2006-2016沈阳数学中考试题图形变换题汇总

合集下载

2006-2016沈阳数学中考试题证明题汇总

2006-2016沈阳数学中考试题证明题汇总

19.如图,已知在□ABCD 中,E 、F 是对角线BD 上的两点,BE =DF ,点G 、H 分别在BA 和DC 的延长线上,且AG =CH ,连接GE 、EH 、HF 、FG .求证:四边形GEHF 是平行四边形.(2007年中考试题)22.如图,已知A 、B 、C 、D 是⊙O 上的四个点,AB =BC ,BD 交AC 于点E ,连接CD 、AD .(1)求证:DB 平分∠ADC ;(2)若BE =3,ED =6,求AB 的长.(2007年中考试题)21.如图所示,AB 是O 的一条弦,OD AB ⊥,垂足为C ,交O 于点D ,点E 在O上.(1)若52AOD ∠=,求DEB ∠的度数;(2)若3OC =,5OA =,求AB 的长.(2008第22题图 第19题图 第21题图A B C DEFM N 19.如图,AB 是⊙O 的直径,点C 在AB 的延长线,CD 与⊙O 相切于点D ,∠C =20º.求∠ADC 的度数.(2009年中考试题)21.如图,在□ABCD 中,点E 在AD 上,连接BE ,DF ∥BE 交BC 于点F ,AF 与BE 交与点M ,CE 与DF 交于点N .求证:四边形MFNE 是平行四边形. (2009年中考试题)19. 如图,菱形ABCD 的对角线AC 与BD 相交于点O ,点E 、F 分别为边 AB 、AD 的中点,连接EF 、OE 、OF 。

求证:四边形AEOF 是菱形。

(2010年中考试题)21. 如图,AB 是 O 的直径,点C 在BA 的延长线上,直线CD 与 O 相切于点D ,弦DF ⊥AB 于点E ,线段CD =10,连接BD ; (1) 求证:∠CDE =2∠B ;(2) 若BD :AB =3:2,求 O 的半径及DF 的长。

(2010年中考试题)19.如图,在△ABC 中,AB =AC ,D 为BC 边上一点,∠B =30°,∠DAB =45°.⑴求∠DAC 的度数; ⑵求证:DC =AB(2011年中考试题)第19题图DA BCDE F O21.如图,点A 、B 在⊙O 上,直线AC 是⊙O 的切线,OD ⊥OB ,连接AB 交O C 于点D .⑴求证:AC =CD⑵若AC =2,AOOD 的长度.(2011年中考试题)19.已知,如图,在荀ABCD 中,延长DA 到点E ,延长BC 到点F ,使得AE =CF ,连接EF ,分别交AB ,CD 于点M ,N ,连接DM ,BN .(1)求证:△AEM ≌△CFN ;(2)求证:四边形BMDN 是平行四边形. (2012年中考试题)22.如图,⊙O 是△ABC 的外接圆,AB 是⊙O 的直径,D 为⊙O 上一点,OD ⊥AC ,垂足为E ,连接BD .(1)求证:BD 平分∠ABC ;(2) 当∠ODB =30°时,求证:BC =OD . (2012年中考试题)A第21题图19.如图,ABC ∆中,AB=BC ,BE ⊥AC 于点E ,AD ⊥BC 于点D ,45BAD ∠=︒,AD 与BE 交于点F ,连接CE , (1)求证:BF=2AE(2)若CD =AD 的长。

中考数学试题沈阳市2006年中考数学试题(非课改实验区).doc

中考数学试题沈阳市2006年中考数学试题(非课改实验区).doc

2006年中考数学试题*考试时间120分钟,试题满分150分一、选择题(每小题3分,共24分)1.下列各式中,与2是同类二次根式的是()A.3B.4C.12D.122.若点()23P-,与点()Q a b,关于x轴对称,则a,b的值分别是()A.2-,3B.2,3C.2-,3-D.2,3-3.已知Rt ABC△中,90C=∠,9BC=,15AB=,则sin A的值是()A.34B.35C.45D.434.如图1,已知点A,B,C,D,E是O的五等分点,则BAD∠的度数是()A.36B.48C.72D.965.抛物线()2361y x=-+-的对称轴是直线()A.6x=-B.1x=-C.1x=D.6x=6.已知两个圆的半径分别是5和3,圆心距是2,则这两个圆的位置关系是()A.内切B.相交C.外切D.外离7.已知圆锥的侧面积是212πcm,底面半径是3cm,则这个圆锥的母线长是()A.3cmB.4cmC.5cmD.8cm8.图2是某班40名学生一分钟跳绳测试成绩的频率分布直方图,从左起第一、二、三、四个小长方形的高的比是1:4:3:2,那么一分钟跳绳次数在100次以上的学生有()A.6人B.8个C.16人20图1频率组距次数图2二、填空题(每小题3分,共24分)9.一元二次方程()30x x +=的根是____________.10.已知点I 是ABC △的内心,130BIC =∠,则BAC ∠的度数是____________.11.函数y =x 的取值范围是____________.12.在ABC △中,2AB AC ==,BD 是AC 边上的高,且BD =ACB ∠的度数是____________.13.用换元法解分式方程224232x x x x-=--,若设22x x y -=,则原方程可化为关于y 的整式方程是____________. 14.在O 中,90的圆心角所对的弧长是2πcm ,则O 的半径是____________cm .15.若甲、乙两名同学五次数学模拟考试成绩的平均分都是135分,且甲同学成绩的方差2 1.05s =甲,乙同学成绩的方差20.41s =乙,则甲、乙两名同学成绩相对稳定的是___________.(填“甲”或“乙”)16.有一个边长是5cm 的正六边形,若要剪一张圆形纸片完全盖住这个正六边形,则这个圆形纸片的最小半径是____________cm . 三、(第17小题6分,第18、19小题各8分,第20小题10分,共32分)1718.解方程组:221870x y y x -=⎧⎨-+=⎩19.已知关于x 的一元二次方程2410x x m ++-=.(1)请你为m 选取一个合适的整数,使得到的方程有两个不相等的实数根; (2)设αβ,是(1)中你所得到的方程的两个实数根,求22αβαβ++的值.20.如图3,已知直线2y x =-与双曲线()0ky x x=>交于点()3Am ,. (1)求m ,k 的值;(2)连结OA ,在x 轴的正半轴上是否存在点Q ,使AOQ △是等腰三角形?若存在,请直接写出所有符合条件的点Q 的坐标;若不存在,请说明理由.四、(每小题10分,共20分)21.如图4,已知O 的直径8cm AB =,直线DM 与O 相切于点E ,连结BE ,过点B 作BC DM ⊥于点C ,BC 交O 于点F ,6cm BC =. 求:(1)线段BE 的长; (2)图中阴影部分的面积.22.随着我国经济的发展,对技术工人的需求量不断增加.某技工学校2005年秋季招收了600名新生,学校为了了解这600名新生中考成绩(成绩为整数)的情况,从中随机抽取部分学生的中考成绩进行分析,绘制了下面尚未完成的频率分布表:分组 频数累计 频数 频率 350.5~360.5 正 40.08 360.5~370.5 正正 6370.5~380.5 正正0.20 380.5~390.5 正正正 150.30 390.5~400.5 正正正 11400.5~410.5 正 40.08 合计1.00图3图4(1)补全上面的频率分布表;(2)你从表格信息中能否确定抽取的部分学生的中考成绩的众数落在哪一个小组内? 答:__________(填“能”或“不能”)(3)从表格信息可知抽取的部分学生的中考成绩的中位数在_________小组内; (4)在2005年秋季招收的新生中,中考成绩在390.5~410.5的新生约有多少人? 五、(12分)23.如图5,某市郊外景区内一条笔直的公路a 经过三个景点A B C ,,.景区管委会又开发了风景优美的景点D .经测量景点D 位于景点A 的北偏东30方向8千米处,位于景点B 的正北方向,还位于景点C 的北偏西75方向上.已知5AB =千米.(1)景区管委会准备由景点D 向公路a 修建一条距离最短的公路,不考虑其他因素,求出这条公路的长;(结果精确到0.1千米) (2)求景点C 与景点D 之间的距离.(结果精确到1千米)(参考数据:3 1.73=,5 2.24=,sin 53cos370.80==,sin 37cos530.60==, tan 53 1.33=,tan 370.75=,sin 38cos520.62==,sin 52cos380.79==, tan 380.78tan 52 1.28==,,sin750.97cos750.26tan 75 3.73===,,.)六、(12分)24.某小型企业获得授权生产甲、乙两种奥运吉祥物,生产每种吉祥物所需材料及所获利润如下表:A 种材料(2m )B 种材料(2m )所获利润(元)每个甲种吉祥物 0.3 0.5 10 每个乙种吉祥物0.60.2 20该企业现有A 种材料2900m ,B 种材料2850m ,用这两种材料生产甲、乙两种吉祥物共东 北 A B C D a2000个.设生产甲种吉祥物x 个,生产这两种吉祥物所获总利润为y 元.(1)求出y (元)与x (个)之间的函数关系式,并求出自变量x 的取值范围;(2)该企业如何安排甲、乙两种吉祥物的生产数量,才能获得最大利润?最大利润是多少? 七、(12分) 25.如图6,在O 中,BC BD =,点M 是CD 上任意一点,弦CD 与弦BM 交于点F ,连结MC ,MD ,BD .(1)请你在图6中过点B 作O 的切线AE ,并证明AE CD ∥;(不写作法,作图允许使用三角板)(2)求证:MC MD MF MB =;(3)如图7,若点M 是BC 上任意一点(不与点B ,点C 重合),弦BM ,DC 的延长线交于点F ,连结MC ,MD ,BD ,则结论MC MD MF MB =是否仍然成立?如果成立,请写出证明过程;如果不成立,请说明理由. 八、(14分) 26.如图8,在平面直角坐标系中,直线31y x =-+分别与x 轴,y 轴交于点A ,点B . (1)以AB 为一边在第一象限内作等边ABC △及ABC △的外接圆M (用尺规作图,不要求写作法,但要保留作图痕迹);(2)若M 与x 轴的另一个交点为点D ,求A ,B ,C ,D 四点的坐标;(3)求经过A ,B ,D 三点的抛物线的解析式,并判断在抛物线上是否存在点P ,使ADP △的面积等于ADC △的面积?若存在,请直接写出所有符合条件的点P 的坐标;若不存在,请说明理由.图6 图7图8。

2016年沈阳市中考数学试题及答案(2)

2016年沈阳市中考数学试题及答案(2)

2016年沈阳市中考数学试题及答案(2)5.“射击运动员射击一次,命中靶心”这个事件是( )A.确定事件B.必然事件C.不可能事件D.不确定事件【考点】随机事件.【分析】根据事件发生的可能性大小判断相应事件的类型即可.【解答】解:“射击运动员射击一次,命中靶心”这个事件是随机事件,属于不确定事件,故选:D.【点评】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.6.下列计算正确的是( )A.x4+x4=2x8B.x3•x2=x6C.(x2y)3=x6y3D.(x﹣y)(y﹣x)=x2﹣y2【考点】整式的混合运算.【专题】存在型.【分析】先计算出各个选项中式子的正确结果,即可得到哪个选项是正确的,本题得以解决.【解答】解:∵x4+x4=2x4,故选项A错误;∵x3•x2=x5,故选项B错误;∵(x2y)3=x6y3,故选项C正确;∵(x﹣y)(y﹣x)=﹣x2+2xy﹣y2,故选项D错误;故选C.【点评】本题考查整式的混合运算,解题的关键是明确整式的混合运算的计算方法.7.已知一组数据:3,4,6,7,8,8,下列说法正确的是( )A.众数是2B.众数是8C.中位数是6D.中位数是7【考点】众数;中位数.【分析】根据众数和中位数的定义求解.【解答】解:数据:3,4,6,7,8,8的众数为8,中为数为6.5.故选B.【点评】本题考查了众数:一组数据中出现次数最多的数据叫做众数.也考查了中位数定义.8.一元二次方程x2﹣4x=12的根是( )A.x1=2,x2=﹣6B.x1=﹣2,x2=6C.x1=﹣2,x2=﹣6D.x1=2,x2=6【考点】解一元二次方程-因式分解法.【专题】计算题;一次方程(组)及应用.【分析】方程整理后,利用因式分解法求出解即可.【解答】解:方程整理得:x2﹣4x﹣12=0,分解因式得:(x+2)(x﹣6)=0,解得:x1=﹣2,x2=6,故选B【点评】此题考查了解一元二次方程﹣因式分解法,熟练掌握因式分解的方法是解本题的关键.9.如图,在Rt△ABC中,∠C=90°,∠B=30°,AB=8,则BC的长是( )A. B.4 C.8 D.4【考点】解直角三角形.【分析】根据cosB= 及特殊角的三角函数值解题即可.【解答】解:∵在Rt△ABC中,∠C=90°,∠B=30°,AB=8,cosB= ,即cos30°= ,∴BC=8× =4 ;故选:D.【点评】本题考查了三角函数的定义及特殊角的三角函数值,是基础知识,需要熟练掌握.10.在平面直角坐标系中,二次函数y=x2+2x﹣3的图象如图所示,点A(x1,y1),B(x2,y2)是该二次函数图象上的两点,其中﹣3≤x1A.y1y2C.y的最小值是﹣3D.y的最小值是﹣4【考点】二次函数图象上点的坐标特征;二次函数的最值.【分析】根据抛物线解析式求得抛物线的顶点坐标,结合函数图象的增减性进行解答.【解答】解:y=x2+2x﹣3=(x+3)(x﹣1),则该抛物线与x轴的两交点横坐标分别是﹣3、1.又y=x2+2x﹣3=(x+1)2﹣4,∴该抛物线的顶点坐标是(﹣1,﹣4),对称轴为x=﹣1.A、无法确定点A、B离对称轴x=﹣1的远近,故无法判断y1与y2的大小,故本选项错误;B、无法确定点A、B离对称轴x=﹣1的远近,故无法判断y1与y2的大小,故本选项错误;C、y的最小值是﹣4,故本选项错误;D、y的最小值是﹣4,故本选项正确.故选:D.【点评】本题考查了二次函数图象上点的坐标特征,二次函数的最值,解题时,利用了“数形结合”的数学思想.二、填空题11.分解因式:2x2﹣4x+2= 2(x﹣1)2 .【考点】提公因式法与公式法的综合运用.【分析】先提取公因数2,再利用完全平方公式进行二次分解.完全平方公式:(a±b)2=a2±2ab+b2.x k b 1 . c o m【解答】解:2x2﹣4x+2,=2(x2﹣2x+1),=2(x﹣1)2.【点评】本题主要考查提公因式法分解因式和利用完全平方公式分解因式,难点在于需要进行二次分解因式.12.若一个多边形的内角和是540°,则这个多边形是五边形.【考点】多边形内角与外角.【分析】根据多边形的内角和公式求出边数即可.【解答】解:设多边形的边数是n,则(n﹣2)•180°=540°,解得n=5,故答案为:五.【点评】本题考查了多边形的内角和定理,熟记公式是解题的关键.13.化简:(1﹣)•(m+1)=m .【考点】分式的混合运算.【专题】计算题;分式.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,约分即可得到结果.【解答】解:原式= •(m+1)=m,故答案为:m【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.14.三个连续整数中,n是最大的一个,这三个数的和为3n﹣3 .【考点】列代数式.【专题】应用题.【分析】先利用连续整数的关系用n表示出最小的数和中间的整数,然后把三个数相加即可.【解答】解:这三个数的和为n﹣2+n﹣1+n=3n﹣3.故答案为3n﹣3.【点评】本题考查了列代数式:把问题中与数量有关的词语,用含有数字、字母和运算符号的式子表示出来,就是列代数式.本题的关键是表示出最小整数.15.在一条笔直的公路上有A,B,C三地,C地位于A,B两地之间,甲,乙两车分别从A,B两地出发,沿这条公路匀速行驶至C地停止.从甲车出发至甲车到达C地的过程,甲、乙两车各自与C地的距离y(km)与甲车行驶时间t(h)之间的函数关系如图表示,当甲车出发h时,两车相距350km.【考点】一次函数的应用.【分析】根据图象,可得A与C的距离等于B与C的距离,根据行驶路程与时间的关系,可得相应的速度,根据甲、乙的路程,可得方程,根据解方程,可得答案.【解答】解:由题意,得AC=BC=240km,甲的速度240÷4=60km/h,乙的速度240÷30=80km/h.设甲出发x小时甲乙相距350km,由题意,得60x+80(x﹣1)+350=240×2,解得x= ,答:甲车出发 h时,两车相距350km,故答案为: .【点评】本题考查了一次函数的应用,利用题意找出等量关系是解题关键.16.如图,在Rt△ABC中,∠A=90°,AB=AC,BC=20,DE是△ABC的中位线,点M是边BC上一点,BM=3,点N是线段MC上的一个动点,连接DN,ME,DN与ME相交于点O.若△OMN是直角三角形,则DO的长是或.【考点】三角形中位线定理.【分析】分两种情形讨论即可①∠MN′O′=90°,根据 = 计算即可②∠MON=90°,利用△DOE∽△EFM,得 = 计算即可.【解答】解:如图作EF⊥BC于F,DN′⊥B C于N′交EM于点O′,此时∠MN′O′=90°,∵DE是△ABC中位线,∴DE∥BC,DE= BC=10,∵DN′∥EF,∴四边形DEFN′是平行四边形,∵∠EFN′=90°,∴四边形DEFN′是矩形,∴EF=DN′,DE=FN′=10,∵AB=AC,∠A=90°,∴∠B=∠C=45°,∴BN′=DN′=EF=FC=5,∴ = ,∴ = ,∴DO′= .当∠MON=90°时,∵△DOE∽△EFM,∴ = ,∵EM= =13,∴DO= ,故答案为或 .【点评】本题考查三角形中位线定理、矩形的判定和性质、相似三角形的判定和性质、勾股定理等知识,解题的关键是学会分类讨论,学会添加常用辅助线,属于中考常考题型.更多中考数学相关文章推荐:1.2.3.4.5.6.7.8.9.10.。

