蛋白质含量测定方法汇总

合集下载

6种方法测定蛋白质含量

6种方法测定蛋白质含量

6种方法测定蛋白质含量[ 文章来源: | 文章作者: | 发布时间:2006-12-25| 字体: [大 中 小]一、微量凯氏(kjeldahl )定氮法样品与浓硫酸共热。

含氮有机物即分解产生氨(消化),氨又与硫酸作用,变成硫酸氨。

经强碱碱化使之分解放出氨,借蒸汽将氨蒸至酸液中,根据此酸液被中和的程度可计算得样品之氮含量。

若以甘氨酸为例,其反应式如下: nh 2ch 2cooh+3h 2so 4——2co 2+3so 2+4h 2o+nh 3 (1)2nh 3+h 2so 4——(nh 4)2so 4 (2)(nh 4)2so 4+2naoh ——2h 2o+na 2so 4+2nh 3 (3)反应(1)、(2)在凯氏瓶内完成,反应(3)在凯氏蒸馏装置中进行。

为了加速消化,可以加入cuso4作催化剂,k2so4以提高溶液的沸点。

收集氨可用硼酸溶液,滴定则用强酸。

实验和计算方法这里从略。

计算所得结果为样品总氮量,如欲求得 样品中蛋白含量,应将总氮量减去非蛋白氮即得。

如欲进一步求得样品中蛋白质的含量,即用样品中蛋白氮乘以6.25即得。

二、双缩脲法(biuret 法)(一)实验原理双缩脲(nh3conhconh3)是两个分子脲经180℃左右加热,放出一个分子氨后得到的产物。

在强碱性溶液中,双缩脲与cuso4形成紫色络合物,称为双缩脲反应。

凡具有两个酰胺基或两个直接连接的肽键,或能过一个中间碳原子相连的肽键,这类化合物都有双缩脲反应。

紫色络合物颜色的深浅与蛋白质浓度成正比,而与蛋白质分子量及氨基酸成分无关,故可用来测定蛋白质含量。

测定范围为1-10mg 蛋白质。

干扰这一测定的物质主要有:硫酸铵、tris 缓冲液和某些氨基酸等。

此法的优点是较快速 ,不同的蛋白质产生颜色的深浅相近,以及干扰物质少。

主要的缺点是灵敏度差。

因此双缩脲法常用于需要快速,但并不需要十分精确的蛋白质测定。

(二)试剂与器材1. 试剂:(1)标准蛋白质溶液:用标准的结晶牛血清清蛋白(bsa)或标准酪蛋白,配制成10mg/ml的标准蛋白溶液,可用bsa 浓度1mg/ml的a280为0.66来校正其纯度。

测量蛋白质含量的方法

测量蛋白质含量的方法

蛋白质含量测定蛋白质含量测定方法,是生物化学研究中最常用、最基本的分析之一。

目前常用的方法有凯氏定氮法(Kjedahl)、双缩脲法(Biuret)、紫外吸收法、考马斯亮蓝法(Bradford)。

其中Bradford法灵敏度最高,比紫外吸收法灵敏10~20倍Biuret 法灵敏100倍以上。

凯氏定氮法虽然比较复杂,但较准确,往往以定氮法测定的蛋白质作为其他方法的标准蛋白质。

1.凯氏定氮法1.1 原理凯氏定氮法测定蛋白质分为样品消化、蒸馏、吸收和滴定4个过程。

其原理是样品中含氮有机化合物与浓硫酸在催化剂作用下共热消化,含氮有机物分解产生氨,氨又与—酸作用,变成硫酸铵。

然后加碱蒸馏放出氨,氨用过量的硼酸溶液吸收,再用盐酸标准溶液滴定求出总氮量换算为蛋白质含量。

1.2 特点凯氏定氮法是目前分析有机化合物含氮量常用的方法,是测定试样中总有机氮最准确和最简单的方法之一,被国际国内作为法定的标准检验方法。

该凯氏定氮法适用范围广泛,用于标准蛋白质的准确测定,干扰少,干扰是非蛋白氮(可用三氯乙酸沉淀蛋白质而分离)测定结果准确,重现性好,但操作复杂费时,试剂消耗量大。

费时太长,通常8-10个小时,灵敏度低,测定范围是0.2-1.0mg。

2.双缩脲法2.1 原理双缩脲(N}I3C0NHC0NH 是两个分子脲经180℃左右加热,放出1个分子氨后得到的产物。

在强碱性溶液中,双缩脲与CuSO 形成紫色络合物,称为双缩脲反应。

凡具有两个酰胺基或两个直接连接的肽键,或能够以1个中间碳原子相连的肽键,这类化合物都有双缩脲反应。

紫色络合物颜色的深浅与蛋白质浓度成正比,而与蛋白质分子量及氨基酸成分无关,故可用来测定蛋白质含量。

2.2特点双缩脲法中样品的取用量对测定结果的准确性有显著影响.采用0.5 g样品,40 mL双缩脲试剂的比例具有较高的检测精度。

双缩脲法对不同的蛋白质产生颜色的深浅相近,不受温度的影响。

可快速测定蛋白质含量,试剂单一,方法简便,干扰物质少,如硫酸铵,Tris缓冲液,某些氨基酸。

测蛋白质含量方法

测蛋白质含量方法

测蛋白质含量方法测定蛋白质含量是生物化学和生物技术研究中常用的实验手段之一。

蛋白质是生物体内重要的组成部分,其含量的准确测定对于研究细胞功能、药物筛选和疾病诊断具有重要意义。

本文将介绍几种常用的测定蛋白质含量的方法。

一、比色法比色法是一种常用的测定蛋白质含量的方法。

其基本原理是利用蛋白质与染色剂之间的化学反应,通过比色计测量吸光度来确定蛋白质的含量。

常用的染色剂有布拉德福试剂、伯胺蓝试剂和康氏试剂等。

比色法测定蛋白质含量的优点是操作简单、结果准确,但对于一些特定蛋白质可能存在一定的误差。

二、生物素标记法生物素标记法是一种利用生物素与蛋白质之间的亲和性进行测定的方法。

生物素通过共价结合到蛋白质上,形成生物素标记的蛋白质。

然后利用生物素与亲和素结合的特异性,使用亲和素结合物进行测定。

这种方法的优点是具有高灵敏度和高特异性,可以测定低浓度的蛋白质。

三、Western blottingWestern blotting是一种常用的蛋白质检测方法。

它通过将蛋白质样品进行电泳分离,然后转移到膜上,并使用特异性抗体与目标蛋白质结合,最后利用染色剂可视化目标蛋白质。

这种方法可以检测特定蛋白质的存在和相对含量,并且可以检测蛋白质的修饰状态,如磷酸化、乙酰化等。

四、质谱法质谱法是一种高灵敏度的蛋白质检测方法。

它通过将蛋白质进行消化,得到肽段,然后利用质谱仪进行分析。

质谱法可以用于鉴定未知蛋白质的结构和确定蛋白质的修饰位点,同时也可以测定蛋白质的相对含量。

测定蛋白质含量的方法有很多种,每种方法都有其特点和适用范围。

在选择方法时,需要根据实验目的、样品的性质和实验条件等因素进行综合考虑。

此外,根据实验的要求和需求,也可以结合多种方法进行蛋白质含量的测定,以提高结果的准确性和可靠性。

蛋白质含量测定方法汇总[整理]

