈R).解答:解:(I)因为对任意x∈R,有f(f(x)﹣x2+x)=f(x)﹣x2+x所以f(f(2)﹣22+2)=f(2)﹣22+2又由f(2)=3,得f(3﹣22+2)=3﹣22+2,即f(1)=1若f(0)=a,则f(a﹣02+0)=a﹣02+0,即f(a)=a.(II)因为对任意x∈R,有f(f(x)﹣x2+x)=f(x)﹣x2+x.又因为有且只有一个实数x0,使得f(x0)=x0所以对任意x∈R,有f(x)﹣x2+x=x0在上式中令x=x0,有f(x0)﹣x02+x0=x0又因为f(x0)=x0,所以x0﹣x02=0,故x0=0或x0=1若x0=0,则f(x)﹣x2+x=0,即f(x)=x2﹣x但方程x2﹣x=x有两个不相同实根,与题设条件矛盾.故x0≠0若x0=1,则有f(x)﹣x2+x=1,即f(x)=x2﹣x+1,此时f(x)=x有且仅有一个实数1.综上,所求函数为f(x)=x2﹣x+1(x∈R)点评:本题考查函数的性质和应用,解题时要认真审题,仔细解答.。
高三数学上学期第二次月考试卷 理(含解析)-人教版高三全册数学试题
2015-2016学年某某省马某某市红星中学高三(上)第二次月考数学试卷(理科)一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的.1.设全集U是实数集R,M={x|y=ln(x2﹣2x) },N={y|y=},则图中阴影部分表示的集合是( )A.{x|﹣2≤x<2} B.{x|1<x≤2}C.{x|1≤x≤2}D.{x|x<1}2.已知函数f(x)=且f(a)=﹣3,则f(6﹣a)=( ) A.﹣B.﹣C.﹣D.﹣3.给出如下命题,正确的序号是( )A.命题:∀x∈R,x2≠x的否定是:∃x0∈R,使得x02≠xB.命题:若x≥2且y≥3,则x+y≥5的否命题为:若x<2且y<3,则x+y<5C.若ω=1是函数f(x)=cosωx在区间[0,π]上单调递减的充分不必要条件D.命题:∃x0∈R,x02+a<0为假命题,则实数a的取值X围是a>04.已知某几何体的三视图如图所示,其中,正(主)视图,侧(左)视图均是由三角形与半圆构成,俯视图由圆与内接三角形构成,根据图中的数据可得此几何体的体积为( )A.B.C.D.5.设F1、F2为椭圆+y2=1的左、右焦点,过椭圆中心任作一直线与椭圆交于P、Q两点,当四边形PF1QF2面积最大时,•的值等于( )A.0 B.2 C.4 D.﹣26.设a=log37,b=21.1,c=0.83.1,则( )A.b<a<c B.c<a<b C.c<b<a D.a<c<b7.执行如图所示的程序框图,如果输入P=153,Q=63,则输出的P的值是( )A.2 B.3 C.9 D.278.若点(16,tanθ)在函数y=log2x的图象上,则=( ) A.B.C.4 D.49.已知函数f(x)=()x﹣log3x,若实数x0是方程f(x)=0的解,且x0<x1,则f(x1)的值( )A.恒为负B.等于零C.恒为正D.不大于零10.已知数列{a n}的前n项和为S n,过点P(n,S n)和Q(n+1,S n+1)(n∈N*)的直线的斜率为3n﹣2,则a2+a4+a5+a9的值等于( )A.52 B.40 C.26 D.2011.函数y=e|lnx|﹣|x﹣1|的图象大致是( )A.B. C.D.12.已知定义在R上的奇函数f(x),其导函数为f′(x),对任意正实数x满足xf′(x)>2f(﹣x),若g(x)=x2f(x),则不等式g(x)<g(1﹣3x)的解集是( )A.(,+∞)B.(﹣∞,)C.(0,)D.(﹣∞,)∪(,+∞)二、填空题:本大题共4小题,每小题5分.13.计算:()+lg+lg70+=__________.14.设变量x,y满足约束条件,则z=x﹣3y的最小值是__________.15.已知定义在R上的奇函数f(x)满足f(x﹣4)=﹣f(x),且在区间[0,2]上是增函数.若方程f(x)=m(m>0)在区间[﹣8,8]上有四个不同的根x1,x2,x3,x4,则x1+x2+x3+x4=__________.16.关于函数f(x)=(x≠0),有下列命题:①f(x)的最小值是lg2;②其图象关于y轴对称;③当x>0时,f(x)是增函数;当x<0时,f(x)是减函数;④f(x)在区间(﹣1,0)和(1,+∞)上是增函数,其中所有正确结论的序号是__________.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.已知p:|1﹣|≤2;q:x2﹣2x+1﹣m2≤0(m>0),若¬p是¬q的必要不充分条件,某某数m的取值X围.18.已知函数f(x)=﹣x2+2ex+m﹣1,g(x)=x+(x>0).(1)若y=g(x)﹣m有零点,求m的取值X围;(2)确定m的取值X围,使得g(x)﹣f(x)=0有两个相异实根.19.已知函数f(x)=log a(x+1)(a>1),若函数y=g(x)的图象上任意一点P关于原点的对称点Q的轨迹恰好是函数f(x)的图象.(1)写出函数g(x)的解析式;(2)当x∈[0,1)时,总有f(x)+g(x)≥m成立,求m的取值X围.20.某机床厂今年初用98万元购进一台数控机床,并立即投入使用,计划第一年维修、保养费用12万元,从第二年开始,每年的维修、保养修费用比上一年增加4万元,该机床使用后,每年的总收入为50万元,设使用x年后数控机床的盈利总额y元.(1)写出y与x之间的函数关系式;(2)从第几年开始,该机床开始盈利?(3)使用若干年后,对机床的处理有两种方案:①当年平均盈利额达到最大值时,以30万元价格处理该机床;②当盈利额达到最大值时,以12万元价格处理该机床.问哪种方案处理较为合理?请说明理由.21.已知函数f(x)=+xlnx,g(x)=x3﹣x2﹣3.(1)讨论函数h(x)=的单调性;(2)如果对任意的s,t∈[,2],都有f(s)≥g(t)成立,某某数a的取值X围.四、选做题:请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题记分.22.已知曲线C1的参数方程是(θ为参数)以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程是ρ=﹣4cosθ.(1)求曲线C1与C2交点的极坐标;(2)A、B两点分别在曲线C1与C2上,当|AB|最大时,求△OAB的面积(O为坐标原点).23.已知不等式|2x+2|﹣|x﹣1|>a.(1)当a=0时,求不等式的解集(2)若不等式在区间[﹣4,2]内无解.某某数a的取值X围.2015-2016学年某某省马某某市红星中学高三(上)第二次月考数学试卷(理科)一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的.1.设全集U是实数集R,M={x|y=ln(x2﹣2x) },N={y|y=},则图中阴影部分表示的集合是( )A.{x|﹣2≤x<2} B.{x|1<x≤2}C.{x|1≤x≤2}D.{x|x<1}【考点】Venn图表达集合的关系及运算.【专题】应用题;集合思想;定义法;集合.【分析】由图知,阴影部分表示的集合中的元素是在集合N中的元素但不在集合M中的元素组成的,即N∩C U M.【解答】解:由韦恩图知阴影部分表示的集合为N∩(C U M)M={x|y=ln(x2﹣2x) }∴x2﹣2x>0,解得x<0,或x>2,∴M={x|x<0,或x>2},∴C U M={x|0≤x≤2}=[0,2],N={y|y=}={y|y≥1}=[1,+∞),∴N∩(C U M)=[1,2],故选:C【点评】本小题主要考查Venn图表达集合的关系及运算、二次不等式的解法等基础知识,属于基础题2.已知函数f(x)=且f(a)=﹣3,则f(6﹣a)=( ) A.﹣B.﹣C.﹣D.﹣【考点】分段函数的应用;函数的零点.【专题】函数的性质及应用.【分析】由f(a)=﹣3,结合指数和对数的运算性质,求得a=7,再由分段函数求得f(6﹣a)的值.【解答】解:函数f(x)=且f(a)=﹣3,若a≤1,则2a﹣1﹣2=﹣3,即有2a﹣1=﹣1<0,方程无解;若a>1,则﹣log2(a+1)=﹣3,解得a=7,则f(6﹣a)=f(﹣1)=2﹣1﹣1﹣2=﹣.故选:A.【点评】本题考查分段函数的运用:求函数值,主要考查指数和对数的运算性质,属于中档题.3.给出如下命题,正确的序号是( )A.命题:∀x∈R,x2≠x的否定是:∃x0∈R,使得x02≠xB.命题:若x≥2且y≥3,则x+y≥5的否命题为:若x<2且y<3,则x+y<5C.若ω=1是函数f(x)=cosωx在区间[0,π]上单调递减的充分不必要条件D.命题:∃x0∈R,x02+a<0为假命题,则实数a的取值X围是a>0【考点】命题的真假判断与应用.【专题】计算题;规律型;简易逻辑.【分析】利用命题的否定判断A的正误;四种命题的逆否关系判断B的正误;充要条件判断C 的正误;命题的真假判断D的正误;【解答】解:对于A,命题:∀x∈R,x2≠x的否定是:∃x0∈R,使得x02≠x0,不满足命题的否定形式,所以不正确;对于B,命题:若x≥2且y≥3,则x+y≥5的否命题为:若x<2且y<3,则x+y<5,不满足否命题的形式,所以不正确;对于C,若ω=1是函数f(x)=cosx在区间[0,π]上单调递减的,而函数f(x)=cosωx在区间[0,π]上单调递减的,ω≤1,所以ω=1是函数f(x)=cosωx在区间[0,π]上单调递减的充分不必要条件,正确.对于D,命题:∃x0∈R,x02+a<0为假命题,则命题:a≥0,∀x∈R,x2+a≥0是真命题;所以,命题:∃x0∈R,x02+a<0为假命题,则实数a的取值X围是a>0,不正确;故选:C.【点评】本题考查命题的真假的判断与应用,基本知识的考查.4.已知某几何体的三视图如图所示,其中,正(主)视图,侧(左)视图均是由三角形与半圆构成,俯视图由圆与内接三角形构成,根据图中的数据可得此几何体的体积为( )A.B.C.D.【考点】由三视图求面积、体积.【专题】图表型.【分析】先由三视图还原成原来的几何体,再根据三视图中的长度关系,找到几何体中的长度关系,进而可以求几何体的体积.【解答】解:由三视图可得该几何体的上部分是一个三棱锥,下部分是半球,所以根据三视图中的数据可得:V=××=,故选C.【点评】本题考点是由三视图求几何体的面积、体积,考查对三视图的理解与应用,主要考查三视图与实物图之间的关系,用三视图中的数据还原出实物图的数据,再根据相关的公式求表面积与体积,本题求的是组合体的体积,一般组合体的体积要分部分来求.三视图的投影规则是:“主视、俯视长对正;主视、左视高平齐,左视、俯视宽相等”.三视图是高考的新增考点,不时出现在高考试题中,应予以重视.5.设F1、F2为椭圆+y2=1的左、右焦点,过椭圆中心任作一直线与椭圆交于P、Q两点,当四边形PF1QF2面积最大时,•的值等于( )A.0 B.2 C.4 D.﹣2【考点】椭圆的简单性质.【专题】计算题.【分析】通过题意可推断出当P、Q分别在椭圆短轴端点时,四边形PF1QF2面积最大.进而可根据椭圆的方程求得焦点的坐标和P的坐标,进而求得和,则•的值可求得.【解答】解:根据题意可知当P、Q分别在椭圆短轴端点时,四边形PF1QF2面积最大.这时,F1(﹣,0),F2(,0),P(0,1),∴=(﹣,﹣1),=(,﹣1),∴•=﹣2.故选D【点评】本题主要考查了椭圆的简单性质.考查了学生数形结合的思想和分析问题的能力.6.设a=log37,b=21.1,c=0.83.1,则( )A.b<a<c B.c<a<b C.c<b<a D.a<c<b【考点】对数值大小的比较.【专题】函数的性质及应用.【分析】分别讨论a,b,c的取值X围,即可比较大小.【解答】解:1<log37<2,b=21.1>2,c=0.83.1<1,则c<a<b,故选:B.【点评】本题主要考查函数值的大小比较,根据指数和对数的性质即可得到结论.7.执行如图所示的程序框图,如果输入P=153,Q=63,则输出的P的值是( )A.2 B.3 C.9 D.27【考点】程序框图.【专题】图表型;算法和程序框图.【分析】模拟执行程序,依次写出每次循环得到的R,P,Q的值,当Q=0时,满足条件Q=0,退出循环,输出P的值为3.【解答】解:模拟执行程序,可得P=153,Q=63不满足条件Q=0,R=27,P=63,Q=27不满足条件Q=0,R=9,P=27,Q=9不满足条件Q=0,R=0,P=9,Q=0满足条件Q=0,退出循环,输出P的值为9.故选:C.【点评】本题主要考查了程序框图和算法,依次写出每次循环得到的R,P,Q的值是解题的关键,属于基本知识的考查.8.若点(16,tanθ)在函数y=log2x的图象上,则=( ) A.B.C.4 D.4【考点】三角函数的化简求值.【专题】计算题;转化思想;转化法;三角函数的求值.【分析】先根据对数的运算性质求出tanθ,再化简代值计算即可.【解答】解:点(16,tanθ)在函数y=log2x的图象上,∴tanθ=log216=4,∴====,故选:B.【点评】本题考查了二倍角公式,函数值的求法,以及对数的运算性质,属于基础题.9.已知函数f(x)=()x﹣log3x,若实数x0是方程f(x)=0的解,且x0<x1,则f(x1)的值( )A.恒为负B.等于零C.恒为正D.不大于零【考点】函数的零点与方程根的关系.【专题】函数的性质及应用.【分析】由函数的性质可知,f(x)=()x﹣log3x在(0,+∞)上是减函数,且可得f(x0)=0,由0<x0<x1,可得f(x1)<f(x0)=0,即可判断【解答】解:∵实数x0是方程f(x)=0的解,∴f(x0)=0.∵函数y()x,y=log3x在(0,+∞)上分别具有单调递减、单调递增,∴函数f(x)在(0,+∞)上是减函数.又∵0<x0<x1,∴f(x1)<f(x0)=0.∴f(x1)的值恒为负.故选A.【点评】本题主要考查了函数的单调性的简单应用,解题的关键是准确判断函数f(x)的单调性并能灵活应用.10.已知数列{a n}的前n项和为S n,过点P(n,S n)和Q(n+1,S n+1)(n∈N*)的直线的斜率为3n﹣2,则a2+a4+a5+a9的值等于( )A.52 B.40 C.26 D.20【考点】数列的求和.【专题】等差数列与等比数列.【分析】首先根据题中的已知条件已知数列{a n}的前n项和为S n,过点P(n,S n)和Q(n+1,S n+1)(n∈N*)的直线的斜率为3n﹣2,进一步求出数列的通项公式,然后根据通项公式求出各项的值,最后确定结果.【解答】解:已知数列{a n}的前n项和为S n,过点P(n,S n)和Q(n+1,S n+1)(n∈N*)的直线的斜率为3n﹣2则:∴a n=3n﹣5a2+a4+a5+a9=40故选:B【点评】本题考查的知识点:根据点的斜率求出数列的通项公式,由通项公式求数列的项.11.函数y=e|lnx|﹣|x﹣1|的图象大致是( )A.B. C.D.【考点】对数的运算性质;函数的图象与图象变化.【分析】根据函数y=e|lnx|﹣|x﹣1|知必过点(1,1),再对函数进行求导观察其导数的符号进而知原函数的单调性,得到答案.【解答】解:由y=e|lnx|﹣|x﹣1|可知:函数过点(1,1),当0<x<1时,y=e﹣lnx﹣1+x=+x﹣1,y′=﹣+1<0.∴y=e﹣lnx﹣1+x为减函数;若当x>1时,y=e lnx﹣x+1=1,故选D.【点评】本题主要考查函数的求导与函数单调性的关系.12.已知定义在R上的奇函数f(x),其导函数为f′(x),对任意正实数x满足xf′(x)>2f(﹣x),若g(x)=x2f(x),则不等式g(x)<g(1﹣3x)的解集是( )A.(,+∞)B.(﹣∞,)C.(0,)D.(﹣∞,)∪(,+∞)【考点】函数奇偶性的性质.【专题】转化思想;数学模型法;函数的性质及应用;导数的综合应用.【分析】f(x)是定义在R上的奇函数,可得:f(﹣x)=﹣f(x).对任意正实数x满足xf′(x)>2f(﹣x),可得:xf′(x)+2f(x)>0,由g(x)=x2f(x),可得g′(x)>0.可得函数g(x)在(0,+∞)上单调递增.即可得出.【解答】解:∵f(x)是定义在R上的奇函数,∴f(﹣x)=﹣f(x).对任意正实数x满足xf′(x)>2f(﹣x),∴xf′(x)+2f(x)>0,∵g(x)=x2f(x),∴g′(x)=2xf(x)+x2f′(x)>0.∴函数g(x)在(0,+∞)上单调递增.