沈阳市2016年中考数学真题及答案(Word版)

沈阳市2016年中考数学真题及答案(Word版)

沈阳市2016年中考数学真题及答案(Word版)
沈阳市2016年中考数学真题及答案(Word版)
沈阳市2016年中考数学真题及答案一、选择题 1.比0大的数是()【答案】D.【解析】试题分析:A、B、C都是负数,故A、B、C错误;D.1是正数,故D正确;故选D.考点:有理数大小比较.2.如图是由6个相同的小立方块搭成的几何体,这个几何体的左视图是
【答案】D.
【解析】
试题分析:A、B、C都是负数,故A、B、C错误;D.1是正数,故D 正确;故选D.
考点:有理数大小比较.
2.如图是由6个相同的小立方块搭成的几何体,这个几何体的左视图是()
【答案】A.
考点:简单组合体的三视图.
3.下列事件为必然事件的是()
A.经过有交通信号灯的路口,遇到红灯
B.明天一定会下雨
C.抛出的篮球会下落
D.任意买一张电影票,座位号是2的倍数
【答案】C.
【解析】
考点:随机事件.
4.如图,在△ABC中,点D是边AB上一点,点E是边AC上一点,且DE∥BC, B=40 , AED=60 ,则 A的度数是()
5.下列计算结果正确的是()
6.一组数据2、3、4、4、5、5、5的中位数和众数分别是()
A.3.5,5 B.4,4 C.4,5 D.4.5,4
7.顺次连接对角线相等的四边形的各边中点,所形成的四边形是() A.平行四边形 B.菱形 C.矩形 D.正方形
8.在平面直角坐标系中,二次函数()的图象可能是()
该试题及答案(Word)完整版。

辽宁省中考数学试题分类汇编)——图形的变换(含答案)

辽宁省中考数学试题分类汇编)——图形的变换(含答案)

