MCZ33993EWR2中文资料
MC33991中文资料
摘要:MC33991是Motorola公司生产的两相步进电机驱动器,可以准确地控制步进电机的运动并及时反馈步时电机的工作状态。
该电路有良好的抗干扰能力,可以灵活地控制驱动步时电机,是汽车电子设备特别是汽车仪表中的理想驱动器。
关键词:步时电动机驱动器SPIMC33991汽车仪表1MC33991的主要特点MC33991是单独封装、通过SPI(同步串行外设接口)进行通信、可同时控制二个步进电机的驱动电路。
该电路由4个可驱动线圈的功率H桥和辅助逻辑控制器组成。
每组H桥的驱动可用来控制步时电机的速度、旋转方向及每相线圈中电流的大小。
MC33991有良好的抗干扰能力,可以十分灵活地驱动步进电机,因此是汽车电子设备特别是汽车仪表的理想驱动器。
只要做一些外围设备的改进,该电路也可以仿照气隙磁通的运行,把普通电机转化为步进电机来控制。
MC33991的特性如下:•最小的上层处理器(不需其他外设即可直接驱动电机);•仿效普通电机的运动进行控制,使电机有完美的动态和静态性能;•有4096个静态指示位置;•最大指针扫过范围为340°;•最大指针速度为400deg/s;•最大指针加速度为4500deg/s2;•应用微步距控制技术(每步细分为12个微步);•指针回零校准;•有16位SPI;•内部时钟校准;•睡眠模式下的耗电量较小。
内韶晶撮GADMC33991的内部结构框图2结构原理与引脚功能2.1内部结构MC33991的内部结构框图如图1所示,它由PI 、逻辑电路、电压/温度检测及功率H 桥等模块组成。
MC33991主控电路先将驱动命令通过SPI 以串行数据的方式输出,再通过逻辑电路将命令转化成驱动信号以驱动功率H 桥,H 桥输出电流直接驱动步进电机,同时MC33991中的电压/温度等检测模块可以随时检测电机的动转状态,并将检测结果通过SPI 以串行输出方式将数据反馈给主控电路。
2.2引脚功能VnuC5SCL K 5051SP1RST-18T ICOSOt SINOj C0S1匚・»»■>中国事揃 遵理_!«样|z 章TRTZ压低检过及压测H 桥及-COSO+ -COSO- -SSNO+ SINO COS1+c osi-RTZ SINH SiKl-L24WideBodySOICThermaltyEnhancedleadFramehttpffj^^gstgUdqxomCOS+、COS-、SIN+与SIN-:H 桥输出端。
Secure Series II 产品说明书
This document provides firmware update instructions and describes what is new in this firmware version for the SUHD553-L, SUHD653-L, SUHD753-L, SUHD863-L.This is the initial release for the Secure Series II panels (SUHD553-L, SUHD653-L, SUHD753-L, SUHD863-L) for the Scaler firmware v1.0.1.8 and Ethernet firmware v14.Follow these steps to update the scaler firmware.Learn how to update the scaler firmware.Christie recommends updating the scaler firmware using the USB method as it is faster than the webserver update method.1.Upload the firmware for the A/D board.2.Plug in a USB memory to the service terminal.3.Enter the Factory-Menu.To enter the Factory-Menu by remote control:After version 1.0.2.1-114.5.Select USB Update.For compatible USB storage devices a Connected message appears. Proceed to step 5. If the USB storage device is not compatible, proceed to step 6.6.If Connected appears, select USB Update.The firmware is updated automatically and the panel goes into Standby mode after a successfulfirmware update (about 30 seconds).a.Reset the main power switch to turn the panel back on.b.When the firmware update is complete, From the Factory-Menu perform an Initial Setting.c.After Initial Setting, power off the panel using the rocker-switch.d.Wait at least 10 seconds and power the panel back on.7.If the USB storage device is not compatible, a Not Connected USB message appears.8.For the software version to upload correctly, ensure the filename is SUHD983P.bin.Follow these steps to update the Ethernet firmware.1.To use a static IP address, select Disable under DHCP.•The default static IP address is 192.168.10.10.•At initial power on, it may take up to 30 seconds for the IP address to be active.2.Select DHCP Enable to use a dynamic IP address.•If there is router, the IP address starts with 192.166.•If there is no router, the IP address starts with 169.254.1.Go to Local Network Setting > Internet protocol version 4 (TCP/IPv4).2.If DHCP is disabled, set the IP address and Subnet mask.The IP address must be a different address than the display.IP address : 192.168.10.50Subnet Mask : 255.255.255.03.If DHCP is enabled, select Obtain an IP address automatically.The ping test checks the Ethernet connection.1.Press Windows + R.2.Type cmd and click OK.3.Type ping –t 192.168.10.10.4.Replace the IP address with the address of the display panel.A response similar to below indicates the ping test was successful.A response similar to below indicates the ping test failed.Connect to the built-in web server open a Web browser (for example, Internet Explorer, Chrome) and follow the instructions below.1.In a web browser, go to the address of the display panel.The web page provides all menu controls on the on-screen display.2.To set a value, click Apply.3.To display the current value, click Read.4.To upgrade the Ethernet or Scaler firmware, go to the General settings page.•Ethernet firmware update time: approximately 5 minutes.File name : Ethernet_FW_Secure_Series_II_V*.bin•Scaler firmware update time: approximately 8 minutesSecure_Series_II.binIf you updated the scaler firmware using the USB method, it does not need to be updated again inthe web server.Before staring the updates, ensure the following settings are selected in the Setup menu of the WebUI or the on screen display:•Setup > Power Save > Off•Setup > Power Off Mode > StandbyScaler F/W update:The panel turns off approximately three minutes after the update starts. Once the update is complete (takes approximately five to eight minutes) an Update completed. Please reboot. messageappears on the WebUI and the panel powers on.Ethernet F/W update:The panel stays on throughout the update. Once the update is complete (takes approximately five to eight minutes) an Update completed. Please reboot. message appears on the WebUI and thepanel stays on.5.Power off the unit using the remote control.6.Power cycle the panel by turning the rocker switch to the OFF position and back to ON after 15 seconds.7.Power on the panel.8.To confirm version of the firmware, click the About page on the WebUI or the panel on-screen display. For installation, setup, and user information, see the product documentation available on the Christiewebsite. Read all instructions before using or servicing this product.1.Access the documentation from the Christie website:•Go to this URL: https://bit.ly/2VccFTr orhttps:///products/lcd-panels/secure-series-II/•Scan the QR code using a QR code reader app on a smartphone or tablet.2.On the product page, select the model and switch to the Downloads tab.Additional information on the LCD panels is available in the following documents.•Secure Series II LCD Panels Product Safety Guide (P/N: 020-001778-XX)•Secure Series II LCD Display Panels External Commands (P/N: 020-001915-XX)•SUHD553-L LCD Panels Service Guide (P/N: 020-001850-XX)•SUHD653-L LCD Panels Service Guide (P/N: 020-001851-XX)•SUHD753-L LCD Panels Service Guide (P/N: 020-001876-XX)•SUHD863-L LCD Panels Service Guide (P/N:020-001877-XX)Technical support for Christie products is available at:•North and South America: +1-800-221-8025 or ************************************•Europe, Middle East, and Africa: +44 (0) 1189 778111 or ********************************•Asia Pacific•Australia: +61 (0)7 3624 4888•China: +86 10 6561 0240•India: +91 (80) 6708 9999•Japan: 81-3-3599-7481•Singapore: +65 6877-8737•South Korea: +82 2 702 1601•Christie Professional Services: +1-800-550-3061 or ***********************。
开关电源磁芯参数
.开关电源磁芯参数MnZn功率铁氧体EPC 功率磁芯特点:具有热阻小、衰耗小、功率大、工作频率宽、重量轻、结构合理、易表面贴装、屏蔽效果好等优点,但散热性能稍差。
用途:广泛应用于体积小而功率大且有屏蔽和电磁兼容要求的变压器,如精密仪器、程控交换机模块电源、导航设备等。
