武汉理工大学高等数学2012年考研大纲
2012考研《数学》大纲解析及备考指导汇总(精)
2012考研《数学》大纲解析及备考指导汇总考试科目:微积分 . 线性代数 . 概率论与数理统计考试形式和试卷结构一、试卷满分及考试时间试卷满分为 150分,考试时间为 180分钟 .二、答题方式答题方式为闭卷、笔试 .三、试卷内容结构微积分约 56%线性代数约 22%概率论与数理统计 22%四、试卷题型结构试卷题型结构为:单项选择题选题 8小题,每题 4分,共 32分填空题 6小题,每题 4分,共 24分解答题 (包括证明题 9小题,共 94分微积分一、函数、极限、连续考试内容函数的概念及表示法函数的有界性 . 单调性 . 周期性和奇偶性复合函数 . 反函数 . 分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限和右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质考试要求1. 理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系 .2. 了解函数的有界性 . 单调性 . 周期性和奇偶性 .3. 理解复合函数及分段函数的概念,了解反函数及隐函数的概念 .4. 掌握基本初等函数的性质及其图形,了解初等函数的概念 .5. 了解数列极限和函数极限 (包括左极限与右极限的概念 .6. 了解极限的性质与极限存在的两个准则, 掌握极限的四则运算法则, 掌握利用两个重要极限求极限的方法 .7. 理解无穷小的概念和基本性质 . 掌握无穷小量的比较方法 . 了解无穷大量的概念及其与无穷小量的关系 .8. 理解函数连续性的概念 (含左连续与右连续 ,会判别函数间断点的类型 .9. 了解连续函数的性质和初等函数的连续性, 理解闭区间上连续函数的性质(有界性、最大值和最小值定理 . 介值定理 ,并会应用这些性质 .二、一元函数微分学考试内容导数和微分的概念导数的几何意义和经济意义函数的可导性与连续性之间的关系平面曲线的切线与法线导数和微分的四则运算基本初等函数的导数复合函数 . 反函数和隐函数的微分法高阶导数一阶微分形式的不变性微分中值定理洛必达(L´Hospital法则函数单调性的判别函数的极值函数图形的凹凸性 . 拐点及渐近线函数图形的描绘函数的最大值与最小值考试要求1. 理解导数的概念及可导性与连续性之间的关系, 了解导数的几何意义与经济意义 (含边际与弹性的概念 ,会求平面曲线的切线方程和法线方程 .2. 掌握基本初等函数的导数公式 . 导数的四则运算法则及复合函数的求导法则,会求分段函数的导数会求反函数与隐函数的导数 .3. 了解高阶导数的概念,会求简单函数的高阶导数 .4. 了解微分的概念, 导数与微分之间的关系以及一阶微分形式的不变性, 会求函数的微分 .5. 理解罗尔 (Rolle定理 . 拉格朗日 ( Lagrange中值定理 . 了解泰勒定理 . 柯西(Cauchy中值定理,掌握这四个定理的简单应用 .6. 会用洛必达法则求极限 .7. 掌握函数单调性的判别方法, 了解函数极值的概念, 掌握函数极值、最大值和最小值的求法及其应用 .8. 会用导数判断函数图形的凹凸性 (注:在区间内,设函数具有二阶导数 . 当时,的图形是凹的 ; 当时,的图形是凸的 ,会求函数图形的拐点和渐近线 .9. 会描述简单函数的图形 .三、一元函数积分学考试内容原函数和不定积分的概念不定积分的基本性质基本积分公式定积分的概念和基本性质定积分中值定理积分上限的函数及其导数牛顿一莱布尼茨 (Newton- Leibniz公式不定积分和定积分的换元积分法与分部积分法反常 (广义积分定积分的应用考试要求1. 理解原函数与不定积分的概念,掌握不定积分的基本性质和基本积分公式,掌握不定积分的换元积分法和分部积分法 .2. 了解定积分的概念和基本性质, 了解定积分中值定理, 理解积分上限的函数并会求它的导数, 掌握牛顿一莱布尼茨公式以及定积分的换元积分法和分部积分法 .3. 会利用定积分计算平面图形的面积 . 旋转体的体积和函数的平均值,会利用定积分求解简单的经济应用问题 .4. 了解反常积分的概念,会计算反常积分 .四、多元函数微积分学考试内容多元函数的概念二元函数的几何意义二元函数的极限与连续的概念有界闭区域上二元连续函数的性质多元函数偏导数的概念与计算多元复合函数的求导法与隐函数求导法二阶偏导数全微分多元函数的极值和条件极值 . 最大值和最小值二重积分的概念 . 基本性质和计算 **区域上简单的反常二重积分考试要求1. 了解多元函数的概念,了解二元函数的几何意义 .2. 了解二元函数的极限与连续的概念, 了解有界闭区域上二元连续函数的性质 .3. 了解多元函数偏导数与全微分的概念 , 会求多元复合函数一阶、二阶偏导数,会求全微分 , 会求多元隐函数的偏导数 .4. 了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件, 了解二元函数极值存在的充分条件, 会求二元函数的极值, 会用拉格朗日乘数法求条件极值, 会求简单多元函数的最大值和最小值, 并会解决简单的应用问题 .5. 了解二重积分的概念与基本性质,掌握二重积分的计算方法 (直角坐标 . 极坐标 . 了解 **区域上较简单的反常二重积分并会计算 .五、无穷级数考试内容常数项级数收敛与发散的概念收敛级数的和的概念级数的基本性质与收敛的必要条件几何级数与级数及其收敛性正项级数收敛性的判别法任意项级杰的绝对收敛与条件收敛交错级数与莱布尼茨定理幂级数及其收敛半径 . 收敛区间 (指开区间和收敛域幂级数的和函数幂级数在其收敛区间内的基本性质简单幂级数的和函数的求法初等函数的幂级数展开式考试要求1. 了解级数的收敛与发散 . 收敛级数的和的概念 .2. 了解级数的基本性质和级数收敛的必要条件, 掌握几何级数及级数的收敛与发散的条件,掌握正项级数收敛性的比较判别法和比值判别法 .3. 了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系, 了解交错级数的莱布尼茨判别法 .4. 会求幂级数的收敛半径、收敛区间及收敛域 .5. 了解幂级数在其收敛区间内的基本性质 (和函数的连续性、逐项求导和逐项积分 ,会求简单幂级数在其收敛区间内的和函数 .6. 了解 ... 及的麦克劳林 (Maclaurin展开式 .六、常微分方程与差分方程考试内容常微分方程的基本概念变量可分离的微分方程齐次微分方程一阶线性微分方程线性微分方程解的性质及解的结构定理二阶常系数齐次线性微分方程及简单的非齐次线性微分方程差分与差分方程的概念差分方程的通解与特解一阶常系数线性差分方程微分方程的简单应用考试要求1. 了解微分方程及其阶、解、通解、初始条件和特解等概念 .2. 掌握变量可分离的微分方程 . 齐次微分方程和一阶线性微分方程的求解方法 .3. 会解二阶常系数齐次线性微分方程 .4. 了解线性微分方程解的性质及解的结构定理,会解自由项为多项式 . 指数函数 . 正弦函数 . 余弦函数的二阶常系数非齐次线性微分方程 .5. 了解差分与差分方程及其通解与特解等概念 .6. 了解一阶常系数线性差分方程的求解方法 .7. 会用微分方程求解简单的经济应用问题 .线性代数一、行列式考试内容行列式的概念和基本性质行列式按行 (列展开定理考试要求1. 了解行列式的概念,掌握行列式的性质 .2. 会应用行列式的性质和行列式按行 (列展开定理计算行列式 .二、矩阵考试内容矩阵的概念矩阵的线性运算矩阵的乘法方阵的幂方阵乘积的行列式矩阵的转置逆矩阵的概念和性质矩阵可逆的充分必要条件伴随矩阵矩阵的初等变换初等矩阵矩阵的秩矩阵的等价分块矩阵及其运算考试要求1. 理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵的定义及性质,了解对称矩阵、反对称矩阵及正交矩阵等的定义和性质 .2. 掌握矩阵的线性运算、乘法、转置以及它们的运算规律, 了解方阵的幂与方阵乘积的行列式的性质 .3. 理解逆矩阵的概念, 掌握逆矩阵的性质以及矩阵可逆的充分必要条件, 理解伴随矩阵的概念,会用伴随矩阵求逆矩阵 .4. 了解矩阵的初等变换和初等矩阵及矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的逆矩阵和秩的方法 .5. 了解分块矩阵的概念,掌握分块矩阵的运算法则 .三、向量考试内容向量的概念向量的线性组合与线性表示向量组的线性相关与线性无关向量组的极大线性无关组等价向量组向量组的秩向量组的秩与矩阵的秩之间的关系向量的内积线性无关向量组的正交规范化方法考试要求1. 了解向量的概念,掌握向量的加法和数乘运算法则 .2. 理解向量的线性组合与线性表示、向量组线性相关、线性无关等概念, 掌握向量组线性相关、线性无关的有关性质及判别法 .3. 理解向量组的极大线性无关组的概念,会求向量组的极大线性无关组及秩 .4. 理解向量组等价的概念,理解矩阵的秩与其行 (列向量组的秩之间的关系 .5. 了解内积的概念 . 掌握线性无关向量组正交规范化的施密特 (Schmidt方法 .四、线性方程组考试内容线性方程组的克莱姆 (Cramer法则线性方程组有解和无解的判定齐次线性方程组的基础解系和通解非齐次线性方程组的解与相应的齐次线件方程组 (导出组的解之间的关系非齐次线性方程组的通解考试要求1. 会用克莱姆法则解线性方程组 .2. 掌握非齐次线性方程组有解和无解的判定方法 .3. 理解齐次线性方程组的基础解系的概念, 掌握齐次线性方程组的基础解系和通解的求法 .4. 理解非齐次线性方程组解的结构及通解的概念 .5. 掌握用初等行变换求解线性方程组的方法 .五、矩阵的特征值和特征向量考试内容矩阵的特征值和特征向量的概念、性质相似矩阵的概念及性质矩阵可相似对角化的充分必要条件及相似对角矩阵实对称矩阵的特征值和特征向量及相似对角矩阵考试要求1. 理解矩阵的特征值、特征向量的概念, 掌握矩阵特征值的性质, 掌握求矩阵特征值和特征向量的方法 .2. 理解矩阵相似的概念, 掌握相似矩阵的性质, 了解矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法 .3. 掌握实对称矩阵的特征值和特征向量的性质 .