辽宁省数学中考试题分类——图形的变换一.轴对称图形(共1小题)1.(2019•铁岭)下面四个图形中,属于轴对称图形的是()A.B.C.D.二.关于x轴、y轴对称的点的坐标(共1小题)2.(2020•大连)平面直角坐标系中,点P(3,1)关于x轴对称的点的坐标是()A.(3,1)B.(3,﹣1)C.(﹣3,1)D.(﹣3,﹣1)三.轴对称-最短路线问题(共2小题)3.(2020•鞍山)如图,在平面直角坐标系中,已知A(3,6),B(﹣2,2),在x轴上取两点C,D(点C在点D左侧),且始终保持CD=1,线段CD在x轴上平移,当AD+BC 的值最小时,点C的坐标为.4.(2020•营口)如图,△ABC为等边三角形,边长为6,AD⊥BC,垂足为点D,点E和点F分别是线段AD和AB上的两个动点,连接CE,EF,则CE+EF的最小值为.四.翻折变换(折叠问题)(共3小题)5.(2020•盘锦)如图,在矩形ABCD中,AB=1,BC=2,点E和点F分别为AD,CD上的点,将△DEF沿EF翻折,使点D落在BC上的点M处,过点E作EH∥AB交BC于点H,过点F作FG∥BC交AB于点G.若四边形ABHE与四边形BCFG的面积相等,则CF的长为.6.(2020•葫芦岛)一张菱形纸片ABCD的边长为6cm,高AE等于边长的一半,将菱形纸片沿直线MN折叠,使点A与点B重合,直线MN交直线CD于点F,则DF的长为cm.7.(2020•沈阳)如图,在矩形ABCD中,AB=6,BC=8,对角线AC,BD相交于点O,点P为边AD上一动点,连接OP,以OP为折痕,将△AOP折叠,点A的对应点为点E,线段PE与OD相交于点F.若△PDF为直角三角形,则DP的长为.五.旋转的性质(共2小题)8.(2020•大连)如图,△ABC中,∠ACB=90°,∠ABC=40°.将△ABC绕点B逆时针旋转得到△A′BC′,使点C的对应点C′恰好落在边AB上,则∠CAA′的度数是()A.50°B.70°C.110°D.120°9.(2020•阜新)如图,在△ABC中,∠ABC=90°,AB=BC=2.将△ABC绕点B逆时针旋转60°,得到△A1BC1,则AC边的中点D与其对应点D1的距离是.六.作图-旋转变换(共1小题)10.(2020•阜新)如图,△ABC 在平面直角坐标系中,顶点的坐标分别为A (4,4),B (1,1),C (4,1).(1)画出与△ABC 关于y 轴对称的△A 1B 1C 1;(2)将△ABC 绕点O 1顺时针旋转90°得到△A 2B 2C 2,弧AA 2是点A 所经过的路径,则旋转中心O 1的坐标为 ;(3)求图中阴影部分的面积(结果保留π).七.几何变换综合题(共3小题)11.(2020•锦州)已知△AOB 和△MON 都是等腰直角三角形(√22OA <OM =ON ),∠AOB =∠MON =90°.(1)如图1:连AM ,BN ,求证:△AOM ≌△BON ; (2)若将△MON 绕点O 顺时针旋转,①如图2,当点N 恰好在AB 边上时,求证:BN 2+AN 2=2ON 2;②当点A,M,N在同一条直线上时,若OB=4,ON=3,请直接写出线段BN的长.12.(2020•葫芦岛)在等腰△ADC和等腰△BEC中,∠ADC=∠BEC=90°,BC<CD,将△BEC绕点C逆时针旋转,连接AB,点O为线段AB的中点,连接DO,EO.(1)如图1,当点B旋转到CD边上时,请直接写出线段DO与EO的位置关系和数量关系;(2)如图2,当点B旋转到AC边上时,(1)中的结论是否成立?若成立,请写出证明过程,若不成立,请说明理由;(3)若BC=4,CD=2√6,在△BEC绕点C逆时针旋转的过程中,当∠ACB=60°时,请直接写出线段OD的长.13.(2020•沈阳)在△ABC中,AB=AC,∠BAC=α,点P为线段CA延长线上一动点,连接PB,将线段PB绕点P逆时针旋转,旋转角为α,得到线段PD,连接DB,DC.(1)如图1,当α=60°时,①求证:P A=DC;②求∠DCP的度数;(2)如图2,当α=120°时,请直接写出P A和DC的数量关系.(3)当α=120°时,若AB=6,BP=√31,请直接写出点D到CP的距离为.八.平行线分线段成比例(共1小题)14.(2020•营口)如图,在△ABC中,DE∥AB,且CDBD =32,则CECA的值为()A .35B .23C .45D .32九.相似三角形的性质(共1小题)15.(2019•沈阳)已知△ABC ∽△A 'B 'C ',AD 和A 'D '是它们的对应中线,若AD =10,A 'D '=6,则△ABC 与△A 'B 'C '的周长比是( ) A .3:5B .9:25C .5:3D .25:9一十.相似三角形的判定与性质(共7小题)16.(2019•鞍山)如图,正方形ABCD 和正方形CGFE 的顶点C ,D ,E 在同一条直线上,顶点B ,C ,G 在同一条直线上.O 是EG 的中点,∠EGC 的平分线GH 过点D ,交BE 于点H ,连接FH 交EG 于点M ,连接OH .以下四个结论:①GH ⊥BE ;②△EHM ∽△FHG ;③BC CG=√2−1;④S △HOM S △HOG=2−√2,其中正确的结论是( )A .①②③B .①②④C .①③④D .②③④17.(2019•营口)如图,在△ABC 中,DE ∥BC ,AD AB=23,则S △ADE S 四边形DBCE的值是( )A .45B .1C .23D .4918.(2020•锦州)如图,在△ABC 中,D 是AB 中点,DE ∥BC ,若△ADE 的周长为6,则△ABC 的周长为 .19.(2020•大连)如图,矩形ABCD中,AB=6,AD=8,点E在边AD上,CE与BD相交于点F.设DE=x,BF=y,当0≤x≤8时,y关于x的函数解析式为.20.(2020•鞍山)如图,在菱形ABCD中,∠ADC=60°,点E,F分别在AD,CD上,且AE=DF,AF与CE相交于点G,BG与AC相交于点H.下列结论:①△ACF≌△CDE;②CG2=GH•BG;③若DF=2CF,则CE=7GF;④S四边形ABCG=√34BG2.其中正确的结论有.(只填序号即可)21.(2020•锦州)如图,▱ABCD的对角线AC,BD交于点E,以AB为直径的⊙O经过点E,与AD交于点F,G是AD延长线上一点,连接BG,交AC于点H,且∠DBG=12∠BAD.(1)求证:BG是⊙O的切线;(2)若CH=3,tan∠DBG=12,求⊙O的直径.22.(2020•朝阳)如图,以AB为直径的⊙O经过△ABC的顶点C,过点O作OD∥BC交⊙O于点D,交AC于点F,连接BD交AC于点G,连接CD,在OD的延长线上取一点E ,连接CE ,使∠DEC =∠BDC . (1)求证:EC 是⊙O 的切线;(2)若⊙O 的半径是3,DG •DB =9,求CE 的长.一十一.位似变换(共2小题)23.(2019•盘锦)如图,点P (8,6)在△ABC 的边AC 上,以原点O 为位似中心,在第一象限内将△ABC 缩小到原来的12,得到△A ′B ′C ′,点P 在A ′C ′上的对应点P ′的坐标为( )A .(4,3)B .(3,4)C .(5,3)D .(4,4)24.(2020•盘锦)如图,△AOB 三个顶点的坐标分别为A (5,0),O (0,0),B (3,6),以点O 为位似中心,相似比为23,将△AOB 缩小,则点B 的对应点B '的坐标是 .一十二.作图-位似变换(共2小题)25.(2020•朝阳)如图所示的平面直角坐标系中,△ABC 的三个顶点坐标分别为A (﹣3,2),B (﹣1,3),C (﹣1,1),请按如下要求画图:(1)以坐标原点O 为旋转中心,将△ABC 顺时针旋转90°,得到△A 1B 1C 1,请画出△A 1B 1C 1;(2)以坐标原点O为位似中心,在x轴下方,画出△ABC的位似图形△A2B2C2,使它与△ABC的位似比为2:1.26.(2020•丹东)如图,在平面直角坐标系中,网格的每个小方格都是边长为1个单位长度的正方形,点A,B,C的坐标分别为A(1,2),B(3,1),C(2,3),先以原点O为位似中心在第三象限内画一个△A1B1C1.使它与△ABC位似,且相似比为2:1,然后再把△ABC绕原点O逆时针旋转90°得到△A2B2C2.(1)画出△A1B1C1,并直接写出点A1的坐标;(2)画出△A2B2C2,直接写出在旋转过程中,点A到点A2所经过的路径长.一十三.相似形综合题(共1小题)27.(2020•营口)如图,在矩形ABCD中,AD=kAB(k>0),点E是线段CB延长线上的一个动点,连接AE,过点A作AF⊥AE交射线DC于点F.(1)如图1,若k=1,则AF与AE之间的数量关系是;(2)如图2,若k≠1,试判断AF与AE之间的数量关系,写出结论并证明;(用含k的式子表示)(3)若AD=2AB=4,连接BD交AF于点G,连接EG,当CF=1时,求EG的长.一十四.解直角三角形的应用(共1小题)28.(2020•鞍山)图1是某种路灯的实物图片,图2是该路灯的平面示意图,MN为立柱的一部分,灯臂AC,支架BC与立柱MN分别交于A,B两点,灯臂AC与支架BC交于点C,已知∠MAC=60°,∠ACB=15°,AC=40cm,求支架BC的长.(结果精确到1cm,参考数据:√2≈1.414,√3≈1.732,√6≈2.449)一十五.解直角三角形的应用-坡度坡角问题(共1小题)29.(2020•阜新)如图,为了了解山坡上两棵树间的水平距离,数学活动小组的同学们测得该山坡的倾斜角α=20°,两树间的坡面距离AB=5m,则这两棵树的水平距离约为m(结果精确到0.1m,参考数据:sin20°≈0.342,cos20°≈0.940,tan20°≈0.364).一十六.解直角三角形的应用-仰角俯角问题(共2小题)30.(2020•盘锦)如图,某数学活动小组要测量建筑物AB的高度,他们借助测角仪和皮尺进行了实地测量,测量结果如下表.测量项目测量数据测角仪到地面的距离CD=1.6m点D到建筑物的距离BD=4m从C处观测建筑物顶部A的仰角∠ACE=67°从C处观测建筑物底部B的俯角∠BCE=22°请根据需要,从上面表格中选择3个测量数据,并利用你选择的数据计算出建筑物AB(结果精确到0.1米,参考数据:sin67°≈0.92,cos67°≈0.39,tan67°≈2.36.sin22°的高度.≈0.37,cos22°≈0.93,tan22°≈0.40)(选择一种方法解答即可)31.(2020•葫芦岛)如图,小明利用学到的数学知识测量大桥主架在水面以上的高度AB,在观测点C处测得大桥主架顶端A的仰角为30°,测得大桥主架与水面交汇点B的俯角为14°,观测点与大桥主架的水平距离CM为60米,且AB垂直于桥面.(点A,B,C,M在同一平面内)(1)求大桥主架在桥面以上的高度AM;(结果保留根号)(2)求大桥主架在水面以上的高度AB.(结果精确到1米)(参考数据sin14°≈0.24,cos14°≈0.97,tan14°≈0.25,√3≈1.73)一十七.解直角三角形的应用-方向角问题(共5小题)32.(2020•大连)如图,小明在一条东西走向公路的O处,测得图书馆A在他的北偏东60°方向,且与他相距200m ,则图书馆A 到公路的距离AB 为( )A .100mB .100√2mC .100√3mD .200√33m33.(2020•朝阳)为了丰富学生的文化生活,学校利用假期组织学生到红色文化基地A 和人工智能科技馆C 参观学习如图,学校在点B 处,A 位于学校的东北方向,C 位于学校南偏东30°方向,C 在A 的南偏西15°方向(30+30√3)km 处.学生分成两组,第一组前往A 地,第二组前往C 地,两组同学同时从学校出发,第一组乘客车,速度是40km /h ,第二组乘公交车,速度是30km /h ,两组同学到达目的地分别用了多长时间?哪组同学先到达目的地?请说明理由(结果保留根号).34.(2020•锦州)如图,某海岸边有B ,C 两码头,C 码头位于B 码头的正东方向,距B 码头40海里.甲、乙两船同时从A 岛出发,甲船向位于A 岛正北方向的B 码头航行,乙船向位于A 岛北偏东30°方向的C 码头航行,当甲船到达距B 码头30海里的E 处时,乙船位于甲船北偏东60°方向的D 处,求此时乙船与C 码头之间的距离.(结果保留根号)35.(2020•丹东)如图,小岛C和D都在码头O的正北方向上,它们之间距离为6.4km,一艘渔船自西向东匀速航行,行驶到位于码头O的正西方向A处时,测得∠CAO=26.5°,渔船速度为28km/h,经过0.2h,渔船行驶到了B处,测得∠DBO=49°,求渔船在B处时距离码头O有多远?(结果精确到0.1km)(参考数据:sin26.5°≈0.45,cos26.5°≈0.89,tan26.5°≈0.50,sin49°≈0.75,cos49°≈0.66,tan49°≈1.15)36.(2020•营口)如图,海中有一个小岛A,它周围10海里内有暗礁,渔船跟踪鱼群由东向西航行,在B点测得小岛A在北偏西60°方向上,航行12海里到达C点,这时测得小岛A在北偏西30°方向上,如果渔船不改变方向继续向西航行,有没有触礁的危险?并说明理由.(参考数据:√3≈1.73)一十八.简单几何体的三视图(共1小题)37.(2020•阜新)下列立体图形中,左视图与主视图不同的是()A.正方体B.圆柱C.圆锥D.球一十九.简单组合体的三视图(共9小题)38.(2020•盘锦)如图中的几何体是由六个完全相同的小正方体组成的,它的主视图是()A.B.C.D.39.(2020•锦州)如图,是由五个相同的小立方体搭成的几何体,这个几何体的俯视图是()A.B.C.D.40.(2020•沈阳)如图是由四个相同的小立方块搭成的几何体,这个几何体的主视图是()A.B.C.D.41.(2020•营口)如图所示的几何体是由四个完全相同的小正方体搭成的,它的俯视图是()A.B.C.D.42.(2020•辽阳)如图是由一个长方体和一个圆锥组成的几何体,它的主视图是()A.B.C.D.43.(2019•铁岭)如图所示几何体的主视图是()A.B.C.D.44.(2019•盘锦)如图,是由4个大小相同的正方体组成的几何体,该几何体的俯视图是()A.B.C.D.45.(2019•朝阳)如图是由5个相同的小立方块搭成的几何体,这个几何体的左视图是()A.B.C.D.46.(2019•沈阳)如图是由五个相同的小立方块搭成的几何体,这个几何体的俯视图是()A.B.C.D.2019年、2020年 辽宁省数学中考试题分类(12)——图形的变换参考答案与试题解析一.轴对称图形(共1小题)1.【解答】解:A 、不属于轴对称图形,故此选项错误; B 、不属于轴对称图形,故此选项错误; C 、属于轴对称图形,故此选项正确; D 、不属于轴对称图形,故此选项错误; 故选:C .二.关于x 轴、y 轴对称的点的坐标(共1小题)2.【解答】解:点P (3,1)关于x 轴对称的点的坐标是(3,﹣1) 故选:B .三.轴对称-最短路线问题(共2小题)3.【解答】解:把A (3,6)向左平移1得A ′(2,6),作点B 关于x 轴的对称点B ′,连接B ′A ′交x 轴于C ,在x 轴上取点D (点C 在点D 左侧),使CD =1,连接AD , 则AD +BC 的值最小, ∵B (﹣2,2), ∴B ′(﹣2,﹣2),设直线B ′A ′的解析式为y =kx +b , ∴{−2k +b =−22k +b =6, 解得:{k =2b =2,∴直线B ′A ′的解析式为y =2x +2, 当y =0时,x =﹣1, ∴C (﹣1,0), 故答案为:(﹣1,0).4.【解答】解:过C作CF⊥AB交AD于E,则此时,CE+EF的值最小,且CE+EF的最小值=CF,∵△ABC为等边三角形,边长为6,∴BF=12AB=12×6=3,∴CF=2−BF2=√62−32=3√3,∴CE+EF的最小值为3√3,故答案为:3√3.四.翻折变换(折叠问题)(共3小题)5.【解答】解:设CF=x,CH=y,则BH=2﹣y,∵四边形ABHE与四边形BCFG的面积相等,∴2﹣y=2x,∴y=2﹣2x,由折叠知,MF=DF=1﹣x,EM=ED=CH=y=2﹣2x,∠EMF=∠D=90°,∴∠EMH+∠CMF=90°,∵∠C=90°,∴∠CMF+∠CFM=90°,∴∠EMH=∠MFC,∵∠EHM=∠C=90°,∴△EMH ∽△MFC , ∴EM MF=EH MC ,即2−2x 1−x=√(1−x)2−x 2,解得,x =38.经检验,x =38是原方程的解, 故答案为:38.6.【解答】解:①根据题意画出如图1:∵菱形纸片ABCD 的边长为6cm , ∴AB =BC =CD =AD =6, ∵高AE 等于边长的一半, ∴AE =3,∵sin ∠B =AEAB =12, ∴∠B =30°,将菱形纸片沿直线MN 折叠,使点A 与点B 重合, ∴BH =AH =3, ∴BG =BHcos30°=2√3,∴CG =BC ﹣BG =6﹣2√3, ∵AB ∥CD ,∴∠GCF =∠B =30°,∴CF =CG •cos30°=(6﹣2√3)×√32=3√3−3, ∴DF =DC +CF =6+3√3−3=(3√3+3)cm ; ②如图2,BE =AE =3, 同理可得DF =3√3−3.综上所述:则DF 的长为(3√3+3)或(3√3−3)cm . 故答案为:(3√3+3)或(3√3−3).7.【解答】解:如图1,当∠DPF =90°时,过点O 作OH ⊥AD 于H ,∵四边形ABCD 是矩形,∴BO =OD ,∠BAD =90°=∠OHD ,AD =BC =8, ∴OH ∥AB , ∴OH AB=HD AD=OD BD=12,∴OH =12AB =3,HD =12AD =4,∵将△AOP 折叠,点A 的对应点为点E ,线段PE 与OD 相交于点F , ∴∠APO =∠EPO =45°, 又∵OH ⊥AD ,∴∠OPH =∠HOP =45°, ∴OH =HP =3, ∴PD =HD ﹣HP =1; 当∠PFD =90°时,∵AB =6,BC =8,∴BD =√AB 2+AD 2=√36+64=10,∵四边形ABCD 是矩形,∴OA =OC =OB =OD =5,∴∠DAO =∠ODA ,∵将△AOP 折叠,点A 的对应点为点E ,线段PE 与OD 相交于点F ,∴AO =EO =5,∠PEO =∠DAO =∠ADO ,又∵∠OFE =∠BAD =90°,∴△OFE ∽△BAD ,∴OF AB =OE BD , ∴OF 6=510,∴OF =3,∴DF =2,∵∠PFD =∠BAD ,∠PDF =∠ADB ,∴△PFD ∽△BAD ,∴PD BD =DF AD , ∴PD 10=28,∴PD =52,综上所述:PD =52或1,故答案为52或1. 五.旋转的性质(共2小题)8.【解答】解:∵∠ACB =90°,∠ABC =40°,∴∠CAB=90°﹣∠ABC=90°﹣40°=50°,∵将△ABC绕点B逆时针旋转得到△A′BC′,使点C的对应点C′恰好落在边AB上,∴∠A′BA=∠ABC=40°,A′B=AB,∴∠BAA′=∠BA′A=12(180°﹣40°)=70°,∴∠CAA'=∠CAB+∠BAA′=50°+70°=120°.故选:D.9.【解答】解:连接BD、BD1,如图,∵∠ABC=90°,AB=BC=2,∴AC=√22+22=2√2,∵D点为AC的中点,∴BD=12AC=√2,∵△ABC绕点B逆时针旋转60°,得到△A1BC1,∴BD1=BD,∠DBD1=60°,∴△BDD1为等边三角形,∴DD1=BD=√2.故答案为√2.六.作图-旋转变换(共1小题)10.【解答】解:(1)如图,△A1B1C1为所作;(2)旋转中心O1的坐标为(2,0),故答案为(2,0);(3)设旋转半径为r,则r2=22+42=20,∴阴影部分的图形面积为:S阴影=14⋅πr2−12×2×4−12×2×2+12×1×1=5π−112.七.几何变换综合题(共3小题)11.【解答】(1)证明:如图1中,∵∠AOB=∠MON=90°,∴∠AOM=∠BON,∵AO=BO,OM=ON,∴△AOM≌△BON(SAS).(2)①证明:如图2中,连接AM.同法可证△AOM≌△BON,∴AM=BN,∠OAM=∠B=45°,∵∠OAB=∠B=45°,∴∠MAN=∠OAM+∠OAB=90°,∴MN2=AN2+AM2,∵△MON是等腰直角三角形,∴MN2=2ON2,∴NB2+AN2=2ON2.②如图3﹣1中,设OA交BN于J,过点O作OH⊥MN于H.∵△AOM≌△BON,∴AM=BN,∠OAM=∠OBN,∵∠AJN=∠BJO,∴∠ANJ=∠JOB=90°,∵OM=ON=3,∠MON=90°,OH⊥MN,∴MN=3√2,MH=HN═OH=3√2 2,∴AH=√OA2−OH2=42−(322)2=√462,∴BN=AM=MH+AH=√46+3√22.如图3﹣2中,同法可证AM=BN=√46−3√22.12.【解答】解:(1)DO⊥EO,DO=EO;理由:当点B旋转到CD边上时,点E必在边AC上,∴∠AEB=∠CEB=90°,在Rt△ABE中,点O是AB的中点,∴OE=OA=12AB,∴∠BOE=2∠BAE,在Rt△ABD中,点O是AB的中点,∴OD=OA=12AB,∴∠DOE=2∠BAD,∴OD=OE,∵等腰△ADC,且∠ADC=90°,∴∠DAC=45°,∴∠DOE=∠BOE+∠DOE=2∠BAE+2∠BAD=2(∠BAE+∠DAE)=2∠DAC=90°,∴OD⊥OE;(2)仍然成立,理由:如图2,延长EO到点M,使得OM=OE,连接AM,DM,DE,∵O是AB的中点,∴OA=OB,∵∠AOM=∠BOE,∴△AOM≌△BOE(SAS),∴∠MAO=∠EBO,MA=EB,∵△ACD和△CBE是等腰三角形,∠ADC=∠CEB=90°,∴∠CAD=∠ACD=∠EBC=∠BCE=45°,∵∠OBE=180°﹣∠EBC=135°,∴∠MAO=135°,∴∠MAD=∠MAO﹣∠DAC=90°,∵∠DCE=∠DCA+∠BCE=90°,∴∠MAD=∠DCE,∵MA=EB,EB=EC,∴MA=EC,∵AD=DC,∴△MAD≌△ECD,∴MD=ED,∠ADM=∠CDE,∵∠CDE+∠ADE=90°,∴∠ADM+∠ADE=90°,∴∠MDE=90°,∵MO=EO,MD=DE,∴OD=12ME,OD⊥ME,∵OE=12 ME,∴OD=OE,OD⊥OE;(3)①当点B在AC左侧时,如图3,延长EO到点M,使得OM=OE,连接AM,DM,DE,同(2)的方法得,△OBE≌△OAM(SAS),∴∠OBE=∠OAM,OM=OE,BE=AM,∵BE=CE,∴AM=CE,在四边形ABECD中,∠ADC+∠DCE+∠BEC+∠OBE+∠BAD=540°,∵∠ADC=∠BEC=90°,∴∠DCE=540°﹣90°﹣90°﹣∠OBE﹣∠BAD=360°﹣∠OBE=360°﹣∠OAM﹣∠BAD,∵∠DAM+∠OAM+∠BAD=360°,∴∠DAM=360°﹣∠OAM﹣∠BAD,∴∠DAM=∠DCE,∵AD=CD,∴△DAM≌△DCE(SAS),∴DM=DE,∠ADM=∠CDE,∴∠EDM=∠ADM+∠ADE=∠CDE+∠ADE=∠ADC=90°,∵OM=OE,∴OD=OE=12ME,∠DOE=90°,在Rt△BCE中,CE=√22BC=2√2,过点E作EH⊥DC交DC的延长线于H,在Rt△CHE中,∠ECH=180°﹣∠ACD﹣∠ACB﹣∠BCE=180°﹣45°﹣60°﹣45°=30°,∴EH=12CE=√2,根据勾股定理得,CH=√3EH=√6,∴DH=CD+CH=3√6,在Rt△DHE中,根据勾股定理得,DE=√EH2+DH2=2√14,∴OD=√22DE=2√7,②当点B在AC右侧时,如图4,同①的方法得,OD=OE,∠DOE=90°,连接DE,过点E作EH⊥CD于H,在Rt△EHC中,∠ECH=30°∴EH=12CE=√2,根据勾股定理得,CH=√6,∴DH=CD﹣CH=√6,在Rt△DHE中,根据勾股定理得,DE=2√2,∴OD=√22DE=2,即:线段OD的长为2或2√7.13.【解答】(1)①证明:如图1中,∵将线段PB绕点P逆时针旋转,旋转角为α,得到线段PD,∴PB=PD,∵AB =AC ,PB =PD ,∠BAC =∠BPD =60°,∴△ABC ,△PBD 是等边三角形,∴∠ABC =∠PBD =60°,∴∠PBA =∠DBC ,∵BP =BD ,BA =BC ,∴△PBA ≌△DBC (SAS ),∴P A =DC .②解:如图1中,设BD 交PC 于点O .∵△PBA ≌△DBC ,∴∠BP A =∠BDC ,∵∠BOP =∠COD ,∴∠OBP =∠OCD =60°,即∠DCP =60°.(2)解:结论:CD =√3P A .理由:如图2中,∵AB =AC ,PB =PD ,∠BAC =∠BPD =120°,∴BC =2•AB •cos30°=√3BA ,BD ═2BP •cos30°=√3BP ,∴BC BA =BD BP =√3,∵∠ABC =∠PBD =30°,∴∠ABP =∠CBD ,∴△CBD ∽△ABP ,∴CD PA =BC AB =√3,∴CD =√3P A .(3)过点D 作DM ⊥PC 于M ,过点B 作BN ⊥CP 交CP 的延长线于N . 如图3﹣1中,当△PBA 是钝角三角形时,在Rt △ABN 中,∵∠N =90°,AB =6,∠BAN =60°,∴AN =AB •cos60°=3,BN =AB •sin60°=3√3,∵PN =√PB 2−BN 2=√31−27=2,∴P A =3﹣2=1,由(2)可知,CD =√3P A =√3,∵∠BP A =∠BDC ,∴∠DCA =∠PBD =30°,∵DM ⊥PC ,∴DM =12CD =√32如图3﹣2中,当△ABP 是锐角三角形时,同法可得P A =2+3=5,CD =5√3,DM =12CD =5√32,综上所述,满足条件的DM 的值为√32或5√32. 故答案为√32或5√32. 八.平行线分线段成比例(共1小题)14.【解答】解:∵DE ∥AB ,∴CE AE =CD BD =32, ∴CE CA 的值为35,故选:A .九.相似三角形的性质(共1小题)15.【解答】解:∵△ABC ∽△A 'B 'C ',AD 和A 'D '是它们的对应中线,AD =10,A 'D '=6, ∴△ABC 与△A 'B 'C '的周长比=AD :A ′D ′=10:6=5:3.故选:C .一十.相似三角形的判定与性质(共7小题)16.【解答】解:如图,∵四边形ABCD 和四边形CGFE 是正方形,∴BC =CD ,CE =CG ,∠BCE =∠DCG ,在△BCE 和△DCG 中,{BC =CD ∠BCE =∠DCG CE =CG∴△BCE ≌△DCG (SAS ),∴∠BEC =∠BGH ,∵∠BGH +∠CDG =90°,∠CDG =∠HDE ,∴∠BEC +∠HDE =90°,∴GH ⊥BE .故①正确;∵△EHG 是直角三角形,O 为EG 的中点,∴OH =OG =OE ,∴点H 在正方形CGFE 的外接圆上,∵EF =FG ,∴∠FHG =∠EHF =∠EGF =45°,∠HEG =∠HFG ,∴△EHM ∽△FHG ,故②正确;∵△BGH ≌△EGH ,∴BH =EH ,又∵O 是EG 的中点,∴HO ∥BG ,∴△DHN ∽△DGC ,∴DN DC =HN CG ,设EC 和OH 相交于点N .设HN =a ,则BC =2a ,设正方形ECGF 的边长是2b ,则NC =b ,CD =2a ,∴b−2a 2a =a 2b ,即a 2+2ab ﹣b 2=0,解得:a =(﹣1+√2)b ,或a =(﹣1−√2)b (舍去),则2a 2b =√2−1, ∴BC CG =√2−1,故③正确;∵△BGH ≌△EGH ,∴EG =BG ,∵HO 是△EBG 的中位线,∴HO =12BG ,∴HO =12EG ,设正方形ECGF 的边长是2b ,∴EG =2√2b ,∴HO =√2b ,∵OH ∥BG ,CG ∥EF ,∴OH ∥EF ,∴△MHO ∽△MFE ,∴OM EM =OH EF =√2b 2b =√22, ∴EM =√2OM ,∴OM OE =(1+√2)OM =1+√2=√2−1, ∴S △HOMS △HOE =√2−1,∵EO =GO ,∴S △HOE =S △HOG ,∴S △HOMS △HOG =√2−1,故④错误,故选:A .17.【解答】解:∵DE ∥BC ,∴△ADE ∽△ABC ,∴S △ADE S △ABC =(AD AB )2=49, ∴S △ADE S 四边形DBCE =45,故选:A .18.【解答】解:∵DE ∥BC ,∴△ADE ∽△ABC ,∵D 是AB 的中点,∴AD AB =12, ∴△ADE 的周长△ABC 的周长=12 ∵△ADE 的周长为6,∴△ABC 的周长为12,故答案为:12.19.【解答】解:在矩形 中,AD ∥BC ,∴△DEF ∽△BCF ,∴DE BC =DF BF ,∵BD =√BC 2+CD 2=10,BF =y ,DE =x ,∴DF =10﹣y ,∴x 8=10−y y ,化简得:y =80x+8,∴y 关于x 的函数解析式为:y =80x+8, 故答案为:y =80x+8.20.【解答】解:∵ABCD 为菱形,∴AD =CD ,∵AE =DF ,∴DE =CF ,∵∠ADC =60°,∴△ACD 为等边三角形, ∴∠D =∠ACD =60°,AC =CD ,∴△ACF ≌△CDE (SAS ),故①正确;过点F 作FP ∥AD ,交CE 于P 点.∵DF =2CF ,∴FP :DE =CF :CD =1:3,∵DE =CF ,AD =CD ,∴AE =2DE ,∴FP :AE =1:6=FG :AG ,∴AG =6FG ,∴CE =AF =7GF ,故③正确;过点B 作BM ⊥AG 于M ,BN ⊥GC 于N ,∵∠AGE =∠ACG +∠CAF =∠ACG +∠GCF =60°=∠ABC ,即∠AGC +∠ABC =180°,∴点A 、B 、C 、G 四点共圆,∴∠AGB =∠ACB =60°,∠CGB =∠CAB =60°,∴∠AGB =∠CGB =60°,∴BM =BN ,又AB =BC ,∴△ABM ≌△CBN (HL ),∴S 四边形ABCG =S 四边形BMGN ,∵∠BGM =60°,∴GM=12BG,BM=√32BG,∴S四边形BMGN=2S△BMG=2×12×12BG×√32BG=√34BG2,故④正确;∵∠CGB=∠ACB=60°,∠CBG=∠HBC,∴△BCH∽△BGC,∴BCBG =BHBC=CHCG,则BG•BH=BC2,则BG•(BG﹣GH)=BC2,则BG2﹣BG•GH=BC2,则GH•BG=BG2﹣BC2,当∠BCG=90°时,BG2﹣BC2=CG2,此时GH•BG=CG2,而题中∠BCG未必等于90°,故②不成立,故正确的结论有①③④,故答案为:①③④.21.【解答】(1)证明:∵AB为⊙O的直径,∴∠AEB=90°,∴∠BAE+∠ABE=90°,∵四边形ABCD为平行四边形,∴四边形ABCD为菱形,∴∠BAE=12∠BAD,∵∠DBG=12∠BAD.∴∠BAE=∠DBG,∴∠DBG+∠ABE=90°,∴∠ABG=90°,∴BG是⊙O的切线;(2)∵∠ABG=∠AEB=90°,∠HAB=∠BAE,∴△ABH∽△AEB,∴AB2=AE•AH,∵tan∠DBG=1 2,∴设HE=x,则BE=2x,∵CH=3,∴AE=CE=3+x,∴AH=AE+HE=3+2x,∴AB2=(3+x)•(3+2x),∵AB2=BE2+AE2=(2x)2+(3+x)2,∴(3+x)•(3+2x)=(2x)2+(3+x)2,解得x=1或0(舍去),∴AB2=(3+1)(3+2)=20,∴AB=2√5,即⊙O的直径为2√5.22.【解答】解:(1)证明:如图,连接OC,∵AB是直径,∴∠ACB=90°,∵OD∥BC,∴∠CFE=∠ACB=90°,∴∠DEC+∠FCE=90°,∵∠DEC=∠BDC,∠BDC=∠A,∴∠DEC=∠A,∵OA=OC,∴∠OCA =∠A ,∴∠OCA =∠DEC ,∵∠DEC +∠FCE =90°,∴∠OCA +∠FCE =90°,即∠OCE =90°,∴OC ⊥CE ,又∵OC 是⊙O 的半径,∴CE 是⊙O 切线.(2)由(1)得∠CFE =90°,∴OF ⊥AC ,∵OA =OC ,∴∠COF =∠AOF ,∴CD̂=AD ̂, ∴∠ACD =∠DBC ,又∵∠BDC =∠BDC ,∴△DCG ∽△DBC ,∴DC DB =DG DC ,∴DC 2=DG •DB =9,∴DC =3,∵OC =OD =3,∴△OCD 是等边三角形,∴∠DOC =60°,在Rt △OCE 中tan60°=CE OC, ∴√3=CE 3, ∴CE =3√3.一十一.位似变换(共2小题)23.【解答】解:∵点P (8,6)在△ABC 的边AC 上,以原点O 为位似中心,在第一象限内将△ABC 缩小到原来的12,得到△A ′B ′C ′, ∴点P 在A ′C ′上的对应点P ′的坐标为:(4,3).故选:A.24.【解答】解:如图,∵△OAB∽△OA′B′,相似比为3:2,B(3.6),∴B′(2,4),根据对称性可知,△OA″B″在第三象限时,B″(﹣2,﹣4),∴满足条件的点B′的坐标为(2,4)或(﹣2,﹣4).故答案为(2,4)或(﹣2,﹣4).一十二.作图-位似变换(共2小题)25.【解答】解:(1)如图,△A1B1C1即为所求.(2)如图,△A2B2C2即为所求.26.【解答】解:(1)如图所示:点A1的坐标为(﹣2,﹣4);(2)如图所示:由勾股定理得OA =√12+22=√5,点A 到点A 2所经过的路径长为90×π×√5180=√5π2. 一十三.相似形综合题(共1小题)27.【解答】解:(1)AE =AF .∵AD =AB ,四边形ABCD 矩形,∴四边形ABCD 是正方形,∴∠BAD =90°,∵AF ⊥AE ,∴∠EAF =90°,∴∠EAB =∠F AD ,∴△EAB ≌△F AD (ASA ),∴AF =AE ;故答案为:AF =AE .(2)AF =kAE .证明:∵四边形ABCD 是矩形,∴∠BAD =∠ABC =∠ADF =90°,∴∠F AD +∠F AB =90°,∵AF ⊥AE ,∴∠EAF =90°,∴∠EAB +∠F AB =90°,∴∠EAB =∠F AD ,∵∠ABE +∠ABC =180°,∴∠ABE =180°﹣∠ABC =180°﹣90°=90°, ∴∠ABE =∠ADF .∴△ABE ∽△ADF ,∴AB AD =AE AF ,∵AD =kAB ,∴AB AD =1k , ∴AE AF =1k , ∴AF =kAE .(3)解:①如图1,当点F 在线段DC 上时,∵四边形ABCD 是矩形,∴AB =CD ,AB ∥CD ,∵AD =2AB =4,∴AB =2,∴CD =2,∵CF =1,∴DF =CD ﹣CF =2﹣1=1.在Rt △ADF 中,∠ADF =90°,∴AF =√AD 2+DF 2=√42+12=√17, ∵DF ∥AB ,∴∠GDF =∠GBA ,∠GFD =∠GAB , ∴△GDF ∽△GBA ,∴GF GA =DF BA =12, ∵AF =GF +AG ,∴AG =23AF =23√17. ∵△ABE ∽△ADF ,∴AE AF =AB AD =24=12, ∴AE =12AF =12×√17=√172. 在Rt △EAG 中,∠EAG =90°,∴EG =√AE 2+AG 2=(172)2+(2173)2=5√176, ②如图2,当点F 在线段DC 的延长线上时,DF =CD +CF =2+1=3,在Rt △ADF 中,∠ADF =90°,∴AF =√AD 2+DF 2=√42+32=5.∵DF ∥AB , ∵∠GAB =∠GFD ,∠GBA =∠GDF ,∴△AGB ∽△FGD ,∴AGFG =ABFD =23, ∵GF +AG =AF =5, ∴AG =2,∵△ABE ∽△ADF ,∴AEAF =AB AD =24=12, ∴AE =12AF =12×5=52,在Rt △EAG 中,∠EAG =90°,∴EG =√AE 2+AG 2=√(52)2+22=√412.综上所述,EG 的长为5√176或√412. 一十四.解直角三角形的应用(共1小题)28.【解答】解:如图2,过C 作CD ⊥MN 于D ,则∠CDB =90°,∵∠CAD =60°,AC =40(cm ),∴CD =AC •sin ∠CAD =40×sin60°=40×√32=20√3(cm ),∵∠ACB =15°,∴∠CBD =∠CAD ﹣∠ACB =45°,∴BC =√2CD =20√6≈49(cm ),答:支架BC 的长约为49cm .一十五.解直角三角形的应用-坡度坡角问题(共1小题)29.【解答】解:过点A 作水平面的平行线AH ,作BH ⊥AH 于H ,由题意得,∠BAH =α=20°,在Rt △BAH 中,cos ∠BAH =AH AB ,∴AH =AB •cos ∠BAH ≈5×0.940≈4.7(m ),故答案为:4.7.一十六.解直角三角形的应用-仰角俯角问题(共2小题)30.【解答】解:选择CD =1.6m ,BD =4m ,∠ACE =67°,过C 作CE ⊥AB 于E ,则四边形BDCE 是矩形,∴BE =CD =1.6m ,CE =BD =4m ,在Rt △ACE 中,∵∠ACE =67°,∴tan ∠ACE =AE CE , ∴AE 4≈2.36,∴AE ≈9.4m ,∴AB =AE +BE =9.4+1.6=11.0(m ),答:建筑物AB 的高度为11.0m .31.【解答】解:(1)∵AB 垂直于桥面,∴∠AMC =∠BMC =90°,在Rt △AMC 中,CM =60,∠ACM =30°,tan ∠ACM =AM CM, ∴AM =CM •tan ∠ACM =60×√33=20√3(米),答:大桥主架在桥面以上的高度AM 为20√3米;(2)在Rt △BMC 中,CM =60,∠BCM =14°,tan ∠BCM =BM CM ,∴MB =CM •tan ∠BCM ≈60×0.25=15(米),∴AB =AM +MB =15+20√3≈50(米)答:大桥主架在水面以上的高度AB 约为50米.一十七.解直角三角形的应用-方向角问题(共5小题)32.【解答】解:由题意得,∠AOB =90°﹣60°=30°,∴AB =12OA =100(m ),故选:A .33.【解答】解:作BD ⊥AC 于D .依题意得,∠BAE =45°,∠ABC =105°,∠CAE =15°,∴∠BAC =30°,∴∠ACB =45°.在Rt △BCD 中,∠BDC =90°,∠ACB =45°,∴∠CBD =45°,∴∠CBD =∠DCB ,∴BD =CD ,设BD =x ,则CD =x ,在Rt △ABD 中,∠BAC =30°,∴AB =2BD =2x ,tan30°=BD AD, ∴√33=x AD , ∴AD =√3x ,在Rt △BDC 中,∠BDC =90°,∠DCB =45°,∴sin ∠DCB =BD BC =√22,∴BC =√2x ,∵CD +AD =30+30√3,∴x +√3x =30+30√3,∴x =30,∴AB =2x =60,BC =√2x =30√2,第一组用时:60÷40=1.5(h);第二组用时:30√2÷30=√2(h),∵√2<1.5,∴第二组先到达目的地,答:第一组用时1.5小时,第二组用时√2小时,第二组先到达目的地.34.【解答】解:过D作DF⊥BE于F,∵∠ADE=∠DEB﹣∠A=60°﹣30°=30°,∴∠A=∠ADE,∴AE=DE,∵∠B=90°,∠A=30°,BC=40(海里),∴AC=2BC=80(海里),AB=√3BC=40√3(海里),∵BE=30(海里),∴AE=(40√3−30)(海里),∴DE=(40√3−30)(海里),在Rt△DEF中,∵∠DEF=60°,∠DFE=90°,∴∠EDF=30°,∴DF=√32DE=(60﹣15√3)(海里),∵∠A=30°,∴AD=2DF=120﹣30√3(海里),∴CD=AC﹣AD=80﹣120+30√3=(30√3−40)海里,答:乙船与C码头之间的距离为(30√3−40)海里.35.【解答】解:设B处距离码头O有xkm,在Rt△CAO中,∠CAO=26.5°,∵tan∠CAO=CO OA,∴CO=AO•tan∠CAO=(28×0.2+x)•tan26.5°≈2.8+0.5x(km),在Rt△DBO中,∠DBO=49°,∵tan∠DBO=DO BO,∴DO=BO•tan∠DBO=x•tan49°≈1.15x(km),∵DC=DO﹣CO,∴6.4=1.15x﹣(2.8+0.5x),∴x≈14.2(km).因此,B处距离码头O大约14.2km.36.【解答】解:没有触礁的危险;理由:如图,过点A作AN⊥BC交BC的延长线于点N,由题意得,∠ABE=60°,∠ACD=30°,∴∠ACN=60°,∠ABN=30°,∴∠ABC=∠BAC=30°,∴BC=AC=12海里,在Rt△ANC中,AN=AC•sin60°=12×√32=6√3海里,∵AN=6√3海里≈10.38海里>10海里,∴没有危险.一十八.简单几何体的三视图(共1小题)37.【解答】解:A.左视图与主视图都是正方形,故选项A不合题意;B.左视图是圆,主视图都是矩形,故选项B符合题意;C.左视图与主视图都是三角形;故选项C不合题意;D.左视图与主视图都是圆,故选项D不合题意;故选:B.一十九.简单组合体的三视图(共9小题)38.【解答】解:从正面看第一层是3个小正方形,第二层右边1个小正方形.故选:B.39.【解答】解:观察图形可知,这个几何体的俯视图是.故选:A.40.【解答】解:从几何体的正面看,底层是三个小正方形,上层的中间是一个小正方形.故选:D.41.【解答】解:从上面看易得俯视图:.故选:C.42.【解答】解:从正面看,“底座长方体”看到的图形是矩形,“上部圆锥体”看到的图形是等腰三角形,因此选项C的图形符合题意,故选:C.43.【解答】解:从正面可看到的图形是:故选:B.44.【解答】解:从上面看得到的图形是:故选:B.45.【解答】解:从左边看,从左往右小正方形的个数依次为:2,1.左视图如下:故选:C.46.【解答】解:从上面看易得上面一层有3个正方形,下面左边有一个正方形.故选:A.。