又g(0)=0,g(﹣x)=x2f(﹣x)=﹣g(x),∴函数g(x)是R上的奇函数,∴g(x)是R上的增函数.由不等式g(x)<g(1﹣3x),∴x<1﹣3x,解得.∴不等式g(x)<g(1﹣3x)的解集为:.故选:B.【点评】本题考查了函数的奇偶性与单调性,考查了推理能力与计算能力,属于中档题.二、填空题:本大题共4小题,每小题5分.13.计算:()+lg+lg70+=.【考点】对数的运算性质;有理数指数幂的化简求值.【专题】计算题;函数思想;定义法;函数的性质及应用.【分析】根据对数和幂的运算性质计算即可.【解答】解:()+lg+lg70+=+lg()+1﹣lg3=+lg+1=+1+1=,故答案为:.【点评】本题考查了对数和幂的运算性质,关键是掌握性质,属于基础题.14.设变量x,y满足约束条件,则z=x﹣3y的最小值是﹣8.【考点】简单线性规划.【专题】不等式的解法及应用.【分析】将z=x﹣3y变形为,此式可看作是斜率为,纵截距为的一系列平行直线,当最大时,z最小.作出原不等式组表示的平面区域,让直线向此平面区域平移,可探求纵截距的最大值.【解答】解:由z=x﹣3y,得,此式可看作是斜率为,纵截距为的直线,当最大时,z最小.画出直线y=x,x+2y=2,x=﹣2,从而可标出不等式组表示的平面区域,如右图所示.由图知,当动直线经过点P时,z最小,此时由,得P(﹣2,2),从而z min=﹣2﹣3×2=﹣8,即z=x﹣3y的最小值是﹣8.故答案为:﹣8.【点评】本题考查了线性规划的应用,为高考常考的题型,求解此类问题的一般步骤是:(1)作出已知不等式组表示的平面区域;(2)运用化归思想及数形结合思想,将目标函数的最值问题转化为平面中几何量的最值问题处理.15.已知定义在R上的奇函数f(x)满足f(x﹣4)=﹣f(x),且在区间[0,2]上是增函数.若方程f(x)=m(m>0)在区间[﹣8,8]上有四个不同的根x1,x2,x3,x4,则x1+x2+x3+x4=﹣8.【考点】奇偶性与单调性的综合;函数的周期性.【专题】数形结合.【分析】由条件“f(x﹣4)=﹣f(x)”得f(x+8)=f(x),说明此函数是周期函数,又是奇函数,且在[0,2]上为增函数,由这些画出示意图,由图可解决问题.【解答】解:此函数是周期函数,又是奇函数,且在[0,2]上为增函数,综合条件得函数的示意图,由图看出,四个交点中两个交点的横坐标之和为2×(﹣6),另两个交点的横坐标之和为2×2,所以x1+x2+x3+x4=﹣8.故答案为﹣8.【点评】数形结合是数学解题中常用的思想方法,能够变抽象思维为形象思维,有助于把握数学问题的本质;另外,由于使用了数形结合的方法,很多问题便迎刃而解,且解法简捷.16.关于函数f(x)=(x≠0),有下列命题:①f(x)的最小值是lg2;②其图象关于y轴对称;③当x>0时,f(x)是增函数;当x<0时,f(x)是减函数;④f(x)在区间(﹣1,0)和(1,+∞)上是增函数,其中所有正确结论的序号是①②④.【考点】命题的真假判断与应用;奇偶性与单调性的综合.【专题】函数思想;定义法;函数的性质及应用.【分析】是结合复合函数单调性的关系进行判断.②根据基本由函数奇偶性的定义判断函数为偶函数判断;③利用对勾函数的单调性判断;④由对勾函数的最值及函数奇偶性的性质进行判断即可.【解答】解:①函数f(x)=lg,(x∈R且x≠0).∵=2,∴f(x)=lg≥2,即f(x)的最小值是lg2,故①正确,②∵f(﹣x)==f(x),∴函数f(x)为偶函数,图象关于y轴对称,故②正确;③当x>0时,t(x)=,在(0,1)上单调递减,在(1,+∞)上得到递增,∴f(x)=lg在(0,1)上单调递减,在(1,+∞)上得到递增,故③错误;④∵函数f(x)是偶函数,由③知f(x)在(0,1)上单调递减,在(1,+∞)上得到递增,∴在(﹣1,0)上单调递增,在(﹣∞,﹣1)上得到递减,故④正确,故答案为:①②④【点评】本题考查了命题的真假判断与应用,考查了函数奇偶性的性质,考查了复合函数的单调性,是中档题.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.已知p:|1﹣|≤2;q:x2﹣2x+1﹣m2≤0(m>0),若¬p是¬q的必要不充分条件,某某数m的取值X围.【考点】必要条件;绝对值不等式的解法.【专题】规律型.【分析】先求出命题p,q的等价条件,利用¬p是¬q的必要不充分条件转化为q是p的必要不充分条件,建立条件关系即可求出m的取值X围.【解答】解:由||=,得|x﹣4|≤6,即﹣6≤x﹣4≤6,∴﹣2≤x≤10,即p:﹣2≤x≤10,由x2+2x+1﹣m2≤0得[x+(1﹣m)][x+(1+m)]≤0,即1﹣m≤x≤1+m,(m>0),∴q:1﹣m≤x≤1+m,(m>0),∵¬p是¬q的必要不充分条件,∴q是p的必要不充分条件.即,且等号不能同时取,∴,解得m≥9.【点评】本题主要考查充分条件和必要条件的应用,将¬p是¬q的必要不充分条件转化为q 是p的必要不充分条件是解决本题的关键.18.已知函数f(x)=﹣x2+2ex+m﹣1,g(x)=x+(x>0).(1)若y=g(x)﹣m有零点,求m的取值X围;(2)确定m的取值X围,使得g(x)﹣f(x)=0有两个相异实根.【考点】函数零点的判定定理;根的存在性及根的个数判断.【专题】计算题;函数的性质及应用;导数的综合应用;不等式的解法及应用.【分析】(1)由基本不等式可得g(x)=x+≥2=2e,从而求m的取值X围;(2)令F(x)=g(x)﹣f(x)=x++x2﹣2ex﹣m+1,求导F′(x)=1﹣+2x﹣2e=(x﹣e)(+2);从而判断函数的单调性及最值,从而确定m的取值X围.【解答】解:(1)∵g(x)=x+≥2=2e;(当且仅当x=,即x=e时,等号成立)∴若使函数y=g(x)﹣m有零点,则m≥2e;故m的取值X围为[2e,+∞);(2)令F(x)=g(x)﹣f(x)=x++x2﹣2ex﹣m+1,F′(x)=1﹣+2x﹣2e=(x﹣e)(+2);故当x∈(0,e)时,F′(x)<0,x∈(e,+∞)时,F′(x)>0;故F(x)在(0,e)上是减函数,在(e,+∞)上是增函数,故只需使F(e)<0,即e+e+e2﹣2e2﹣m+1<0;故m>2e﹣e2+1.【点评】本题考查了基本不等式的应用及导数的综合应用,同时考查了函数零点的判断与应用,属于中档题.19.已知函数f(x)=log a(x+1)(a>1),若函数y=g(x)的图象上任意一点P关于原点的对称点Q的轨迹恰好是函数f(x)的图象.(1)写出函数g(x)的解析式;(2)当x∈[0,1)时,总有f(x)+g(x)≥m成立,求m的取值X围.【考点】求对数函数解析式;函数解析式的求解及常用方法;函数最值的应用.【专题】计算题;转化思想.【分析】(1)由已知条件可知函数g(x)的图象上的任意一点P(x,y)关于原点对称的点Q (﹣x,﹣y)在函数f(x)图象上,把Q(﹣x,﹣y)代入f(x),整理可得g(x)(2)由(1)可令h(x)=f(x)+g(x),先判断函数h(x)在[0,1)的单调性,进而求得函数的最小值h(x)min,使得m≤h(x)min【解答】解:(1)设点P(x,y)是g(x)的图象上的任意一点,则Q(﹣x,﹣y)在函数f (x)的图象上,即﹣y=log a(﹣x+1),则∴(2)f(x)+g(x)≥m 即,也就是在[0,1)上恒成立.设,则由函数的单调性易知,h(x)在[0,1)上递增,若使f(x)+g(x)≥m在[0,1)上恒成立,只需h(x)min≥m在[0,1)上成立,即m≤0.m的取值X围是(﹣∞,0]【点评】本题(1)主要考查了函数的中心对称问题:若函数y=f(x)与y=g(x)关于点M (a,b)对称,则y=f(x)上的任意一点(x,y)关于M(a,b)对称的点(2a﹣x,2b﹣y)在函数y=g(x)的图象上.(2)主要考查了函数的恒成立问题,往往转化为求最值问题:m≥h(x)恒成立,则m≥h(x)m≤h(x)恒成立,max则m≤h(x)min20.某机床厂今年初用98万元购进一台数控机床,并立即投入使用,计划第一年维修、保养费用12万元,从第二年开始,每年的维修、保养修费用比上一年增加4万元,该机床使用后,每年的总收入为50万元,设使用x年后数控机床的盈利总额y元.(1)写出y与x之间的函数关系式;(2)从第几年开始,该机床开始盈利?(3)使用若干年后,对机床的处理有两种方案:①当年平均盈利额达到最大值时,以30万元价格处理该机床;②当盈利额达到最大值时,以12万元价格处理该机床.问哪种方案处理较为合理?请说明理由.【考点】基本不等式在最值问题中的应用.【专题】计算题.【分析】(1)赢利总额y元即x年中的收入50x减去购进机床的成本与这x年中维修、保养的费用,维修、保养的费用历年成等差数增长,,(2)由(1)的结论解出结果进行判断得出何年开始赢利.(3)算出每一种方案的总盈利,比较大小选择方案.【解答】解:(1)y=﹣2x2+40x﹣98,x∈N*.(2)由﹣2x2+40x﹣98>0解得,,且x∈N*,所以x=3,4,,17,故从第三年开始盈利.(3)由,当且仅当x=7时“=”号成立,所以按第一方案处理总利润为﹣2×72+40×7﹣98+30=114(万元).由y=﹣2x2+40x﹣98=﹣2(x﹣10)2+102≤102,所以按第二方案处理总利润为102+12=114(万元).∴由于第一方案使用时间短,则选第一方案较合理.【点评】考查审题及将题中关系转化为数学符号的能力,其中第二问中考查了一元二次不等式的解法,第三问中考查到了基本不等式求最值,本题是一个函数基本不等式相结合的题.属应用题中盈利最大化的问题.21.已知函数f(x)=+xlnx,g(x)=x3﹣x2﹣3.(1)讨论函数h(x)=的单调性;(2)如果对任意的s,t∈[,2],都有f(s)≥g(t)成立,某某数a的取值X围.【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性.【专题】综合题;导数的综合应用.【分析】(1)求导数,利用导数的正负,即可讨论函数h(x)=的单调性;(2)求出g(x)max=g(2)=1,当x∈[,2]时,f(x)=+xlnx恒成立,等价于a≥x﹣x2lnx 恒成立,然后利用导数求函数u(x)=x﹣x2lnx在区间[,2]上取得最大值,则实数a的取值X围可求.【解答】解:(1)h(x)==+lnx,h′(x)=,①a≤0,h′(x)≥0,函数h(x)在(0,+∞)上单调递增②a>0时,h'(x)>0,则x∈(,+∞),函数h(x)的单调递增区间为(,+∞),h'(x)<0,则x∈(0,),函数h(x)的单调递减区间为(0,),.(2)g(x)=x3﹣x2﹣3,g′(x)=3x(x﹣),x 2g′(x)0 ﹣0 +g(x)﹣递减极小值递增 13由上表可知,g(x)在x=2处取得最大值,即g(x)max=g(2)=1所以当x∈[,2]时,f(x)=+xlnx≥1恒成立,等价于a≥x﹣x 2lnx恒成立,记u(x)=x﹣x2lnx,所以a≥u(x)max,u′(x)=1﹣x﹣2xlnx,可知u′(1)=0,当x∈(,1)时,1﹣x>0,2xlnx<0,则u′(x)>0,∴u(x)在x∈(,2)上单调递增;当x∈(1,2)时,1﹣x<0,2xlnx>0,则u′(x)<0,∴u(x)在(1,2)上单调递减;故当x=1时,函数u(x)在区间[,2],上取得最大值u(1)=1,所以a≥1,故实数a的取值X围是[1,+∞).【点评】本题考查了利用导数研究函数的单调性,考查了导数在最大值、最小值问题中的应用,考查了数学转化思想方法和函数构造法,训练了利用分离变量法求参数的取值X围,属于中档题.四、选做题:请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题记分.22.已知曲线C1的参数方程是(θ为参数)以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程是ρ=﹣4cosθ.(1)求曲线C1与C2交点的极坐标;(2)A、B两点分别在曲线C1与C2上,当|AB|最大时,求△OAB的面积(O为坐标原点).【考点】参数的意义;简单曲线的极坐标方程.【专题】选作题;转化思想;综合法;坐标系和参数方程.【分析】(1)把参数方程和极坐标方程化为直角坐标方程,联立方程组求出交点的坐标,再把交点的直角坐标化为极坐标;(2)画出图象,由平面几何知识可知,A,C1,C2,B依次排列且共线时|AB|最大.【解答】解:(1)由(θ为参数),消去参数得:x2+(y﹣2)2=4,即x2+y2﹣4y=0;由ρ=﹣4cosθ,得ρ2=﹣4ρcosθ,即x2+y2=﹣4x.两式作差得:x+y=0,代入C1得交点为(0,0),(﹣2,2).其极坐标为(0,0),(2,);(2)如图,由平面几何知识可知,A,C1,C2,B依次排列且共线时|AB|最大.此时|AB|=2+4,O到AB的距离为.∴△OAB的面积为S=×(2+4)×=2+2.【点评】本题考查了极坐标方程化为直角坐标方程、参数方程化为普通方程,考查了推理能力与计算能力,属于基础题.23.已知不等式|2x+2|﹣|x﹣1|>a.(1)当a=0时,求不等式的解集(2)若不等式在区间[﹣4,2]内无解.某某数a的取值X围.【考点】绝对值不等式的解法.【专题】不等式的解法及应用.【分析】(1)把要解的不等式等价转化为与之等价的三个不等式组,求出每个不等式组的解集,再取并集,即得所求.(2)求得f(x)=|2x+2|﹣|x﹣1|=在区间[﹣4,2]内的值域,结合|2x+2|﹣|x﹣1|>a无解,求得a的X围.【解答】解:(1)当a=0时,不等式即|2x+2|﹣|x﹣1|>0,可得①,或②,或③.解①求得 x<﹣3,解②求得﹣<x<1,解③求得x≥1.综上可得,原不等式的解集为{x|x<﹣3,或x>﹣}.(2)当x∈[﹣4,2],f(x)=|2x+2|﹣|x﹣1|=的值域为[﹣2,3],而不等式|2x+2|﹣|x﹣1|>a无解,故有a≤3.【点评】本题主要考查绝对值不等式的解法,体现了转化、分类讨论的数学思想;还考查了分段函数的应用,求函数的值域,属于中档题.。
高三数学人教版a版数学(理)高考一轮复习教案:2.1 函数及其表示 word版含答案
