江西省赣州市2021年八年级上学期数学期末考试试卷(II)卷

合集下载

2021-2022学年八上学期期末数学试题(含解析)

2021-2022学年八上学期期末数学试题(含解析)
9.如图,直线y1=k1x+b和直线y2=k2x+b分别与x轴交于A(-1,0)和B(3,0)两点,则不等式组 的解集为( )
A. B.
C. D. 或
10.如图,在四边形 中,连接 、 ,已知 , , , ,则四边形 的面积为()
A. B.3C. D.4
二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,只需把答案直接填写在答题卡上相应的位置)
答案与解析
一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是正确的,请用2B铅笔把答题卡上相应的选项标号涂黑)
1.第24届冬季奥林匹克运动会将于2022年2月4日至2月20日在中国北京市和张家口市联合举办.以下是历届的冬奥会会徽设计的部分图形,其中不是轴对称图形的是()
A. B. C. D.
6.下列函数中,属于正比例函数的是()
A. B. C. D.
7.已知 , , 分别是 的三边,根据下列条件能判定 为直角三角形的是()
A. , , B. , ,
C. , , D. , ,
8.等腰三角形的周长为21cm,其中一边长为5cm,则该等腰三角形的底边长为()
A.5cmB.11cmC.8cm或5cmD.11cm或5cm
17.如图, 中, , 为 中点, 在 上,且 ,若 , ,则边 的长度为______.
18.如图,在边长为2的等边 中,射线 于点 ,将 沿射线 平移,得到 ,连接 、 ,则 的最小值为______.
三、解答题(本大题共8小题,共66分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)
【答案】A
【解析】
【分析】题目给出等腰三角形一条边长为5,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.

2021-2022学年八年级数学上册尖子生选拔卷2(含解析)

2021-2022学年八年级数学上册尖子生选拔卷2(含解析)

第十五章 分式选拔卷(考试时间:90分钟 试卷满分:120分)一、选择题:本题共10个小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(2021·南昌市心远中学八年级期末)关于分式()271x x -+,下列说法不正确的是( )A .当1x =-时,分式没有意义B .当7x >时,分式的值为正数C .当7x <时,分式的值为负数D .当7x =时,分式的值为零2.(2021·山西祁县·八年级期末)如果一个分式的分子或分母可以因式分解,且这个分式是最简分式,那么我们称这个分式为“和谐分式”.下列分式中,属于“和谐分式”的是( )A .222a b a b --B .211x x -+C .22x y x y +-D .222()a b a b -+3.(2021·浙江拱墅·)你听说过著名的牛顿万有力定律吗?任何两个物体之间都有吸引力,如果设两个物体的质量分别为m 1,m 2,它们之间的距离是d ,那么它们之间的引力就是f =122gm m d (g 为常数),人在地面上所受的重力近似地等于地球对人的引力,此时d 就是地球的半径R .天文学家测得地球的半径约占木星半径的445,地球的质量约占木星质量的1318,则站在地球上的人所受的地球重力约是他在木星表面上所受木星重力的( ) A .52倍B .25倍C .25倍D .4倍4.(2021·成都市八年级期中)老师设计了接力游戏,用合作的方式完成分式化简规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简过程如图所示: 老师22211x x x x x-÷--→甲22211x x x x x --⋅-→乙22211x x x x x --⋅-→丙2(2)11x x x x x --⋅-→丁22x - 接力中,自己负责的一步出现错误的是() A .只有乙B .甲和丁C .乙和丙D .乙和丁5.(2021·安徽太湖·七年级期末)在2020年3月底新过师炎疫情在我国得到快速控制,教育部要求低风险区错时、错峰开学,某校在只有初三年级开学时,一段时间用掉120瓶消毒液,在初二、初一年级也错时、错峰开学后,平均每天比原来多用4瓶消毒液,这样120瓶消毒液比原来少用5天,若设原来平均每天用掉x 瓶消毒液,则可列方程是( ) A .12012054x x -=+B .12012054x x -=-C .12012054x x +=+D .12012054x x+=- 6.(2020·浙江杭州·八年级期中)设m ,n 是实数,定义关于@的一种运算如下:22@()()m n m n m n =+--,则下列结论:①若0mn ≠,m@8n =,则223944163m m n n ÷=;②@()@@m n k m n m k -=-;③不存在非零实数m ,n ,满足22@5m n m n =+;④若设2m ,n 是长方形的长和宽,若该长方形的周长固定,则当m n =时,@m n 的值最大. 其中正确的有( )个.A .1B .2C .3D .47.(2021·安徽霍邱·七年级期末)已知关于x 的分式方程10327333x k x x --=---的解满足2<x <5,则k 的取值范围是( )A .﹣7<k <14B .﹣7<k <14且k ≠0C .﹣14<k <7且k ≠0D .﹣14<k <7 8.(2021·浙江越城·七年级期末)已知关于x 的分式方程3x m x +-﹣1=1x 无解,则m 的值是( )A .﹣2B .﹣3C .﹣2或﹣3D .0或39.(2021·长沙市开福区青竹湖湘一外国语学校)若2a ≠,则我们把22a-称为a 的“友好数”,如3的“友好数”是2223=--,2-的“友好数”是212(2)2=--,已知13a =,2a 是1a 的“友好数”,3a 是2a 的“友好数”,4a 是3a 的“友好数”,……,依此类推,则2021a =( )A .3B .2-C .12D .4310.(2021·重庆巴蜀中学)若a 为整数,关于x 的不等式组2(1)4340x xx a +<+⎧⎨-<⎩有解,且关于x 的分式方程11222ax x x-+=--有正整数解,则满足条件的a 的个数( ) A .1B .2C .3D .4二、填空题:本题共8个小题,每题3分,共24分。

