《概率统计》试卷(三)

合集下载

概率统计练习题3答案

概率统计练习题3答案

概率统计练习题3答案《概率论与数理统计》练习题3答案考试时间:120分钟题目部分,一、选择题1、设A,B,C 为随机试验中的三个事件,则A?B?C等于()。

A、A?B?C B、A?B?C C、A?B?C D、A?B?C 答案:B 2、同时抛掷3枚匀称的硬币,则恰好有两枚正面向上的概率为()。

A、B、C、0125.D、答案:D 3、设?是一个连续型变量,其概率密度为?(x),分布函数为F(x),则对于任意x 值有()。

A、P(??0)?0 B、F?(x)??(x)C、P(??x)??(x)D、P(??x)?F(x) 答案:A 4、设?,?相互独立,并服从区间[0,1]上的均匀分布则()。

A、?????服从[0,2]上的均匀分布,B、?????服从[??1,1]上的均匀分布,C、??Max{?,?}服从[0,1]上的均匀分布,D、(?,?)服从区域?答案:D5、随机变量?服从[?3, 3]上的均匀分布,则E(?)?()。

A、3 B、2?0?x?1上的均匀分布0?y?1?9 C、9D、18 2答案:A 试卷答案第 1 页6、D??4, D??1, ????,则D(3??2?)?()。

A、40B、34C、D、答案:C7、设?1,?2,???,?100服从同一分布,它们的数学期望和方差均是2,那么n??P?0???i?4n??()。

i?1??A、12n?111B、C、D、2n22nn答案:B8、设T~t(n),则T2~()。

A、t(2n) 答案:D9、设某种零件的寿命Y~N(?,?2),其中?和?均未知。

现随机抽取4只,测得寿命(单位小时)为1502,1453,1367,1650,则用矩法估计可求得2B、?2(n) C、F(n,1)D、F(1, n) ?2=___________。

?=________ __,??答案:1493,14069 10、设对统计假设H0构造了一种显著性检验方法,则下列结论错误的是()。

概率论与数理统计试卷(三)

概率论与数理统计试卷(三)

课程概率论与数理统计模拟考核试题(三)课程代码:考核方式: 闭卷考试时量:120 分钟试卷类型:B一、填空题(每题2分,共20分)1只,作不放回抽样,则取到2只P(A)=0.2,P(B)=0.8,则P(A|B)= .3、设P(A)=1/2,P(B|A)=2/5,则P(AB)= .4、设X服从参数λ=3的泊松分布,则P{X<2}=_________5、设两两独立的三个随机事件A,B,C满足ABC=φ,且P(A)=P(B)=P(C)=x,则当x= 时,P(A∪B∪C)=43.6、设随机变量X~N(1,9),则E(2X+3)= ,D(2X+3)=7、对于连续型随机向量,X与Y独立的充分必要条件是,对于任何(x,y)∈R2,有f(x,y)=8、T服从n个自由度的t分布,则T2服从自由度为的分布9、设总体X服从正态分布N(μ,σ2),其中σ2已知;而μ未知,则μ的置信度1-α(0<α<1)的置信区间为__________10、X~N(10,9)),,,(921XXX 是来自总体X的一个样本,则X服从分布。

二、单选题(在本题的每一小题的备选答案中,只有一个答案是正确的,请把你认为正确答案的题号,填入题干的括号分,共20 分)(A|B)=1,则必有()②. A⊂B④. P(AB)=P(A)2、对于任意两个随机事件A 与B ,有P(A-B)为().①②③. ④.3、将两封信随机地投入四个邮筒中,则未向前面两个邮筒投信的概率为()①A.2422②.CC2142③.242!A④.24!!4、设随机变量X的分布函数为F(x),. Y=2X+1,则Y的分布函数为( )①. F(y /2-1/2)②. F(y/2+1)③. 2F(x)+1④. 1/2F(y)-1/25、若E(XY)=E(X))(YE⋅,则必有( )①D(XY)=D(X)D(Y) ②D(X+Y)=D(X)+D(Y)③X与Y相互独立④X与Y不相互独立6、设随机变量X服从正态分布N(μ,σ2),则随σ的增大,概率P{}σμ≤-X应()①单调增大②单调减小③保持不变④不能确定7、设两个相互独立的随机变量X与Y分别服从正态分布N(2,1)和N(1,1)则()①P{}1≤+YX=1/2 ②P{}0≤+YX=1/2③P{}1.5X Y+≥=1/2 ④P{}0≥+YX=1/28、已知离散型随机变量X服从参数为2的泊松分布,Y=3X-2,则EY=()第 2 页第 1 页座位号① 10 ② 4 ③ -2 ④ –1/29、对正态总体的数学期望μ进行假设检验,如果的显著水平0.05下拒绝H 0:μ=μ0,那么在 显著水平0.01下,下列结论正确的是( )① 必接受H 0 ②可能接受,也可能拒绝H 0 ③ 必拒绝H 0 ④ 不接受也不拒绝H 0 10、设),(21X X 是来自总体X 的一个容量为2的样本,则在下列E(X)的无偏估计量中, 最有效的估计量是 ( )① 2X1/3+X2/3 ②X1/4+3X2/4 ③ 2X1/5+3X2/5 ④ X1/2+X2/2三、判断题:(共12分) A,B 一定独立。

概率论与数理统计试卷

概率论与数理统计试卷

概论论与数理统计试卷③(绍兴文理学院)一、填空题1.在三次独立重复射击中,若至少有一次击中目标的概率为3764,则每次射击击中目标的概率为 .2.若,A B 均为随机事件,若()0.4,()0.3,()0.6,P A P B P A B === 则()P AB = .3.设随机变量X 服从参数为λ的泊松分布,且{2}{4}P X P X ===,则λ= .4.设X 是10次独立重复试验的成功次数,若每次试验成功的概率为0.4,则2EX = .5.设随机变量X 的概率密度为2301()0x x f x ⎧<<=⎨⎩其它 ,且{}0.784P X a >=,则a = .6.设25,16,0.4XY DX DY ρ===,则(2)D X Y += .7.设随机变量X 服从[0,1]上的均匀分布,则21Y X =+的分布密度为 . 8.设12,,,n X X X 为取自总体~(0,1)X N 的一个样本,则22212~n X X X ++ .9.设12ˆˆ,θθ是参数θ的 ,若12ˆˆD D θθ<,则1ˆθ比2ˆθ有效. 10.设总体22~(,),X N μσσ未知,2,X s 分别为样本均值与样本方差,则μ的置信度为1α-的置信区间为 . 二、选择题1.同时掷三枚均匀硬币,则恰有两枚正面向上的概率为( ).(1) 0.5 (2) 0.25 (3) 0.125 (4) 0.375 2.设随机变量X 的概率密度为(),()()f x f x f x =-,()F x 为X 的分布函数,则对任意的a R ∈,有( ).(1) 0()1()aF a f x dx -=-⎰ (2) 01()()2a F a f x dx -=-⎰ (3) ()()F a F a -= (4) ()2()1F a F a -=- 3.设随机变量,X Y 相互独立,且均服从[0.1]上的均匀分布,则下列服从均匀分布的是( ).(1) (,)X Y (2) XY (3) X Y + (4) X Y - 4.设12,,,n X X X 为取自总体X 的一个样本,则总体方差的一个无偏估计为( ).(1) 211()n i i X X n =-∑ (2) 1211()1n i i X X n -=--∑ (3) 1211()n i i X X n -=-∑ (4) 211()1n i i X X n =--∑ 5.假设检验时,当样本容量一定,若缩小犯第一类错误的概率, 则犯第二类错误的概率( ).(1) 变小 (2) 变大 (3) 不变 (4) 不确定 三、计算题1.一市场共有10台照相机,其中有3台次品,其余均为正品.某顾客去选购时,已售出2台,该顾客从剩下的8台中任意选购一台, 求: (1) 该顾客购到正品的概率;(2) 若已知该顾客购到的是正品,则已售出的两台都是次品的概率.2.某仪器有3只独立工作的同型号的电子元件,其寿命(单位:小时)都服从同一指数分布,已知其平均寿命为600小时.求: 该仪器使用200小时后,至少有一只元件损坏的概率. 3.若随机变量,X Y 的分布函数分别为00()02212X x x F x x x <⎧⎪⎪=≤≤⎨⎪>⎪⎩ ,00()11212Y y F y y y y <⎧⎪=-≤≤⎨⎪>⎩且X 与Y 相互独立,(1) 求: (,)X Y 的联合分布函数;(2) 令 22,X Y ξη==, 求: (,)ξη的联合分布函数(,)G x y ;(3) 求:3{1,}2P X Y <>.4.游客乘电梯从底层到电视塔顶观光,电梯于每个整点的5分钟,25分钟和55分钟 从底层起行.若一乘客在早上8点的第X 分钟到达底层电梯处,且X 在[0,60]上 服从均匀分布,求:此游客的等候时间Y 及EY5.某车间有200台机床,它们独立地工作,开工率均为0.6,开工时耗电都为1000瓦,问:供电所至少要供给这个车间多少电力才能以99.9%的概率保证这个车间不会因为供电不足而影响生产?((3.1)0.999,(17)1Φ=Φ= )6.设总体X 的概率密度为1)01(;0x x f x α+<<其它 ,其中1α>-为未知参数,nX X X ,,,21 为取自总体X 的样本,求:α的矩估计量与极大似然估计量.7.设考生某次考试的成绩服从正态分布,从中随机抽取36位考生的成绩,其平均成绩为66.5分,标准差为15分.问:在显著性水平0.05下,是否可以认为这次考试全体考生的平均成绩为70分? (0.025(35) 2.030t = )绍兴文理学院2006学年01学期经管 专业 05级《概率论与数理统计》期末试卷(A )标准答案及评分标准一、填空题(共20分,每小题2分)1.0.32.143.18.44. 65.0.66. 1327.113()20Y y f y ⎧≤≤⎪=⎨⎪⎩其它8.2()n χ 9.无偏估计10. 22((1),(1))X n X n αα--+- 二、选择题(共10分,每小题2分)1. (4)2. (2)3. (2)4. (4)5. (2) 三、计算题(共70分,每小题10分)1.解:(1) 189360 (5分)(2) 19 (10分)2.解: 13{200}P X e ->= (5分) 所求的概率为: 11e -- (10分)3.解: (1) 00(1)02,122(,)02,2212,1212,2x xy x y F x y xx y y x y x y <⎧⎪⎪-≤≤≤≤⎪⎪=⎨≤≤>⎪⎪->≤≤⎪⎪>>⎩或1 (3分)(2) 00()04214x F x x x ξ<⎧=≤≤⎪>⎪⎩1()11414y F y y y η<⎧=≤≤>⎩00104,14(,)04,414,1414,4x y x y G x y x y x y x y <<⎧≤≤≤≤⎪=⎨≤≤>⎪⎪⎪>≤≤⎪>>⎩或 (8分)(3) 14(10分)4.解: 50525525()5525556055560XX X X Y g X X X X X -<≤⎧⎪-<≤⎪==⎨-<≤⎪⎪-+<≤⎩ (4分)11.67EY = (10分)5.解: 设10i X ⎧=⎨⎩第i 台机床工作否则由中心极限定理知2001i i X =∑近似服从(2000.6,2000.60.4)N ⨯⨯⨯ (3分 )设供电R kw,则2001{}0.999i i P X R φ=≤=≥∑ (8分)3.1≥,故至少供电141kw. (10分)6.解: (1) 矩估计 121ˆ21X EX Xααα+-==+- (5分) (2) 似然函数为:1()(1)ni i L x ααα==+∏ (7分)1ln ()ln 1ni i d L nx d αααα==-+∑ ( 9分)1ˆ1ln nii nxα==--∑ (10分)7.解:首先建立假设0010:70;:H H μμμμ==≠当0H真时,检验统计量0~(1),μ-=-X T t n S (3分)拒绝域为/2(1)t t n α=>-. (4分) (5分)由于0.0251.4(35) 2.030t t ==<=,故接受原假设,即认为全体考生的平均成绩为70分. (10分)。