2016年辽宁省沈阳市中考真题数学

2016年辽宁省沈阳市中考真题数学
2
13.化简: 1

1 m 1 m 1
.
解析:原式括号中两项通分并利用同分母分式的减法法则计算,约分即可得到结果. 原式
m 11 m 1 m . m 1
答案:m 14.三个连续整数中,n 是最大的一个,这三个数的和为 . 解析:由题意得,这三个连续整数位 n-2,n-1 和 n,这三个数的和为 n-2+n-1+n=3n-3. 答案:3n-3. 15.在一条笔直的公路上有 A,B,C 三地,C 地位于 A,B 两地之间,甲,乙两车分别从 A,B 两地出发,沿这条公路匀速行驶至 C 地停止.从甲车出发至甲车到达 C 地的过程,甲、乙两 车各自与 C 地的距离 y(km)与甲车行驶时间 t(h)之间的函数关系如图表示,当甲车出发 h 时,两车相距 350km.
2016 பைடு நூலகம்辽宁省沈阳市中考真题数学
一、选择题(下列各题的备选答案中,只有一个答案是正确的。每小题 2 分,共 20 分) 1.下列各数是无理数的是( A.0 B.-1 C. 2 D. )
3 7
解析:根据无理数是无限不循环小数可知: 0,-1,
3 是有理数, 2 是无理数. 7
答案:C. 2.如图是由 4 个大小相同的小立方块搭成的几何体,这个几何体的俯视图是( )
二、填空题(每小题 3 分,共 18 分) 11.分解因式:2x -4x+2= . 2 2 解析:先提取公因数 2,再利用完全平方公式进行二次分解.完全平方公式:(a±b) =a ± 2 2ab+b . 2 2x -4x+2, 2 =2(x -2x+1), 2 =2(x-1) . 2 答案:2(x-1) . 12.若一个多边形的内角和是 540°,则这个多边形是 解析:根据多边形的内角和公式求出边数即可. 设多边形的边数是 n,则 (n-2)·180°=540°, 解得 n=5. 即这个多边形是五边形. 答案:五. 边形.