江西省赣州市八年级数学上学期段考试卷(含解析) 新人教版-新人教版初中八年级全册数学试题

江西省赣州市八年级数学上学期段考试卷(含解析) 新人教版-新人教版初中八年级全册数学试题

2016-2017学年某某省某某市兴国七中八年级(上)段考数学试卷一、选择题:(共6小题,每小题3分,共18分,每小题只有一个正确选项)1.下列图形中,△A′B′C′与△ABC成轴对称的是()A.B. C. D.2.下列计算错误的是()A.x2•x2=2x4B.(﹣2a)3=﹣8a3C.(﹣a3)2=a6D.(a3)2=a63.在△ABC中,已知∠A=∠B=∠C,则三角形是()A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形4.如图,A,B,C表示三个居民小区,为丰富居民们的文化生活,现准备建一个文化广场,使它到三个小区的距离相等,则文化广场应建在()A.AC,BC两边高线的交点处B.AC,BC两边中线的交点处C.AC,BC两边垂直平分线的交点处D.∠A,∠B两内角平分线的交点处5.如图,在△ABC中,AB=AC,∠A=50°,AB的垂直平分线MN交AC于D点,则∠DBC的度数是()A.15° B.20° C.25° D.30°6.如图所示,l是四边形ABCD的对称轴,AD∥BC,现给出下列结论:①AB∥CD;②AB=BC;③AB⊥BC;④AO=OC.其中正确的结论有()A.1个B.2个C.3个D.4个二、填空题:(共6小题,每小题3分,共18分)7.一个多边形的每一个外角都等于36°,则该多边形的内角和等于度.8.若点P(m,m﹣1)在x轴上,点P关于y轴对称的点坐标为.9.已知:x m=2,x n=3,则x3m+2n=.10.等腰三角形一个角为50°,则此等腰三角形顶角为.11.如图,在△ABC中,D为三角形内一点,∠A=65°,∠ABD=20°,∠ACD=35°,BD∥CE,则∠DCE=.12.如图:AC=AD=DE=EA=BD,∠BDC=32°,∠ADB=38°,则∠BEC=.三、计算题:(共5小题,每小题6分,共30分)13.现有M和N两个村庄,欲在其旁两条公路OH、OF上建立A、B两个候车厅,使MA+AB+BN 距离最小,请你在OH、OF上确定A、B两点的位置(保留作图痕迹)14.化简:(﹣2a2b3)3+3a4b3×(﹣ab3)2.15.如图,已知AO=DO,∠OBC=∠OCB.求证:∠1=∠2.16.如图,AB=AC,∠A=100°,CE平分∠ACD,求∠ECD的度数.17.如图,在等腰三角形△ABC中,AB=AC,BD平分∠ABC,在BC的延长线上取一点E,使CE=CD,连接DE,求证:BD=DE.四、(共4小题,每小题8分,共32分)18.如图,在等边△ABC中,点D,E分别在边BC,AC上,且DE∥AB,过点E作EF⊥DE,交BC的延长线于点F,(1)求∠F的度数;(2)若CD=5,求DF的长.19.如图,在平面直角坐标系中,A(1,2),B(3,1),C(﹣2,﹣1).(1)在图中作出△ABC关于x轴对称的△A′B′C′;(2)写出A′、B′、C′三点的坐标(直接写答案);(3)在(1)(2)条件下,连接OAB′三点,求△OAB′的面积.20.如图,OE平分∠AOB,EF∥OB,EC⊥OB.(1)求证:OF=EF(2)若∠BOE=15°,EC=5求:OF的值.21.如图,在等腰△ABC中,CH是底边上的高线,点P是线段CH上不与端点重合的任意一点,连接AP交BC于点E,连接BP交AC于点F.(1)证明:∠CAE=∠CBF;(2)证明:AE=BF.五、(共2小题,第22小题10分,第23题12分,共22分)22.如图,已知△ABC为等边三角形,P为BC上一点,△APQ为等边三角形.(1)求证:AB∥CQ;(2)AQ与CQ能否互相垂直?若能互相垂直,指出点P在BC上的位置,并给予证明;若AQ 与CQ不能互相垂直,请说明理由.23.如图,平面直角坐标系中,已知点A(a﹣b,2),B(a+b,0),AB=4,且+(a+b﹣4)2=0,C为x轴上点B右侧的动点,以AC为腰作等腰△ACD,使AD=AC,∠CAD=∠OAB,直线DB交y轴于点P.(1)求证:AO=AB;(2)求证:∠AOC=∠ABD;(3)当点C运动时,点P在y轴上的位置是否发生改变,为什么?(提示:在直角三角形中,若两直角边分别为a、b,斜边为c,则有a2+b2=c2)2016-2017学年某某省某某市兴国七中八年级(上)段考数学试卷参考答案与试题解析一、选择题:(共6小题,每小题3分,共18分,每小题只有一个正确选项)1.下列图形中,△A′B′C′与△ABC成轴对称的是()A.B. C. D.【考点】轴对称的性质.【分析】根据中心对称,轴对称,平移变换的性质对各选项分析判断即可得解.【解答】解:A、是中心对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、是平移变换图形,故本选项错误;D、是旋转变换图形,故本选项错误.故选B.2.下列计算错误的是()A.x2•x2=2x4B.(﹣2a)3=﹣8a3C.(﹣a3)2=a6D.(a3)2=a6【考点】幂的乘方与积的乘方;同底数幂的乘法.【分析】结合同底数幂的乘法、幂的乘方与积的乘方的概念与运算法则进行求解即可.【解答】解:A、x2•x2=x4≠2x4,本选项错误;B、(﹣2a)3=﹣8a3,本选项正确;C、(﹣a3)2=a6,本选项正确;D、(a3)2=a6,本选项正确.故选A.3.在△ABC中,已知∠A=∠B=∠C,则三角形是()A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形【考点】三角形内角和定理.【分析】根据三角形内角和定理求出三个内角的度数即可判断.【解答】解:设∠A=α,∴∠B=α,∠C=2α,∵∠A+∠B+∠C=180°,∴α+α+2α=180°,∴α=45°,∴∠C=90°,∴该三角形是等腰直角三角形.故选(D)4.如图,A,B,C表示三个居民小区,为丰富居民们的文化生活,现准备建一个文化广场,使它到三个小区的距离相等,则文化广场应建在()A.AC,BC两边高线的交点处B.AC,BC两边中线的交点处C.AC,BC两边垂直平分线的交点处D.∠A,∠B两内角平分线的交点处【考点】线段垂直平分线的性质.【分析】要求到三个小区的距离相等,首先思考到A小区、C小区距离相等,根据线段垂直平分线定理的逆定理知满足条件的点在线段AC的垂直平分线上,同理到B小区、C小区的距离相等的点在线段BC的垂直平分线上,于是到三个小区的距离相等的点应是其交点,答案可得.【解答】解:A,B,C表示三个居民小区,为丰富居民们的文化生活,现准备建一个文化广场,使它到三个小区的距离相等,则文化广场应建在AC,BC两边垂直平分线的交点处.故选C.5.如图,在△ABC中,AB=AC,∠A=50°,AB的垂直平分线MN交AC于D点,则∠DBC的度数是()A.15° B.20° C.25° D.30°【考点】等腰三角形的性质;线段垂直平分线的性质.【分析】根据等腰三角形两底角相等求出∠ABC的度数,再根据线段垂直平分线上的点到线段两端点的距离相等可得AD=BD,根据等边对等角的性质可得∠ABD=∠A,然后求解即可.【解答】解:∵AB=AC,∠A=40°,∴∠ABC===65°,∵MN垂直平分线AB,∴AD=BD,∴∠ABD=∠A=50°,∴∠DBC=∠ABC﹣∠ABD=65°﹣50°=15°.故选A.6.如图所示,l是四边形ABCD的对称轴,AD∥BC,现给出下列结论:①AB∥CD;②AB=BC;③AB⊥BC;④AO=OC.其中正确的结论有()A.1个B.2个C.3个D.4个【考点】轴对称的性质.【分析】根据轴对称图形的性质,四边形ABCD沿直线l对折能够完全重合,再根据两直线平行,内错角相等可得∠CAD=∠ACB=∠BAC=∠ACD,然后根据内错角相等,两直线平行即可判定AB∥CD,根据等角对等边可得AB=BC,然后判定出四边形ABCD是菱形,根据菱形的对角线互相垂直平分即可判定AO=OC;只有四边形ABCD是正方形时,AB⊥BC才成立.【解答】解:∵l是四边形ABCD的对称轴,∴∠CAD=∠BAC,∠ACD=∠ACB,∵AD∥BC,∴∠CAD=∠ACB,∴∠CAD=∠ACB=∠BAC=∠ACD,∴AB∥CD,AB=BC,故①②正确;又∵l是四边形ABCD的对称轴,∴AB=AD,BC=CD,∴AB=BC=CD=AD,∴四边形ABCD是菱形,∴AO=OC,故④正确,∵菱形ABCD不一定是正方形,∴AB⊥BC不成立,故③错误,综上所述,正确的结论有①②④共3个.故选C.二、填空题:(共6小题,每小题3分,共18分)7.一个多边形的每一个外角都等于36°,则该多边形的内角和等于1440 度.【考点】多边形内角与外角.【分析】任何多边形的外角和等于360°,可求得这个多边形的边数.再根据多边形的内角和等于(n﹣2)•180°即可求得内角和.【解答】解:∵任何多边形的外角和等于360°,∴多边形的边数为360°÷36°=10,∴多边形的内角和为(10﹣2)•180°=1440°.故答案为:1440.8.若点P(m,m﹣1)在x轴上,点P关于y轴对称的点坐标为(﹣1,0).【考点】关于x轴、y轴对称的点的坐标.【分析】直接利用x轴上点的坐标性质得出m的值,进而利用关于y轴对称的点坐标性质得出答案.【解答】解:∵点P(m,m﹣1)在x轴上,∴m﹣1=0,则m=1,故P(1,0),则点P关于y轴对称的点坐标为:(﹣1,0).故答案为:(﹣1,0).9.已知:x m=2,x n=3,则x3m+2n= 72 .【考点】幂的乘方与积的乘方;同底数幂的乘法.【分析】根据同底数幂的乘法与除法,幂的乘方与积的乘方的运算法则计算即可.【解答】解:∵x m=2,x n=3,∴x3m+2n=x3m•x2n=(x m)3•(x n)2=8×9=72.故答案为72.10.等腰三角形一个角为50°,则此等腰三角形顶角为50°或80°.【考点】等腰三角形的性质;三角形内角和定理.【分析】已知没有给出50°的角是顶角和是底角,所以要分两种情况进行讨论.