蛋白质含量测定方法汇总[整理]

蛋白质含量测定方法汇总[整理]蛋白质含量测定是一种用于测定任何生物样品中蛋白质含量的有效测试方法。

此外,蛋白质含量也可以被用于检测不同生物样品中的样本污染程度的指标,以及生物样品中某种从另一个样本污染的量。

现今,存在许多蛋白质含量测定的方法,通常称作“蛋白质测定方法”,它们常用于检测各种类型的高分子生物物质,如蛋白质、核酸、多糖、脂类等。

下面总结了一些常见的蛋白质含量测定方法:1、分子吸光法:分子吸光法是一种常用的蛋白质测定方法,它利用液体或气体样品中分子的光吸收特性来测量蛋白质的含量。

它通过测量样品当量吸收辐射的强度来测量含量,并通过分子结构及激发能获取分子吸收率。

2、酶标法:酶标法是一种常见的蛋白质测定方法,它使用特定酶将蛋白质转化为可测试物质来准确估算样品中蛋白质含量。

此外,也可以用其他物质作为指示物来改变酶反应的速率,从而获取蛋白质含量。

3、体外测定法:体外测定法是一种常见的蛋白质测定方法,它可以任意选择探测,即特定蛋白质向特定外部刺激物反应的速率,以反映样品中的蛋白质含量。

它在分析较新的样品以及批量定量分析中有很大的优势。

4、表面增强拉曼光谱:表面增强拉曼光谱是一种新的蛋白质测定方法,它利用光的调制前后产生的均方根像素来测量蛋白质的含量,这种方法可在低浓度范围内准确定量样品中的蛋白质含量。

5、比多肽配体应答行为水平测定:比多肽配体应答行为水平是一种常见的蛋白质测定方法,它利用特指性多肽核酸探针乙酰化后,在特定条件下发生应答强度及反应速率的改变,从而测量样品中的蛋白质含量。

这是一种可以在短时间内实现高灵敏度和高精度的测定方法。

6、限制性酶体系:限制酶体系是一种常见的蛋白质测定方法,它利用限制性酶来切割或降解蛋白质链,从而得到可用于测定蛋白质含量的切片产物。

限制酶体系也能够有效地检测末端特异性蛋白质种类,以及它们的分布情况。

蛋白质含量测定方法

蛋白质含量测定方法

蛋白质含量的测定方法有:凯氏定氮法、双缩脲法、酚试剂法、紫外吸收法、考马斯亮蓝法。

1、凯氏定氮法
凯氏定氮法是测定化合物或混合物中总氮量的一种方法。

即在有催化剂的条件下,用浓硫酸消化样品将有机氮都转变成无机铵盐,然后在碱性条件下将铵盐转化为氨,随水蒸气蒸馏出来并为过量的硼酸液吸收,再以标准盐酸滴定,就可计算出样品中的氮量。

由于蛋白质含氮量比较恒定,可由其氮量计算蛋白质含量,故此法是经典的蛋白质定量方法。

2、双缩脲法
双缩脲法是一个用于鉴定蛋白质的分析方法。

双缩脲试剂是一个碱性的含铜试液,呈蓝色,由1%氢氧化钾、几滴1%硫酸铜和酒石酸钾钠配制。

当底物中含有肽键时(多肽),试液中的铜与多肽配位,配合物呈紫色。

可通过比色法分析浓度,在紫外可见光谱中的波长为540nm。

鉴定反应的灵敏度为5-160mg/ml。

鉴定反应蛋白质单位1-10mg。

3、酚试剂法
取6支试管分别标号,前5支试管分别加入不同浓度的标准蛋白溶液,最后一支试管加待测蛋白质溶液,不加标准蛋白溶液,在室温下放置30分钟,以未加蛋白质溶液的第一支试管作为空白对照,于650nm波长处测定各管中溶液的吸光度值。

4、紫外吸收法
大多数蛋白质在280nm波长处有特征的最大吸收,这是由于蛋白质中有酪氨酸,色氨酸和苯丙氨酸存在,可用于测定0.1~0.5mg/mL含量的蛋白质溶液。

5、考马斯亮蓝法
考马斯亮蓝显色法的基本原理是根据蛋白质可与考马斯亮蓝G-250定量结合。

一般情况,当溶液中的蛋白质浓度增加时,显色液在595nm处的吸光度基
本能保持线性增加,因此可以用考马斯亮蓝G-250显色法来测定溶液中蛋白质的含量。

蛋白质含量的测定方法及原理

蛋白质含量的测定方法及原理

蛋白质含量的测定方法及原理一、紫外吸收法。

紫外吸收法是一种常用的蛋白质含量测定方法,其原理是根据蛋白质在280nm波长处的特征吸收峰来进行测定。

在实验中,首先将待测样品溶解于适量的缓冲液中,然后使用紫外可见分光光度计测定样品在280nm处的吸光值,通过标准曲线的对照,可以计算出样品中蛋白质的含量。

二、比色法。

比色法是另一种常用的蛋白质含量测定方法,其原理是利用蛋白质与某些特定试剂发生化学反应后产生显色物质,通过测定显色物质的吸光值来计算样品中蛋白质的含量。

常用的试剂包括布拉德福试剂、伯杰试剂等,不同试剂适用于不同类型的蛋白质测定。

三、BCA法。

BCA法是一种基于铜离子与蛋白质中的蛋白质酰基发生还原反应的测定方法。

其原理是将待测样品与BCA试剂混合后在60℃条件下反应,然后使用分光光度计测定产生的显色物质的吸光值,通过标准曲线计算出样品中蛋白质的含量。

四、Lowry法。

Lowry法是一种以菁蓝G与蛋白质发生化学反应产生显色物质的测定方法。

其原理是将待测样品与碱液、菁蓝G和还原剂混合后在室温下反应,然后使用分光光度计测定产生的显色物质的吸光值,通过标准曲线计算出样品中蛋白质的含量。

五、总蛋白法。

总蛋白法是一种直接测定样品中总蛋白含量的方法,其原理是将待测样品与总蛋白试剂混合后在室温下反应,然后使用分光光度计测定产生的显色物质的吸光值,通过标准曲线计算出样品中蛋白质的含量。