2016年辽宁沈阳高级中等学校招生考试数学试卷

2016年辽宁沈阳高级中等学校招生考试数学试卷

2016年沈阳市中等学校招生统一考试数学试题(含答案全解全析)(满分:120分时间:120分钟)第Ⅰ卷(选择题,共20分)一、选择题(下列各题的备选答案中,只有一个答案是正确的.每小题2分,共20分)1.下列各数是无理数的是()A.0B.-1C.D.372.下图是由4个大小相同的小立方块搭成的几何体,这个几何体的俯视图是()3.在我市2016年春季房地产展示交易会上,全市房地产开发企业提供房源的参展面积达到5 400 000平方米,将数据5 400 000用科学记数法表示为()A.0.54³107B.54³105C.5.4³106D.5.4³1074.如图,在平面直角坐标系中,点P是反比例函数y=kx(x>0)图象上的一点,分别过点P作PA⊥x轴于点A,PB⊥y轴于点B.若四边形OAPB的面积为3,则k的值为()A.3B.-3C.32D.-325.“射击运动员射击一次,命中靶心”这个事件是()A.确定事件B.必然事件C.不可能事件D.不确定事件6.下列计算正确的是()A.x4+x4=2x8B.x3²x2=x6C.(x2y)3=x6y3D.(x-y)(y-x)=x2-y27.已知一组数据:3,4,6,7,8,8,下列说法正确的是()A.众数是2B.众数是8C.中位数是6D.中位数是78.一元二次方程x2-4x=12的根是()A.x1=2,x2=-6B.x1=-2,x2=6C.x1=-2,x2=-6D.x1=2,x2=69.如图,在Rt△ABC中,∠C=90°,∠B=30°,AB=8,则BC的长是()B.4C.83D.43A.43310.在平面直角坐标系中,二次函数y=x2+2x-3的图象如图所示,点A(x1,y1),B(x2,y2)是该二次函数图象上的两点,其中-3≤x1<x2≤0,则下列结论正确的是()A.y1<y2B.y1>y2C.y的最小值是-3D.y的最小值是-4第Ⅱ卷(非选择题,共100分)二、填空题(每小题3分,共18分)11.分解因式:2x2-4x+2=.12.若一个多边形的内角和是540°,则这个多边形是边形.13.化简:1-1m+1²(m+1)=.14.三个连续整数中,n是最大的一个,这三个数的和为.(用含n的代数式表示)15.在一条笔直的公路上有A,B,C三地,C地位于A,B两地之间,甲、乙两车分别从A,B两地出发,沿这条公路匀速行驶至C地停止.从甲车出发至甲车到达C地的过程中,甲、乙两车各自与C地的距离y(km)与甲车行驶时间t(h)之间的函数关系如图所示,当甲车出发h 时,两车相距350 km.16.如图,在Rt△ABC中,∠A=90°,AB=AC,BC=20,DE是△ABC的中位线.点M是边BC上一点,BM=3,点N是线段MC上的一个动点,连接DN,ME,DN与ME相交于点O.若△OMN 是直角三角形,则DO的长是.三、解答题(第17小题6分,第18、19小题各8分,共22分)17.计算:(π-4)0+|3-tan 60°|-12-2 +18.为了传承优秀传统文化,某校开展“经典诵读”比赛活动,诵读材料有《论语》《三字经》《弟子规》(分别用字母A,B,C依次表示这三个诵读材料).将A,B,C这三个字母分别写在3张完全相同的不透明卡片的正面上,把这3张卡片背面朝上洗匀后放在桌面上.小明和小亮参加诵读比赛,比赛时小明先从中随机抽取一张卡片,记录下卡片上的内容,放回后洗匀,再由小亮从中随机抽取一张卡片,选手按各自抽取的卡片上的内容进行诵读比赛.(1)小明诵读《论语》的概率是;(2)请用列表法或画树状图(树形图)法求小明和小亮诵读两个不同材料的概率.19.如图,△ABC≌△ABD,点E在边AB上,CE∥BD,连接DE.求证:(1)∠CEB=∠CBE;(2)四边形BCED是菱形.四、(每小题8分,共16分)20.我市某中学决定在学生中开展丢沙包、打篮球、跳大绳和踢毽球四种项目的活动,为了解学生对四种项目的喜欢情况,随机调查了该校m名学生最喜欢的一种项目(每名学生必选且只能选择四种活动项目中的一种),并将调查结果绘制成如下的不完整的统计图表:学生最喜欢的活动项目的人数条形统计图根据图表中提供的信息,解答下列问题:(1)m=,n=,p=;(2)请根据以上信息补全条形统计图;(3)根据抽样调查结果,请你估计该校2 000名学生中有多少名学生最喜欢跳大绳.21.如图,在△ABC中,以AB为直径的☉O分别与BC,AC相交于点D,E,BD=CD,过点D作☉O的切线交边AC于点F.(1)求证:DF⊥AC;(2)若☉O的半径为5,∠CDF=30°,求BD的长.(结果保留π)五、(本题10分)22.倡导健康生活,推进全民健身,某社区要购进A,B两种型号的健身器材若干套,A,B两种型号健身器材的购买单价分别为每套310元,460元,且每种型号健身器材必须整套购买. (1)若购买A,B两种型号的健身器材共50套,且恰好支出20 000 元,求A,B两种型号健身器材各购买多少套;(2)若购买A,B两种型号的健身器材共50套,且支出不超过18 000元,求A种型号健身器材至少要购买多少套.六、(本题10分)23.如图,在平面直角坐标系中,△AOB的顶点O为坐标原点,点A的坐标为(4,0),点B的坐标为(0,1),点C为边AB的中点.正方形OBDE的顶点E在x轴的正半轴上,连接CO,CD,CE.(1)线段OC的长为;(2)求证:△CBD≌△COE;(3)将正方形OBDE沿x轴正方向平移得到正方形O1B1D1E1,其中点O,B,D,E的对应点分别为点O1,B1,D1,E1,连接CD1,CE1,设点E1的坐标为(a,0),其中a≠2,△CD1E1的面积为S.①当1<a<2时,请直接²²写出S与a之间的函数表达式;②在平移过程中,当S=14时,请直接²²写出a的值.七、(本题12分)24.在△ABC中,AB=6,AC=BC=5,将△ABC绕点A按顺时针方向旋转,得到△ADE,旋转角为α(0°<α<180°),点B的对应点为点D,点C的对应点为点E,连接BD,BE.(1)如图,当α=60°时,延长BE交AD于点F.①求证:△ABD是等边三角形;②求证:BF⊥AD,AF=DF;③请直接写出BE的长;²²(2)在旋转过程中,过点D作DG垂直于直线AB,垂足为点G,连接CE,当∠DAG=∠ACB,且线写出BE+CE的值.段DG与线段AE无公共点时,请直接²²温馨提示:学生可以根据题意,在备用图中补充图形,以便作答.八、(本题12分)25.如图,在平面直角坐标系中,矩形OCDE的顶点C和E分别在y轴的正半轴和x轴的正半轴上,OC=8,OE=17.抛物线y=3x2-3x+m与y轴交于点A,抛物线的对称轴与x轴交于点B,20与CD交于点K.(1)将矩形OCDE 沿AB 折叠,点O 恰好落在边CD 上的点F 处.①点B 的坐标为( , ),BK 的长是 ,CK 的长是 ; ②求点F 的坐标;③请直接²²写出抛物线的函数表达式;(2)将矩形OCDE 沿着经过点E 的直线折叠,点O 恰好落在边CD 上的点G 处,连接OG,折痕与OG 交于点H,点M 是线段EH 上的一个动点(不与点H 重合),连接MG,MO,过点G 作GP ⊥OM 于点P,交EH 于点N,连接ON.点M 从点E 开始沿线段EH 向点H 运动,至与点N 重合时停止.△MOG 和△NOG 的面积分别表示为S 1和S 2,在点M 的运动过程中,S 1²S 2(即S 1与S 2的积)的值是否发生变化?若变化,请直接²²写出变化范围;若不变,请直接²²写出这个值.温馨提示:学生可以根据题意,在备用图中补充图形,以便作答.答案全解全析:一、选择题是有理数,2是无理数.故选C.1.C0、-1、372.A由俯视图的定义可知选项A正确.3.C 5 400 000=5.4³106,故选C.4.A设点P的横坐标为x P,纵坐标为y P,由题意得OA=x P,OB=y P.由题意可知,四边形OAPB 为矩形,∵四边形OAPB的面积为3,∴OA²OB=x P²y P=3,又∵点P在反比例函数y=k(x>0)x的图象上,∴x P²y P=k=3,故选A.5.D不确定事件即随机事件,是指在一定条件下,可能发生也可能不发生的事件.显然,事件“射击运动员射击一次,命中靶心”是不确定事件,故选D.6.C A项:x4+x4=2x4,本选项错误;B项:x3²x2=x3+2=x5,本选项错误;C项:(x2y)3=(x2)3y3=x6y3,本选项正确;D项:(x-y)(y-x)=-(x-y)2,本选项错误.故选C.7.B数据8出现的次数最多,故众数为8,故选项A错误,B正确;将这组数据按从小到大的顺=6.5,故选项C,D错误.故选B.序排列后,最中间的两个数据为6,7,故中位数为6+72评析解此类题的关键是掌握中位数、众数的概念:中位数是将一组数据按从小到大或从大到小的顺序排列后,处于最中间的那个数据(或最中间两个数据的平均数);众数是一组数据中出现次数最多的那个数据.8.B原方程配方得x2-4x+4=16,即(x-2)2=16,故x-2=±4,∴x1=-2,x2=6,故选B.AB=4,由勾股定理得BC=AB2-A C2=82-42=43,故9.D∵∠C=90°,∠B=30°,∴AC=12选D.10.D二次函数y=x2+2x-3=(x+1)2-4图象的顶点坐标为(-1,-4).令x2+2x-3=0,解得x1=-3,x2=1,则二次函数y=x2+2x-3的图象与x轴的两个交点为(-3,0),(1,0).由-3≤x1<x2≤0及二次函数的图象可知,y1,y2的大小不能确定,∴选项A,B错误;y min=-4,∴选项C错误,故选D. 评析本题考查了二次函数的图象和性质,难度适中.二、填空题11.答案2(x-1)2解析2x2-4x+2=2(x2-2x+1)=2(x-1)2.12.答案五解析设这个多边形的边数为n,由题意得(n-2)²180°=540°,解得n=5.13.答案m解析1-1m+1²(m+1)=m+1-1m+1²(m+1)=m+1-1=m.14.答案3n-3解析三个连续整数中,n是最大的一个,则前两个分别为n-1,n-2,所以这三个数的和为n+(n-1)+(n-2)=3n-3.15.答案32解析由题图可知乙车是在甲车出发1小时后出发的,且A、B两地与C地的距离都为240 km,即A、B两地的距离为480 km.甲车的速度为2404=60 km/h,乙车的速度为2404-1=80 km/h.设当甲车出发x h时,两车相距350 km,则480-60x-80(x-1)=350,解得x=32.评析本题考查函数的图象,求解时需要从抽象的函数图象中找出实际的量,然后根据实际情况列出方程计算出结果.16.答案256或5013解析∵∠A=90°,AB=AC,BC=20,∴AB=AC=102, ∵DE是△ABC的中位线,∴DE∥BC,DE=1BC=10,BD=CE=5.①当DN⊥BC时,△OMN为直角三角形(如图), 易知△BDN为等腰直角三角形,∴BN=DN=5, ∵BM=3,∴MN=2,∵DE∥BC,∴△ODE∽△ONM,∴ODON =DENM,即OD5-OD=102,解得OD=256.②当DN⊥ME时,△OMN为直角三角形(如图),过点E作EF⊥BC,垂足为点F. 易知△CEF为等腰直角三角形,∴EF=FC=5,∵BM=3,∴MF=20-3-5=12,在Rt△MFE中,ME= EF2+M F2=52+122=13,∵DE∥BC,∴∠DEO=∠EMF,∵∠DOE=∠EFM=90°,∴△ODE∽△FEM,∴ODFE =DEEM,即OD5=1013,解得OD=5013.综上所述,DO的长是256或5013.评析对于几何探究型问题,分类讨论思想是重点考查内容.本题中,要对△OMN分两种情况进行讨论,一是∠ONM为直角时,二是∠MON为直角时.三、解答题17.解析原式=1+3-3-4+33=23.18.解析(1)1.(2)列表得或画树状(形)图得由表格(或树状图/树形图)可知,共有9种可能出现的结果,每种结果出现的可能性相同,其中小明和小亮诵读两个不同材料的结果有6种:(A,B),(A,C),(B,A),(B,C),(C,A),(C,B),故P(小明和小亮诵读两个不同材料)=69=2 3 .19.证明(1)∵△ABC≌△ABD,∴∠ABC=∠ABD. ∵CE∥BD,∴∠CEB=∠DBE,∴∠CEB=∠CBE.(2)∵△ABC≌△ABD,∴BC=BD.由(1)得∠CEB=∠CBE,∴CE=CB,∴CE=BD,∵CE∥BD,∴四边形BCED是平行四边形.∵BC=BD,∴四边形BCED是菱形.四、20.解析(1)200;80;30.(2)补全条形统计图如下.学生最喜欢的活动项目的人数条形统计图(3)2 000³40%=800(名).答:估计该校2 000名学生中约有800名学生最喜欢跳大绳.21.解析(1)证明:连接OD.∵DF是☉O的切线,D为切点,∴OD⊥DF,∴∠ODF=90°.∵BD=CD,OA=OB,∴OD是△ABC的中位线.∴OD∥AC,∴∠CFD=∠ODF=90°,∴DF⊥AC.(2)∵∠CDF=30°,由(1)知∠ODF=90°,∴∠ODB=180°-∠CDF-∠ODF=60°.∵OB=OD,∴△OBD是等边三角形,∴∠BOD=60°,∴BD的长=nπR180=60π×5180=53π.五、22.解析(1)设购买A种型号健身器材x套,B种型号健身器材y套,根据题意,得x+y=50,310x+460y=20000,解得x=20, y=30.答:购买A种型号健身器材20套,B种型号健身器材30套. (2)设购买A种型号健身器材z套,根据题意,得310z+460(50-z)≤18 000,解得z≥3313.∵z为整数,∴z的最小值为34.答:A种型号健身器材至少要购买34套.六、23.解析(1)172.(2)证明:∵∠AOB=90°,点C为AB中点,∴OC=12AB=BC,∴∠CBO=∠COB.∵四边形OBDE是正方形,∴BD=OE,∠DBO=∠EOB=90°. ∴∠DBO-∠CBO=∠EOB-∠COB,即∠CBD=∠COE,∴△CBD≌△COE.(3)①S=-12a+1.②32或52.七、24.解析(1)①证明:∵△ABC绕点A按顺时针方向旋转60°得到△ADE, ∴AB=AD,∠BAD=60°,∴△ABD是等边三角形.②证明:由①得△ABD是等边三角形,∴AB=BD.∵△ABC绕点A按顺时针方向旋转60°得到△ADE,∴AC=AE,BC=DE.又∵AC=BC,∴EA=ED.∵点B,E在AD的中垂线上,∴BE是AD的中垂线.∵点F在BE的延长线上,∴BF⊥AD,AF=DF.③33-4.(2)13.评析本题以图形的旋转为背景,考查了旋转的性质、等边三角形的性质、垂直平分线的性质等知识,属难题.八、25.解析(1)①(10,0);8;10.②由折叠可得BF=OB=10,∵直线BK是抛物线的对称轴,∴BK⊥x轴,∴∠KBO=90°.∵四边形OCDE是矩形,∴CK∥OB,∴∠CKB+∠KBO=180°,∴∠CKB=90°.在Rt△FKB中,BK=8,由勾股定理得FK=BF2-B K2=102-82=6,∴CF=CK-FK=10-6=4,即点F的横坐标为4,又易知点F的纵坐标为8,∴点F的坐标为(4,8).x2-3x+5.③y=320(2)不变,289.。