六、二次型考试内容二次型及其矩阵表示合同变换与合同矩阵二次型的秩惯性定理二次型的标准形和规范形用正交变换和配方法化二次型为标准形二次型及其矩阵的正定性考试要求1. 了解二次型的概念, 会用矩阵形式表示二次型, 了解合同变换与合同矩阵的概念 .2. 了解二次型的秩的概念, 了解二次型的标准形、规范形等概念, 了解惯性定理,会用正交变换和配方法化二次型为标准形 .3. 理解正定二次型 . 正定矩阵的概念,并掌握其判别法 .概率论与数理统计一、随机事件和概率考试内容随机事件与样本空间事件的关系与运算完备事件组概率的概念概率的基本性质古典型概率几何型概率条件概率概率的基本公式事件的独立性独立重复试验考试要求1. 了解样本空间 (基本事件空间的概念, 理解随机事件的概念, 掌握事件的关系及运算 .2. 理解概率、条件概率的概念, 掌握概率的基本性质, 会计算古典型概率和几何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式以及贝叶斯(Bayes公式等 .3. 理解事件的独立性的概念,掌握用事件独立性进行概率计算 ; 理解独立重复试验的概念,掌握计算有关事件概率的方法 .二、随机变量及其分布考试内容随机变量随机变量的分布函数的概念及其性质离散型随机变量的概率分布连续型随机变量的概率密度常见随机变量的分布随机变量函数的分布考试要求1. 理解随机变量的概念,理解分布函数的概念及性质,会计算与随机变量相联系的事件的概率 .2. 理解离散型随机变量及其概率分布的概念, 掌握 0-1分布、二项分布、几何分布、超几何分布、泊松 (Poisson分布及其应用 .3. 掌握泊松定理的结论和应用条件,会用泊松分布近似表示二项分布 .4. 理解连续型随机变量及其概率密度的概念, 掌握均匀分布、正态分布、指数分布及其应用,其中参数为的指数分布的概率密度为5. 会求随机变量函数的分布 .三、多维随机变量及其分布考试内容多维随机变量及其分布函数二维离散型随机变量的概率分布、边缘分布和条件分布二维连续型随机变量的概率密度、边缘概率密度和条件密度随机变量的独立性和不相关性常见二维随机变量的分布两个及两个以上随机变量的函数的分布考试要求1. 理解多维随机变量的分布函数的概念和基本性质 .2. 理解二维离散型随机变量的概率分布和二维连续型随机变量的概率密度、掌握二维随机变量的边缘分布和条件分布 .3. 理解随机变量的独立性和不相关性的概念,掌握随机变量相互独立的条件,理解随机变量的不相关性与独立性的关系 .4. 掌握二维均匀分布和二维正态分布,理解其中参数的概率意义 .5. 会根据两个随机变量的联合分布求其函数的分布, 会根据多个相互独立随机变量的联合分布求其函数的分布 .四、随机变量的数字特征考试内容随机变量的数学期望 (均值、方差、标准差及其性质随机变量函数的数学期望切比雪夫 (Chebyshev不等式矩、协方差、相关系数及其性质考试要求1. 理解随机变量数字特征 (数学期望、方差、标准差、矩、协方差、相关系数的概念,会运用数字特征的基本性质,并掌握常用分布的数字特征 .2. 会求随机变量函数的数学期望 .3. 了解切比雪夫不等式 .五、大数定律和中心极限定理考试内容切比雪夫大数定律伯努利 (Bernoulli大数定律辛钦 (Khinchine大数定律棣莫弗 -拉普拉斯 (De Moivre-Laplace定理列维 -林德伯格 (Levy-Lindberg定理考试要求1. 了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律 (独立同分布随机变量序列的大数定律 .2. 了解棣莫弗 -拉普拉斯中心极限定理 (二项分布以正态分布为极限分布、列维 -林德伯格中心极限定理 (独立同分布随机变量序列的中心极限定理 ,并会用相关定理近似计算有关随机事件的概率 .六、数理统计的基本概念考试内容总体个体简单随机样本统计量经验分布函数样本均值样本方差和样本矩分布分布分布分位数正态总体的常用抽样分布考试要求1. 了解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念, 其中样本方差定义为2. 了解产生变量、变量和变量的典型模式 ; 了解标准正态分布、分布、分布和分布得上侧分位数,会查相应的数值表 .3. 掌握正态总体的样本均值 . 样本方差 . 样本矩的抽样分布 .4. 了解经验分布函数的概念和性质 .七、参数估计考试内容点估计的概念考试要求估计量与估计值矩估计法最大似然估计法 1.了解参数的点估计、估计量与估计值的概念. 2.掌握矩估计法(一阶矩、二阶矩和最大似然估计法 2012 考研数学大纲(数三的延伸阅读——GCT 考试各科技巧小贴士 GCT 有四部分组成:英语、数学、语文、逻辑。
2012考研《数学》大纲解析及备考指导汇总(精)
2012考研《数学》大纲解析及备考指导汇总考试科目:微积分 . 线性代数 . 概率论与数理统计考试形式和试卷结构一、试卷满分及考试时间试卷满分为 150分,考试时间为 180分钟 .二、答题方式答题方式为闭卷、笔试 .三、试卷内容结构微积分约 56%线性代数约 22%概率论与数理统计 22%四、试卷题型结构试卷题型结构为:单项选择题选题 8小题,每题 4分,共 32分填空题 6小题,每题 4分,共 24分解答题 (包括证明题 9小题,共 94分微积分一、函数、极限、连续考试内容函数的概念及表示法函数的有界性 . 单调性 . 周期性和奇偶性复合函数 . 反函数 . 分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限和右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质考试要求1. 理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系 .2. 了解函数的有界性 . 单调性 . 周期性和奇偶性 .3. 理解复合函数及分段函数的概念,了解反函数及隐函数的概念 .4. 掌握基本初等函数的性质及其图形,了解初等函数的概念 .5. 了解数列极限和函数极限 (包括左极限与右极限的概念 .6. 了解极限的性质与极限存在的两个准则, 掌握极限的四则运算法则, 掌握利用两个重要极限求极限的方法 .7. 理解无穷小的概念和基本性质 . 掌握无穷小量的比较方法 . 了解无穷大量的概念及其与无穷小量的关系 .8. 理解函数连续性的概念 (含左连续与右连续 ,会判别函数间断点的类型 .9. 了解连续函数的性质和初等函数的连续性, 理解闭区间上连续函数的性质(有界性、最大值和最小值定理 . 介值定理 ,并会应用这些性质 .二、一元函数微分学考试内容导数和微分的概念导数的几何意义和经济意义函数的可导性与连续性之间的关系平面曲线的切线与法线导数和微分的四则运算基本初等函数的导数复合函数 . 反函数和隐函数的微分法高阶导数一阶微分形式的不变性微分中值定理洛必达(L´Hospital法则函数单调性的判别函数的极值函数图形的凹凸性 . 拐点及渐近线函数图形的描绘函数的最大值与最小值考试要求1. 理解导数的概念及可导性与连续性之间的关系, 了解导数的几何意义与经济意义 (含边际与弹性的概念 ,会求平面曲线的切线方程和法线方程 .2. 掌握基本初等函数的导数公式 . 导数的四则运算法则及复合函数的求导法则,会求分段函数的导数会求反函数与隐函数的导数 .3. 了解高阶导数的概念,会求简单函数的高阶导数 .4. 了解微分的概念, 导数与微分之间的关系以及一阶微分形式的不变性, 会求函数的微分 .5. 理解罗尔 (Rolle定理 . 拉格朗日 ( Lagrange中值定理 . 了解泰勒定理 . 柯西(Cauchy中值定理,掌握这四个定理的简单应用 .6. 会用洛必达法则求极限 .7. 掌握函数单调性的判别方法, 了解函数极值的概念, 掌握函数极值、最大值和最小值的求法及其应用 .8. 会用导数判断函数图形的凹凸性 (注:在区间内,设函数具有二阶导数 . 当时,的图形是凹的 ; 当时,的图形是凸的 ,会求函数图形的拐点和渐近线 .9. 会描述简单函数的图形 .三、一元函数积分学考试内容原函数和不定积分的概念不定积分的基本性质基本积分公式定积分的概念和基本性质定积分中值定理积分上限的函数及其导数牛顿一莱布尼茨 (Newton- Leibniz公式不定积分和定积分的换元积分法与分部积分法反常 (广义积分定积分的应用考试要求1. 理解原函数与不定积分的概念,掌握不定积分的基本性质和基本积分公式,掌握不定积分的换元积分法和分部积分法 .2. 了解定积分的概念和基本性质, 了解定积分中值定理, 理解积分上限的函数并会求它的导数, 掌握牛顿一莱布尼茨公式以及定积分的换元积分法和分部积分法 .3. 会利用定积分计算平面图形的面积 . 旋转体的体积和函数的平均值,会利用定积分求解简单的经济应用问题 .4. 了解反常积分的概念,会计算反常积分 .四、多元函数微积分学考试内容多元函数的概念二元函数的几何意义二元函数的极限与连续的概念有界闭区域上二元连续函数的性质多元函数偏导数的概念与计算多元复合函数的求导法与隐函数求导法二阶偏导数全微分多元函数的极值和条件极值 . 最大值和最小值二重积分的概念 . 基本性质和计算 **区域上简单的反常二重积分考试要求1. 了解多元函数的概念,了解二元函数的几何意义 .2. 了解二元函数的极限与连续的概念, 了解有界闭区域上二元连续函数的性质 .3. 了解多元函数偏导数与全微分的概念 , 会求多元复合函数一阶、二阶偏导数,会求全微分 , 会求多元隐函数的偏导数 .4. 了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件, 了解二元函数极值存在的充分条件, 会求二元函数的极值, 会用拉格朗日乘数法求条件极值, 会求简单多元函数的最大值和最小值, 并会解决简单的应用问题 .5. 了解二重积分的概念与基本性质,掌握二重积分的计算方法 (直角坐标 . 极坐标 . 了解 **区域上较简单的反常二重积分并会计算 .五、无穷级数考试内容常数项级数收敛与发散的概念收敛级数的和的概念级数的基本性质与收敛的必要条件几何级数与级数及其收敛性正项级数收敛性的判别法任意项级杰的绝对收敛与条件收敛交错级数与莱布尼茨定理幂级数及其收敛半径 . 