浙大版概率论与数理统计习题集和试卷

浙大版概率论与数理统计习题集和试卷

浙大版概率论与数理统计习题集和试卷第一讲1.2,?,N1. 由盛有号码为的球的箱子中有放回的摸了n 次, 依次记其号码,求这些号码按严格上升次序排列的概率.(2)对任意凑在一起的40 人, 求他们中没有两人生日相同的概率.2r(2r,n)3. 从n 双不同的鞋子中任取只, 求下列事件的概率:r(1) (1) 没有成双的鞋子; (2) 只有一双鞋子; (3) 恰有二双鞋子; (4) 有双鞋子. 4. 从52 张的一副扑克牌中, 任取 5 张, 求下列事件的概率:(1)(1) 取得以A为打头的顺次同花色5张;(3)(2) 有 4 张同花色;(4)(3) 5 张同花色;(5)(4) 3 张同点数且另 2 张也同点数.思考题:1.( 分房、占位问题) 把n 个球随机地放入N 个不同的格子中,每个球落入各格子内的概率相同(设格子足够大,可以容纳任意多个球)。

1.I. 若这n 个球是可以区分的,求(1) 指定的n 个格子各有一球的概率;(2)有n 个格子各有一球的概率;若这n 个球是不可以区分的,求(1) 某一指定的盒子中恰有k 个球的概率;(2)恰好有m个空盒的概率。

2.取数问题) 从1-9 这九个数中有放回地依次取出五个数,求下列各事件的概率: (1) (1) 五个数全不同;(2)1 恰好出现二次;(3) 总和为10.第二讲1.在一张打方格的纸上投一枚直径为 1 的硬币, 问方格要多小时才能使硬币与线不相交的概率小于0.01?2.在某城市中共发行三种报纸: 甲、乙、丙。

在这个城市的居民中,订甲报(记为A)的有45%订乙报(记为B)的有35%订内报(记为C)的有30%同时订甲、乙两报(记为D)的有10%同时订甲、丙两报(记为E)的有8%同时订乙、丙两报(记为F)的有5%同时订三中报纸(记为G)的有3%.试表示下列事件,并求下述百分比:(1) 只订甲报的;(2) 只订甲、乙两报的;(3) 只订一种报纸的;(4) 正好订两种报纸的;(5) 至少订一种报纸的;(6) 不订任何报纸的.3.在线段[0,1] 上任意投三个点, 求0 到这三点的三条线段能构成三角形的概率.4. 设A, B, C, D 是四个事件, 似用它们表示下列事件:(1)(1) 四个事件至少发生一个;(2)(2) 四个事件恰好发生两个;(3)(3) A,B 都发生而C, D 不发生;(4)(4) 这四个事件都不发生;(5)(5)这四个事件至多发生一个;(6)(6)这四个事件至少发生两个;(7)(7)这四个事件至多发生两个.m(m,n)n5. 考试时共有张考签, 有个同学参加考试. 若被抽过的考签立即放回求在考试结束后, 至少有一张考签没有被抽到的概率.k(k,n)6. 在?3例5中, 求恰好有个人拿到自己的枪的概率.p,P(A),q,P(B),r,P(A,B)P(AB)P(AB)7.给定, 求及. 思考题l(l,a)1.( 蒲丰投针问题续)向画满间隔为a的平行线的桌面上任投一直径为的半圆形纸片, 求事件“纸片与某直线相交”的概率;第三讲nm1. 件产品中有件废品, 任取两件, 求:(1)(1) 在所取两件中至少有一件是废品的条件下, 另一件也是废品的概率;(2)(2) 在所取两件中至少有一件不是废品的条件下, 另一件是废品的概率.a(a,3)2. 袋中有只白球, b 只黑球, 甲乙丙三人依次从袋中取出一球(取后不放回). 试用全概率公式分别求甲乙丙各取得白球的概率.3.敌机被击中部位分成三部分: 在第一部分被击中一弹, 或第二部分被击中两弹, 或第三部分被击中三弹时, 敌机才能被击落. 其命中率与各部分面积成正比假如这三部分面积之比为0.1, 0.2, 0.7. 若已中两弹, 求敌机被击落的概率.4.甲乙两人从装有九个球, 其中三个是红球的盒子中, 依次摸一个球, 并且规定摸到红球的将受罚.(1)(1) 如果甲先摸, 他不受罚的概率有多大?(2)(2) 如果甲先摸并且没有受罚, 求乙也不受罚的的概率.(3)(3) 如果甲先摸并且受罚, 求乙不受罚的的概率.(4)(4) 乙先摸是否对甲有利?(5)(5) 如果甲先摸, 并且已知乙没有受罚, 求甲也不受罚的概率.A,B,AB,A,B5. 设事件A, B, C 相互独立, 求证: 也相互独立.思考题1.甲、乙两人轮流掷一均匀的骰子。

概率与统计试卷一二、三

概率与统计试卷一二、三

试卷二班级 学号 姓名 成绩一、单项选择题(每小题3分,共18分)1、设B A ,为任意事件,下列命题正确的是 ( ) (A )若B A ,互不相容,则B A ,互不相容(B )若B A ,相容,则B A ,互不相容 (C )若B A ,相互独立,则B A ,相互独立(D )2、设B A ,为随机事件,且A B ⊂,则下列结论中肯定正确的是 ( ) (A ))()()(A P B P A B P -=- (B ))()(A P B A P =+ (C ))()(A P AB P = (D ))()|(B P A B P =3、设),(~),,(~2254μμN Y N X ,记)(),(5421+≥=-≤=μμY P P X P P ,则有( )(A )对任意实数μ,都有21P P = (B )对任意实数μ,都有21P P < (C )对任意实数μ,都有21P P > (D )只对μ的个别值才有21P P = 4、已知随机变量),(~p n B X ,42.)(=X E ,441.)(=X D ,则二项分布的参数为 ( ) (A )406.,==p n (B )4,0.6n p == (C )308.,==p n (D )1024.,==p n5、设12,,,n X X X 是取自正态总体),(20σN 的样本,则可以作为2σ的无偏估计量是 ( )(A )∑=n i i X n 11 (B )∑=-n i i X n 111 (C )∑=n i i X n 121 (D )∑=-n i i X n 1211 6、设μσμ),,(~2N X 已知,2σ未知,4321X X X X ,,,是X 的样本,则不是统计量的是 ( ) (A )43153X X X ++(B )∑=-41i i X )(μ(C )∑=-41i i X X )((D )∑=-4122i i X )(σ二、填空题(每小题3分,共18分)1、某射手射击命中率为0.6,重复独立射击3次,则恰好命中2次的概率为 ;2、某运动员投篮命中率是0.8,则在一次投篮时投中次数的概率分布为,分布函数为 ;3、设随机变量X 的分布函数200()/40212x F x x x x <⎧⎪=≤<⎨⎪≥⎩,则)(31≤≤X P = ;4、设),(Y X 在矩形区域:1020≤≤≤≤y x ,内服从均匀分布,则),(Y X 的联合概率密度函数为 ; 5、设随机变量X ,Y 相互独立,110===)(,)(,)(X D Y E X E , 则=-+)]([2Y X X E ;6、设随机变量n X X X ,,, 21独立同分布,2110σ==)(,)(X D X E ,令∑==ni i X n X 11∑=-=ni i X X Q 12)(,则=)(Q E ;三、解答题(1~4题,每小题10分,5、6题每小题12分,共64分)1、假设有两箱同种零件,第一箱内装有50件,其中10件一等品;第二箱装30件,其中18件一等品。

概率统计A 期末样卷(3)答案

概率统计A 期末样卷(3)答案

当前位置:概率论与数理统计样卷库→概率论与数理统计试卷参考答案概率论与数理统计(I)期末考试样卷3参考答案概率论与数理统计(I)期末考试样卷3参考答案一、填空题(每小题3分,共24分)1.在电话号码簿中任取一个电话号码,则后面四个数全不相同的概率(设后面四个数中的每一个数都是等可能地取0,1,…,9)= 。

2. 已知,则= 0.6 。

3.设 X~,对X的三次独立重复观察中,事件{X≤0.5}出现的次数为随机变量Y,则P{Y =2}= 9/64 。

.4.设X的分布函数,则X的概率分布列为。

5.设服从参数为的指数分布,且,则_______。

6.设(X,Y)的概率密度为f(x,y)= ,则=____。

7.设,X与Y独立,则=_____8_____8.掷一颗均匀的硬币100次,记,,则概率的近似分布为。

二、单项选择题(每小题2分,共8分)1.设两事件A与B同时发生时,事件C必发生,则( B )成立。

A. P(C) ≤P(A)+P(B)-1B. P(C) ≥P(A)+P(B)-1C. P(C)=P(AB)D. P(C)=P()2.下列命题中,正确的是(C ).(A)若,则是不可能事件;(B)若,则互不相容;(C)若,则;(D)3.设X~N(,),则随着的增大,P(|X-|<)( C )。