EPC 型功率磁芯尺寸规格磁芯型号尺寸 Dimensions(mm)Type A B C D Emin F G HminEPC10/810.20 ±0.20 4.05 ±0.30 3.40 ±0.20 5.00 ±0.207.60 2.65 ±0.20 1.90 ±0.20 5.30EPC13/1313.30 ±0.30 6.60 ±0.30 4.60 ±0.20 5.60 ±0.2010.50 4.50 ±0.30 2.05 ±0.208.30EPC17/1717.60 ±0.508.55 ±0.30 6.00 ±0.307.70 ±0.3014.30 6.05 ±0.30 2.80 ±0.2011.50EPC19/2019.60 ±0.509.75 ±0.30 6.00 ±0.308.50 ±0.3015.807.25 ±0.30 2.50 ±0.2013.10EPC25/2525.10 ±0.5012.50 ±0.308.00 ±0.3011.50 ±0.3020.659.00 ±0.30 4.00 ±0.2017.00EPC27/3227.10 ±0.5016.00 ±0.308.00 ±0.3013.00 ±0.3021.6012.00 ±0.30 4.00 ±0.2018.50EPC30/3530.10 ±0.5017.50 ±0.308.00 ±0.3015.00 ±0.3023.6013.00 ±0.30 4.00 ±0.2019.50EPC39/3939.00 ±0.5019.60 ±0.3015.60 ±0.3018.00 ±0.3030.7014.00 ±0.3010.00 ±0.3024.50EPC42/4442.40 ±1.0022.00 ±0.3015.00 ±0.4017.00 ±0.3033.5016.00 ±0.307.40 ±0.3026.50. EPC46/4946.00 ±1.0024.80 ±0.3019.50 ±0.4020.80 ±0.4035.7018.40 ±0.4011.90 ±0.3028.40EPC46.5/4446.50 ±1.0022.30 ±0.3019.40 ±0.4021.00 ±0.4036.9015.80 ±0.4012.00 ±0.3029.40EPC54/5454.50 ±1.2027.20 ±0.3021.50 ±0.4026.50 ±0.4043.0019.30 ±0.4014.00 ±0.3034.30EPC 功率磁芯电气特性及有效参数有效参数 Effective parameters 磁芯型号材质AL(nH/N2)C1Le Ae Ve重量功耗约设计功率( W)Type Material±25%(mm-1)(mm)(mm2)(mm3)(g/PRS)(W/PRS,max)1KHz/0.25v EPC10/8TP4950 1.9017.89.39167 1.10.133 EPC13/13TP4830 2.4530.612.5382 2.10.246 EPC17/17TP41150 1.7640.222.8917 4.50.5213 EPC19/20TP4900 2.0346.122.71047 5.30.6115 EPC25/25TP41550 1.2859.246.4274713.0 1.5040 EPC27/32TP41550 1.3473.154.6399120.0 2.3060 EPC30/35TP41500 1.3481.661497723.0 2.6570 EPC39/39TP442500.53901691521073.08.40220 EPC42/44TP428000.56951691605578.49.02235 EPC46/49TP441000.49111.222725242122.414.08360 EPC46.5/44TP448000.4410122923129125.014.38370 EPC54/54TP460000.39130.833643949200.023.00600注:AL 值测试条件为1KHz,0.25v,100Ts,25 ±3℃. Pc值测试条件为 100KHz,200mT,100 ℃EE、 EEL 、EF 型功率磁芯.特点:引线空间大,绕制接线方便。
多路开关检测接口电路MC33993的原理及应用
多路开关检测接口电路MC33993的原理及应用
曾洁
【期刊名称】《国外电子元器件》
【年(卷),期】2004(000)010
【摘要】美国MOTOROLA公司推出的可编程多路开关检测接口集成电路
MC33993可检测多达22路的开关量输入信号,并可将检测到的多路开关状态(三态)信号通过该芯片的SPI(串行外围接口)传送给MCU(微控制器)。
此外,该器件还具有22路模拟多路开关功能,可用以读取多路模拟输入信号。
该模
【总页数】3页(P69-71)
【作者】曾洁
【作者单位】大连铁道学院电信分院,辽宁,大连,116028
【正文语种】中文
【中图分类】TN4
【相关文献】
1.基于多路开关监测接口芯片MC33993的开关量输入电路 [J], 高亮;高瑜
2.基于MC33993的车用多路开关检测接口电路设计 [J], 王兴山;马建辉;王知学
3.用户线接口电路芯片HC55181的原理及应用 [J], 丛珊;张宇
4.内含放大器的视频多路开关MAX440/441的原理及应用 [J], 王栓柱;杨志亮
5.基于MC33993的键盘控制接口电路设计 [J], 李晖;曾洁;郭永伟
因版权原因,仅展示原文概要,查看原文内容请购买。
MFRC522中文
非非接接触触式式读读卡卡器器 IICCLeabharlann 广州周立功单片机发展有限公司
目录
目录
1.简介 ................................................................................................................................................... 1 1.1 范围............................................................................................................................................1 1.2 概述............................................................................................................................................1 1.3 特性............................................................................................................................................1 1.4 简化MFRC522 框图..................................................................................................................2
MC33035中文
0.1
0.2
0.3
电源电流
ICC
--
12
16
mA
管脚 17 (VCC = VC = 20 V)
IC
--
14
20 0
管脚 17 ( VCC = 20 V, VC = 30 V)
--
3.5
6.0
管脚 18 ( VCC = VC = 20 V)
--
5.0
10
管脚 18 (VCC = 20 V, VC = 30 V)
ISC
40
75
–
mA
基准欠电压锁定阈值
Vth
4.0
4.5
5.0
V
误差放大器
输入偏移电压 (TA = –40° ~ +85°C)
VIO
--
0.4
10
mV
输入偏移电流 (TA = –40°∼+85°C)
IIO
--
8.0
500
nA
输入偏置电流 (TA = –40° ~ +85°C)
IIB
--
-46
-1000 nA
tHl ,低速驱 动响应 时间
图11,低速驱动响应时间 VS电流感应输入电压
250
VCC=20V
VC=20V
200
RL=∞
CT=10nF
150
TA=25℃
100
50
0 1.0
2.0 3.0 4.0 5.0 6.07.0 10 电流感应输入电压(标称为 Vth)
V sa t,输出饱 和电压 (V)
图12,fault输出饱和电压 VS陷电流
Vsat,输出饱和电压(V)
MCZ33812AEKR2;中文规格书,Datasheet资料
Pin
Pin Name
Pin Function
Formal Name
Description
1
IGNOUTL Output
2 IGNOUTH Output
3
IGNSUP
Input
4
IGNFB
Input
Ignition Output Low Ignition Output High Ignition Output Supply Feedback from Source
29
WD_INH
28
N.C.
27
INJOUT
26
PGND1
GND
25
DGND
24
LAMPOUT
23
PGND2
22
ROUT
21
N.C.
20
TM_EN
19
WDRFSH
18
MRX
17
MTX
Figure 4. 33812 Pin Connections
Table 1. 33812 Pin Definitions
• ISO-9141 K-Line transceiver for communicating diagnostic messages
• Pb-free packaging designated by suffix code EK
VBAT +5 V
MCU
பைடு நூலகம்
VCC
GPIO GPIO
RESET
GPIO
GPIO GPIO
Freescale Semiconductor Advance Information
Document Number: MC33812 Rev. 5.0, 7/2010
RK3399W_V1.0 硬件规格书V
RK3399W V1.0智能工控主板规格书文档修改历史目录第一章产品概述 (3)1.1适用范围........................................... 错误!未定义书签。
1.2产品概述........................................... 错误!未定义书签。
1.3产品特点........................................... 错误!未定义书签。
1.4外观及接口示意图................................... 错误!未定义书签。
第二章基本功能列表. (6)第三章PCB尺寸和接口布局 (7)3.1PCB尺寸图 (8)3.2接口参数说明 (10)第四章电气性能 (22)第五章组装使用注意事项 (24)第一章产品概述1.1 RK3399W适用范围RK3399W属于商显智能自助终端主板,普遍适用于:互动广告机、互动数字标牌、智能自助终端、智能零售终端、O2O智能设备、工控主机、机器人设备等。
1.2 产品概述RK3399W采用瑞芯微RK3399 (双Cortex-A72大核+四Cortex-A53小核)六核64位超强CPU,搭载Android 7.1系统,主频高达2 GHz。
采用Mali-T860MP4 GPU,支持4K、H.265硬解码。
多路视频输出和输入,性能更强,速度更快,接口更丰富,是您在人机交互、智能终端、工控项目上的最佳选择。
1.3 产品特点◆RK3399超强CPU搭载Android 7.1系统,速度更快,性能更强。
◆支持5G和2.4GWIFI,独立双天线。
◆双网口设计,支持1000M网口+100M网口。
◆内置PCI-E 3G/4G模块接口.支持华为、中兴、龙尚等多种PCI-E3G/4G模块,支持上网和通话.◆丰富的扩展接口.6个USB接口(1路USB 3.0 OTG,1路USB Host 1路+3路HUB,1路TYPE C),1路485接口,4路可扩展串口(2路TTL,2路RS232),GPIO及ADC接口,可以满足市场上各种外设的要求。
MC33999EK;MC33999EKR2;MCZ33999EK;MCZ33999EKR2;KIT33999EKEVB;中文规格书,Datasheet资料
To Gates 1 to 15
VRef Open Load Detect Enable ILIMIT 50 A RS
SPI Interface Logic
Short and Open Circuit Detect Overtemperature Detect
GND Pins: 10 – 18 37 – 40 42 – 45
Voltage Regulator GE OT SF OF
PWM 50 RST 47 CS 23 SCLK 20 SI 32 SO 35 SOPWR 5 PWM0 1 PWM1 4 PWM6 24 PWM7 27 PWM8 28 PWM9 31 PWM14 51 PWM15 54
10 A 25 A 10 A Input Buffers 10 A 10 A Serial D/O Line Driver
33999
VPWR
SOPWR
LED
Lamp
Figure 1. 33999 Simplified Application Diagram
* This document contains certain information on a new product. Specifications and information herein are subject to change without notice.
MAXIMUM RATINGS
Table 2. Maximum Ratings All voltages are with respect to ground unless otherwise noted. Exceeding these ratings may cause a malfunction or permanent damage to the device.
MC3399中文资料
AUTOMOTIVE HALF–AMP HIGH–SIDE SWITCH
SEMICONDUCTOR TECHNICAL DATA
1 5
• • • • •
Load Currents in Excess of 750 mA Low Quiescent Current Transient Protection Up to ±100 V TTL Compatible Enable Input On–Chip Current Limit and Thermal Shutdown Circuitry
Ignition Output* IL 35 V Transient Generator + – 12 V Input Control Circuit Thermal Sense Current Limit 35 V RL 50 Ω
Ground
NOTE: * Depending on load current and transient duration, an output capacitor (CO) of sufficient value may be used to hold up output voltage during the transient, and absorb turn–off delay voltage overshoot.