收敛区间 (指开区间和收敛域幂级数的和函数幂级数在其收敛区间内的基本性质简单幂级数的和函数的求法初等函数的幂级数展开式考试要求1. 了解级数的收敛与发散 . 收敛级数的和的概念 .2. 了解级数的基本性质和级数收敛的必要条件, 掌握几何级数及级数的收敛与发散的条件,掌握正项级数收敛性的比较判别法和比值判别法 .3. 了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系, 了解交错级数的莱布尼茨判别法 .4. 会求幂级数的收敛半径、收敛区间及收敛域 .5. 了解幂级数在其收敛区间内的基本性质 (和函数的连续性、逐项求导和逐项积分 ,会求简单幂级数在其收敛区间内的和函数 .6. 了解 ... 及的麦克劳林 (Maclaurin展开式 .六、常微分方程与差分方程考试内容常微分方程的基本概念变量可分离的微分方程齐次微分方程一阶线性微分方程线性微分方程解的性质及解的结构定理二阶常系数齐次线性微分方程及简单的非齐次线性微分方程差分与差分方程的概念差分方程的通解与特解一阶常系数线性差分方程微分方程的简单应用考试要求1. 了解微分方程及其阶、解、通解、初始条件和特解等概念 .2. 掌握变量可分离的微分方程 . 齐次微分方程和一阶线性微分方程的求解方法 .3. 会解二阶常系数齐次线性微分方程 .4. 了解线性微分方程解的性质及解的结构定理,会解自由项为多项式 . 指数函数 . 正弦函数 . 余弦函数的二阶常系数非齐次线性微分方程 .5. 了解差分与差分方程及其通解与特解等概念 .6. 了解一阶常系数线性差分方程的求解方法 .7. 会用微分方程求解简单的经济应用问题 .线性代数一、行列式考试内容行列式的概念和基本性质行列式按行 (列展开定理考试要求1. 了解行列式的概念,掌握行列式的性质 .2. 会应用行列式的性质和行列式按行 (列展开定理计算行列式 .二、矩阵考试内容矩阵的概念矩阵的线性运算矩阵的乘法方阵的幂方阵乘积的行列式矩阵的转置逆矩阵的概念和性质矩阵可逆的充分必要条件伴随矩阵矩阵的初等变换初等矩阵矩阵的秩矩阵的等价分块矩阵及其运算考试要求1. 理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵的定义及性质,了解对称矩阵、反对称矩阵及正交矩阵等的定义和性质 .2. 掌握矩阵的线性运算、乘法、转置以及它们的运算规律, 了解方阵的幂与方阵乘积的行列式的性质 .3. 理解逆矩阵的概念, 掌握逆矩阵的性质以及矩阵可逆的充分必要条件, 理解伴随矩阵的概念,会用伴随矩阵求逆矩阵 .4. 了解矩阵的初等变换和初等矩阵及矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的逆矩阵和秩的方法 .5. 了解分块矩阵的概念,掌握分块矩阵的运算法则 .三、向量考试内容向量的概念向量的线性组合与线性表示向量组的线性相关与线性无关向量组的极大线性无关组等价向量组向量组的秩向量组的秩与矩阵的秩之间的关系向量的内积线性无关向量组的正交规范化方法考试要求1. 了解向量的概念,掌握向量的加法和数乘运算法则 .2. 理解向量的线性组合与线性表示、向量组线性相关、线性无关等概念, 掌握向量组线性相关、线性无关的有关性质及判别法 .3. 理解向量组的极大线性无关组的概念,会求向量组的极大线性无关组及秩 .4. 理解向量组等价的概念,理解矩阵的秩与其行 (列向量组的秩之间的关系 .5. 了解内积的概念 . 掌握线性无关向量组正交规范化的施密特 (Schmidt方法 .四、线性方程组考试内容线性方程组的克莱姆 (Cramer法则线性方程组有解和无解的判定齐次线性方程组的基础解系和通解非齐次线性方程组的解与相应的齐次线件方程组 (导出组的解之间的关系非齐次线性方程组的通解考试要求1. 会用克莱姆法则解线性方程组 .2. 掌握非齐次线性方程组有解和无解的判定方法 .3. 理解齐次线性方程组的基础解系的概念, 掌握齐次线性方程组的基础解系和通解的求法 .4. 理解非齐次线性方程组解的结构及通解的概念 .5. 掌握用初等行变换求解线性方程组的方法 .五、矩阵的特征值和特征向量考试内容矩阵的特征值和特征向量的概念、性质相似矩阵的概念及性质矩阵可相似对角化的充分必要条件及相似对角矩阵实对称矩阵的特征值和特征向量及相似对角矩阵考试要求1. 理解矩阵的特征值、特征向量的概念, 掌握矩阵特征值的性质, 掌握求矩阵特征值和特征向量的方法 .2. 理解矩阵相似的概念, 掌握相似矩阵的性质, 了解矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法 .3. 掌握实对称矩阵的特征值和特征向量的性质 .六、二次型考试内容二次型及其矩阵表示合同变换与合同矩阵二次型的秩惯性定理二次型的标准形和规范形用正交变换和配方法化二次型为标准形二次型及其矩阵的正定性考试要求1. 了解二次型的概念, 会用矩阵形式表示二次型, 了解合同变换与合同矩阵的概念 .2. 了解二次型的秩的概念, 了解二次型的标准形、规范形等概念, 了解惯性定理,会用正交变换和配方法化二次型为标准形 .3. 理解正定二次型 . 正定矩阵的概念,并掌握其判别法 .概率论与数理统计一、随机事件和概率考试内容随机事件与样本空间事件的关系与运算完备事件组概率的概念概率的基本性质古典型概率几何型概率条件概率概率的基本公式事件的独立性独立重复试验考试要求1. 了解样本空间 (基本事件空间的概念, 理解随机事件的概念, 掌握事件的关系及运算 .2. 理解概率、条件概率的概念, 掌握概率的基本性质, 会计算古典型概率和几何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式以及贝叶斯(Bayes公式等 .3. 理解事件的独立性的概念,掌握用事件独立性进行概率计算 ; 理解独立重复试验的概念,掌握计算有关事件概率的方法 .二、随机变量及其分布考试内容随机变量随机变量的分布函数的概念及其性质离散型随机变量的概率分布连续型随机变量的概率密度常见随机变量的分布随机变量函数的分布考试要求1. 理解随机变量的概念,理解分布函数的概念及性质,会计算与随机变量相联系的事件的概率 .2. 理解离散型随机变量及其概率分布的概念, 掌握 0-1分布、二项分布、几何分布、超几何分布、泊松 (Poisson分布及其应用 .3. 掌握泊松定理的结论和应用条件,会用泊松分布近似表示二项分布 .4. 理解连续型随机变量及其概率密度的概念, 掌握均匀分布、正态分布、指数分布及其应用,其中参数为的指数分布的概率密度为5. 会求随机变量函数的分布 .三、多维随机变量及其分布考试内容多维随机变量及其分布函数二维离散型随机变量的概率分布、边缘分布和条件分布二维连续型随机变量的概率密度、边缘概率密度和条件密度随机变量的独立性和不相关性常见二维随机变量的分布两个及两个以上随机变量的函数的分布考试要求1. 理解多维随机变量的分布函数的概念和基本性质 .2. 理解二维离散型随机变量的概率分布和二维连续型随机变量的概率密度、掌握二维随机变量的边缘分布和条件分布 .3. 理解随机变量的独立性和不相关性的概念,掌握随机变量相互独立的条件,理解随机变量的不相关性与独立性的关系 .4. 掌握二维均匀分布和二维正态分布,理解其中参数的概率意义 .5. 会根据两个随机变量的联合分布求其函数的分布, 会根据多个相互独立随机变量的联合分布求其函数的分布 .四、随机变量的数字特征考试内容随机变量的数学期望 (均值、方差、标准差及其性质随机变量函数的数学期望切比雪夫 (Chebyshev不等式矩、协方差、相关系数及其性质考试要求1. 理解随机变量数字特征 (数学期望、方差、标准差、矩、协方差、相关系数的概念,会运用数字特征的基本性质,并掌握常用分布的数字特征 .2. 会求随机变量函数的数学期望 .3. 了解切比雪夫不等式 .五、大数定律和中心极限定理考试内容切比雪夫大数定律伯努利 (Bernoulli大数定律辛钦 (Khinchine大数定律棣莫弗 -拉普拉斯 (De Moivre-Laplace定理列维 -林德伯格 (Levy-Lindberg定理考试要求1. 了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律 (独立同分布随机变量序列的大数定律 .2. 了解棣莫弗 -拉普拉斯中心极限定理 (二项分布以正态分布为极限分布、列维 -林德伯格中心极限定理 (独立同分布随机变量序列的中心极限定理 ,并会用相关定理近似计算有关随机事件的概率 .六、数理统计的基本概念考试内容总体个体简单随机样本统计量经验分布函数样本均值样本方差和样本矩分布分布分布分位数正态总体的常用抽样分布考试要求1. 了解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念, 其中样本方差定义为2. 了解产生变量、变量和变量的典型模式 ; 了解标准正态分布、分布、分布和分布得上侧分位数,会查相应的数值表 .3. 掌握正态总体的样本均值 . 样本方差 . 样本矩的抽样分布 .4. 了解经验分布函数的概念和性质 .七、参数估计考试内容点估计的概念考试要求估计量与估计值矩估计法最大似然估计法 1.了解参数的点估计、估计量与估计值的概念. 2.掌握矩估计法(一阶矩、二阶矩和最大似然估计法 2012 考研数学大纲(数三的延伸阅读——GCT 考试各科技巧小贴士 GCT 有四部分组成:英语、数学、语文、逻辑。
2012考研《数学》大纲解析及备考指导汇总
