LF353中文资料_数据手册_参数

合集下载

常用运放完美参数

常用运放完美参数

MA327 高精度运算放大器
增益带宽积GB=30MHz;转换速率15V/μs;噪声2.5nV/(Hz^1/2)(1kHZ);温度漂移0.5μV/℃;±40V偏置电流25μA;转换速率200V/μs;噪声14nV/(Hz^1/2)(1kHZ);消耗电流380μA;±20V电源。
LT1055 高速JFET输入运算放大器
输入失调电压50μV;温度漂移1.2μV/℃;偏置电流10pA;增益带宽5MHz;转换速率13V/μs;噪声14nV/(Hz^1/2)(1kHZ);消耗电流2.8m A;±20V电源;差模输入电压±40V;共模输入电压±20V。
LM709 通用运算放大器
输入失调电压600μV;温度漂移1.8μV/℃;偏置电流100nA;消耗电流2.3mA;±18V电源;差模输出电源±5V,共模输出电源±10V,类似型号:MC1709、μA709、CF709。
LM7121 电压反馈放大器
或5.0~36V电源;单位增益带宽175MHz;带宽235MHz;电源电流为5.3mA。转换速率1300V/μs;输入失调电压0.9mV;输入偏置电流5.2μA;共模输入电阻10MΩ;差模输入电阻3.4MΩ;-PSRR=81dB ,CMRR=93dB; +PSRR=86dB。
LM386 音频功率放大器
工作电压范围4~12V或5~18V;静态电流4mA;电压增益20~200;基准接地输入;低失真。
LM387/ LM387A 前置放大器
工作电压范围9~30V (LM387)或9~40V(LM387A);输入噪声为0.8mV (LM387)、0.65mV (LM387A);开环增益104dB;电源抑制比110dB;输入电压摆幅(VCC-2VP-P);单位增益带宽为15MHz;功率带宽为75kHZ,20Vpp。

LF353DR中文资料

LF353DR中文资料

元器件交易网IMPORTANT NOTICETexas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinueany product or service without notice, and advise customers to obtain the latest version of relevant informationto verify, before placing orders, that information being relied on is current and complete. All products are soldsubject to the terms and conditions of sale supplied at the time of order acknowledgement, including thosepertaining to warranty, patent infringement, and limitation of liability.TI warrants performance of its semiconductor products to the specifications applicable at the time of sale inaccordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extentTI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarilyperformed, except those mandated by government requirements.CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OFDEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICALAPPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, ORWARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHERCRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TOBE FULLY AT THE CUSTOMER’S RISK.In order to minimize risks associated with the customer’s applications, adequate design and operatingsafeguards must be provided by the customer to minimize inherent or procedural hazards.TI assumes no liability for applications assistance or customer product design. TI does not warrant or representthat any license, either express or implied, is granted under any patent right, copyright, mask work right, or otherintellectual property right of TI covering or relating to any combination, machine, or process in which suchsemiconductor products or services might be or are used. TI’s publication of information regarding any thirdparty’s products or services does not constitute TI’s approval, warranty or endorsement thereof.Copyright © 1998, Texas Instruments Incorporated。

LF353双高阻运算放大器

LF353双高阻运算放大器

产品特性● 低功耗● 宽共模(最高为V CC +)、差模电压范围 ● 低输入偏置和失调电流 ● 输出短路保护● 高输入阻抗JFET 输入级 ● 内部频率补偿 ● 无闩锁 ● 高转换速率产品概述该电路为高速JFET 输入双通道运算放大器,单片集成了高匹配、高压JFET 和双极型晶体管。

该器件的特点有高转换速率、低输入偏置和失调电流、低失调电压漂移。

引脚描述(1)金属圆8线 (2)陶瓷双列8线图1 LF353引出端排列(俯视图)电原理图图2 电原理图电参数表表1. LF353电特性,若无其他说明,工作温度为-55℃~+125℃,V CC=±15V。

注1:输入偏置电流是结漏电流,结温每增加10℃,电流值约增加一倍。

绝对最大额定值表2 绝对最大额定值注1:除差模电压外,其他所有电压都是相对于零参考电压(地),即V CC和V CC的中间值。

注2:输入电压的幅度不得超过电源电压和15V二者的较低值。

注3:差分电压是指正相输入端相与反相输入端的电压差。

注4:短路会导致过热和破坏性损耗,各数值为典型值。

注5:输出可能会短路到地或者任一电源,温度或电源电压必须有所限制以保证耗散值不会过大。

应用手册●电压跟随器图3 电压跟随器电路●增益为10的反相放大器图4 增益为10的反相放大器电路封装信息器件采用8引线D型封装和8引线T型封装。

D型封装外形尺寸按GB/T 7092-1993的规定,未注公差的尺寸按GB/T 1804-2000执行,外形尺寸如图5和表3所示。

T型封装外形尺寸按图6和表4的规定。

图5 D型(D08S2)陶瓷双列8线表3 D型(D08S2)封装外形尺寸图6 T型(T08A4)金属圆8线。

mndl

mndl

目录绪论 -----------------------------------------------------------------1 第1章实验-------------------------------------------------------------21.1单级放大器------------------------------------------------------21.2负反馈放大器----------------------------------------------------21.3 差动放大器-----------------------------------------------------31.4 集成功率放大器-------------------------------------------------41.5 有源RC电压放大器----------------------------------------------41.6 积分与微分电路-------------------------------------------------51.7 RC波形发生电路-------------------------------------------------61.8 LC正弦波振荡器和选频放大器-------------------------------------71.9 波形变换电路---------------------------------------------------81.10有源RC滤波器--------------------------------------------------91.11 直流稳压电源-------------------------------------------------101.12 低频小信号放大器--------------------------------------------111.13 可编程放大器实验---------------------------------------------11 第2章电路的计算机仿真与印刷电路板设计--------------------------------122.1 EWB入门-------------------------------------------------------122.2 Protel入门----------------------------------------------------13 第3章常用仪器简介----------------------------------------------------163.1数字式示波器Tektronix TDS1002初步使用--------------------------163.2安捷伦函数信号发生器Agilent 33120A的性能与使用说明------------163.3 FLUKE45双显示多用表-------------------------------------------173.4 GPIB板的安装与使用初步----------------------------------------17 第4章常用电子元件简介------------------------------------------------194.1电阻-----------------------------------------------------------194.2电容器---------------------------------------------------------204.3电感器---------------------------------------------------------21模拟电路实验是一门重要的基础实验课,是模拟电路理论教学的继续和深入。