MC3399T Ignition Output L O A D
DW SUFFIX PLASTIC PACKAGE CASE 751G SOP(8+8)L
Pin 1. Ignition 2. N.C. 3. N.C. 4. N.C. 5. Ground 6. N.C. 7. Input 8. N.C. 9. Output 10.Output 11. Output 12.Output 13.Output 14.Output 15.Output 16.Output
基于MC33993的车用多功能开关检测设计的实现
基于MC33993的车用多功能开关检测设计的实现
1 引言
随着汽车电子技术的飞速发展,汽车内部所用到的开关元件也日益复杂而
繁多,因此,可靠实时地对这些开关量进行检测已成为汽车电子硬件设计必须
解决的问题。
传统的开关检测接口电路设计多采用电阻、电容等分立元件与单
片机直接相连,这样往往有如下弊端:
整个开关系统的可靠性得不到保证,给汽车安全带来隐患:
由分立元件设计的开关触点容易发生氧化,缩短了开关的使用寿命:
过多使用分立元件,浪费大量的单片机I/O 资源,降低了CPU 的利用率。
针对上述问题,本文采用飞思卡尔公司生产的多路开关检测器件
MC33993 设计了一款车用多路开关检测接口电路。
实验证明其工作性能良好。
安全性高。
2 MC3399
3 介绍
MC33993 是一款可编程多路开关检测接口器件,可检测22 路开关量输
入信号,并将检测到的开关状态通过SPI(串行外围接口)发送给单片机。
MC33993 还具有22 路模拟多路开关功能,用以读取多路模拟输入信号,模拟输入信号经缓冲器由模拟多路开关输入以供微处理器读取。
除此之外,MC33993 还可为传感器提供电源。
作为模拟传感器的输入、控制管理系统电源等。
MC33993 的主要特性如下:
与单片机的通信接口:采用3.3V/5 v SPI 接口协议:
8 路可编程输入SPO~SP7:开关可接电源正极,也可接地;
14 路接地输入SGO~SGl3:开关只能接地;。
Microsoft鼠标产品说明书
H3S-00003D5D-00001PN7-00001RJN-00001U7Z-00001GMF-001764FD-00025P58-00061 Sculpt Comfort Mouse Mobile Mouse 4000Mobile Mouse 3600Mobile Mouse 1850Mobile Mouse 3500Comfort Mouse 4500Basic Optic Mouse MSRP $39.95MSRP $34.95MSRP $29.95MSRP $14.95MSRP $29.95MSRP $22.45MSRP $14.95 Bluetooth Wireless USB Bluetooth Wireless USB Wireless USB Wired USB Wired USBBasicKTF-00013L6V-00001RVF-00052HDQ-00001 Modern Mobile Mouse Sculpt Ergonomic Mouse ARC Touch Mouse Classic IntelliMouse MSRP $34.99MSRP $59.95MSRP $59.95MSRP $39.99 Bluetooth Wireless USB Wireless USB Wired USB Premium Core CoreD e s k t o pPart Code L5V-000017N9-00001L3V-00001PP4-00001PP3-00001M7J-00001PT3-00001PY9-00001APB-00001Description Sculpt Ergonomic DesktopDesigner Desktop Sculpt Comfort DesktopComfort Desktop 5050Desktop 3050Desktop 2000Desktop 900Desktop 850Desktop 600Price MSRP $129.95MSRP $99.95MSRP $79.95MSRP $69.95MSRP $69.95MSRP $49.95MSRP $49.95MSRP $39.95MSRP $29.95Connection Wireless USB Bluetooth Wireless USB Wireless USB Wireless USBWireless USBWireless USBWireless USBWired USB Quality Premium Premium Premium Premium Core Core Core Core Basic Ergonomic Yes No Yes Yes No No No No No Battery Life36 months 9 months KB 18 months, MS 10 monthsKB 15 months, MS 8 monthsKB 15 months, MS 8 monthsKB 18 months, MS 8 months24 months 15 months N/A Box RetailRetailRetailRetailRetailRetailRetailRetailRetailWhy buy?Built on advanced ergonomic design principlesSlim with built-in trackpadMaximized for comfort andcustomized for youErgonomist approved and AES 128-Bit encryptionCompact, modern with AES 128-Bit encryptionQuality build and AES 128-Bit encryptionComfort with AES 128-Bit encryptionQuality build and AES 128-Bit encryption Quality design and AES 128-Bit encryption CommentAlso availablefor business (PN9-00005)Also availablefor business (3J2-00002)W e b c a mPart Code Q2F-00013H5D-00013T3H-00011Description LifeCam Studio LifeCam Cinema LifeCam 3000Price MSRP $99.95MSRP $69.95MSRP $39.95Connection Wired USB Wired USB Wired USB Quality Premium Premium Core Ergonomic N/A N/A N/A Battery LifeN/A N/A N/A BoxRetail Retail RetailWhy buy?1080p HD sensor, 720p HD video, Skype certifiedTrue 720p HD video plus auto focusTrue 720p HD VideoCommentAlso available for business (5WH-00002)Also available for business (6CH-00002)Also available for business (T4H-0002)H e a d s e t sPart Code 7XF-00001JUG-00013Description LifeChat LX-6000LifeChat LX-3000Price MSRP $80.95MSRP $39.95Connection Wired USB Wired USB Quality Premium Basic Ergonomic N/A N/A Battery LifeN/A N/A BoxRetailRetail Why buy?High-fidelity sound,7 foot cable, inline volume, Skype / Lync certified6 foot cable, Skype certifiedCommentAlso available for business (7XF-00001)K e y b o a r dPart Code 5KV-00001LXM-00001QSZ-00001N9Z-00001PZ3-00001ANB-00001Description Sculpt Ergo KeyboardMicrosoft Ergonomic KeyboardMicrosoft Bluetooth ® KeyboardAll-in-One Media KeyboardKeyboard 850Keyboard 600Price MSRP $85.95MSRP $59.99MSRP $49.99MSRP $39.95MSRP $29.95MSRP $16.95Connection Wireless USB Wired USB Wireless USBWireless USBWireless USBWired USB Quality Premium Core Core Core Basic Basic Ergonomic Yes Yes No No No No Battery Life36 months N/A 36 months 9 months 15 months N/A BoxBusiness RetailRetail RetailRetailRetailWhy buy?Ergonomist approvedAll-day typing comfortA sleek, wireless typing experienceSlim with built-in trackpadQuality design and AES 128-Bit encryptionQuality design and AES 128-Bit encryptionCommentAlso availablen White (ANB-00026)A d a p t e r sPart Code P3Q-00001HFR-00001Description Wireless DisplayAdapter USB-C to VGA Adapter Price MSRP $49.95MSRP $39.99Connection USB/HDMI Wired USB Quality Premium Core Ergonomic N/A N/A Battery LifeN/A N/A BoxRetail RetailWhy buy?See it all on your big screenShare photos, video, and presentations in a way that’s larger than lifeCommentErgonomics Modern Productivity Gaming Classic。
MY9373技术文档
(Iout0 Iout1 ... Iout15) −(Ideal Output Current)
% (
16
(Ideal Output Current)
*100%
*3 输出电流对输出电压变化的偏移量公式定义如下:
%/V
Ioutn (@Voutn 3V) − Ioutn (@Voutn 1V) 100%
MY-SEMI
输入及输出等效电路
1. DCK, DI, LAT, GCK 输入端
Preliminary
2. DO 输出端
MY9373
最大限定范围(Ta=25C, Tj(max) = 150C)
特性 电源电压 输入端电压 输出端电流 输出端耐受电压 资料时钟频率 灰阶时钟频率 接地端电流
热阻值(On 4-Layers PCB)
输入信号固定 Rrext = 14KΩ 所有输出关闭 输入信号固定 Rrext = 14KΩ 所有输出打开 输入信号固定 Rrext = 1.4KΩ 所有输出关闭 输入信号固定 Rrext = 1.4KΩ 所有输出打开
MY9373
最小值 0.7VDD
GND
一般值
VDD-0.4 1
最大值 单位
VDD V
MY-Semi Inc. 0
MY9373
功能方块图
Preliminary
MY-SEMI
管脚说明
编号.