2012考研《数学》大纲综述及备考指导2011年9月15日教育部考试中心发布了2012年全国硕士研究生入学统一考试数学考试大纲,与去年相比考试内容和考试要求上没有变化,具体如下:试卷题型结构为:单项选择题 8小题,每小题4分,共32分;填空题 6小题,每小题4分,共24分;解答题(包括证明题) 9小题,共94分.数学一高等数学部分:2012年全国硕士研究生入学统一考试数学考试大纲中的考试内容和考试要求与2011年相同.线性代数部分:2012年全国硕士研究生入学统一考试数学考试大纲中的考试内容和考试要求与2011年相同.概率论与数理统计部分:2012年全国硕士研究生入学统一考试数学考试大纲中的考试内容和考试要求与2011年相同.数学二高等数学部分:2012年全国硕士研究生入学统一考试数学考试大纲中的考试内容和考试要求与2011年相同.线性代数部分:2012年全国硕士研究生入学统一考试数学考试大纲中的考试内容和考试要求与2011年相同.数学三2012年全国硕士研究生入学统一考试数学考试大纲中的考试内容和考试要求与2011年相同.线性代数部分:2012年全国硕士研究生入学统一考试数学考试大纲中的考试内容和考试要求与2011年相同.概率论与数理统计部分:2012年全国硕士研究生入学统一考试数学考试大纲中的考试内容和考试要求与2011年相同.农学数学高等数学部分:2012年全国硕士研究生入学统一考试数学考试大纲中的考试内容和考试要求与2011年相同.线性代数部分:2012年全国硕士研究生入学统一考试数学考试大纲中的考试内容和考试要求与2011年相同.概率论与数理统计部分:2012年全国硕士研究生入学统一考试数学考试大纲中的考试内容和考试要求与2011年相同.大纲在考试要求和考试内容上没有变化,对于考生来说可以按照既定的复习计划,按部就班的进行备考了。
与此同时,同学们最好能够根据考试大纲上的知识点再系统的复习一下相应的考试点,一方面可以起到巩固提高的作用,另外一方方面,可以形成知识体系脉络。
武汉理工2012 考研大纲 849《微机原理与接口技术》
《微机原理与接口技术》硕士研究生入学考试大纲第一部分考试说明一.、考试性质全国硕士研究生入学考试是为高等学校招收硕士研究生而设置的。
《微机原理与接口技术》是为报考武汉理工大学控制科学与工程、电力电子与电力传动、电机与电器、电工理论与新技术等专业考生设置的一门专业考试课程,是武汉理工大学自动化学院硕士研究生入学考试科目之一。
它的评价标准是高等学校、科研院所的优秀本科毕业生能达到及格或及格以上水平,以保证被录取者具有微机原理与接口技术的基础知识和初步的应用能力。
二、考试内容范围考试内容的重点是:8086微处理器的基本工作原理;简单逻辑运算;十进制数运算方法及十进制、二进制、十六进制数运算与转换;8086MPU结构;8086指令系统及汇编语言指令基本知识,尤其是寻址方式;基于汇编语言风格的程序设计;存储器地址空间分布与地址译码;8086MPU的基本时序;半导体存储器与MPU的接口;8086最小系统(基本体系结构);堆栈技术;中断技术;输入与输出;接口应用技术;综合应用技术。
三、评价目标主要考查微机原理与接口技术的基本概念和计算机应用方法的基础知识,在此基础上,考查综合运用计算机解决工程问题的能力。
要求考生较好地掌握微机原理的基本概念以及计算机应用的基本方法,着重理解微处理器的结构、组成、功能与外部连线,具备基本的定性分析和定量估算能力、综合分析能力以及解决工程问题的能力。
四、考试形式与试卷结构(一)答卷方式:闭卷,笔试;所列题目全部为必答题。
(二)答题时间:180分钟。
(三)各部分内容比例(满分为150分)基本概念:约60分;程序设计:约40分;堆栈与中断概念:约20分;接口技术与综合应用:约30分;(四)题型比例(满分为100分)选择或填空题:约25 %判断题、简答题:约20 %程序设计与读程序:约25 %综合应用题:约30 %五、参考书《微机原理与接口技术》(第二版)(不含286/386章节),彭虎、周佩玲等编,电子工业出版社,2010。
武汉理工2012 考研大纲 850《电路》
《电路》硕士研究生入学考试大纲第一部分考试说明一、考试性质《电路》是我校自动化学院各专业硕士研究生入学必考的专业基础课之一。
它的评价标准是电类专业优秀本科毕业生能达到的良好及以上水平,以保证被录取者具有较扎实的电路理论基础。
考试对象为符合全国硕士研究生入学条件的报考我校自动化学院“控制科学与工程”、“电力电子与电力传动”、“电机与电器”、“电工理论与新技术”等相关专业的考生。
二、考试形式试卷结构(一)答卷方式:闭卷,笔试(二)答题时间:180分钟(三)题型:全部为分析计算题(四)参考书目《电路》(第五版)邱关源.北京:高等教育出版社,2006第二部分考查要点一、电阻性网络分析电流、电压及其参考方向,电流与电压的关联参考方向;电功率和电能量的概念;吸收功率和发出功率的概念及其判定;线性非时变电阻、电压源、电流源、受控电源及运算放大器的特性;KCL和KVL;线性二端电阻'性网络入端电阻的概念及入端电阻的计算,等效电路的概念;树、基本回路的概念;节点分析法和回路(网孔)分析法;叠加定理及其应用;戴维宁-诺顿等效网络定理及其应用;特勒根定理(互易定理)及其应用;最大功率传输定理及其应用;网络定理的综合应用;含理想运算放大器电路的分析。
二、动态网络分析线性非时变电容、电感元件的特性;单位阶跃函数和单位冲击函数的概念及其主要性质;一阶电路和简单二阶电路微分方程的建立及相应初始条件的确定;各种响应的概念;求解一阶电路的三要素法;KCL、KVL的运算形式;基本电路元件的运算模型;用运算法求解电路的暂态过程;双口网络的Z、Y、H、T参数方程及Z、Y、H、T参数的计算;双口网络的相互连接;双口网络的等效电路;有端接双口网络的分析。
三、正弦稳态分析和广义正弦稳态分析同频率正弦量的相量及相量图表示;KCL、KVL的相量形式;基本电路元件的相量模型,阻抗和导纳;正弦稳态电路的分析计算(含利用相量图分析);正弦稳态电路中各种功率的概念及计算,功率因数及功率因数的提高;最大功率传输(共轭匹配);RLC 串联及并联谐振电路;耦合电感元件的特性方程,同名端的概念及同名端的确定(含用实验方法);含耦合电感元件电路的分析;理想变压器的特性方程及理想变压器的阻抗变换性质;对称三相电路的概念,对称三相电路中线量与相量的关系;对称三相电路的功率;对称三相电路的分析计算;两表法测量三相三线制电路的功率;结构简单的不对称三相电路的分析计算(电源对称);非正弦周期电流、电压的有效值,非正弦周期电流电路的平均功率;非正弦周期电流电路的分析计算。
2012考研《数学一、二、三》大纲
二、职业分析
育内 认 育 要 或的 为 教 求 每 文教 我 育 千 一 艺育 可 的 差 个 各事 以 专 万 行 种业 从 业 别 业 俱, 事 的 。 对 乐从 于 学 而 求 部事 校 生 作 职 工于 外 , 为 者 作体 校 我 体 的 。
三、确定目标
列夫·托尔斯泰曾说过: “一个埋头脑力劳动的人, 如果不经常活动四肢,那 是一件极其痛苦的事情。” 我从小就喜欢运动,我的 性格乐观开朗,积极向上。 作为体教的一名学生,我 争取:学习好专业知识, 掌握好各类体育项目技能, 塑照好形象,全面提高各 方面的素质,以便更好地 适应未来。
原因是用人单位认为应届毕业生只学到书本知识而没有握学习 方法、实际解决问题的能力弱、缺乏团队精神、人际沟通能 力和自我认知能力,而且对未来的发展盲目,没有规划。大 学作为大学生职业生涯规划的第一站,我们该如何对职业生 涯进行规划呢?
认知与分析
一、自我诘问 二、职业分析 三、确定目标 四、培养实践能力 五、参加职业训练 六、评估与修订
写在最后
在这里,这份职业生涯规划也差不多落
入尾声了,然而,我的真正行动才仅仅 开始。现在我要做的是,迈出艰难的一 步,朝着这个规划的目标前进,要以满 腔的热情去获取最后的胜利。有了成功的
目标。明确自己人生的大目标,对把握好目 标有直接的促进作用。认真策划人生每一步。 有道是:"凡事预则立,不预则废",千真万确。 对自己做的或将要做的事没有任何准备,就 是在为失败做准备。
NO.3面向未来
NO.1就业策略
就业技能准备
Text2
就业政策了解
Text3
对自己合适的 定位
Text1
Text4 Text5
2012武汉理工大学考研参考书目
人民教育出版社,2005 年
华中科技大学出版社, 2006 年 中国青年出版社(增订 版),2007 年
中国青年出版社(增订 版),2005 年
中国美术学院出版社, 2005 年 清华大学出版社,2010 年 中国青年出版社,2002 年 高等教育出版社
高等教育出版社,2009 年5月 人民出版社,1989 年 1 月版,2007 年第 24 次印 刷 高教、北大出版社面向 二十一世纪法学专业核 心课程教材 高等教育出版社,最新 版 法律出版社 高等教育出版社 武汉大学出版社,2006
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,通系电1,力过根保管据护线生高0不产中仅工资2艺料22高试2可中卷以资配解料置决试技吊卷术顶要是层求指配,机置对组不电在规气进范设行高备继中进电资行保料空护试载高卷与中问带资题负料2荷试2,下卷而高总且中体可资配保料置障试时2卷,32调需3各控要类试在管验最路;大习对限题设度到备内位进来。行确在调保管整机路使组敷其高设在中过正资程常料1工试中况卷,下安要与全加过,强度并看工且25作尽52下可22都能护可地1关以缩于正小管常故路工障高作高中;中资对资料于料试继试卷电卷连保破接护坏管进范口行围处整,理核或高对者中定对资值某料,些试审异卷核常弯与高扁校中度对资固图料定纸试盒,卷位编工置写况.复进保杂行护设自层备动防与处腐装理跨置,接高尤地中其线资要弯料避曲试免半卷错径调误标试高方中等案资,,料要编试求5写、卷技重电保术要气护交设设装底备备置。4高调、动管中试电作线资高气,敷料中课并设3试资件且、技卷料中拒管术试试调绝路中验卷试动敷包方技作设含案术,技线以来术槽及避、系免管统不架启必等动要多方高项案中方;资式对料,整试为套卷解启突决动然高过停中程机语中。文高因电中此气资,课料电件试力中卷高管电中壁气资薄设料、备试接进卷口行保不调护严试装等工置问作调题并试,且技合进术理行,利过要用关求管运电线行力敷高保设中护技资装术料置。试做线卷到缆技准敷术确设指灵原导活则。。:对对在于于分调差线试动盒过保处程护,中装当高置不中高同资中电料资压试料回卷试路技卷交术调叉问试时题技,,术应作是采为指用调发金试电属人机隔员一板,变进需压行要器隔在组开事在处前发理掌生;握内同图部一纸故线资障槽料时内、,设需强备要电制进回造行路厂外须家部同出电时具源切高高断中中习资资题料料电试试源卷卷,试切线验除缆报从敷告而设与采完相用毕关高,技中要术资进资料行料试检,卷查并主和且要检了保测解护处现装理场置。设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
考研必备_最新2012数一考研大纲.