第一节函数及其表示1.函数的概念及其表示(1)了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念.(2)在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.2.分段函数及其应用了解简单的分段函数,并能简单应用.知识点一函数与映射的概念函数映射两集合A,B设A、B是两个非空的数集设A、B是两个非空的集合对应关系f:A→B 如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应如果按某一个确定的对应关系f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应名称称f:A→B为从集合A到集合B的一个函数称f:A→B为从集合A到集合B的一个映射易误提醒易混“函数”与“映射”的概念:函数是特殊的映射,映射不一定是函数,从A到B的一个映射,A、B若不是数集,则这个映射便不是函数.[自测练习]1.下列图形可以表示函数y=f(x)图象的是()解析:本题考查函数的概念,根据函数的概念,定义域中一个x只能对应一个y,所以排除A,B,C,故选D.答案:D知识点二函数的有关概念1.函数的定义域、值域(1)在函数y=f(x),x∈A中,自变量x的取值范围(数集A)叫作函数的定义域;函数值的集合{f(x)|x∈A}叫作函数的值域.(2)如果两个函数的定义域相同,并且对应关系完全一致,则这两个函数为相等函数.2.函数的表示方法表示函数的常用方法有解析法、图象法和列表法.3.分段函数(1)若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数.(2)分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的并集,分段函数虽由几个部分组成,但它表示的是一个函数.易误提醒(1)解决函数的一些问题时,易忽视“定义域优先”的原则.(2)误把分段函数理解为几个函数组成.必备方法求函数解析式的四种常用方法(1)配凑法:由已知条件f(g(x))=F(x),可将F(x)改写成关于g(x)的表达式,然后以x替代g(x),便得f(x)的表达式;(2)待定系数法:若已知函数的类型(如一次函数、二次函数)可用待定系数法;函数的实际应用问题多用此法;(3)换元法:已知复合函数f(g(x))的解析式,可用换元法,此时要注意新元的取值范围;(4)解方程组法:已知关于f (x )与f ⎝⎛⎭⎫1x 或f (-x )的表达式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程组求出f (x ).[自测练习]2.(2016·贵阳期末)函数f (x )=log 2(x +1)的定义域为( ) A .(0,+∞) B .[-1,+∞) C .(-1,+∞)D .(1,+∞)解析:由x +1>0知x >-1,故选C. 答案:C3.f (x )与g (x )表示同一函数的是( ) A .f (x )=x 2-1与g (x )=x -1·x +1 B .f (x )=x 与g (x )=x 3+x x 2+1C .y =x 与y =(x )2D .f (x )=x 2与g (x )=3x 3解析:选项A ,C 中的函数定义域不同,选项D 的函数解析式不同,只有选项B 正确. 答案:B4.若函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≤0,log 12x ,x >0,则f (f (2))=( )A .-1B .2C .1D .0解析:本题考查分段函数、复合函数的求值.由已知条件可知,f (2)=log 122=-1,所以f (f (2))=f (-1)=(-1)2+1=2,故选B.答案:B考点一 函数的定义域问题|函数的定义域是使函数有意义的自变量取值的集合,它是函数不可缺少的组成部分,归纳起来常见的命题探究角度有:1.求给定函数解析式的定义域;2.已知f (x )的定义域,求f (g (x ))的定义域; 3.已知定义域确定参数问题.探究一 求给定解析式的定义域 1.(2015·江西重点中学一联)函数f (x )=3xx -2+lg(3-x )的定义域是( ) A .(3,+∞) B .(2,3) C .[2,3)D .(2,+∞)解析:本题考查函数的定义域.由题意得⎩⎪⎨⎪⎧x -2>0,3-x >0,解得2<x <3,故选B.答案:B探究二 已知f (x )的定义域,求f (g (x ))的定义域2.若函数y =f (x )的定义域是[0,3],则函数g (x )=f (3x )x -1的定义域是( )A .[0,1)B .[0,1]C .[0,1)∪(1,9]D .(0,1)解析:依题意得⎩⎪⎨⎪⎧0≤3x ≤3,x -1≠0,即0≤x <1,因此函数g (x )的定义域是[0,1),故选A.答案:A探究三 已知定义域求参数范围问题3.若函数f (x )=2x 2+2ax -a -1的定义域为R ,则a 的取值范围为________. 解析:函数f (x )的定义域为R ,所以2x 2+2ax -a -1≥0对x ∈R 恒成立,即2x 2+2ax -a ≥1,x 2+2ax -a ≥0恒成立,因此有Δ=(2a )2+4a ≤0,解得-1≤a ≤0.答案:[-1,0]函数定义域的三种类型及求法(1)已知函数的解析式,则构造使解析式有意义的不等式(组)求解. (2)对实际问题:由实际意义及使解析式有意义构成的不等式(组)求解.(3)若已知函数f (x )的定义域为[a ,b ],则函数f (g (x ))的定义域由不等式a ≤g (x )≤b 求出.考点二 函数解析式的求法|(1)已知f (1-cos x )=sin 2x ,求f (x )的解析式;(2)已知f (x )是二次函数且f (0)=2,f (x +1)-f (x )=x -1,求f (x )的解析式; (3)已知f (x )+2f ⎝⎛⎭⎫1x =x (x ≠0),求f (x )的解析式.[解] (1)f (1-cos x )=sin 2x =1-cos 2x , 令t =1-cos x ,则cos x =1-t ,t ∈[0,2], ∴f (t )=1-(1-t )2=2t -t 2,t ∈[0,2], 即f (x )=2x -x 2,x ∈[0,2].(2)设f (x )=ax 2+bx +c (a ≠0),由f (0)=2,得c =2,f (x +1)-f (x )=a (x +1)2+b (x +1)-ax 2-bx =x -1,即2ax +a +b =x -1,∴⎩⎪⎨⎪⎧2a =1,a +b =-1,即⎩⎨⎧a =12,b =-32.∴f (x )=12x 2-32x +2.(3)∵f (x )+2f ⎝⎛⎭⎫1x =x ,∴f ⎝⎛⎭⎫1x +2f (x )=1x. 解方程组⎩⎨⎧f (x )+2f ⎝⎛⎭⎫1x =x ,f ⎝⎛⎭⎫1x +2f (x )=1x,得f (x )=23x -x3(x ≠0).函数解析式求法中的一个注意点利用换元法求解析式后易忽视函数的定义域,即换元字母的范围.求下列函数的解析式: (1)已知f ⎝⎛⎭⎫2x +1=lg x ,求f (x ); (2)2f (x )-f (-x )=lg(x +1),求f (x ). 解:(1)令t =2x +1,则x =2t -1,∴f (t )=lg2t -1,即f (x )=lg 2x -1(x >1). (2)∵2f (x )-f (-x )=lg(x +1), ∴2f (-x )-f (x )=lg(1-x ).解方程组⎩⎪⎨⎪⎧2f (x )-f (-x )=lg (x +1),2f (-x )-f (x )=lg (1-x )得f (x )=23lg(x +1)+13lg(1-x )(-1<x <1).考点三 分段函数|1.(2015·高考全国卷Ⅰ)已知函数f (x )=⎩⎪⎨⎪⎧2x -1-2,x ≤1,-log 2(x +1),x >1,且f (a )=-3,则f (6-a )=( )A .-74B .-54C .-34D .-14解析:因为f (x )=⎩⎪⎨⎪⎧ 2x -1-2,x ≤1,-log 2(x +1),x >1,f (a )=-3,所以⎩⎪⎨⎪⎧a >1,-log 2(a +1)=-3,或⎩⎪⎨⎪⎧a ≤1,2a -1-2=-3, 解得a =7,所以f (6-a )=f (-1)=2-1-1-2=-74,选A.答案:A2.(2015·高考全国卷Ⅱ)如图,长方形ABCD 的边AB =2,BC =1,O 是AB 的中点.点P 沿着边BC ,CD 与DA 运动,记∠BOP =x .将动点P 到A ,B 两点距离之和表示为x 的函数f (x ),则y =f (x )的图象大致为( )解析:由于f (0)=2,f ⎝⎛⎭⎫π4=1+5,f ⎝⎛⎭⎫π2=22<f ⎝⎛⎭⎫π4,故排除选项C 、D ;当点P 在BC 上时,f (x )=BP +AP =tan x +4+tan 2x ⎝⎛⎭⎫0≤x ≤π4,不难发现f (x )的图象是非线性的,排除选项A.故选B.答案:B分段函数“两种”题型的求解策略(1)根据分段函数解析式求函数值首先确定自变量的值属于哪个区间,其次选定相应的解析式代入求解. (2)已知函数值或函数值范围求自变量的值或范围应根据每一段的解析式分别求解,但要注意检验所求自变量的值或范围是否符合相应段的自变量的取值范围.3.分段函数的定义理解不清致误【典例】 已知实数a ≠0,函数f (x )=⎩⎪⎨⎪⎧2x +a ,x <1,-x -2a ,x ≥1,若f (1-a )=f (1+a ),则a 的值为________.[解析] 当a >0时,1-a <1,1+a >1,由f (1-a )=f (1+a )可得2-2a +a =-1-a -2a ,解得a =-32,不合题意;当a <0时,1-a >1,1+a <1,由f (1-a )=f (1+a )可得-1+a -2a=2+2a +a ,解得a =-34.[答案] -34[易误点评] 本题易出现的错误主要有两个方面:(1)误以为1-a <1,1+a >1,没有对a 进行讨论直接代入求解. (2)求解过程中忘记检验所求结果是否符合要求而致误.[防范措施] (1)对于分段函数的求值问题,若自变量的取值范围不确定,应分情况求解. (2)检验所求自变量的值或范围是否符合题意求解过程中,求出的参数的值或范围并不一定符合题意,因此要检验结果是否符合要求.[跟踪练习] 设函数f (x )=⎩⎨⎧x ,x ≥0,-x ,x <0,若f (a )+f (-1)=2,则a =( )A .-3B .±3C .-1D .±1解析:因为f (-1)=-(-1)=1,所以f (a )=1,当a ≥0时,a =1,所以a =1;当a <0时,-a =1,所以a =-1.故a =±1.答案:DA 组 考点能力演练1.(2015·高考陕西卷)设f (x )=⎩⎨⎧1-x ,x ≥0,2x ,x <0,则f [f (-2)]=( )A .-1B.14C.12D.32解析:由f (-2)=2-2=14,∴f [f (-2)]=f ⎝⎛⎭⎫14=1-14=12. 答案:C2.(2015·北京朝阳模拟)函数f (x )=1x -1+x 的定义域为( )A .[0,+∞)B .(1,+∞)C .[0,1)∪(1,+∞)D .[0,1)解析:本题考查函数的定义域.根据函数有意义的条件建立不等式组.要使函数f (x )有意义,则⎩⎪⎨⎪⎧x -1≠0,x ≥0,解得x ≥0且x ≠1,即函数定义域是[0,1)∪(1,+∞),故选C.答案:C3.已知函数f (x )的定义域为(-∞,+∞),如果f (x +2 014)=⎩⎨⎧2sin x ,x ≥0lg (-x ),x <0,那么f ⎝⎛⎭⎫2 014+π4·f (-7 986)=( ) A .2 014 B .4 C.14D.12 014解析:f ⎝⎛⎭⎫2 014+π4=2sin π4=1,f (-7 986) =f (2 014-10 000)=lg 10 000=4, 则f ⎝⎛⎭⎫2 014+π4·f (-7 986)=4. 答案:B4.(2016·岳阳质检)设函数f (x )=lg 3+x 3-x ,则f ⎝⎛⎭⎫x 3+f ⎝⎛⎭⎫3x 的定义域为( ) A .(-9,0)∪(0,9) B .(-9,-1)∪(1,9) C .(-3,-1)∪(1,3)D .(-9,-3)∪(3,9)解析:利用函数f (x )的定义域建立不等式组求解.要使函数f (x )有意义,则3+x3-x>0,解得-3<x <3.所以要使f ⎝⎛⎭⎫x 3+f ⎝⎛⎭⎫3x 有意义,则⎩⎨⎧-3<x3<3,-3<3x<3,解得⎩⎪⎨⎪⎧-9<x <9,x <-1或x >1,所以定义域为(-9,-1)∪(1,9),故选B.答案:B5.若函数f (x )=x 2+ax +1的定义域为实数集R ,则实数a 的取值范围为( ) A .(-2,2)B .(-∞,-2)∪(2,+∞)C .(-∞,-2]∪[2,+∞)D .[-2,2]解析:函数的定义域为R 等价于对∀x ∈R ,x 2+ax +1≥0,令f (x )=x 2+ax +1,结合二次函数的图象(图略),只需Δ=a 2-4≤0即可,解得实数a 的取值范围为[-2,2],故选D.答案:D6.(2015·陕西二模)若函数f (x )=⎩⎪⎨⎪⎧lg x ,x >01-x ,x ≤0,则f (f (-99))=________.解析:f (-99)=1+99=100,所以f (f (-99))=f (100)=lg 100=2. 答案:27.函数y =f (x )的定义域为[-2,4],则函数g (x )=f (x )+f (-x )的定义域为________.解析:由题意知⎩⎪⎨⎪⎧-2≤x ≤4,-2≤-x ≤4,解得-2≤x ≤2.答案:[-2,2]8.具有性质:f ⎝⎛⎭⎫1x =-f (x )的函数,我们称为满足“倒 负”变换的函数.下列函数: ①y =x -1x ;②y =x +1x ;③y =⎩⎪⎨⎪⎧x ,0<x <1,0,x =1,-1x ,x >1.其中满足“倒负”变换的函数是________.解析:对于①,f (x )=x -1x ,f ⎝⎛⎭⎫1x =1x-x =-f (x ),满足题意;对于②,f ⎝⎛⎭⎫1x =1x +11x =f (x )≠-f (x ),不满足题意;对于③,f ⎝⎛⎭⎫1x =⎩⎪⎨⎪⎧1x ,0<1x<1,0,1x =1,-x ,1x >1,即f ⎝⎛⎭⎫1x =⎩⎪⎨⎪⎧1x,x >1,0,x =1,-x ,0<x <1.故f ⎝⎛⎭⎫1x =-f (x ),满足题意.答案:①③ 9.已知f (x )=x 2-1,g (x )=⎩⎪⎨⎪⎧x -1,x >0,2-x ,x <0.(1)求f (g (2))和g (f (2))的值; (2)求f (g (x ))的解析式.解:(1)由已知,g (2)=1,f (2)=3, ∴f (g (2))=f (1)=0,g (f (2))=g (3)=2. (2)当x >0时,g (x )=x -1, 故f (g (x ))=(x -1)2-1=x 2-2x ; 当x <0时,g (x )=2-x ,故f (g (x ))=(2-x )2-1=x 2-4x +3;∴f (g (x ))=⎩⎪⎨⎪⎧x 2-2x , x >0,x 2-4x +3, x <0.10.动点P 从单位正方形ABCD 的顶点A 出发,顺次经过B ,C ,D 绕边界一周,当x 表示点P 的行程,y 表示P A 的长时,求y 关于x 的解析式,并求f ⎝⎛⎭⎫52的值.解:当P 点在AB 上运动时,y =x (0≤x ≤1); 当P 点在BC 上运动时,y =12+(x -1)2=x 2-2x +2(1<x ≤2);当P 点在CD 上运动时,y =12+(3-x )2=x 2-6x +10(2<x ≤3); 当P 点在DA 上运动时,y =4-x (3<x ≤4); 综上可知,y =f (x )=⎩⎪⎨⎪⎧x ,0≤x ≤1,x 2-2x +2,1<x ≤2,x 2-6x +10,2<x ≤3,4-x ,3<x ≤4.∴f ⎝⎛⎭⎫52=52.B 组 高考题型专练1.(2014·高考山东卷)函数f (x )=1log 2x -1的定义域为( )A .(0,2)B .(0,2]C .(2,+∞)D .[2,+∞)解析:∵f (x )有意义,∴⎩⎪⎨⎪⎧ log 2x -1>0,x >0.∴x >2,∴f (x )的定义域为(2,+∞).答案:C2.(2015·高考湖北卷)函数f (x )=4-|x |+lg x 2-5x +6x -3的定义域为( )A .(2,3)B .(2,4]C .(2,3)∪(3,4]D .(-1,3)∪(3,6]解析:依题意知,⎩⎪⎨⎪⎧ 4-|x |≥0x 2-5x +6x -3>0,即⎩⎪⎨⎪⎧ -4≤x ≤4x >2且x ≠3,即函数的定义域为(2,3)∪(3,4].答案:C3.(2015·高考山东卷)设函数f (x )=⎩⎪⎨⎪⎧ 3x -b ,x <1,2x ,x ≥1.若f ⎝⎛⎭⎫f ⎝⎛⎭⎫56=4,则b =() A .1 B.78 C.34 D.12解析:f ⎝⎛⎭⎫f ⎝⎛⎭⎫56=f ⎝⎛⎭⎫3×56-b =f ⎝⎛⎭⎫52-b .当52-b <1,即b >32时,3×⎝⎛⎭⎫52-b -b =4,解得b =78(舍).当52-b ≥1,即b ≤32时,252-b =4,解得b =12.故选D.答案:D4.(2015·高考浙江卷)存在函数f (x )满足:对于任意x ∈R 都有( )A .f (sin 2x )=sin xB .f (sin 2x )=x 2+xC .f (x 2+1)=|x +1|D .f (x 2+2x )=|x +1|解析:本题主要考查函数的概念,即对于任一变量x 有唯一的y 与之相对应.对于A ,当x =π4或5π4时,sin 2x 均为1,而sin x 与x 2+x 此时均有两个值,故A 、B 错误;对于C ,当x =1或-1时,x 2+1=2,而|x +1|有两个值,故C 错误,故选D.答案:D5.(2014·高考四川卷)设f (x )是定义在R 上的周期为2的函数,当x ∈[-1,1)时,f (x )=⎩⎪⎨⎪⎧-4x 2+2,-1≤x <0,x ,0≤x <1,则f ⎝⎛⎭⎫32=________. 解析:∵f (x )的周期为2,∴f ⎝⎛⎭⎫32=f ⎝⎛⎭⎫32-2=f ⎝⎛⎭⎫-12.又∵当x ∈[-1,0)时,f (x )=-4x 2+2,∴f ⎝⎛⎭⎫-12=-4×⎝⎛⎭⎫-122+2=1. 答案:1。
高三数学人教版A版数学(理)高考一轮复习教案 定积分与微积分基本定理