【备考期末】沈阳市中考数学规律问题图形变化类专题

【备考期末】沈阳市中考数学规律问题图形变化类专题

【备考期末】沈阳市中考数学规律问题图形变化类专题一、规律问题图形变化类1.图①是一个三角形,分别连接这个三角形三边的中点得到图②,再分别连接图②中间小三角形三边的中点,得到图③.按这样的方法继续下去,第n 个图形中有( )个三角形(用含n 的代数式表示).A .4nB .41n +C .41n -D .43n -2.“科赫曲线”是瑞典数学家科赫1904构造的图案(又名“雪花曲线”).其过程是:第一次操作,将一个等边三角形每边三等分,再以中间一段为边向外作等边三角形,然后去掉中间一段,得到边数为12的图②.第二次操作,将图②中的每条线段三等分,重复上面的操作,得到边数为48的图③.如此循环下去,得到一个周长无限的“雪花曲线”.若操作4次后所得“雪花曲线”的边数是( )A .192B .243C .256D .7683.利用如图1的二维码可以进行身份识别.某校建立了一个身份识别系统,图2是某个学生的识别图案,黑色小正方形表示1,白色小正方形表表示0,将第一行数字从左到右一次记为a b c d ,,,,那么可以转换为该生所在班级序号,其序号为43212222a b c d ⨯+⨯+⨯+⨯,如图2第一行数字从左到右依次为0,1,0,1,序号为43210212021210⨯+⨯+⨯+⨯=,表示该生为10班的学生,表示12班的学生的识别图案是( )A .B .C .D .4.如图,已知3343111122224,,,AB A B A B A A A B A A A B A A ====,若68A ︒∠=,则11n n n A A B --∠的度数为( )A .682n B .1682n - C .1682n + D .2682n + 5.观察下列一组图形,其中图形(1)中共有2颗星,图形(2)中共有6颗星,图形(3)中共有11颗星,图形(4)中共有17颗星,…,按此规律,图形(20)中的星星颗数是( )A .210B .236C .249D .2516.第①图形中有2个三角形,第②图形中有8个三角形,第③个图形中有14个三角形,依此规律,第⑦个图形中三角形的个数是( )A .40B .38C .36D .347.如图所示,2条直线相交只有1个交点,3条直线相交最多能有3个交点,4条直线相交最多能有6个交点,5条直线相交最多能有10个交点,……,n (n ≥2,且n 是整数)条直线相交最多能有( )A .()23n -个交点B .()36n -个交点C .()410n -个交点D .()112n n -个交点 8.下面是用黑色棋子摆成的美丽图案,按照这样的规律摆下去,第⑨个这样的图案黑色棋子的个数是( )A .148B .152C .174D .2029.观察下列一组图形中点的个数,其中第1个图中共有4个点,第2个图中共有10个点,第3个图中共有19个点,按此规律第8个图中共有点的个数是( )个A .108B .109C .110D .11210.按图示的方式摆放餐桌和椅子,图1中共有6把椅子,图2中共有10把椅子,…,按此规律,则图7中椅子把数是( )A .28B .30C .36D .4211.如图是一组有规律的图案,它们是由边长相同的正方形和正三角形拼接而成,第①个图案有4个三角形和1个正方形,第②个图案有7个三角形和2个正方形,第③个图案有10个三角形和3个正方形,⋯依此规律,如果第n 个图案中正三角形和正方形的个数共有2021个,则n =( )A .504B .505C .506D .50712.如图,四边形OAA 1B 1是边长为1的正方形,以对角线OA 1为边作第二个正方形OA 1A 2B 2,连接AA 2,得到AA 1A 2;再以对角线OA 2为边作第三个正方形OA 2A 3B 3,连接A 1A 3,得到A 1A 2A 3,再以对角线OA 3为边作第四个正方形OA 2A 4B 4,连接A 2A 4,得到A 2A 3A 4,…,设AA 1A 2,A 1A 2A 3,A 2A 3A 4,…,的面积分别为S 1,S 2,S 3,…,如此下去,则S 2020的值为( )A .202012B .22018C .22018+12D .101013.携带着2公斤珍贵月壤的嫦娥五号返回器于2020年12月17日凌晨1时32分,降落在内蒙古市四子王旗,实现了中国版的“空间跳跃”.在科幻电影《银河护卫队》中,星际之间的穿梭往往靠宇宙飞船沿固定路径“空间跳跃”完成,如图所示,两个星球之间的路径只有一条,三个星际之间的路径有3条,四个星际之间的路径有6条,...,按此规律,则10个星际之间的路径有( )A .45条B .21条C .42条D .38条14.如图,在平面直角坐标系中,点1A ,2A ,3A ,和1B ,2B ,3B ,分别在直线15y x b =+和x 轴上,11OA B ∆,122B A B ∆,233B A B ∆,是以1A ,2A ,3A ,为顶点的等腰直角三角形.如果点()11,1A ,那么点2020A 的纵坐标是( )A .201932⎛⎫ ⎪⎝⎭B .202032⎛⎫ ⎪⎝⎭C .201923⎛⎫ ⎪⎝⎭D .202023⎛⎫ ⎪⎝⎭15.现有四条具有公共端点O 的射线OA OB OC OD 、、、,若点123,,P P P ,…,按如图所示规律排列,则点2021P 应该落在( )A .射线OA 上B .射线OB 上C .射线OC 上D .射线OD 上16.下列图形都是由同样大小的圆按一定的规律组成,其中第1个图形中有5个圆,第2个图形中有9个圆,第3个图形中14个圆,……,则第7个图形中圆的个数是( )A .42B .43C .44D .4517.如图,自左至右,第1个图由1个正六边形、6个正方形和6个等边三角形组成;第2个图由2个正六边形、11个正方形和10个等边三角形组成;第3个图由3个正六边形、16个正方形和14个等边三角形组成;…按照此规律,第8个图中正方形和等边三角形的个数之和为( )A .57B .66C .67D .7518.如图,在平面直角坐标系中,点1234,,,,A A A A 在x 轴正半轴上,点123,,,B B B 在直线3(0)3y x x =≥上,若1(1,0)A ,且112223334,,,A B A A B A A B A 均为等边三角形,则线段20192020B B 的长度为( )A .202123B .202023C .201923D .20182319.如图,在平面直角坐标系中,点1A ,2A ,3A 在直线15y x b =+上,点1B ,2B ,3B 在x 轴上,11OA B ∆,122B A B ∆,233B A B ∆都是等腰直角三角形,若已知点()11,1A ,则点3A 的纵坐标是( )A .32B .23C .49D .9420.如图.ABC ∆的面积为1.分别取,AC BC 两边的中点11A B 、,则四边形11A ABB 的面积为34,再分别取的11,A C B C 中点2222,,,A B A C B C 的中点33,A B ,依次取下去….利用这一图形.计算出233333 (4444)n ++++的值是( )A.11414nn---B.414nn-C.212nn-D.1212nn--21.观察下列一组图形,第①个图形有3个小圆圈,第②个图形有5个小圆圈,第③个图形有9个小圆圈,第④个图形有15个小圆圈,…,按此规律排列下去,第9个图形中小圆圈的个数为()A.59 B.75 C.81 D.9322.如图,大小不同的两个磁块,其截面都是等边三角形,小三角形边长是大三角形边长的一半,点O是小三角形的内心,现将小三角形沿着大三角形的边缘顺时针滚动,当由①位置滚动到④位置时,线段OA绕点O顺时针转过的角度是()A.240°B.360°C.480°D.540°23.如图,∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,从左起第1个等边三角形的边长记为a1,第2个等边三角形的边长记为a2,以此类推.若OA1=1,则a2015=()A.22013B.22014C.22015D.2201624.如图,依次连结第一个菱形各边的中点得到一个矩形,再依次连结矩形各边的中点得到第二个菱形,按此方法继续下去.已知第一个菱形的面积为1,则第4个菱形的面积是()A .14B .116C .132D .16425.如图,已知30MON ︒∠=,点123,,...A A A 在射线ON 上,点123,,B B B …在射线OM 上,112223334,,...A B A A B A A B A ∆∆∆1n n n A B A +∆均为等边三角形,若11OA =,则778A B A ∆的边长为( )A .16B .32C .64D .128【参考答案】***试卷处理标记,请不要删除一、规律问题图形变化类 1.D 【分析】由题意易得第一个图形三角形的个数为1个,第二个图形三角形的个数为5个,第三个图形三角形的个数为9个,第四个图形三角形的个数为13个,由此可得第n 个图形三角形的个数. 【详解】 解:由题意得:第一个图形三角形的个数为4×1-3=1个, 第二个图形三角形的个数为4×2-3=5个, 第三个图形三角形的个数为4×3-3=9个, 第四个图形三角形的个数为4×4-3=13个, ……∴第n 个图形三角形的个数为()43n -个; 故选:D . 【点睛】本题主要考查图形规律问题,关键是根据图形得到一般规律即可. 2.D 【分析】结合图形的变化写出前3次变化所得边数,发现规律:每多一次操作边数就是上一次边数的4倍,进而可以写出操作4次后所得“雪花曲线”的边数. 【详解】解:操作1次后所得“雪花曲线”的边数为12,即3×41=12; 操作2次后所得“雪花曲线”的边数为48,即3×42=48; 操作3次后所得“雪花曲线”的边数为192,即3×43=192; 所以操作4次后所得“雪花曲线”的边数为768,即3×44=768; 故选:D . 【点睛】本题主要考查了规律题型图形变化类,准确判断计算是解题的关键. 3.B 【分析】根据规定的运算法则分别计算出每个选项的数即可作出判断. 【详解】根据题意,可得A 中的图案表示的班级序号为432102+12+12+12=8+4+2=14⨯⨯⨯⨯, B 中的图案表示的班级序号为432102+12+12+02=8+4=12⨯⨯⨯⨯, C 中的图案表示的班级序号为432112+02+02+12=16+2=18⨯⨯⨯⨯, D 中的图案表示的班级序号为432112+02+12+02=16+4=20⨯⨯⨯⨯. 故选B . 【点睛】本题主要考查图形的变化类,解题的关键是根据题意弄清题干规定的运算规则,并将图形的变化问题转化为数字问题. 4.B 【分析】根据三角形的外角性质和等腰三角形的性质可以写出前面几个11n n n A A B --∠的度数及其与顶点下标的关系,然后通过类比和不完全归纳法可以得到 11n n n A A B --∠ . 【详解】解:∵116868A AB A B BA A ∠=︒=∴∠=︒,,, ∵11211121112,BA A A A B A B A A B A A ∠=∠+∠=,∴ 121682A AB ︒∠=, 同理可得:23234323686822A A B A A B ︒︒∠=∠=,, ∴111682n n n n A A B ---︒∠=, 故选B . 【点睛】本题考查图形类规律探索,熟练掌握三角形的外角性质、等腰三角形的性质及不完全归纳法的运用是解题关键. 5.C 【分析】设图中第n 个图形的星星个数为a n (n 为正整数),然后列出各个图形星星的个数,去判断星星个数的规律,然后计算第20个图形的星星个数. 【详解】解:第n 个图形的星星个数为a n (n 为正整数)则a 1=2=1+1,a 2=6=1+2+3,a 3=11=1+2+3+5,a 4=17=1+2+3+4+7 ∴a n =1+2+3+……+n +(2n -1)=2(1)15(21)1222n n n n n ++-=+- 令n =20,则2215151?20+?20-12222n n +-==249 故选:C 【点睛】本题主要考查根据图形找规律,解题的关建是找出图形规律,然后计算. 6.B 【分析】由图形可知:第①个图形有2+6×0=2个三角形;第②个图形有2+6×1=8个三角形;第③个图形有2+6×2=14个三角形;…第n 个图形有2+6×(n-1)=6n-4个三角形;进一步代入求得答案即可. 【详解】解:∵第①个图形有2+6×0=2个三角形; 第②个图形有2+6×1=8个三角形; 第③个图形有2+6×2=14个三角形; …∴第n 个图形有2+6×(n-1)=6n-4个三角形; ∴第⑦个图形有6×7-4=38个三角形, 故选:B . 【点睛】本题考查了规律型:图形的变化类:首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题. 7.D 【分析】根据题目中的交点个数,找出n 条直线相交最多有的交点个数公式:()112n n - 【详解】解:2条直线相交有1个交点; 3条直线相交有1+2=3个交点; 4条直线相交有1+2+3=6个交点; 5条直线相交有1+2+3+4=10个交点; 6条直线相交有1+2+3+4+5=15个交点; …n 条直线相交有1+2+3+4+…+(n-1)=()112n n - 故选:D 【点睛】本题考查的是多条直线相交的交点问题,解答此题的关键是找出规律,即n 条直线相交最多有()112n n -个交点. 8.A 【分析】观察各图可知,第①个图案需要黑色棋子的个数为(1+2+3)×2(个),第②个图案需要的个数为[(1+2+3+4)×2+2×1](个),第③个图案需要的个数为[(1+2+3+4+5)×2+2×2](个),第④个图案需要的个数为[(1+2+3+4+5+6)×2+2×3](个)…由此可以推出第n 个图案需要的个数为()(){}1231[]222n n +++⋯++⨯+-(个),所以第⑨个图案需要的个数只需将n=9代入即可. 【详解】解:由图知第①个图案需要黑色棋子的个数为(1+2+3)×2(个); 第②个图案需要的个数为[(1+2+3+4)×2+2×1](个); 第③个图案需要的个数为[(1+2+3+4+5)×2+2×2](个); 第④个图案需要的个数为[(1+2+3+4+5+6)×2+2×3](个); …第n 个图案需要的个数为()(){}1231[]222n n +++⋯++⨯+-(个) ∴第⑨个图案需要的个数为[(1+2+3+4+5+6+7+8+9+10+11)×2+2×8=148(个) 故选A . 【点睛】本题考查了图形的变化.解题的关键是观察各个图形找到它们之间的规律. 9.B 【分析】由图可知:其中第1个图中共有1+1×3=4个点,第2个图中共有1+1×3+2×3=10个点,第3个图中共有1+1×3+2×3+3×3=19个点,…,由此规律得出第n 个图有1+1×3+2×3+3×3+…+3n 3(1)12n n +=+个点,然后依据规律解答即可. 【详解】解:第1个图中共有1+1×3=4个点, 第2个图中共有1+1×3+2×3=10个点, 第3个图中共有1+1×3+2×3+3×3=19个点, …第n 个图有1+1×3+2×3+3×3+…+3n=13(123)n ++++⋯+3(1)12n n +=+个点,∴第8个图中共有点的个数38(81)11092⨯+=+=个, 故选B. 【点睛】此题考查图形的变化规律,根据图形得出数字之间的运算规律是解题的关键. 10.B 【分析】观察图形变化,得出n 张餐桌时,椅子数为4n +2把(n 为正整数),代入n =7即可得出结论. 【详解】解:1张桌子可以摆放的椅子数为:2+1×4=6, 2张桌子可以摆放的椅子数为:2+2×4=10, 3张桌子可以摆放的椅子数为:2+3×4=14, …,n 张桌子可以摆放的椅子数为:2+4n , 令n =7,可得2+4×7=30(把). 故选:B . 【点睛】此题考查图形类规律探究,列式计算,根据图形的排列总结规律并运用解决问题是解题的关键. 11.B 【分析】根据图形的变化规律、正方形和三角形的个数可发现第n 个图案有31n +个三角形和n 个正方形,正三角形和正方形的个数共有41n +个,进而可求得当412021n +=时n 的值. 【详解】解:∵第①个图案有4个三角形和1个正方形,正三角形和正方形的个数共有5个; 第②个图案有7个三角形和2个正方形,正三角形和正方形的个数共有9个; 第③个图案有10个三角形和3个正方形,正三角形和正方形的个数共有13个; 第④个图案有13个三角形和4个正方形,正三角形和正方形的个数共有17个;∴第n 个图案有()43131n n +-=+个三角形和n 个正方形,正三角形和正方形的个数共有3141n n n ++=+个∵第n 个图案中正三角形和正方形的个数共有2021个 ∴412021n += ∴505n =. 故选择:B 【点睛】本题考查了图形变化类的规律问题、利用一元一次方程求解等,解决本题的关键是观察图形的变化寻找规律.12.B【分析】首先求出S1、S2、S3,然后猜测命题中隐含的数学规律,即可解决问题.【详解】解:如图∵四边形OAA1B1是正方形,∴OA=AA1=A1B1=1,∴S1=12⨯1×1=12,∵∠OAA1=90°,∴OA12=12+12=2,∴OA2=A2A3=2,∴S2=12⨯2×1=1,同理可求:S3=12⨯2×2=2,S4=4…,∴S n=2n﹣2,∴S2020=22018,故选:B.【点睛】本题考查了勾股定理在直角三角形中的运用,考查了学生找规律的能力,本题中找到a n的规律是解题的关键.13.A【分析】设n个星球之间的路径有a n条(n为正整数,且n≥2),观察图形,根据各图形中星球之间“空间跳跃”的路径的条数的变化,可得出变化规律“a n=12n(n-1)(n为正整数,且n≥2)”,再代入n=10即可求出结论.【详解】解:设n个星球之间的路径有a n条(n为正整数,且n≥2).观察图形,可知:a2=12×2×1=1,a3=12×3×2=3,a4=12×4×3=6,…,∴a n =12n (n-1)(n 为正整数,且n≥2), ∴a 10=12×10×9=45. 故选:A . 【点睛】本题考查了规律型:图形的变化类,根据各图形中星球之间“空间跳跃”的路径的条数的变化,找出变化规律“a n =12n (n-1)(n 为正整数,且n≥2)”是解题的关键. 14.A 【分析】设点A 2,A 3,A 4…,A 2019坐标,结合函数解析式,寻找纵坐标规律,进而解题. 【详解】 解:1(1,1)A 在直线15y x b =+, 45b ∴=, 1455y x ∴=+, 设22(A x ,2)y ,33(A x ,3)y ,44(A x ,4)y ,⋯,20202020(A x ,2019)y ,则有221455y x =+,331455y x =+,⋯,202020201455y x =+,又△11OA B ,△122B A B ,△233B A B ,⋯,都是等腰直角三角形,2122x y y ∴=+,312322x y y y =++,⋯,2020123201920202222x y y y y y =+++⋯++.将点坐标依次代入直线解析式得到: 21112y y =+,3121131222y y y =++=2y ,432y =3y ,⋯,2020201932y y =,又11y =,232y ∴=,233()2y =,343()2y =,⋯,201920203()2y =,故选:A . 【点睛】此题主要考查了一次函数点坐标特点,等腰直角三角形斜边上高等于斜边长一半,解题的关键是找出规律. 15.A 【分析】根据图形可以发现点的变化规律,从而可以得到点P 2021落在哪条射线上. 【详解】 解:由图可得,P 1到P 5顺时针,P 5到P 9逆时针,∵(2021-1)÷8=252…4,∴点P2021落在OA上,故选:A.【点睛】本题考查图形的变化类,解答本题的关键是明确题意,利用数形结合的思想解答.16.C【分析】根据图形中圆的个数变化规律,进而求出答案.【详解】解:如图所示:第一个图形一共有2+3=5个圆,第二个图形一共有2+3+4=9个圆,第三个图形一共有2+3+4+5=14个圆,∴第七个图形一共有2+3+4+5+6+7+8+9=44个圆,故选:C.【点睛】此题主要考查了图形变化类,根据题意得出圆的个数变化规律是解题关键.17.D【分析】根据题中正方形和等边三角形的个数找出规律,进而可得出结论.【详解】解:∵第1个图由1个正六边形、6个正方形和6个等边三角形组成,∴正方形和等边三角形的和=6+6=12=9+3;∵第2个图由2个正六边形、11个正方形和10个等边三角形组成,∴正方形和等边三角形的和=11+10=21=9×2+3;∵第3个图由3个正六边形、16个正方形和14个等边三角形组成,∴正方形和等边三角形的和=16+14=30=9×3+3,…,∴第n个图中正方形和等边三角形的个数之和=9n+3.∴当n=8时,第8个图中正方形和等边三角形的个数之和为9×8+3=75,故选D.【点睛】本题考查的是数字的变化类,根据题意找出规律是解答此题的关键.18.D【分析】根据题意得出∠A n OB n=30°,从而推出A n B n=OA n,得到B n B n+1n A n+1,算出B1A2=1,B2A3=2,B3A4=4,找出规律得到B n A n+1=2n-1,从而计算结果.【详解】解:设△B n A n A n+1的边长为a n,∵点B 1,B 2,B 3,…是直线3(0)3y x x =≥上的第一象限内的点, 过点A 1作x 轴的垂线,交直线3(0)y x x =≥于C , ∵A 1(1,0),令x=1,则y=3, ∴A 1C=33, ∴1113tan AC AOC OA ∠==, ∴∠A n OB n =30°, ∵112223334,,,A B A A B A A B A 均为等边三角形,∴∠B n A n A n+1=60°, ∴∠OB n A n =30°, ∴A n B n =OA n , ∵∠B n A n+1B n+1=60°, ∴∠A n+1B n B n+1=90°, ∴B n B n+1=3B n A n+1, ∵点A 1的坐标为(1,0),∴A 1B 1=A 1A 2=B 1A 2=1,A 2B 2=OA 2=B 2A 3=2,A 3B 3=OA 3=B 3A 4=4,..., ∴A n B n =OA n =B n A n+1=2n-1,∴20192020B B =3B 2019A 2020=201832⨯, 故选D .【点睛】本题考查了一次函数的性质、等边三角形的性质以及三角形外角的性质,本题属于基础题,难度不大,解决该题型题目时,根据等边三角形边的特征找出边的变化规律是关键. 19.D 【分析】作11A C ⊥x 轴,22A C ⊥ x 轴,33A C ⊥ x 轴,设2A 纵坐标为m ,再根据等腰直角三角形的性质,将坐标表示为()22,A m m +,代入直线解析式算出m ,再用同样的方法设()35,A n n +,代入解析式求出n .【详解】解:如图,作11A C ⊥x 轴,22A C ⊥ x 轴,33A C ⊥ x 轴, 把()11,1A 代入15y x b =+,求出45b =,则直线解析式是1455y x =+,已知()11,1A ,根据等腰直角三角形的性质,得到111111OC A C B C ===,设2A 纵坐标为m ,22A C m =,22OC m =+,得()22,A m m +,代入直线解析式,得()14255m m =++,解得32m =, 设3A 纵坐标为n ,33A C n =,35OC n =+,得()35,A n n +,代入直线解析式,得()14555n n =++,解得9n 4=.故选:D .【点睛】本题考查一次函数的图象和几何综合,解题的关键是抓住等腰直角三角形的性质去设点坐标,再代入解析式列式求解. 20.B 【分析】由△CA 1B 1∽△CAB 得出面积比等于相似比的平方,得出△CA 1B 1的面积为14,因此四边形A 1ABB 1的面积为1-14,以此类推.四边形的面积为21144-,231144-,,根据规律求出式子的值. 【详解】∵A 1、B 1分别是AC 、BC 两边的中点, 且△ABC 的面积为1, ∴△A 1B 1C 的面积为114⨯, ∴四边形A 1ABB 1的面积=△ABC 的面积-△A 1B 1C 的面积=31144=-,∴四边形A 2A 1B 1B 2的面积=△A 1B 1C 的面积-△A 2B 2C 的面积=22113444-=, …,∴第n 个四边形的面积1113444n n n --=, 故2321333311111···(1)()()444444444n n n -++++=-+-++- 114n=-414n n -=. 故选:B . 【点睛】本题考查了规律型问题,三角形中位线定理和相似三角形的判定与性质,同时也考查了学生通过特例分析从而归纳总结出一般结论的能力.解题的关键是学会探究规律,利用规律解决问题. 21.B 【分析】根据第②个图形有3+1×2=5个小圆圈,第③个图形有3+2×3=9个小圆圈,第④个图形有3+3×4=15个小圆圈,可知第n 个图形中小圆圈的个数为3+(n-1)×n . 【详解】解:根据第②个图形有3+1×2=5个小圆圈,第③个图形有3+2×3=9个小圆圈,第④个图形有3+3×4=15个小圆圈,…,按此规律排列下去,第9个图形中小圆圈的个数为3+8×9=75, 故选:B . 【点睛】本题考查了图形变化规律,根据图形中小圆圈的增长变化特点,找到变化规律是解题关键. 22.C 【详解】由题意可得:第一次AO 顺时针转动了120°, 第二次AO 顺时针转动了240°, 第三次AO 顺时针转动了120°, 故当由①位置滚动到④位置时,线段OA 绕点O 顺时针转过的角度是:120°+240°+120°=480°. 故选:C . 23.B 【详解】解:∵△A 1B 1A 2是等边三角形,∴A1B1=A2B1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°-120°-30°=30°,又∵∠3=60°,∴∠5=180°-60°-30°=90°,∵∠MON=∠1=30°,∴OA1=A1B1=1,∴A2B1=1,∵△A2B2A3、△A3B3A4是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴a2=2a1,a3=4a1=4,a4=8a1=8,a5=16a1,以此类推:a2015=22014.故选B.【点睛】根据已知得出a3=4a1=4,a4=8a1=8,a5=16a1…进而发现解题规律24.D【分析】易得第二个菱形的面积为(12)2,第三个菱形的面积为(12)4,依此类推,第n个菱形的面积为(12)2n-2,把n=4代入即可.【详解】解:已知第一个菱形的面积为1;则第二个菱形的面积为原来的(12)2,第三个菱形的面积为(12)4,依此类推,第n个菱形的面积为(12)2n-2,当n=4时,则第4个菱形的面积为(12)2×4-2=(12)6=164.故选:D.【点睛】本题考查了三角形的中位线定理及矩形、菱形的性质,是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.25.C【分析】根据三角形的外角性质以及等边三角形的判定和性质得出OA1=B1A1=1,OA2=B2A2=2,OA3=B3A3=224=,OA4=B4A4=328=,…进而得出答案.【详解】如图,∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠2=60°,∵∠MON=30°,∴∠MON=∠1=30°,∴OA1=A1B1=1,∴A2B1= A1A2=1,∵△A2B2A3是等边三角形,同理可得:OA2=B2A2=2,同理;OA3=B3A3=224=,OA4=B4A4=328=,OA5=B5A5=4216=,…,以此类推:所以OA7=B7A7=6264=,故选:C.【点睛】本题主要考查了等边三角形的性质以及等腰三角形的性质,根据已知得出OA2=B2A2=2,OA3=B3A3=224=,OA4=B4A4=328=,…进而发现规律是解题的关键.。