2012年硕士研究生入学统一考试数学考试大纲数学一考试科目:高等数学、线性代数、概率论与数理统计考试形式和试卷结构一、试卷满分及考试时间试卷满分为150分,考试时间为180分钟.二、答题方式答题方式为闭卷、笔试.三、试卷内容结构高等教学约56%线性代数约22%概率论与数理统计22%四、试卷题型结构试卷题型结构为:单选题8小题,每题4分,共32分填空题6小题,每题4分,共24分解答题(包括证明题9小题,共94分高等数学一、函数、极限、连续考试内容函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限与右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质考试要求1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左、右极限之间的关系.6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.9.理解函数连续性的概念(含左连续与右连续,会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理,并会应用这些性质.二、一元函数微分学考试内容导数和微分的概念导数的几何意义和物理意义函数的可导性与连续性之间的关系平面曲线的切线和法线导数和微分的四则运算基本初等函数的导数复合函数、反函数、隐函数以及参数方程所确定的函数的微分法高阶导数一阶微分形式的不变性微分中值定理洛必达(L’Hospital法则函数单调性的判别函数的极值函数图形的凹凸性、拐点及渐近线函数图形的描绘函数的最大值和最小值弧微分曲率的概念曲率圆与曲率半径考试要求1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3.了解高阶导数的概念,会求简单函数的高阶导数.4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.5.理解并会用罗尔(Rolle定理、拉格朗日(Lagrange中值定理和泰勒(Taylor定理,了解并会用柯西(Cauchy中值定理.6.掌握用洛必达法则求未定式极限的方法.7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.8.会用导数判断函数图形的凹凸性(注:在区间内,设函数具有二阶导数。
武汉理工大学高等数学2012年考研大纲
武汉理工大学高等数学2012年考研大纲参考书目考试范围(自命题数学)适用专业:光电子信息、电子科学技术、计算机科学技术等专业题型:填空题、选择题、计算题、应用题、证明题总分:150分考查要点1. 函数、极限、连续函数:函数的概念,函数的特性,复合函数的概念,基本初等函数的性质及图形。
极限:数列极限的定义,收敛数列的性质(唯一性、有界性);函数极限的定义,函数的左右极限,函数极限的性质(局部保号性、不等式取极限),无穷小与无穷大的概念;极限的四则运算法则,两个极限存在准则(夹逼准则和单调有界准则),两个重要极限,无穷小的比较。
函数的连续性:函数连续的定义,间断点及其分类,初等函数的连续性,闭区间上连续函数的性质(最大最小值定理,零点定理和介值定理)。
2.一元函数微分学导数与微分:导数的定义,导数的几何意义,导数的物理应用,可导性与连续性的关系;导数的四则运算法则,复合函数求导法则,基本初等函数的导数公式;高阶导数的概念,初等函数的一、二阶导数的求法,隐函数和参数式所确定的函数的一、二阶导数的求法;微分的定义,微分的运算法则(含微分形式的不变性),微分在近似计算中的应用。
中值定理与导数的应用:罗尔定理,拉格朗日中值定理,柯西中值定理,泰勒公式;洛必达法则;用导数判定函数的单调性,函数极值概念及其求法,简单的最大值最小值应用问题,用导数判定函数曲线的凹凸性与拐点,水平与垂直渐近线,函数作图;弧微分,曲率的定义及其计算,曲率圆与曲率半径。
3.一元函数积分学不定积分:原函数与不定积分的定义,不定积分的性质,基本积分公式,换元积分法,分部积分法,有理函数、三角函数有理式及简单无理函数的积分。
定积分及其应用:定积分的定义及其性质,积分上限的函数及其导数,牛顿—莱布尼茨公式,定积分的换元法和分部积分法;反常积分的概念;定积分在几何学中的应用(面积、旋转体体积、平行截面面积为已知的立体的体积、平面曲线的弧长),定积分在物理学中的应用(路程、功、水压力、引力)。
2012考研《数学一、二、三》大纲
第17页,共24页。
目标管理的含义
• 明确目标 • 参与决策 • 规定期限 • 反馈绩效
第18页,共24页。
• 目标设置的方法——自己制定个人目标 • 目标间的关系——完成组织目标就是完成个
第20页,共24页。
(三)目标管理的流程
图1-1 ห้องสมุดไป่ตู้标管理流程图
第21页,共24页。
需要层次理论与人性假设
第22页,共24页。
(五)实施目标管理的哲学基础
麦格雷戈 的Y理论:
• 人并不是生来就厌恶工作
• 人完全能够实现自我指挥和自我控制。 • 对目标做出贡献是同获得成就的报酬直接相关的。
• 人们不但能接受而且主动承担责任。 • 多数人具有想象力和创造力。 • 人们并非天生就对组织的要求采取消极的或抵制的态度 管理的基本任务是使人们的潜能充分发挥出来,更好地为实现组织的目
目标管理
第1页,共24页。
摸高试验
• 把十个成员分成两组进行摸高比赛,看 哪一组摸得更高。第一组十个学生,不规定 任何目标,由他们自己随意制定摸高的高度; 第二组规定每个人首先定一个标准,比如要 摸到1.60米或1.80米。试验结束后,把两组 的成绩全部统计出来进行评比,结果发现规 定目标的第二组的平均成绩要高于没有制定 目标的第一组。
第8页,共24页。
思考
• 公司的共同愿景是什么?与目标有何 关系?
第9页,共24页。
(三)目标与计划
• 德国大众设定的目标为赶超日本丰田汽车公 司,成为世界第三大汽车制造商,全面提高 品牌的知名度 。
2012考研数学三大纲
2012考研数学三大纲考试科目微积分、线性代数、概率论与数理统计考试形式和试卷结构考试形式和试卷结构1、试卷满分及考试时间试卷满分为150分,考试时间为180分钟.2、答题方式答题方式为闭卷、笔试.3、试卷内容结构微积分56%线性代数22%概率论与数理统计 22%四、试卷题型结构试卷题型结构为:单项选择题选题 8小题,每题4分,共32分填空题 6小题,每题4分,共24分解答题(包括证明题)9小题,共94分考试内容之微积分一、函数、极限、连续考试内容函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限和右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质考试要求1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.2.了解函数的有界性.单调性.周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.了解数列极限和函数极限(包括左极限与右极限)的概念.6.了解极限的性质与极限存在的两个准则,掌握极限的四则运算法则,掌握利用两个重要极限求极限的方法.7.理解无穷小的概念和基本性质.掌握无穷小量的比较方法.了解无穷大量的概念及其与无穷小量的关系.8.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.9.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理.介值定理),并会应用这些性质.二、一元函数微分学考试内容导数和微分的概念导数的几何意义和经济意义函数的可导性与连续性之间的关系平面曲线的切线与法线导数和微分的四则运算基本初等函数的导数复合函数、反函数和隐函数的微分法高阶导数一阶微分形式的不变性微分中值定理洛必达(L'Hospital)法则函数单调性的判别函数的极值函数图形的凹凸性、拐点及渐近线函数图形的描绘函数的最大值与最小值考试要求1.理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义与经济意义(含边际与弹性的概念),会求平面曲线的切线方程和法线方程.2.掌握基本初等函数的导数公式.导数的四则运算法则及复合函数的求导法则,会求分段函数的导数会求反函数与隐函数的导数.3.了解高阶导数的概念,会求简单函数的高阶导数.4.了解微分的概念,导数与微分之间的关系以及一阶微分形式的不变性,会求函数的微分.5.理解罗尔(Rolle)定理.拉格朗日( Lagrange)中值定理.了解泰勒定理.柯西(Cauchy)中值定理,掌握这四个定理的简单应用.6.会用洛必达法则求极限.7.掌握函数单调性的判别方法,了解函数极值的概念,掌握函数极值、最大值和最小值的求法及其应用.8.会用导数判断函数图形的凹凸性(注:在区间内,设函数具有二阶导数.当时,的图形是凹的;当时,的图形是凸的),会求函数图形的拐点和渐近线.9.会描述简单函数的图形.三、一元函数积分学考试内容原函数和不定积分的概念不定积分的基本性质基本积分公式定积分的概念和基本性质定积分中值定理积分上限的函数及其导数牛顿一莱布尼茨(Newton- Leibniz)公式不定积分和定积分的换元积分法与分部积分法反常(广义)积分定积分的应用考试要求1.理解原函数与不定积分的概念,掌握不定积分的基本性质和基本积分公式,掌握不定积分的换元积分法和分部积分法.2.了解定积分的概念和基本性质,了解定积分中值定理,理解积分上限的函数并会求它的导数,掌握牛顿一莱布尼茨公式以及定积分的换元积分法和分部积分法.3.会利用定积分计算平面图形的面积.旋转体的体积和函数的平均值,会利用定积分求解简单的经济应用问题.4.了解反常积分的概念,会计算反常积分.四、多元函数微积分学考试内容多元函数的概念二元函数的几何意义二元函数的极限与连续的概念有界闭区域上二元连续函数的性质多元函数偏导数的概念与计算多元复合函数的求导法与隐函数求导法二阶偏导数全微分多元函数的极值和条件极值、最大值和最小值二重积分的概念、基本性质和计算无界区域上简单的反常二重积分考试要求1.了解多元函数的概念,了解二元函数的几何意义.2.了解二元函数的极限与连续的概念,了解有界闭区域上二元连续函数的性质.3.了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,会求多元隐函数的偏导数.34.了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决简单的应用问题.5.了解二重积分的概念与基本性质,掌握二重积分的计算方法(直角坐标.极坐标).了解无界区域上较简单的反常二重积分并会计算.五、无穷级数考试内容常数项级数收敛与发散的概念收敛级数的和的概念级数的基本性质与收敛的必要条件几何级数与级数及其收敛性正项级数收敛性的判别法任意项级数的绝对收敛与条件收敛交错级数与莱布尼茨定理幂级数及其收敛半径、收敛区间(指开区间)和收敛域幂级数的和函数幂级数在其收敛区间内的基本性质简单幂级数的和函数的求法初等函数的幂级数展开式考试要求1.了解级数的收敛与发散.收敛级数的和的概念.2.了解级数的基本性质和级数收敛的必要条件,掌握几何级数及级数的收敛与发散的条件,掌握正项级数收敛性的比较判别法和比值判别法.3.了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系,了解交错级数的莱布尼茨判别法.4.会求幂级数的收敛半径、收敛区间及收敛域.5.了解幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求简单幂级数在其收敛区间内的和函数.6.了解...及的麦克劳林(Maclaurin)展开式.六、常微分方程与差分方程考试内容常微分方程的基本概念变量可分离的微分方程齐次微分方程一阶线性微分方程线性微分方程解的性质及解的结构定理二阶常系数齐次线性微分方程及简单的非齐次线性微分方程差分与差分方程的概念差分方程的通解与特解一阶常系数线性差分方程微分方程的简单应用考试要求1.