A.单调增大B.单调减少C.保持不便D.增减不定.4.设二维离散型随机变量的分布律为则( A )(A)不独立;(B)独立;(C)不相关;(D)独立且相关。

三、计算题(共48分)1(6分)某人忘记了电话号码的最后一个数字,因而他随意地拨号,求他拨号不超过三次而接通所需电话的概率?解法1 设=“第次接通电话”(),A=“拨号不超过3次接通所需电话”,则,故所求概率解法2 “拨号不超过3次就接通”的对立事件是“拨号3次都未接通”,于是2(8分).设玻璃杯整箱出售,每箱20只,各箱含0,1,2只残次品的概率分别为0.8,0.1,0.1,一顾客欲购买一箱玻璃杯,由售货员任取一箱,经顾客随机察看4只,若无残次品,则买此箱玻璃杯,否则不买。

概率论与数理统计模拟试卷和答案

概率论与数理统计模拟试卷和答案

北京语言大学网络教育学院《概率论与数理统计》模拟试卷一注意:1.试卷保密,考生不得将试卷带出考场或撕页,否则成绩作废。

请监考老师负责监督。

2.请各位考生注意考试纪律,考试作弊全部成绩以零分计算。

3.本试卷满分100分,答题时间为90分钟。

4.本试卷分为试题卷和答题卷,所有答案必须答在答题卷上,答在试题卷上不给分。

一、【单项选择题】(本大题共5小题,每小题3分,共15分) 在每小题列出的四个选项中只有一个选项是符合题目要求的,请将正确选项前的字母填在答题卷相应题号处。

1、设A,B 是两个互不相容的事件,P (A )>0 ,P (B )>0,则( )一定成立。

[A] P (A)=1-P (B ) [B] P (A │B)=0 [C] P (A │B )=1[D] P (A B )=02、设A,B 是两个事件,P (A )>0 , P (B )>0 ,当下面条件( )成立时,A 与B 一定相互独立。

[A] P(A B )=P (A )P (B ) [B] P (AB )=P (A )P (B ) [C] P (A │B )=P (B )[D] P (A │B )=P(A )3、若A 、B 相互独立,则下列式子成立的为( )。

[A] )()()(B P A P B A P = [B] 0)(=AB P [C])()(A B P B A P = [D])()(B P B A P =4、下面的函数中,( )可以是离散型随机变量的概率函数。

[A] {}11(0,1,2)!e P k k k ξ-=== [B] {}12(1,2)!e P k k k ξ-=== [C] {}31(0,1,2)2k P k k ξ=== [D] {}41(1,2,3)2k P k k ξ===--- 5、设1()F x 与2()F x 分别为随机变量1X 与2X 的分布函数,为了使12()()()F x aF x bF x =-是某一随机变量的分布函数,则下列个组中应取( )。

19秋《概率论与数理统计》作业3答卷

19秋《概率论与数理统计》作业3答卷
A.0.8664
B.0.7996
C.0.5547
D.0.3114
答案:A
4.在区间(2,8)上服从均匀分布的随机变量的数学期望为( )
A.8
Bቤተ መጻሕፍቲ ባይዱ7
C.6
D.5
答案:D
5.设随机变量X与Y相互独立,方差分别为6和3,则D(2X-Y)=( )
A.9
B.27
C.21
D.13
答案:B
6.从1, 2,&hellip;,10 共10个数中任取7个数,取后放回,每次取一个,则数字10恰好出现2次的概率( )
A.0.4560
B.0.2340
C.0.1240
D.0.0870
答案:C
7.已知随机变量Z服从区间[0,2&pi;] 上的均匀分布,且X=sinZ,Y=sin(Z+k),k为常数,则X与Y的相关系数为( )
X -5 2 3 4
P 0.4 0.3 0.1 0.2
则它的方差为( )。
A.25.64
B.14.36
C.15.21
D.46.15
答案:C
3.测量轴的直径之长度不会引起系统误差,而直径长度的偶然误差这一随机变量X服从均方差&sigma;=10毫米的正态分布。则测量轴的直径的长度发生的偏差绝对值不超过15毫米的概率为( )
19秋《概率论与数理统计》作业3
试卷总分:100 得分:100
一、单选题 (共 10 道试题,共 100 分)
1.一批产品共10件,其中有2件次品,从这批产品中任取3件,则取出的3件中恰有一件次品的概率为
A.7/45

《概率论与数理统计》习题三答案解析

《概率论与数理统计》习题三答案解析

《概率论与数理统计》习题及答案习题二1.将一硬币抛掷三次,以X表示在三次中出现正面的次数,以丫表示三次中出现正面次数与出现反面次数之差的绝对值.试写出X和丫的联合分布律.【解】X和丫的联合分布律如表:2.盒子里装有3只黑球、2只红球、2只白球,在其中任取4只球,以X表示取到黑球的只数,以丫表示取到红球的只数.求X和丫的联合分布律.3.设二维随机变量(X, Y)的联合分布函数为F(x, y)Jsinxsiny,。

沁兰才gy 写L0, 其他.求二维随机变量(X, Y)在长方形域{o<x< -,n y<内的概率.I 4 6 3., n n n【解】如图P{0 cx < - —c Y<—}公式(3.2)4 6 3F(n,n)-F(n n-F(o, n+F(o, n4 3 4 6 3 6n n n — n厂n厂n=sin — 0n — —sin — sin — -sin0sin — + sin 比sin — 4 3 4" 6 3 6出(屁1). 4[k(6 - X - y),0 c X c 2, 2 c y c 4, (x ,y )=( 0,其他.确定常数 求 P{X <1 , Y v 3}; 求 P{X<1.5}; 求 P{X+Y W 4}. 【解】(1)由性质有说明:也可先求出密度函数, 4.设随机变量 求:(1)(2) (3) 【解】(1)(X , 丫)的分布密度f (X , y )=0,,XA0,yA0,其他.常数A ;随机变量(X , 丫)的分布函数; P{0 <X<1 , 0<丫<2}.-be -be -be -be由 L LcfXyMxdy^ .0 Ae严d y)dxdy=4=112 得(2) A=12由定义,有y XF (x, y) = LcL f (u,v)dudv」「[任4和dudv 10,"(1-e 」X )(1-e"4y )y A 0,XA 0,0,其他⑶ P{0 <X <1,0 < 丫 <2}= P{0 cX <1,0cY <2}1「0[12e 5.设随机变量(仲枷)dxdy =(1-e 冷(1-e*“ 0.9499.Y ) 的概率密度为(1)(2) (3) (4) k ;-be -be2 4f f f(x,y)dxdy = r r k(6-x-y)dydx=8k=1,・0・21 R = -81 3-UU f (x ,y)d y d x1 313=0 L8k (6_x-y )dydx=8⑶ P{X v 1.5} = JJ f (x, y)dxdy 如图 a JJ f (x, y)dxdyx £5D 11.541 27=f dx f -(6 — x- y)dy =——. 0 28、 ” y 32⑷ P{X + Y <4} = ff f (x,y)dxdy 如图b JJ f (x, y)dxdyX -Y <D224_x12 =[dx f -(6 - X - y)dy =-. 0」2 8 3y,1.5 2 fa)求:(1) X 与丫的联合分布密度;(2) P{Y^X}.题6图【解】(1)因X 在(0, 0.2 )上服从均匀分布,所以X 的密度函数为I 1I ——,0ex <0.2, fx (X )= \ 0.2 0,其他.(2) P{X <1,Yc3} 6.设X 和丫是两个相互独立的随机变量,0.2)上服从均匀分布,丫的密度函数为 yf Y ( y )=y>o,其他.题5图X 在(0,y=yf(x,y X Y 独立f x xCf Y y()(2) P(Y <X) = ff f (x,y)dxdy 如图仃25e'y dxdyy < D0.2 x50.2 5=f 0 dx 0 25e ydy = J o (-5e +5)dx-1=e 止 0.3679.7.设二维随机变量(X ,Y )的联合分布函数为「(1—e"x )(1 —e 'y ), XA 0, y 》。

考研数学二(概率论与数理统计)模拟试卷3(题后含答案及解析)

考研数学二(概率论与数理统计)模拟试卷3(题后含答案及解析)

考研数学二(概率论与数理统计)模拟试卷3(题后含答案及解析) 题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。

1.关于随机事件{X≤a,Y≤b}与{X>a,Y>b},下列结论正确的是( ) A.为对立事件.B.为互不相容事件.C.为相互独立事件.D.P{X≤a,Y≤b}>P{X>a,Y>b}.正确答案:B解析:如图3—1所示,选项(A)、(D)都是不一定成立的.如果{X≤a,Y≤b}与{X>a,Y>b}相互独立,则应P{(X≤a,Y≤b)(X>a,Y>b)}=0,不一定与P{X≤a,Y≤b}P{X>a,Y>b}相等,故(C)不正确.综上,应选B.知识模块:概率论与数理统计2.设随机变量(X,Y)的分布函数为F(x,y),则(X,X)的分布函数G(x,y)为( )A.F(x,y).B.F(y,x).C.F(一x,一y).D.F(一y,一x).正确答案:B解析:G(x,y)=P{Y≤x,x≤y}=P{x≤y,Y≤x}=F(y,x).故应选B.知识模块:概率论与数理统计3.设二维随机变量(X,Y)的分布函数为F(x,y)=,则常数A和B的值依次为( )A.B.C.D.正确答案:C解析:V(x,y)能够作为分布函数,则需满足0≤F(x,y)≤1,F(+∞,+∞)=1,F(一∞,一∞)=F(x,一∞)=F(一∞,y)=0,关于x,y单调不减且右连续,故F(+∞,+∞)=Aπ(B+)=1,满足此条件的只有(C).知识模块:概率论与数理统计4.设随机变量X和Y相互独立,且有相同的分布函数F(x),Z=X+Y,FZ(z)为Z的分布函数,则下列成立的是( )A.FZ(2z)=2F(z).B.FZ(2z)=[r(z)2C.FZ(2z)≤[F(z)]2.D.FZ(2z)≥[,(z)]2.正确答案:D解析:如图3—2所示,FZ(2z)=P{Z≤2z}=P{X+Y≤2z},X+Y≤2z对应区域为A,由于X和Y相互独立,且有相同的分布函数F(z),从而[p(z)]2=F(z)F(z)=P{X≤z}P{y≤z}=P{X≤z,Y≤z},X≤z,y≤z对应区域B,显然BA,故FZ(2z)≥[F(z)]2,因此选(D).知识模块:概率论与数理统计5.设X1和X2是两个相互独立的连续型随机变量,其概率密度分别为f1(x)和f2(x),分布函数分别为F1(x)和F2(x),则下列说法正确的是( ) A.f1(x)+f2(x)必为某一随机变量的概率密度.B.f1(x)f2(x)必为某一随机变量的概率密度.C.F1(x)+F2(x)必为某一随机变量的分布函数.D.F1(x)F2(x)必为某一随机变量的分布函数.正确答案:D解析:由已知条件,有∫-∞+∞f1(x)dx=∫-∞+∞f2(x)dx=1,F1(+∞)=F2(+∞)=1,∫-∞+∞[f1(x)+f2(x)]dx=∫-∞+∞f1(x)dx+∫-∞+∞f2(x)dx=1,选项(A)不正确;例如令f1(x)=,故选项(B)不正确;F1(+∞)+F2(+∞)=2,故选项(C)不正确,因此选(D).知识模块:概率论与数理统计6.已知随机变量X和Y相互独立,其概率分布为则下列式子正确的是( )A.X=YB.P{X=Y}=0.?C.P{X=Y}=.D.P{X=Y}=1.正确答案:C解析:P{X=Y}=P{X=一1,Y=一1}+P{x=1,Y=1}=P{X=一1}P{Y=一1}+P{X=1}P{Y=1} = 知识模块:概率论与数理统计7.设二维随机变量(X,Y)在平面区域G上服从均匀分布,其中G是由x 轴,y轴以及直线y=2x+1所围成的三角形域,则(X,Y)的关于X的边缘概率密度为( )正确答案:B解析:由已知条件,如图3—4所示。