辽宁中考几何变换练习题

辽宁中考几何变换练习题

辽宁中考几何变换练习题几何变换一----------线段关系25.(12分)在△ABC中,∠ACB=90°,∠A<45°,点O为AB中点,一个足够大的三角板的直角顶点与点O重合,一边OE经过点C,另一边OD与AC交于点M. 222(1)如图1,当∠A=30°时,求证:MC=AM+BC;(2)如图2,当∠A≠30°时,(1)中的结论是否成立?如果成立,请说明理由;如果不成立,请写出你认为正确的结论,并说明理由;(3)将三角形ODE绕点O旋转,若直线OD与直线AC相交于点M,直线OE与直线BC222相交于点N,连接MN,则MN=AM+BN成立吗?答:(填“成立”或“不成立”)25.将△ABC绕点B逆时针旋转α得到△DBE,DE的延长线与AC相交于点F,连接DA、BF。

(1)如图1,若∠ABC=α=60°,BF=AF。

① 求证:DA∥BC;②猜想线段DF、AF的数量关系,并证明你的猜想;(2)如图2,若∠ABC<α,BF=mAF(m为常数),求子表示)。

的值(用含m、α的式25.在Rt△ABC中,∠ACB=90°,∠A=30°,点D是AB的中点,DE⊥BC,垂足为点E,连接CD.(1)如图1,DE与BC的数量关系是;(2)如图2,若P是线段CB上一动点(点P不与点B、C重合),连接DP,将线段DP绕点D逆时针旋转60°,得到线段DF,连接BF,请猜想DE、BF、BP三者之间的数量关系,并证明你的结论;(3)若点P是线段CB延长线上一动点,按照(2)中的作法,请在图3中补全图形,并直接写出DE、BF、BP三者之间的数量关系.AAADDDFBBCCCEBE EP 图1 图2 图3 25.(12分)(____?锦州)如图1,等腰直角三角板的一个锐角顶点与正方形ABCD的顶点A重合,将此三角板绕点A旋转,使三角板中该锐角的两条边分别交正方形的两边BC,DC于点E,F,连接EF.(1)猜想BE、EF、DF三条线段之间的数量关系,并证明你的猜想;(2)在图1中,过点A作AM⊥EF于点M,请直接写出AM和AB的数量关系;(3)如图2,将Rt△ABC沿斜边AC翻折得到Rt△ADC,E,F分别是BC,CD边上的点,∠EAF=∠BAD,连接EF,过点A作AM⊥EF于点M,试猜想AM与AB之间的数量关系.并证明你的猜想.P25.如图1,△ABC为等腰直角三角形,?ACB?90,F是AC边上的一个动点(点F 与A、C不重合),以CF为一边在等腰直角三角形外作正方形CDEF,连接BF、AD. (1)①猜想图1中线段BF、AD的数量关系及所在直线的位置关系,直接写出结论;②将图1中的正方形CDEF,绕着点C按顺时针(或逆时针)方向旋转任意角度?,得到如图2、图3的情形. 图2中BF交AC于点H,交AD于点O,请你判断①中得到的结论是否仍然成立,并选取图证明你的判断. .2.(2)将原题中的等腰直角三角形ABC改为直角三角形ABC,?ACB?90,正方形??CDEF改为矩形CDEF,如图4,且AC?4,BC?3,CD?24,CF?1,BF32A AAA DFFEOEHF O H CEBBCE C B BDC FD D 图2 图1 图3 图425.正方形ABCD中,点E、F分别是边AD、AB的中点,连接EF.(1)如图1,若点G是边BC的中点,连接FG,则EF与FG关系为:_________;(2)如图2,若点P为BC延长线上一动点,连接FP,将线段FP以点F为旋转中心,逆时针旋转90°,得到线段FQ,连接EQ,请猜想EF、EQ、BP三者之间的数量关系,并证明你的结论. (3)若点P为CB延长线上一动点,按照(2)中的作法,在图3中补全图形,并直接写出EF、EQ、BP三者之间的数量关系:___________.交AC于点H,交AD于点O,连接BD、AF,求BD?AF的值.。

(辽宁)中考数学总复习 几何图形探究题 类型2 与图形的变换结合的探究题

(辽宁)中考数学总复习 几何图形探究题 类型2 与图形的变换结合的探究题
(2)先判断四边形AEBC是菱形,再运用勾股定理求CE+BE.
(1)①证明:∵△ABC 绕点 A 顺时针方向旋转 60°得到△ADE, ∴AB=AD,∠BAD=60°,∴△ABD 是等边三角形; ②证明:由①得△ABD 是等边三角形,∴AB=BD, ∵△ABC 绕点 A 顺时针方向旋转 60°得到△ADE, ∴AC=AE,BC=DE,又∵AC=BC,∴EA=ED, ∴点 B、E 在 AD 的中垂线上,∴BE 是 AD 的中垂线. ∵点 F 在 BE 的延长线上,∴BF⊥AD,AF=DF; ③解:3 3-4; (2)解:13.
②连接 AM 交 EF 于点 O,如图②,设 AE=x,则 EM=x,CE=4-x, ∵四边形 AEMF 为菱形,∴EM∥AB, ∴△CME∽△CBA,∴CCMB =CCAE=EAMB,即C3M=4-4 x=x5,解得 x=290,
CM=43,在 Rt△ACM 中,AM= AC2+CM2= 42+(34)2=4 310,
(1)如图,当 α=60°时,延长 BE 交 AD 于点 F. ①求证:△ABD 是等边三角形; ②求证:BF⊥AD,AF=DF; ③请直.接.写出 BE 的长; (2)在旋转过程中,过点 D 作 DG 垂直于直线 AB,垂足为点 G,连接 CE, 当∠DAG=∠ACB,且线段 DG 与线段 AE 无公共点时,请直.接.写出 BE+CE 的 值. 温馨提示:考生可以根据题意,在备用图中补充图形,以便作答.
在△EDF 和△ECA 中,D∠FE=DAF=C ∠ACE,∴△EDF≌△ECA, DE=CE
∴EF=EA,∠FED=∠AEC,∴∠FEA=∠DEC=90°, ∴△AEF 是等腰直角三角形,∴AF= 2AE.
(二)拓展延伸 如图④,在等边△ABC中,E、F是边BC上的两点,∠EAF=30°,BE=1,将 △ABE绕点A逆时针旋转60°得到△A′B′E′(A′B′与AC重合),连接EE′,AF与EE′交于 点N,过点A作AM⊥BC于点M,连接MN,求线段MN的长度.

往年沈阳中考数学试卷真题

往年沈阳中考数学试卷真题

往年沈阳中考数学试卷真题往年沈阳中考数学试卷一直以来备受关注。

这篇文章将通过分析和解答一些沈阳中考数学试卷的真题,以帮助考生更好地准备数学考试。

1. 图形的变动与判断考生在数学试卷中经常会遇到与图形相关的题目。

这种题目要求考生观察给定的图形或者图表,并做出相应的判断。

比如:【例】如图,是一个方格图案,其中一个方格被涂黑。

问:在图(Ⅰ)与图(Ⅱ)中,哪个图案是对图(Ⅲ)的旋转?要回答这个问题,考生可以先观察图(Ⅲ)与其他两个图案的形状和方向之间的关系。

通过观察可以发现,图(Ⅱ)是对图(Ⅲ)进行了顺时针旋转90度,因此答案是图(Ⅱ)。

2. 分数的应用与计算分数是数学中一个非常重要的概念,也是考生在中考数学试卷中经常遇到的题型。

这种题型要求考生对分数的大小、分数的比较和分数的计算有一定的掌握。

比如:【例】计算:11/15 + 7/10 - 1/6 = ?对于这道题,考生可以先将三个分数的分母取最小公倍数,然后按照对应位相加或相减的规则进行计算。

最后,将计算结果化简为最简分数。

在这个例子中,最小公倍数是30,计算过程如下:11/15 + 7/10 - 1/6 = (22/30) + (21/30) - (5/30) = 38/30 = 19/15因此,答案是19/15。

3. 几何体的计算几何体的计算是沈阳中考数学试卷中另一个重要的方面。

在这种题目中,考生需要了解几何体的表面积和体积的计算方法。

比如:【例】一块铁板的形状如图,将全部的端面沿虚线折叠叠起,形成一个长方体纸盒,纸盒的高度是4厘米。

问纸盒的底面的长和宽分别是多少?要回答这个问题,考生需要观察铁板的形状,并根据折叠后的纸盒的高度和形状,推断出纸盒的底面形状是什么。

在这个例子中,根据折叠后纸盒的高度为4厘米,可以推断出纸盒的底面是一个边长为4厘米的正方形。

因此,答案是纸盒的底面的长和宽都是4厘米。

通过对以上三个例题的解答,我们可以看出,往年沈阳中考数学试卷的题目涵盖了数学的各个方面,包括图形变动与判断、分数的应用与计算以及几何体的计算。

辽宁省沈阳市中考数学二轮复习拔高训练卷 专题10 图形的变换

辽宁省沈阳市中考数学二轮复习拔高训练卷 专题10 图形的变换

辽宁省沈阳市中考数学二轮复习拔高训练卷专题10 图形的变换姓名:________ 班级:________ 成绩:________一、单选题 (共15题;共45分)1. (3分)(2019·花都模拟) 下列图形是中心对称图形的是()A .B .C .D .2. (3分) (2017八上·满洲里期末) 已知点P(1,a)与Q(b,2)关于x轴成轴对称,则a﹣b的值为()A . ﹣1B . 1C . ﹣3D . 33. (3分)点M(2,-1)向上平移2个单位长度得到的点的坐标是()A . (2,0)B . (2,1)C . (2,2)D . (2,)4. (3分)如图,在△ABC中,∠CAB=70º,将△ABC绕点A逆时针旋转到△ADE的位置,连接EC,满足EC∥AB, 则∠BAD的度数为()A . 30°B . 35°C . 40°D . 50°5. (3分)(2017·岱岳模拟) 如图,将正方形纸片ABCD沿FH折叠,使点D与AB的中点E重合,则△FAE 与△EBG的面积之比为()A . 4:9B . 2:3C . 3:4D . 9:166. (3分)(2019八上·江山期中) 如图钢架中,焊上等长的13根钢条来加固钢架,若AP1=P1P2=P2P3=…=P13P14=P14A,则∠A的度数是()A . 14°B . 13°C . 12°D . 11°7. (3分)(2020·上城模拟) 已知△A1B1C1 ,△A2B2C2的周长相等,现有两个判断:①若A1B1=A2B2 , A1C1=A2C2 ,则△A1B1C1≌△A2B2C2;②若∠A1=∠A2 ,∠B1=∠B2 ,则△A1B1C1≌△A2B2C2 ,对于上述的两个判断,下列说法正确的是()A . ①正确,②错误B . ①错误,②正确C . ①,②都错误D . ①,②都正确8. (3分)图中是形状、大小都相同的两个长方形,第一个长方形的阴影面积为m,第二个长方形的阴影面积为n,则m与n关系为()A . m>nB . m=nC . m<nD . 不确定9. (3分)(2012·河池) 如图,在矩形ABCD中,AD>AB,将矩形ABCD折叠,使点C与点A重合,折痕为MN,连接CN.若△CDN的面积与△CMN的面积比为1:4,则的值为()A . 2B . 4C .D .10. (3分)(2017·沂源模拟) 如图,在矩形ABCD中,BC=8,AB=6,经过点B和点D的两个动圆均与AC相切,且与AB、BC、AD、DC分别交于点G、H、E、F,则EF+GH的最小值是()A . 6B . 8C . 9.6D . 1011. (3分) (2015八下·沛县期中) 如图,AB∥CD,E,F分别为AC,BD的中点,若AB=5,CD=3,则EF的长是()A . 4B . 3C . 2D . 112. (3分)如图,平行四边形ABCD中,经过两对角线交点O的直线分别交BC于点E,交AD于点F. 若BC=7,CD=5,OE=2,则四边形ABEF的周长等于().A . 14B . 15C . 16D . 无法确定13. (3分)如图,将宽为1cm的纸条沿BC折叠,使∠CAB=45°,则折叠后重叠部分的面积为()A . cm2B . cm2C . cm2D . cm214. (3分)(2017·鞍山模拟) 如图,在网格中,小正方形的边长均为1,点A,B,C都在格点上,则∠BAC 的正切值是()A . 2B .C .D .15. (3分)如图,在矩形ABCD中,AB=4,AD=5,AD,AB,BC分别与⊙O相切于E,F,G三点,过点D作⊙O 的切线BC于点M,切点为N,则DM的长为()A .B .C .D . 2二、填空题 (共6题;共18分)16. (3分)(2017·张湾模拟) 如图,正方形ABCD中,AB=3,点E在边CD上,且CD=3DE.将△ADE沿AE 对折至△AFE,延长EF交边BC于点G,连接AG,CF.下列结论:①点G是BC中点;②FG=FC;③与∠AGB相等的角有5个;④S△FGC= .其中正确的有________.17. (3分)(2016·张家界) 如图,将矩形ABCD沿GH对折,点C落在Q处,点D落在E处,EQ与BC相交于F.若AD=8cm,AB=6cm,AE=4cm.则△EBF的周长是________cm.18. (3分)如图,正方形ABCD的对角线相交于点O,正方形OEFG的一边OG经过点D,且D是OG的中点,OG= AB,若正方形ABCD固定,将正方形OEFG绕O点逆时针旋转α角,(0°<α<360°)得到正方形OE′F′G′,当α=________度时,∠OAG′=90°.19. (3分) (2019八上·金坛月考) 如图,等边三角形的顶点A(1,1)、B(3,1),规定把等边△ABC“先沿x轴翻折,再向左平移1个单位”为一次变换,如果这样连续经过2018次变换后,等边△ABC的顶点C的坐标为________.20. (3分) (2017八下·兴化月考) 如图,分别以直角△A BC的斜边AB,直角边AC为边向△ABC外作等边△ABD 和等边△ACE,F为AB的中点,DE与AB交于点G,EF与AC交于点H,∠ACB=90°,∠BAC=30°.给出如下结论:①EF⊥AC;②四边形ADFE为菱形;③AD=4AG;其中正确结论的为________(请将所有正确的序号都填上).21. (3分) (2020八上·长兴期末) 如图,直线BC经过原点O,点A在x轴上,AD⊥BC于D,若点B(m,3),C(n,-5),A(4,0),则AD·BC=________。