【解答】解:分为两种情况:当50°是顶角时,顶角为50°当50°是底角时,其顶角是180°﹣50°×2=80°故填50°或80°.11.如图,在△ABC中,D为三角形内一点,∠A=65°,∠ABD=20°,∠ACD=35°,BD∥CE,则∠DCE= 60°.【考点】平行线的性质.【分析】先根据三角形内角和定理求出∠DBC+∠DCB的度数,再由平行线的性质得出∠DBC=∠ECB,由此可得出结论.【解答】解:∵△ABC中,∠A=65°,∠ABD=20°,∠ACD=35°,∴∠DBC+∠DCB=180°﹣65°﹣35°﹣20°=60°.∵BD∥CE,∴∠DBC=∠ECB,∴∠DCE=∠DBC+∠DCB=60°.故答案为:60°.12.如图:AC=AD=DE=EA=BD,∠BDC=32°,∠ADB=38°,则∠BEC= 21°.【考点】等腰三角形的性质.【分析】根据等腰三角形的性质和等边三角形的性质分别得出∠AEC,∠BED,∠AED的度数,由∠BEC=∠AEC+∠BED﹣∠AED即可求解.【解答】解:∵AC=AD=DE=EA=BD,∠BDC=32°,∠ADB=38°,∴∠ADC=38°+32°=70°,∠CAD=180°﹣2×70°=40°,∠DAE=∠ADE=∠AED=∠60°,在△ACE中,∠CAE=60°+40°=100°,∠AEC=÷2=40°.又∵在△BDE中,∠BDE=60°+38°=98°,∴∠BED=÷2=41°∴∠BEC=∠AEC+∠BED﹣∠AED=40°+41°﹣60°=21°.故答案为:21°.三、计算题:(共5小题,每小题6分,共30分)13.现有M和N两个村庄,欲在其旁两条公路OH、OF上建立A、B两个候车厅,使MA+AB+BN 距离最小,请你在OH、OF上确定A、B两点的位置(保留作图痕迹)【考点】作图—应用与设计作图;轴对称-最短路线问题.【分析】直接利用对称点的性质得出M,N分别关于OH,OF的对称点,进而连接得出答案.【解答】解:如图所示:A,B点即为所求.14.化简:(﹣2a2b3)3+3a4b3×(﹣ab3)2.【考点】单项式乘单项式;幂的乘方与积的乘方.【分析】先算积的乘方,再算单项式乘单项式,最后合并同类项即可求解.【解答】解:(﹣2a2b3)3+3a4b3×(﹣ab3)2=﹣8a6b9+3a4b3×a2b6=﹣8a6b9+3a6b9=﹣5a6b9.15.如图,已知AO=DO,∠OBC=∠OCB.求证:∠1=∠2.【考点】全等三角形的判定与性质.【分析】欲证明∠1=∠2,只要证明△AOD≌△DOC即可.【解答】证明:∵∠OBC=∠OCB,∴OB=OC,在△AOB和△DOC中,,∴△AOB≌△DOC,∴∠1=∠2.16.如图,AB=AC,∠A=100°,CE平分∠ACD,求∠ECD的度数.【考点】等腰三角形的性质.【分析】利用等腰三角形的性质得到∠B的度数,再根据三角形外角的性质得出∠ACD的度数,进而利用角平分线的性质得出答案.【解答】解:∵AB=AC,∠A=100°,∴∠B=÷2=40°,∴∠ACD=100°+40°=140°,∵CE平分∠ACD,则∠ECD=70°.17.如图,在等腰三角形△ABC中,AB=AC,BD平分∠ABC,在BC的延长线上取一点E,使CE=CD,连接DE,求证:BD=DE.【考点】等腰三角形的性质.【分析】求出∠ABC=∠ACB,求出∠DBC=∠ABC,根据等腰三角形性质和三角形外角性质求出∠E=∠ACB,推出∠E=∠DBC即可.【解答】证明:∵AB=AC∴∠ABC=∠ACB,∵BD平分∠ABC,∴∠DBC=∠ABC,∵CD=CE,∴∠E=∠CDE,∵∠ACB=∠E+∠CDE,∴∠E=∠ACB,∴∠E=∠DBE,∴BD=DE.四、(共4小题,每小题8分,共32分)18.如图,在等边△ABC中,点D,E分别在边BC,AC上,且DE∥AB,过点E作EF⊥DE,交BC的延长线于点F,(1)求∠F的度数;(2)若CD=5,求DF的长.【考点】等边三角形的性质;平行线的性质.【分析】(1)根据平行线的性质可得∠EDC=∠B=60°,根据三角形内角和定理即可求解;(2)易证△EDC是等边三角形,再根据直角三角形的性质即可求解.【解答】解:(1)∵△ABC是等边三角形,∴∠B=60°,∵DE∥AB,∴∠EDC=∠B=60°,∵EF⊥DE,∴∠DEF=90°,∴∠F=90°﹣∠EDC=30°;(2)∵∠ACB=60°,∠EDC=60°,∴△EDC是等边三角形.∴ED=DC=5,∵∠DEF=90°,∠F=30°,∴DF=2DE=10.19.如图,在平面直角坐标系中,A(1,2),B(3,1),C(﹣2,﹣1).(1)在图中作出△ABC关于x轴对称的△A′B′C′;(2)写出A′、B′、C′三点的坐标(直接写答案);(3)在(1)(2)条件下,连接OAB′三点,求△OAB′的面积.【考点】作图-轴对称变换.【分析】(1)利用关于x轴对称的点的坐标特征写出A′、B′、C′三点的坐标,然后描点即可得到△A′B′C′;(2)由(1)得A′、B′、C′三点的坐标;(3)用一个矩形的面积减去三个三角形的面积可计算出△OAB′的面积.【解答】解:(1)如图,△A′B′C′为所作;(2)A′(1,﹣2)、B′(3,﹣1)、C′(﹣2,1);(3)△OAB′的面积=3×3﹣×3×1﹣×2×3﹣×2×1=3.5.20.如图,OE平分∠AOB,EF∥OB,EC⊥OB.(1)求证:OF=EF(2)若∠BOE=15°,EC=5求:OF的值.【考点】角平分线的性质;平行线的性质.【分析】(1)根据角平分线的定义得到∠BOE=∠AOE,由平行线的性质得到∠BOE=∠OEF,等量代换得到∠OEF=∠FOE,于是得到结论;(2)过E作ED⊥OA于D,根据三角形的外角的性质得到∠EFD=30°,根据直角三角形的性质即可得到结论.【解答】(1)证明:∵OE平分∠AOB,∴∠BOE=∠AOE,∵EF∥OB,∴∠BOE=∠OEF,∴∠OEF=∠FOE,∴OF=EF;(2)解:过E作ED⊥OA于D,∵∠BOE=15°,∴∠OEF=∠FOE=15°,∴∠EFD=30°,∵CE⊥OB,∴DE=CE=5,∴EF=2DE=10,∴OF=EF=10.21.如图,在等腰△ABC中,CH是底边上的高线,点P是线段CH上不与端点重合的任意一点,连接AP交BC于点E,连接BP交AC于点F.(1)证明:∠CAE=∠CBF;(2)证明:AE=BF.【考点】全等三角形的判定与性质;等腰三角形的性质.【分析】(1)根据等腰三角形三线合一的性质可得CH平分∠ACB,再证明△ACE和△BCF全等,然后根据全等三角形对应角相等可得结论;(2)证明△AEC≌△BFC,根据全等三角形对应边相等即可证明.【解答】(1)证明:在等腰△ABC中,∵CH是底边上的高线,∴∠ACH=∠BCH,在△ACP和△BCP中,,∴△ACP≌△BCP(SAS),∴∠CAE=∠CBF(全等三角形对应角相等);(2)在△AEC和△BFC中,∴△AEC≌△BFC(ASA),∴AE=BF(全等三角形对应边相等).五、(共2小题,第22小题10分,第23题12分,共22分)22.如图,已知△ABC为等边三角形,P为BC上一点,△APQ为等边三角形.(1)求证:AB∥CQ;(2)AQ与CQ能否互相垂直?若能互相垂直,指出点P在BC上的位置,并给予证明;若AQ 与CQ不能互相垂直,请说明理由.【考点】全等三角形的判定与性质;等边三角形的性质.【分析】(1)根据等边三角形性质得出AB=AC,AP=AQ,∠BAC=∠B=∠PAQ=60°,求出∠BAP=∠CAQ,根据SAS证△ABP≌△ACQ,推出∠ACQ=∠B=60°=∠BAC,根据平行线的判定推出即可.(2)根据等腰三角形性质求出∠BAP=30°,求出∠B AQ=90°,根据平行线性质得出∠AQC=90°,即可得出答案.【解答】(1)证明:∵△ABC和△APQ是等边三角形,∴AB=AC,AP=AQ,∠BAC=∠B=∠PAQ=60°,∴∠BAP=∠CAQ=60°﹣∠PAC,在△ABP和△ACQ中∴△ABP≌△ACQ(SAS),∴∠ACQ=∠B=60°=∠BAC,∴AB∥CQ.(2)AQ与CQ能互相垂直,此时点P在BC的中点,证明:∵当P为BC边中点时,∠BAP=∠BAC=30°,∴∠BAQ=∠BAP+∠PAQ=30°+60°=90°,又∵AB∥CQ,∴∠AQC=90°,即AQ⊥CQ.23.如图,平面直角坐标系中,已知点A(a﹣b,2),B(a+b,0),AB=4,且+(a+b﹣4)2=0,C为x轴上点B右侧的动点,以AC为腰作等腰△ACD,使AD=AC,∠CAD=∠OAB,直线DB交y轴于点P.(1)求证:AO=AB;(2)求证:∠AOC=∠ABD;(3)当点C运动时,点P在y轴上的位置是否发生改变,为什么?(提示:在直角三角形中,若两直角边分别为a、b,斜边为c,则有a2+b2=c2)【考点】三角形综合题;全等三角形的判定与性质;等腰三角形的性质;等边三角形的性质.【分析】(1)根据算术平方根和平方的非负性质即可求得a、b的值,进而求得A,B点坐标,求得OA,AB长度即可;(2)易证∠OAC=∠BAD,即可证明△OAC≌△BAD,根据全等三角形的性质,可得对应角相等;(3)点P在y轴上的位置不发生改变,先判定△AOB是等边三角形,易证∠OBP=60°,根据OB长度固定和∠OPB=30°,即可求得OP的长为定值.【解答】解:(1)∵+(a+b﹣4)2=0,∴,解得,∴A(2,2),B(4,0),∴AO==4,又∵AB=4,∴AO=AB;(2)∵∠CAD=∠OAB,∴∠CAD+∠BAC=∠OAB+∠BAC,即∠OAC=∠BAD,在△OAC和△BAD中,,∴△OAC≌△BAD(SAS),∴∠AOC=∠ABD;(3)点P在y轴上的位置不发生改变.证明:由(1)可得,AB=BO=AO=4,∴∠AOB=∠ABO=60°,由(2)知△AOC≌△ABD,∴∠ABD=∠AOB=60°,∴∠OBP=60°,∵∠POB=90°,∴∠OPB=30°,∴Rt△BOP中,BP=2OB=8,∴OP==4,即OP长度不变,∴点P在y轴上的位置不发生改变.。