概率论与数理统计习题三及答案

概率论与数理统计习题三及答案
2
当 x 0, y 1 时, F x, y 1 dx0
0 2
2 x 1
4dy 1
(2)X 的边缘密度函数为
f X x f x, y dy

3
西南交通大学 2017—2018 学年第(一)学期《概率论与数理统计 B》课程习题答案
1 x0 = 2 0, 其他 Y 的边缘密度函数为
=
0
2 x 1
4dy,
1 42 x 1, x 0 2 0, 其他
f Y y f x, y dx

=
y 1 4dx, 0 y 1
2
0
0,
其他
=
21 y , 0 y 1 0,
其他
1 1 1 1 4 1 1 1 1 (3)f , 4 , 而 f X 2, f Y , 易见 f , f X f Y , 4 3 4 3 3 4 3 4 3
或写成 X\Y 1 2 3 1 0 2 3
1 6 1 12
1 6 1 6 1 6
1 12 1 6
0
P X Y P X 1, Y 1 P X 2, Y 2 P X 3, Y 3
1
1 。 6
西南交通大学 2017—2018 学年第(一)学期《概率论与数理统计 B》课程习题答案

1 x 2 x 1 x 0, y 2 x 1 时, F x, y 1 dx0 4dy 4 x 2 4 x 1 ; 2 2
y 0
当 x 0,0 y 1 时, F x, y 0 dy y 1 4dx 2 y y 2 ;

奥鹏北语20春《概率论与数理统计》作业3

奥鹏北语20春《概率论与数理统计》作业3
A 9.5
B 6
C 7
D 8
5. 设一个系统由100个互相独立起作用的部件所组成,每个部件损坏的概率为0.1,必须有85个以上的部件工作才能使整个系统工作,则整个系统工作的概率为( )
A 0.95211
B 0.87765
C 0.68447
D 0.36651
6. 对于任意两个随机变量X和Y,若E(XY)=E(X)E(Y),则有( )。
A X和Y独立
B X和Y不独立
C D(X+Y)=D(X)+D(Y)
D D(XY)=D(X)D(Y)
7. 一个袋内装有10个球,其中有4个白球,6个红球,采取不放回抽样,每次取1件,则第二次取到的是白球的概率是( )
A 0.3
B 0.6
C 0.7
D 0.4
8. 甲、乙同时向一敌机炮击,已知甲击中敌机的概率为0.6,乙击中敌机的概率为0.5,则敌机被击中的概率是( )
北京语言大学-20春《概率论与数理统计》作业3
1. 设某电话交换台线分钟接到呼唤的次数X服从参数为&lambda;= 4 的泊淞分布,则呼唤次数X的期望是( )
A 2
B 6
C 8
D 4
பைடு நூலகம்
2. 把一枚硬币连抛三次,以X表示在三次中出现正面的次数,Y表示在三次中出现正面的次数与出现反面的次数的差的绝对值,则P{X=2,Y=1}的概率为( )
A {t|t&gt;0}
B {t|t&lt;0}
C {t|t=100}
D {t|t≧0}
A 0.92
B 0.24
C 0.3

概率与统计(3学分)

概率与统计(3学分)

《概率与统计》(3学分),《概率与统计》(4学分),《概率与过程》(4.5学分) 课程模拟试卷南京理工大学统计与金融数学系编2003年5月注:(1) 以下是3学分、4学分、4.5学分考试的参考内容,不作为实际考试范围,考试内容以教学大纲和实施计划为准;(2)四学分包含所有3学分内容;(3)4.5学分包含所有4学分内容;(3)注明“了解”的内容一般不考。

1、能很好地掌握写样本空间与事件方法,会事件关系的运算,了解概率的古典定义2、能较熟练地求解古典概率;了解概率的公理化定义3、掌握概率的基本性质和应用这些性质进行概率计算;理解条件概率的概念;掌握加法公式与乘法公式4、能准确地选择和运用全概率公式与贝叶斯公式解题;掌握事件独立性的概念及性质。

5、理解随机变量的概念,能熟练写出(0—1)分布、二项分布、泊松分布的概率分布。

6、理解分布函数的概念及性质,理解连续型随机变量的概率密度及性质。

7、掌握指数分布(参数λ)、均匀分布、正态分布,特别是正态分布概率计算8、会求一维随机变量函数分布的一般方法,求一维随机变量的概率分布或概率密度。

9、会求分布中的待定参数。

10、会求边沿分布函数、边沿概率分布、边沿密度函数,会判别随机变量的独立性。

11、掌握连续型随机变量的条件概率密度的概念及计算。

(四学分)12、理解二维随机变量的概念,理解二维随机变量的联合分布函数及其性质,理解二维离散型随机变量的联合分布律及其性质,理解二维连续型随机变量的联合概率密度及其性质,并会用它们计算有关事件的概率。

13、了解求二维随机变量函数的分布的一般方法。

(四学分)14、会熟练地求随机变量及其函数的数学期望和方差。

会熟练地默写出几种重要随机变量的数学期望及方差。

15、较熟练地求协方差与相关系数.16、了解矩与协方差矩阵概念。

会用独立正态随机变量线性组合性质解题。

17、了解大数定理结论,会用中心极限定理解题。

18、掌握总体、样本、简单随机样本、统计量及抽样分布概念,掌握样本均值与样本方差及样本矩概念,掌握χ2分布(及性质)、t分布、F分布及其上百分位点及双侧百分点概念。

《应用概率统计》综合作业三

《应用概率统计》综合作业三

《应用概率统计》综合作业三一、填空题(每小题2分,共20分)1.在天平上重复称量一重为a 的物品,测量结果为1X ,2X ,…,n X ,各次结果相互独立且服从正态分布)2.0,(2a N ,各次称量结果的算术平均值记为n X ,为使95.0)1.0(≥<-a X P n ,则n 的值最小应取自然数 16 .2.设1X ,2X ,…,n X 是来自正态总体)4,(2μN 的容量为10的简单随机样本,2S 为样本方差,已知1.0)(2=>a s P ,则a = 1 .3.设随机变量Y 服从自由度为n 的t 分布,则随机变量2Y 服从自由度为 (1,n) 的 F分布.4.设总体X 服从正态分布),12(2σN ,抽取容量为25的简单随机样本,测得样本方差为57.52=S ,则样本均值X 小于12.5的概率为 4/25 .5.从正态分布),(2σμN 中随机抽取容量为16的随机样本,且σμ,未知,则概率=⎪⎪⎭⎫⎝⎛≤041.222σS P 1 .6.设总体X 的密度函数为⎩⎨⎧<<+=,其他,0,10 , )1(),(x x x f a αα其中1->α,1X ,2X ,…,n X 是取自总体X 的随机样本,则参数α的极大似然估计值为.7.设总体X 服从正态分布),(2σμN ,其中μ未知而2σ已知,为使总体均值μ的置信度为α-1的置信区间的长度等于L ,则需抽取的样本容量n 最少为 u=(x -u0)×sqrt(n)/σ. 8.设某种零件的直径(mm )服从正态分布),(2σμN ,从这批零件中随机地抽取16个零件,测得样本均值为075.12=X ,样本方差00244.02=S ,则均值μ的置信度为0.95的置信区间为 (1025.75-21.315,1025.75+21.315)-(1004435,1047.065) .9.在假设检验中,若2σ未知,原假设00: μμ=H ,备择假设01: μμ>H 时,检验的拒绝域为 .10.一大企业雇用的员工人数非常多,为了探讨员工的工龄X (年)对员工的月薪Y (百元)的影响,随机抽访了25名员工,并由记录结果得:∑==251100i iX,∑==2512000i i Y ,∑==2512510i iX,∑==2519650i i i Y X ,则Y 对X 的线性回归方程为 y=11.47+2.62x .二、选择题(每小题2分,共20分)1.设1X ,2X ,…,n X 是来自正态总体),0(~2σN X 的一个简单随机样本,X 为其样本均值,令212)(σ∑=-=ni iX XY ,则Y ~( D )(A ))1(2-n χ (B ))(2n χ (C )),(σμN (D )),(2nN σμ2.设1X ,2X ,…,n X 是来自正态总体),(~2σμN X 的简单随机样本,X 为样本均值,记( )∑=--=n i i X X n S 1221)(11,∑=-=n i i X X n S 1222)(1, ∑=--=n i i X n S 1223)(11μ,∑=-=n i i X n S 1224)(1μ, 则服从自由度为1-n 的t 分布的随机变量是( B )(A )1/1--=n S X T μ (B )1/2--=n S X T μ (C )nS X T /3μ-=(D )nS X T /4μ-=3.设1X ,2X ,3X ,4X 是来自正态总体)2,(~2μN X 的简单随机样本,若令2432212)43()2(X X X X a Y -+-=,则当2Y 服从2χ分布时,必有( D )(A )91=a ;1441=b (B )1441=a ;91=b (C )1001=a ;201=b (D )201=a ;1001=b4.设简单随机样本1X ,2X ,…,n X 来自于正态总体),(~2σμN X ,则样本的二阶原点矩∑==n i i X n A 1221的数学期望为( D )(A )241σ (B )221σ (C )2σ (D )22σ5.设随机变量X 服从自由度为(n ,n )的F 分布,已知α满足条件05.0)(=>αX P ,则)1(α>X P 的值为( C )(A )0.025 (B )0.05 (C )0.95 (D )0.9756.设总体X 服从正态分布),(2σμN ,1X ,2X ,…,n X 是从X 中抽取的简单随机样本,其中μ,2σ未知,则μ的)%1(100α-的置信区间( A ) (A )(n S z X 2α-,n S z X 2α+) (B )(n S n t X )1(2--α,n Sn t X )1(2-+α) (C )(nz X σα2-,nz X σα2+) (D )(n S n t X )(2α-,n Sn t X )(2α+) 7.设总体X 服从正态分布),(2σμN ,其中μ未知,2σ未知,1X ,2X ,…,n X 是简单随机样本,记∑==ni i X n X 11,则当μ的置信区间为(nz X σ05.0-,n z X σ05.0+)时,其置信水平为( C )(A )0.90 (B )0.95 (C )0.975 (D )0.05 8.从总体中抽取简单随机样本1X ,2X ,3X ,易证估计量3211613121ˆX X X ++=μ,3212414121ˆX X X ++=μ3213613131ˆX X X ++=μ,3214525251ˆX X X ++=μ 均是总体均值μ的无偏估计量,则其中最有效的估计量是( B )(A )1ˆμ(B )2ˆμ (C )3ˆμ (D )4ˆμ 9.从一批零件中随机地抽取100件测量其直径,测得平均直径为5.2cm ,标准差为1.6cm ,现想知道这批零件的直径是否符合标准5cm ,采用t 检验法,并取统计量为10/6.12.5-=X t ,则在显著性水平α下,其接受域为( D )(A ))99(2αt t < (B ))100(2αt t < (C ) )99(2αt t ≥ (D ) )100(2αt t ≥10.在假设检验中,方差2σ已知,00: μμ=H ( B ) (A )若备择假设01: μμ≠H ,则其拒绝域为)2(/10αμ-≥-=n t n S X T(B )若备择假设01: μμ≠H ,则其拒绝域为20/ασμu n X U ≥-=(C )若备择假设01: μμ>H ,则其拒绝域为ασμu nX U ≥-=/0(D )若备择假设01: μμ>H ,则其拒绝域为ασμu nX U -≤-=/0三、(10分)现有一批种子,其中良种数占61,从中任选6000粒,问能从0.99的概率保证其中良种所占的比例与61相差多少?这时相应的良种数在哪一个范围?解答:这个问题属于“二项分布”,且n=6000, p=1/6 。