主流功放芯片参数及比较

主流功放芯片参数及比较

低档运放JRC4558。

这种运放是低档机器使用得最多的。

现在被认为超级烂,因为它的声音过于明亮,毛刺感强,所以比起其他的音响用运放来说是最差劲的一种。

不过它在我国暂时应用得还是比较多的,很多的四、五百元的功放还是选择使用它,因为考虑到成本问题和实际能出的效果,没必要选择质量超过5532以上的运放。

对于一些电脑有源音箱来说,它的应付能力还是绰绰有余的。

运放之皇5532。

如果有谁还没有听说过它名字的话,那就还未称得上是音响爱好者。

这个当年有运放皇之称的NE5532,与LM833、LF353、CA3240一起是老牌四大名运放,不过现在只有5532应用得最多。

5532现在主要分开台湾、美国和PHILIPS生产的,日本也有。

5532原来是美国SIGNE公司的产品,所以质量最好的是带大S标志的美国产品,市面上要正宗的要卖8元以上,自从SIGNE被PHILIPS 收购后,生产的5532商标使用的都是PHILIPS商标,质量和原品相当,只须4-5元。

而台湾生产的质量就稍微差一些,价格也最便,两三块便可以买到了。

NE5532的封装和4558一样,都是DIP8脚双运放(功能引脚见图),声音特点总体来说属于温暖细腻型,驱动力强,但高音略显毛糙,低音偏肥。

以前不少人认为它有少许的“胆味”,不过现在比它更有胆味的已有不少,相对来说就显得不是那么突出了。

5532的电压适应范围非常宽,从正负3V至正负20V都能正常工作。

它虽然是一个比较旧的运放型号,但现在仍被认为是性价比最高的音响用运放。

是属于平民化的一种运放,被许多中底档的功放采用。

不过现在有太多的假冒NE5532,或非音频用的工业用品,由于5532的引脚功能和4558的相同,所以有些不良商家还把4558擦掉字母后印上5532字样充当5532,一般外观粗糙,印字易擦掉,有少许经验的人也可以辨别。

据说有8mA的电流温热才是正宗的音频用5532。

NE5532还有两位兄弟NE5534和NE5535。

lf353工作原理

lf353工作原理

lf353工作原理
LF353是一款专用的宽带高速运算放大器。

该芯片由两个独立的、高性能的运算放大器组成,具有低噪声、高增益带宽和高输入电阻等特点。

它被广泛应用于精密量测和高保真音频放大器等领域。

LF353的工作原理基于差分对输入的放大器电路。

每个运算放大器由一个输入级、一个差动放大级和一个输出级组成。

输入级对输入信号进行阻抗扩展,并将信号传递给差动放大级。

差动放大器使用两个晶体管配对,将差分输入信号放大,并通过输出级将放大的信号输出。

在工作时,差分输入信号被分别连接到运放的非反相和反相输入端。

当输入信号的差异引起非线性失真时,差动放大器会通过增益控制来抵消这种失真。

差动放大器的增益与输出信号的相位差紧密相关,从而实现了对输入信号的线性放大。

LF353还具有高输入阻抗,这意味着它对输入信号的负载影响很小,从而使得输入信号的失真减小。

同时,该芯片的低噪声特性使其能够接收较小幅度的输入信号,并输出高保真度的放大信号。

总之,LF353的工作原理基于差分输入的放大器电路结构,通过差动放大器将输入信号放大,并通过输出级输出放大信号。

它的高增益带宽、低噪声和高输入阻抗等特性使其成为广泛应用于各种精密测量和音频放大器应用的理想选择。

FW353使用手册

FW353使用手册
ห้องสมุดไป่ตู้
其它
工作温度
≥0℃,≤+50℃
工作湿度
≥5%,≤90%(不结露)
存储温度
≥-40℃,≤+70℃
存储湿度
≤95%(不结露)
工作大气压
≥62 kPa,≤108kPa
5 工程应用说明举例
FW353 热电阻输入卡支持两种信号类型:Pt100 和 Cu50 ,采用三线制测量方法。在工程应用 中,FW353 组态比较简单。首先根据信号选择类型组态,FW 353 有三种信号类型,Pt100、Cu50、 Pt100 小量程。Pt100 小量程应用在量程范围比较小,精度要求比较高的场所。
4 性能指标
表 4-1 FW353 性能指标
型号
FW353
电源
供电
5V 电源 24V 电源
(5±0.3)VDC,Imax<100mA (24±0.7)VDC,Imax<10mA
技术指标
通道数
8路
通道隔离方式
点点隔离
隔离电压
现场侧与系统侧 通道间
500VAC 50Hz 60s 60VAC 50Hz 60s
3.5 端子板选择
FW353 热电阻信号输入卡在使用时必须与对应的端子板配合使用。选配标准如下:
表 3-3 FW353 的端子板选配
描述 8 路热电阻 RTD 输入端子板 16 路热电阻 RTD 输入端子板
型号 TB353-R
TB353
使用范围 电阻信号 电阻信号
备注 可配置两冗余 FW353 卡 可配置两不冗余 FW353 卡
卡件通过自动标定系统进行标定,标定后的卡件采样精度可长时间保持不变。另外卡件还具有 二次标定的功能,当对卡件进行二次标定后,卡件在特定温度段能够达到很高的精度。