人教版2020---2021学年度八年级数学(上)期末考试卷及答案(含两套题)

人教版2020---2021学年度八年级数学(上)期末考试卷及答案(含两套题)

密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题人教版2020—2021学年度上学期八年级数学(上)期末测试卷及答案(满分:150分 时间: 120分钟)第Ⅰ卷一、选择题(本大题共12小题,每小题4分,共48分.在每小题给出的四个选项中,只有一个选项是符合题目要求的) 1.若代数式4xx -有意义,则实数x 的取值范围是( ) A .x =0 B .x =4C .x ≠0D .x ≠42.随着微电子制造技术的不断进步,电子元件的尺寸大幅度缩小,在芯片上某种电子元件大约只占0.0000007平方毫米,将数字0.0000007用科学记数法可以表示为( ) A .6710-⨯ B .60.710-⨯C .7710-⨯D .87010-⨯3.下列式子,成立的是( ) A .a 2·a 3=a 6 B .(a 2)3=a 5C .a –1=–aD .(–a +b )(–a –b )=a 2–b 24.如果把分式xyx y+中的x 和y 都扩大2倍,那么分式的值( )A .扩大4倍B .扩大2倍C .不变D .缩小2倍5.若等腰三角形中有两边长分别为3和7,则这个三角形的周长为( ) A .13 B .13或17C .10D .176.在平面直角坐标系中,将点A (–1,2)向右平移4个单位长度得到点B ,则点B 关于y 轴的对称点B ′的坐标为( ) A .(–3,2) B .(3,–2) C .(3,2)D .(2,–3)7.如图,在△ABC 和△BDE 中,点C在边BD 上,边AC 交边BE 于点F ,若AC =BD ,AB =ED ,BC =BE ,则∠ACB 等于( )A .∠DB .∠EC .∠EBDD .∠ABF8.点O 在ABC △(非等边三角形)内,且OA OB OC ==,则点O为( )A .ABC △的三条角平分线的交点题号一 二 三 总分 得分B .ABC △的三条高线的交点C .ABC △的三条边的垂直平分线的交点D .ABC △的三条边上的中线的交点9.如图,AE ∥DF ,AE =DF ,则添加下列条件还不能使△EAC≌△FDB 的为( )A .AB =CD B .CE ∥BFC .∠E =∠FD .CE =BF10.如图,AD 是△ABC 的角平分线,DE ⊥AB 于E ,△ABC 的面积为10,AB =6,DE =2,则AC 的长是( )A .4B .4.5C .4.8D .5 11.从3-,2-,1-,32-,1,3这六个数中,随机抽取一个数,记为a .关于x 的方程211x ax +=-的解是正数,那么这6个数中所有满足条件的a 的值有( ) A .3个B .2个C .1个D .4个12.如图,在等边三角形ABC 中,BC 边上的中线AD =6,是AD 上的一个动点,F 是边AB 上的一个动点,在点F 运动的过程中,EB +EF 的最小值是A .5B .6C .7D .8第Ⅱ卷二、填空题(本大题共6小题,每小题4分,共24分)13.若23a b =,则a b b -=__________.14.若3a b +=,1ab =,则22ab +=__________.15.若一个多边形的内角和是900º,则这个多边形是__________边形.16.如图,依据尺规作图的痕迹,计算α∠=__________°.17.已知ABC ∆中,它的三边长a 、b 、c 都是正整数,其中a 是最长边,且满足22106340a b a b +--+=,则符合条件的c密线学校 班级 姓名 学号密 封 线 内 不 得 答 题值为__________.18.如图,∠ABC =∠ACB ,AD 、BD 、CD 分别平分△ABC 的外角∠EAC 、内角∠ABC 、外角∠ACF .以下结论:①AD∥BC ;②∠ACB =2∠ADB ;③∠ADC =90°−12∠ABC ;④BD 平分∠ADC ;⑤∠BDC =12∠BAC .其中正确的结论有__________(填序号)三、解答题(本大题共9小题,共78分.解答应写出文字说明、证明过程或演算步骤) 19.(本小题满分6分) (1)解方程:22+11x x x x+=+;(2)解方程:2227361x x x x x -=+--. 20.(本小题满分6分)(1)因式分解22(2)(22)1a ab b a b -++-++;(2)先化简,再求值24512(1)(),11a a a a a a-+-÷----其中1a =-. 21.(本小题满分6分)如图,点B 、C 、D 、E 在同一条直线上,已知AB =FC ,AD =FE ,BC =DE . (1)求证:△ABD ≌△FCE .(2)AB 与FC 的位置关系是_________(请直接写出结论)22.(本小题满分8分)如图,在△ABC 中,AB =AC ,∠A =36°,AC 的垂直平分线交AB 于E ,D 为垂足,连接EC . (1)求∠ECD 的度数; (2)若CE =5,求BC 的长.23.(本小题满分8分)超市用2500元购进某品牌苹果,以每千克8元的单价试销.销售良好,超市又安排4500元补货.补货进价比上次每千克少0.5元,数量是上次的2倍.(1)求两次进货的单价分别是多少元.(2)当售出大部分后,余下200千克按7.5折售完,求两次销售苹果的毛利.24.(本小题满分10分)如图,△ABC 中,∠BAC =90°,AD⊥BC ,垂足为D .(1)求作∠ABC 的平分线,分别交AD ,AC 于E ,F 两点;(要求:尺规作图,保留作图痕迹,不写作法)(2)证明:AE=AF.25.(本小题满分10分)如图,网格中有格点△ABC与△DEF.(1)△ABC与△DEF是否全等?(不说理由.)(2)△ABC与△DEF是否成轴对称?(不说理由)(3)若△ABC与△DEF成轴对称,请画出它的对称轴l.并在直线l上画出点P,使PA+PC最小.26.(本小题满分12分)探究下面的问题:(1)如图甲,在边长为a的正方形中去掉一个边长为b的小正方形(a>b),把余下的部分剪拼成如图乙的一个长方形,通过计算两个图形(阴影部分)的面积,验证了一个等式,这个等式是________(用式子表示),即乘法公式中的___________公式.(2)运用你所得到的公式计算:①10.7×9.3;②(23)(23)x y z x y z+---.27.(本小题满分12分)在△ABC中,∠BAC=100°,∠∠ACB,点D在直线BC上运动(不与点B、C点E在射线AC上运动,且∠ADE=∠AED,设∠DAC=(1)如图①,当点D在边BC上时,且n=36°BAD=__________,∠CDE=__________;(2)如图②,当点D运动到点B变,请猜想∠BAD和∠CDE(3)当点D运动到点C的右侧时,其他条件不变,∠和∠CDE还满足(2)中的数量关系吗?请画出图形,明理由.密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题参考答案一1 2 3 4 5 6 7 8 9 10 11 12 DCDBDACCDABB二、13.【答案】3-【解析】∵23a b =,∴设a =2k ,b =3k (k ≠0),则23133a b k k b k --==-, 故答案为:13-.14.【答案】7【解析】∵a +b =3,ab =1,∴22a b +=(a +b )2–2ab =9–2=7;故答案为7. 15.【答案】七【解析】设这个多边形是n 边形,根据题意得,()2180900n -⋅︒=︒,解得7n =.故答案为:7. 16.【答案】56【解析】如图,∵四边形ABCD 是长方形,∴AD ∥BC ,∴∠DAC =∠ACB =68°, ∵由作法可知,AF 是∠DAC 的平分线,∴∠EAF =12∠DAC =34°,∵由作法可知,EF 是线段AC 的垂直平分线,∴∠AEF =90°, ∴∠AFE =90°−34°=56°,∴∠α=56°.故答案为:56.17.【答案】6或7【解析】a 2+b 2–10a –6b +34=0, a 2–10a +25+b 2–6b +9=0,(a –5)2+(b –3)2=0, 则a –5=0,b –3=0,解得,a =5,b =3, 则5–3<c <3+5,即2<c <8,∴△ABC 的最大边c 的值为6或7, 故答案为:6或7. 18.【答案】①②③⑤【解析】∵AD 平分∠EAC ,∴∠EAC =2∠EAD , ∵∠EAC =∠ABC +∠ACB ,∠ABC =∠ACB ,∴∠EAD =∠ABC ,∴AD ∥BC ,∴①正确; ∵AD ∥BC ,∴∠ADB =∠DBC ,∵BD 平分∠ABC ,∠ABC =∠ACB ,∴∠ABC =∠ACB =2∠DBC ,∴∠ACB =2∠ADB ,∴②正确;∵AD平分∠EAC,CD平分∠ACF,∴∠DAC=12∠EAC,∠DCA=12∠ACF,∵∠EAC=∠ABC+∠ACB,∠ACF=∠ABC+∠BAC,∠ABC+∠ACB+∠BAC=180°,∴∠ADC=180°−(∠DAC+∠ACD)=180°−12(∠EAC+∠ACF)=180°−12(∠ABC+∠ACB+∠ABC+∠BAC)=180°−12(180°+∠ABC)=90°−12∠ABC,∴③正确;∵BD平分∠ABC,∴∠ABD=∠DBC,∵∠ADB=∠DBC,∠ADC=90°−12∠ABC,∴∠ADB不一定等于∠CDB,∴④错误;∵∠ACF=2∠DCF,∠ACF=∠BAC+∠ABC,∠ABC=2∠DBC,∠DCF=∠DBC+∠BDC,∴∠BAC=2∠BDC,∴∠BDC=12∠BAC,∴⑤正确;故答案为:①②③⑤.三、19.【解析】(1)方程两边都乘x(x+1),得x2+x2+x=2(x+1)2,解得:x=−23,检验:当x=−23时,x(x+1)≠0,∴x=−23是原方程的解.(3分)(2)去分母得:7x−7+3x+3=6x,解得:x=1,经检验x=1是增根,分式方程无解.(6分)20.【解析】(1)原式=(a2–2ab+b2)–(2a–2b)+1=(a–b)2–2(a–b)+1=(a–b–1)2.(3分)(2)原式()()()211452(2)111a a a a aa a a a+--+--=÷=---•()12a aa-=-a(a–2当a=–1时,原式=–1×(–1–2)=3.(6分)21.【解析】(1)∵BC=DE,∴BC+CD=DE+CD,即BD=CE.在△ABD和△FCE中,AB FCAD FEBD CE=⎧⎪=⎨⎪=⎩,∴△ABD≌△FCE(SSS).(4分)(2)AB∥FC.(6分)由(1)可知△ABD≌△FCE,∴∠B=∠FCE(全等三角形的对应角相等),∴AB∥FC(同位角相等,两直线平行).22.【解析】(1)∵DE垂直平分AC,∠A=36°,∴CE=AE,∴∠ECD=∠A=36°;(4分)(2)∵AB=AC,∠A=36°,∴∠B=∠ACB=72°,密线学校 班级 姓名 学号密 封 线 内 不 得 答 题∴∠BEC =∠A +∠ECD =72°,∴∠BEC =∠B ,∴BC =EC =5.(8分)23.【解析】(1)设第一次进货的单价是x 元,则第二次进货的单价是(0.5)x -元,根据题意,得2500450020.5x x ⨯=-,解得5x =. 经检验:5x =是原方程的解.第二次进货的单价是:50.5 4.5()-=元.答:第一次进货的单价是5元,第二次进货的单价是4.5元.(4分)(2)两次销售苹果的毛利:25004500200820080.752500450046005 4.5⎛⎫+-⨯+⨯⨯--=⎪⎝⎭(元). 答:两次销售苹果的毛利为4600元.(8分) 24.【解析】(1)如图所示,射线BF 即为所求:(4分)(2)证明:∵AD ⊥BC ,∴∠ADB =90°,∴∠BED +∠EBD =90°,∵∠BAC =90°,∴∠AFE +∠ABF =90°,(7分) ∵∠EBD =∠ABF ,∴∠AFE =∠BED ,∵∠AEF =∠BED ,∴∠AEF =∠AFE ,∴AE =AF .(10分) 25.【解析】(1)全等.(3分)根据坐标系可以看出AB DEBC EFAC DF =⎧⎪=⎨⎪=⎩,∴△ABC ≅△DEF ;(2)成轴对称.(6分)根据坐标系可以看出△ABC 与△DEF 关于直线l 成轴对称; (3)如图所示:点P 即为所求.(10分)26.【解析】(1)a 2–b 2=(a +b )(a −b );平方差.(6分)由图知:大正方形减小正方形剩下的部分面积为a 2–b 2; 拼成的长方形的面积:(a +b )×(a −b ),所以得出:a 2–b 2=(a +b )(a −b );故答案为:a 2–b 2=(a +b )(a −b );平方差. (2)①原式=(10+0.7)×(10–0.7) =102–0.72 =100–0.49 =99.51.(9分)②原式=(x –3z +2y )(x –3z –2y ) =(x –3z )2–(2y )2 =x 2–6xz +9z 2–4y 2.(12分)27.【解析】(1)∠BAD =∠BAC –∠DAC =100°–36°=64°.∵在△ABC 中,∠BAC =100°,∠ABC =∠ACB , ∴∠ABC =∠ACB =40°,∴∠ADC =∠ABC +∠BAD =40°+64°=104°. ∵∠DAC =36°,∠ADE =∠AED , ∴∠ADE =∠AED =72°,∴∠CDE =∠ADC –∠ADE =104°–72°=32°. 