《概率论与数理统计》自测题3

《概率论与数理统计》自测题3

《概率论与数理统计》自测题3一、填空题1. 设随机事件B A , 相互独立,且5.0)(=A P ,6.0)(=B P ,则_______)(=B A P2.据天气预报,某地第一天下雨的概率为0.6 ,第二天下雨的概率为0.3,两天都下雨的概率为0.1,则两天都不下雨的概率为3. 一射手对同一目标独立地进行四次射击,若至少命中一次的概率为8081,则该射手的命中率为________________4.设随机变量X 的概率密度为⎩⎨⎧≤>=-0,00,)(x x kxe x f x ,则=k5.设随机变量)2,3(~2N X ,若{}{}P X C P X C >=≤ 则=C6.设随机变量X 服从均值为10,均方差为0.02的正态分布,已知9938.05.2=Φ)(, 则X 落在区间()9.95,10.05内的概率为7.设随机变量X 的密度函数为2221)(x ex f -=π,则=)(2X E8. 设二维随机变量) , (Y X 的联合分布律为则()=X E9.设两个相互独立的随机变量X 和Y 方差分别为6和3,=-)32(Y X D10.设来自正态总体()29.0 , ~μN X 容量为9的简单随机样本,测得样本均值5=x ,则未知参数μ的置信度为0.95的置信区间为___________________________二、选择题1. 设A ,B 为随机事件,则()P A B -等于( )(A ))()(B P A P - (B )()()()P A P B P AB -+ (C )()()P A P AB - (D )()()()P A P B P AB +-2. 从一副扑克牌的13张梅花牌中有放回地取三次,则三张都不同号的概率是( ) (A )121132 (B ) 132169 (C )121169 (D) 131323. 设随机变量~(1,1)X N ,其概率密度函数为)(x f ,则下列结论正确的是( ) (A ){}{}000.5P X P X ≤=≥= (B ) ()(),(,)f x f x x =-∈-∞+∞; (C ){}{}110.5P X P X ≤=≥=; (D ) ()(),(,)F x F x x =-∈-∞+∞4.设连续型随机变量X 的分布函数为⎪⎩⎪⎨⎧≤>+=-00)(22x x bea x F x ,则有 (A )1==b a (B )1 , 0==b a(C )1 , 1=-=b a (D )1 , 1-==b a5.设随机变量X 服从标准正态分布,即~(0,1)X N ,随机变量21Y X =+, 则Y 服从( )(A )(1,4)N (B )(0,1)N (C ) (1,1)N (D )(1,2)N6. 对任意随机变量Y X ,,若()()D X Y D X Y +=-,则( ) (A )X 与Y 相互独立. (B )X 与Y 不相关. (C )X 与Y 一定不独立. (D )以上结论都不对.三、某保险公司把被保险人分为三类:“谨慎的”,“一般的”和“冒失的”。

概率论与数理统计考试试卷(附答案)

概率论与数理统计考试试卷(附答案)

概率论与数理统计考试试卷(附答案)一、选择题(共6小题,每小题5分,满分30分) 1. 事件表达式B A -的意思是 ( ) (A) 事件A 与事件B 同时发生 (B) 事件A 发生但事件B 不发生 (C) 事件B 发生但事件A 不发生(D) 事件A 与事件B 至少有一件发生2. 假设事件A 与事件B 互为对立,则事件A B ( ) (A) 是不可能事件 (B) 是可能事件 (C) 发生的概率为1(D) 是必然事件3. 已知随机变量X ,Y 相互独立,且都服从标准正态分布,则X 2+Y 2服从 ( ) (A) 自由度为1的χ2分布 (B) 自由度为2的χ2分布 (C) 自由度为1的F 分布(D) 自由度为2的F 分布4. 已知随机变量X ,Y 相互独立,X ~N (2,4),Y ~N (-2,1), 则( )(A) X +Y ~P (4) (B) X +Y ~U (2,4) (C) X +Y ~N (0,5) (D) X +Y ~N (0,3)5. 样本(X 1,X 2,X 3)取自总体X ,E (X )=μ, D (X )=σ2, 则有( ) (A) X 1+X 2+X 3是μ的无偏估计(B)1233X X X ++是μ的无偏估计(C) 22X 是σ2的无偏估计(D) 21233X X X ++⎛⎫ ⎪⎝⎭是σ2的无偏估计6. 随机变量X 服从在区间(2,5)上的均匀分布,则X 的方差D (X )的值为( ) (A) 0.25(B) 3.5(C) 0.75(D) 0.5二、填空题(共6小题,每小题5分,满分30分。

把答案填在题中横线上) 1. 已知P (A )=0.6, P (B |A )=0.3, 则P (AB )= __________2. 三个人独立地向一架飞机射击,每个人击中飞机的概率都是0.4,则飞机被击中的概率为__________3. 一个袋内有5个红球,3个白球,2个黑球,任取3个球恰为一红、一白、一黑的概率为_____4. 已知连续型随机变量,01,~()2,12,0,.x x X f x x x ≤≤⎧⎪=-<≤⎨⎪⎩其它 则P {X ≤1.5}=_______.5. 假设X ~B (5, 0.5)(二项分布), Y ~N (2, 36), 则E (2X +Y )=__________6. 一种动物的体重X 是一随机变量,设E (X )=33, D (X )=4,10个这种动物的平均体重记作Y ,则D (Y )=_____________________ _______三、有两个口袋,甲袋中盛有两个白球,一个黑球,乙袋中盛有一个白球,两个黑球。

《概率论与数理统计》第三次测试题答案

《概率论与数理统计》第三次测试题答案

鲁东大学 2009-2010 学年第一学期2009 级 数学与应用数学,信计,统计 专业 本 科卷课程名称 概率论与数理统计课程号(2102841)考试形式(闭卷笔试) 时间(120分钟)一、填空题,本题共7小题,满分20分,其中第1小题6分,第7小题4分,其余每题2分.1、 该商店每天销售电视机的台数;100天电视机销售台数;100,3.85,1.95, 1000,21,2351,342()3,4557,56201,6x x x F x x x x <⎧⎪⎪≤<⎪⎪≤<⎪⎪=⎨⎪≤<⎪⎪⎪≤<⎪⎪≥⎩ ; 2、2n χ();3、11e --;4、21X +;5、2b a n abσ- 二、选择题,本题共9小题,满分18分.1、D;2、C ;3、A ;4、A ;5、C ;6、B ;三、计算题,本题共4小题,满分52分1、(13分)在总体~(12,4)X N 中随机抽取一容量为5的样本,求样本平均值与总体平均值之差的绝对值大于1的概率。

解: 设125,,...X X X 为来自总体的样本,X 为样本均值,则4~(12,)5X N ……4分则(|12|1)12(||2(12(1(1.12))0.2628....................................................P X X P ->-=>=-Φ=-Φ=分.............................4分2、(13分)在一袋内放有很多的白球和黑球,已知两种球数目为1:3,但不知道哪一种颜色的球多,现从中有放回地抽取3次,取出黑球2次,试求袋中黑球所占比例的极大似然估计值.解:设01X ⎧=⎨⎩,从袋中取出白球,从袋中取出黑球,………………………………………………………………2分 则13~(1,),44X b p p =或…………………………………………………………………………4分..123,,~i i dX X X X则样本的似然函数为 311(1)(1)i i x x nx n nx i L p p p p p --=-=-∏()=……………………………………………………………..2分 一次观测后,23x =,则 21(1)L p p p =-()又由21211111(1)444643339(1)44464L L =-==-=()()……………………………………………………………………………..2分 所以3ˆ4mle p =…………………………………………………………………………………………….2分 3、(13分)设从均值为μ,方差为2σ 的总体中,分别抽取容量为12,n n 的两个独立样本, 12,X X 分别是两样本的均值,1) 试证:对于任意常数,(1)a b a b +=, 12Y aX bX =+ 都是μ的无偏估计;2) 确定常数,a b ,使()D Y 达到最小.解:因为1212()()()()E Y E aX bX aE X bE X a b μμμ=+=+=+= 所以,12Y aX bX =+为μ的无偏估计.……………………………………………………………..5分 22121222221222121222()()()()21()D Y D aX bX a D X b D X ab n n n n a a n n n n σσσ=+=+=++=-+ 所以当121212,n n a b n n n n ==++时,可以使()D Y 达到最小.……………………………………….5分 4、(13分)初生男婴的体重服从正态分布,随机抽取12名新生婴儿,测得平均体重为3057, 标准差为375.314,试以95%的置信系数求新生男婴的平均体重μ和方差2σ的置信区间.解:单个正态总体方差未知时,均值μ的置信水平为0.95的置信区间为12((1))x n α-±-……………………………………………………………………………….3分 一次观测后,3057,375.314x s ==,另外0.97512,(11) 2.201n t == 得到置信区间为(2818.5351,3925.4649).……………………………………………………………..2分 单个正态总体均值未知时,方差2σ的置信水平为0.95的置信区间为 22220.9750.025(1)(1)(,)(11)(11)n s n s χχ--……………………………………………………………………………….3分 一次观测后,3057,375.314x s ==,另外0.97512,(11) 2.201n t ==得到置信区间为(70687.3442,405619.5248).……………………………………………………………..2分。