第十三节 定积分与微积分基本定理积分的运算及应用(1)了解定积分的实际背景,了解定积分的基本思想,了解定积分的概念. (2)了解微积分基本定理的含义.知识点一 定积分 1.定积分的性质(1)⎠⎛a bkf (x )d x =k⎠⎛a bf (x )d x (k 为常数).(2)⎠⎛a b [f (x )±g (x )]d x =⎠⎛a b f (x )d x ±⎠⎛a bg (x )d x .(3)⎠⎛a bf (x )d x =⎠⎛a cf (x )d x +⎠⎛c bf (x )d x (其中a <c <b ). 2.定积分的几何意义(1)当函数f (x )在区间[a ,b ]上恒为正时,定积分⎠⎛a bf (x )d x 的几何意义是由直线x =a ,x =b (a ≠b ),y =0和曲线y =f (x )所围成的曲边梯形的面积(图(1)中阴影部分).(2)一般情况下,定积分⎠⎛a bf (x )d x 的几何意义是介于x 轴、曲线f (x )以及直线x =a 、x =b 之间的曲边梯形面积的代数和(图(2)中阴影所示),其中在x 轴上方的面积等于该区间上的积分值,在x 轴下方的面积等于该区间上积分值的相反数.易误提醒 (1)若积分式子中有几个不同的参数,则必须先分清谁是被积变量. (2)定积分式子中隐含的条件是积分上限大于积分下限.(3)定积分的几何意义是曲边梯形的面积,但要注意:面积非负,而定积分的结果可以为负.[自测练习]1.设f (x )=⎩⎪⎨⎪⎧x 2 (x ≥0),2x (x <0),则⎠⎛1-1f (x )d x 的值是( ) A.⎠⎛1-1x 2d x B.⎠⎛1-12xd x C.⎠⎛0-1x 2d x +⎠⎛102x d x D.⎠⎛0-12x d x +⎠⎛10x 2d x解析:由分段函数的定义及积分运算性质,∴⎠⎛1-1f (x )d x =⎠⎛0-12xd x +⎠⎛10x 2d x . 答案:D2.已知f (x )是偶函数,且⎠⎛06f (x )d x =8,则⎠⎛6-6f (x )d x =( ) A .0 B .4 C .6D .16解析:因为函数f (x )是偶函数,所以函数f (x )在y 轴两侧的图象对称,所以⎠⎛6-6f (x )d x =⎠⎛0-6f (x )d x +⎠⎛06f (x )d x =2⎠⎛06f (x )d x =16.答案:D知识点二 微积分基本定理如果f (x )是区间[a ,b ]上的连续函数,并且F ′(x )=f (x ).那么⎠⎛a bf (x )d x =F (b )-F (a ).这个结论叫作微积分基本定理,又叫作牛顿—莱布尼兹公式.为了方便,常把F (b )-F (a )记成F (x )| b a ,即⎠⎛a bf (x )d x =F (x )| b a =F (b )-F (a ).必备方法 运用微积分基本定理求定积分的方法: (1)对被积函数要先化简,再求积分.(2)求被积函数为分段函数的定积分,依据定积分“对区间的可加性”,分段积分再求和. (3)对于含有绝对值符号的被积函数,要先去掉绝对值号再求积分. (4)注意用“F ′(x )=f (x )”检验积分的对错.[自测练习]3.设a =⎠⎛01x -13d x ,b =1-⎠⎛01x 12d x ,c =⎠⎛01x 3d x ,则a ,b ,c 的大小关系为( )A .a >b >cB .b >a >cC .a >c >bD .b >c >a解析:a =⎠⎛01x -13d x =32x 23| 10=32, b =1-⎠⎛01x 12d x =1-23x 32| 10=13, c =⎠⎛01x 3d x =14x 4| 10=14,因此a >b >c ,故选A. 答案:A4.由曲线y =x 2,y =x 3围成的封闭图形的面积为( ) A.112 B.14 C.13D.712解析:由⎩⎪⎨⎪⎧ y =x 2,y =x 3得⎩⎪⎨⎪⎧ x =0,y =0或⎩⎪⎨⎪⎧x =1,y =1.结合图形知(图略)所求封闭图形的面积为⎠⎛01(x 2-x 3)d x =⎝⎛⎭⎫13x 3-14x 4| 10=112,故选A. 答案:A考点一 定积分的计算|1.定积分⎠⎛039-x 2d x 的值为( ) A .9π B .3π C.94π D.92π 解析:由定积分的几何意义知,⎠⎛039-x 2d x 是由曲线y =9-x 2,直线x =0,x =3,y =0围成的封闭图形的面积,故⎠⎛039-x 2d x =π·324=9π4,故选C.答案:C2.(2016·临沂模拟)若∫π20(sin x +a cos x )d x =2,则实数a 等于( ) A .-1 B .1 C. 3D .- 3解析:∵(a sin x -cos x )′=sin x +a cos x . ∴∫π20(sin x +a cos x )d x =(a sin x -cos x )⎪⎪π20 =⎝⎛⎭⎫a sin π2-cos π2-(a sin 0-cos 0)=a +1=2. ∴a =1. 答案:B3.(2015·西安模拟)已知A =⎠⎛03|x 2-1|d x ,则A =________.解析:A =⎠⎛03|x 2-1|d x =⎠⎛01(1-x 2)d x +⎠⎛13(x 2-1)d x =⎝⎛⎭⎫x -13x 3| 10+⎝⎛⎭⎫13x 3-x | 31=223. 答案:223定积分计算的三种方法定义法、几何意义法和微积分基本定理法,其中利用微积分基本定理是最常用的方法,若被积函数有明显的几何意义,则考虑用几何意义法,定义法太麻烦,一般不用.考点二 利用定积分求平面图形的面积|设抛物线C :y =x 2与直线l :y =1围成的封闭图形为P ,则图形P 的面积S 等于( )A .1 B.13 C.23D.43[解析] 由⎩⎪⎨⎪⎧y =x 2,y =1,得x =±1.如图,由对称性可知,S =2()1×1-⎠⎛01x 2d x =2⎝⎛⎭⎫1×1-13x 3| 10=43,选D.[答案] D利用定积分求平面图形面积的三个步骤(1)画图象:在直角坐标系内画出大致图象.(2)确定积分上、下限:借助图象的直观性求出交点坐标,确定积分上限和下限. (3)用牛顿-莱布尼茨公式求面积:将曲边多边形的面积表示成若干定积分的和,计算定积分,写出结果.1.(2015·衡中三模)由曲线y =2-x 2,直线y =x 及x 轴所围成的封闭图形(图中的阴影部分)的面积是________.解析:把阴影部分分成两部分求面积. S =S 1+S 2=⎠⎛0-2(2-x 2)d x +⎠⎛01(2-x 2-x )d x=⎝⎛⎭⎫2x -x 33| 0-2+⎝⎛⎭⎫2x -x 33-x 22| 10 =22-(2)33+2-13-12=423+76. 答案:423+76考点三 定积分物理意义的应用|一物体做变速直线运动,其v -t 曲线如图所示,则该物体在12s ~6 s 间的运动路程为________.[解析] 由图象可知,v (t )=⎩⎪⎨⎪⎧2t ,0≤t <1,2,1≤t <3,13t +1,3≤t ≤6,所以12s ~6 s 间的运动路程s =⎠⎜⎛126 v (t )= ⎠⎜⎛1262t d t +⎠⎛132d t +⎠⎛36⎝⎛⎭⎫13t +1d t=36111322149264t t t ⎛⎫+++=⎪⎝⎭. [答案]494利用定积分解决变速直线运动问题和变力做功问题时,关键是求出物体做变速直线运动的速度函数和变力与位移之间的函数关系,确定好积分区间,得到积分表达式,再利用微积分基本定理计算即得所求.2.一物体在力F (x )=⎩⎪⎨⎪⎧10,(0≤x ≤2),3x +4,(x >2),(单位:N)的作用下沿与力F (x )相同的方向运动了4米,力F (x )做功为( )A .44 JB .46 JC .48 JD .50 J解析:力F (x )做功为⎠⎛0210d x +⎠⎛24(3x +4)d x=10x | 20+⎝⎛⎭⎫32x 2+4x | 42 =20+26=46. 答案:B5.混淆图形面积与定积分关系致误【典例】 已知函数y =f (x )的图象是折线段ABC ,其中A (0,0),B ⎝⎛⎭⎫12,5,C (1,0).函数y =xf (x )(0≤x ≤1)的图象与x 轴围成的图形的面积为________.[解析] 由题意可得f (x )=⎩⎨⎧10x ,0≤x ≤12,10-10x ,12<x ≤1,所以y =xf (x )=⎩⎨⎧10x 2,0≤x ≤12,10x -10x 2,12<x ≤1与x 轴围成图形的面积为120⎰10x 2d x +112⎰(10x -10x 2)d x =103x 3112012231053x x ⎛⎫+ ⎪⎝⎭=54. [答案] 54[易误点评] (1)本题易写错图形面积与定积分间的关系而导致解题错误.(2)本题易弄错积分上、下限而导致解题错误,实质是解析几何的相关知识和运算能力不够致错.[防范措施] 解决利用定积分求平面图形的面积问题时,应处理好以下两个问题: (1)熟悉常见曲线,能够正确作出图形,求出曲线交点,必要时能正确分割图形.(2)准确确定被积函数和积分变量.[跟踪练习] (2015·洛阳期末)函数f (x )=⎩⎪⎨⎪⎧x +1,-1≤x <0e x ,0≤x ≤1的图象与直线x =1及x 轴所围成的封闭图形的面积为________.解析:由题意知,所求面积为⎠⎛0-1(x +1)d x +⎠⎛01e x d x =⎝⎛⎭⎫12x 2+x | 0-1+e x | 10=-⎝⎛⎭⎫12-1+(e -1)=e -12.答案:e -12A 组 考点能力演练1.已知t >0,若⎠⎛0t(2x -2)d x =8,则t =( ) A .1 B .-2 C .-2或4D .4解析:由⎠⎛0t(2x -2)d x =8得(x 2-2x )| t0=t 2-2t =8,解得t =4或t =-2(舍去),故选D.答案:D2.(2015·青岛模拟)设f (x )=⎩⎪⎨⎪⎧x 2,x ∈[0,1],1x ,x ∈(1,e](其中e 为自然对数的底数),则⎠⎛0e f (x )d x的值为( )A.43 B.54 C.65D.76解析:⎠⎛0ef (x )d x =⎠⎛01f (x )d x +⎠⎛1ef (x )d x =⎠⎛01x 2d x +⎠⎛1e1x d x =x 33| 10+ln x | e1=13+ln e =43,故选A.答案:A3.(2016·武汉模拟)设a =⎠⎛12(3x 2-2x )d x ,则⎝⎛⎭⎫ax 2-1x 6的展开式中的第4项为( ) A .-1 280x 3 B .-1 280C .240D .-240解析:本题考查定积分的计算与二项式定理.依题意得a =(x 3-x 2)| 21=4,二项式⎝⎛⎭⎫4x 2-1x 6的展开式的第四项是T 4=C 36·(4x 2)3·⎝⎛⎭⎫-1x 3=-1 280x 3,故选A. 答案:A4.如图所示,设D 是图中边长分别为1和2的矩形区域,E 是D 内位于函数y =1x(x >0)图象下方的区域(阴影部分),从D 内随机取一点M ,则点M 取自E 内的概率为( )A.ln 22B.1-ln 22C.1+ln 22D.2-ln 22解析:本题考查定积分的计算与几何概率的意义.依题意,题中的矩形区域的面积是1×2=2,题中的阴影区域的面积等于2×12+eq \a\vs4\al(\i\in(1xd x =1+ln x eq \b\lc\|\rc\(\a\vs4\al\co1(\o\al(1,=1+ln 2,因此所求的概率等于1+ln 22,故选C.答案:C5.已知数列{a n }是等差数列,且a 2 013+a 2 015=⎠⎛024-x 2d x ,则a 2 014(a 2 012+2a 2 014+a 2016)的值为()A .π2B .2πC .πD .4π2解析:⎠⎛024-x 2d x 表示圆x 2+y 2=4在第一象限的面积,即⎠⎛024-x 2d x =π,又数列{a n }是等差数列,所以a 2 013+a 2 015=a 2 012+a 2 016=2a 2 014,所以得a 2 014·(a 2 012+2a 2 014+a 2 016)=π2×2π=π2,故选A.答案:A6.(2015·南昌模拟)直线y =13x 与抛物线y =x -x 2所围图形的面积等于________.解析:由⎩⎪⎨⎪⎧y =13x ,y =x -x 2,解得x =0或23,所以所求面积为∫230⎝⎛⎭⎫x -x 2-13x d x =∫230⎝⎛⎭⎫23x -x 2d x=⎝⎛⎭⎫13x 2-13x 3⎪⎪230=13×⎝⎛⎭⎫232-13×⎝⎛⎭⎫233-0=481. 答案:4817.(2015·长春二模)已知a >0且曲线y =x 、x =a 与y =0所围成的封闭区域的面积为a 2,则a =________.解析:由题意a 2=⎠⎛0ax d x =23x 32| a 0,所以a =49.答案:498.已知a ∈⎣⎡⎦⎤0,π2,则⎠⎛0a (cos x -sin x )d x 取最大值时,a =________.解析:⎠⎛0a(cos x -sin x )d x =(sin x +cos x )| a 0=sin a +cos a -1=2sin ⎝⎛⎭⎫a +π4-1.∵a ∈⎣⎡⎦⎤0,π2,∴当a =π4时,[]⎠⎛0a(cos x -sin x )d x max =2-1.答案:π49.求曲线y =x ,y =2-x ,y =-13x 所围成图形的面积.解:如图,由⎩⎪⎨⎪⎧y =x ,y =2-x ,得交点A (1,1);由⎩⎪⎨⎪⎧y =2-x ,y =-13x ,得交点B (3,-1).故所求面积S =⎠⎛01⎝⎛⎭⎫x +13x d x +⎠⎛13⎝⎛⎭⎫2-x +13x d x =⎝⎛⎭⎫23x 32+16x 2| 10+⎝⎛⎭⎫2x -13x 2| 31=23+16+43=136. 10.汽车以54 km /h 的速度行驶,到某处需要减速停车,设汽车以等加速度-3 m/s 2刹车,问从开始刹车到停车,汽车走了多远?解:由题意,得v 0=54 km /h =15 m/s. 所以v (t )=v 0+at =15-3t . 令v (t )=0,得15-3t =0.解得t =5.所以开始刹车5 s 后,汽车停车. 所以汽车由刹车到停车所行驶的路程为 s =⎠⎛05v (t )d t =⎠⎛05(15-3t )d t =⎝⎛⎭⎫15t -32t 2| 50=37.5(m). 故汽车走了37.5 m.B 组 高考题型专练1.(2014·高考陕西卷)定积分⎠⎛01(2x +e x )d x 的值为( )A .e +2B .e +1C .eD .e -1解析:⎠⎛01(2x +e x )d x =(x 2+e x )| 10=1+e 1-1=e.答案:C2.(2014·高考江西卷)若f (x )=x 2+2⎠⎛01f (x )d x ,则⎠⎛01f (x )d x =( )A .-1B .-13C.13D .1解析:令⎠⎛01f (x )d x =m ,则f (x )=x 2+2m ,所以⎠⎛01f (x )d x =⎠⎛01(x 2+2m )d x =⎝⎛⎭⎫13x 3+2mx | 10=13+2m =m ,解得m =-13,故选B. 答案:B3.(2013·高考湖北卷)一辆汽车在高速公路上行驶,由于遇到紧急情况而刹车,以速度v (t )=7-3t +251+t(t 的单位:s ,v 的单位:m/s)行驶至停止.在此期间汽车继续行驶的距离(单位:m)是( )A .1+25ln 5B .8+25ln113C .4+25ln 5D .4+50ln 2解析:由v (t )=0得t =4.故刹车距离为 s =⎠⎛04v (t )d t =⎠⎛04⎝ ⎛⎭⎪⎫7-3t +251+t d t=⎣⎡⎦⎤-32t 2+7t +25ln (1+t )| 40=4+25ln 5.答案:C4.(2014·高考山东卷)直线y =4x 与曲线y =x 3在第一象限内围成的封闭图形的面积为( )A .2 2B .4 2C .2D .4解析:由⎩⎪⎨⎪⎧y =4x ,y =x 3得x =0或x =2或x =-2(舍). ∴S =⎠⎛02(4x -x 3)d x =⎝⎛⎭⎫2x 2-14x 4| 20=4. 答案:D5.(2015·高考天津卷)曲线y =x 2与直线y =x 所围成的封闭图形的面积为________. 解析:由题意,可得封闭图形的面积为⎠⎛01(x -x 2)d x =⎝⎛⎭⎫12x 2-13x 3| 10=12-13=16. 答案:166.(2015·高考陕西卷)如图,一横截面为等腰梯形的水渠,因泥沙沉积,导致水渠截面边界呈抛物线型(图中虚线所示),则原始的最大流量与当前最大流量的比值为________.解析:建立如图所示的直角坐标系,可设抛物线的方程为x 2=2py (p >0),由图易知(5,2)在抛物线上,可得p =254,抛物线方程为x 2=252y ,所以当前最大流量对应的截面面积为2⎠⎛05⎝⎛⎭⎫2-225x 2d x =403,原始的最大流量对应的截面面积为2×(6+10)2=16,所以原始的最大流量与当前最大流量的比值为16403=1.2. 答案:1.2。