SS
QF
1
10
2
23
3
24
4
1
5~20 2~9,11~18
21
20
22
19
23
21
24
22
名称 功能说明
MC33035DWR2G直流无刷电机控制器应用说明-奥伟斯科技
奥伟斯科技为您提供马达控制芯片MC33035DWR2G应用参考设计方案●内容导航:●公司简介●MC33035DWG MC33035DWR2G MC33035P MC33035PG产品规格书●产品图片●主营产品及优势产品简介●公司简介深圳市奥伟斯科技有限公司是一家专注触摸芯片,单片机,电源管理芯片,语音芯片,场效应管,显示驱动芯片,网络接收芯片,运算放大器,红外线接收头及其它半导体产品的研发,代理销售推广的高新技术企业.奥伟斯科技自成立以来一直致力于新半导体产品在国内的推广与销售,年销售额超过壹亿人民币是一家具有综合竞争优势的专业电子元器件代理商.本公司代理推广的一系列优秀触摸芯片及语音芯片,现以大批量应用到智能电子锁、饮水机、电饭煲、LED台灯等控制器为顾客提供最佳解决方案,受到广大客户的一致赞誉。
奥伟斯科技优势行业集中在家用电器和汽车电子领域,包括:智能电子锁、饮水机、抽烟机、空调、洗衣机、冰箱、洗碗机、电饭煲、电磁炉、微波炉、电动自行车、汽车仪表、汽车音响、汽车空调等。
销售网络覆盖华东、华南及华北地区。
奥伟斯科技已为众多世界著名企业提供服务如:美的、小米、云米、长虹、创维、三星、LG、飞利浦、TCL、海尔、美菱、沁园、等众多中国一流品牌电家厂商奥伟斯科技提供专业的智能电子锁触摸解决方案,并提供电子锁整套的芯片配套:低功耗触摸芯片低功耗单片机马达驱动芯片显示驱动芯片刷卡芯片时针芯片存储芯片语音芯片低压MOS管 TVS二极管主要品牌产品:OWEIS-TECH一.电容式触摸芯片ADSEMI触摸芯片代理芯邦科技触控芯片万代科技触摸按键芯片博晶微触摸控制芯片海栎创触摸感应芯片启攀微触摸IC 融和微触摸感应IC 合泰触摸按键IC 通泰触摸芯片二.汽车电子/电源管理/接口芯片/逻辑芯片:IKSEMICON一级代理 ILN2003ADT IK62783DT IL2596 IL2576 ILX485 ILX3485 ILX232 ILX3232 三.功率器件/接收头/光电开关:KODENSHI AUK SMK系列MOS管SMK0260F SMK0460F SMK0760F SMK1260F SMK1820F SMK18T50F四. LED显示驱动芯片:中微爱芯AIP系列 AIP1668 AIP1628 AIP1629 AIP1616天微电子TM系列 TM1628 TM1668TM1621五.电源管理芯片:Power Integrations LNK364PN LNK564PN 芯朋微PN8012 PN8015 AP5054 AP5056 力生美晶源微友达天钰电子FR9886 FR9888六.语音芯片:APLUS巨华电子AP23085 AP23170 AP23341 AP23682 AP89085 AP89170 AP89341 AP89341K AP89682七.运算放大器:3PEAK运算放大器聚洵运算放大器圣邦微运算放大器八.发光二极管:OSRAM欧司朗发光二极管 Lite-On光宝发光二极管 Everlight亿光发光二极管 Kingbright今台发光二极管九. CAN收发器:NXP恩智浦CAN收发器 Microchip微芯CAN收发器十.分销产品线:ONSEMI安森美 TI德州仪器 ADI TOSHIBA东芝 AVAGO安华高十一 MCU单片机ABOV现代单片机MC96F系列 Microchip微芯单片机PIC12F PIC16F PIC18F系列 FUJITSU富仕通单片机MB95F系列 STM单片机STM32F STM32L系列 CKS中科芯单片机CKS32F系列 TI单片机MSP430系列 TMS320F系列 NXP单片机LPC系列MC33035, NCV33035Brushless DC Motor ControllerThe MC33035 is a high performance second generation monolithic brushless DC motor controller containing all of the active functions required to implement a full featured open loop, three or four phase motor control system. This device consists of a rotor position decoder for proper commutation sequencing, temperature compensated reference capable of supplying sensor power, frequency programmable sawtooth oscillator, three open collector top drivers, and three high current totem pole bottom drivers ideally suited for driving power MOSFETs.Also included are protective features consisting of undervoltage lockout, cycle−by−cycle current limiting with a selectable time delayed latched shutdown mode, internal thermal shutdown, and a unique fault output that can be interfaced into microprocessor controlled systems.Typical motor control functions include open loop speed, forward or reverse direction, run enable, and dynamic braking. The MC33035 is designed to operate with electrical sensor phasings of 60︒/300︒ or 120︒/240︒, and can also efficiently control brush DC motors. Features123P SUFFIXPLASTIC PACKAGE CASE 724241DW SUFFIXPLASTIC PACKAGE CASE 751E24(SO−24L)1PIN CONNECTIONS∙ 10 to 30 V Operation ∙ Undervoltage Lockout∙ 6.25 V Reference Capable of Supplying Sensor Power ∙ Fully Accessible Error Amplifier for Closed Loop ServoApplications∙ High Current Drivers Can Control External 3−Phase MOSFET Bridge∙ Cycle−By−Cycle Current Limiting ∙ Pinned−Out Current Sense Reference ∙ Internal Thermal Shutdown∙ Selectable 60︒/300︒ or 120︒/240︒ Sensor Phasings∙ Can Efficiently Control Brush DC Motors with External MOSFET H−Bridge∙ NCV Prefix for Automotive and Other Applications Requiring Site and Control Changes∙ Pb−Free Packages are AvailableTop Drive B T OutputA TFwd/RevS A Sensor S InputsS COutput EnableReference Output Current Sense Noninverting Input Oscillator Error AmpNoninverting Input Error Amp Inverting Input C TBrake 60︒/120︒ Select A B Bottom B B Drive OutputsC B V C V CC Gnd Current Sense Inverting InputFault Output Error Amp Out/PWM Input(Top View)ORDERING INFORMATIONSee detailed ordering and shipping information in the package dimensions section on page 27 of this data sheet.DEVICE MARKING INFORMATIONSee general marking information in the device marking section on page 27 of this data sheet.© Semiconductor Components Industries, LLC, 20041 Publication Order Number:13 1214 11151016 917 818 7 19 620 5 21 422 23 24 BRepresentative Schematic Diagram This device contains 285 active transistors.MAXIMUM RATINGS1. The input common mode voltage or input signal voltage should not be allowed to go negative by more than 0.3 V.2. The compliance voltage must not exceed the range of −0.3 to V ref.3. NCV33035: T low = −40︒C, T high = 125︒C. Guaranteed by design. NCV prefix is for automotive and other applications requiring site and changecontrol.4. MC33035: T A = −40︒C to +85︒C; NCV33035: T A = −40︒C to +125︒C.5. Maximum package power dissipation limits must be observed.φ, E X C E S S P H A S E (D E G R E E S )V s a t , O U T P U T S A T U R A T I O N V O L T A G E (V )∆ , f O S C O S C I L L A T O R F R E Q U E N C Y C H A N G E (%)1004.02.0 10−0 1.010 1001000−R T , TIMING RESISTOR (k Ω) Figure 1. Oscillator Frequency versusTiming Resistor T A , AMBIENT TEMPERATURE (︒C)Figure 2. Oscillator Frequency Changeversus Temperature5648 40 32 24 16 8.0 0 − 8.0 −16 − 24 1.0 k10 k100 k1.0 M40 60 80100 120 140 160180 200 220 240 10 M− 0.8−1.61.60.8 0 01.02.03.04.05.0f, FREQUENCY (Hz)Figure 3. Error Amp Open Loop Gain andPhase versus Frequency I O , OUTPUT LOAD CURRENT (mA)Figure 4. Error Amp Output SaturationVoltage versus Load Current3.053.02.954.53.01.51.0 μs/DIVFigure 5. Error Amp Small−SignalTransient Response 5.0 μs/DIVFigure 6. Error Amp Large−SignalTransient ResponseA V O L , O P E N L O O P V O L T A G E G A I N (dB )f O S C , O S C I L L A T O R F R E Q U E N C Y (k H z )V O , O U T P U T V O L T A G E (V )V O , O U T P U T V O L T A G E (V )V s a t , O U T P U T S A T U R A T I O N V O L T A G E (V )− 4.0 − 8.0 − 12 − 16− 20− 241020304050607.0 6.0 5.0 4.0 3.0 2.01.00 010203040I ref , REFERENCE OUTPUT SOURCE CURRENT (mA)Figure 7. Reference Output Voltage Changeversus Output Source Current V CC , SUPPLY VOLTAGE (V)Figure 8. Reference Output Voltageversus Supply Voltage4020− 2− 41.02.03.04.05.0T A , AMBIENT TEMPERATURE (︒C) Figure 9. Reference Output Voltageversus Temperature PWM I NPUT V OLTAGE (V)Figure 10. Output Duty Cycle versusPWM Input Voltage250200 0.250.2150100 0.150.150 0.050 1.02.03.04.05.0 06.07.08.09.0104.08.0 12 16CURRENT SENSE INPUT VOLTAGE (NORMALIZED TO V th )Figure 11. Bottom Drive Response Time versusCurrent Sense Input Voltage I Sink , SINK CURRENT (mA)Figure 12. Fault Output Saturationversus Sink Current∆V r e f , R E F E R E N C E O U T P U T V O L T A G E C H A N G E (m V )∆V r e f , N O R M A L I Z E D R E F E R E N C E V O L T A G E C H A N G E (m V )t H L , B O T T O M D R I V E R E S P O N S E T I M E (n s ) O U T P U T D U T Y C Y C L E (%)V r e f , R E F E R E N C E O U T P U T V O L T A G E (V )1.21000.80.40 01020 I Sink , S INK C URRENT (mA)3040100 ns/DIVFigure 13. Top Drive Output SaturationVoltage versus Sink CurrentFigure 14. Top Drive Output Waveform1001000 050 ns/DIV50 ns/DIVFigure 15. Bottom Drive Output Waveform Figure 16. Bottom Drive Output Waveform−1.0− 2.02.01.00 02040601614 12 10 8.0 6.0 4.0 2.0 0 805.01015202530I O , OUTPUT LOAD CURRENT (mA)Figure 17. Bottom Drive Output SaturationVoltage versus Load Current V CC , SUPPLY VOLTAGE (V)Figure 18. Power and Bottom Drive SupplyCurrent versus Supply VoltageV s a t , O U T P U T S A T U R A T I O N V O L T A G E (V )O U T P U T V O L T A G E (%) V s a t , O U T P U T S A T U R A T I O N V O L T A G E (V )I C , I C C , P O W E R S U P P L Y C U R R E N T (m A )O U T P U T V O L T A G E (%)O U T P U T V O L T A G E (%)INTRODUCTIONThe MC33035 is one of a series of high performance monolithic DC brushless motor controllers produced by Motorola. It contains all of the functions required to implement a full−featured, open loop, three or four phase motor control system. In addition, the controller can be made to operate DC brush motors. Constructed with Bipolar Analog technology, it offers a high degree of performance and ruggedness in hostile industrial environments. The MC33035 contains a rotor position decoder for proper commutation sequencing, a temperature compensated reference capable of supplying a sensor power, a frequency programmable sawtooth oscillator, a fully accessible error amplifier, a pulse width modulator comparator, three open collector top drive outputs, and three high current totem pole bottom driver outputs ideally suited for driving power MOSFETs.Included in the MC33035 are protective features consisting of undervoltage lockout, cycle−by−cycle current limiting with a selectable time delayed latched shutdown mode, internal thermal shutdown, and a unique fault output that can easily be interfaced to a microprocessor controller.Typical motor control functions include open loop speed control, forward or reverse rotation, run enable, and dynamic braking. In addition, the MC33035 has a 60︒/120︒select pin which configures the rotor position decoder for either 60︒ or 120︒ sensor electrical phasing inputs. FUNCTIONAL DESCRIPTIONA representative internal block diagram is shown in Figure 19 with various applications shown in Figures 36, 38, 39, 43, 45, and 46. A discussion of the features and function of each of the internal blocks given below is referenced to Figures 19 and 36.Rotor Position DecoderAn internal rotor position decoder monitors the three sensor inputs (Pins 4, 5, 6) to provide the proper sequencing of the top and bottom drive outputs. The sensor inputs