概率论与数理统计试卷3

概率论与数理统计试卷3

《概率论与数理统计》试卷3一、填空题 (每小题3分,共15分)1. 某门诊有三个诊室,先后有三个患者来看病,病人可随机选择诊室,则每个诊室恰好接待一个患者的概率为 .2. 设随机变量1~(1,)4X b , 随机变量21Y X =+, 则{2}P Y ≤= . 3. 设随机变量221(,)~(2,0,2,3,)2X Y N , 42X YZ =-, 则()D Z = .4. 设X ~)(n t ,其中1n >, 则21X~ .5. 设总体~(1,)X b p ,10110,,,,是来自总体X 的样本观察值,则p 的矩估计值为 .二、选择题 (每小题3分,共15分)1. 假设事件A 和B 满足(|)1P B A =, 则 ( ).(A) A 是必然事件 (B) (|)0P B A = (C)A B ⊃ (D) A B ⊂2. 设随机变量X 与Y 独立同分布,⎪⎪⎭⎫⎝⎛-313211~X ,则必有( ).(A )Y X = (B )5}{==Y X P (C) 5}{==Y X P (D) 1}{==Y X P 3. 设(1,2,,)i X i n = 是独立同分布的随机变量, ()1i E X =,()4i D X =且2()i E X 存在,1,2,,i n = , 对任意整数0ε>,则( )成立.(A) 11lim 41n i n i P X n ε→∞=⎧⎫-<=⎨⎬⎩⎭∑ (B) 211lim 41n i n i P X n ε→∞=⎧⎫-<=⎨⎬⎩⎭∑(C) 211lim 51n i n i P X n ε→∞=⎧⎫-<=⎨⎬⎩⎭∑ (D) 211lim 31n i n i P X n ε→∞=⎧⎫-<=⎨⎬⎩⎭∑4. 在假设检验中,原假设为H 0,检验显著性水平为α,则下列各式正确的是( ).(A) P {接受H 0|H 0正确}=α (B) P {拒绝H 0|H 0正确}=α (C) P {接受H 0|H 0正确}=1-α (D) P {拒绝H 0|H 0正确}=1-α5.设有一批零件的长度服从正态分布),(2σμN ,其中2σμ,均未知,现从中随机抽取16个零件,测得样本均值),cm (9=x 样本标准差为μ,则)cm (1=s 的置信度为0.95的置信区间为( ).(A )()16(419025.0t ±) (B )()16(41905.0t ±) (C )()15(41905.0t ±) (D )()15(419025.0t ±)三、(10分) 某电子设备制造厂所用的元件是由三家元件制造厂提供的,根据以往的记录有以下的数据:求它是次品的概率.四、(14分)设⎩⎨⎧≤≤≤≤-=其它00,10),1(),(~),(xy x x ky y x f Y X , (1)求常数k ; (2)求),(Y X 关于X 及Y 的边缘密度)(x f X 和)(y f Y ; (3)计算概率}1{≤+Y X P .五、(10分)设总体X 在区间),0(θ上服从均匀分布,1X ,2X ,3X ,4X 为其样本. 试求(1)14i i X ≤≤max ()的概率密度函数; (2) 1412(max ())ii E X θ≤≤-. 六、(12分)某箱装有100个产品,其中一、二、三等品分别为60、30、10件. 现在从中随机抽取一件, 记1,0,i X ⎧=⎨⎩抽到i 等品其它,1,2,3)i =(.试求: (1)1X 与2X 的联合分布律; (2)1X 与2X 的相关系数ρ.七、(12分)某家庭的日开支X (元)的任意三次抽样为40,20,30,设22(10)(10)e 10~()010a x a x x X f x x --⎧⎪-≥=⎨<⎪⎩,,,求参数a 的极大似然估计值(保留三位小数).八、(12分)机器包装袋盐,假设袋盐重量服从正态分布,规定袋重标准差不能超过12g ,某天开工后要检查机器工作是否正常,从装好的袋盐中随机抽查9袋,测得样本标准差为16.03g ,问按显著性水平0.05α=, 能否认为包装机工作是正常的?参考答案: 一、填空题 1. 92 2. 43 3. 47 4. )1,(n F 5. 53 二、选择题1. D2. C3. C4. B5. D三、解:记A 表示“取到的是一只次品”,i B (3,2,1=i )表示“取到的产品是由第i 家工厂提供的”则 1()0.10P B =,2()0.75P B =,3()0.15P B =,1(|)0.02P A B =, 2(|)0.01P A B =,3(|)0.03P A B =,由全概率公式得31()()(|)0.014iii P A P B P A B ===∑.四、解:(1) 由100(,)d d (1)d d 124xkf x y x y ky x x y +∞+∞-∞-∞=-==⎰⎰⎰⎰,得 24k =. (2)2024(1)d ,0112(1),01()(,)d =0,0,xX y x y x x x x f x f x y y +∞-∞⎧⎧-≤≤-≤≤⎪==⎨⎨⎩⎪⎩⎰⎰其它其它1224(1)d ,0112(21),01()(,)d =0,0,y Y y x x y y y y y f y f x y x +∞-∞⎧-≤≤⎧-+≤≤⎪==⎨⎨⎩⎪⎩⎰⎰其它其它 (3)111222011124112242y yx y P X Y f x y x y y x x y y y y -+≤+≤==-=-=⎰⎰⎰⎰⎰{}(,)d d ()d d d .五、解:(1)令14max ()i i Y X ≤≤=,由X 的分布函数⎪⎪⎩⎪⎪⎨⎧>≤≤<=θθθx x x x x F ,,,1000)(得, Y 的分布函数为4()[()]Y F y F y =,所以Y 的概率密度为34400Y y y f y θθ⎧≤≤⎪=⎨⎪⎩其它()(2) 44445y EY y θθθ==⎰()d , 1411432255(max ())i i E X θθθθ≤≤-=⨯-=- . 六、解: (1) 160{1}0.6100P X ===,230{1}0.3100P X ===,310{1}0.1100P X ===,123{0,0}{1}0.1P X X P X =====.(2) 1()0.6E X =, 2()0.3E X =, 21()0.6E X =, 22()0.3E X =,21()0.60.60.24D X =-=, 22()0.30.30.21D X =-=, 12()0E X X = , 1214))X X ρ===-七、解:构造似然函数:211021110ni i annx n i i i i L a f x a x =--==∑==⋅-⋅∏∏()()()()e ,1012,,,,i x i n ≥= , 其对数似然函数为:∑∑∏===---+==ni i ni i i ni x a x a n x f a L 1211)10(2)10ln(ln )(ln )(ln 1012,,,,i x i n ≥=令21d 1ln ()(10)0d 2ni i n L a x a a ==--=∑,得∑=-=ni i x na 12)10(2ˆ,代入相关数据得0004.ˆa ≈. 八、解: 检验假设①0H :2212σ≤ 1H : 2212σ>, ②取检验统计量222(1)n S χσ-=2(1)n χ-,③拒绝域形式为22(1)n αχχ≥-, ④20.05(8)15.507χ=,22220.05220(1)816.0314.27615.507(8)12n S χχσ-⨯==≈<=⑤2χ值不在拒绝域内, 接受0H :2212σ≤, 综上讨论,认为包装机工作正常.。

《概率论与数理统计》 韩旭里 谢永钦版 习题三及答案

《概率论与数理统计》 韩旭里 谢永钦版 习题三及答案

习题三1.将一硬币抛掷三次,以X 表示在三次中出现正面的次数,以Y 表示三次中出现正面次数与出现反面次数之差的绝对值.试写出X 和Y 的联合分布律. 【解】X 和Y 的联合分布律如表:2.盒子里装有3只黑球、2只红球、2只白球,在其中任取4只球,以X 表示取到黑球的只数,以Y 表示取到红球的只数.求X 和Y 的联合分布律. 【解】X 和Y 的联合分布律如表:3.设二维随机变量(X ,Y )的联合分布函数为F (x ,y )=⎪⎩⎪⎨⎧≤≤≤≤.,020,20,sin sin 其他ππy x y x求二维随机变量(X ,Y )在长方形域⎭⎬⎫⎩⎨⎧≤<≤<36,40πππy x 内的概率. 【解】如图πππ{0,}(3.2)463P X Y <≤<≤公式 ππππππ(,)(,)(0,)(0,434636F F F F −−+ππππππsin sin sin sin sin 0sin sin 0sin4346361).4=−−+=i i i i题3图说明:也可先求出密度函数,再求概率。