总结,蛋白质含量的测定方法及原理有多种,每种方法都有其适用的样品类型和测定条件,研究人员可以根据自己的实验需要选择合适的方法进行蛋白质含量的测定工作。

希望本文所介绍的内容能为相关领域的研究工作提供一定的参考价值。

蛋白含量测定方法

蛋白含量测定方法

蛋白含量测定方法蛋白含量是衡量食品、饲料、化妆品、生物材料等中蛋白质含量的重要参数。

常用的测定方法主要有生物学试剂法、化学试剂法和光谱法。

生物学试剂法是通过酶促反应或免疫反应测定蛋白质含量的方法。

酶促反应常用的是比色法,其中最常用的有布拉德福法和氨基酸分析法。

布拉德福法是利用蛋白质与染色剂结合生成可定量比色产物的原理,通过测定产物的光密度来计算出蛋白质的含量。

氨基酸分析法是将蛋白质水解成氨基酸,再利用比色法测定氨基酸浓度来间接测定蛋白质含量。

化学试剂法是通过化学反应或物理性质的变化来测定蛋白质含量的方法。

常用的化学试剂包括低里德杯法、尼普尔蓝法和比色法。

低里德杯法是利用氨基酸所含的磷酸和无机盐的性质来测定蛋白质含量。

尼普尔蓝法是通过尼普尔蓝与蛋白质之间的氢键结合生成可定量比色产物的原理来测定蛋白质含量。

比色法是将蛋白质溶解后,利用特定试剂与蛋白质发生反应,通过测定反应产物的光密度来计算蛋白质的含量。

光谱法是利用蛋白质的吸收、散射或荧光等性质来测定蛋白质含量的方法。

常用的光谱法有紫外可见光谱法和近红外光谱法。

紫外可见光谱法是通过蛋白质在紫外或可见光区域的吸收特性来测定蛋白质的含量。

近红外光谱法是利用蛋白质在近红外光区域的吸收特性和分子振动谱来测定蛋白质含量。

除了上述常用的方法外,流式细胞术和质谱法也可用于测定蛋白质含量。

流式细胞术是将蛋白质标记上荧光探针,通过流式细胞仪测定荧光强度来计算蛋白质的含量。

质谱法是通过测定蛋白质的质荷比来定量测定蛋白质的含量。

在实际应用中,选择合适的方法来测定蛋白质含量需要考虑多方面因素,包括测定样品的性质和目的、仪器设备的可用性和准确度、测定结果的稳定性和重复性等。

不同的方法有着各自的优缺点,可以根据具体情况选择合适的方法。

总的来说,蛋白含量的测定方法主要包括生物学试剂法、化学试剂法、光谱法、流式细胞术和质谱法等。

根据实际需求和条件,选择合适的方法来测定蛋白质含量是保证测定结果准确和可靠的关键步骤。

测定蛋白质含量常用方法

测定蛋白质含量常用方法

测定蛋白质浓度常用方法一,微量凯氏(Kjeldahl)定氮法二,双缩脲法(Biuret 法)三,Folin—酚试剂法(Lowry 法)四,紫外吸收法五,考马斯亮蓝法(Bradford 法)几种方法比较:方法灵敏度时间原理干扰物质说明凯氏定氮法(Kjedahl 法)灵敏度低,适用于0.2~1.0mg氮,误差为±2%费时8~10小时将蛋白氮转化为氨,用酸吸收后滴定非蛋白氮(可用三氯乙酸沉淀蛋白质而分离)用于标准蛋白质含量的准确测定;干扰少;费时太长双缩脲法(Biuret 法)灵敏度低1~20mg中速20~30分钟多肽键+碱性Cu2+?紫色络合物硫酸铵;Tris缓冲液;某些氨基酸用于快速测定,但不太灵敏;不同蛋白质显色相似紫外吸收法较为灵敏50~100μg 快速5~10分钟蛋白质中的酪氨酸和色氨酸残基在280nm处的光吸收各种嘌吟和嘧啶;各种核苷酸用于层析柱流出液的检测;核酸的吸收可以校正Folin-酚试剂法(Lowry法)灵敏度高≈5μg慢速40~60分钟双缩脲反应;磷钼酸-磷钨酸试剂被Tyr和Phe还原硫酸铵;Tris缓冲液;甘氨酸;各种硫醇耗费时间长;操作要严格计时;颜色深浅随不同蛋白质变化考马斯亮蓝法(Bradford 法) 灵敏度最高1~5μg快速5~15分钟考马斯亮蓝染料与蛋白质结合时,其λmax由465nm变为595nm强碱性缓冲液;TritonX-100;SDS最好的方法;干扰物质少;颜色稳定;颜色深浅随不同蛋白质变化五,考马斯亮兰法(bradford法)(一)实验原理双缩脲法(biuret法)和folin—酚试剂法(lowry法)的明显缺点和许多限制,促使科学家们去寻找更好的蛋白质溶液测定的方法。

1976年由bradford建立的考马斯亮兰法(bradford法),是根据蛋白质与染料相结合的原理设计的。

这种蛋白质测定法具有超过其他几种方法的突出优点,因而正在得到广泛的应用。

蛋白质含量测定方法汇总

蛋白质含量测定方法汇总

实验七蛋白质含量测定测定蛋白质的定量方法有很多,目前常用的有染料法,双缩脲(Biuret)法,酚试剂法(Lowry)法及紫外吸收法。

[目的要求]1.掌握测定蛋白质的含量基本方法。

2.了解染料法、双缩脲法、Lowry法和紫外吸收法测定原理。

一、染料法[实验原理]在酸性溶液中染料考马斯亮蓝G-250与蛋白质结合,此时考马斯亮蓝G-250颜色从红色变为蓝色,吸收高峰从460nm移至595nm。

利用这个原理可以测定蛋白质含量。

该法近年在某些方面有取代经典的Lowry法趋势,因为它操作简单,反应时间短,染料-蛋白质颜色稳定,抗干扰性强。

本法的缺点是:对于那些与标准蛋白氨基酸组成有较大差异的蛋白质,有一定误差,因为不同的蛋白质与染料的结合是不同的,故该法适合测定与标准蛋白质氨基酸组成相近的蛋白质。

[器材]吸量管;试管;721型分光光度计[试剂]1.标准牛血清白蛋白溶液:配成ml的溶液。

2.待测蛋白质溶液。

3.染料溶液:称取考马斯亮蓝G-250 溶于95%的酒精50ml,再加入85%的浓磷酸100ml,用水稀释至1000ml,混匀备用。

[操作步骤]1.标准曲线的绘制:试剂(ml)\管号 0 1 2 3 4 5标准蛋白溶液 00 OH 2染料溶液A595nm按上表分别向各支试管内加入各种试剂,充分混匀,5min后在595nm波长处以0号管调零,测定各管吸光度值(A)。