are designed to interface directly with open collector type Hall Effect switches or opto slotted couplers. Internal pull−up resistors are included to minimize the required number of external components. The inputs are TTL compatible, with their thresholds typically at 2.2 V. The MC33035 series is designed to control three phase motors and operate with four of the most common conventions of sensor phasing. A 60︒/120︒Select (Pin 22) is conveniently provided and affords the MC33035 to configure itself to control motors having either 60︒, 120︒, 240︒or 300︒electrical sensor phasing. With three sensor inputs there are eight possible input code combinations, six of which are valid rotor positions. The remaining two codes are invalid and are usually caused by an open or shorted sensor line. With six valid input codes, the decoder can resolve the motor rotor position to within a window of 60 electrical degrees.The Forward/Reverse input (Pin 3) is used to change the direction of motor rotation by reversing the voltage across the stator winding. When the input changes state, from high to low with a given sensor input code (for example 100), the enabled top and bottom drive outputs with the same alpha designation are exchanged (A T to A B, B T to B B, C T to C B). In effect, the commutation sequence is reversed and the motor changes directional rotation.Motor on/off control is accomplished by the Output Enable (Pin 7). When left disconnected, an internal 25 μA current source enables sequencing of the top and bottom drive outputs. When grounded, the top drive outputs turn off and the bottom drives are forced low, causing the motor to coast and the Fault output to activate.Dynamic motor braking allows an additional margin of safety to be designed into the final product. Braking is accomplished by placing the Brake Input (Pin 23) in a high state. This causes the top drive outputs to turn off and the bottom drives to turn on, shorting the motor−generated back EMF. The brake input has unconditional priority over all other inputs. The internal 40 kΩpull−up resistor simplifies interfacing with the system safety−switch by insuring brake activation if opened or disconnected. The commutation logic truth table is shown in Figure 20. A four input NOR gate is used to monitor the brake input and the inputs to the three top drive output transistors. Its purpose is to disable braking until the top drive outputs attain a high state. This helps to prevent simultaneous conduction of the the top and bottom power switches. In half wave motor drive applications, the top drive outputs are not required and are normally left disconnected. Under these conditions braking will still be accomplished since the NOR gate senses the base voltage to the top drive output transistors.Error AmplifierA high performance, fully compensated error amplifier with access to both inputs and output (Pins 11, 12, 13) is provided to facilitate the implementation of closed loop motor speed control. The amplifier features a typical DC voltage gain of 80 dB, 0.6 MHz gain bandwidth, and a wide input common mode voltage range that extends from ground to V ref. In most open loop speed control applications, the amplifier is configured as a unity gain voltage follower with the noninverting input connected to the speed set voltage source. Additional configurations are shown in Figures 31 through 35.OscillatorThe frequency of the internal ramp oscillator is programmed by the values selected for timing components R T and C T. Capacitor C T is charged from the Reference Output (Pin 8) through resistor R T and discharged by an internal discharge transistor. The ramp peak and valley voltages are typically 4.1 V and 1.5 V respectively. To provide a good compromise between audible noise and output switching efficiency, an oscillator frequency in the range of 20 to 30 kHz is recommended. Refer to Figure 1 for component selection.S A45 Sensor S BInputs 6S C3 Forward/Reverse60︒/120︒S elect22Output Enable 720 k20 k40 k25 μA20 k40 kRotorPositionDecoderV M14Fault Output2A T1 TopDriveB T Outputs24C TV in17V CC18V CUndervoltageLockout ReferenceReference Output 8Noninv. Input 11Faster 12 R T 13RegulatorError AmpPWM9.1 V4.5 VThermalShutdownLatch21A B20 BottomB B DriveOutputsError A mp Out R 19 PWM Input Q C BS10 Oscillator LatchC TSQ 40 kR9 Current Sense Input Sink Only= Positive TrueLogic WithHysteresis16 Gnd100 mV23Brake Input15 Current SenseReference InputFigure 19. Representative Block DiagramNOTES: 1. V = Any one of six valid sensor or drive combinations X = Don’t care.2. The digital inputs (Pins 3, 4, 5, 6, 7, 22, 23) are all TTL compatible. The current sense input (Pin 9) has a 100 mV threshold with respect to Pin 15.A logic 0 for this input is defined as < 85 mV, and a logic 1 is > 115 mV.3. The fault and top drive outputs are open collector design and active in the low (0) state.4. With 60︒/120︒select (Pin 22) in the high (1) state, configuration is for 60︒sensor electrical phasing inputs. With Pin 22 in low (0) state, configurationis for 120︒sensor electrical phasing inputs.5. Valid 60︒or 120︒sensor combinations for corresponding valid top and bottom drive outputs.6. Invalid sensor inputs with brake = 0; All top and bottom drives off, Fault low.7. Invalid sensor inputs with brake = 1; All top drives off, all bottom drives on, Fault low.8. Valid 60︒or 120︒sensor inputs with brake = 1; All top drives off, all bottom drives on, Fault high.9. Valid sensor inputs with brake = 1 and enable = 0; All top drives off, all bottom drives on, Fault low.10. Valid sensor inputs with brake = 0 and enable = 0; All top and bottom drives off, Fault l ow.11. All bottom drives off, Fault low.Figure 20. Three Phase, Six Step Commutation Truth Table (Note 1)Pulse Width ModulatorThe use of pulse width modulation provides an energy efficient method of controlling the motor speed by varying the average voltage applied to each stator winding during the commutation sequence. As C T discharges, the oscillator sets both latches, allowing conduction of the top and bottom drive outputs. The PWM comparator resets the upper latch, terminating the bottom drive output conduction when the positive−going ramp of C T becomes greater than the error amplifier output. The pulse width modulator timing diagram is shown in Figure 21. Pulse width modulation for speed control appears only at the bottom drive outputs.Current Limit sensing an over current condition, immediately turning off the switch and holding it off for the remaining duration of oscillator ramp−up period. The stator current is converted to a voltage by inserting a ground−referenced sense resistor R S (Figure 36) in series with the three bottom switch transistors (Q4, Q5, Q6). The voltage developed across the sense resistor is monitored by the Current Sense Input (Pins 9 and 15), and compared to the internal 100 mV reference. The current sense comparator inputs have an input common mode range of approximately 3.0 V. If the 100 mV current sense threshold is exceeded, the comparator resets the lower sense latch and terminates output switch conduction. The value for the current sense resistor is:Continuous operation of a motor that is severely over−loaded results in overheating and eventual failure.R S =I0.1stator(max)This destructive condition can best be prevented with the use of cycle−by−cycle current limiting. That is, each on−cycle is treated as a separate event. Cycle−by−cycle current limiting is accomplished by monitoring the stator current build−up each time an output switch conducts, and upon The Fault output activates during an over current condition. The dual−latch PWM configuration ensures that only one single output conduction pulse occurs during any given oscillator cycle, whether terminated by the output of the error amp or the current limit comparator.Capacitor C TError A mpOut/PWMInputCurrentSense InputLatch “Set"InputsTop D riveOutputsBottom DriveOutputsFault OutputFigure 21. Pulse Width Modulator Timing Diagram Reference Undervoltage LockoutA triple Undervoltage Lockout has been incorporated to prevent damage to the IC and the external power switch transistors. Under low power supply conditions, it guarantees that the IC and sensors are fully functional, and that there is sufficient bottom drive output voltage. The positive power supplies to the IC (V CC) and the bottom drives (V C) are each monitored by separate comparators that have their thresholds at 9.1 V. This level ensures sufficient gate drive necessary to attain low R DS(on) when driving standard power MOSFET devices. When directly powering the Hall sensors from the reference, improper sensor operation can result if the reference output voltage falls below 4.5 V. A third comparator is used to detect this condition. If one or more of the comparators detects an undervoltage condition, the Fault Output is activated, the top drives are turned off and the bottom drive outputs are held in a low state. Each of the comparators contain hysteresis to prevent oscillations when crossing their respective thresholds.The on−chip 6.25 V regulator (Pin 8) provides charging current for the oscillator timing capacitor, a reference for the error amplifier, and can supply 20 mA of current suitable for directly powering sensors in low voltage applications. In higher voltage applications, it may become necessary to transfer the power dissipated by the regulator off the IC. This is easily accomplished with