4.设随机变量(X ,Y )的分布密度f (x ,y )=⎩⎨⎧>>+−.,0,0,0,)43(其他y x A y x e 求:(1) 常数A ;(2) 随机变量(X ,Y )的分布函数; (3) P {0≤X <1,0≤Y <2}. 【解】(1) 由-(34)0(,)d d e d d 112x y Af x y x y A x y +∞+∞+∞+∞+−∞−∞===∫∫∫∫得 A =12 (2) 由定义,有 (,)(,)d d y xF x y f u v u v −∞−∞=∫∫(34)340012ed d (1e )(1e )0,0,0,0,y yu v x y u v y x −+−−⎧⎧−−>>⎪==⎨⎨⎩⎪⎩∫∫其他(3) {01,02}P X Y ≤<≤<12(34)3800{01,02}12ed d (1e )(1e )0.9499.x y P X Y x y −+−−=<≤<≤==−−≈∫∫5.设随机变量(X ,Y )的概率密度为f (x ,y )=⎩⎨⎧<<<<−−.,0,42,20),6(其他y x y x k(1) 确定常数k ;(2) 求P {X <1,Y <3}; (3) 求P {X <1.5}; (4) 求P {X +Y ≤4}.【解】(1) 由性质有242(,)d d (6)d d 81,f x y x y k x y y x k +∞+∞−∞−∞=−−==∫∫∫∫故 18R = (2) 13{1,3}(,)d d P X Y f x y y x −∞−∞<<=∫∫130213(6)d d 88k x y y x =−−=∫∫ (3) 11.5{ 1.5}(,)d d a (,)d d x D P X f x y x y f x y x y <<=∫∫∫∫如图1.542127d (6)d .832x x y y =−−=∫∫(4) 24{4}(,)d d (,)d d X Y D P X Y f x y x y f x y x y +≤+≤=∫∫∫∫如图b240212d (6)d .83xx x y y −=−−=∫∫题5图6.设X 和Y 是两个相互独立的随机变量,X 在(0,0.2)上服从均匀分布,Y 的密度函数为f Y (y )=⎩⎨⎧>−.,0,0,55其他y y e求:(1) X 与Y 的联合分布密度;(2) P {Y ≤X }.题6图【解】(1) 因X 在(0,0.2)上服从均匀分布,所以X 的密度函数为1,00.2,()0.20,.X x f x ⎧<<⎪=⎨⎪⎩其他 而55e ,0,()0,.y Y y f y −⎧>=⎨⎩其他 所以(,),()()X Y f x y X Y f x f y i 独立5515e 25e ,00.20,0.20,0,y y x y −−⎧⎧×<<>⎪==⎨⎨⎩⎪⎩且其他. (2) 5()(,)d d 25ed d yy xDP Y X f x y x y x y −≤≤=∫∫∫∫如图0.20.2-550-1d 25e d (5e 5)d =e 0.3679.xy x x y x−==−+≈∫∫∫7.设二维随机变量(X ,Y )的联合分布函数为F (x ,y )=⎩⎨⎧>>−−−−.,0,0,0),1)(1(24其他y x y x e e求(X ,Y )的联合分布密度.【解】(42)28e ,0,0,(,)(,)0,x y x y F x y f x y x y −+⎧>>∂==⎨∂∂⎩其他. 8.设二维随机变量(X ,Y )的概率密度为f (x ,y )= 4.8(2),01,0,0,.y x x y x −≤≤≤≤⎧⎨⎩其他求边缘概率密度. 【解】()(,)d X f x f x y y +∞−∞=∫x204.8(2)d 2.4(2),01,=0,.0,y x y x x x ⎧⎧−−≤≤⎪=⎨⎨⎩⎪⎩∫其他 ()(,)d Y f y f x y x +∞−∞=∫12y4.8(2)d 2.4(34),01,=0,.0,y x x y y y y ⎧−⎧−+≤≤⎪=⎨⎨⎩⎪⎩∫其他题8图 题9图9.设二维随机变量(X ,Y )的概率密度为f (x ,y )=⎩⎨⎧<<−.,0,0,其他e y x y 求边缘概率密度. 【解】()(,)d X f x f x y y +∞−∞=∫e d e ,0,=0,.0,y x x y x +∞−−⎧⎧>⎪=⎨⎨⎩⎪⎩∫其他 ()(,)d Y f y f x y x +∞−∞=∫0e d e ,0,=0,.0,yy x x y y −−⎧⎧>⎪=⎨⎨⎩⎪⎩∫其他题10图10.设二维随机变量(X ,Y )的概率密度为f (x ,y )=⎩⎨⎧≤≤.,0,1,22其他y x y cx(1) 试确定常数c ;(2) 求边缘概率密度. 【解】(1)(,)d d (,)d d Df x y x y f x y x y +∞+∞−∞−∞∫∫∫∫如图2112-14=d d 1.21xx cx y y c ==∫∫得 214c =. (2) ()(,)d X f x f x y y +∞−∞=∫212422121(1),11,d 840,0,.x x x x x y y ⎧⎧−−≤≤⎪⎪==⎨⎨⎪⎪⎩⎩∫其他 ()(,)d Y f y f x y x +∞−∞=∫5227d ,01,20,0, .x y x y y ⎧⎧≤≤⎪⎪==⎨⎨⎪⎪⎩⎩其他 11.设随机变量(X ,Y )的概率密度为f (x ,y )=⎩⎨⎧<<<.,0,10,,1其他x x y 求条件概率密度f Y |X (y |x ),f X |Y(x |y ).题11图【解】()(,)d X f x f x y y +∞−∞=∫1d 2,01,0,.xxy x x −⎧=<<⎪=⎨⎪⎩∫其他 111d 1,10,()(,)d 1d 1,01,0,.y Y y x y y f y f x y x x y y −+∞−∞⎧=+−<<⎪⎪⎪===−≤<⎨⎪⎪⎪⎩∫∫∫其他所以|1,||1,(,)(|)2()0,.Y X X y x f x y f y x xf x ⎧<<⎪==⎨⎪⎩其他|1,1,1(,)1(|),1,()10,.X Y Y y x y f x y f x y y x f y y⎧<<⎪−⎪⎪==−<<⎨+⎪⎪⎪⎩其他12.袋中有五个号码1,2,3,4,5,从中任取三个,记这三个号码中最小的号码为X ,最大的号码为Y .(1) 求X 与Y 的联合概率分布; (2) X 与Y 是否相互独立? 【解】(1) X 与Y 的联合分布律如下表(2) 因6161{1}{3}{1,3},101010010P X P Y P X Y ===×=≠===i 故X 与Y 不独立 (1)求关于X 和关于Y 的边缘分布; (2) X 与Y 是否相互独立?(2) 因{2}{0.4}0.20.8P X P Y ===×i 0.160.15(2,0.4),P X Y =≠=== 故X 与Y 不独立. 14.设X 和Y 是两个相互独立的随机变量,X 在(0,1)上服从均匀分布,Y 的概率密度为f Y (y )=⎪⎩⎪⎨⎧>−.,0,0,212/其他y y e(1)求X 和Y 的联合概率密度;(2) 设含有a 的二次方程为a 2+2Xa +Y =0,试求a 有实根的概率.【解】(1) 因1,01,()0,X x f x <<⎧==⎨⎩其他; 21e ,1,()20,yY y f y −⎧>⎪==⎨⎪⎩其他. 故/21e01,0,(,),()()20,.y X Y x y f x y X Y f x f y −⎧<<>⎪=⎨⎪⎩i 独立其他题14图(2) 方程220a Xa Y ++=有实根的条件是2(2)40X Y Δ=−≥故 X 2≥Y ,从而方程有实根的概率为:22{}(,)d d x yP X Y f x y x y ≥≥=∫∫21/2001d e d 21(1)(0)]0.1445.x y x y−==Φ−Φ=∫∫15.设X 和Y 分别表示两个不同电子器件的寿命(以小时计),并设X 和Y 相互独立,且服从同一分布,其概率密度为f (x )=⎪⎩⎪⎨⎧>.,0,1000,10002其他x x求Z =X /Y 的概率密度.【解】如图,Z 的分布函数(){}{}Z XF z P Z z P z Y=≤=≤ (1) 当z ≤0时,()0Z F z =(2) 当0<z <1时,(这时当x =1000时,y =1000z)(如图a ) 3366102222101010()d d d d yz Z zx y zF z x y y x x y x y +∞≥==∫∫∫∫ 33610231010=d 2z zy yzy +∞⎛⎞−=⎜⎟⎝⎠∫题15图(3) 当z ≥1时,(这时当y =103时,x =103z )(如图b ) 3366222210101010()d d d d zy Z xy zF z x y y x x y x y +∞≥==∫∫∫∫336231010101=d 12y y zy z +∞⎛⎞−=−⎜⎟⎝⎠∫即 11,1,2(),01,20,.Z z z zf z z ⎧−≥⎪⎪⎪=<<⎨⎪⎪⎪⎩其他故 21,1,21(),01,20,.Z z z f z z ⎧≥⎪⎪⎪=<<⎨⎪⎪⎪⎩其他16.设某种型号的电子管的寿命(以小时计)近似地服从N (160,202)分布.随机地选取4 只,求其中没有一只寿命小于180的概率.【解】设这四只寿命为X i (i =1,2,3,4),则X i ~N (160,202), 从而123412{min(,,,)180}{180}{180}i P X X X X X P X P X ≥≥≥i 之间独立34{180}{180}P X P X ≥≥i 1234[1{180}][1{180}][1{180}][1{180}]P X P X P X P X =−<−<−<−<i i i44144180160[1{180}]120[1(1)](0.158)0.00063.P X ⎡−⎤⎛⎞=−<=−Φ⎜⎟⎢⎥⎝⎠⎣⎦=−Φ== 17.设X ,Y 是相互独立的随机变量,其分布律分别为P {X =k }=p (k ),k =0,1,2,…, P {Y =r }=q (r ),r =0,1,2,….证明随机变量Z =X +Y 的分布律为P {Z =i }=∑=−ik k i q k p 0)()(,i =0,1,2,….【证明】因X 和Y 所有可能值都是非负整数,所以 {}{}Z i X Y i ==+={0,}{1,1}{,0}X Y i X Y i X i Y =====−==∪∪ ∪ 于是0{}{,},ik P Z i P X k Y i k X Y =====−∑相互独立{}{}ik P X k P Y i k ===−∑i()()ik p k q i k ==−∑18.设X ,Y 是相互独立的随机变量,它们都服从参数为n ,p 的二项分布.证明Z =X +Y 服从参数为2n ,p 的二项分布.【证明】方法一:X +Y 可能取值为0,1,2,…,2n .0{}{,}ki P X Y k P X i Y k i =+====−∑00202(){}2ki ki n i k i n k ii kk n ki k n k P X i P Y k i n n p q p qi k i n n p qi k i n p q k =−−−+=−=−===−⎛⎞⎛⎞=⎜⎟⎜⎟−⎝⎠⎝⎠⎛⎞⎛⎞=⎜⎟⎜⎟−⎝⎠⎝⎠⎛⎞=⎜⎟⎝⎠∑∑∑i方法二:设μ1,μ2,…,μn ;μ1′,μ2′,…,μn ′均服从两点分布(参数为p ),则 X =μ1+μ2+…+μn ,Y =μ1′+μ2′+…+μn ′, X +Y =μ1+μ2+…+μn +μ1′+μ2′+…+μn ′,所以,X +Y 服从参数为(2n ,p )的二项分布.(2) 求V =max (X ,Y )的分布律; (3) 求U =min (X ,Y )的分布律; (4) 求W =X +Y 的分布律. 