以吸光度值为纵坐标,蛋白质浓度为横坐标绘制标准曲线。

.样品测定:2.取1ml样品溶液(约含25~250微克蛋白质),加入染料溶液5ml混匀,5min后测定其595nm吸光度值,对照标准曲线求得蛋白质浓度。

二、双缩脲(Biuret)法测定蛋白质含量[实验原理]在碱性溶液中,双缩脲(HN-CO-NH-CO-NH)与二价铜离子作用形成紫红色的络合物,这22一反应称双缩脲反应。

凡分子中含二个或二个以上酰胺基(—CO-NH),或与此相似的基团[如2—CH-NH,—CS-NH,—C(NH)NH]的任何化合物,无论这类基团直接相连还是通过一个碳或2222氮原子间接相连,均可发生上述反应。

蛋白质含量的测定方法

蛋白质含量的测定方法

蛋白质含量的测定方法
蛋白质的含量是指在样品中蛋白质的质量或浓度。

测定蛋白质含量是许多生物学和生化实验中常用的实验方法之一,以下是一些常见的测定方法:
1. 布拉德福德法(Bradford法):该方法利用布拉德福德蛋白
质染料与蛋白质形成复合物,并产生特定的颜色,通过比色法测定颜色强度从而确定含量。

2. 低里氏法(Lowry法):该方法基于在碱性条件下,蛋白质
与碱性铜离子复合生成紫色产物的原理,通过比色法定量测定。

3. BCA法(Bicinchoninic Acid法):该方法利用BCA试剂与
蛋白质中的蛋白质产生螯合,形成紫色到蓝色的产物,并通过光度计测定吸光度从而测定含量。

4. 还原硝酸银法:该方法是通过硝酸银与蛋白质中的氨基酸中的硫原子反应产生黑色沉淀,通过沉淀的重量或者比色法测定吸光度来确定蛋白质含量。

5. 紫外吸收法:蛋白质具有特定的紫外吸收峰,在特定波长下进行测定,可以通过比较样品吸光度与标准曲线来计算蛋白质含量。

以上只是一些常见的测定方法,根据具体需要和实验条件的不同,可以选择适合的方法进行蛋白质含量的测定。

蛋白质含量测定方法大全

蛋白质含量测定方法大全

实验一蛋白质含量测定本实验的目的是学会各种蛋白质含量的测定方法。

了解各种测定方法的基本原理和优缺点。

蛋白质含量测定法,是生物化学研究中最常用、最基本的分析方法之一。

目前常用的有四种古老的经典方法,即定氮法,双缩尿法(Biuret法)、Folin-酚试剂法(Lowry法)和紫外吸收法。

另外还有一种近十年才普遍使用起来的新的测定法,即考马斯亮蓝法(Bradford法)。

其中Bradford法和Lowry法灵敏度最高,比紫外吸收法灵敏10~20倍,比Biuret法灵敏100倍以上。

定氮法虽然比较复杂,但较准确,往往以定氮法测定的蛋白质作为其他方法的标准蛋白质。

值得注意的是,这后四种方法并不能在任何条件下适用于任何形式的蛋白质,因为一种蛋白质溶液用这四种方法测定,有可能得出四种不同的结果。

每种测定法都不是完美无缺的,都有其优缺点。

在选择方法时应考虑:①实验对测定所要求的灵敏度和精确度;②蛋白质的性质;③溶液中存在的干扰物质;④测定所要花费的时间。

考马斯亮蓝法(Bradford法),由于其突出的优点,正得到越来越广泛的应用。

一、微量凯氏(Kjeldahl)定氮法样品与浓硫酸共热。

含氮有机物即分解产生氨(消化),氨又与硫酸作用,变成硫酸氨。

经强碱碱化使之分解放出氨,借蒸汽将氨蒸至酸液中,根据此酸液被中和的程度可计算得样品之氮含量。

若以甘氨酸为例,其反应式如下:CH2COOH|+3H2SO4→2CO2+3SO2+4H2O+NH3(1)NH22NH3+H2SO4→(NH4)2SO4(2)(NH4)2SO4+2NaOH→2H2O+Na2SO4+2NH3(3)反应(1)、(2)在凯氏瓶内完成,反应(3)在凯氏蒸馏装置中进行。

为了加速消化,可以加入CuSO4作催化剂,K2SO4以提高溶液的沸点。

收集氨可用硼酸溶液,滴定则用强酸。

实验和计算方法这里从略。

计算所得结果为样品总氮量,如欲求得样品中蛋白含量,应将总氮量减去非蛋白氮即得。

测定蛋白质含量方法

测定蛋白质含量方法

测定蛋白质含量方法
1. 布里亚蛋白定量法:利用蛋白质与荧光素的发光作用。

首先将不同浓度的标准蛋白质与荧光素混合后测定发光强度,制作标准曲线。

然后将待测蛋白质与荧光素混合后测定发光强度,根据标准曲线计算出蛋白质的含量。

2. 低里德蛋白定量法:根据蛋白质中色氨酸、酪氨酸、苯丙氨酸等芳香族氨基酸的特定吸收波长进行测量。

直接或间接测定蛋白质的含量。

3. 比色法:利用蛋白质与染料中亲合基团之间的反应测定蛋白质含量。

如利用布拉德福德染料,将蛋白质溶液与染料反应后测定吸光度,根据标准曲线计算出蛋白质含量。

4. 尿素/巯基乙醇(Urea/ME)法:将蛋白质加入含有尿素和巯基乙醇的缓冲液,等待蛋白质的还原和解离,根据吸光度测定巯基乙醇的浓度,再根据巯基乙醇与蛋白质的比例计算出蛋白质的含量。