LF353N_NL中文资料

LF353N_NL中文资料

©2001 Fairchild Semiconductor CorporationRev. 1.0.0Features•Internally trimmed offset voltage: 10mV •Low input bias current: 50pA •Wide gain bandwidth: 4MHz •High slew rate: 13V/µs•High Input impedance: 1012ΩDescriptionThe LF353 is a JFET input operational amplifier with an internally compensated input offset voltage. The JFET input device provides wide bandwidth, low input bias currents and offset currents.8-DIP18-SOP1Internal Block DiagramLF353Dual Operational Amplifier (JFET)LF3532Schematic Diagram(One Section Only)Absolute Maximum RatingsParameterSymbol Value UnitPower Supply Voltage V CC ±18V Differential Input Voltage V I(DIFF)30V Input Voltage Range V I ±15V Output Short Circuit Duration -Continuous-Power DissipationP D 500mW Operating Temperature Range T OPR 0 ~ +70°C Storage Temperature RangeT STG-65 ~ +150°CLF3533Electrical Characteristics(V CC =+15V, V EE = -15V, T A =25 °C, unless otherwise specified)ParameterSymbol ConditionsMin.Typ.Max.Unit Input Offset Voltage V IOR S =10K Ω- 5.010mV 0 °C ≤T A ≤+70 °C ----Input Offset Voltage Drift ∆V IO /∆T R S =10K Ω0 °C ≤T A ≤+70 °C -10- µV/ °C Input Offset Current I IO -25100pA 0 °C ≤T A ≤+70 °C --4 nA Input Bias Current I BIAS -50200pA 0 °C ≤T A ≤+70 °C --8 nAInput ResistanceR I --1012-ΩLarge Signal Voltage Gain G VV O(P-P) = ±10V 25100-V/mV R L = 2K Ω0 °C ≤T A ≤+70 °C 15---Output Voltage Swing V O(P_P)R L = 10K Ω±12±13.5-V Input Voltage RangeV I(R)-±11±15/-12-V Common Mode Rejection Ratio CMRR R S ≤ 10K Ω70100-dB Power Supply Rejection Ratio PSRR R S ≤ 10K Ω70100-dB Power Supply Current I CC -- 3.6 6.5mA Slew RateSR G V = 1-13-V/µS Gain-Bandwidth Product GBW --4-MHz Channel SeperationCS f = 1Hz ~ 20KHz (Input referenced)-120-dB Equivalent Input Noise Voltage V NI R S = 100Ωf = 1KHz -16- nV/Equivalent Input Noise CurrentI NIf = 1KHz-0.01- pA/HzHzLF353Mechanical DimensionsPackage8-DIP4LF353 Mechanical DimensionsPackage8-SOP5LF3536/1/01 0.0m 001Stock#DSxxxxxxxx2001 Fairchild Semiconductor CorporationLIFE SUPPORT POLICYFAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:1.Life support devices or systems are devices or systemswhich, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can bereasonably expected to result in a significant injury of the user.2. A critical component in any component of a life supportdevice or system whose failure to perform can bereasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.DISCLAIMERFAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANYLIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.Ordering InformationProduct NumberPackage Operating TemperatureLF353N 8-DIP 0 ~ + 70°CLF353M8-SOP。

运放参数的介绍

运放参数的介绍

1 所示,各种运算放大器的外引线编号及功能见表 1 所示。
(a) 圆形金属壳封装(N 脚)
(b) 双列直插式封装(N 脚) 图 1 集成运算放大器外引线排列及外形
表 1 通用型集成运算放大器外引线排列表
封装 形式
型号
正负接同
电电地相
源源端输
端 端∣ 入
+U -U
+IN
反输 相出 输端 入 OUT -IN
调零 固定端
12 脚 圆形 金属
F001 F003 5G922 8FC4
9625
96
5
6 3 11 2
96
5
48 48 15 48
1、12 1、12 9、10 3、7
10 脚 μA715
8524
36
圆 形 5G27Βιβλιοθήκη 85437
1、2
金属 μA747(双)
2/8 5
4/6 3/7 1/9
F055
85
4
37
好。
④ 输入失调电压温度漂移△UIO/△T :在一定的温度范围内,失调电压变化与温度变
化之比,其值愈小表示温度的影响愈小。△UIO/△T 一般为±(10~30)μV/℃,低漂移运算
放大器的温漂小于 1μV/℃。
⑤ 输入失调电流 IIO :使输出电压为零时,两输入端偏置电流之差,即
IIO=︱IB+–IB–︱
⑬ 输出阻抗 ZO :运算放大器在开环时,输出电压变化与由它引起的输出电流之比, 一般为几百欧~几千欧。
⑭ 开环带宽 fH :运算放大器的开环电压增益从直流增益下降–3 dB(即下降到 0.707A od)时所对应的信号频率,通常为几赫~几千赫。
⑮ 单位增益带宽 fC :运算放大器在闭环情况下,使电压增益下降到零分贝(即电压放 大倍数为 1)时所对应的信号频率。

LF353M中文资料

LF353M中文资料

©2001 Fairchild Semiconductor CorporationRev. 1.0.0Features•Internally trimmed offset voltage: 10mV •Low input bias current: 50pA •Wide gain bandwidth: 4MHz •High slew rate: 13V/µs•High Input impedance: 1012ΩDescriptionThe LF353 is a JFET input operational amplifier with an internally compensated input offset voltage. The JFET input device provides wide bandwidth, low input bias currents and offset currents.8-DIP18-SOP1Internal Block DiagramLF353Dual Operational Amplifier (JFET)LF3532Schematic Diagram(One Section Only)Absolute Maximum RatingsParameterSymbol Value UnitPower Supply Voltage V CC ±18V Differential Input Voltage V I(DIFF)30V Input Voltage Range V I ±15V Output Short Circuit Duration -Continuous-Power DissipationP D 500mW Operating Temperature Range T OPR 0 ~ +70°C Storage Temperature RangeT STG-65 ~ +150°CLF3533Electrical Characteristics(V CC =+15V, V EE = -15V, T A =25 °C, unless otherwise specified)ParameterSymbol ConditionsMin.Typ.Max.Unit Input Offset Voltage V IOR S =10K Ω- 5.010mV 0 °C ≤T A ≤+70 °C ----Input Offset Voltage Drift ∆V IO /∆T R S =10K Ω0 °C ≤T A ≤+70 °C -10- µV/ °C Input Offset Current I IO -25100pA 0 °C ≤T A ≤+70 °C --4 nA Input Bias Current I BIAS -50200pA 0 °C ≤T A ≤+70 °C --8 nAInput ResistanceR I --1012-ΩLarge Signal Voltage Gain G VV O(P-P) = ±10V 25100-V/mV R L = 2K Ω0 °C ≤T A ≤+70 °C 15---Output Voltage Swing V O(P_P)R L = 10K Ω±12±13.5-V Input Voltage RangeV I(R)-±11±15/-12-V Common Mode Rejection Ratio CMRR R S ≤ 10K Ω70100-dB Power Supply Rejection Ratio PSRR R S ≤ 10K Ω70100-dB Power Supply Current I CC -- 3.6 6.5mA Slew RateSR G V = 1-13-V/µS Gain-Bandwidth Product GBW --4-MHz Channel SeperationCS f = 1Hz ~ 20KHz (Input referenced)-120-dB Equivalent Input Noise Voltage V NI R S = 100Ωf = 1KHz -16- nV/Equivalent Input Noise CurrentI NIf = 1KHz-0.01- pA/HzHzLF353Mechanical DimensionsPackage8-DIP4LF353 Mechanical DimensionsPackage8-SOP5LF3536/1/01 0.0m 001Stock#DSxxxxxxxx2001 Fairchild Semiconductor CorporationLIFE SUPPORT POLICYFAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:1.Life support devices or systems are devices or systemswhich, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can bereasonably expected to result in a significant injury of the user.2. A critical component in any component of a life supportdevice or system whose failure to perform can bereasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.DISCLAIMERFAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANYLIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.Ordering InformationProduct NumberPackage Operating TemperatureLF353N 8-DIP 0 ~ + 70°CLF353M8-SOP。