【解】(1){2,2}{2|2}{2}P X Y P X Y P Y ======5{2,2}0.051,0.252{,2}i P X Y P X i Y ========∑ {3,0}{3|0}{0}P Y X P Y X P X ======3{0,3}0.011;0.033{0,}j P X Y P X Y j ========∑ (2){}{max(,)}{,}{,}P V i P X Y i P X i Y i P X i Y i ====<+≤=10{,}{,},i ik k P X i Y k P X k Y i −=====+==∑∑ 0,1,2,3,4,5i =所以V 的分布律为V =max (X ,Y ) 0 1 2 3 4 5 P 00.04 0.16 0.28 0.24 0.28(3) {}{min(,)}P U i P X Y i ===351{,}{,}{,}{,}k ik i P X i Y i P X i Y i P X i Y k P X k Y i ==+==≥+>====+==∑∑ 0,1,2,3,i =于是U =min (X ,Y ) 0 1 2 3 P0.28 0.30 0.25 0.17(4)类似上述过程,有W =X +Y 0 1 2 3 4 5 6 7 8 P0.02 0.06 0.13 0.19 0.24 0.19 0.12 0.0520.雷达的圆形屏幕半径为R ,设目标出现点(X ,Y )在屏幕上服从均匀分布. (1) 求P {Y >0|Y>X };(2) 设M =max{X ,Y },求P {M >0}.题20图【解】因(X ,Y )的联合概率密度为22221,,(,)π0,.x y R f x y R⎧+≤⎪=⎨⎪⎩其他 (1){0,}{0|}{}P Y Y X P Y Y X P Y X >>>>=>0(,)d (,)d y y xy xf x y f x y σσ>>>=∫∫∫∫π2π/405π42π/401d d π1d d πRR r rR r r R θθ=∫∫∫∫3/83;1/24==(2) {0}{max(,)0}1{max(,)0}P M P X Y P X Y >=>=−≤00131{0,0}1(,)d 1.44x y P X Y f x y σ≤≤=−≤≤=−=−=∫∫21.设平面区域D 由曲线y =1/x 及直线y =0,x =1,x=e 2所围成,二维随机变量(X ,Y )在区域D 上服从均匀分布,求(X ,Y )关于X 的边缘概率密度在x =2处的值为多少?题21图【解】区域D 的面积为 22e e 0111d ln 2.S x x x===∫(X ,Y )的联合密度函数为211,1e ,0,(,)20,.x y f x y x ⎧≤≤<≤⎪=⎨⎪⎩其他(X ,Y )关于X 的边缘密度函数为1/2011d 1e ,()220,.x X y x f x x⎧=≤≤⎪=⎨⎪⎩∫其他 所以1(2).4X f =22.设随机变量X 和Y 相互独立,下表列出了二维随机变量(X ,Y )联合分布律及关于X 和x 2 1/8P {Y =y j }=p j 1/6 1【解】因21{}{,}j j iji P Y y P P X x Y y ======∑,故11121{}{,}{,},P Y y P X x Y y P X x Y y ====+== 从而11111{,}.6824P X x Y y ===−= 而X 与Y 独立,故{}{}{,}i j i i P X x P Y y P X x Y y =====i ,从而11111{}{,}.624P X x P X x Y y =×==== 即:1111{}/.2464P X x ===又1111213{}{,}{,}{,},P X x P X x Y y P X x Y y P X x Y y ====+==+==即1,3111{},4248P X x Y y =++== 从而131{,}.12P X x Y y ===同理21{},2P Y y == 223{,}8P X x Y y ===又31{}1jj P Y y ===∑,故3111{}1623P Y y ==−−=. 同理23{}.4P X x == 从而23313111{,}{}{,}.3124P X x Y y P Y y P X x Y y ====−===−=故23.设某班车起点站上客人数X 服从参数为λ(λ>0)的泊松分布,每位乘客在中途下车的概率为p (0<p <1),且中途下车与否相互独立,以Y 表示在中途下车的人数,求:(1)在发车时有n 个乘客的条件下,中途有m 人下车的概率;(2)二维随机变量(X ,Y )的概率分布.【解】(1) {|}C (1),0,0,1,2,mmn mn P Y m X n p p m n n −===−≤≤= .(2) {,}{}{|}P X n Y m P X n P Y m X n ======ie C (1),,0,1,2,.!mm n mnnp p n m n n n λλ−−=−≤≤=i 24.设随机变量X 和Y 独立,其中X 的概率分布为X ~⎟⎟⎠⎞⎜⎜⎝⎛7.03.021,而Y 的概率密度为f (y ),求随机变量U =X +Y 的概率密度g (u ).【解】设F (y )是Y 的分布函数,则由全概率公式,知U =X +Y 的分布函数为(){}0.3{|1}0.7{|2}G u P X Y u P X Y u X P X Y u X =+≤=+≤=++≤=0.3{1|1}0.7{2|2}P Y u X P Y u X =≤−=+≤−=由于X 和Y 独立,可见()0.3{1}0.7{2}G u P Y u P Y u =≤−+≤−0.3(1)0.7(2).F u F u =−+−由此,得U 的概率密度为()()0.3(1)0.7(2)g u G u F u F u ′′′==−+−0.3(1)0.7(2).f u f u =−+−25. 设随机变量X 与Y 相互独立,且均服从区间[0,3]上的均匀分布,求P {max{X ,Y }≤1}.解:因为随即变量服从[0,3]上的均匀分布,于是有1, 03,()30, 0,3;x f x x x ⎧≤≤⎪=⎨⎪<>⎩ 1, 03,()30, 0, 3.y f y y y ⎧≤≤⎪=⎨⎪<>⎩因为X ,Y 相互独立,所以1, 03,03,(,)90, 0,0,3, 3.x y f x y x y x y ⎧≤≤≤≤⎪=⎨⎪<<>>⎩推得 1{max{,}1}9P X Y ≤=. 26. 设二维随机变量(X ,Y )的概率分布为其中a ,b ,c 为常数,且X 的数学期望E (X )= −0.2,P {Y ≤0|X ≤0}=0.5,记Z =X +Y .求: (1) a ,b ,c 的值; (2) Z 的概率分布; (3) P {X =Z }.解 (1) 由概率分布的性质知,a+b+c +0.6=1 即 a+b+c = 0.4. 由()0.2E X =−,可得0.1a c −+=−.再由 {0,0}0.1{00}0.5{0}0.5P X Y a b P Y X P X a b ≤≤++≤≤===≤++,得 0.3a b +=.解以上关于a ,b ,c 的三个方程得0.2,0.1,0.1a b c ===.(2) Z 的可能取值为−2,−1,0,1,2,{2}{1,1}0.2P Z P X Y =−==−=−=,{1}{1,0}{0,1}0.1P Z P X Y P X Y =−==−=+==−=,{0}{1,1}{0,0}{1,1}0.3P Z P X Y P X Y P X Y ===−=+==+==−=,{1}{1,0}{0,1}0.3P Z P X Y P X Y ====+===,{2}{1,1}0.1P Z P X Y =====,即Z 的概率分布为Z −2 −1 0 1 2 P0.2 0.1 0.3 0.3 0.1(3) {}{0}0.10.20.10.10.20.4P X Z P Y b ====++=++=.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1) 取显著性水平 ? =0.05,是否可以认为该指标的平均值显著地大于2?
(2) 求该指标的方差的 0.95 的置信区间.
ቤተ መጻሕፍቲ ባይዱ
_______________________________________________________
以下分位数全部为下侧?--分位数:
?(1)=0.8413; ?(1.645)=0.95; ?(1.95)=0.974; ?(1.96)=0.975;
?(2)=0.9773; ?(2.05)=0.9798; ?(3)=0.9985;
?20.95(15)= 24.996; ?20.975(15)= 27.488; ?20.95(14)= 23.685; ?20.975(14)= 26.119;
?20.05(15)= 7.261; ?20.025(15)= 6.262; ?20.05(14)= 6.571; ?20.025(14)= 5.629;
五、(10分) 设 X1, X2, ..., Xn 是来自参数为 ? 的泊松分布总体 X 的一个样本,试求:
(1) ? 的极大似然估计.
(2) 的极大似然估计.
六、(10分) 设总体X以概率1/? 取值1, 2, ..., ?, 求未知参数? 的矩估计.
七、(10分) 某电子产品的一个指标服从正态分布,从某天生产的产品中抽取15个产品,测得该指标的样本均值为2.80,样本标准差为0.215。
三、(20分) 设随机变量 X与 Y 的联合密度函数为
(1) 求常数 c ;
(2) 求X与Y各自的边缘密度函数;
(3) X与Y是否独立?为什么?
(4) (4) P(X+2Y<1).
四、(10分) 将一枚均匀硬币掷400次,计算正面出现的次数大于220的概率.
《概率统计》试 卷 (三)
时间 120分钟
一. 填空题(每空3分,共30分)
1. 如果 P(A)=0.4, P(B)=0.3, P(A∪B)=0.5, 则P(A)=_________.
2. 设A、B、C是三个事件,且P(A)=P(B)=P(C)=1/4,P(AB)=P(BC)=0,
P(AC)=1/8,则A、B、C 至少发生一个的概率为___________.
3. 设随机变量 X 的分布函数为:
F(x ) =
则 X 的概率分布律为___________________________.
4. 已知D( X ) = 4, D(Y ) = 9, D( X?Y) = 12, 则X与Y间的相关系数为
6. 设X、Y相互独立,且都服从标准正态分布,则Z =服从___________分布 (同时要写出分布的参数) .
7. 设X1, X2, ..., X20 是来自总体N(?, ?2)的样本,则 服从________分布 (同时写出分布的参数).
8. 设X1、X2、X3为从总体X中抽取的容量为3的样本,总体均值为?,
? =___________.
5. 设随机变量X与Y相互独立,且服从同一分布,X的分布律为
P( X = 0 ) = P( X = 1 ) = 1/2,则Z = max( X, Y ) 的分布律为
_________________________________________.
t0.95(15)=1.7531; t0.975(15)=2.1315; t0.95(14)=1.7613; t0.975(14)=2.1448.
??
??
??
??
总体方差为?2. 记, ,
分别为未知参数? 的估计,则____________为?
的无偏估计,且此三个估计中___________最有效.
9. 如果一个假设检验问题的显著性水平为0.05,那么犯第一类错误的
概率是_________________.
二、(10分) 在一道答案有4种选择的单项选择题测验中,若一个学生不知道题目的正确答案,他就从4个答案中任选1个。己知有80%的学生知道正确答案,现在某个学生答对了此题,问他确实知道正确答案的概率为多少?
相关文档
最新文档