了解微分方程及其阶、解、通解、初始条件和特解等概念.2.掌握变量可分离的微分方程.齐次微分方程和一阶线性微分方程的求解方法.3.会解二阶常系数齐次线性微分方程.4.了解线性微分方程解的性质及解的结构定理,会解自由项为多项式.指数函数.正弦函数.余弦函数的二阶常系数非齐次线性微分方程.5.了解差分与差分方程及其通解与特解等概念.6.了解一阶常系数线性差分方程的求解方法.7.会用微分方程求解简单的经济应用问题.考试内容之线性代数一、行列式考试内容行列式的概念和基本性质行列式按行(列)展开定理考试要求1.了解行列式的概念,掌握行列式的性质.2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.二、矩阵考试内容矩阵的概念矩阵的线性运算矩阵的乘法方阵的幂方阵乘积的行列式矩阵的转置逆矩阵的概念和性质矩阵可逆的充分必要条件伴随矩阵矩阵的初等变换初等矩阵矩阵的秩矩阵的等价分块矩阵及其运算考试要求1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵的定义及性质,了解对称矩阵、反对称矩阵及正交矩阵等的定义和性质.2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.4.了解矩阵的初等变换和初等矩阵及矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的逆矩阵和秩的方法.5.了解分块矩阵的概念,掌握分块矩阵的运算法则.5三、向量考试内容向量的概念向量的线性组合与线性表示向量组的线性相关与线性无关向量组的极大线性无关组等价向量组向量组的秩向量组的秩与矩阵的秩之间的关系向量的内积线性无关向量组的正交规范化方法考试要求1.了解向量的概念,掌握向量的加法和数乘运算法则.2.理解向量的线性组合与线性表示、向量组线性相关、线性无关等概念,掌握向量组线性相关、线性无关的有关性质及判别法.3.理解向量组的极大线性无关组的概念,会求向量组的极大线性无关组及秩.4.理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系.5.了解内积的概念.掌握线性无关向量组正交规范化的施密特(Schmidt)方法.四、线性方程组考试内容线性方程组的克莱姆(Cramer)法则线性方程组有解和无解的判定齐次线性方程组的基础解系和通解非齐次线性方程组的解与相应的齐次线件方程组(导出组)的解之间的关系非齐次线性方程组的通解考试要求1.会用克莱姆法则解线性方程组.2.掌握非齐次线性方程组有解和无解的判定方法.3.理解齐次线性方程组的基础解系的概念,掌握齐次线性方程组的基础解系和通解的求法.4.理解非齐次线性方程组解的结构及通解的概念.5.掌握用初等行变换求解线性方程组的方法.五、矩阵的特征值和特征向量考试内容矩阵的特征值和特征向量的概念、性质相似矩阵的概念及性质矩阵可相似对角化的充分必要条件及相似对角矩阵实对称矩阵的特征值和特征向量及相似对角矩阵考试要求1.理解矩阵的特征值、特征向量的概念,掌握矩阵特征值的性质,掌握求矩阵特征值和特征向量的方法.2.理解矩阵相似的概念,掌握相似矩阵的性质,了解矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法.3.掌握实对称矩阵的特征值和特征向量的性质.六、二次型考试内容二次型及其矩阵表示合同变换与合同矩阵二次型的秩惯性定理二次型的标准形和规范形用正交变换和配方法化二次型为标准形二次型及其矩阵的正定性考试要求1.了解二次型的概念,会用矩阵形式表示二次型,了解合同变换与合同矩阵的概念.2.了解二次型的秩的概念,了解二次型的标准形、规范形等概念,了解惯性定理,会用正交变换和配方法化二次型为标准形.3.理解正定二次型、正定矩阵的概念,并掌握其判别法.考试内容之概率论与数理统计一、随机事件和概率考试内容随机事件与样本空间事件的关系与运算完备事件组概率的概念概率的基本性质古典型概率几何型概率条件概率概率的基本公式事件的独立性独立重复试验考试要求1.了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系及运算.2.理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式以及贝叶斯(Bayes)公式等.3.理解事件的独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法.二、随机变量及其分布考试内容7随机变量随机变量的分布函数的概念及其性质离散型随机变量的概率分布连续型随机变量的概率密度常见随机变量的分布随机变量函数的分布考试要求1.理解随机变量的概念,理解分布函数的概念及性质,会计算与随机变量相联系的事件的概率.2.理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布、几何分布、超几何分布、泊松(Poisson)分布及其应用.3.掌握泊松定理的结论和应用条件,会用泊松分布近似表示二项分布.4.理解连续型随机变量及其概率密度的概念,掌握均匀分布、正态分布、指数分布及其应用,其中参数为的指数分布的概率密度为5.会求随机变量函数的分布.三、多维随机变量及其分布考试内容多维随机变量及其分布函数二维离散型随机变量的概率分布、边缘分布和条件分布二维连续型随机变量的概率密度、边缘概率密度和条件密度随机变量的独立性和不相关性常见二维随机变量的分布两个及两个以上随机变量的函数的分布考试要求1.理解多维随机变量的分布函数的概念和基本性质.2.理解二维离散型随机变量的概率分布和二维连续型随机变量的概率密度、掌握二维随机变量的边缘分布和条件分布.3.理解随机变量的独立性和不相关性的概念,掌握随机变量相互独立的条件,理解随机变量的不相关性与独立性的关系.4.掌握二维均匀分布和二维正态分布,理解其中参数的概率意义.5.会根据两个随机变量的联合分布求其函数的分布,会根据多个相互独立随机变量的联合分布求其函数的分布.四、随机变量的数字特征考试内容随机变量的数学期望(均值)、方差、标准差及其性质随机变量函数的数学期望切比雪夫(Chebyshev)不等式矩、协方差、相关系数及其性质考试要求1.理解随机变量数字特征(数学期望、方差、标准差、矩、协方差、相关系数)的概念,会运用数字特征的基本性质,并掌握常用分布的数字特征.2.会求随机变量函数的数学期望.3.了解切比雪夫不等式.五、大数定律和中心极限定理考试内容切比雪夫大数定律伯努利(Bernoulli)大数定律辛钦(Khinchine)大数定律棣莫弗—拉普拉斯(De Moivre-Laplace)定理列维—林德伯格(Levy-Lindberg)定理考试要求1.了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量序列的大数定律).2.了解棣莫弗—拉普拉斯中心极限定理(二项分布以正态分布为极限分布)、列维—林德伯格中心极限定理(独立同分布随机变量序列的中心极限定理),并会用相关定理近似计算有关随机事件的概率.六、数理统计的基本概念考试内容总体个体简单随机样本统计量经验分布函数样本均值样本方差和样本矩分布分布分布分位数正态总体的常用抽样分布考试要求1.了解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念,其中样本方差定义为2.了解产生变量、变量和变量的典型模式;了解标准正态分布、分布、分布和分布得上侧分位数,会查相应的数值表.3.掌握正态总体的样本均值.样本方差.样本矩的抽样分布.4.了解经验分布函数的概念和性质.七、参数估计考试内容点估计的概念估计量与估计值矩估计法最大似然估计法考试要求1.了解参数的点估计、估计量与估计值的概念.2.掌握矩估计法(一阶矩、二阶矩)和最大似然估计法.9。
2012考研数学大纲考点分布解析
2012考研数学大纲考点分布解析2012考研数学大纲考点分布解析数学一高等数学(或微积分) 56%线性代数 22%概率论与数理统计 22%数学二高等数学(或微积分) 78%线性代数 22%概率论与数理统计不考数学三高等数学(或微积分) 56%线性代数 22%概率论与数理统计 22%从上面的考研数学试卷内容结构我们可以清楚的看到高等数学(或微积分)在考研数学中的分量很大,因此高等数学(或微积分)的重点内容比较多。
通过对全国硕士研究生入学统一考试数学考试大纲的考试内容和考试要求以及考研数学历年真题分析,考研数学的重点和难点总结如下:高等数学部分:函数、极限、连续部分,两个重要极限,未定式的极限,主要的等价无穷小,,还有极限存在性的问题和间断点的判断以及它的分类,这些在历年真题当中出现的概率比较高,属于重点内容,但很基础,不是难点,因此这部分内容一定不要丢分。
微分学的部分我们主要还是要掌握一元函数微分学,多元函数微分学考也是考的,但是它的重点还是在一元函数微分学。
一、一元函数微分学需要掌握这几个关系:连续性、可导性、可微性的关系,另外要掌握各种函数求导数的方法,特别注意一元函数的应用问题,这是一个考试的重点。
一元函数微分学的涉及面很广,题型非常多,比如说中值定理部分,中值定理部分可以出各种各样构造辅助函数的证明,包括等式和不等式的证明,零点问题,以及极值和凹凸性。
二、对于多元函数微分学,要掌握几大性质之间的关系,连续性、偏导性和可微性以及一阶连续可偏导的关系,这几个关系一定要搞得很清楚。
另外一个就是各种函数求偏导的方法,要分类。
还有就是关于多元函数微分学的应用,主要是要注重条件极值,最值问题。
三、积分学部分我们首先要掌握的第一个重点是不定积分和定积分的基本计算、基本计算类型。
这个对有些同学来说可能不难,但是想要拿到满分的话还要有一定的基础,尤其要强调一定的计算能力。
那么如何使用定积分性质去解决问题这里包含定积分的奇偶性、周期性、单调性以及在特定区间上三角函数定积分的性质。
武汉理工2012考研大纲 848《自动控制原理》
《自动控制原理》硕士研究生入学考试大纲第一部分考试说明一.考试性质《自动控制原理》是为我校招收控制科学与工程专业、电力电子与电力传动专业、电机与电器专业及电工理论与新技术专业硕士研究生,以及全日制电气工程和控制工程设置的考试科目。
它的评价标准是高等学校优秀毕业生能达到良好及以上水平,以保证被录取者具有较扎实的专业基础。
考试对象为符合全国硕士研究生入学条件的报考我校自动化学院及工科相关专业的考生。
二.考试形式与试卷结构(一)答卷方式:闭卷,笔试;(二)答题时间:180分钟。
(三)题型:计算题、分析题(四)参考书目:1. 自动控制原理胡寿松编国防工业出版社2.自动控制原理王万良主编高教出版社第二部分考查要点(一)自动控制的一般概念1.自动控制和自动控制系统的基本概念,负反馈控制的原理;2.控制系统的组成与分类;3.根据实际系统的工作原理画控制系统的方块图。
(二)控制系统的数学模型1.控制系统微分方程的建立,拉氏变换求解微分方程。
2.传递函数的概念、定义和性质。
3.控制系统的结构图,结构图的等效变换。
4.控制系统的信号流图,结构图与信号流图间的关系,由梅逊公式求系统的传递函数。
(三)线性系统的时域分析1.稳定性的概念,系统稳定的充要条件,Routh稳定判据。
2.稳态性能分析(1)稳态误差的概念,根据定义求取误差传递函数,由终值定理计算稳态误差;(2)静态误差系数和动态误差系数,系统型别与静态误差系数,影响稳态误差的因素。
3.动态性能分析(1)一阶系统特征参数与动态性能指标间的关系;(2)典型二阶系统的特征参数与性能指标的关系;(3)附加闭环零极点对系统动态性能的影响;(4)主导极点的概念,用此概念分析高阶系统。
(四)线性系统的根轨迹法1. 根轨迹的概念,根轨迹方程,幅值条件和相角条件。
2. 绘制根轨迹的基本规则。
3. 0o 根轨迹。
非最小相位系统的根轨迹及正反馈系统的根轨迹的画法。
4. 等效开环传递函数的概念,参数根轨迹。
武汉理工大学各专业及分数线分析(2012年)