LF356中文资料

LF356中文资料

LF355/356/357 JFET输入型运算放大器——中文数据手册--by LF邮箱:fxfjy89123@整体描述:这些是第一个合成的JFET输入的运算放大器,它把匹配的高电压的JFET晶体管和标准的双极性晶体管放到了一块芯片上(双极FET技术)。

这些运放的特征是低输入失调和偏置电流、低偏置电压和偏置电压漂移、可以进行偏置调节而不会降低漂移和共模抑制比。

这些运放也设计有高压摆率、宽带宽、极快的建立时间、低电压电流噪声。

特征:优点--代替昂贵的混合型和模块型FET运算放大器--低噪声应用性能优异——高或低的输入源阻抗均可--偏置可调不会像其他合成型运放降低漂移和共模抑制比--新的输出阶段可以接入大的电容负载(5000pF)不会出现稳定性问题--内部补偿和可承受大的差分输入电压应用:--精密高速积分器--快速模/数和数/模转换器--高阻抗缓冲保护--宽带、低噪、低漂移放大器--对数放大器--光电放大器--采样保持电路共同特性:--低输入失调电流——30pA--低输入偏置电流——3pA--高输入阻抗——10的12次方Ω--低输入噪声电流——0.01pA/sqrt(Hz)--高共模抑制比——100dB--高直流增益——106dB不同特性:--极快的建立时间——5系列4us,6系列7系列1.5us--快速的压摆率——5系列5V/us,6系列12V/us,7系列50V/us--宽增益带宽——5系列2.5MHz,6系列5MHz,7系列20MHz--低输入噪声电压——5系列20nV/sqrt(Hz),6系列7系列12nV/sqrt(Hz)供电电压:±15V典型电路连接:Vos调节--Vos用一个25k的电位器调节--电位器中间调节端连到V+驱动容性负载--对于LF155/6 R=5k--对于LF357 R=1.25k--由于独特的输出平台设计,这些放大器能够驱动大的容性负载并且能保持稳定性。

Cl(MAX)≈0.01uF--建立时间(Ts)≈5us大功率带宽放大器--小于等于1%的失真度,20V峰峰值的输出抖动,功率带宽为500kHz建立时间测试电路--LF155/6连接成单位增益变频器来测试建立时间,LF357连接使得Av=-5--FET用来隔离探头的电容--输出10V步进--对于LF357来说Av = -5宽带低噪低漂移放大器--寄生输入电容C1≈(LF355是3pF,LF356和LF357要加上额外的布局电容)和反馈因素相互作用产生高频极点。

网友用的芯片总结

网友用的芯片总结

⽹友⽤的芯⽚总结⽹友⽤的芯⽚总结(整理版)⽹友在各⾃领域中所⽤到的芯⽚总结1.⾳频pcm编码DA转换芯⽚cirrus logic的cs4344,cs43344334是⽼封装,据说已经停产,4344封装⽐较⼩,⾮常好⽤。

还有菲利谱的。

8211等。

2.⾳频放⼤芯⽚4558,833,此⼆芯⽚都是双运放。

为什么不⽤324等运放个⼈觉得应该是对⾳频的频率响应⽐较好。

3.244和245,由于244是单向a=b的所以只是单向驱动。

⽽245是⽤于数据总线等双向驱动选择。

同时245的封装⾛线⾮常适合数据总线,它按照顺序d7-d0。

4.373和374,地址锁存器,⼀个电平触发,⼀个沿触发。

373⽤在单⽚机p0地址锁存,当然是扩展外部ram的时候⽤到62256。

374有时候也⽤在锁数码管内容显⽰。

5.max232和max202,有些为了节约成本就⽤max202,主要是驱动能⼒的限制。

6.⽹络接⼝变压器。

需要注意差分信号的等长和尽量短的规则。

7.amd29系列的flash,有bottom型和top型,主要区别是loader区域设置在哪⾥?bottom型的在开始地址空间,top型号的在末尾地址空间,我感觉有点反,但实际就是这么命名的。

8.164,它是⼀个串并转换芯⽚,可以把串⾏信号变为并⾏信号,控制数码管显⽰可以⽤到。

9.sdram,ddrram,在设计时候通常会在数据地址总线上加22,33的电阻,据说是为了阻抗匹配,对于这点我理论基础学到过,但实际上没什么深刻理解。

10.⽹卡控制芯⽚ax88796,rtl8019as,dm9000ae当然这些都是⽤在isa总线上的。

11.24位AD:CS5532,LPC2413效果还可以12.仪表运放:ITL114,不过据说功耗有点⼤13、⾳频功放:⼀般⽤LM36814、⾳量控制IC. PT2257/9.15.PCM双向解/编码 ADC/DAC CW669116.2.4G双⼯通讯 RF IC CC250017.cat809,max809,这些是电源监控芯⽚,当低于某⼀电压以后⽐如3.07v等出现⼀个100ms的低电平,实现复位功能。