故答案为64°,32°;(4分)(2)∠BAD =2∠CDE ,理由如下:(5分) 如图②,在△ABC 中,∠BAC =100°, ∴∠ABC =∠ACB =40°. 在△ADE 中,∠DAC =n ,∴∠ADE =∠AED =1802n︒-.(6分)∵∠ACB =∠CDE +∠AED ,∴∠CDE =∠ACB –∠AED =40°–1802n ︒-=1002n -︒. ∵∠BAC =100°,∠DAC =n , ∴∠BAD =n –100°,∴∠BAD =2∠CDE ;(8分) (3)∠BAD =2∠CDE ,理由如下: 如图③,在△ABC 中,∠BAC =100°,∴∠ABC =∠ACB =40°,∴∠ACD =140°.(9分) 在△ADE 中,∠DAC =n , ∴∠ADE =∠AED =1802n︒-.(10分)∵∠ACD =∠CDE +∠AED , ∴∠CDE =∠ACD –∠AED =140°–1802n ︒-=1002n︒+. ∵∠BAC =100°,∠DAC =n , ∴∠BAD =100°+n , ∴∠BAD =2∠CDE .(12分)密线学校 班级 姓名 学号密 封 线 内 不 得 答 题人教版2020—2021学年度上学期八年级数学(上)期末测试卷及答案(满分:150分 时间: 120分钟)第Ⅰ卷一、选择题(本大题共12小题,每小题4分,共48分.在每小题给出的四个选项中,只有一个选项是符合题目要求的) 1.下列图形中,是轴对称图形的是( )A .B .C .D .2.下列分式中,属于最简分式的是( )A .1113xB .221xx +C .211x x +-D .11x x --3.以下列各组线段为边,能组成三角形的是( ) A .2cm ,5cm ,8cm B .3cm ,3cm ,6cm C .3cm ,4cm ,5cmD .1cm ,2cm ,3cm4.如果一个多边形的每一个内角都是108°,那么这个多边形是( ) A .五边形 B .六边形C .七边形D .八边形5.下列运算正确的是( ) A .236a a a ⋅= B .220a a ÷=C .2353()a b a b =D .752a a a ÷=6.下列各式分解因式正确的是( ) A .()()2919191x x x -=+- B .()()422111a a a -=+- C .()()228199a b a b a b --=--+D .()()()32a ab a a b a b -+=-+-7.已知ab ≠0,则坐标平面内四个点A (a ,b ),B (a ,–b ),C (–a ,b ),D (–a ,–b )中关于y 轴对称的是( ) A .A 与B ,C 与DB .A 与D ,B 与C C .A 与C ,B 与DD .A 与B ,B 与C8.如图,△ABC ≌△ADE ,若∠E =70°,∠D =30°,∠CAD =35°,则∠BAD 的度数为( )A .40°B .45°C .50°D .55°9.光明家具厂生产一批学生课椅,计划在30天内完成并交付题号一 二 三 总分 得分不得答题使用.若每天多生产100把,则23天完成且还多生产200把.设原计划每天生产x把,根据题意,可列分式方程为( )A.3020023100xx+=+B.3020023100xx-=+C.3020023100xx+=-D.3020023100xx-=-10.解关于x的方程6155x mx x-+=--(其中m为常数)产生增根,则常数m的值等于( )A.–2 B.2C.–1 D.111.如图,△ABC中,AB的垂直平分线交AC于D,如果AC=5cm,BC=4cm,那么△DBC的周长是( )A.6cm B.7cmC.8cm D.9cm12.如图,BP平分ABC∠交CD于点F,DP平分ADC∠交AB于点E,若40A∠=︒,38P∠=︒,则C∠的度数为( )A.36︒B.39︒C.38︒D.40︒第Ⅱ卷二、填空题(本大题共6小题,每小题4分,共24分)13.一种细菌的半径是0.00003厘米,数据0.00003数法表示为_________.14.计算:2232aa a a---=_________.15.若分式33xx--的值为零,则x=_________.16.如图,ABC∆中,90C∠=︒,30A∠=︒,AB的垂直平分线交于D,交AB于E,2CD=,则AC=_________.17.在等腰ABC∆中,一腰上的高与另一腰的夹角为26︒角的度数为__________.18.如图,在△ABC中,AB=AC,∠BAC=50°,∠BAC线与AB的垂直平分线交于点O,将∠C沿EF(E在上,F在AC上)折叠,点C与点O恰好重合,则∠为________度.密线学校 班级 姓名 学号密 封 线 内 不 得 答 题三、解答题(本大题共9小题,共78分.解答应写出文字说明、证明过程或演算步骤) 19.(本小题满分6分)计算:(1)()()22x y x y x ---;(2)2344(1)11x x x x x ++-+÷++.20.(本小题满分6分)因式分解:(1)4x 2–16;(2)(x +y )2–10(x +y )+25.21.(本小题满分6分)如图,AD 与BC 交于E ,∠1=∠2=∠3,∠4=∠5.求证:BD =E C .22.(本小题满分8分)如图,五边形ABCDE 的内角都相等,EF 平分∠AED .求证:EF ⊥BC .23.(本小题满分8分)如图,△ABC 的顶点均在格点上.(1)分别写出点A ,点B ,点C 的坐标.(2)若△A 'B 'C '与△ABC 关于y 轴对称,在图中画出△A 'B 'C ',并写出相应顶点的坐标.24.(本小题满分10分)如图,ABC ∆与DCB ∆中,AC 与BD 交于点E ,且A D ∠=∠,AB DC =.(1)求证:ABC DCB ∆≅∆;(2)当50AEB ∠=︒,求EBC ∠的度数.25.(本小题满分10分)嘉嘉同学动手剪了如图①所示的正方形与长方形卡片若干张.(1)他用1张1号、1张2号和2张3号卡片拼出一个新的图形(如图②).根据这个图形的面积关系写出一个你所熟悉的乘法公式,这个乘法公式是________. (2)如果要拼成一个长为(a +2b ),宽为(a +b )的大长方形,则需要1号卡片________张,2号卡片________张,3号卡片________张.26.(本小题满分12分)市区某中学美化校园招标时,有甲、乙两个工程队投标,经测算:甲队单独完成这项工程需要30天;若由甲队先做10天,剩下的工程由甲、乙合做12天可完成.(1)乙队单独完成这项工程需要多少天?(2)甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元,若该工程计划在35天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成该工程省钱,还是由甲乙两队全程合作完成该工程省钱?27.(本小题满分12分)如图,在ABC ∆中,已知45ABC ∠=,过点C 作CD AB ⊥于点D ,过点B 作BM AC ⊥于点M ,连接MD ,密线学校 班级 姓名 学号密 封 线 内 不 得 答 题故答案为:11a --.15.【答案】–3【解析】依题意,得|x |–3=0且x –3≠0,解得x =–3.故答案是:–3.16.【答案】6【解析】连接BD ,∵在△ABC 中,∠C =90°,∠A =30°,∴∠ABC =60°, ∵AB 的垂直平分线交AC 于D ,交AB 于E ,∴AD =BD ,DE ⊥AB ,∴∠ABD =∠A =30°,∴∠DBC =30°, ∵CD =2,∴BD =2CD =4,∴AD =4,∴AC =6.17.【答案】58°或32°【解析】①如图①,∵AB =AC ,∠ABD =26°,BD ⊥AC ,∴∠A =64°,∴∠ABC =∠C =(180°–64°)÷2=58°;②如图②,∵AB =AC ,∠ABD =26°,BD ⊥AC , ∴∠BAC =26°+90°=116°,∴∠ABC =∠C =(180°–116°)÷2=32°,故答案为:58°或32°.18.【答案】50°【解析】如图,连接OB ,OC ,∵∠BAC =50°,AO 为∠BAC 的平分线,∴∠BAO =12∠BAC =12×50°=25°.又∵AB =AC ,∴∠ABC =∠ACB =65°.∵DO 是AB 的垂直平分线,∴OA =OB ,∴∠ABO =∠BAO =25°,∴∠OBC =∠ABC –∠ABO =65°–25°=40°.∵AO 为∠BAC 的平分线,AB =AC ,∴直线AO 垂直平分BC ,∴OB =OC ,∴∠OCB =∠OBC =40°,∵将∠C 沿EF (E 在BC 上,F 在AC 上)折叠,点C 与点O 恰好重合,题∴OE =CE .∴∠COE =∠OCB =40°;在△OCE 中,∠OEC =180°–∠COE –∠OCB =180°–40°–40°=100°,∴∠CEF =12∠CEO =50°.故答案为:50°. 三、19.【解析】(1)原式=22222x xy y xy x -+-+=2233x xy y -+;(3分)(2)原式=231x+11(2)x x x x --+⨯++()(1)=223111(2)x x x x -++⨯++=2(2)(2)11(2)x x x x x -++⨯++=22xx -+.(6分)20.【解析】(1)4x 2–16=4(x 2–4)=4(x +2)(x –2);(3分) (2)(x +y )2–10(x +y )+25 =(x +y –5)2.(6分) 21.【解析】1=2314,43AEC ABD ∠∠=∠∠=∠+∠∠=∠+∠,,∴AEC ABD ∠=∠.(2分)45∠=∠,AB AE =∴.在ABD △和AEC 中1=2AB AE ABD AEC ∠∠⎧⎪=⎨⎪∠=∠⎩,(4分)∴ABD AEC ≅.∴BD =EC .(6分)22.【解析】∵五边形ABCDE 的内角都相等,∴∠C =∠D =∠AED =180°×(5–2)÷5=108°,(2分)又EF 平分∠AED , ∴°1542FED AED ∠=∠=,(4分)∴在四边形DEFC 中360EFC D C FED ︒∠=-∠-∠-∠=90°,∴EF ⊥BC .(8分)23.【解析】(1)点A (3,4),B (1,2),C (5,1(3分)(2)如图所示,△A 'B 'C '即为所求,(5分)点A ′(﹣3,4),B ′(﹣1,2),C ′(﹣5,1).(8密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题24.【解析】(1)在△ABE 和△DCE中,A D AEB DEC AB DC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△DCE (AAS ),∴BE =EC ,∠ABE =∠DCE ,(4分)∴∠EBC =∠ECB ,∵∠EBC +∠ABE =∠ECB +∠DCE ,∴∠ABC =∠DBC ,(6分)在△ABC 和△DCB中,A DAB DC ABC DBC ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABC ≌△DCB (ASA );(8分) (2)∵∠AEB =50°,∴∠EBC +∠ECB =50°, ∵∠EBC =∠ECB ,∴∠EBC =25°.(10分)25.【解析】(1)这个乘法公式是(a +b )2=a 2+2ab +b 2,故答案为:(a +b )2=a 2+2ab +b 2;(4分)(2)要拼成一个长为(a +2b ),宽为(a +b )的大长方形,根据(a +2b )(a +b )=a 2+3ab +2b 2,则需要1号卡片1张,2号卡片2张,3号卡片3张.故答案为:1;2;3.(10分)26.【解析】(1)设乙队单独完成这项工程需要x 天,依题意,得:101212130x ++=,解得x =45,经检验,x =45是所列分式方程的解,且符合题意. 答:乙队单独完成这项工程需要45天.(6分) (2)甲乙两队全程合作需要1÷(11+3045)=18(天),甲队单独完成该工程所需费用为3.5×30=105(万元); ∵乙队单独完成该工程需要45天,超过35天的工期, ∴不能由乙队单独完成该项工程;甲、乙两队全程合作完成该工程所需费用为(3.5+2)×18=99(万元).∵105>99,∴在不超过计划天数的前提下,由甲、乙两队全程合作完成该工程省钱.(12分) 27.【解析】(1)∵45ABC ∠=,CD AB ⊥,∴45ABC DCB ∠=∠=,∴BD DC =,∵90BDC MDN ∠=∠=,∴BDN CDM ∠=∠,(3分) ∵CD AB ⊥,BM AC ⊥, ∴90ABM A ACD ∠=-∠=∠,在DBN ∆和DCM ∆中,BDN CDM BD DCDBN DCM ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴DBN ∆≌DCM ∆;(6分) (2)结论:NEME CM ,证明:由(1)DBN ∆≌DCM ∆可得DM DN =. 作DF MN ⊥于点F , 又ND MD ⊥,∴DF FN =,在DEF ∆和CEM ∆中,DEF CEM DFE CMEDE EC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴DEF ∆≌CEM ∆,∴EF EM =,DF CM =,∴CM DF FN NE FE NE ME ===-=-.(12分)。