5. Kjeldahl法:是一种常用的蛋白质含量分析方法。

将样品加入强酸,使其分解出所有氮,然后用强碱滴定测定氮酸的含量,最后计算出样品中蛋白质的含量。

测定蛋白质含量的方法有哪些

测定蛋白质含量的方法有哪些

测定蛋白质含量的方法有哪些测定蛋白质含量是生物化学实验中常见的一项工作,目的在于确定给定样品中蛋白质的含量。

这样的测定对于许多领域的研究和应用都是至关重要的,包括分子生物学、生物医学研究、食品科学和营养学等。

蛋白质含量的测定方法根据原理和技术的不同可以分为多种类型,下面将详细介绍其中常用的方法。

1. 低里斯法(Lowry法):这是一种常用的测定蛋白质含量的光度法。

在这个方法中,样品中的蛋白质与Folin-Ciocalteu试剂中的碱性铜离子形成络合物,这些络合物在碱性条件下在750 nm附近吸收光线。

通过与蛋白质浓度相关的标准曲线进行比较,可以确定样品中蛋白质的含量。

2. BCA法(双异硫氰酸铜法):BCA法也是一种常用的光度法,它与低里斯法原理类似。

在这个方法中,蛋白质的还原性氨基酸(主要是赖氨酸、组氨酸和半胱氨酸)与BCA试剂中的铜离子反应生成紫色的络合物,这些络合物在560 nm 处吸收光线。

通过与蛋白质浓度相关的标准曲线进行比较,可以确定样品中蛋白质的含量。

3. 线性校正法(Coomassie蓝法):这也是一种常用的光度法。

在这个方法中,蛋白质与Coomassie Brilliant Blue G-250试剂反应生成蓝色络合物,这些络合物在595 nm处吸收光线。

通过与蛋白质浓度相关的标准曲线进行比较,可以确定样品中蛋白质的含量。

4. 尿素法:这是一种测定总蛋白质含量的化学方法。

在尿素法中,样品中的蛋白质与硝酸铜溶液反应生成紫色络合物,测定其吸光度从而计算蛋白质的含量。

5. Biuret法:这是一种经典的测定蛋白质含量的光度法。

这个方法利用了蛋白质中的肽键和某些氨基酸(特别是赖氨酸和组氨酸)与碱性铜离子形成紫色络合物的性质。

测定络合物的吸光度从而计算蛋白质的含量。

6. Kjeldahl法:这是一种测定总氮含量的化学方法,因为蛋白质中含有氮元素,所以可以通过测定氮含量来推算蛋白质的含量。

这个方法需要将样品中的蛋白质进行分解、提取和转化,最终测定氮含量,并换算为蛋白质含量。

简述四种测定蛋白质含量的方法及其原理

简述四种测定蛋白质含量的方法及其原理

简述四种测定蛋白质含量的方法及其
原理
蛋白质是生命活动中不可缺少的重要物质,因此测定蛋白质含量对于生命科学研究和医学诊断等领域具有重要的意义。

目前,常用的测定蛋白质含量的方法有四种:浊度法、酶测定法、比色法和免疫测定法。

下面我们将简述这四种方法的原理和基本流程。

1.浊度法
浊度法是利用蛋白质的吸光度特性测定蛋白质含量的方法。

该方法的基本原理是,蛋白质具有较强的吸光性,在紫外到可见光谱范围内均有吸光度。

因此,在适当的光谱范围内测定样品的吸光度,就可以推算出蛋白质的含量。

浊度法的基本流程是:将样品加入溶剂,在适当的光谱范围内测定样品的吸光度,然后按照蛋白质吸光度与蛋白质浓度之间的关系计算出蛋白质的浓度。

2.酶测定法
酶测定法是利用蛋白质所含的氨基酸的特性测定蛋白质含量的方法。

该方法的基本原理是,蛋白质所含的氨基酸中有一类叫做可氧化氨基酸,如组氨酸、苯丙氨酸。

3.硫氰酸法:这种方法利用蛋白质中的硫氰酸氨基酸,将其与特定的试剂反应,产生的反应产物再与染料反应,通过测量吸收光的强度来测定蛋白质含量。

4.光度法:这种方法利用蛋白质与染料反应,产生的反应产物吸收特定波长的光,再通过测量吸收光的强度来测定蛋白质含量。

食品中蛋白质的测定方法

食品中蛋白质的测定方法

食品中蛋白质的测定方法一、生物化学方法生物化学法是通过测定蛋白质分解产物或检测蛋白质与一些化学试剂的反应来测定食品中蛋白质的含量。

常用的生物化学方法包括碱溶液提取法、伯努利法、生物素试验法等。

1.碱溶液提取法:该方法通过将食品样品用强碱溶液处理,使蛋白质变为溶液中的游离氮,然后用酸中和,从而测定蛋白质的含量。

这种方法操作简便、结果准确,但可能会引入一些误差。

2. 伯努利法:该方法是利用吸收波长处于280nm左右的多肽链或多肽链片段来测定蛋白质含量。

通过测定吸收光的强度来推算出蛋白质的浓度。

这种方法适用于含多肽链的样品。

3.生物素试验法:该方法是利用生物素与标记有酶的抗生素分子相结合,来测定蛋白质的含量。

这种方法非常灵敏,且测定结果稳定可靠。

二、光谱法光谱法是一种利用分子在特定波长下对光的吸收或散射来测定蛋白质含量的方法。

常用的光谱法有紫外-可见光光谱法和红外光谱法。

1. 紫外-可见光光谱法:该方法是利用蛋白质分子中芳香族化合物的吸收峰来测定蛋白质的含量。

其中,279nm波长的吸收峰对应着蛋白质的特征吸收峰。

通过测量吸光度来计算蛋白质的含量。

2.红外光谱法:该方法通过检测蛋白质分子中的功能基团振动特征来测定蛋白质的含量。

红外光谱法可以提供蛋白质的结构信息,且操作简便。

三、色度法色度法是一种利用颜色反应来测定蛋白质含量的方法。

常用的色度法包括比色法、光度法和电色谱法等。

1. 比色法:该方法是利用食品样品与其中一种试剂作用后的颜色反应来测定蛋白质的含量。

常用的试剂有布莱特试剂、Lowry试剂和比显色法等。

2. 光度法:该方法是利用针对蛋白质的特定试剂发生的光谱变化来测定蛋白质的含量。

常用的试剂有Coomassie蓝试剂,通过与蛋白质结合产生颜色反应,再通过测量吸光度来计算蛋白质的含量。

3.电色谱法:该方法是利用蛋白质的分子电荷特性来测定蛋白质的含量。

通过测定蛋白质在电场中的迁移速率来计算蛋白质含量。

综上所述,食品中蛋白质的测定方法较多,可以根据不同的食品样品和测定目的选择合适的方法,以获取准确的样品中蛋白质含量信息。

测定蛋白质含量和相对分子质量的方法

测定蛋白质含量和相对分子质量的方法

测定蛋白质含量的方法1、凯式定氮法(Kjedahl法);2、福林(Folin)-酚试剂法(Lowry法);3、双缩脲法;4、染料结合法(Bradford法)5、紫外分光光度法;6、BCA比色法1、凯式定氮法原理:在催化剂(如CuSO4,K2SO4等)存在的条件下,将植物材料与浓硫酸共热,有机物氧化分解为CO2和H2O,其中的氮转变为氨,并进一步生成(NH4)2SO4,这个过程称为消化。

在消化后的样品中,加入过量的NaOH,经强碱碱化使之分解释放出NH3,通过蒸馏借助蒸汽将NH3导入过量的硼酸溶液,再用标准的盐酸滴定,直到硼酸溶液恢复到原来的H+浓度,根据盐酸的用量即可计算出样品中总氮的含量。

优点:1、是一种测定蛋白质含量的经典方法,操作相对简单;2、实验费用较低。

缺点:1、最终测定的是总有机氮,而不是蛋白质氮;2、耗时较长;3、试剂具有腐蚀性。

适用范围:可用于所有食品的蛋白质分析2、福林(Folin)-酚试剂法此法的显色原理与双缩脲方法相同,只是加了第二种试剂,即Folin酚是试剂,以增加显色量,从而提高了检测蛋白质的灵敏度。