SL353 Honeywell全极性霍尔数据手册

SL353 Honeywell全极性霍尔数据手册
Price competitive
By using BiCMOS technology, Honeywell has been able to design a full-featured integrated circuit with reduced size, saving on manufacturing costs, and resulting in more economical pricing to customers.
Supply voltage (Vs) Active mode current Sleep mode current Average current: SL353HT SL353HT SL353LT SL353LT Active mode time Period: SL353HT SL353HT SL353LT SL353LT Duty cycle: SL353HT SL353HT SL353LT SL353LT Vout: high high low low Operating temperature Storage temperature Vs = 2.8 V, Ta = 25 °C [77 °F], load current = 100 μA Vs = 2.2 V to 5.5 V, Ta = -40 °C to 85 °C [-40 °F to 185 °F], load current = 100 μA Vs = 2.8 V, Ta = 25 °C [77 °F], load current = 100 μA Vs = 2.2 V to 5.5 V, Ta = -40 °C to 85 °C [-40 °F to 185 °F], load current = 100 μA Vs = 2.2 V to 5.5 V, Ta = -40 °C to 85 °C [-40 °F to 185 °F] Vs - 0.15 Vs - 0.25 Vs - 0.11 Vs - 0.11 0.11 0.11 Vs = 2.8 V, Ta = 25 °C [77 °F] Vs = 2.2 V to 5.5 V, Ta = -40 °C to 85 °C [-40 °F to 185 °F] Vs = 2.8 V, Ta = 25 °C [77 °F] Vs = 2.2 V to 5.5 V, Ta = -40 °C to 85 °C [-40 °F to 185 °F] 10 5 0.01 0.005 13 13 0.013 0.013 16 25 0.016 0.025 % Vs = 2.8 V, Ta = 25 °C [77 °F] Vs = 2.2 V to 5.5 V, Ta = -40 °C to 85 °C [-40 °F to 185 °F] Vs = 2.8 V, Ta = 25 °C [77 °F] Vs = 2.2 V to 5.5 V, Ta = -40 °C to 85 °C [-40 °F to 185 °F] 30 20 30 20 45 45 45 45 80 150 80 150 μs μs ms ms Vs = 2.8 V, Ta = 25 °C [77 °F] Vs = 2.2 V to 5.5 V, Ta = -40 °C to 85 °C [-40 °F to 185 °F] Vs = 2.8 V, Ta = 25 °C [77 °F] Vs = 2.2 V to 5.5 V, Ta = -40 °C to 85 °C [-40 °F to 185 °F] Vs = 2.8 V, Ta = 25 °C [77 °F] Vs = 2.2 V to 5.5 V, Ta = -40 °C to 85 °C [-40 °F to 185 °F]

FM353 配置及编程入门

FM353 配置及编程入门

FM353 配置及编程入门FM353 Configuration and Programming摘要FM353是用于控制步进电机的定位模块,本文简要介绍了FM353的使用方法,包括硬件接线,参数配置,控制面板调试以及编程。

关键词 FM353,参数配置,编程Key Words FM353, Parameterization, ProgrammingIA&DT Service & Support Page 2-41目录FM353 配置及编程入门 (1)1.硬件接线 (4)2. 参数配置 (8)3. 用控制面板调试 (18)3.1 点动模式 (21)3.2 开环控制 (22)3.3 寻找参考点 (23)3.4 增量模式 (24)3.5 MDI (25)3.6 自动模式 (26)4. 编程 (27)4.1 点动模式 (30)4.2 开环控制 (32)4.3 寻找参考点 (33)4.5 MDI (35)4.6 自动模式 (37)IA&DT Service & Support Page 3-411.硬件接线图1 FM353 X2 接口图2 X2接口定义X2接口用于连接驱动器,上图中 Type O 代表输出信号,I代表输入信号。

PULSE: 脉冲输出DIRECTION: 步进电机的旋转方向。

ENABLE: 用于驱动器使能。

PWM/BOOST: PWM功能,可以采用脉宽调制功能,调整步进电机电流。

BOOST功能,可以用来放大步进电机的电流大小。

这些功能需要驱动器支持。

READY1:驱动器准备好信号。

所有的输出信号都是5V差分信号(符合RS422标准)。

驱动器最好可以接收差分信号,如果驱动器不支持差分式信号,电缆长度不能超过10米。

下图是输出信号如何接入不同类型的驱动器。

IA&DT Service & Support Page 4-41图3 符合RS422标准的差分平衡输入图4 带有光耦输入的平衡传输图5 带有光耦输入的非平衡传输图6 无光耦输入的非平衡传输输入信号是非隔离的5V信号,下图是如何接收不同类型驱动器来的输入信号。

353-集成运算放大器应用

353-集成运算放大器应用

3. 输出保护
利用稳压管V1和V2接成反向串联电路。 若输出端出现过高电压,集成运放输出端 电压将受到稳压管稳压值的限制,从而避 免了损坏。
正负电源 (CH1/CH2
串联模式)
输出额定值:0~30/0~3A:CH1~COM 0~30/0~3A:CH2~COM
-
COM
+
上限截止频率fH的测量:
• 输入f=1KHz,Ui=5mV的正弦信号,且输出波形不 失真时,用交流毫伏表测输出电压U0的值为Uom。 此后保持输入信号Ui=5mV不变,将信号频率由 1KHz向更高处调节,这时输出电压U0会随Ui频率 的增高而逐渐下降。直到U0下降到0.7Uom。这时 对应的信号频率就是被测放大器的上限截止频率 f H。
单位增益带宽
• 单位增益带宽定义为:运放的闭环增益为 1倍 条件下,将一个恒幅正弦小信号输入到运放的 输入端,从运放的输出端测得闭环电压增益下 降3db(或是相当于运放输入信号的0.707)所 对应的信号频率。单位增益带宽是一个很重要 的指标,对于正弦小信号放大时,单位增益带 宽等于输入信号频率与该频率下的最大增益的 乘积,换句话说,就是当知道要处理的信号频 率和信号需要的增益后,可以计算出单位增益 带宽,用以选择合适的运放。这用于小信号处 理中运放选型。
R R f f U= ( U+ U) 0 i 1 i 2 R R 1 2
电路中R1、R2、Rf、R′的选择同反相比例运算电路。
4、差动比例运算电路
当R1=R2=R、R3=R4=Rf时
R f U= (U U 0 i2i1) R
5、积分运算电路
• 积分电路可以完成对输入电压的积分运算,即其输出电压与输入电压的 积分成正比。 • 反向积分电路电容器C引入交流并联电压负反馈,运放工作在线性区。 • 由于积分运算是对瞬时值而言的,所以各电流、电压均采用瞬时值符号