the addition of an external pass transistor as shown in Figure 22. A 6.25 V reference level was chosen to allow implementation of the simpler NPN circuit, where V ref − V BE exceeds the minimum voltage required by Hall Effect sensors over temperature. With proper transistor selection and adequate heatsinking, up to one amp of load current can be obtained. Fault OutputThe open collector Fault Output (Pin 14) was designed to provide diagnostic information in the event of a system malfunction. It has a sink current capability of 16 mA and can directly drive a light emitting diode for visual indication. Additionally, it is easily interfaced with TTL/CMOS logic for use in a microprocessor controlled system. The Fault Output is active low when one or more of the following conditions occur:1)Invalid Sensor Input code2)Output Enable at logic [0]3)Current Sense Input greater than 100 mVV in1718REF UVLO 4)Undervoltage Lockout, activation of one or more ofthe comparators5)Thermal Shutdown, maximum junction temperaturebeing exceededThis unique output can also be used to distinguish betweenMPS 8 U01ATo motor start−up or sustained operation in an overloaded condition. With the addition of an RC network between the Fault Output and the enable input, it is possible to create aV in SensorPower5.6 V39ControlCircuitry6.25 V1718UVLOtime−delayed latched shutdown for overcurrent. The addedcircuitry shown in Figure 23 makes easy starting of motorsystems which have high inertial loads by providingadditional starting torque, while still preserving overcurrentprotection. This task is accomplished by setting the currentlimit to a higher than nominal value for a predetermined time.MPSU51A0.1 8REF During an excessively long overcurrent condition, capacitorC DLY will charge, causing the enable input to cross itsthreshold to a low state. A latch is then formed by the positiveTo Control Circuitryand Sensor Power6.25 VThe NPN circuit is recommended for powering Hall or opto sensors, where the output voltage temperature coefficient is not critical. The PNP circuit is slightly more complex, but is also more accurate over temperature. Neither circuit has current limiting.Figure 22. Reference Output Buffers feedback loop from the Fault Output to the Output Enable. Once set, by the Current Sense Input, it can only be reset by shorting C DLY or cycling the power supplies.(Drive OutputsThe three top drive outputs (Pins 1, 2, 24) are open collector NPN transistors capable of sinking 50 mA with a minimum breakdown of 30 V. Interfacing into higher voltage applications is easily accomplished with the circuits shown in Figures 24 and 25.The three totem pole bottom drive outputs (Pins 19, 20, 21) are particularly suited for direct drive of N−Channel MOSFETs or NPN bipolar transistors (Figures 26, 27, 28 and 29). Each output is capable of sourcing and sinking up to 100 mA. Power for the bottom drives is supplied from V C (Pin 18). This separate supply input allows the designer added flexibility in tailoring the drive voltage, independent of V CC . A zener clamp should be connected to this input when driving power MOSFETs in systems where V CC is greater than 20 V so as to prevent rupture of the MOSFET gates.The control circuitry ground (Pin 16) and current sense inverting input (Pin 15) must return on separate paths to the central input source ground.Thermal ShutdownInternal thermal shutdown circuitry is provided to protect the IC in the event the maximum junction temperature is exceeded. When activated, typically at 170 C, the IC acts as though the Output Enable was grounded.t DLY = R DLY C DLY InV ref – (I IL enable R DLY )V th enable – (I IL enable R DLY )(6.25 – (20 x 10–6 R DLY ))Transistor Q 1 is a common base stage used to level shift from V CC to the = R DLY C DLY In 1.4 – (20 x 10–6 RDLY )high motor voltage, V M . The collector diode is required if V CC is present while V M is low.Figure 23. Timed Delayed LatchedOver Current Shutdown Figure 24. High Voltage Interface withNPN Power Transistors)The addition of the RC filter will eliminate current−limit instability caused by the leading edge spike on the current waveform. Resistor R S should be a low in- ductance type.Figure 25. High Voltage Interface withN−Channel Power MOSFETsFigure 26. Current Waveform Spike SuppressionI B+ 0 t−Base Charge RemovalSeries gate resistor R g will dampen any high frequency oscillations caused by the MOSFET input capacitance and any series wiring induction in the gate−source circuit. Diode D is required if the negative current into the Bot- tom Drive Outputs exceeds 50 mA.The totem−pole output can furnish negative base current for enhanced tran- sistor turn−off, with the addition of capacitor C.Figure 27. MOSFET Drive PrecautionsFigure 28. Bipolar Transistor Drive21D SENSEFETG S MK20199 15R SPower Ground:To Input Source ReturnR S · I pk · R DS(on)100 mVV Pin 9 =r DM(on) + R S16 GndIf: SENSEFET = MPT10N10M R S = 200 Ω, 1/4 W Then : V Pin 9 ≈ 0.75 I pkControl Circuitry Ground (Pin 16) and Current Sense Inverting Input (Pin 15) must return on separate paths to the Central Input Source Ground.Virtually lossless current sensing can be achieved with the implementation of SENSEFET power switches.This circuit generates V Boost for Figure 25.Figure 29. Current Sensing Power MOSFETs Figure 30. High Voltage Boost SupplyV AV BV = V (R 3 + R 4) R 2(R 4 V )Resistor R 1 with capacitor C sets the acceleration time constant while R 2 controls the deceleration. The values of R 1 and R 2 should be at least ten Pin 13 A R 1 + R 2 3 —R 3 Btimes greater than the speed set potentiometer to minimize time constant variations with different speed settings.Figure 31. Differential Input Speed Controller Figure 32. Controlled Acceleration/DecelerationR B o o s t V o l t a g e (V )S N 74L S 145 ( )5.0 V16 11V CC Q 910 Q 8166 k 145 k100 k 8 REFQ 9 126 k 12 P313 BCD 14 P2 Inputs P1 7Q 6 7 Q 5 6 Q 4 5 108 k92.3 k 77.6 k 7 25 μA11EA1215 P0 Q 3 4 Q2 363.6 k 51.3 k 13 PWMQ 1Gnd Q 082 40.4 k 1The SN74LS145 is an open collector BCD to One of Ten decoder. When con- nected as shown, input codes 0000 through 1001 steps the PWM in incre- ments of approximately 10% from 0 to 90% on−time. Input codes 1010 through 1111 will produce 100% on−time or full motor speed.The rotor position sensors can be used as a tachometer. By differentiating the positive−going edges and then integrating them over time, a voltage proportional to speed can be generated. The error amp compares this volt- age to that of the speed set to control the PWM.Figure 33. Digital Speed Controller Figure 34. Closed Loop Speed ControlVR 3 + R 4RR4Pi n 3 =V ref V V ref 1 23 3 8 B =R 5 + 1 R 6R 1T7 R 511 R 2 312 25 μAEAR 3 >> R 5 ǁ R 66R 413PWM This circuit can control the speed of a cooling fan proportional to the differencebetween the sensor and set temperatures. The control loop is closed as the forced air cools the NTC thermistor. For controlled heating applications, ex- change the positions of R 1 and R 2.Figure 35. Closed Loop Temperature ControlR R。
LM393DR2中文资料
LM393, LM293, LM2903,LM2903V, NCV2903Low Offset VoltageDual ComparatorsThe LM393 series are dual independent precision voltage comparators capable of single or split supply operation. These devices are designed to permit a common mode range−to−ground level with single supply operation. Input offset voltage specifications as low as 2.0 mV make this device an excellent selection for many applications in consumer, automotive, and industrial electronics.Features•Wide Single−Supply Range: 2.0 Vdc to 36 Vdc•Split−Supply Range: ±1.0 Vdc to ±18 Vdc•Very Low Current Drain Independent of Supply V oltage: 0.4 mA •Low Input Bias Current: 25 nA•Low Input Offset Current: 5.0 nA•Low Input Offset V oltage: 5.0 mV (max) LM293/393•Input Common Mode Range to Ground Level •Differential Input V oltage Range Equal to Power Supply V oltage •Output V oltage Compatible with DTL, ECL, TTL, MOS, and CMOS Logic Levels•ESD Clamps on the Inputs Increase the Ruggedness of the Device without Affecting Performance•NCV Prefix for Automotive and Other Applications Requiring Site and Control Changes•Pb−Free Packages are AvailableFigure 1. Representative Schematic Diagram (Diagram shown is for 1 comparator)See detailed marking information and ordering and shipping information on pages 6 and 7 of this data sheet.DEVICE MARKING AND ORDERINGINFORMATIONMAXIMUM RATINGSRating Symbol Value Unit Power Supply Voltage V CC+36 or ±18Vdc Input Differential Voltage Range V IDR36Vdc Input Common Mode Voltage Range V ICR−0.3 to +36VdcOutput Short Circuit−to−Ground Output Sink Current (Note 1)I SCI SinkContinuous20mAPower Dissipation @ T A = 25°C Derate above 25°CP D1/R q JA5705.7mWmW/°COperating Ambient Temperature Range LM293LM393LM2903LM2903V, NCV2903 (Note 2)T A−25 to +850 to +70−40 to +105−40 to +125°CMaximum Operating Junction Temperature LM393, 2903, LM2903VLM293, NCV2903T J(max)150150°CStorage Temperature Range T stg−65 to +150°CESD Protection at any Pin (Note 3)− Human Body Model− Machine Model V ESD1500150VMaximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.1.The maximum output current may be as high as 20 mA, independent of the magnitude of V CC, output short circuits to V CC can causeexcessive heating and eventual destruction.2.NCV2903 is qualified for automotive use.3.V ESD rating for NCV/SC devices is: Human Body Model − 2000 V; Machine Model − 200 V.ELECTRICAL CHARACTERISTICS (V CC = 5.0 Vdc, T low≤T A≤ T