高三数学模拟试卷(12)(含解析)新人教A版-新人教A版高三全册数学试题
某某省某某市X家港市梁丰高级中学2015届高考数学模拟试卷(12)一、填空题(共14小题,每小题3分,满分41分)1.设集合M={x|x2﹣x﹣2≤0},N={y|y=x2,﹣1≤x≤2},则M∩N=__________.2.函数的定义域是__________.3.已知幂函数y=f(x)的图象过点,则=__________.4.已知函数f(x)=ax2+(b﹣3)x+3,x∈[2a﹣3,4﹣a]是偶函数,则a+b=__________.5.若存在实数x∈[1,2]满足2x2﹣ax+2>0,则实数a的取值X围是__________.6.设函数f(x)=,则函数g(x)=f(x)﹣x的零点的个数为__________.7.若函数y=的定义域为R,则实数m的取值X围是__________.8.已知函数f(x)为R上的奇函数,当x≥0时,f(x)=x(x+1).若f(a)=﹣2,则实数a=__________.9.定义min{a,b,c}为a,b,c中的最小值,设f(x)=min{2x+4,x2+1,5﹣3x},则f (x)的最大值是__________.10.=__________.11.已知a,b为正实数,函数f(x)=ax3+bx+2x在[0,1]上的最大值为4,则f(x)在[﹣1,0]上的最小值为__________.12.已知函数若f(2﹣a2)>f(a),则实数a的取值X围是__________.13.若实数a,b,c满足lg(10a+10b)=a+b,lg(10a+10b+10c)=a+b+c,则c的最大值是__________.14.已知函数当t∈[0,1]时,f(f(t))∈[0,1],则实数t的取值X围是__________.二、解答题(共3小题,满分20分)15.已知集合A={x|(x﹣2)(x﹣3a﹣1)<0},y=lg的定义域为集合B.(1)若A=B,某某数a;(2)是否存在实数a使得A∩B=φ,若存在,则求出实数a的值,若不存在,说明理由.16.已知函数f(x)=,其中b∈R.(Ⅰ)求f(x)的单调区间;(Ⅱ)设b>0.若∃x∈[,],使f(x)≥1,求b的取值X围.17.某市近郊有一块大约500m×500m的接近正方形的荒地,地方政府准备在此建一个综合性休闲广场,首先要建设如图所示的一个矩形场地,其中总面积为3000平方米,其中阴影部分为通道,通道宽度为2米,中间的三个矩形区域将铺设塑胶地面作为运动场地(其中两个小场地形状相同),塑胶运动场地占地面积为S平方米.(1)分别用x表示y和S的函数关系式,并给出定义域;(2)怎样设计能使S取得最大值,并求出最大值.某某省某某市X家港市梁丰高级中学2015届高考数学模拟试卷(12)一、填空题(共14小题,每小题3分,满分41分)1.设集合M={x|x2﹣x﹣2≤0},N={y|y=x2,﹣1≤x≤2},则M∩N=[0,2].考点:交集及其运算.专题:集合.分析:先求出x2﹣x﹣2≤0的解集M,由二次函数的性质求出集合N,再由交集的运算求出M∩N.解答:解:由x2﹣x﹣2≤0得,﹣1≤x≤2,则集合M=[﹣1,2],因为y=x2,﹣1≤x≤2,所以0≤y≤4,则N=[0,4],所以M∩N=[0,2],故答案为[0,2].点评:本题考查交集及其运算,以及一元二次不等式、一元二次函数的性质,属于基础题.2.函数的定义域是{x|x>﹣1且x≠1}.考点:函数的定义域及其求法.专题:计算题.分析:欲求此函数的定义域,可由x+1>0,且1﹣x≠0,解出x的取值X围,最终得出答案.解答:解:∵x+1>0,且1﹣x≠0,∴x>﹣1且x≠1,故答案为:{x|x>﹣1且x≠1}.点评:本题考查的是求定义域时要注意对数函数的真数大于0,并且分母不能是0的问题.3.已知幂函数y=f(x)的图象过点,则=2.考点:幂函数的性质.专题:函数的性质及应用.分析::设幂函数y=f(x)的解析式为 f(x)=xα,根据幂函数y=f(x)的图象过点求出α的值,可得函数的解析式,从而求得的值.解答:解:设幂函数y=f(x)的解析式为 f(x)=xα,由幂函数y=f(x)的图象过点可得=3α,∴α=﹣,∴f(x)=,∴==2,故答案为 2.点评:本题主要考查幂函数的定义,用待定系数法求函数的解析式,求函数的值,属于基础题.4.已知函数f(x)=ax2+(b﹣3)x+3,x∈[2a﹣3,4﹣a]是偶函数,则a+b=2.考点:二次函数的性质.专题:函数的性质及应用.分析:偶函数定义域关于原点对称,且f(﹣x)=f(x),由此即可求出a,b.解答:解:因为偶函数的定义域关于原点对称,所以2a﹣3+4﹣a=0,解得a=﹣1.由f(x)为偶函数,得f(﹣x)=f(x),即ax2﹣(b﹣3)x+3=ax2+(b﹣3)x+3,2(b﹣3)x=0,所以b=3.所以a+b=3﹣1=2.故答案为:2.点评:偶函数的定义域关于原点对称,f(﹣x)=f(x)恒成立,对于函数的奇偶性问题,往往从定义上考虑.5.若存在实数x∈[1,2]满足2x2﹣ax+2>0,则实数a的取值X围是(﹣∞,5).考点:特称命题.专题:不等式的解法及应用.分析:构造函数f(x)=2x2﹣ax+2,若存在实数x∈[1,2]满足2x2﹣ax+2>0,则f(1)>0,或f(2)>0,进而可得实数a的取值X围解答:解:令f(x)=2x2﹣ax+2若存在实数x∈[1,2]满足2x2﹣ax+2>0,则f(1)>0,或f(2)>0即4﹣a>0,或10﹣2a>0,即a<4,或a<5故a<5即实数a的取值X围是(﹣∞,5)故答案为:(﹣∞,5)点评:本题考查的知识点是特称命题,其中构造函数,将存在性问题(特称命题),转化为不等式问题是解答的关键.6.设函数f(x)=,则函数g(x)=f(x)﹣x的零点的个数为2.考点:根的存在性及根的个数判断.专题:计算题.分析:函数g(x)=f(x)﹣x的零点的个数即函数y=f(x)的图象与直线y=x的交点个数,数形结合可得答案.解答:解:函数g(x)=f(x)﹣x的零点的个数即函数y=f(x)的图象与直线y=x的交点个数,如图所示:由于函数y=f(x)的图象与直线y=x只有2个交点,故答案为 2.点评:本题主要考查方程的根的存在性及个数判断,抽象函数的应用,体现了转化与数形结合的数学思想,属于中档题.7.若函数y=的定义域为R,则实数m的取值X围是[0,12).考点:函数的定义域及其求法.专题:函数的性质及应用.分析:根据函数成立的条件,即可求出结论.解答:解:∵y=的定义域为R,∴不等式mx2+mx+3≠0,若m=0,则3≠0成立,若m≠0,则等价为判别式△=m2﹣12m<0,解得0<m<12,综上0≤m<12,故答案为:[0,12)点评:本题主要考查函数定义域的求解,要求熟练掌握常见函数成立的条件以及一元二次不等式的求解.8.已知函数f(x)为R上的奇函数,当x≥0时,f(x)=x(x+1).若f(a)=﹣2,则实数a=﹣1.考点:函数奇偶性的性质.专题:计算题.分析:由题设知,当x≥0时,f(x)不可能为负,故应求出x<0时的解析式,代入f(a)=﹣2,求a的值.解答:解:令x<0,则﹣x>0,所以f(﹣x)=﹣x(1﹣x),又f(x)为奇函数,所以当x<0时有f(x)=x(1﹣x),令f(a)=a(1﹣a)=﹣2,得a2﹣a﹣2=0,解得a=﹣1或a=2(舍去).故应埴﹣1点评:本题考点是函数奇偶性的运用,用奇偶性这一性质求对称区间上的解析式,这是函数奇偶性的一个重要应用.9.定义min{a,b,c}为a,b,c中的最小值,设f(x)=min{2x+4,x2+1,5﹣3x},则f (x)的最大值是2.考点:函数的值域.专题:新定义.分析:根据min{a,b,c}的意义,画出函数图象,观察最大值的位置,通过求函数值,可得答案.解答:解:画出y=2x+4,y=x2+1,y=5﹣3x的图象,观察图象可知,当x≤﹣1时,f(x)=2x+4,当﹣1≤x≤1时,f(x)=x2+1,当x>1时,f(x)=5﹣3x,f(x)的最大值在x=±1时取得为2,故答案为:2点评:本题考查函数的图象函数的图象、函数最值问题,利用数形结合可以很容易的得到最大值.10.=.考点:对数的运算性质.专题:计算题.分析:利用对数的运算性质,直接化简表达式,求出它的值.解答:解:==﹣故答案为:﹣点评:本题主要考查函数值的求法,以及对数的运算,11.已知a,b为正实数,函数f(x)=ax3+bx+2x在[0,1]上的最大值为4,则f(x)在[﹣1,0]上的最小值为﹣.考点:利用导数求闭区间上函数的最值.专题:计算题.分析:由a,b为正实数,知函数f(x)=ax3+bx+2x是增函数,故f(x)在[0,1]上的最大值f(1)=a+b+2=4,所以a+b=2.由此能求出f(x)在[﹣1,0]上的最小值.解答:解:∵a,b为正实数,函数f(x)=ax3+bx+2x,∴f(x)在R上是增函数,∴f(x)在[0,1]上的最大值f(1)=a+b+2=4,∴a+b=2.∴f(x)在[﹣1,0]上的最小值f(﹣1)=﹣(a+b)+2﹣1=﹣2+=﹣.∴f(x)在[﹣1,0]上的最小值是﹣.故答案为:﹣.点评:本题考查函数的单调性的应用,解题时要认真审题,仔细解答,注意挖掘题设中的隐含条件,合理地进行等价转化.12.已知函数若f(2﹣a2)>f(a),则实数a的取值X围是(﹣2,1).考点:其他不等式的解法.专题:计算题;转化思想.分析:先得到函数在定义域上是增函数,再由函数单调性定义求解.解答:解:易知函数在定义域上是增函数∴f(2﹣a2)>f(a),可转化为:2﹣a2>a解得:﹣2<a<1∴实数a的取值X围是(﹣2,1)故答案为:(﹣2,1)点评:本题主要考查函数的单调性定义在解不等式中的应用,一般来讲,抽象函数不等式,多数用单调性定义或数形结合法求解.13.若实数a,b,c满足lg(10a+10b)=a+b,lg(10a+10b+10c)=a+b+c,则c的最大值是lg.考点:其他不等式的解法;对数的运算性质.专题:计算题;函数的性质及应用;不等式的解法及应用.分析:运用对数和指数的关系,及基本不等式,可得10a+b≥2,即10a+b≥4,当且仅当a=b,取等号.对第二个等式,求出10c,再化简代入,分子常数化,即可得到c的最大值.解答:解:lg(10a+10b)=a+b,即为10a+b=10a+10b,而10a+10b≥2=2,即有10a+b≥2,即10a+b≥4,当且仅当a=b,取等号.lg(10a+10b+10c)=a+b+c,即为10a+b+c=10a+10b+10c,即10c===1+≤1+=.则c≤lg.当且仅当a=b,c取得最大值lg.故答案为:.点评:本题考查对数与指数的互化,考查指数的运算性质,以及基本不等式的运用,考查运算能力,属于中档题.14.已知函数当t∈[0,1]时,f(f(t))∈[0,1],则实数t的取值X围是.考点:函数与方程的综合运用.专题:计算题;不等式的解法及应用.分析:通过t的X围,求出f(t)的表达式,判断f(t)的X围,然后代入已知函数,通过函数的值域求出t的X围即可.解答:解:因为t∈[0,1],所以f(t)=3t∈[1,3],又函数,所以f(f(t)=,因为f(f(t))∈[0,1],所以解得:,又t∈[0,1],所以实数t的取值X围.故答案为:.点评:本题考查函数一方程的综合应用,指数与对数不等式的解法,函数的定义域与函数的值域,函数值的求法,考查计算能力.二、解答题(共3小题,满分20分)15.已知集合A={x|(x﹣2)(x﹣3a﹣1)<0},y=lg的定义域为集合B.(1)若A=B,某某数a;(2)是否存在实数a使得A∩B=φ,若存在,则求出实数a的值,若不存在,说明理由.考点:函数的定义域及其求法;交集及其运算.专题:函数的性质及应用;集合.分析:(1)由集合B非空得出a≠1,对3a+1与2的大小比较,可分①当时,②当时,③当时3种情况,利用A=B求得a的值;(2)仍分第(1)问的三种情况,化简集合A,再由条件A∩B=φ求得a的X围.解答:解:(1)由于函数的定义域是非空数集,故a≠1.①当时,A=(2,3a+1),B=(2a,a2+1),由A=B可得:,方程组无解;②当时,A=φ,A=B不可能;③当时,A=(3a+1,2),B=(2a,a2+1),由A=B可得:,∴a=﹣1.(2)①当时,A=(2,3a+1),B=(2a,a2+1),由A∩B=φ可得3a+1≤2a或a2+1≤2,又,则;②当时,A=φ,则A∩B=φ,符合题意;③当时,A=(3a+1,2),B=(2a,a2+1),由A∩B=φ可得2≤2a或a2+1≤3a+1,又,则.∴当a∈[0,1)时,A∩B=φ..点评:本题主要考查函数的定义域的求法,同时考查集合与集合之间的关系,对于含有字母的函数定义域的求法,通常要讨论.16.已知函数f(x)=,其中b∈R.(Ⅰ)求f(x)的单调区间;(Ⅱ)设b>0.若∃x∈[,],使f(x)≥1,求b的取值X围.考点:利用导数研究函数的单调性;利用导数求闭区间上函数的最值.专题:导数的综合应用.分析:(Ⅰ)分情况讨论:①当b=0时,②当b>0时,③当b<0时,然后利用导数即可求得单调区间;(Ⅱ)f(x)≥1等价于b≤﹣x2+x,g(x)=﹣x2+x,则“∃x∈[,],使得b≤﹣x2+x”等价于b小于等于g(x)在区间[,]上的最大值.解答:解:(Ⅰ)①当b=0时,f(x)=.故f(x)的单调减区间为(﹣∞,0),(0,+∞);无单调增区间.②当b>0时,f′(x)=.令f′(x)=0,得x1=,x2=﹣.f(x)和f′(x)的情况如下:x (﹣∞,﹣)﹣(﹣,)(,+∞)f′(x)﹣0 + 0 ﹣f(x)↘↗↘故f(x)的单调减区间为(﹣∞,﹣),(,+∞);单调增区间为(﹣,).③当b<0时,f(x)的定义域为D={x∈R|x≠±}.因为f′(x)=<0在D上恒成立,故f(x)的单调减区间为(﹣∞,﹣),(﹣,),(,+∞);无单调增区间.(Ⅱ)解:因为b>0,x∈[,],所以f(x)≥1等价于b≤﹣x2+x,其中x∈[,].设g(x)=﹣x2+x,g(x)在区间[,]上的最大值为g()=.则“∃x∈[,],使得b≤﹣x2+x”等价于b≤.所以b的取值X围是(0,].点评:本题考查利用导数研究函数的单调性、函数恒成立及函数在区间上的最值问题,考查学生综合运用所学知识分析问题解决问题的能力.17.某市近郊有一块大约500m×500m的接近正方形的荒地,地方政府准备在此建一个综合性休闲广场,首先要建设如图所示的一个矩形场地,其中总面积为3000平方米,其中阴影部分为通道,通道宽度为2米,中间的三个矩形区域将铺设塑胶地面作为运动场地(其中两个小场地形状相同),塑胶运动场地占地面积为S平方米.(1)分别用x表示y和S的函数关系式,并给出定义域;(2)怎样设计能使S取得最大值,并求出最大值.考点:函数模型的选择与应用.专题:应用题;压轴题.分析:(1)总面积为xy=3000,且2a+6=y,则y=,(其中6<x<500),从而运动场占地面积为S=(x﹣4)a+(x﹣6)a,代入整理即得;(2)由(1)知,占地面积S=3030﹣6x﹣=3030﹣(6x+),由基本不等式可得函数的最大值,以及对应的x的值.解答:解:(1)由已知xy=3000,∴,其定义域是(6,500).S=(x﹣4)a+(x﹣6)a=(2x﹣10)a,∵2a+6=y,∴,∴,其定义域是(6,500).(2),当且仅当,即x=50∈(6,500)时,上述不等式等号成立,此时,x=50,y=60,S max=2430.答:设计x=50m,y=60m时,运动场地面积最大,最大值为2430平方米.点评:本题以实际问题为载体,考查函数模型的构建,考查应用基本不等式求函数最值,构建函数关系式是关键,属于中档题.。
人教版数学高三期中测试精选(含答案)8
【答案】A
9.设 a, b, c 是互不相等的整数,则下列不等式中不恒成立的是( )
A.| a b || a c | | b c |
C.