这两种显色反应产生深蓝色的原因是:(1)在碱性条件下,蛋白质中的肽键与铜结合生成复合物。

(2)Folin-酚试剂中的磷钼酸盐-磷钨酸盐被蛋白质中的酪氨酸和苯丙氨酸残基还原,产生深蓝色(钼兰和钨兰的混合物)。

在一定条件下,蓝色深度与蛋白的量成正比。

优点:灵敏度高,操作简单,不需要特殊仪器设备。

缺点:费时长,需要精确控制操作时间,标曲也不是严格的直线形式,专一性差,干扰物质较多。

测定蛋白质的浓度范围是25~250μg/mL。

3、双缩脲法名词解释:是肽和蛋白质所特有的,而为氨基酸所没有的一种颜色反应。

一般含有两个或两个以上的肽键化合物与CuSO4碱性溶液都能发生双缩脲反应,而生成紫红色或蓝紫色的复合物,利用这个反应借助分光光度计可以测定蛋白质的含量。

(2肽只有一个肽键,故要发生双缩脲反应至少是三肽)原理:紫色络合物颜色的深浅与蛋白浓度成正比,而与蛋白质分子量及氨基酸成分无关,故可以用来测定蛋白质的含量。

6种方法测定蛋白质含量

6种方法测定蛋白质含量

一、微量凯氏(kjeldahl)定氮法样品与浓硫酸共热。

含氮有机物即分解产生氨(消化),氨又与硫酸作用,变成硫酸氨。

经强碱碱化使之分解放出氨,借蒸汽将氨蒸至酸液中,根据此酸液被中和的程度可计算得样品之氮含量。

若以甘氨酸为例,其反应式如下:NH2 CH2 COOH+3H2 场―2CO2+3SO2+4H2O+NH3(1)2NH3+H2 SO4(NH4)2 SO4(2)(NH4)2 SO4+2NaOH2H2 O+Na2 SO4+2NH3(3反应⑴、(2)在凯氏瓶内完成,反应(3)在凯氏蒸馏装置中进行。

为了加速消化,可以加入CuSO4乍催化剂,K2SO4以提高溶液的沸点。

收集氨可用硼酸溶液,滴定则用强酸。

实验和计算方法这里从略。

计算所得结果为样品总氮量,如欲求得样品中蛋白含量,应将总氮量减去非蛋白氮即得。

如欲进一步求得样品中蛋白质的含量,即用样品中蛋白氮乘以6.25即得。

二、双缩脲法(biuret法)(一)实验原理双缩脲(NH3CONHCON是3两个分子脲经180C左右加热,放出一个分子氨后得到的产物。

在强碱性溶液中,双缩脲与CuSO形成紫色络合物,称为双缩脲反应。

凡具有两个酰胺基或两个直接连接的肽键,或能过一个中间碳原子相连的肽键,这类化合物都有双缩脲反应。

紫色络合物颜色的深浅与蛋白质浓度成正比,而与蛋白质分子量及氨基酸成分无关,故可用来测定蛋白质含量。

测定范围为1-10mg蛋白质。

干扰这一测定的物质主要有:硫酸铵、tris缓冲液和某些氨基酸等。

此法的优点是较快速,不同的蛋白质产生颜色的深浅相近,以及干扰物质少。

主要的缺点是灵敏度差。

因此双缩脲法常用于需要快速,但并不需要十分精确的蛋白质测定。

(二)试剂与器材1.试剂:(1)标准蛋白质溶液:用标准的结晶牛血清清蛋白(bsa)或标准酪蛋白,配制成10mg/ml的标准蛋白溶液,可用bsa浓度1mg/ml的a280为0.66来校正其纯度。

如有需要,标准蛋白质还可预先用微量凯氏定氮法测定蛋白氮含量,计算出其纯度,再根据其纯度,称量配制成标准蛋白质溶液。

测量蛋白质含量的方法

测量蛋白质含量的方法

测量蛋白质含量的方法
一、测量蛋白质含量的方法
1、溶解液稀释法
溶解液稀释法是指在特定的pH和特定浓度的溶解液中,将待测样品稀释至一定浓度,然后通过测定溶解液的比容量或浊度来估算样品中蛋白质的含量。

2、硫代乙酰胆碱法
硫代乙酰胆碱法是指用硫代乙酰胆碱作为蛋白质染料,通过蛋白质染色的深度来估算样品中蛋白质的含量。

此方法也可以用于检测双肽类和多肽类蛋白质。

3、 Lowry比容量法
Lowry比容量法是使用Lowry比容量试剂检测样品中蛋白质的含量,其原理是将蛋白质在碱性溶液中溶解,然后用Lowry比容量试剂滴定,通过滴定值来估算样品中蛋白质的含量。

4、Bradford表观比容量法
Bradford表观比容量法是使用Bradford表观比容量试剂检测样品中蛋白质的含量,其原理是将蛋白质在碱性溶液中溶解,然后用Bradford表观比容量试剂滴定,通过滴定值来估算样品中蛋白质的含量。

5、BCA酶法
BCA酶法是利用蛋白质被BCA酶分解的过程,将BCA酶与待测样品混合,通过分光光度计法测定BCA酶催化后溶液的分光度值,
从而估算样品中蛋白质的含量。

蛋白质含量测定法doc

蛋白质含量测定法doc

附录蛋白质测定法第一法凯氏定氮法1 钨酸沉淀法本法系通过测定供试品的总氮含量以及经钨酸沉淀去除蛋白的供试品滤液中的非蛋白氮含量,计算出蛋白质的含量。

供试品溶液的制备(1)总氮测定溶液的制备精密量取供试品1ml,用生理氯化钠溶液准确稀释至每1ml含氮量约1mg。

(2)非蛋白氮测定溶液的制备精密量取供试品2ml,加水14ml、10%钨酸钠溶液2ml、硫酸溶液(1.86→100)2ml,摇匀,静置30分钟过滤,取滤液测定。

测定法精密量取总氮测定溶液1ml,置凯氏定氮瓶中,照氮测定法(附录Ⅵ A)测定供试品中总氮含量。

同时做空白对照。

精密量取非蛋白氮测定溶液5ml,置凯氏定氮瓶中,照氮测定法(附录Ⅵ A)测定供试品中非蛋白氮含量。

按下式计算CTN(mg/ml)=(VX1-V0)×c×14.01×n×2_________________________V1CNPN(mg/ml)=(VX2-V0)×c×14.01×n×2_________________________V2CPN(mg/ml)=CTN-CNPN供试品蛋白质含量(%,g/ml)=CPN×6.25×100_______________1000式中CTN为供试品溶液总氮含量,mg/ml;CNPN为供试品溶液非蛋白氮含量,mg/ml;VX1为供试品总氮测定溶液消耗酸滴定液的体积,ml;VX2为供试品非蛋白氮测定溶液消耗酸滴定液的体积,ml;V0为空白试验消耗酸滴定液的体积,ml;c为硫酸滴定液的浓度,mol/L;CPN为供试品蛋白氮含量,mg/ml;n为供试品的稀释倍数;V1为供试品总氮测定溶液的体积,ml;V2为供试品非氮测定溶液的体积,ml;14.01为氮的相对原子质量;6.25 为常数(1g氮相当于6.25g蛋白质)。