LF353中文资料

LF353中文资料

LF353Wide Bandwidth Dual JFET Input Operational AmplifierGeneral DescriptionThese devices are low cost,high speed,dual JFET input operational amplifiers with an internally trimmed input offset voltage (BI-FET II ™technology).They require low supply current yet maintain a large gain bandwidth product and fast slew rate.In addition,well matched high voltage JFET input devices provide very low input bias and offset currents.The LF353is pin compatible with the standard LM1558allowing designers to immediately upgrade the overall performance of existing LM1558and LM358designs.These amplifiers may be used in applications such as high speed integrators,fast D/A converters,sample and hold circuits and many other circuits requiring low input offset voltage,low input bias current,high input impedance,high slew rate and wide bandwidth.The devices also exhibit low noise and offset voltage drift.Featuresn Internally trimmed offset voltage:10mV n Low input bias current:50pA n Low input noise voltage:25nV/√Hz n Low input noise current:0.01pA/√Hzn Wide gain bandwidth:4MHz n High slew rate:13V/µs n Low supply current: 3.6mA n High input impedance:1012Ωn Low total harmonic distortion :≤0.02%n Low 1/f noise corner:50Hz nFast settling time to 0.01%:2µsTypical Connection 00564914Simplified Schematic1/2Dual00564916Connection DiagramDual-In-Line Package00564917Top ViewOrder Number LF353M,LF353MX or LF353N See NS Package Number M08A or N08EBI-FET II ™is a trademark of National Semiconductor Corporation.December 2003LF353Wide Bandwidth Dual JFET Input Operational Amplifier©2003National Semiconductor Corporation Absolute Maximum Ratings (Note 1)If Military/Aerospace specified devices are required,please contact the National Semiconductor Sales Office/Distributors for availability and specifications.Supply Voltage ±18VPower Dissipation(Note 2)Operating Temperature Range 0˚C to +70˚CT j (MAX)150˚CDifferential Input Voltage ±30V Input Voltage Range (Note 3)±15VOutput Short Circuit Duration Continuous Storage Temperature Range −65˚C to +150˚CLead Temp.(Soldering,10sec.)260˚CSoldering Information Dual-In-Line Package Soldering (10sec.)260˚CSmall Outline Package Vapor Phase (60sec.)215˚C Infrared (15sec.)220˚CSee AN-450“Surface Mounting Methods and Their Effect on Product Reliability”for other methods of soldering surface mount devices.ESD Tolerance (Note 8)1000V θJA M PackageTBDNote 1:Absolute Maximum Ratings indicate limits beyond which damage to the device may occur.Operating ratings indicate conditions for which the device is functional,but do not guarantee specific performance limits.Elec-trical Characteristics state DC and AC electrical specifications under particu-lar test conditions which guarantee specific performance limits.This assumes that the device is within the Operating Ratings.Specifications are not guar-anteed for parameters where no limit is given,however,the typical value is a good indication of device performance.DC Electrical Characteristics(Note 5)Symbol ParameterConditionsLF353Units MInTyp Max V OS Input Offset VoltageR S =10k Ω,T A =25˚C 510mV Over Temperature 13mV ∆V OS /∆T Average TC of Input Offset Voltage R S =10k Ω10µV/˚C I OS Input Offset Current T j =25˚C,(Notes 5,6)25100pA T j ≤70˚C4nA I B Input Bias Current T j =25˚C,(Notes 5,6)50200pA T j ≤70˚C 8nA R IN Input ResistanceT j =25˚C1012ΩA VOLLarge Signal Voltage GainV S =±15V,T A =25˚C 25100V/mVV O =±10V,R L =2k ΩOver Temperature15V/mVV O Output Voltage Swing V S =±15V,R L =10k Ω±12±13.5V V CM Input Common-Mode Voltage V S =±15V±11+15V Range−12V CMRR Common-Mode Rejection Ratio R S ≤10k Ω70100dB PSRR Supply Voltage Rejection Ratio (Note 7)70100dB I SSupply Current3.66.5mAAC Electrical Characteristics(Note 5)SymbolParameterConditionsLF353UnitsMinTyp MaxAmplifier to Amplifier CouplingT A =25˚C,f=1Hz−20kHz −120dB (Input Referred)SR Slew RateV S =±15V,T A =25˚C 8.013V/µs GBW Gain Bandwidth Product V S =±15V,T A =25˚C 2.74MHze n Equivalent Input Noise Voltage T A =25˚C,R S =100Ω,16f=1000Hzi nEquivalent Input Noise CurrentT j =25˚C,f=1000Hz0.01L F 353 2AC Electrical Characteristics(Continued)(Note5)Symbol Parameter Conditions LF353UnitsMin Typ MaxTHD Total Harmonic Distortion A V=+10,RL=10k,V O=20Vp−p,BW=20Hz-20kHz<0.02%Note2:For operating at elevated temperatures,the device must be derated based on a thermal resistance of115˚C/W typ junction to ambient for the N package, and158˚C/W typ junction to ambient for the H package.Note3:Unless otherwise specified the absolute maximum negative input voltage is equal to the negative power supply voltage.Note4:The power dissipation limit,however,cannot be exceeded.Note5:These specifications apply for V S=±15V and0˚C≤T A≤+70˚C.V OS,I B and I OS are measured at V CM=0.Note6:The input bias currents are junction leakage currents which approximately double for every10˚C increase in the junction temperature,T j.Due to the limited production test time,the input bias currents measured are correlated to junction temperature.In normal operation the junction temperature rises above the ambient temperature as a result of internal power dissipation,P D.T j=T A+θjA P D whereθjA is the thermal resistance from junction to e of a heat sink is recommended if input bias current is to be kept to a minimum.Note7:Supply voltage rejection ratio is measured for both supply magnitudes increasing or decreasing simultaneously in accordance with common practice.V S =±6V to±15V.Note8:Human body model,1.5kΩin series with100pF.Typical Performance CharacteristicsInput Bias Current Input Bias Current0056491800564919Supply Current Positive Common-Mode Input Voltage Limit0056492000564921LF3533Typical Performance Characteristics(Continued)Negative Common-Mode Input Voltage LimitPositive Current Limit0056492200564923Negative Current Limit Voltage Swing0056492400564925Output Voltage Swing Gain Bandwidth0056492600564927L F 353 4Typical Performance Characteristics(Continued)Bode PlotSlew Rate0056492800564929Distortion vs.Frequency Undistorted Output Voltage Swing0056493000564931Open Loop Frequency Response Common-Mode Rejection Ratio0056493200564933LF3535Typical Performance Characteristics(Continued)Power Supply Rejection RatioEquivalent Input