江西省赣州市石城县2022-2023学年八年级下学期期末考试数学试卷(含解析)

江西省赣州市石城县2022-2023学年八年级下学期期末考试数学试卷(含解析)

2022—2023学年下学期期末考试八年级数学学科试卷(总分 120分检测时间120分钟)一、选择题(本大题共6个小题,每小题3分,共18分,每小题只有一个正确选项).1.下列运算,结果正确的是( )A. B. C. D.2. 满足下列条件的三角形中,不是直角三角形的是( )A. 三内角之比为::B. 三内角之比为::C. 三边长分别为、、D.三边长之比为::3.为参加全县数学素养展示比赛活动,实验中学对甲、乙、丙、丁四人进行6次校内选拔测试,每人测试的平均成绩均是,方差分别是,,,,则成绩最稳定的是( )A. 甲B. 乙C. 丙D. 丁4. 平行四边形、矩形、菱形、正方形都具有的性质是( )A. 对角线互相平分B. 对角线互相垂直C. 对角线相等D. 对角线互相垂直平分且相等5.如图,在平行四边形中,,为上一动点,,分别为,的中点,则的长为( )A. B. C.D. 不确定6. 已知正比例函数的函数值随的增大而增大,则一次函数的图象大致是( )A. B. C.D.(第5题)二、填空题(本大题共6小题,每小题3分,共18分)7..8.将直线向上平移个单位长度,平移后直线的解析式为______.9.在菱形ABCD中,对角线AC 、BD 的长分别是6和8,则菱形的周长是__________.10.九章算术是我国古代最重要的数学著作之一,在“勾股”章中记载了一道“折竹抵地”问题:“今有竹高一丈,末折抵地,去本三尺,问折者高几何?”翻译成数学问题是:如图,在中,,,,则的长为______.11.直线y =-x +2与y =kx +b (k ≠0且k ,b 为常数)的交点坐标为(3,-1),则关于x 、y 的二元一次方程组的解为 ___________.12.如图,在中,已知:,,,动点从点出发,沿射线以的速度运动,设运动的时间为秒,连接,当为等腰三角形时,的值为______.三、解答题(本大题共5小题,每小题6分,共30分)13. 计算(1);(2).14. 如图,四边形是平行四边形,于,于求证:.15.已知直线经过点,且平行于直线.(第10题)(第14题)(第12题)求该直线的函数关系式;如果这条直线经过点,求的值.16.校园广播站招聘小记者,对应聘同学分别进行笔试(含阅读能力、思维能力和表达能力三项测试)和面试,应聘者小成同学成绩单位:分如下表:请求出小成同学的笔试平均成绩;如果笔试平均成绩与面试成绩按6:4的比例确定总成绩,请求出小成同学的总成绩.17. 如图,四边形为正方形,点在边上,请仅用无刻度直尺完成以下作图.在图中,在AB 上找一点F ,使CF =AE ;在图中,在AD 上找一点G ,使CG ∥AE .四、解答题(本大题共3小题,每小题8分,共24分)18.如图,在中,,是的中点,过点作,且,连接.求证:四边形是矩形:若,,求四边形的面积.(第16题)(第18题)19.世界环境日为每年的月日,实验中学举办了以“生态文明与环境保护”为主题的相关知识测试.为了解学生对“生态文明与环境保护”相关知识的掌握情况,随机抽取名学生进行测试,并对成绩百分制进行整理,信息如下:成绩频数分布表:成绩分频数成绩在这一组的是单位:分:根据以上信息,回答下列问题:在这次测试中,成绩不低于分的人数占测试人数的百分比为______,成绩在这一组的中位数是______分,众数是分.这次测试成绩的平均数是分,甲的测试成绩是分.乙说:“甲的成绩高于平均数,所以甲的成绩高于一半学生的成绩.”你认为乙的说法正确吗?请说明理由.请对该校学生“生态环保知识”的掌握情况作出合理的评价.20.实验中学数学兴趣小组在学习了“勾股定理”之后,决定开展“户外实践活动”,测量风筝的垂直高度.他们进行了如下操作:测得水平距离的长为米;根据手中剩余线的长度计算出风筝线的长为米;牵线放风筝的小明的身高为米.求风筝的垂直高度;如果小明想风筝沿方向下降米,则他应该往回收线多少米?(第20题)五、(本大题共2小题,每小题9分,共18分)21.在数学兴趣小组活动中,小诚和他的同学遇到一道题:已知,求的值他是这样解答的:,.,...请你根据小诚的解题过程,解决如下问题:______ ;化简;若,求的值.22.甲、乙两车从城出发匀速行驶至城,在整个行驶过程中,甲、乙两车离开城的距离千米与甲车行驶时间小时之间的函数关系如图所示,根据图象提供的信息,解决下列问题:,两城相距千米;分别求甲、乙两车离开城的距离与的关系式.求乙车出发后几小时追上甲车?(第22题)六、(本大题共1小题,共12分)23. 已知正方形ABCD中,O为对角线AC、BD的交点,E在直线BC上一动点,连接OE,作OF⊥OE交直线CD于点F.(1)如图,当E与B重合时,F与C重合,则EF与OF的数量关系可以表示为:EF=OF.(2)如图,当E在线段BC上且不与B、C重合时.①求证:;②BE、CE、有怎样的数量关系,请直接写出你的猜想,不需证明.当E在线段CB的延长线上时,请在画出图形,并猜想BE、CE、有怎样的数量关系,加以证明.(第23题)答案和解析1.【答案】解析:解:.与不是同类二次根式,不能合并,此选项不符合题意;B.与不是同类二次根式,不能合并,此选项不符合题意;C.,此选项符合题意;D.,此选项不符合题意;故选:.分别根据同类二次根式的概念、二次根式的乘除运算法则计算可得.本题主要考查二次根式的混合运算,解题的关键是掌握二次根式的混合运算顺序和运算法则.2.【答案】解析:解:、,能构成直角三角形,故此选项不合题意;B、,能构成直角三角形,故此选项不合题意;C、,能构成直角三角形,故此选项不合题意;D、,不是直角三角形,故此选项符合题意;故选:.根据勾股定理逆定理和三角形内角和为进行判断能否构成直角三角形即可.此题主要考查了利用勾股定理的逆定理判定直角三角形的方法.在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.3.【答案】解析:解:人测试的平均成绩均是分,,,,,,四个人中成绩最稳定的是丁,故选:.根据方差的定义,方差越小数据越稳定,即可得出答案.本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.4.【答案】解析:解:平行四边形的对角线互相平分,而对角线相等、平分一组对角、互相垂直不一定成立.故平行四边形、矩形、菱形、正方形都具有的性质是:对角线互相平分.故选:.平行四边形、矩形、菱形、正方形都是特殊的平行四边形,因而平行四边形的性质就是四个图形都具有的性质.本题主要考查了正方形、矩形、菱形、平行四边形的性质,理解四个图形之间的关系是解题关键.5.【答案】解析:解:在平行四边形中,.,分别为,的中点,是的中位线,.故选:.首先由平行四边形的对边相等的性质求得;然后利用三角形中位线定理求得.本题主要考查了平行四边形的性质和三角形中位线定理,解题过程中是利用平行四边形的性质结合三角形中位线定理来求有关线段的长度的.6.【答案】解析:解:正比例函数的函数值随的增大而增大,,一次函数的图象经过一、二、四象限.故选:.先根据正比例函数的函数值随的增大而增大判断出的符号,再根据一次函数的性质即可得出结论.本题考查的是一次函数的图象与系数的关系,即一次函数中,当,时函数的图象在一、二、四象限.7.【答案】解析:解:二次根式有意义,,解得.故答案为:.先根据二次根式有意义的条件得出关于的不等式,求出的取值范围即可.本题考查的是二次根式有意义的条件,即被开方数大于等于.8.【答案】解析:解:将直线向上平移个单位,得到的直线的解析式为.故答案为.根据一次函数图象上下平移时解析式的变化规律求解.本题考查了一次函数图象与几何变换:对于一次函数,若函数图象向上平移个单位,则平移的直线解析式为.9.【答案】解析:解:与相交于点,如图,四边形为菱形,,,,,在中,,,,菱形的周长.故答案为.与相交于点,如图,根据菱形的性质得,,,,则可在中,根据勾股定理计算出,于是可得菱形的周长为.本题考查了菱形的性质:菱形具有平行四边形的一切性质;菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;菱形是轴对称图形,它有条对称轴,分别是两条对角线所在直线.10.【答案】解析:解:设,,根据勾股定理得:,解得:,故AC的长为,故答案为:.设,直接利用已知表示出的长,再利用勾股定理得出答案.此题主要考查了勾股定理的应用,正确应用勾股定理是解题关键.11.【答案】解析:解:一次函数与的图象交于点,关于、的二元一次方程组的解为,故答案为:.根据函数与方程组的关系结合交点坐标即可求得方程组的解.12.【答案】或或解析:解:在中,,由勾股定理得:,为等腰三角形,当时,则,即;当时,则;当时,如图:设,则,在中,由勾股定理得:,,解得,.综上所述:的值为或或.故答案为:或或.根据勾股定理先求出,再由为等腰三角形,只要求出的长即可,分三类,当时,则;当;当时,如图:设,则,在中,由勾股定理列出方程可求出的长.13.【答案】解:原式;原式.解析:先根据二次根式的乘法法则和绝对值的意义计算,然后把化简后合并即可;利用平方差公式计算.14.【答案】证明:四边形是平行四边形,,..于,于,.在与中,.≌..解析:证线段所在的三角形全等.根据“”可证≌或≌.15.【答案】解:直线平行于直线,,把代入得,该直线的函数解析式为;把代入得,解得.解析:先根据两直线平行的问题得到,然后把代入中求出的值,从而得到该直线的函数解析式;根据一次函数图象上点的坐标特征,把代入中可求出的值.16.【答案】解:分;小成同学面试平均成绩为分;分,小成同学的最终成绩为分.解析:根据算术平均数的定义计算即可;根据加权平均数的计算公式解答即可.本题主要考查加权平均数,解题的关键是掌握加权平均数的定义.17.【答案】解:如图,连接交于点,连接并延长交于,点即为所求;如图,连接,交于,连接并延长交于,连接,点即为所求.解析:根据正方形是轴对称图形作图;根据正方形和平行四边形的性质作图.18.【答案】证明:,为的中点,,,,,四边形是平行四边形,,四边形是矩形;解:,是的中点,,,,,四边形是矩形,.解析:由,为的中点,得,由,,证明四边形是平行四边形,而,则四边形是矩形;根据等腰三角形的性质,由,得,由勾股定理和矩形的性质解答即可.19.【答案】和解析:解:在这次测试中,成绩不低于分的人数占测试人数的百分比为,成绩在这一组的中位数是分,众数是分和分,故答案为:,,和;乙的说法错误,这组数据的中位数是分,由知,甲的成绩低于一半学生的成绩;成绩低于分的人数占测试人数的百分比达到,所以该校学生对以“生态文明与环境保护”为主题的相关知识的掌握情况仍要加强答案不唯一.根据百分比的概念、中位数和众数的定义求解即可;根据中位数的意义求解即可;答案不唯一,合理即可.20.【答案】解:在中,由勾股定理得,,所以,米,所以,米,答:风筝的高度为米.如下图所示:由题意得,米,米,,即米,米,他应该往回收线米.解析:本题考查了勾股定理的应用,熟悉勾股定理,能从实际问题中抽象出勾股定理是解题的关键.利用勾股定理求出的长,再加上的长度,即可求出的高度;根据勾股定理即可得到结论21.【答案】解析:解:.故答案为:;原式;当时,.先分母有理化,再求出答案即可;先分母有理化,再根据二次根式的加减法法则进行计算即可;求出,再代入求出答案即可.22.【答案】解:由图可知,、两城相距千米;设甲对应的函数解析式为:,则,解得,,即甲对应的函数解析式为:,设乙对应的函数解析式为,所以解得:,,即乙对应的函数解析式为;解方程组得:,所以小时,即乙车出发后小时追上甲车.解析:根据函数图象可以解答本题;根据图象中的信息分别求出甲乙两车对应的函数解析式,根据甲乙两车对应的函数解析式,然后令它们相等即可解答本题.23.【答案】解析:解:四边形是正方形,是等腰直角三角形,,与重合时,与重合,,故答案为:;证明:,,为对角线、的交点,,,,,在和中,,≌;解:,理由如下:≌,,四边形是正方形,,,;解:补充图形如图:、、的数量关系为,证明如下:同理可知:,,,≌,,,,,.由四边形是正方形,知是等腰直角三角形,故BC,而与重合时,与重合,即得;由,得,根据为正方形对角线、的交点,知,,,可得,即可证明≌;由≌,得,而,故BE;根据已知补充图形,同理可证≌,得,而,有,故BE.。

2021-2022学年八年级上学期期中数学试题(含解析)

2021-2022学年八年级上学期期中数学试题(含解析)
【详解】解:∵等腰三角形的顶角为80°,
∴它的一个底角为(180°−80°)÷2=50°.
故填50.
【点睛】此题主要考查了等腰三角形的性质及三角形内角和定理.通过三角形内角和,列出方程求解是正确解答本题的关键.
10.如图,在△ABC中,AB=5cm,AC=3 cm,BC的垂直平分线交BC于D,交AB于E,连接EC.则△AEC的周长为________cm.
故选C.
【点睛】本题考查等腰三角形的性质、三角形的三边关系,掌握等腰三角形的性质、三角形的三边关系.
6.如图,在∠AOB中,OM平分∠AOB,MA⊥OA,垂足为A,MB⊥OB,垂足为B.若∠MAB=20°,则∠AOB的度数为()
A.20°B.25°C.30°D.40°
【答案】D
【解析】
【分析】根据角的平分线的性质得到MA=MB,从而得到∠AMB=140°,利用四边形内角和定理计算即可.
1.下列四个图形中,不是轴对称图形的为()
A. B. C. D.
2.如图, , , ,则 度数是()
A.35°B.40°C.50°D.60°
3.在△ABC中,∠A=60°,∠B=50°,AB=8,下列条件能得到△ABC≌△DEF的是( )
A.∠D=60°,∠E=50°,DF=8B.∠D=60°,∠F=50°,DE=8
C.∠E=50°,∠F=70°,DE=8D.∠D=60°,∠F=70°,EF=8
【答案】C
【解析】
【分析】显然题中使用ASA证明三角形全等, ,需要保证 ,可以根据三角形内角和定理确定∠F.
【详解】解:∵△ABC≌△DEF,
∴∠B=∠E=50°,∠A=∠D=60°,AB=DE=8,
∴∠F=180°﹣∠E﹣∠D=70°,

江西省赣州市九年级上学期数学期中考试试卷

江西省赣州市九年级上学期数学期中考试试卷

江西省赣州市九年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分)(2020·云南模拟) 若反比例函数y= 的图象过点(-2,1),则一次函数y=kx-k的图象过()A . 第一、二、四象限B . 第一、三、四象限C . 第二、三、四象限D . 第一、二、三象限2. (2分) (2019九上·房山期中) 如图,在△ABC中,点D,E分别在AB,AC上,且DE∥BC,AD=1,BD=2,那么的值为()A . 1:2B . 1:3C . 1:4D . 2:33. (2分) (2020九上·天等期中) 矩形的长为x,宽为y,面积为12,则y与x之间的函数关系用图象表示大致为()A .B .C .D .4. (2分)(2017·岱岳模拟) 反比例函数与二次函数在同一平面直角坐标系中的大致图象如图所示,则它们的解析式可能分别是()A . y= ,y=kx2﹣xB . y= ,y=kx2+xC . y=﹣,y=kx2+xD . y=﹣,y=﹣kx2﹣x5. (2分) (2019九上·江都月考) 用配方法解方程时,配方后所得的方程为()A .B .C .D .6. (2分) (2018九上·内黄期中) 如果关于x的方程(a-5)x2-4 x-1=0有实数根,则a满足条件是()A . a ≠5B . a >1且a ≠5C . a≥1且a ≠5D . a ≥17. (2分)若两个相似三角形的面积比为4:1,那么这两个三角形的对应边的比为()A . 4:1B . 1:4C . 2:1D . 16:18. (2分)甲、乙、丙三家超市为了促销某一种标价均为m元的商品,甲超市连续两次降价20%,乙超市一次性降价40%,丙超市第一次降价30%,第二次降价10%,此时顾客要想购买这种商品应到的超市是A . 甲超市B . 乙超市C . 丙超市D . 都一样二、填空题 (共8题;共8分)9. (1分) (2016九上·港南期中) 若x=﹣2是关于x的一元二次方程x2﹣mx+8=0的一个解,则m的值是________10. (1分)设α,β是一元二次方程x2+2x﹣4=0的两实根,则α3+4α+12β﹣5=________.11. (1分)已知y与 2x成反比例,且当x=3时,y=,那么当x=2时,y=________,当y=2时,x=________ 。

2021-2022学年江西省新余四中八年级(上)期末数学试卷(解析版)

2021-2022学年江西省新余四中八年级(上)期末数学试卷(解析版)