【附注】(1)供试品蛋白质含量如超过10%(g/ml),除蛋白质时应适当加大供试品稀释倍数,10%钨酸钠溶液及硫酸溶液用量相应地按比例增加,使溶液中的钨酸浓度仍保持1%。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验七蛋白质含量测定测定蛋白质的定量方法有很多,目前常用的有染料法,双缩脲(Biuret)法,酚试剂法(Lowry)法及紫外吸收法。

[目的要求]1.掌握测定蛋白质的含量基本方法。

2.了解染料法、双缩脲法、Lowry法和紫外吸收法测定原理。

一、染料法[实验原理]在酸性溶液中染料考马斯亮蓝G-250与蛋白质结合,此时考马斯亮蓝G-250颜色从红色变为蓝色,吸收高峰从460nm移至595nm。

利用这个原理可以测定蛋白质含量。

该法近年在某些方面有取代经典的Lowry法趋势,因为它操作简单,反应时间短,染料-蛋白质颜色稳定,抗干扰性强。

本法的缺点是:对于那些与标准蛋白氨基酸组成有较大差异的蛋白质,有一定误差,因为不同的蛋白质与染料的结合是不同的,故该法适合测定与标准蛋白质氨基酸组成相近的蛋白质。

[器材]吸量管;试管;721型分光光度计[试剂]1.标准牛血清白蛋白溶液:配成ml的溶液。

2.待测蛋白质溶液。

3.染料溶液:称取考马斯亮蓝G-250 溶于95%的酒精50ml,再加入85%的浓磷酸100ml,用水稀释至1000ml,混匀备用。

[操作步骤]按上表分别向各支试管内加入各种试剂,充分混匀,5min后在595nm波长处以0号管调零,测定各管吸光度值(A)。

以吸光度值为纵坐标,蛋白质浓度为横坐标绘制标准曲线。

2.样品测定:取1ml样品溶液(约含25~250微克蛋白质),加入染料溶液5ml混匀,5min后测定其595nm吸光度值,对照标准曲线求得蛋白质浓度。

二、双缩脲(Biuret)法测定蛋白质含量[实验原理]在碱性溶液中,双缩脲(H2N-CO-NH-CO-NH2)与二价铜离子作用形成紫红色的络合物,这一反应称双缩脲反应。

凡分子中含二个或二个以上酰胺基(—CO-NH2),或与此相似的基团[如—CH2-NH2,—CS-NH2,—C(NH)NH2]的任何化合物,无论这类基团直接相连还是通过一个碳或氮原子间接相连,均可发生上述反应。

蛋白质分子含有众多肽键(—CO-NH—),可发生双缩脲反应,且呈色强度在一定浓度范围内与肽键数量即与蛋白质含量成正比,可用比色法测定蛋白含量。

测定范围为1~10mg蛋白质。

干扰这一测定的物质主要有:硫酸铵、Tris缓冲液和某些氨基酸等。

此法的优点是较快速,不同的蛋白质产生颜色的深浅相近,以及干扰物质少。

主要的缺点是灵敏度差。

因此双缩脲法常用于快速,但并不需要十分精确的蛋白质测定。

[试剂]1.双缩脲试剂:取CuSO4·5H20.)和酒石酸钾钠.)以少量蒸馏水溶解,再加/L NaOH 溶液300ml,KI ,然后加水至1000ml。

棕色瓶中避光保存。

长期放置后若有暗红色沉淀出现,即不能使用。

2.标准蛋白质溶液:用标准的结晶牛血清清蛋白(BSA)或标准酪蛋白,配制成10g/L 的标准蛋白溶液,可用BSA浓度1g/L的A280为来校正其纯度。

如有需要,标准蛋白质还可预先用微量凯氏定氮法测定蛋白氮含量,计算出其纯度,再根据其纯度,称量配制成标准蛋白质溶液。

牛血清清蛋白用H2O 或%NaCl配制,酪蛋白用L NaOH配制。

[器材]1.试管:15×150mm 试管7只;2.1ml,5ml移液管;3.坐标纸;4.721分光光度计。

[操作步骤]取试管7支,编号,按下表操作:混匀,37℃水浴20分钟,冷却至室温,在分光光度计波长540nm处,用空白管调零,读取各管吸光度值。

1~5为标准曲线管,测得吸光度后,以吸光度为纵坐标,蛋白质浓度为横坐标绘制标准曲线。

以测定管的吸光度,在标准曲线上求得蛋白质浓度。

[注意事项]1.双缩脲试剂中,加入酒石酸钾钠,Cu2+形成稳定的络合铜离子,以防止CuSO4·5H20不稳定形成Cu(OH)2沉淀。

酒石酸钾钠与CuSO4·5H20之比不低于3∶1,加入KI作为抗氧化试剂。

2.双缩脲试剂要封闭贮存,防止吸收空气中的二氧化碳。

3.本法各种蛋白质的显色程度基本相同,重复性好,几乎不受温度影响,唯一缺点是灵敏度较低。

4.黄疸血清、严重溶血对本法有明显干扰。

[思考题]1.双缩脲法测定蛋白质的原理是什么其它还有什么方法测定蛋白质的含量2.请用双缩脲法,设计一个测定蛋白质含量的定量方法(除标准曲线法外)。

三、酚试剂法测定血清蛋白质含量(改良Lowry法)[实验原理]蛋白质分子中所含肽键在碱性条件下与铜络合生成复合物产生紫红色化合物(双缩脲反应),同时使肽链展开,蛋白质中半胱氨酸、络氨酸、色氨酸和组氨酸均能使钨酸、钼酸同时失去1个,2个或者3个氧原子,还原成多种还原型的混合酸,并且有特殊的蓝颜色(最大吸收峰波长为745~750nm,反应式一)其蓝色深浅与蛋白质含量在一定范围内成正比,由此可测出样品中蛋白质的含量。

同时蛋白质肽键发生烯醇化反应(反应式二)能使钼离子在pH10时螯合在肽结构中,形成复合物,从而使电子转移到混合酸的显色剂上,大大增加了酚试剂对蛋白质的敏感性。

反应式一3H2OP2O5•13WO3•5MoO3•10H2O3H2OP2O5•14WO3•4MoO3•10H2O反应式二3H2OP2O5•13WO2•5MoO3•10H2O3H2OP2O5•14WO2•4MoO2•10H2O烯醇化反应烯醇化反应后,可与Cu2+络合,络合后,易于使肽释放电子,使酚试剂还原。