606.59 17 606.40 44 606.04 166 606.01 27 605.89 70 604.74 604.06 603.95 603.69 15 15 48 30 1234 人数 合计
武汉理工大学,共招2035人,某某同学578,高出一本线27分 2011年各专业,录取分数, 专业名称前为专业代码,后为2012年招生数 最高分高出一本分数 最高分、最低分、平均分
31材料科学与工程(88人) 45车辆工程(50人) 41机械设计制造及其自动化(48人) 30高分子材料与工程(20人) 23材料物理(8人) 33复合材料与工程(15人) 22光信息科学与技术(20人) 75船舶与海洋工程(65人) 50电气工程及其自动化(65人) 61土木工程(55人) 54通信工程(60人) 21电子信息科学与技术(20人) 42材料成型与控制工程(52人) 01经济学类(55人)含经济经贸金融三个专业 52电子信息工程(58人)课程高等数学线性代 数 概率与统计离散数学大学物理 49能源动力系统及自动化(51人) 48热能与动力工程(37人) 56电子科学与技术(35人)数学物理物理电子光 电子微电子学基本理论知识 16信息与计算科学(17人)属于理学大类数学类 理学 55计算机科学与技术(44人) 38机械类(机电类)(166人) 17应用化学27 51自动化(70人) 26统计学(15人)理学大类统计学类是应用数 学的一个分支 77工程结构分析(15人)工学理论力学材料力学 软件工程弹塑性力学振动力学有限元结构分析 与仿真 57信息工程(48人)工学通信系统和通信网方 面,对数学物理有很高的要求 76工程力学(30人)理论力学、材料力学、软 件工4 626 620 614 619 620 621 625 624 625 618 614 618 623 617 613 624 616 622 619 613 617 614 608 633 612
2012年考研数学三大纲
2012考研数学三大纲试卷满分为150分,考试时间为180分钟 高等数学 约56% 线性代数 约22% 概率论与数理统计 约22%单项选择题 8小题,每小题4分,共32分 填空题 6小题,每小题4分,共24分 解答题(包括证明题) 9小题,共94分微积分一.函数、极限、连续考试内容函数的概念及表示法 函数的有界性、单调性、周期性和奇偶性 复合函数、反函数、分段函数和隐函数 基本初等函数的性质及其图形 初等函数 函数关系的建立数列极限与函数极限的定义及其性质 函数的左极限和右极限 无穷小量和无穷大量的概念及其关系 无穷小量的性质及无穷小量的比较 极限的四则运算 极限存在的两个准则:单调有界准则和夹逼准则(不包含柯西极限存在准则??) 两个重要极限: 0sin 1lim1,lim(1)x x x x e x x→→∞=+=函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质 考试要求1. 理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系。
2. 了解函数的有界性、单调性、周期性和奇偶性。
3. 理解复合函数及分段函数的概念,了解反函数及隐函数的概念。
4. 掌握基本初等函数的性质及其图形,了解初等函数的概念。
5. 了解数列和函数极限(包括左极限与右极限)的概念。
6. 了解极限的性质与极限存在的两个准则,掌握极限的四则运算法则,掌握利用两个重要极限求极限的方法。
7. 理解无穷小量的概念和基本性质,掌握无穷小量的比较方法,了解无穷大量的概念及其与无穷小量的关系。
8. 理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。
9. 了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质。
本章考查焦点: 1.极限的计算.2.函数连续性的性质及间断点的分类.二.一元函数微分学考试内容导数和微分的概念导数的几何意义和经济意义函数的可导性与连续性之间的关系平面曲线的切线和法线导数和微分的四则运算基本初等函数的导数复合函数、反函数和隐函数的微分法高阶导数一阶微分形式的不变性微分中值定理洛必达法则函数单调性的判别函数的极值函数图形的凹凸性、拐点及渐近线函数图形的描绘函数的最大值与最小值考试要求1.理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义与经济意义(含边际与弹性的概念),会求平面曲线的切线方程和法线方程。
2012数学三考研大纲58576
2011年全国硕士研究生入学统一考试数学考试大纲--数学三考试科目:微积分、线性代数、概率论与数理统计考试形式和试卷结构一、试卷满分及考试时间试卷满分为150分,考试时间为180分钟.二、答题方式答题方式为闭卷、笔试.三、试卷内容结构微积分 56%线性代数 22%概率论与数理统计 22%四、试卷题型结构试卷题型结构为:单项选择题选题 8小题,每题4分,共32分填空题 6小题,每题4分,共24分解答题(包括证明题) 9小题,共94分微积分一、函数、极限、连续考试内容函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限和右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:0sinlim1xxx→=1lim1xxex→∞⎛⎫+=⎪⎝⎭函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质考试要求1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.2.了解函数的有界性.单调性.周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.了解数列极限和函数极限(包括左极限与右极限)的概念.6.了解极限的性质与极限存在的两个准则,掌握极限的四则运算法则,掌握利用两个重要极限求极限的方法.7.理解无穷小的概念和基本性质.掌握无穷小量的比较方法.了解无穷大量的概念及其与无穷小量的关系.8.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.9.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理.介值定理),并会应用这些性质.二、一元函数微分学考试内容导数和微分的概念导数的几何意义和经济意义函数的可导性与连续性之间的关系平面曲线的切线与法线导数和微分的四则运算基本初等函数的导数复合函数、反函数和隐函数的微分法高阶导数一阶微分形式的不变性微分中值定理洛必达(L'Hospital)法则函数单调性的判别函数的极值函数图形的凹凸性、拐点及渐近线函数图形的描绘函数的最大值与最小值考试要求1.理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义与经济意义(含边际与弹性的概念),会求平面曲线的切线方程和法线方程.2.掌握基本初等函数的导数公式.导数的四则运算法则及复合函数的求导法则,会求分段函数的导数会求反函数与隐函数的导数.3.了解高阶导数的概念,会求简单函数的高阶导数.4.了解微分的概念,导数与微分之间的关系以及一阶微分形式的不变性,会求函数的微分.5.理解罗尔(Rolle)定理.拉格朗日( Lagrange)中值定理.了解泰勒定理.柯西(Cauchy)中值定理,掌握这四个定理的简单应用.6.会用洛必达法则求极限.7.掌握函数单调性的判别方法,了解函数极值的概念,掌握函数极值、最大值和最小值的求法及其应用.8.会用导数判断函数图形的凹凸性(注:在区间(,)a b内,设函数()f x具有二阶导数.当()0f x''>时,()f x的图形是凹的;当()0f x''<时,()f x的图形是凸的),会求函数图形的拐点和渐近线.9.会描述简单函数的图形.三、一元函数积分学考试内容原函数和不定积分的概念不定积分的基本性质基本积分公式定积分的概念和基本性质定积分中值定理积分上限的函数及其导数牛顿一莱布尼茨(Newton- Leibniz)公式不定积分和定积分的换元积分法与分部积分法反常(广义)积分定积分的应用考试要求1.理解原函数与不定积分的概念,掌握不定积分的基本性质和基本积分公式,掌握不定积分的换元积分法和分部积分法.2.了解定积分的概念和基本性质,了解定积分中值定理,理解积分上限的函数并会求它的导数,掌握牛顿一莱布尼茨公式以及定积分的换元积分法和分部积分法.3.会利用定积分计算平面图形的面积.旋转体的体积和函数的平均值,会利用定积分求解简单的经济应用问题.4.了解反常积分的概念,会计算反常积分.四、多元函数微积分学考试内容多元函数的概念二元函数的几何意义二元函数的极限与连续的概念有界闭区域上二元连续函数的性质多元函数偏导数的概念与计算多元复合函数的求导法与隐函数求导法 二阶偏导数 全微分多元函数的极值和条件极值、最大值和最小值 二重积分的概念、基本性质和计算 无界区域上简单的反常二重积分考试要求1.了解多元函数的概念,了解二元函数的几何意义.2.了解二元函数的极限与连续的概念,了解有界闭区域上二元连续函数的性质.3.了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,会求多元隐函数的偏导数.4.了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决简单的应用问题.5.了解二重积分的概念与基本性质,掌握二重积分的计算方法(直角坐标.极坐标).了解无界区域上较简单的反常二重积分并会计算.五、无穷级数 考试内容常数项级数收敛与发散的概念 收敛级数的和的概念 级数的基本性质与收敛的必要条件 几何级数与p 级数及其收敛性正项级数收敛性的判别法 任意项级数的绝对收敛与条件收敛 交错级数与莱布尼茨定理 幂级数及其收敛半径、收敛区间(指开区间)和收敛域幂级数的和函数 幂级数在其收敛区间内的基本性质简单幂级数的和函数的求法 初等函数的幂级数展开式考试要求1.了解级数的收敛与发散.收敛级数的和的概念.2.了解级数的基本性质和级数收敛的必要条件,掌握几何级数及p 级数的收敛与发散的条件,掌握正项级数收敛性的比较判别法和比值判别法.3.了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系,了解交错级数的莱布尼茨判别法. 4.会求幂级数的收敛半径、收敛区间及收敛域.5.了解幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求简单幂级数在其收敛区间内的和函数.6.了解x e .sin x .cos x .ln(1)x +及(1)x α+的麦克劳林(Maclaurin )展开式.六、常微分方程与差分方程 考试内容常微分方程的基本概念 变量可分离的微分方程 齐次微分方程 一阶线性微分方程线性微分方程解的性质及解的结构定理二阶常系数齐次线性微分方程及简单的非齐次线性微分方程差分与差分方程的概念 差分方程的通解与特解 一阶常系数线性差分方程 微分方程的简单应用考试要求1.了解微分方程及其阶、解、通解、初始条件和特解等概念.2.掌握变量可分离的微分方程.齐次微分方程和一阶线性微分方程的求解方法.3.会解二阶常系数齐次线性微分方程.4.了解线性微分方程解的性质及解的结构定理,会解自由项为多项式.指数函数.正弦函数.余弦函数的二阶常系数非齐次线性微分方程.5.了解差分与差分方程及其通解与特解等概念.6.了解一阶常系数线性差分方程的求解方法.7.会用微分方程求解简单的经济应用问题.线性代数一、行列式考试内容行列式的概念和基本性质行列式按行(列)展开定理考试要求1.了解行列式的概念,掌握行列式的性质.2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.