2021-2022学年江西省新余四中八年级第一学期期末数学试卷一、选择题(本大题共6小题。

在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.在以下绿色食品,永洁环保,节能,绿色环保四个标志中,是轴对称图形的是()A.B.C.D.2.在攻击人类的病毒中,某类新型冠状病毒体积较大,直径约为0.000 000 125米,含约3万个碱基,拥有RNA病毒中最大的基因组,比艾滋病毒和丙型肝炎的基因组大三倍以上,比流感的基因组大两倍.0.000000125用科学记数法表示为()A.1.25×10﹣6B.1.25×10﹣7C.1.25×106D.1.25×1073.下列计算正确的是()A.a2•a4=a8B.(a2)2=a4C.(2a)3=2a3D.a10÷a2=a54.某多边形的内角和是其外角和的4倍,则此多边形的边数是()A.10B.9C.8D.75.如图,在△ABC中,∠C=90°,DE是AB的垂直平分线,DE=3,∠B=30°,则BC =()A.7B.8C.9D.106.如图,等腰直角△ABC中,∠BAC=90°,AD⊥BC于点D,∠ABC的平分线分别交AC、AD于E、F两点,M为EF的中点,延长AM交BC于点N,连接NE.下列结论:①AE =AF;②AM⊥EF;③DF=DN;④AD∥NE.正确的有()A.①②B.①②③C.①②④D.①②③④二、填空题(本大题共6小题)7.当x时,分式有意义.8.若等腰三角形的两边长是2和5,则此等腰三角形的周长是.9.因式分解:ab2﹣4a=.10.若,求的值为.11.如图,Rt△ABC中,∠ACB=90°,AC=6,BC=8,AB=10,BD平分∠ABC,如果M、N分别为BD、BC上的动点,那么CM+MN的最小值是.12.如图,在四边形ABCD中,∠C+∠D=210°,E、F分别是AD、BC上的点,将四边形CDEF沿直线EF翻折,得到四边形C'D'EF.C'F交AD于点G,若△EFG是等腰三角形,则∠EFG=.三、解答题(本大题共5小题。

必刷卷 06-2020-2021学年八年级数学上学期期末仿真必刷模拟卷(华东师大版)(解析版)

必刷卷 06-2020-2021学年八年级数学上学期期末仿真必刷模拟卷(华东师大版)(解析版)

2020-2021学年八年级上学期数学期末仿真必刷模拟卷【华东师大版】期末检测卷06姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分100分,考试时间90分钟,试题共25题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.已知△ABC的三边a,b,c满足(a﹣4)2++|c﹣4|=0,那么△ABC是()A.不等边三角形B.等边三角形C.等腰三角形D.不能判断【解答】解:∵(a﹣4)2++|c﹣4|=0,∴a﹣4=0,b﹣4=0,c﹣4=0,∴a=b=c=4,∴△ABC的形状是等边三角形,故选:B.【知识点】非负数的性质:算术平方根、等腰三角形的判定、等边三角形的判定、非负数的性质:偶次方、非负数的性质:绝对值2.已知m=+,则()1/ 212 / 21A .4<m <5B .5<m <6C .6<m <7D .7<m <8【解答】解:m =+=4+,∵2<<3,∴6<4+<7,∴6<m <7, 故选:C .【知识点】估算无理数的大小3.某一餐桌的表面如图所示(单位:m ),设图中阴影部分面积S 1,餐桌面积为S 2,则=( )A .B .C .D .【解答】解:∵S 1=(a ﹣)(b ﹣b )+[(b •a )﹣(×)]=×+[ab ﹣]=ab ,S 2=ab ,∴==,故选:C .【知识点】整式的混合运算4.已知ab=﹣2,a﹣3b=5,则a3b﹣6a2b2+9ab3的值为()A.﹣10B.20C.﹣50D.40【解答】解:a3b﹣6a2b2+9ab3=ab(a2﹣6ab+9b2)=ab(a﹣3b)2,将ab=﹣2,a﹣3b=5代入得ab(a﹣3b)2=﹣2×52=﹣50.故a3b﹣6a2b2+9ab3的值为﹣50.故选:C.【知识点】提公因式法与公式法的综合运用5.已知:如图,∠MCN=42°,点P在∠MCN内部,P A⊥CM,PB⊥CN,垂足分别为A、B,P A=PB,则∠MCP的度数为()A.21°B.24°C.42°D.48°【解答】解:∵P A⊥CM,PB⊥CN,∴∠P AC=∠PBC=90°,3/ 21在Rt△P AC和Rt△PBC中,,∴Rt△P AC≌Rt△PBC(HL),∴∠PCM=∠PCN=∠MCN=21°;故选:A.【知识点】角平分线的性质、全等三角形的判定与性质6.在△ABC中,与∠A相邻的外角是130°,要使△ABC为等腰三角形,则∠B的度数是()A.50°B.65°C.50°或65°D.50°或65°或80°【解答】解:∠A=180°﹣130°=50°.当AB=AC时,∠B=∠C=(180°﹣50°)=65°;当BC=BA时,∠A=∠C=70°,则∠B=180°﹣50°﹣50°=80°;当CA=CB时,∠A=∠B=50°.∠B的度数为50°或65°或80°,故选:D.【知识点】等腰三角形的判定、三角形的外角性质7.在△ABC中,BC=a,AC=b,AB=c,根据下列条件不能判断△ABC是直角三角形的是()A.∠B=50°,∠C=40°B.∠A:∠B:∠C=1:2:2C.a=4,b=,c=5D.a :b :c =1:1:4/ 21【解答】解:A、∵∠B=50°,∠C=40°,∴∠A=180°﹣50°﹣40°=90°,∴△ABC是直角三角形;B、∵∠A:∠B:∠C=1:2:2∴∠A=36°,∠B=∠C=90°∴△ABC不是直角三角形;C、∵a=4,b=,c=5,∴a2+c2=b2,∴∠B=90°,∴△ABC是直角三角形.D、∵a:b:c=1:1:,∴可以假设a=b=k,c=k,∴a2+b2=c2,∴∠C=90°,∴△ABC是直角三角形,故选:B.【知识点】勾股定理的逆定理8.下列是勾股数的有()①3,4,5 ②5、12、13 ③9,40,41④13、14、15 ⑤⑥11、60、61A.6组B.5组C.4组D.3组5/ 216 / 21【解答】解:①32+42=52,是勾股数;②52+122=132,是勾股数; ③92+402=412,是勾股数; ④132+142≠152,不是勾股数; ⑤不是正整数,不是勾股数; ⑥32+42=52,是勾股数; 故是勾股数的有4组. 故选:C .【知识点】勾股数9.如图,AB ,BC 是⊙O 的两条弦,AO ⊥BC ,垂足为D ,若⊙O 的直径为5,BC =4,则AB 的长为( )A .2B .2C .4D .5【解答】解:连接OB ,∵AO ⊥BC ,AO 过O ,BC =4,∴BD=CD=2,∠BDO=90°,由勾股定理得:OD===,∴AD=OA+OD=+=4,在Rt△ADB中,由勾股定理得:AB===2,故选:A.【知识点】垂径定理、勾股定理10.对一批衬衣进行抽检,统计合格衬衣的件数,得到合格衬衣的频数表如下:估计出售2000件衬衣,其中次品大约是()A.50件B.100件C.150件D.200件【解答】解:2000×(1﹣)≈200件,故选:D.【知识点】频数(率)分布表、用样本估计总体二、填空题(本大题共6小题,每小题2分,共124分.不需写出解答过程,请把答案直接填写在横线上)11.﹣的立方根是﹣.【解答】解:∵(﹣)3=﹣,∴﹣的立方根是﹣.7/ 21故答案为:﹣.【知识点】立方根12.已知a﹣1=20172+20182,则=.【解答】解:∵a﹣1=20172+20182,∴a=20172+20182+1,∴=====4035.故答案为:4035.【知识点】算术平方根13.分解因式:﹣x2+4x﹣4=﹣﹣.【解答】解:﹣x2+4x﹣4=﹣(x2﹣4x+4)=﹣(x﹣2)2.故答案为:﹣(x﹣2)2.【知识点】因式分解-运用公式法14.如图,已知OP平分∠AOB,CP∥OA,PD⊥OA于点D,PE⊥OB于点E.CP=,PD=6.如果点M是OP的中点,则DM的长是.8/ 219 / 21【解答】解:∵OP 平分∠AOB ,PD ⊥OA 于点D ,PE ⊥OB 于点E ,∴∠AOP =∠BOP ,PC =PD =6,∠PDO =∠PEO =90°, ∴CE ===,∵CP ∥OA , ∴∠OPC =∠AOP , ∴∠OPC =∠BOP , ∴CO =CP =,∴OE =CE +CO =+=8,∴OP ===10,在Rt △OPD 中,点M 是OP 的中点, ∴DM =OP =5; 故答案为:5.【知识点】角平分线的性质、直角三角形斜边上的中线、勾股定理的应用、等腰三角形的判定与性质15.直角三角形的两边长为3cm ,4cm ,则第三边边长为.10 / 21【解答】解:(1)若把两边都看作是直角边,那么据已知和勾股定理,设第三边长为xcm ,则:x 2=32+42=25, ∴x =5;(2)若把4cm 长的边看作斜边,设第三边长为xcm , 则:x 2+32=42, x 2=42﹣32=7, ∴x =.故答案为:5或.【知识点】勾股定理16.如图的折线统计图分别表示我市A 县和B 县在4月份的日平均气温的情况,记该月A 县和B 县日平均气温是12℃的天数分别为a 天和b 天,则a +b = .【解答】解:根据图表可得:a =7,b =5,则a +b =7+5=12. 故答案为:12.11 / 21【知识点】折线统计图三、解答题(本大题共7小题,共58分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.如图,∠BAD =∠CAE =90°,AB =AD ,AE =AC ,AF ⊥CF 于点F . (1)求证:△ABC ≌△ADE ;(2)已知BF 的长为2,DE 的长为6,求CD 的长.【解答】(1)证明:∵∠BAD =∠CAE =90°∴∠BAC =90°﹣∠CAD ,∠DAE =90°∠CAD ,即∠BAC =∠DAE在△BAC 和△DAE 中,,∴△BAC ≌△DAE (SAS );(2)解:∵∠CAE =90°,AE =AC , ∴∠E =45°,由(1)可知:△ABC ≌△ADE ,∴∠BCA =∠E =45°,∠CBA =∠EDA ,CB =ED , 延长BF 到G ,使得FG =FB ,连接AG ,如图所示:12 / 21∵AF ⊥CF ,∴∠AFG =∠AFB =90°,在△AFB 和△AFG 中,,∴△AFB ≌△AFG (SAS ),∴AB =AG =AD ,∠ABF =∠G =∠CDA在△CGA 和△CDA 中,,∴△CGA ≌△CDA (AAS ), ∴CD =CG∴CD =CB +BF +FG =CB +2BF =DE +2BF =6+2×2=10.【知识点】等腰直角三角形、全等三角形的判定与性质18.在如图所示的正方形网格中,每个小正方形的边长都为1,△ABC 的顶点都在格点上(网格线的交点). (1)请在如图所示的网格平面内建立适当的平面直角坐标系,使点A 坐标为(﹣1,2),点B 的坐标为(﹣5,2);(画出直角坐标系)(2)点C 的坐标为( ﹣ , )(直接写出结果)(3)把△ABC 先向下平移6个单位后得到对应的△A 1B 1C 1,再将△A 1B 1C 1沿y 轴翻折至△A 2B 2C 2;13 / 21①请在坐标系中画出△A 2B 2C 2;②若点P (m ,n )是△ABC 边上任意一点,P 2是△A 2B 2C 2边上与P 对应的点,写出点P 2的坐标为( ﹣ , ﹣ );(直接写出结果)③试在y 轴上找一点Q ,使得点Q 到A 2,C 2两点的距离之和最小,此时,QA 2+QC 2的长度之和最小值为 .(在图中画出点Q 的位置,并直接写出最小值答案)【解答】解:(1)∵点A 坐标为(﹣1,2),点B 的坐标为(﹣5,2),如图所示:即为所画出的直角坐标系; (2)根据坐标系可知:14 / 21点C 的坐标为(﹣2,5), 故答案为:﹣2,5;(3)把△ABC 先向下平移6个单位后得到对应的△A 1B 1C 1, 再将△A 1B 1C 1沿y 轴翻折至△A 2B 2C 2; ①如图即为坐标系中画出的△A 2B 2C 2; ②点P (m ,n )是△ABC 边上任意一点, P 2是△A 2B 2C 2边上与P 对应的点, ∴点P 2的坐标为(﹣m ,n ﹣6), 故答案为:﹣m ,n ﹣6; ③根据对称性可知:在y 轴上找一点Q ,使得点Q 到A 2,C 2两点的距离之和最小, ∴连接A 2C 1交y 轴于点Q ,此时QA 2+QC 2的长度之和最小, 即为A 2C 1的长,A 2C 1=3,∴QA 2+QC 2的长度之和最小值为3.故答案为:3.【知识点】勾股定理、翻折变换(折叠问题)、作图-平移变换、轴对称-最短路线问题19.一辆卡车装满货物后,高4m 、宽2.4m ,这辆卡车能通过截面如图所示(上方是一个半圆)的隧道吗?15 / 21【解答】解:如图,由图形得半圆O 的半径为2m ,作弦EF ∥AD ,且EF =2.4m ,作OH ⊥EF 于H ,连接OF ,由OH ⊥EF ,得HF =1.2m , 在Rt △OHF 中,OH ===1.6m ,∵1.6+2=3.6<4,∴这辆卡车不能通过截面如图所示的隧道.【知识点】垂径定理、勾股定理的应用20.已知,在△ABC 中,AC =BC .分别过A ,B 点作互相平行的直线AM 和BN .过点C 的直线分别交直线AM ,BN 于点D ,E .(1)如图1.若CD =CE .求∠ABE 的大小;(2)如图2.∠ABC =∠DEB =60°.求证:AD +DC =BE .【解答】(1)解:如图1,延长AC 交BN 于点F ,∵AM∥BN,∴∠DAF=∠AFB,在△ADC和△FEC中,,∴△ADC≌△FEC(AAS),∴AC=FC,∵AC=BC,∴BC=AC=FC=AF,∴△ABF是直角三角形,∴∠ABE=90°;(2)证明:如图2,在EB上截取EH=EC,连CH,∵AC=BC,∠ABC=60°,∴△ABC为等边三角形,∵∠DEB=60°,∴△CHE是等边三角形,∴∠CHE=60°,∠HCE=60°,∴∠BHC=120°,∵AM∥BN,∴∠ADC+∠BEC=180°,∴∠ADC=120°,∴∠DAC+∠DCA=60°,又∵∠DCA+∠ACB+∠BCH+∠HCE=180°,∴∠DCA+∠BCH=60°,16/ 2117 / 21∴∠DAC =∠BCH ,在△DAC 与△HCB 中,,∴△DAC ≌△HCB (AAS ), ∴AD =CH ,DC =BH , 又∵CH =CE =HE , ∴BE =BH +HE =DC +AD , 即AD +DC =BE .【知识点】全等三角形的判定与性质21.甲、乙两个长方形的边长如图所示(m 为正整数),其面积分别为S 1,S 2.(1)填空:S 1﹣S 2=﹣(用含m 的代数式表示);(2)若一个正方形的周长等于甲、乙两个长方形的周长之和.①设该正方形的边长为x,求x的值(用含m的代数式表示);②设该正方形的面积为S3,试探究:S3与2(S1+S2)的差是否是常数?若是常数,求出这个常数,若不是常数,请说明理由,(3)若另一个正方形的边长为正整数n,并且满足条件1≤n<S1﹣S2的n有且只有4个,求m的值.【解答】解:(1)S1﹣S2=(m+7)(m+1)﹣(m+4)(m+2)=2m+1.故答案为2m+1.(2)①根据题意,得4x=2(m+7+m+1)+2(m+4+m+2)解得x=2m+7.答;x的值为2m+7.②∵S1+S2=2m2+14m+15,S3﹣2(S1+S2)=(2m+7)2﹣2(2m2+14m+15)=4m2+28m+49﹣4m2﹣28m﹣30=19.答:S3与2(S1+S2)的差是常数:19.(3)∵1≤n<2m﹣1,由题意,得5≤2m﹣1<6,解得3≤m<.∵m是整数,∴m=3.答:m的值为3.18/ 21【知识点】整式的加减、多项式乘多项式22.计算(1)﹣12+(﹣)﹣2×π0(2)1232﹣124×122(用简便方法计算)(3)(x+2y+3z)(x+2y﹣3z)(4)(4a3b﹣6a2b2+12b3)÷2ab【解答】解:(1)﹣12+(﹣)﹣2×π0=﹣1+4×1=﹣1+4=3;(2)1232﹣124×122=1232﹣(123+1)×(123﹣1)=1232﹣1232+1=1;(3)(x+2y+3z)(x+2y﹣3z)=[(x+2y)+3z][(x+2y)﹣3z]=(x+2y)2﹣9z2=x2+4xy+4y2﹣9z2;(4)(4a3b﹣6a 2b 2+12b3)÷2ab19/ 21=2a2﹣3ab+.【知识点】整式的混合运算、零指数幂、负整数指数幂、实数的运算23.计算:(1)4(x﹣1)2﹣(2x﹣5)(2x+5);(2)(﹣2)﹣2﹣(﹣1)2019﹣(π﹣2018)0;(3)(4a4b7﹣a6b7)÷(﹣ab2)3;(4)÷+•【解答】解:(1)4(x﹣1)2﹣(2x﹣5)(2x+5)=4(x2﹣2x+1)﹣(4x2﹣25)=4x2﹣8x+4﹣4x2+25=﹣8x+29(2)(﹣2)﹣2﹣(﹣1)2019﹣(π﹣2018)0;=+1﹣1=(3)(4a4b7﹣a6b7)÷(﹣ab2)3;=(4a4b7﹣a6b7)÷(﹣a3b6)=﹣4ab +a3b20/ 21(4)÷+•=×+•=+=【知识点】负整数指数幂、分式的混合运算、整式的混合运算、实数的运算、零指数幂21/ 21原创原创精品资源学科网独家享有版权,侵权必究!。