high, unless otherwise noted.)Characteristic SymbolLM293, LM393LM2903, LM2903V,NCV2903Unit Min Typ Max Min Typ MaxInput Offset Voltage (Note 5)V IO mV T A = 25°C−±1.0±5.0−±2.0±7.0T low≤T A≤ T high−−9.0−9.015Input Offset Current I IO nA T A = 25°C−±5.0±50−±5.0±50T low≤T A≤ T high−−±150−±50±200Input Bias Current (Note 6)I IB nA T A = 25°C−25250−25250T low≤T A≤ T high−−400−200500Input Common Mode Voltage Range (Note 6)V ICR V T A = 25°C0−V CC −1.50−V CC −1.5T low≤T A≤ T high0−V CC −2.00−V CC −2.0Voltage Gain A VOL50200−25200−V/mV R L≥ 15 k W, V CC = 15 Vdc, T A = 25°CLarge Signal Response Time−−300−−300−ns V in = TTL Logic Swing, V ref = 1.4 VdcV RL = 5.0 Vdc, R L = 5.1 k W, T A = 25°CResponse Time (Note 8)t TLH− 1.3−− 1.5−m s V RL = 5.0 Vdc, R L = 5.1 k W, T A = 25°CInput Differential Voltage (Note 9)V ID−−V CC−−V CC V All V in≥ GND or V− Supply (if used)Output Sink Current I Sink 6.016− 6.016−mA V in≥ 1.0 Vdc, V in+ = 0 Vdc, V O≤ 1.5 Vdc T A = 25°COutput Saturation Voltage V OL mV V in≥ 1.0 Vdc, V in+ = 0, I Sink≤ 4.0 mA, T A = 25°C−150400−−400T low≤T A≤ T high−−700−200700Output Leakage Current I OL nA V in− = 0 V, V in+≥ 1.0 Vdc, V O = 5.0 Vdc, T A = 25°C−0.1−−0.1−V in− = 0 V, V in+≥ 1.0 Vdc, V O = 30 Vdc,T low≤T A≤ T high−−1000−−1000Supply Current I CC mA R L = ∞ Both Comparators, T A = 25°C−0.4 1.0−0.4 1.0R L = ∞ Both Comparators, V CC = 30 V−− 2.5−− 2.5LM293 T low = −25°C, T high = +85°CLM393 T low = 0°C, T high = +70°CLM2903 T low = −40°C, T high = +105°CLM2903V & NCV2903 T low = −40°C, T high = +125°CNCV2903 is qualified for automotive use.4.The maximum output current may be as high as 20 mA, independent of the magnitude of V CC, output short circuits to V CC can causeexcessive heating and eventual destruction.5.At output switch point, V O]1.4 Vdc, R S = 0 W with V CC from 5.0 Vdc to 30 Vdc, and over the full input common mode range (0 V toV CC = −1.5 V).6.Due to the PNP transistor inputs, bias current will flow out of the inputs. This current is essentially constant, independent of the output state,therefore, no loading changes will exist on the input lines.7.Input common mode of either input should not be permitted to go more than 0.3 V negative of ground or minus supply. The upper limit ofcommon mode range is V CC −1.5 V.8.Response time is specified with a 100 mV step and 5.0 mV of overdrive. With larger magnitudes of overdrive faster response times areobtainable.9.The comparator will exhibit proper output state if one of the inputs becomes greater than V CC, the other input must remain within the commonmode range. The low input state must not be less than −0.3 V of ground or minus supply.LM293/393LM2903Figure 6. Power Supply Current versusPower Supply Voltage Figure 7. Power Supply Current versusPower Supply VoltageV CC , SUPPLY VOLTAGE (Vdc)V CC , SUPPLY VOLTAGE (Vdc)I , I N P U T B I A S C U R R E N T (n A )I BV , S A T U R A T I O N V O L T A G E (V d c )O L I , S U P P L Y C U R R E N T (m A )CC 100.001APPLICATIONS INFORMATIONThese dual comparators feature high gain, wide bandwidth characteristics. This gives the device oscillation tendencies if the outputs are capacitively coupled to the inputs via stray capacitance. This oscillation manifests itself during output transitions (V OL to V OH ). To alleviate this situation, input resistors <10 k W should be used.The addition of positive feedback (<10mV) is also recommended. It is good design practice to ground all unused pins.Differential input voltages may be larger than supply voltage without damaging the comparator’s inputs. V oltages more negative than −0.3 V should not be used.Figure 8. Zero Crossing Detector(Single Supply)Figure 9. Zero Crossing Detector(Split Supply)Figure 10. Free−Running Square−Wave OscillatorFigure 11. Time Delay GeneratorFigure 12. Comparator with Hysteresis10D1 prevents input from going negative by more than 0.6 V.R1 + R2 = R3R3 ≤R5for small error in zero crossing.V in(min) [ 0.4 V peak for 1% phase distortion (DQ).QV inQV CCR LV refR S = R1 | | R2V th1 = V ref +(V CC −V ref ) R1R1 + R2 + R L V th2 = V ref −(V ref −V O Low) R1R1 + R2MARKING DIAGRAMS18x = 2 or 3A = Assembly Location WL, L = Wafer Lot YY, Y = YearWW, W = Work Week G , G = Pb−Free PackagePDIP−8N SUFFIX CASE 626SOIC−8D SUFFIX CASE 751*This marking diagram also applies to NCV2903DR2.Micro8DM SUFFIX CASE 846A1818LM393N AWL YYWWG 18LM2903N AWL YYWWG(Note: Microdot may be in either location)ORDERING INFORMATIONDevice Package Shipping†LM293D SOIC−898 Units / Rail98 Units / RailLM293DG SOIC−8(Pb−Free)LM293DR2SOIC−82500 / Tape & Reel2500 / Tape & ReelLM293DR2G SOIC−8(Pb−Free)LM293DMR2Micro84000 / Tape and Reel4000 / Tape and ReelLM293DMR2G Micro8(Pb−Free)LM393D SOIC−898 Units / Rail98 Units / RailLM393DG SOIC−8(Pb−Free)LM393DR2SOIC−82500 / Tape & ReelLM393DR2G SOIC−82500 / Tape & Reel(Pb−Free)LM393N PDIP−850 Units / Rail50 Units / RailLM393NG PDIP−8(Pb−Free)LM393DMR2Micro84000 / Tape and Reel4000 / Tape and ReelLM393DMR2G Micro8(Pb−Free)LM2903D SOIC−898 Units / Rail98 Units / RailLM2903DG SOIC−8(Pb−Free)LM2903DR2SOIC−82500 / Tape & ReelLM2903DR2G SOIC−82500 / Tape & Reel(Pb−Free)LM2903N PDIP−850 Units / Rail50 Units / RailLM2903NG PDIP−8(Pb−Free)LM2903DMR2Micro84000 / Tape and Reel4000 / Tape and ReelLM2903DMR2G Micro8(Pb−Free)LM2903VD SOIC−898 Units / Rail98 Units / RailLM2903VDG SOIC−8(Pb−Free)LM2903VDR2SOIC−82500 / Tape & Reel2500 / Tape & ReelLM2903VDR2G SOIC−8(Pb−Free)LM2903VN PDIP−850 Units / Rail50 Units / RailLM2903VNG PDIP−8(Pb−Free)NCV2903DR2 (Note 10)SOIC−82500 / Tape & Reel2500 / Tape & ReelNCV2903DR2G (Note 10)SOIC−8(Pb−Free)NCV2903DMR2 (Note 10)Micro84000 / Tape & Reel4000 / Tape & ReelNCV2903DMR2G (Note 10)Micro8(Pb−Free)†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.10.NCV2903 is qualified for automotive use.PACKAGE DIMENSIONSPDIP−8N SUFFIX CASE 626−05ISSUE LNOTES:1.DIMENSION L TO CENTER OF LEAD WHEN FORMED PARALLEL.2.PACKAGE CONTOUR OPTIONAL (ROUND OR SQUARE CORNERS).3.DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.DIM MIN MAX MIN MAX INCHESMILLIMETERS A 9.4010.160.3700.400B 6.10 6.600.2400.260C 3.94 4.450.1550.175D 0.380.510.0150.020F 1.02 1.780.0400.070G 2.54 BSC 0.100 BSC H 0.76 1.270.0300.050J 0.200.300.0080.012K 2.92 3.430.1150.135L 7.62 BSC 0.300 BSC M −−−10 −−−10 N0.76 1.010.0300.040__SOIC−8D SUFFIX CASE 751−07 ISSUE AGNOTES:1.DIMENSIONING AND TOLERANCING PERANSI Y14.5M, 1982.2.CONTROLLING DIMENSION: MILLIMETER.3.DIMENSION A AND B DO NOT INCLUDEMOLD PROTRUSION.4.MAXIMUM MOLD PROTRUSION 0.15 (0.006)PER SIDE.5.DIMENSION D DOES NOT INCLUDE DAMBARPROTRUSION. ALLOWABLE DAMBARPROTRUSION SHALL BE 0.127 (0.005) TOTALIN EXCESS OF THE D DIMENSION ATMAXIMUM MATERIAL CONDITION.6.751−01 THRU 751−06 ARE OBSOLETE. NEWSTANDARD IS 751−07.DIMAMIN MAX MIN MAXINCHES4.805.000.1890.197MILLIMETERSB 3.80 4.000.1500.157C 1.35 1.750.0530.069D0.330.510.0130.020G 1.27 BSC0.050 BSCH0.100.250.0040.010J0.190.250.0070.010K0.40 1.270.0160.050M0 8 0 8N0.250.500.0100.020S 5.80 6.200.2280.244 YM0.25 (0.010)Z S X S____ǒmminchesǓSCALE 6:1*For additional information on our Pb−Free strategy and solderingdetails, please download the ON Semiconductor Soldering andMounting Techniques Reference Manual, SOLDERRM/D.SOLDERING FOOTPRINT*PACKAGE DIMENSIONSMicro8DM SUFFIX CASE 846A−02ISSUE GNOTES:1.DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.2.CONTROLLING DIMENSION: MILLIMETER.3.DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.4.DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION.INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE.5.846A−01 OBSOLETE, NEW STANDARD 846A−02.*For additional information on our Pb−Free strategy and solderingdetails, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.SOLDERING FOOTPRINT*8XDIM A MIN NOM MAX MIN MILLIMETERS−−−− 1.10−−INCHES A10.050.080.150.002b 0.250.330.400.010c 0.130.180.230.005D 2.90 3.00 3.100.114E 2.903.00 3.100.114e 0.65 BSCL 0.400.550.700.016−−0.0430.0030.0060.0130.0160.0070.0090.1180.1220.1180.1220.026 BSC0.0210.028NOM MAX 4.75 4.90 5.050.1870.1930.199H EON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.PUBLICATION ORDERING INFORMATIONMicro8 is a trademark of International Rectifier.。
mc33063中文资料
低成本开关电源芯片MC34063A(MC33063)中文资料该器件本身包含了DC/DC变换器所需要的主要功能的单片控制电路且价格便宜。
它由具有温度自动补偿功能的基准电压发生器、比较器、占空比可控的振荡器,R—S触发器和大电流输出开关电路等组成。
该器件可用于升压变换器、降压变换器、反向器的控制核心,由它构成的DC/DC变换器仅用少量的外部元器件。
在各类电子产品中均非常广泛的应用.MC34063主要特性:输入电压范围:2、5~40V输出电压可调范围:1.25~40V最大输出电流:1.5A最大开关频率:100kHz低静态电流短路电流限制可实现升压或降压电源变换器MC34063的内部结构,引脚图及引脚功能:图1MC34063内部结构及引脚图1脚:开关管T1集电极引出端;2脚:开关管T1发射极引出端;3脚:定时电容ct接线端;调节ct可使工作频率在100—100kHz范围内变化;4脚:电源地;5脚:电压比较器反相输入端,同时也是输出电压取样端;使用时应外接两个精度不低于1%的精密电阻;6脚:电源端;7脚:负载峰值电流(Ipk)取样端;6,7脚之间电压超过300mV时,芯片将启动内部过流保护功能;8脚:驱动管T2集电极引出端。
MC34063A在线电源计算器-OnlinePowercalculationMC34063主要参数:项目条件参数单位PowerSupplyVoltage电源电压VCC40VdcComparatorInputVoltageRange比较器输入电压范围VIR0.3-+40VdcSwitchCollectorVoltage集电极电压开关VC(switch)40VdcSwitchEmitterVoltage(VPin1=40V)发射极电压开关VE(switch)40VdcSwitchCollectortoEmitterVoltage开关电压集电极到发射极VCE(switch)40VdcDriverCollectorVoltage驱动集电极电压VC(driver)40VdcDriverCollectorCurrent(Note1)驱动集电极电流IC(driver)100mASwitchCurrent开关电流ISW1.5AOperatingJunctionTemperature工作结温TJ+150℃OperatingAmbientTemperatureRange操作环境温度范围TAMC34063A0-70℃MC33063AV40-125MC33063A40-85StorageTemperatureRange储存温度范围Tstg65-150℃MC34063应用电路图图2MC34063电压逆变器图3MC34063降压电路图4NPN三极管扩流升压转换器图5NPN三极管扩流降压转换器图6 升压转换器MC34063的工作原理MC34063组成的降压电路MC34063组成的降压电路原理如图7。
MC33291DWR2资料
For More Information On This Product, Go to:
元器件交易网
Freescale Semiconductor, Inc.