沈阳近4年中考数学试卷以及答案

沈阳近4年中考数学试卷以及答案

A B E DF 2009年中考沈阳市数学试题一、选择题(每小题3分,共24分)1.-6的相反数是( )A .-6B .- 1 6C . 1 6D .6 2.如图是某几何体的三视图,则该几何体的名称是( )A .圆柱B .圆锥C .棱柱D .长方体3.据《沈阳日报》报道,今年前四个月辽宁省进出口贸易总值达164亿美元.164亿美元用科学记数法可以表示为( )A .16.4×10亿美元B .1.64×102亿美元C .16.4×102亿美元D .1.64×103亿美元4.下列图形中,既是轴对称图形,又是中心对称图形的是( )5.反比例函数y = 1 x的图象在( ) A .第一、二象限 B .第一、三象限 C .第二、四象限 D .第三、四象限6.一个三角形的周长是36cm ,以这个三角形各边中点为顶点的三角形的周长是( )A .8cmB .12cmC .15cmD .18cm7.下列说法错误的是( )A .必然发生的事件发生的概率为1B .不可能发生的事件发生的概率为0C .不确定事件发生的概率为0D .随机事件发生的概率介于0和1之间8.如图,AC 是矩形ABCD 的对角线,E 是边BC 延长线上一点, AE 与CD 交于点F ,则图中相似三角形共有( )A .2对B .3对C .4对D .5对 二、填空题(每小题3分,共24分)9.如图,数轴上A 、B 两点表示的数分别为a 、b ,则a 、b 两数的大小关系是 .10.一元二次方程x 2+2x =0的解是 .11.在一节综合实践课上,五名同学手工作品的数量(单位:件)分别是:3、8、5、3、4.则这组数据的中位数是 件.12.不等式4x -2≤2的解集是 .主视图 俯视图 左视图BC 13.小莉与小华约定周日10点整到敬老院看望老人.10点整,时钟上的时针与分针所夹的锐角是 度.14.有一组单项式:a 2,- a 3 2, a 4 3,- a 5 4,….观察它们构成规律, 用你发现的规律写出第10个单项式为 .15.如图,在平面直角坐标系中,已知点A (1,0)和点B (0,3),点C 在坐标平面内.若以A 、B 、C 为顶点构成的三角形是等腰三角形,且底角为30º,则满足条件的点C 有 个.16.如图,市政府准备修建一座高AB =6m 的过街天桥,已知天桥的坡面AC 与地面BC 的夹角∠ACB 的正弦值为 3 5AC 的长度为 m . 三、(第17小题6分,第18、19小题各8分,第20小题10,共32分)17.计算:.18.先化简,再求值:x x +1 ÷ 3x x2-1 ,其中=3+1.19.如图,AB 是⊙O 的直径,点C 在AB 的延长线,CD 与⊙O 相切于点D ,∠C =20º.求∠ADC 的度数.20.七巧板是我国流传已久的一种智力玩具.小鹏在玩七巧板时用它画成了3幅图案并将它贴在3张完全相同的不透明卡片上,如图.小鹏将这3张卡片背面朝上洗匀后放在桌子上,从中随机抽取一张卡片,放回后洗匀,再随机抽取一张卡片.请你用列表法或画树状图(树形图)法,帮助小鹏求出两张卡片上的图案都是小动物的概率(卡片名称可用字母表示).|12|3181--⎪⎭⎫ ⎝⎛-+-A B C D E FM N四、(每小题10分,共20分)21.如图,在□ABCD 中,点E 在AD 上,连接BE ,DF ∥BE 交BC 于点F ,AF 与BE 交与点M ,CE 与DF 交于点N .求证:四边形MFNE 是平行四边形.22.先阅读下列材料,再解答后面的问题.材料:密码学是一门很神秘、很有趣的学问.在密码学中,直接可以看到的信息称为明码,加密后的信息称为密码,任何密码只要找到了明码与密码的对应关系—蜜钥,就可以破译它.密码学与数学是有关系的.为此,八年级一班数学兴趣小组经过研究实验,用所学的一次函数知识制作了一种蜜钥的编制程序.他们首先设计了一个“字母—明码对照表”:因此,“自”字经加密转换后的结果是“9140”.(1)请你求出当蜜钥为y =3x +13时,“信”字经加密转换后的结果;(2)为了提高密码的保密程度,需要频繁地更换蜜钥.若“自信”二字用新的蜜钥进行加密转换后得到下表:请求出这个新的蜜钥,并直接写出“信”字用新的蜜钥加密转换后的结果.五、(本题12分)23.吸烟有害健康.你知道吗,被动吸烟夜大大危害着人类的健康.为此,联合国规定每年的5月31日为“世界无烟日”.为配合今年的“世界无烟日”宣传活动,小明和同学们在学校所在地区开展了以“我支持的戒烟方式”为主题的问卷调查活动,征求市民的意见,并将调查结果分析整理后,制成了统计图:(1)求小明和同学们一共随机调查了多少人?(2)根据以上信息,请你把统计图补充完整;(3)如果该地区有2万人,那么请你根据以上调查结果,估计该地区大约有多少人支持“强制戒烟”这种戒烟方式?六、(本题12分)戒烟 戒烟 戒烟 戒烟24.种植能手小李的试验田可种植A 种作物或B 种作物(A 、B 两种作物不能同时种植),原有的种植情况如下表.通过参加农业科技培训,小李提高了种植技术.现准备在原有的基础上增种作物,以提高总产量,但根据科学种植的经验,每增种1棵A 种或B 种作物,都会导致单棵作物平均产量减少0.2kg ,而且每种作物的增种量都不能超过原有数量的80%.设A 种植物增种m 棵,总产量为ykg ;B 种植物增种n 棵,总产量为y kg .棵后,单棵平均产量为 kg 均产量为 kg ;(2)求y A 与m 之间的函数关系式及y B 与n 之间的函数关系式;(3)求提高种植技术后小李增种何种作物可获得最大总产量?最大总产量是多少?七、(本题12分)25.将两个全等的直角三角形ABC 和DBE 按图①方式摆放,其中∠ACB =∠DEB =90º,∠A=∠D =30º,点E 落在AB 上,DE 所在直线交AC 所在直线于点F .(1)求证:AF +EF =DE ;(2)若将图①中的△DBE 绕点B 按顺时针方向旋转角,且0º<<60º,其他条件不变,请在图②中画出变换后的图形,并直接写出(1)中的结论是否仍然成立;(3)若将图①中的△DBE 绕点B 按顺时针方向旋转角,且60º<<180º,其他条件不变,如图③.你认为(1)中的结论还成立吗?若成立,写出证明过程;若不成立,请写出此时AF 、EF 与DE 之间的关系,并说明理由.ααββA C B D图① 图②八、(本题14分)26.如图,在平面直角坐标系中,点O为坐标原点.△OAB的边OA在x轴的正半轴上,点A的坐标为(2,0),点B在第一象限内,且OB=3,∠OBA=90º.以OB所在直线折叠Rt△OAB,使点A落在点C处.(1)求证:△OAC为等边三角形;(2)点D在x轴上,且点D的坐标为(4,0).点P为线段OC上一动点(点P不与点O重合),连接PA、PD.设PC=x,S△PAD=y,求y与x之间的函数关系式;(3)在(2)的条件下,当x=12时,过点A作AM⊥PD于点M,若k=7AM2PD,求证:二次函数y=-2x2-(7k-33)x+3k的图象关于y轴对称.沈阳市2010年中等学校招生统一考试数学试题试题满分150分,考试时间120分钟注意事项:1. 答题前,考生须用0.5mm黑色字迹的签字笔在本试题卷规定位置填写自己的姓名、准考证号;2. 考生须在答题卡上作答,不能在本试题卷上做答,答在本试题卷上无效;3. 考试结束,将本试题卷和答题卡一并交回;4. 本试题卷包括八道大题,25道小题,共6页。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

六、(本题12分)
24.已知在矩形ABCD 中,AB =4,BC =252,O 为BC 上一点,BO =7
2,如图所示,以
BC 所在直线为x 轴,O 为坐标原点建立平面直角坐标系,M 为线段OC 上的一点.
(1)若点M 的坐标为(1,0),如图①,以OM 为一边作等腰△OMP ,使点P 在矩形ABCD 的一边上,则符合条件的等腰三角形有几个?请直接写出所有符合条件的点P 的坐标;
(2)若将(1)中的点M 的坐标改为(4,0),其它条件不变,如图②,那么符合条件的等腰三角形有几个?求出所有符合条件的点P 的坐标;
(3)若将(1)中的点M 的坐标改为(5,0),其它条件不变,如图③,请直接写出符合条件的等腰三角形有几个.(不必求出点P 的坐标)(2007年中考试题)
第24题图
25.已知:如图①所示,在ABC △和ADE △中,AB AC =,AD AE =,
BAC DAE ∠=∠,且点B A D ,,在一条直线上,连接BE CD M N ,,,分别为BE CD ,的中点. (1)求证:①BE CD =;②AMN △是等腰三角形.
(2)在图①的基础上,将ADE △绕点A 按顺时针方向旋转180
,其他条件不变,得到图②所示的图形.请直接写出(1)中的两个结论是否仍然成立;
(3)在(2)的条件下,请你在图②中延长ED 交线段BC 于点P .求证:PBD AMN △∽△.
(2008年中考试题)
C E N
D A B
M
图① C A E
M B D N
图② 第25题图
25.将两个全等的直角三角形ABC和DBE按图①方式摆放,其中∠ACB=∠DEB=90º,∠A=∠D=30º,点E落在AB上,DE所在直线交AC所在直线于点F.
(1)求证:AF+EF=DE;
(2)若将图①中的△DBE绕点B按顺时针方向旋转角α,且0º<α<60º,其他条件不
变,请在图②中画出变换后的图形,并直接写出(1)中的结论是否仍然成立;
(3)若将图①中的△DBE绕点B按顺时针方向旋转角β,且60º<β<180º,其他条件
不变,如图③.你认为(1)中的结论还成立吗?若成立,写出证明过程;若不成立,请写出此时AF、EF与DE之间的关系,并说明理由.(2009年中考试题)
A
C
B
图①图②
24. 如图1,在△ABC 中,点P 为BC 边中点,直线a 绕顶点A 旋转,若B 、P 在直线a 的异侧,
BM ⊥直线a 于点M ,CN ⊥直线a 于点N ,连接PM 、PN ;
(1) 延长MP 交CN 于点E (如图2)。

求证:△BPM ≅△CPE ; 求证:PM = PN ;
(2) 若直线a 绕点A 旋转到图3的位置时,点B 、P 在直线a 的同侧,其它条件不变。

此时
PM =PN 还成立吗?若成立,请给予证明;若不成立,请说明理由; (3) 若直线a 绕点A 旋转到与BC 边平行的位置时,其它条件不变。

请直接判断四边形MBCN
的形状及此时PM =PN 还成立吗?不必说明理由。

(2010年中考试题)
a
A B
C
P
M
N
A B
C
M N a
P
A B
C P
N
M
a
圖1 圖2 圖3
24.已知,△ABC为等边三角形,点D为直线BC上一动点(点D不与B、C重合).以AD 为边作菱形ADEF,使∠DAF=60°,连接CF.
⑴如图1,当点D在边BC上时,
求证:∠ADB=∠AFC;②请直接判断结论∠AFC=∠ACB+∠DAC是否成立;
⑵如图2,当点D在边BC的延长线上时,其他条件不变,结论∠AFC=∠ACB+∠DAC
是否成立?请写出∠AFC、∠ACB、∠DAC之间存在的数量关系,并写出证明过程;
⑶如图3,当点D在边CB的延长线上时,且点A、F分别在直线BC的异侧,其他条
件不变,请补全图形,并直接写出∠AFC、∠ACB、∠DAC之间存在的等量关系.
(2011年中考试题)
第24题图
图1 图2 图31
24.已知,如图①,∠MON=60°,点A,B为射线OM,ON上的动点(点A,B不与4,在∠MON的内部、△AOB的外部有一点P,且AP=BP,∠点O重合),且AB=3
APB=120°.
(1)求AP的长;
(2)求证:点P在∠MON的平分线上;
(3)如图②,点C,D,E,F分别是四边形AOBP的边AO,OB,BP,P A的中点,连接CD,DE,EF,FC,OP.
①当AB⊥OP时,请直接
..写出四边形CDEF的周长的值;
②若四边形CDEF的周长用t表示,请直接
..写出t的取值范围.
(2012年中考试题)
24.定义:我们把三角形被一边中线分成的两个三角形叫做“友好三角形” 性质:如果两个三角形是“友好三角形”,那么这两个三角形的面积相等,
理解:如图①,在ABC ∆中,CD 是AB 边上的中线,那么ACD ∆和BCD ∆是“友好三角形”,并且=S ACD BCD S ∆∆。

应用:如图②,在矩形ABCD 中,AB=4,BC=6,点E 在AD 上,点F 在BC 上,AE=BF ,AF 与BE 交于点O ,
(1) 求证: AOB ∆和AOE ∆是“友好三角形”;
(2) 连接OD ,若AOE ∆和DOE ∆是“友好三角形”,求四边形CDOF 的面积,
探究:在ABC ∆中,30A ∠=︒,AB=4,点D 在线段AB 上,连接CD ,ACD ∆和BCD ∆是“友好三角形”,将A C D ∆沿CD 所在直线翻折,得到'
ACD ∆与ABC ∆重合部分的面积等于ABC ∆面积的1
4
,请直接..写出ABC ∆的面积。

(2013年中考试题)
24.如图1,在菱形ABCD中,对角线AC与BD相交于点O,AB=13,BD=24,在菱形ABCD的外部以AB为边作等边三角形ABE.点F是对角线BD上一动点(点F不与点B重合),将线段AF绕点A顺时针方向旋转60°得到线段AM,连接FM.
(1)求AO的长;
(2)如图2,当点F在线段BO上,且点M,F,C三点在同一条直线上时,求证:AC=3AM;
(3)连接EM,若△AEM的面积为40,请直接
..写出△AFM的周长.
温馨提示:考生可以根据题意,在备用图中补充图形,以便作答.(2014年中考试题)
24.如图,在▱ABCD中,AB=6,BC=4,∠B=60°,点E是边AB上的一点,点F是边CD 上一点,将▱ABCD沿EF折叠,得到四边形EFGH,点A的对应点为点H,点D的对应点为点G.
(1)当点H与点C重合时.
①填空:点E到CD的距离是;
②求证:△BCE≌△GCF;
③求△CEF的面积;
(2)当点H落在射线BC上,且CH=1时,直线E H与直线CD交于点M,请直接写出△MEF 的面积.
(2015)
24.在△ABC中,AB=6,AC=BC=5,将△ABC绕点A按顺时针方向旋转,得到△ADE,旋转角为α(0°<α<180°),点B的对应点为点D,点C的对应点为点E,连接BD,BE.(1)如图,当α=60°时,延长BE交AD于点F.
①求证:△ABD是等边三角形;
②求证:BF⊥AD,AF=DF;
③请直接写出BE的长;
(2)在旋转过程中,过点D作DG垂直于直线AB,垂足为点G,连接CE,当∠DAG=∠ACB,且线段DG与线段AE无公共点时,请直接写出BE+CE的值.
温馨提示:考生可以根据题意,在备用图中补充图形,以便作答.(2016)。

相关文档
最新文档