Noise Voltage0056493400564935Open Loop Voltage Gain (V/V)Output Impedance0056493600564937Inverter Settling Time00564938L F 353 6Pulse ResponseSmall Signaling Inverting00564904Large Signal Inverting00564906Small Signal Non-Inverting00564905Large Signal Non-Inverting00564907Current Limit(R L=100Ω)00564908Application HintsThese devices are op amps with an internally trimmed inputoffset voltage and JFET input devices(BI-FET II).TheseJFETs have large reverse breakdown voltages from gate tosource and drain eliminating the need for clamps across theinputs.Therefore,large differential input voltages can easilybe accommodated without a large increase in input current.The maximum differential input voltage is independent of thesupply voltages.However,neither of the input voltagesshould be allowed to exceed the negative supply as this willcause large currents to flow which can result in a destroyedunit.Exceeding the negative common-mode limit on either inputwill force the output to a high state,potentially causing areversal of phase to the output.Exceeding the negativecommon-mode limit on both inputs will force the amplifieroutput to a high state.In neither case does a latch occurLF3537Application Hints(Continued)since raising the input back within the common-mode range again puts the input stage and thus the amplifier in a normal operating mode.Exceeding the positive common-mode limit on a single input will not change the phase of the output;however,if both inputs exceed the limit,the output of the amplifier will be forced to a high state.The amplifiers will operate with a common-mode input volt-age equal to the positive supply;however,the gain band-width and slew rate may be decreased in this condition.When the negative common-mode voltage swings to within 3V of the negative supply,an increase in input offset voltage may occur.Each amplifier is individually biased by a zener reference which allows normal circuit operation on ±6V power sup-plies.Supply voltages less than these may result in lower gain bandwidth and slew rate.The amplifiers will drive a 2k Ωload resistance to ±10V over the full temperature range of 0˚C to +70˚C.If the amplifier is forced to drive heavier load currents,however,an increase in input offset voltage may occur on the negative voltage swing and finally reach an active current limit on both posi-tive and negative swings.Precautions should be taken to ensure that the power supply for the integrated circuit never becomes reversed in polarityor that the unit is not inadvertently installed backwards in a socket as an unlimited current surge through the resulting forward diode within the IC could cause fusing of the internal conductors and result in a destroyed unit.As with most amplifiers,care should be taken with lead dress,component placement and supply decoupling in order to ensure stability.For example,resistors from the output to an input should be placed with the body close to the input to minimize “pick-up”and maximize the frequency of the feed-back pole by minimizing the capacitance from the input to ground.A feedback pole is created when the feedback around any amplifier is resistive.The parallel resistance and capacitance from the input of the device (usually the inverting input)to AC ground set the frequency of the pole.In many instances the frequency of this pole is much greater than the expected 3dB frequency of the closed loop gain and consequently there is negligible effect on stability margin.However,if the feed-back pole is less than approximately 6times the expected 3dB frequency a lead capacitor should be placed from the output to the input of the op amp.The value of the added capacitor should be such that the RC time constant of this capacitor and the resistance it parallels is greater than or equal to the original feedback pole time constant.Detailed Schematic00564909L F 353 8Typical ApplicationsThree-Band Active Tone Control0056493900564940Note 1:All controls flat.Note 2:Bass and treble boost,mid flat.Note 3:Bass and treble cut,mid flat.Note 4:Mid boost,bass and treble flat.Note 5:Mid cut,bass and treble flat.•All potentiometers are linear taper•Use the LF347Quad for stereo applicationsLF3539Typical Applications(Continued)Improved CMRR Instrumentation Amplifier00564941Fourth Order Low Pass Butterworth Filter00564942L F 353 10Typical Applications(Continued)Fourth Order High Pass Butterworth Filter00564943LF35311Typical Applications(Continued)Ohms to Volts Converter00564944L F 353 12Physical Dimensionsinches (millimeters)unless otherwise notedOrder Number LF353M or LF353MXNS Package Number M08AMolded Dual-In-Line PackageOrder Number LF353N NS Package N08ELF35313NotesLIFE SUPPORT POLICYNATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION.As used herein:1.Life support devices or systems are devices or systems which,(a)are intended for surgical implant into the body,or (b)support or sustain life,and whose failure to perform when properly used in accordance with instructions for use provided in the labeling,can be reasonably expected to result in a significant injury to the user. 2.A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system,or to affect its safety or effectiveness.BANNED SUBSTANCE COMPLIANCENational Semiconductor certifies that the products and packing materials meet the provisions of the Customer Products Stewardship Specification (CSP-9-111C2)and the Banned Substances and Materials of Interest Specification (CSP-9-111S2)and contain no ‘‘Banned Substances’’as defined in CSP-9-111S2.National Semiconductor Americas Customer Support CenterEmail:new.feedback@ Tel:1-800-272-9959National SemiconductorEurope Customer Support CenterFax:+49(0)180-5308586Email:europe.support@Deutsch Tel:+49(0)6995086208English Tel:+44(0)8702402171Français Tel:+33(0)141918790National Semiconductor Asia Pacific Customer Support CenterEmail:ap.support@National SemiconductorJapan Customer Support Center Fax:81-3-5639-7507Email:jpn.feedback@ Tel:81-3-5639-7560L F 353W i d e B a n d w i d t h D u a l J F E T I n p u t O p e r a t i o n a l A m p l i f i e rNational does not assume any responsibility for use of any circuitry described,no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.。