|
a
b
|
a
1
b
2
B. a2
1 a2
a
1 a
D. a 3 a 1 a 2 a
【来源】上海市上海中学 2018-2019 学年高三上学期期中数学试题
x [2, 4] ,不等式 f (x) t 2 恒成立,则 t 的取值范围为__________.
【来源】山东省菏泽一中、单县一中 2016-2017 学年高二下学期期末考试数学(文)试
题 【答案】 (,10]
2x y 1 0,
12.设关于
x
,
y
的不等式组
x m 0,
表示的平面区域为 D ,若存在点
【答案】(1)见解析;(2) 2- n 2 n n2
2n
2
7x 5y 23 0
30.已知
x,y
满足条件:
x
7
y
11
0
,求:
4x y 10 0
(1) 4x 3y 的最小值; x y 1
(2) x 5 的取值范围.
【来源】上海市上海中学 2015-2016 学年高二上学期期中数学试卷
an
2n
的前
n
项和
Sn
.
【来源】江西省抚州市临川一中 2019-2020 届高三上学期第一次联合考试数学(文科)
试题
【答案】(1) an
1 2
n
;(2)
Sn
2n1
n2
n
2
.
34.已知等差数列an 的前 n 项和为 Sn , a2 a8 82 , S41 S9 .
高三数学人教版A版数学(理)高考一轮复习试题:8.1直线的倾斜角与斜率、直线方程Word版含答案
直线及其方程(1)在平面直角坐标系中,结合具体图形,确定直线位置的几何要素. (2)理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式.(3)掌握直线方程的几种形式(点斜式、两点式及一般式),了解斜截式与一次函数的关系.知识点一 直线的倾斜角与斜率 1.直线的倾斜角(1)定义:当直线l 与x 轴相交时,我们取x 轴作为基准,x 轴正向与直线l 向上方向之间所成的角α叫作直线l 的倾斜角.(2)规定:当直线l 与x 轴平行或重合时,规定它的倾斜角为0. (3)范围:直线的倾斜角α的取值范围是[0,π). 2.直线的斜率(1)定义:当直线l 的倾斜角α≠π2时,其倾斜角α的正切值tan α叫作这条斜线的斜率,斜率通常用小写字母k 表示,即k =tan_α.(2)斜率公式:经过两点P 1(x 1,y 1),P 2(x 2,y 2)(x 1≠x 2)的直线的斜率公式为k =y 2-y 1x 2-x 1.易误提醒 任意一条直线都有倾斜角,但只有与x 轴不垂直的直线才有斜率(当直线与x 轴垂直,即倾斜角为π2时,斜率不存在)[自测练习]1.若经过两点A (4,2y +1),B (2,-3)的直线的倾斜角为3π4,则y 等于( )A .-1B .-3C .0D .2解析:由k =-3-2y -12-4=tan 3π4=-1.得-4-2y =2.∴y =-3.答案:B2.如图中的直线l 1,l 2,l 3的斜率分别为k 1,k 2,k 3,则( ) A .k 1<k 2<k 3B .k 3<k 1<k 2C .k 3<k 2<k 1D .k 1<k 3<k 2解析:由题图可知k 1<0,k 2>0,k 3>0,且k 2>k 3,∴k 1<k 3<k 2. 答案:D知识点二 直线方程易误提醒 (1)利用两点式计算斜率时易忽视x 1=x 2时斜率k 不存在的情况.(2)用直线的点斜式求方程时,在斜率k 不明确的情况下,注意分k 存在与不存在讨论,否则会造成失误.(3)直线的截距式中易忽视截距均不为0这一条件,当截距为0时可用点斜式.(4)由一般式Ax +By +C =0确定斜率k 时易忽视判断B 是否为0,当B =0时,k 不存在;当B ≠0时,k =-A B.[自测练习]3.过点(-1,2)且倾斜角为30°的直线方程为( ) A.3x -3y -6+3=0 B.3x -3y +6+3=0 C.3x +3y +6+3=0 D.3x +3y -6+3=0 解析:直线斜率k =tan 30°=33,直线的点斜式方程为y -2=33(x +1), 整理得3x -3y +3+6=0,故选B. 答案:B4.已知直线l :ax +y -2-a =0在x 轴和y 轴上的截距相等,则a 的值是( ) A .1 B .-1 C .-2或-1D .-2或1解析:由题意可知a ≠0.当x =0时,y =a +2. 当y =0时,x =a +2a.∴a +2a =a +2,解得a =-2或a =1. 答案:D考点一 直线的倾斜角与斜率|1.直线x +3y +m =0(m ∈R )的倾斜角为( ) A .30° B .60° C .150°D .120°解析:∵直线的斜率k =-33,∴tan α=-33. 又0≤α<180°,∴α=150°.故选C. 答案:C2.直线l :ax +(a +1)y +2=0的倾斜角大于45°,则a 的取值范围是________.解析:当a =-1时,直线l 的倾斜角为90°,符合要求:当a ≠-1时,直线l 的斜率为-aa +1,则有-a a +1>1或-aa +1<0,解得-1<a <-12或a <-1或a >0.综上可知,实数a 的取值范围是⎝⎛⎭⎫-∞,-12∪(0,+∞).答案:⎝⎛⎭⎫-∞,-12∪(0,+∞)3.(2016·太原模拟)已知点A (2,-3),B (-3,-2),直线l 过点P (1,1)且与线段AB 有交点,则直线l 的斜率k 的取值范围为________.解析:如图,k P A =1+31-2=-4,k PB =1+21+3=34.要使直线l 与线段AB 有交点,则有k ≥34或k ≤-4.答案:(-∞,-4]∪⎣⎡⎭⎫34,+∞求倾斜角α的取值范围的一般步骤(1)求出tan α的取值范围;(2)利用三角函数的单调性,借助图象,确定倾斜角α的取值范围. 注意已知倾斜角θ的范围,求斜率k 的范围时注意下列图象的应用: 当k =tan α,α∈⎣⎡⎭⎫0,π2∪⎝⎛⎭⎫π2,π时的图象如图:考点二 直线的方程|根据所给条件求直线的方程: (1)直线过点(-4,0),倾斜角的正弦值为1010; (2)直线过点(-3,4),且在两坐标轴上的截距之和为12.[解] (1)由题设知,该直线的斜率存在,故可采用点斜式.设倾斜角为α,则sin α=1010(0<α<π), 从而cos α=±31010,则k =tan α=±13.故所求直线方程为y =±13(x +4),即x +3y +4=0或x -3y +4=0.(2)由题设知截距不为0,设直线方程为x a +y12-a =1,又直线过点(-3,4),从而-3a +412-a =1,解得a =-4或a =9.故所求直线方程为4x -y +16=0或x +3y -9=0.(1)在求直线方程时,应选择适当的形式,并注意各种形式的适用条件. (2)对于点斜式、截距式方程使用时要注意分类讨论思想的运用.求直线过点(5,10)且到原点的距离为5的直线方程.解:当斜率不存在时,所求直线方程为x -5=0,适合题意,当斜率存在时,设斜率为k , 则所求直线方程为y -10=k (x -5), 即kx -y +(10-5k )=0.由点到直线的距离公式,得|10-5k |k 2+1=5,解得k =34.故所求直线方程为3x -4y +25=0.综上知,所求直线方程为x -5=0或3x -4y +25=0.考点三 直线方程的综合应用|直线方程的综合应用是高考常考内容之一,它经常与不等式、导数、平面向量、数列等有关知识进行交汇,考查学生综合运用直线知识解决问题的能力.归纳起来常见的命题探究角度有: 1.与最值相结合问题.2.与导数的几何意义相结合问题. 3.与平面向量相结合问题. 4.与数列相结合问题. 探究一 与最值相结合问题1.(2015·高考福建卷)若直线x a +yb =1(a >0,b >0)过点(1,1),则a +b 的最小值等于( )A .2B .3C .4D .5解析:法一:因为直线x a +y b =1(a >0,b >0)过点(1,1),所以1a +1b =1,所以1=1a +1b≥21a ·1b=2ab(当且仅当a =b =2时取等号),所以ab ≥2.又a +b ≥2ab (当且仅当a =b =2时取等号),所以a +b ≥4(当且仅当a =b =2时取等号),故选C.法二:因为直线x a +y b =1(a >0,b >0)过点(1,1),所以1a +1b =1,所以a +b =(a +b )⎝⎛⎭⎫1a +1b =2+a b +ba≥2+2a b ·ba=4(当且仅当a =b =2时取等号),故选C. 答案:C探究二 与导数的几何意义相结合问题2.已知函数f (x )=x -4ln x ,则曲线y =f (x )在点(1,f (1))处的切线方程为________.解析:由f ′(x )=1-4x ,则k =f ′(1)=-3,又f (1)=1,故切线方程为y -1=-3(x -1),即3x +y -4=0.答案:3x +y -4=0探究三 与平面向量相结合问题3.在平面直角坐标平面上,OA →=(1,4),OB →=(-3,1),且OA →与OB →在直线的方向向量上的投影的长度相等,则直线l 的斜率为( )A .-14B.25 C.25或-43D.52解析:直线l 的一个方向向量可设为h =(1,k ),由题⎪⎪⎪⎪⎪⎪OA →·h |h |=⎪⎪⎪⎪⎪⎪OB →·h |h |⇒|1+4k |=|-3+k |,解得k =25或k =-43,故选C.答案:C探究四 与数列相结合问题4.已知数列{a n }的通项公式为a n =1n (n +1)(n ∈N *),其前n 项和S n =910,则直线x n +1+y n =1与坐标轴所围成三角形的面积为( )A .36B .45C .50D .55解析:由a n =1n (n +1)可知a n =1n -1n +1,∴S n =⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+⎝⎛⎭⎫13-14+…+⎝ ⎛⎭⎪⎫1n -1n +1=1-1n +1, 又知S n =910,∴1-1n +1=910,∴n =9.∴直线方程为x 10+y9=1,且与坐标轴的交点为(10,0)和(0,9),∴直线与坐标轴所围成的三角形的面积为12×10×9=45,故选B.答案:B(1)与函数相结合的问题:解决这类问题,一般是利用直线方程中的x ,y 的关系,将问题转化为关于x (或y )的某函数,借助函数的性质解决.(2)与方程、不等式相结合的问题:一般是利用方程、不等式的有关知识(如方程解的个数、根的存在问题,不等式的性质、基本不等式等)来解决.17.忽视零截距致误【典例】 设直线l 的方程为(a +1)x +y +2-a =0(a ∈R ). (1)若l 在两坐标轴上截距相等,求l 的方程; (2)若l 不经过第二象限,求实数a 的取值范围.[解] (1)当直线过原点时,该直线在x 轴和y 轴上的截距为零.∴a =2,方程即为3x +y =0. 当直线不经过原点时,截距存在且均不为0, ∴a -2a +1=a -2,即a +1=1, ∴a =0,方程即为x +y +2=0.综上,l 的方程为3x +y =0或x +y +2=0. (2)将l 的方程化为y =-(a +1)x +a -2,∴⎩⎪⎨⎪⎧ -(a +1)>0,a -2≤0或⎩⎪⎨⎪⎧-(a +1)=0,a -2≤0.∴a ≤-1. 综上可知a 的取值范围是a ≤-1.[易误点评] 本题易错点求直线方程时,漏掉直线过原点的情况.[防范措施] (1)在求与截距有关的直线方程时,注意对直线的截距是否为零进行分类讨论,防止忽视截距为零的情形,导致产生漏解.(2)常见的与截距问题有关的易误点有:“截距互为相反数”;“一截距是另一截距的几倍”等,解决此类问题时,要先考虑零截距情形,注意分类讨论思想的运用.[跟踪练习] 若直线过点P (2,1)且在两坐标轴上的截距相等,则这样的直线的条数为( ) A .1 B .2C .3D .以上都有可能解析:当截距均为零时,显然有一条;当截距不为零时,设直线方程为x +y =a ,则a =2+1=3,有一条.综上知,直线过点P (2,1)且在两坐标轴上的截距相等的直线有两条,故选B.答案:BA 组 考点能力演练1.直线l :x sin 30°+y cos 150°+1=0的斜率是( ) A.33B. 3 C .- 3D .-33解析:设直线l 的斜率为k ,则k =-sin 30°cos 150°=33.答案:A2.在等腰三角形AOB 中,AO =AB ,点O (0,0),A (1,3),点B 在x 轴的正半轴上,则直线AB 的方程为( )A .y -1=3(x -3)B .y -1=-3(x -3)C .y -3=3(x -1)D .y -3=-3(x -1)解析:因为AO =AB ,所以直线AB 的斜率与直线AO 的斜率互为相反数,所以k AB =-k OA =-3,所以直线AB 的点斜式方程为:y -3=-3(x -1).答案:D3.直线2x -my +1-3m =0,当m 变动时,所有直线都通过定点( )A.⎝⎛⎭⎫-12,3 B.⎝⎛⎭⎫12,3 C.⎝⎛⎭⎫12,-3 D.⎝⎛⎭⎫-12,-3 解析:∵(2x +1)-m (y +3)=0恒成立,∴2x +1=0,y +3=0,∴x =-12,y =-3.∴定点为⎝⎛⎭⎫-12,-3. 答案:D4.(2016·海淀一模)已知点A (-1,0),B (cos α,sin α),且|AB |=3,则直线AB 的方程为( ) A .y =3x +3或y =-3x - 3 B .y =33x +33或y =-33x -33C .y =x +1或y =-x -1D .y =2x +2或y =-2x - 2 解析:|AB |= (cos α+1)2+sin 2α=2+2cos α=3,所以cos α=12,sin α=±32,所以k AB =±33,即直线AB 的方程为y =±33(x +1),所以直线AB 的方程为y =33x +33或y=-33x -33,选B. 答案:B5.(2016·贵阳模拟)直线l 经过点A (1,2),在x 轴上的截距的取值范围是(-3,3),则其斜率的取值范围是( )A .-1<k <15B .k >1或k <12C .k >15或k <1D .k >12或k <-1解析:设直线的斜率为k ,则直线方程为y -2=k (x -1),直线在x 轴上的截距为1-2k ,令-3<1-2k<3,解不等式可得.也可以利用数形结合.选D. 答案:D6.(2016·温州模拟)直线3x -4y +k =0在两坐标轴上的截距之和为2,则实数k =________. 解析:令x =0,得y =k 4;令y =0,得x =-k 3.则有k 4-k3=2,所以k =-24.答案:-247.设点A (-1,0),B (1,0),直线2x +y -b =0与线段AB 相交,则b 的取值范围是________.解析:b 为直线y =-2x +b 在y 轴上的截距,如图,当直线y =-2x +b过点A (-1,0)和点B (1,0)时,b 分别取得最小值和最大值.∴b 的取值范围是[-2,2]. 答案:[-2,2]8.一条直线经过点A (-2,2),并且与两坐标轴围成的三角形的面积为1,则此直线的方程为________________________________________________________________________.解析:设直线的斜率为k (k ≠0), 则直线方程为y -2=k (x +2), 由x =0知y =2k +2. 由y =0知x =-2k -2k.由12|2k +2|⎪⎪⎪⎪⎪⎪-2k -2k =1. 得k =-12或k =-2.故直线方程为x +2y -2=0或2x +y +2=0. 答案:x +2y -2=0或2x +y +2=09.已知直线l 过点P (3,2),且与x 轴、y 轴的正半轴分别交于A ,B两点,如图所示,求△ABO 的面积的最小值及此时直线l 的方程.解:法一:设直线方程为x a +yb =1(a >0,b >0),点P (3,2)代入得3a +2b =1≥26ab, 得ab ≥24,从而S △ABO =12ab ≥12,当且仅当3a =2b 时等号成立,这时k =-b a =-23,从而所求直线方程为2x +3y -12=0.