[试剂器材]1.碱性铜试剂:甲液:称取无水碳酸钠,溶于L NaOH溶液100ml中。

乙液:取硫酸铜(CuSO4•5H2O ),溶于1%酒石酸钾溶液100ml中。

临用前取甲液50ml,乙液1ml混合,即为碱性铜试剂。

此液需现用现配。

2.标准蛋白质溶液(250 g/ml):精确称取结晶牛血清清蛋白25mg,溶于%NaCl 溶液中,以容量瓶定容至100ml。

3.样品:取血清,置于50ml容量瓶中,用%NaCl溶液稀释至刻度处,混匀,为待测血清样品。

4.酚试剂:取钨酸钠(Na2WO4•2H2O)100g和钼酸钠(Na2MoO4•2H2O)25g,溶于700ml蒸馏水中,再加入85%磷酸50ml和浓硫酸100ml充分混匀,置于1500ml圆底烧瓶中温和地回流10小时,冷却,取下冷凝装置,再加入硫酸锂(Li2SO4•2H2O)150g,水50ml,溴3~4滴,开口继续沸腾15分钟,驱除过量的溴,冷却后稀释至1000ml,过滤,溶液应呈黄色或金黄色(如带绿色不能使用,应继续加溴煮沸),置于棕色瓶中保存。

使用前,以酚酞为指示剂,用LNaOH溶液滴定,求出酚试剂的摩尔浓度。

然后根据此浓度,将酚试剂用蒸馏水稀释至最后酸度为1mol/L。

(滴定时可将酚试剂稀释,以免颜色影响)。

试剂放置过久,变成绿色时,可再加溴数滴煮15分钟,如能恢复原有的金黄色仍可使用。

5.721分光光度计;旋涡混合器;秒表;试管。

[操作步骤]试剂(ml)\管号O12345测定管标准蛋白溶液(250μg/ml)——稀释血清——————%NaCl——碱性铜试剂混匀,室温放置30min后,以0管调零点,在波长650nm比色,分别读取各管吸光度值。

以蛋白质含量为横坐标,吸光度值为纵坐标,绘制标准曲线。

以测定管吸光度值,查标准曲线求得血清蛋白质含量。

[临床意义]1.血清总蛋白浓度增高:(1)血清中水分减少,而使蛋白浓度相对增高。

如急性失水时(呕吐、腹泻、高热);休克时,由于毛细管通透性的变化,血浆也发生浓缩等。

(2)蛋白合成增加,大多数发生多发性骨髓瘤患者中,主要是血清球蛋白增加。

2.血清蛋白合成降低:(1)合成障碍,主要为肝功能障碍,肝脏是合成蛋白质的场所,肝功严重损害时,蛋白质的合成减少,以白蛋白最为显著。

(2)蛋白质丢失,如严重灼伤时,大量血浆渗出;肾病综合症时,尿液中长期丢失蛋白质等。

(3)营养不良或长期消耗性疾病,如严重结核或长期消耗性疾病。

(4)血液中水分增加,血浆被稀释,因各种原因引起的水钠潴留或输注过多低渗溶液。

[注意事项]1.酚试剂在酸性条件下较稳定,而碱性铜试剂是在碱性条件下与蛋白质相互作用,所以当加入酚试剂后,应迅速摇匀(加一管摇一管),使还原反应发生在磷钼酸-磷钨酸试剂被破坏之前。

2.碱性铜试剂必须临用前配制。

3.磷钼酸、磷钨酸的显色反应是由于和还原物质的还原反应而引起的,因此本法可受很多还原性物质的干扰,如带有-SH的化合物,糖类、酚类等甚至有些缓冲剂(如Tris)也能干扰测定。

但如控制在低浓度范围内,则不影响测定,Lowry法很灵敏,可以对5~100μg 蛋白质样品进行很好的显色反应,而如此低的蛋白质浓度常常已把干扰物质的浓度稀释到一个不起作用的水平。

4.所有器材必须清洗干净,否则影响实验结果。

5.血清稀释的倍数应使蛋白质含量在标准曲线范围内,若超过此范围需要将血清酌情稀释。

6.本法操作简便、灵敏度高,缺点是试剂只与蛋白质中半胱氨酸、色氨酸等起反应,因此可因各种蛋白质中含这几种氨基酸的量不同使显色强度稍有不同。

[思考题]1.用酚试剂法测定蛋白质含量有哪些优点2.用酚试剂法测定蛋白质含量有哪些干扰作用应如何注意四、紫外吸收法[实验原理]蛋白质分子中,酪氨酸、苯丙氨酸和色氨酸残基的苯环含有共轭双键,使蛋白质具有吸收紫外光的性质。

吸收高峰在280nm处,其吸光度(即光密度值)与蛋白质含量成正比。

此外,蛋白质溶液在238nm的光吸收值与肽键含量成正比。

利用一定波长下,蛋白质溶液的光吸收值与蛋白质浓度的正比关系,可以进行蛋白质含量的测定。

紫外吸收法简便、灵敏、快速,不消耗样品,测定后仍能回收使用。

低浓度的盐,例如生化制备中常用的(NH4)2SO4等和大多数缓冲液不干扰测定。

特别适用于柱层析洗脱液的快速连续检测,因为此时只需测定蛋白质浓度的变化,而不需知道其绝对值。

此法的特点是测定蛋白质含量的准确度较差,干扰物质多,在用标准曲线法测定蛋白质含量时,对那些与标准蛋白质中酪氨酸和色氨酸含量差异大的蛋白质,有一定的误差。

故该法适于用测定与标准蛋白质氨基酸组成相似的蛋白质。

若样品中含有嘌呤、嘧啶及核酸等吸收紫外光的物质,会出现较大的干扰。

核酸的干扰可以通过查校正表,再进行计算的方法,加以适当的校正。

但是因为不同的蛋白质和核酸的紫外吸收是不相同的,虽然经过校正,测定的结果还是存在一定的误差。

此外,进行紫外吸收法测定时,由于蛋白质吸收高峰常因pH的改变而有变化,因此要注意溶液的pH值,测定样品时的pH要与测定标准曲线的pH相一致。

[试剂器材]1.蛋白质标准液(1mg/ml):准确称量经微量凯氏定氮法校正的标准蛋白质配制。

2.紫外分光光度计。

[操作步骤]1.标准曲线的绘制:混匀。

在280nm处测定各管溶液的吸光度值。

以0号管调零,以蛋白质溶液浓度为横坐标,吸光度值为纵坐标,绘制出蛋白质标准曲线。

相关文档
最新文档