示波器功能扩展电路设计实验报告

示波器功能扩展电路设计实验报告

电子电路综合实验实验报告实验名称:示波器功能扩展电路的设计学院:信息与通信工程学院班级:姓名:学号:课题名称:示波器功能扩展电路的设计摘要:示波器是一种用途十分广泛的电子测量仪器。

在示波器的具体应用中,常常需要同时观测多路信号,或需要比较同一电路中不同点之间信号的频率、幅值和相位,以及观测电信号通过网络后的相移和失真等情况。

为了对信号进行测量和比较研究,需要把不同信号或同一信号的不同部分同时显示在荧光屏上。

这些都需要在荧光屏上能同时显示多路波形,本实验介绍的就是将单踪示波器转换为多踪示波器的装置。

关键词:示波器,555定时器,计数器,模拟开关,集成运算放大器一、设计任务要求:设计制作一个示波器功能扩展电路,该电路能够实现将普通双踪示波器改装成多综示波器进行多路信号测试。

1.基本要求1)能够实现用示波器的一路探头稳定显示四路被测信号波形;2)被测输入信号幅度为0-10V,频率不低于500Hz;3)系统电源为DC±5V,设计该电路的电源部分。

2.提高要求1)四路被测信号波形的大小可分别调整;2)用CPLD设计示波器功能扩展电路的数字系统部分;3)其他示波器功能扩展的设计和解决方案。

3.注意事项1)被测信号的频率应较低,而用作多路选择器和阶梯波地址的信号频率应较高,最终实现类似于示波器的断续方式,即先显示一路信号的一部分,再显示下一电路的一部分,每一路信号实际上是不完整的,但视觉上的效果是连续的。

2)阶梯波与选通后的被测信号叠加时,应调节各路信号的分压比使各路信号不重叠。

3)在电路正常工作的前提下,应尽量提高振荡器的频率以提高被测信号的频率范围。

4)设计与调测时,需用示波器观察555定时器的输出波形是否正确,其频率值与计算值是否相同,然后用示波器观测计数器的QA、QB端的波形是否为555时基信号的二分频、四分频,最后观察第一路开关的输出是否为阶梯波信号,台阶数值分别为0V、1V、2V、3V。

电压放大电路

电压放大电路

电压放大电路各位读友大家好,此文档由网络收集而来,欢迎您下载,谢谢单管电压放大电路实验名称:常用电子仪器的使用名字:张金泉学号:3120163413一、实验目的1.学习放大电路静态工作点的测量,了解元件参数对放大电路静态工作的影响。

2.掌握放大电路的电压放大倍数、输入电阻、输出电阻等指标的测试方法。

3.进一步熟悉双踪示波器,信号发生器,交流毫伏表及直流稳压电源的使用方法。

二、实验原理1、单管放大电路的工作原理单管基本电路有共射极、共基极、共集电极三种电路,本实验采用共射极放大电路如图-1所示。

三极管是一个电流控制电流源器件,通过合理设置静态工作点,实现对交流电压信号的放大。

2、放大电路的静态工作点静态工作点是指在电路输入信号为零时,电路中各支路电流和各节点的电压值。

3、放大电路动态参数的测量原理单管放大电路的动态参数测量电路如图- 3 ,其中的虚框部分为单管放大电路动态参数的等效电路。

1)放大电路电压放大倍数AU的测量:AU =UO/Ui 2)放大电路输入电阻ri与输出电阻ro 的测量原理电阻的测量采用串联电阻的间接测量法:串联合适的固定电阻,测量分压比,计算电阻:输入电阻ri = RS*Ui /(Us-Ui)输出电阻ro= RL*(UO-UOL )/UOL图1实验电路图2输入、输出电阻测量原理图三、主要仪器设备MDZ-2型模拟电子技术实验箱HY3003D-3型可调式直流稳压稳流电源MS8200G型数字万用表电路实验板四、实验内容1、静态工作点的调整和测量调节RP,使IC=2mA(可通过测量UC来确定IC,当IC=2mA时,UC=UCC-RCIC=×2=),测出UC、UB、UE,计算出UCE,记入表7-1。

2、电压放大倍数Au、输入电阻ri、输出电阻ro的测量。

将信号发生器的正弦波信号送入放大电路输入端S,正弦信号的频率为1kHz,并使ui的有效值Ui约为10mV。

用示波器同时观察输入、输出信号波形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

D低输入偏置电流…50 pA型低输入噪声电流0.01 pA/√Hz型低输入噪声电压…18 nV/√Hz型低供电电流…3.6 mA型高输入阻抗…1012年ΩTypD内部削减抵消电压增益带宽……3mhz类型,高转化率…13 V /µs TypdescriptionThis设备是一个低成本、高速、JFET-input运算放大器输入补偿电压很低。

它要求低的供电电流,但LF353保持了一个大的增益带宽产品和快速的转换速度。

此外,调制的高压JFET输入提供非常低的输入偏置和偏置电流。

LF353可用于高速积分器、数模转换器、采样保持电路和许多其他电路。

LF353的特点是在0°C到70°C之间运行。

(每个放大器的输出值+可用选项)包装可用胶带和卷绕。

将后缀R添加到设备类型(即。

LF353DR)。

绝对最大额定参数在操作自由空气的温度范围(除非另外说明)电源电压应用提示(续)由于将输入提高到共模范围内,再次将输入级和放大器置于正常工作模式。

超过单个输入的正共模极限不会改变输出的相位;然而,如果两者都超过了极限,放大器的输出将被迫处于高状态。

放大器的工作将与共模输入电压年龄等于正电源;然而,在这种情况下,增益带宽和旋转速率可能会降低。

当负共模电压荡到负电源的3v以内时,输入偏置伏特可能增加。

每个放大器由齐纳基准分别偏置,允许在±6V功率支持下正常电路运行。

LF353电源电压低于这些可能导致低增益带宽和摆频。

放大器将drivea2kΩ负载电阻±10 v在全温度范围0˚C + 70˚C。

然而,如果放大器被迫驱动更大的负载电流,则可能在负伏特翼上出现输入偏置电压的增加,并最终在正振荡和负振荡上达到有源电流的极限。

LF353应采取措施确保权力supplyfor集成电路不会成为逆转polarityor单位不是无意中安装在asocket向后无限通过resultingforward二极管集成电路中的电流冲击可能导致融合internalconductors和导致破坏单元。

与大多数放大器一样,应注意引线罩、元件放置和电源解耦,以确保稳定性。

例如,从输出到输入的电阻应该放置在靠近输入的位置,以减小“拾音器”的尺寸,LF353并通过减小输入到地面的电容来最大限度地提高反馈极的频率。

当放大器周围的反馈为电阻时,就会产生一个反馈极。

并联电阻和电容——从设备的输入端(通常是逆变输入端)到ACground——决定了磁极的频率。

在许多情况下,该极点的频率远远大于闭环增益的预期3dB频率,因此对稳定裕度的影响可以忽略不计。

然而,如果反馈杆小于大约6倍预期3 db频率领先电容器应该从产量到运算放大器的输入。

addedcapacitor的价值应该这样thiscapacitor RC时间常数和它相似的阻力大于orequal原反馈杆时间常数。

万联芯城专注电子元器件配单服务,只售原
装现货库存,万联芯城电子元器件全国供应,专为终端生产,研发企业提供现货物料,价格优势明显,如需要BOM物料清单配套,只需提交BOM表,商城会在短时间内反馈整单报价,万联芯城电子元器件配单服务可以为客户节省采购成本,满足客户物料需求,丰富的电子元器件供应链体系已为全国多家终端企业服务,
点击进入万联芯城。

相关文档
最新文档