VPWR
21
Output 0 24 Bias
VDD 16 SFPD 15 RST 22 CS 10
+
Over Voltage
Voltage Regulator GE OVD OT VDD SF RB OF SFPD SFL CS SPI SCLK Interface SI Logic SO CSI CSBI
53 V
10 µA 25 µA + 10 µA Fault Timers 10 µA + 10 µA
Output OFF, Open Load Fault SO pin reports output OFF open load condition
Device Shutdowns
Over Voltage Over Temperature Over Current Total device shutdown at VPWR = 28 to 36 V. All outputs are latched off while the SPI register is reset (cleared). Outputs can be turned back on with a new SPI command after VPWR has decayed below 26.5 V. Only the output experiencing an over temperature condition turns OFF. Only the output experiencing an over current shuts down at 1.0 to 3.0 A after a 70 to 250 µs delay, with SFPD pin grounded. All other outputs will continue to operate in a current limit mode, with no shutdown, if the SFPD pin is at 5.0 V (so long as the individual outputs are not experiencing thermal limit conditions).
MC33035DW
DW SUFFIX PLASTIC PACKAGE CASE 751E (SO–24L)
24 1
PIN CONNECTIONS
Top Drive Output
BT 1 AT 2
24 CT 23 Brake 22 60°/120° Select 21 AB 20 BB 19 CB 18 VC 17 VCC 16 Gnd 15 Current Sense Inverting Input Bottom Drive Outputs
PD RθJA PD RθJA TJ TA Tstg
867 75 650 100 150 – 40 to + 85 – 65 to +150
mW °C/W mW °C/W °C °C °C
ELECTRICAL CHARACTERISTICS (VCC = VC = 20 V, RT = 4.7 k, CT = 10 nF, TA = 25°C, unless otherwise noted.)
Fwd/Rev SA Sensor Inputs SB SC Output Enable
3 4 5 6 7 8 9
ORDERING INFORMATION
Device MC33035DW MC33035P TA = – 40° to + 85°C Operating Temperature Range Package SO–24L Plastic DIP
Characteristic REFERENCE SECTION Reference Output Voltage (Iref = 1.0 mA) TA = 25°C TA = – 40° to + 85°C Line Regulation (VCC = 10 to 30 V, Iref = 1.0 mA) Load Regulation (Iref = 1.0 to 20 mA) Output Short Circuit Current (Note 3) Reference Under Voltage Lockout Threshold ERROR AMPLIFIER Input Offset Voltage (TA = – 40° to + 85°C) Input Offset Current (TA = – 40° to + 85°C) Input Bias Current (TA = – 40° to + 85°C) Input Common Mode Voltage Range Open Loop Voltage Gain (VO = 3.0 V, RL = 15 k) Input Common Mode Rejection Ratio Power Supply Rejection Ratio (VCC = VC = 10 to 30 V) VIO IIO IIB VICR AVOL CMRR PSRR 70 55 65 – – – 0.4 8.0 – 46 (0 V to Vref) 80 86 105 – – – 10 500 –1000 mV nA nA V dB dB dB Vref 5.9 5.82 Regline Regload ISC Vth – – 40 4.0 6.24 – 1.5 16 75 4.5 6.5 6.57 30 30 – 5.0 mV mV mA V V Symbol Min Typ Max Unit
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
MULTIPLE SWITCH DETECTION INTERFACE
The 33993 device has two modes of operation, Sleep and Normal. The Sleep mode provides low quiescent current and enables the wake-up features of the device. Normal mode allows programming of the device and supplies switch contacts with pull-up or pull-down current as it monitors switch change of state.
ELECTRICAL CHARACTERISTICS
MAXIMUM RATINGS
Table 2. Maximum Ratings
All voltages are with respect to ground unless otherwise noted. Exceeding these ratings may cause a malfunction or permanent damage to the device.
Switch-to-ground input pins.
Battery supply input pin. Pin requires external reverse battery protection.
Wake-Up
Open drain wake-up output. Designed to control a power supply enable pin.
VPWR VDD GND
VPWR VPWR
16.0
2.0
mA
mA
SP7
16.0 mA
2.0 mA
4.0 V Ref
+ –
To SPI
Comparator
VPWR VPWR
16.0
2.0
mA
mA
SG0
5.0 V VPWR
4.0 V Ref
+ –
To SPI
Comparator
VPWR VPWR
16.0
• Pb-Free Packaging Designated by Suffix Code EW
VBAT VBAT
VBAT
33993
SP0 SP1
VPWR
SP7
SG0 SG1
VDD
WAKE SI
SCLK CS SO INT
AMUX
VDD
Power Supply LVI
Enable
Watchdog
VDD
© Freescale Semiconductor, Inc., 2003-2007. All rights reserved.
元器件交易网
INTERNAL BLOCK DIAGRAM
INTERNAL BLOCK DIAGRAM
SP0 SP1 SP2 SP3 SP4 SP5 SP6 SP7
Protocol • Selectable Wake-Up on Change of State
Device
MC33993DWB/R2 MCZ33993EW/R2
Temperature Range (TA)
-40°C to 125°C
Package 32 SOICW
• Selectable Wetting Current (16 mA or 2.0 mA)
Features
DW SUFFIX EK SUFFIX (PB-FREE)
98ARH99137A 32-PIN SOICW
ORDERING INFORMATION
• Designed to Operate 5.5 V ≤ VPWR ≤ 26 V • Switch Input Voltage Range -14 V to VPWR, 40 V Max • Interfaces Directly to Microprocessor Using 3.3 V/5.0 V SPI
元器件交易网
Freescale Semiconductor Advance Information
Multiple Switch Detection Interface
Document Number: MC33993 Rev. 4.0, 6/2007
33993
The 33993 Multiple Switch Detection Interface is designed to detect the closing and opening of up to 22 switch contacts. The switch status, either open or closed, is transferred to the microprocessor unit (MCU) through a serial peripheral interface (SPI). The device also features a 22-to-1 analog multiplexer for reading inputs as analog. The analog input signal is buffered and provided on the AMUX output pin for the MCU to read.
VDD SO
Ground SPI Slave In Serial Clock Chip Select
Programmable Switches 0–7
Switch-to-Ground Inputs 0 – 13
Battery Input
Ground for logic, analog, and switch to battery inputs. SPI control data input pin from MCU to the 33993. SPI control clock input pin. SPI control chip select input pin from MCU to the 33993. Logic 0 allows data to be transferred in. Programmable switch-to-battery or switch-to-ground input pins.
Pin Number Pin Name
Formal Name
Definition
1 2 3 4
5–8 25 – 28 9 – 15, 18 – 24
16 17 29 30 31 32
GND SI
SCLK CS
SP0 – 3 SP4 – 7 SG0 – 6, SG13 – 7 VPWR WAKE
INT AMUX
SG0 SG1 SG2 SG3 SG4 SG5 SG6 SG7 SG8 SG9 SG10 SG11 SG12 SG13
VPWR VPWR
16.0
2.0
mA
mA
SP0
5.0 V VPWR
16.0 mA
2.0 mA
4.0 V Ref
+ –
To SPI
Comparator
VPWR, VDD, 5.0 V
POR Bandgap Sleep PWR
Interrupt
Open-drain output to the MCU. Used to indicate an input switch change of state.
Analog Multiplex Output Analog multiplex output. Voltage Drain Supply 3.3/5.0 V supply. Sets SPI communication level for the SO driver.
VDD 125 kΩ
INT Control MUX Interface
VDD
VDD 40 µA
VDD
+ –
Analog Mux Output
WAKE
INT
CS SCLK SI SO
AMUX
Figure 2. 33993 Simplified Internal Block Diagram
33993
2
Analog Integrated Circuit Device Data Freescale Semiconductor
26
SP5
25
SP4
24
SG7
23
SG822Fra bibliotekSG9
21
SG10
20
SG11
19
SG12
18
SG13
17
WAKE
Figure 3. 33993 Pin Connections
Table 1. 33993 Pin Definitions A functional description of each pin can be found in the Functional Pin Description section beginning on page 9.
元器件交易网
PIN CONNECTIONS
PIN CONNECTIONS
GND
1
SI
2
SCLK
3
CS
4
SP0
5
SP1
6
SP2
7
SP3
8
SG0
9
SG1
10
SG2
11
SG3
12
SG4