法二:依题意知,直线l 的斜率k 存在且k <0. 则直线l 的方程为y -2=k (x -3)(k <0), 且有A ⎝⎛⎭⎫3-2k ,0,B (0,2-3k ), ∴S △ABO =12(2-3k )⎝⎛⎭⎫3-2k =12⎣⎢⎡⎦⎥⎤12+(-9k )+4(-k ) ≥12⎣⎢⎡⎦⎥⎤12+2(-9k )·4(-k )=12×(12+12)=12.当且仅当-9k =4-k ,即k =-23时,等号成立,即△ABO 的面积的最小值为12. 故所求直线的方程为2x +3y -12=0.10.已知△ABC 的三个顶点分别为A (-3,0),B (2,1),C (-2,3),求: (1)BC 边所在直线的方程;(2)BC 边上中线AD 所在直线的方程; (3)BC 边的垂直平分线DE 的方程.解:(1)因为直线BC 经过B (2,1)和C (-2,3)两点,由两点式得BC 的方程为y -13-1=x -2-2-2, 即x +2y -4=0.(2)设BC 边的中点D 的坐标为(x ,y ), 则x =2-22=0,y =1+32=2.BC 边的中线AD 过点A (-3,0),D (0,2)两点,由截距式得AD 所在直线方程为x -3+y2=1,即2x -3y +6=0.(3)由(1)知,直线BC 的斜率k 1=-12,则直线BC 的垂直平分线DE 的斜率k 2=2. 由(2)知,点D 的坐标为(0,2).由点斜式得直线DE 的方程为y -2=2(x -0),即2x -y +2=0.B 组 高考题型专练1.(2014·高考安徽卷)过点P (-3,-1)的直线l 与圆x 2+y 2=1有公共点,则直线l 的倾斜角的取值范围是( )A.⎝⎛⎦⎤0,π6B.⎝⎛⎦⎤0,π3 C.⎣⎡⎦⎤0,π6 D.⎣⎡⎦⎤0,π3解析:法一:如图,过点P 作圆的切线P A ,PB ,切点为A ,B .由题意知OP =2,OA =1,则sin α=12,所以α=30°,∠BP A =60°.故直线l 的倾斜角的取值范围是⎣⎡⎦⎤0,π3.选D. 法二:设过点P 的直线方程为y =k (x +3)-1,则由直线和圆有公共点知|3k -1|1+k 2≤1.解得0≤k ≤ 3.故直线l 的倾斜角的取值范围是⎣⎡⎦⎤0,π3. 答案:D2.(2014·高考江苏卷)在平面直角坐标系xOy 中,若曲线y =ax 2+bx (a ,b 为常数)过点P (2,-5),且该曲线在点P 处的切线与直线7x +2y +3=0平行,则a +b 的值是________.解析:∵y =ax 2+b x ,∴y ′=2ax -bx2,由题意可得⎩⎨⎧4a +b2=-5,4a -b 4=-72解得⎩⎪⎨⎪⎧a =-1,b =-2.∴a +b =-3. 答案:-33.(2014·高考四川卷)设m ∈R ,过定点A 的动直线x +my =0和过定点B 的动直线mx -y -m +3=0交于点P (x ,y ),则|P A |·|PB |的最大值是________.解析:易知A (0,0),B (1,3),且P A ⊥PB ,∴|P A |2+|PB |2=|AB |2=10,∴|P A |·|PB |≤|P A |2+|PB |22=5(当且仅当|P A |=|PB |时取“=”).答案:5。
【新教材】高中数学新教材人教A版选择性必修培优练习:专题05 直线的倾斜角与斜率(学生版+解析版)
专题05 直线的倾斜角与斜率一、单选题1.(2020·四川省高二期末(理))直线x =( ) A .30B .45C .60D .902.(2019·四川省仁寿一中高二期中(文))若直线1x =的倾斜角为α,则α=( ) A .0B .3πC .2π D .π3.(2020·江苏省丹徒高中高一开学考试)直线10x y ++=的倾斜角为( )A .4πB .34π C .54π D .2π 4.(2019·江苏省扬州中学高一期中)如果()3,1A 、()2,B k -、()8,11C 在同一直线上,那么k 的值是( ) A .-6B .-7C .-8D .-95.(2019·山东省高二期中)若直线过点(2,4),(1,4+,则此直线的倾斜角是( ) A .30︒B .60︒C .120︒D .150︒6.(2019·浙江省高三期中)以下哪个点在倾斜角为45°且过点(1,2)的直线上( ) A .(﹣2,3)B .(0,1)C .(3,3)D .(3,2)7.(2020·四川省高二期末(理))已知一直线经过两点(2,4)A ,(,5)B a ,且倾斜角为135°,则a 的值为( ) A .-1B .-2C .2D .18.(2019·浙江省高二期中)直线x sin α+y +2=0的倾斜角的取值范围是( ) A .[0,π) B .3[0,][,)44πππ⋃ C .[0,]4πD .[0,][,)42πππ⋃9.(2019·内蒙古自治区高二期末(文))已知直线l 的倾斜角为α,若tan 3πα⎛⎫+= ⎪⎝⎭α=( )A .0B .2π C .56π D .π10.(2019·浙江省镇海中学高一期末)已知直线倾斜角的范围是,32ππα⎡⎫∈⎪⎢⎣⎭2,23ππ⎛⎤⎥⎝⎦,则此直线的斜率的取值范围是( ) A.⎡⎣B.(,-∞)+∞ C.⎡⎢⎣⎦D.,⎛-∞ ⎝⎦⎫+∞⎪⎪⎣⎭二、多选题11.(2020·吴江汾湖高级中学高一月考)下列说法中正确的是( ) A .若α是直线l 的倾斜角,则0180α≤< B .若k 是直线l 的斜率,则k ∈RC .任意一条直线都有倾斜角,但不一定有斜率D .任意一条直线都有斜率,但不一定有倾斜角12.(2020·江苏省苏州实验中学高一月考)有下列命题:其中错误的是( ) A .若直线的斜率存在,则必有倾斜角与之对应; B .若直线的倾斜角存在,则必有斜率与之对应; C .坐标平面上所有的直线都有倾斜角; D .坐标平面上所有的直线都有斜率.13.(2018·全国单元测试)已知直线1:10l x y --=,动直线2:(1)0()l k x ky k k R +++=∈,则下列结论错误..的是( ) A .不存在k ,使得2l 的倾斜角为90° B .对任意的k ,1l 与2l 都有公共点 C .对任意的k ,1l 与2l 都不.重合 D .对任意的k ,1l 与2l 都不垂直...三、填空题14.(2019·银川唐徕回民中学高三月考(理))已知点P (1),点Q 在y 轴上,直线PQ 的倾斜角为120°,则点Q 的坐标为_____.15.(2020·浙江省温州中学高三月考)平面直角坐标系中,直线倾斜角的范围为______,一条直线可能经过______个象限.16.(2019·浙江省效实中学高一期中)若直线斜率k ∈(-1,1),则直线倾斜角α∈________.17.(2018·山西省山西大附中高二期中(文))已知直线l 经过点()1,0P 且与以()2,1A ,()3,2B -为端点的线段AB 有公共点,则直线l 的倾斜角的取值范围为____. 四、解答题18.(2019·全国高一课时练习)已知点()1,2A ,在y 轴上求一点P ,使直线AP 的倾斜角为120︒. 19.(2019·全国高一课时练习)点(,)M x y 在函数28y x =-+的图像上,当[2,5]x ∈时,求11y x ++的取值范围.20.(2020·广东省恒大足球学校高三期末)已知直线l :320x y +-=的倾斜角为角α. (1)求tan α;(2)求sin α,cos2α的值.21.(上海市七宝中学高二期中)已知直线l 的方程为320x my -+=,其倾斜角为α. (1)写出α关于m 的函数解析式; (2)若3,34ππα⎛⎫∈ ⎪⎝⎭,求m 的取值范围.22.(2019·全国高一课时练习)经过点(0,1)P -作直线l ,若直线l 与连接(1,2)(2,1)A B -、的线段总有公共点.(1)求直线l 斜率k 的范围; (2)直线l 倾斜角α的范围;23.(上海位育中学高二期中)直角坐标系xOy 中,点A 坐标为(-2,0),点B 坐标为(4,3),点C 坐标为(1,-3),且AM t AB =(t ∈R ).(1) 若CM ⊥AB ,求t 的值;(2) 当0≤ t ≤1时,求直线CM 的斜率k 和倾斜角θ的取值范围.专题05 直线的倾斜角与斜率一、单选题1.(2020·四川省高二期末(理))直线x =( ) A .30 B .45C .60D .90【答案】D 【解析】直线x ∴其倾斜角为90. 故选:D .2.(2019·四川省仁寿一中高二期中(文))若直线1x =的倾斜角为α,则α=( ) A .0 B .3πC .2π D .π【答案】C 【解析】直线1x =与x 轴垂直,故倾斜角为2π. 故选:C.3.(2020·江苏省丹徒高中高一开学考试)直线10x y ++=的倾斜角为( ) A .4π B .34π C .54π D .2π 【答案】B 【解析】由题意,直线10x y ++=的斜率为1k =- 故3tan 14k παα==-∴= 故选:B4.(2019·江苏省扬州中学高一期中)如果()3,1A 、()2,B k -、()8,11C 在同一直线上,那么k 的值是( ) A .-6 B .-7C .-8D .-9【答案】D 【解析】(3,1)A 、(2,)B k -、(8,11)C 三点在同一条直线上,∴直线AB 和直线AC 的斜率相等, ∴11112383k --=---,解得9k =-.故选:D .5.(2019·山东省高二期中)若直线过点(2,4),(1,4+,则此直线的倾斜角是( ) A .30︒ B .60︒C .120︒D .150︒【答案】C 【解析】由题意知,直线的斜率k =即直线的倾斜角α满足tan α=, 又0180α︒︒≤<,120α︒∴=,故选:C6.(2019·浙江省高三期中)以下哪个点在倾斜角为45°且过点(1,2)的直线上( ) A .(﹣2,3) B .(0,1)C .(3,3)D .(3,2)【答案】B 【解析】由直线的倾斜角为45°,则直线的斜率为tan 451k ==,则过点()2,3-与点(1,2)的直线的斜率为321213-=---,显然点()2,3-不满足题意;过点()0,1与点(1,2)的直线的斜率为12101-=-,显然点()0,1满足题意; 过点()3,3与点(1,2)的直线的斜率为321312-=-,显然点()3,3不满足题意; 过点()3,2与点(1,2)的直线的斜率为22031-=-,显然点()2,3-不满足题意; 即点()0,1在倾斜角为45°且过点(1,2)的直线上, 故选:B.7.(2020·四川省高二期末(理))已知一直线经过两点(2,4)A ,(,5)B a ,且倾斜角为135°,则a 的值为( )A .-1B .-2C .2D .1【答案】D 【解析】由直线斜率的定义知,tan1351AB k ==-, 由直线的斜率公式可得,542AB k a -=-, 所以5412a -=--,解得1a =. 故选:D8.(2019·浙江省高二期中)直线x sin α+y +2=0的倾斜角的取值范围是( ) A .[0,π) B .3[0,][,)44πππ⋃ C .[0,]4πD .[0,][,)42πππ⋃ 【答案】B 【解析】直线xsinα+y +2=0的斜率为k =﹣sinα, ∵﹣1≤sinα≤1,∴﹣1≤k ≤1 ∴倾斜角的取值范围是[0,4π]∪[34π,π) 故选:B .9.(2019·内蒙古自治区高二期末(文))已知直线l 的倾斜角为α,若tan 3πα⎛⎫+= ⎪⎝⎭α=( ) A .0 B .2π C .56π D .π【答案】A 【解析】tan 3πα⎛⎫+== ⎪⎝⎭tan 0α=,0απ≤<,0α∴=.故选:A10.(2019·浙江省镇海中学高一期末)已知直线倾斜角的范围是,32ππα⎡⎫∈⎪⎢⎣⎭2,23ππ⎛⎤⎥⎝⎦,则此直线的斜率的取值范围是( ) A.⎡⎣B.(,-∞)+∞ C.,33⎡-⎢⎣⎦D.,3⎛-∞-⎝⎦3⎫+∞⎪⎢⎪⎣⎭【答案】B 【解析】因为直线倾斜角的范围是,32ππα⎡⎫∈⎪⎢⎣⎭2,23ππ⎛⎤ ⎥⎝⎦,又直线的斜率tan k α=,,32ππα⎡⎫∈⎪⎢⎣⎭2,23ππ⎛⎤⎥⎝⎦.故tan tan3πα≥=2tan tan3πα≤=故(,k ∈-∞)+∞. 故选:B 二、多选题11.(2020·吴江汾湖高级中学高一月考)下列说法中正确的是( ) A .若α是直线l 的倾斜角,则0180α≤< B .若k 是直线l 的斜率,则k ∈RC .任意一条直线都有倾斜角,但不一定有斜率D .任意一条直线都有斜率,但不一定有倾斜角 【答案】ABC 【解析】A. 若α是直线l 的倾斜角,则0180α≤<,是正确的;B. 若k 是直线l 的斜率,则tan k α=∈R ,是正确的;C. 任意一条直线都有倾斜角,但不一定有斜率,倾斜角为90°的直线没有斜率,是正确的;D. 任意一条直线都有斜率,但不一定有倾斜角,是错误的,倾斜角为90°的直线没有斜率. 故选:ABC12.(2020·江苏省苏州实验中学高一月考)有下列命题:其中错误的是( ) A .若直线的斜率存在,则必有倾斜角与之对应; B .若直线的倾斜角存在,则必有斜率与之对应; C .坐标平面上所有的直线都有倾斜角;D .坐标平面上所有的直线都有斜率. 【答案】BD 【解析】任何一条直线都有倾斜角,但不是任何一条直线都有斜率 当倾斜角为90︒时,斜率不存在 故选:BD13.(2018·全国单元测试)已知直线1:10l x y --=,动直线2:(1)0()l k x ky k k R +++=∈,则下列结论错误..的是( ) A .不存在k ,使得2l 的倾斜角为90° B .对任意的k ,1l 与2l 都有公共点 C .对任意的k ,1l 与2l 都不.重合 D .对任意的k ,1l 与2l 都不垂直...【答案】AC 【解析】逐一考查所给的选项:A .存在0k =,使得2l 的方程为0x =,其倾斜角为90°,故选项不正确.B 直线1:10l x y --=过定点()0,1-,直线()()()2:1010l k x ky k k R k x y x +++=∈⇒+++=过定点()0,1-,故B 是正确的.C .当12x =-时,直线2l 的方程为1110222x y --=,即10x y --=,1l 与2l 都重合,选项C 错误;D .两直线重合,则:()()1110k k ⨯++-⨯=,方程无解,故对任意的k ,1l 与2l 都不垂直,选项D 正确. 故选:AC. 三、填空题14.(2019·银川唐徕回民中学高三月考(理))已知点P (1),点Q 在y 轴上,直线PQ 的倾斜角为120°,则点Q 的坐标为_____. 【答案】(0,-2) 【解析】因为Q 在y 轴上,所以可设Q 点坐标为()0,y ,又因为tan120︒==2y =-,因此()0,2Q -,故答案为()0,2-.15.(2020·浙江省温州中学高三月考)平面直角坐标系中,直线倾斜角的范围为______,一条直线可能经过______个象限. 【答案】0, 0,2,3【解析】平面直角坐标系中,直线倾斜角的范围为[)0,π,一条直线可能经过2个象限,如过原点,或平行于坐标轴; 也可能经过3个象限,如与坐标轴不平行且不过原点时; 也可能不经过任何象限,如坐标轴; 所以一条直线可能经过0或2或3个象限. 故答案为:[)0,π,0或2或3.16.(2019·浙江省效实中学高一期中)若直线斜率k ∈(-1,1),则直线倾斜角α∈________. 【答案】[0°,45°)∪(135°,180°) 【解析】直线的斜率为负时,斜率也随着倾斜角的增大而增大由于斜率有正也有负,且直线的斜率为正时,斜率随着倾斜角的增大而增大,故α∈(0°,45°);又直线的斜率为负时,斜率也随着倾斜角的增大而增大,故α∈(135°,180°);斜率为0时,α=0°.所以α∈[0°,45°)∪(135°,180°) 故答案为[0°,45°)∪(135°,180°) 17.(2018·山西省山西大附中高二期中(文))已知直线l 经过点()1,0P 且与以()2,1A ,()3,2B -为端点的线段AB 有公共点,则直线l 的倾斜角的取值范围为____. 