二、矩阵考试内容矩阵的概念矩阵的线性运算矩阵的乘法方阵的幂方阵乘积的行列式矩阵的转置逆矩阵的概念和性质矩阵可逆的充分必要条件伴随矩阵矩阵的初等变换初等矩阵矩阵的秩矩阵的等价分块矩阵及其运算考试要求1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵的定义及性质,了解对称矩阵、反对称矩阵及正交矩阵等的定义和性质.2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.4.了解矩阵的初等变换和初等矩阵及矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的逆矩阵和秩的方法.5.了解分块矩阵的概念,掌握分块矩阵的运算法则.三、向量考试内容向量的概念向量的线性组合与线性表示向量组的线性相关与线性无关向量组的极大线性无关组等价向量组向量组的秩向量组的秩与矩阵的秩之间的关系向量的内积线性无关向量组的正交规范化方法考试要求1.了解向量的概念,掌握向量的加法和数乘运算法则.2.理解向量的线性组合与线性表示、向量组线性相关、线性无关等概念,掌握向量组线性相关、线性无关的有关性质及判别法.3.理解向量组的极大线性无关组的概念,会求向量组的极大线性无关组及秩.4.理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系.5.了解内积的概念.掌握线性无关向量组正交规范化的施密特(Schmidt)方法.四、线性方程组考试内容线性方程组的克莱姆(Cramer)法则线性方程组有解和无解的判定齐次线性方程组的基础解系和通解非齐次线性方程组的解与相应的齐次线件方程组(导出组)的解之间的关系非齐次线性方程组的通解考试要求1.会用克莱姆法则解线性方程组.2.掌握非齐次线性方程组有解和无解的判定方法.3.理解齐次线性方程组的基础解系的概念,掌握齐次线性方程组的基础解系和通解的求法.4.理解非齐次线性方程组解的结构及通解的概念.5.掌握用初等行变换求解线性方程组的方法.五、矩阵的特征值和特征向量考试内容矩阵的特征值和特征向量的概念、性质相似矩阵的概念及性质矩阵可相似对角化的充分必要条件及相似对角矩阵实对称矩阵的特征值和特征向量及相似对角矩阵考试要求1.理解矩阵的特征值、特征向量的概念,掌握矩阵特征值的性质,掌握求矩阵特征值和特征向量的方法.2.理解矩阵相似的概念,掌握相似矩阵的性质,了解矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法.3.掌握实对称矩阵的特征值和特征向量的性质.六、二次型考试内容二次型及其矩阵表示合同变换与合同矩阵二次型的秩惯性定理二次型的标准形和规范形用正交变换和配方法化二次型为标准形二次型及其矩阵的正定性1.了解二次型的概念,会用矩阵形式表示二次型,了解合同变换与合同矩阵的概念.2.了解二次型的秩的概念,了解二次型的标准形、规范形等概念,了解惯性定理,会用正交变换和配方法化二次型为标准形.3.理解正定二次型、正定矩阵的概念,并掌握其判别法.概率论与数理统计一、随机事件和概率考试内容随机事件与样本空间事件的关系与运算完备事件组概率的概念概率的基本性质古典型概率几何型概率条件概率概率的基本公式事件的独立性独立重复试验考试要求1.了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系及运算.2.理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式以及贝叶斯(Bayes)公式等.3.理解事件的独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法.二、随机变量及其分布考试内容随机变量随机变量的分布函数的概念及其性质离散型随机变量的概率分布连续型随机变量的概率密度常见随机变量的分布随机变量函数的分布考试要求1.理解随机变量的概念,理解分布函数(){}()F x P X x x=≤-∞<<∞的概念及性质,会计算与随机变量相联系的事件的概率.2.理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布(,)B n p、几何分布、超几何分布、泊松(Poisson)分布()Pλ及其应用.3.掌握泊松定理的结论和应用条件,会用泊松分布近似表示二项分布.4.理解连续型随机变量及其概率密度的概念,掌握均匀分布(,)U a b、正态分布2(,)Nμσ、指数分布及其应用,其中参数为(0)λλ>的指数分布()Eλ的概率密度为()00xef xxλλ-⎧=⎨≤⎩若x>0若5.会求随机变量函数的分布.三、多维随机变量及其分布多维随机变量及其分布函数二维离散型随机变量的概率分布、边缘分布和条件分布二维连续型随机变量的概率密度、边缘概率密度和条件密度随机变量的独立性和不相关性常见二维随机变量的分布两个及两个以上随机变量的函数的分布考试要求1.理解多维随机变量的分布函数的概念和基本性质.2.理解二维离散型随机变量的概率分布和二维连续型随机变量的概率密度、掌握二维随机变量的边缘分布和条件分布.3.理解随机变量的独立性和不相关性的概念,掌握随机变量相互独立的条件,理解随机变量的不相关性与独立性的关系.4.掌握二维均匀分布和二维正态分布221212(,;,;)N u uσσρ,理解其中参数的概率意义.5.会根据两个随机变量的联合分布求其函数的分布,会根据多个相互独立随机变量的联合分布求其函数的分布.四、随机变量的数字特征考试内容随机变量的数学期望(均值)、方差、标准差及其性质随机变量函数的数学期望切比雪夫(Chebyshev)不等式矩、协方差、相关系数及其性质考试要求1.理解随机变量数字特征(数学期望、方差、标准差、矩、协方差、相关系数)的概念,会运用数字特征的基本性质,并掌握常用分布的数字特征.2.会求随机变量函数的数学期望.3.了解切比雪夫不等式.五、大数定律和中心极限定理考试内容切比雪夫大数定律伯努利(Bernoulli)大数定律辛钦(Khinchine)大数定律棣莫弗—拉普拉斯(De Moivre-Laplace)定理列维—林德伯格(Levy-Lindberg)定理考试要求1.了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量序列的大数定律).2.了解棣莫弗—拉普拉斯中心极限定理(二项分布以正态分布为极限分布)、列维—林德伯格中心极限定理(独立同分布随机变量序列的中心极限定理),并会用相关定理近似计算有关随机事件的概率.六、数理统计的基本概念考试内容总体个体简单随机样本统计量经验分布函数 样本均值样本方差和样本矩2χ分布t 分布F 分布分位数正态总体的常用抽样分布考试要求1.了解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念,其中样本方差定义为2211()1ni i S X X n ==--∑2.了解产生2χ变量、t 变量和F 变量的典型模式;了解标准正态分布、2χ分布、t 分布和F 分布得上侧α分位数,会查相应的数值表.3.掌握正态总体的样本均值.样本方差.样本矩的抽样分布. 4.了解经验分布函数的概念和性质.七、参数估计 考试内容点估计的概念 估计量与估计值 矩估计法 最大似然估计法考试要求1.了解参数的点估计、估计量与估计值的概念.2.掌握矩估计法(一阶矩、二阶矩)和最大似然估计法.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
武汉理工大学高等数学2012年考研大纲参考书目考试范围
(自命题数学)
适用专业:光电子信息、电子科学技术、计算机科学技术等专业
题型:填空题、选择题、计算题、应用题、证明题
总分:150分
考查要点
1. 函数、极限、连续
函数:函数的概念,函数的特性,复合函数的概念,基本初等函数的性质及图形。
极限:数列极限的定义,收敛数列的性质(唯一性、有界性);函数极限的定义,函数的左右极限,函数极限的性质(局部保号性、不等式取极限),无穷小与无穷大的概念;极限的四则运算法则,两个极限存在准则(夹逼准则和单调有界准则),两个重要极限,无穷小的比较。
函数的连续性:函数连续的定义,间断点及其分类,初等函数的连续性,闭区间上连续函数的性质(最大最小值定理,零点定理和介值定理)。
2.一元函数微分学
导数与微分:导数的定义,导数的几何意义,导数的物理应用,可导性与连续性的关系;导数的四则运算法则,复合函数求导法则,基本初等函数的导数公式;高阶导数的概念,初等函数的一、二阶导数的求法,隐函数和参数式所确定的函数的一、二阶导数的求法;微分的定义,微分的运算法则(含微分形式的不变性),微分在近似计算中的应用。
中值定理与导数的应用:罗尔定理,拉格朗日中值定理,柯西中值定理,泰勒公式;洛必达法则;用导数判定函数的单调性,函数极值概念及其求法,简单的最大值最小值应用问题,用导数判定函数曲线的凹凸性与拐点,水平与垂直渐近线,函数作图;弧微分,曲率的定义及其计算,曲率圆与曲率半径。
3.一元函数积分学
不定积分:原函数与不定积分的定义,不定积分的性质,基本积分公式,换元积分法,分部积分法,有理函数、三角函数有理式及简单无理函数的积分。
定积分及其应用:定积分的定义及其性质,积分上限的函数及其导数,牛顿—莱布尼茨公式,定积分的换元法和分部积分法;反常积分的概念;定积分在几何学中的应用(面积、旋转体体积、平行截面面积为已知的立体的体积、平面曲线的弧长),定积分在物理学中的应用(路程、功、水压力、引力)。
4.向量代数与空间解析几何
向量代数:空间直角坐标系,向量概念,向量的线性运算,向量的坐标,向量的数量积,向量的向量积,两向量的夹角,两向量平行与垂直的条件。
平面与直线:平面的方程(点法式、一般式、截距式),直线的方程(参数式、对称式、一般式),夹角(平面与平面、平面与直线、直线与直线),平行与垂直的条件(平面与平面、平面与直线、直线与直线)。
曲面与空间曲线:曲面方程的概念,球面方程,以坐标轴为旋转轴的旋转曲面,母线平行于坐标轴的柱面方程;空间曲线的参数方程和一般方程,空间曲线在坐标面上的投影。
二次曲面:椭球面,双曲面,抛物面。
5.多元函数微分学
多元函数:多元函数的概念,二元函数的几何表示,二元函数的极限与连续性,有界闭区域上连续函数的性质。
偏导数与全微分:偏导数的定义及其计算法,高阶偏导数的概念及复合函数二阶偏导数的求法;全微分的定义,全微分存在的必要条件和充分条件,多元复合函数的求偏导法则,隐函
数的求偏导公式;方向导数和梯度。
偏导数的应用:空间曲线的切线与法平面,曲面的切平面与法线;多元函数的极值及其求法,最大值、最小值问题,条件极值,拉格朗日乘数法。
6.多元函数积分学
二重积分:二重积分的概念、性质及计算(直角坐标、极坐标);二重积分在几何学中的应用(曲面面积、立体体积),二重积分在物理学中的应用(质量、重心、转动惯量、引力)。
三重积分:三重积分的概念、性质与计算(直角坐标、柱面坐标、球面坐标);三重积分的应用。
曲线积分:两类曲线积分的定义与性质,两类曲线积分的计算法;曲线积分的应用;格林公式,平面曲线积分与路径无关的条件。
曲面积分:两类曲面积分的定义与性质,两类曲面积分的计算法;曲面积分的应用;高斯公式,斯托克斯公式;通量与散度、环流量与旋度的概念与计算。
7.无穷级数
常数项级数:无穷级数及其收敛与发散的定义,无穷级数的基本性质,级数收敛的必要条件,几何级数和P—级数的敛散性;正项级数的比较、比值及根值审敛法,交错级数的莱布尼兹定理,绝对收敛与条件收敛的概念及其关系。
幂级数:幂级数的概念,阿贝尔定理,较简单的幂级数的收敛域的求法,幂级数在其收敛区间内的基本性质,幂级数求和函数;泰勤级数,麦克劳林级数,函数展开成幂级数,幂级数在近似计算中的应用。
傅里叶级数:三角级数概念,狄利克雷充分条件,函数展开为傅里叶级数,奇偶函数的傅里叶级数,函数展开为正弦或余弦级数, 上函数的傅里叶级数。
8.常微分方程
微分方程的一般概念:微分方程的定义、阶、解、通解、初始条件、特解。
一阶微分方程:可分离变量微分方程,齐次方程,一阶线性微分方程,伯努利方程,全微分方程。
可降阶的高阶微分方程:型,型,型。
高阶线性微分方程:高阶线性微分方程解的结构,二阶常系数齐次线性微分方程,二阶常系数非齐次线性微分方程型,
型),欧拉方程。
用微分方程解简单的几何问题和物理问题。