【答案】3[0,][,)44πππ 【解析】当直线l 过B 时,设直线l 的倾斜角为α,则3tan 14παα=-⇒=当直线l 过A 时,设直线l 的倾斜角为β,则tan 14πββ=⇒=综合:直线l 经过点()P 1,0且与以()A 2,1,()B 3,2-为端点的线段AB 有公共点时,直线l 的倾斜角的取值范围为][30,,44πππ⎡⎫⋃⎪⎢⎣⎭四、解答题18.(2019·全国高一课时练习)已知点()1,2A ,在y 轴上求一点P ,使直线AP 的倾斜角为120︒.【答案】(0,2P 【解析】设(0,)P y ,201PA y k -=-,tan120︒∴=201y --,2y ∴=P ∴点坐标为(0,2.19.(2019·全国高一课时练习)点(,)M x y 在函数28y x =-+的图像上,当[2,5]x ∈时,求11y x ++的取值范围. 【答案】15,63⎡⎤-⎢⎥⎣⎦【解析】1(1)1(1)y y x x +--=+--的几何意义是过(,),(1,1)M x y N --两点的直线的斜率,点M 在线段28,[2,5]y x x =-+∈上运动,易知当2x =时,4y =,此时(2,4)M 与(1,1)N --两项连线的斜率最大,为53; 当5x =时,2y =-,此时(5,2)M -与(1,1)N --两点连线的斜率最小,为16-.115613y x +∴-+,即HF 的取值范围为15,63⎡⎤-⎢⎥⎣⎦20.(2020·广东省恒大足球学校高三期末)已知直线l :320x y +-=的倾斜角为角α.(1)求tan α;(2)求sin α,cos2α的值.【答案】(1)13-;(2)10;45 【解析】(1)因为直线320x y +-=的斜率为13-,且直线的倾斜角为角α, 所以1tan 3α=- (2)由(1)知1tan 3α=-, 22sin 1tan cos 3sin cos 1ααααα⎧==-⎪∴⎨⎪+=⎩解得sin 10cos αα⎧=⎪⎪⎨⎪=⎪⎩sin 10cos αα⎧=-⎪⎪⎨⎪=⎪⎩, 因为,2παπ⎛⎫∈ ⎪⎝⎭,所以sin cos αα⎧=⎪⎪⎨⎪=⎪⎩224cos 22cos 1215αα⎛∴=-=⨯-= ⎝⎭21.(上海市七宝中学高二期中)已知直线l 的方程为320x my -+=,其倾斜角为α.(1)写出α关于m 的函数解析式;(2)若3,34ππα⎛⎫∈ ⎪⎝⎭,求m 的取值范围. 【答案】(1)3arctan ,0,023arctan ,0m m m m m παπ⎧>⎪⎪⎪==⎨⎪⎪+<⎪⎩;(2)3,3m .【解析】(1)直线l 的方程为320x my -+=,其倾斜角为α,当0m =时,2πα=当0m >时,则斜率3tan k m α==,3arctan m α=, 当0m <时,则斜率3tan k m α==,3arctan mαπ=+, 所以3arctan ,0,023arctan ,0m m m m m παπ⎧>⎪⎪⎪==⎨⎪⎪+<⎪⎩; (2)当,32ππα时,33,,0,3k m m ,当2πα=时,0m =, 当3,24ππα时,3,1,3,0k m m , 综上所述:3,3m .22.(2019·全国高一课时练习)经过点(0,1)P -作直线l ,若直线l 与连接(1,2)(2,1)A B -、的线段总有公共点.(1)求直线l 斜率k 的范围;(2)直线l 倾斜角α的范围;【答案】(1)11k -≤≤(2)3044ππααπ≤≤≤<或 【解析】(1)2(1)110pA k --==-- 1(1)120pB k --==- l 与线段AB 相交pA pB k k k ∴≤≤11k ∴-≤≤(2)由(1)知0tan 11tan 0αα≤≤-≤<或由于tan 0,2y x π⎡⎫=⎪⎢⎣⎭在及(,0)2π-均为减函数3044ππααπ∴≤≤≤<或 23.(上海位育中学高二期中)直角坐标系xOy 中,点A 坐标为(-2,0),点B 坐标为(4,3),点C 坐标为(1,-3),且AM t AB =(t ∈R ).(1) 若CM ⊥AB ,求t 的值;(2) 当0≤ t ≤1时,求直线CM 的斜率k 和倾斜角θ的取值范围.【答案】(1) 15t =;(2) k ∈(-∞.,-1]⋃[2,+∞],3[arctan 2,]4πθ∈ 【解析】(1)由题意可得()42,30(6,3)AB =+-=,(6,3)AM t AB t t ==, ()12,30(3,3)AC =+--=-,所以(63,33)CM AM AC t t =-=-+, ∵CM AB ⊥,则CM AB ⊥,∴()()6633334590CM AB t t t ⋅=-++=-=, ∴解得15t =; (2)由01t ≤≤,AM t AB =,可得点M 在线段AB 上,由题中A 、B 、C 点坐标,可得经过A 、C 两点的直线的斜率11k =-,对应的倾斜角为34π,经过C 、B 两点的直线的斜率22k =,对应的倾斜角为2arctan ,则由图像可知(如图所示),直线CM 的斜率k 的取值范围为:1k ≤-或2k ≥,倾斜角的范围为:3[arctan 2,]4πθ∈.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
重庆市江北中学校2012-2013学年(上)半期考试高2013级数学(理科)试题一.选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.复数z=1-i 的虚部是( )A. 1B. -1C. iD. –i 2. 己知,则=( )A.BC.D.3.1302θθ==是cos2的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件4. 函数2()log 3sin()2f x x x π=-零点的个数是 ( )A .5B .4C .3D .25. 函数y =3sin ⎝⎛⎭⎫-2x -π6(x ∈[0,π])的单调递增区间是( ) A.⎣⎡⎦⎤0,5π12 B.⎣⎡⎦⎤π6,2π3 C.⎣⎡⎦⎤π6,11π12D.⎣⎡⎦⎤2π3,11π126. 已知等差数列{}n a 的前n 项和为55,5,15n S a S ==,则数列11n n a a +⎧⎫⎨⎬⎩⎭的前100项和为( )A .100101B .99101C .99100D .1011007. 在△ABC 中,cos2B 2=a +c 2c (a 、b 、c 分别为角A 、B 、C 的对边),则△ABC 的形状为( )A .等边三角形B .直角三角形C .等腰三角形或直角三角形D .等腰直角三角形8.21(4),0()(2012)1,0x f x x f x f e dt x t ->⎧⎪=⎨+⎰≤⎪⎩若则=( )A. 0B. ln 2C. 21e + D. 1ln 2+9. 已知△ABC 为等边三角形,=2AB ,设点P ,Q 满足=AP AB λ,=(1)AQ AC λ-,R λ∈,若3=2BQ CP ⋅-,则=λ( )A .12 B.12 C.12 D.32-±10. 若,,a b c 均为单位向量,且0,()()0a b a c b c =--≤,则||a b c +-的最大值为( ) A. 3B.C. 1D.填空题(本大题共5小题,每小题5分,共25分.)11.设i 是虚数单位,则31i i-=12. 曲线y=3x -x+3在点(1,3)出的切线方程为13. 设562)(sin ),2,0(+-=∈x xy θπθ且函数 的最大值为16,则=θ 。
14. 已知a ,b ,c 为△ABC 的三个内角A ,B ,C 的对边,向量m =(1,3-), n =(cosA,sinA ).若m ⊥n ,且C c A b B a sin cos cos =+,则角B = . 15. 对于下列命题:①在△ABC 中,若sin2sin2A B =,则△ABC 为等腰三角形;②已知a , b ,c 是△ABC 的三边长,若2a =,5b =,6A π=,则△ABC 有两组解;③设2012sin3a π=,2012cos3b π=,2012tan3c π=,则a b c >>;④将函数2sin 36y x π⎛⎫=+ ⎪⎝⎭图象向左平移6π个单位,得到函数2cos 36y x π⎛⎫=+ ⎪⎝⎭图象。
其中正确命题的个数是 . 三.解答题(本大题共6小题,共75分,解答应写出文字说明,证明过程或演算步骤.)16. (本小题13分)已知数列{}n a 的前n 项和为n S ,满足22n S n n =-,且12,a a 依次是等比数列{}n b 的前两项。
(1)求数列{}n a 及{}n b 的通项公式;(2)是否存在常数0a >且1a ≠,使得数列{}log ()n a na b n N *-∈是常数列?若存在,求出a 的值;若不存在,说明理由。
17.(本小题13分) 已知向量a=(cos 23x ,sin 23x), (cos ,sin )22x x b →=-,且x ∈[0,2π].(1)求a b→→-(2)设函数)(x f =a b→→-+b a⋅,求函数)(x f 的最值及相应的x 的值。
18. (本小题满分13分)本着健康、低碳的生活理念,租自行车骑游的人越来越多。
某自行车租车点的收费标准是每车每次租车时间不超过两小时免费,超过两小时的部分每小时收费标准为2元(不足1小时的部分按1小时计算)。
有甲乙两人相互独立来该租车点租车骑游(各租一车一次),设甲、乙不超过两小时还车的概率分别为2141,;两小时以上且不超过三小时还车的概率分别为4121,;两人租车时间都不会超过四小时。
(1)求出甲、乙两人所付租车费用相同的概率;(2)设甲、乙两人所付的租车费用之和为随机变量ξ,求ξ的分布列与数学期望ξE19.(本小题满分12分)已知函数)(,21cos 2sin 23)(2R x x x x f ∈--=(1)当⎥⎦⎤⎢⎣⎡-∈125,12ππx 时,求函数)(x f 的最小值和最大值;(2)设ABC ∆的内角C B A ,,的对应边分别为c b a ,,,且0)(,3==C f c ,若向量)sin ,1(A m =与向量)sin ,2(B n =共线,求b a ,的值.20.(本小题满分12分)已知3)(,ln )(2-+-==ax x x g x x x f . (1)求函数)(x f 在)0](2,[>+t t t 上的最小值;(2)对一切)()(2),,0(x g x f x ≥+∞∈恒成立,求实数a 的取值范围;(3)证明:对一切),0(+∞∈x ,都有ex e x x 21ln ->成立.21. (本小题满分12分)设数列{}n a 的前n 项和为n S ,满足11221n n n S a ++=-+,n ∈*N ,且1a ,25a +,3a 成等差数列.(1)求1a ,23,a a 的值;(2){}2n n a +求证:数列是等比数列(3)证明:对一切正整数n ,有1211132n a a a +++<.重庆市江北中学校2012-2013学年(上)半期考试 高2013级数学(理科)试题答案 命题人 费良琼 审题人 游绍斌 一.BDACB ABDAC二.11. 1122i+ 12. 2x-y+1=0 13. 6π 14. 6π 15. (3)(4)16. (13分)解:(1)n=1,111a s ==12,43n n n n a s s n -≥=-=-1,431n n =-=43n a n ∴=- 25,a =15,5n n q b -==(2)存在a =l o g 43(1)l o g 5(4l o g 5)3n a n a aa ab n n n -=---=--+为常数列,4log 50,a a -==17. (13分)解:(1)由已知条件:20π≤≤x , 得:a b →→-=(2)33()2sin coscos sin sin 2sin +cos 22222x x x xf x x x x =+-==22132sin 2sin 12(sin )22x x x -++=--+0,0sin 12x x π≤≤∴≤≤max min 13sin ,(),sin 0sin 10,()12622x x f x x x x x f x ππ∴========即或即或18.(13分)解:(1)所付费用相同即为0,2,4元。
设付0元为8121411=⨯=P , (2)分付2元为8141212=⨯=P ,付4元为16141413=⨯=P …………………4分则所付费用相同的概率为165221=++=P P P P ……………6分(2)设甲,乙两个所付的费用之和为ξ,ξ可为0,2,4,6,81(0)811115(2)4422161111115(4)4424241611113(6)442416111(8)4416P P P P P ξξξξξ====⋅+⋅===⋅+⋅+⋅===⋅+⋅===⋅=…………………10分分布列5591784822E ξ=+++=…………………13分19.(本小题满分12分)解:(I )1)62sin()(--=πx x f …………3分12512ππ≤≤-x 32623πππ≤-≤-∴x∴⇒≤-≤-1)62sin(23πx 01)62s i n (231≤--≤--πx则)(x f 的最小值是231--,最大值是0. ……………………6分(II )()sin(2)106f C C π=--=,则1)62sin(=-πC ,0,022C C ππ<<∴<<,611626πππ<-<-∴C ,26C π∴-=2π,3C π=, ……………………………8分 向量)sin ,1(A m =与向量)sin ,2(B n =共线∴1sin 2sin A B =, 由正弦定理得,21=b a ①………10分由余弦定理得,3cos2222πab b a c -+=,即322=-+ab b a ②由①②解得2,1==b a . ………………………………12分 20. (本小题满分12分)解:(1))(x f 定义域为),0(+∞,1ln )('+=x x f ,当)(,0)('),1,0(x f x f e x <∈单调递减,当),1(+∞∈e x ,)(,0)('x f x f >单调递增. …………………………2分 ①te t t ,120<+<<无解; ……………………………3分)(,0)('),1,0(x h x h x <∈单调递减,)(,0)('),,1(x h x h x >+∞∈单调递增…… 8分)(x h 在),0(+∞上,有唯一极小值)1(h ,即为最小值.所以4)1()(min ==h x h ,因为对一切)()(2),,0(x g x f x ≥+∞∈恒成成立, 所以4)(min =≤x h a ; …………………9分(3)问题等价于证明)),0((2ln +∞∈->x e e x x x x,由(1)可知)),0((ln )(+∞∈=x x x x f 的最小值是e 1-,当且仅当e x 1=时取到, 设)),0((2)(+∞∈-=x e e x x m x ,则x e xx m -=1)(', 易得e m x m 1)1()(max -==,当且仅当1=x 时取到, …………………11分从而对一切),0(+∞∈x ,都有ex e x x 21ln ->成立. …………………12分21.(本小题12分)解:(1)1231,5,19a a a ===(2)由11221n n n s a ++=-+得1221(2)nn n s a n -=-+≥ 相减得12_2(2)n n n n a a a n +=-≥11123223(2)22n n n n n n nn n a a n a a ++++++==≥++ 221232a a +=+{}2n n a ∴+是首项为3,公比为3的等比数列(3)32n nn a =-因为1113323222n n n n n ----=⋅≥⋅=,所以1323n nn--≥,所以1113n n a -≤,于是112111111131331113323213nnn n a a a -⎛⎫- ⎪⎡⎤⎛⎫⎝⎭+++≤+++==-<⎢⎥ ⎪⎝⎭⎢⎥⎣⎦-.。