专题25期中全真模拟卷05-2020-2021学年八年级数学上学期期中考试高分直通车(原卷版)

专题25期中全真模拟卷05-2020-2021学年八年级数学上学期期中考试高分直通车(原卷版)

20202021学年八年级上学期数学期中考试高分直通车【人教版】专题2.5人教版八年级数学上册期中全真模拟卷05姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分120分,试题共26题,选择12道、填空6道、解答8道 .答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共12小题,每小题3分,共36分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2020•新都区模拟)下列图形中,是轴对称图形的是()A.B.C.D.2.(2020春•沙坪坝区校级月考)下列各线段中,能与长为4,6的两线段组成三角形的是()A.2B.8C.10D.123.(2019秋•肇庆期末)如图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A.AB=AC B.∠BAE=∠CAD C.BE=DC D.AD=DE4.(2020•温州模拟)如果点P(﹣2,b)和点Q(a,﹣3)关于x轴对称,则a+b的值是()A.﹣1B.1C.﹣5D.55.(2020春•肇东市期末)如果三角形的三个内角的度数比是2:3:4,则它是()A.锐角三角形B.钝角三角形C.直角三角形D.钝角或直角三角形6.(2019秋•松滋市期末)如图,已知D为BC上一点,∠B=∠1,∠BAC=64°,则∠2的度数为()A .37°B .64°C .74°D .84°7.(2019秋•万州区期末)如图,在△ABC 中,边AC 的垂直平分线交边AB 于点D ,连结CD .若∠A =50°,则∠BDC 的大小为( )A .90°B .100°C .120°D .130°8.(2020•恩平市模拟)如图,AB =DB ,∠1=∠2,请问添加下面哪个条件不能判断△ABC ≌△DBE 的是( )A .BC =BEB .AC =DE C .∠A =∠D D .∠ACB =∠DEB9.(2019•霞山区一模)如图,点P 是∠AOB 的角平分线OC 上一点,PD ⊥OA ,垂足为点D ,PD =2,M 为OP 的中点,则点M 到射线OB 的距离为( )A .12B .1C .√2D .210.(2019•大庆)如图,在△ABC 中,BE 是∠ABC 的平分线,CE 是外角∠ACM 的平分线,BE 与CE 相交于点E ,若∠A =60°,则∠BEC 是( )A.15°B.30°C.45°D.60°11.(2019秋•郯城县期中)在△ABC中,∠A=50°,∠B=30°,点D在AB边上,连接CD,若△ACD 为直角三角形,则∠BCD的度数为()A.60°B.10°C.45°D.10°或60°12.(2019秋•西城区校级期中)如图,已知△ABC中,AB=AC=12cm,BC=10cm,点D为AB的中点,如果点P在线段BC上以2cm/s的速度由点B向C点运动,同时,点Q在线段AC上由点A向C点以4cm/s 的速度运动.经过()秒后,△BPD与△CQP全等.A.2B.3C.2或3D.无法确定二、填空题(本大题共6小题,每小题3分,共18分)请把答案直接填写在横线上13.(2020秋•江岸区校级月考)五边形的内角和是,外角和是,对角线有条.14.(2019秋•铜山区期中)如图,在△ABC中,∠C=90°,AD平分∠BAC,若CD=8,点E是AB上一动点,DE的最小值为.15.(2019•广安)如图,正五边形ABCDE中,对角线AC与BE相交于点F,则∠AFE=度.16.(2019秋•岱岳区期中)茗茗用同种材料制成的金属框架如图所示,已知∠B=∠E,AB=DE,BF=EC,其中△ABC的周长为24cm,CF=3cm,则制成整个金属框架所需这种材料的长度为cm.17.(2019秋•镇原县期末)如图,已知△ABC≌△A′BC′,AA′∥BC,∠ABC=70°,则∠CBC′=.18.(2018秋•全南县期中)在等边三角形ABC中,AD是BC边上的高,E为AC的中点P为AD上一动点,若AD=12,则PC+PE的最小值为.三、解答题(本大题共8小题,共66分.解答时应写出文字说明、证明过程或演算步骤)19.(2019秋•禅城区期末)如图,在平面直角坐标系中,点O为坐标原点,已知△ABC三个定点坐标分别为A(﹣4,1),B(﹣3,3),C(﹣1,2).(1)画出△ABC关于x轴对称的△A1B1C1,点A、B、C的对应点分别是A1、B1、C1,则A1、B1、C1的坐标为:A1(,),B1(,)、C1(,);(2)画出点C关于y轴的对称点C2,连接C1C2,CC2,C1C,则△CC1C2的面积是.20.(2020•宁波模拟)如图1是五个小正方形拼成的图形,请你移动其中一个小正方形,重新拼一个图形,使得所拼成的新图形:(1)是轴对称图形,但不是中心对称图形.(2)既是轴对称图形,又是中心对称图形.(请将两个小题依次作答在图①、②中,均只需画出符合条件的一种情形,内部涂上阴影)21.(2020•江阴市模拟)如图,点A、E、F、C在一直线上,DE∥BF,DE=BF,AE=CF.求证:AB∥CD.22.(2019秋•鹿邑县期末)如图,△ABC中,AB=AC,∠A=50°,P为△ABC内一点,∠PBC=∠PCA,求∠BPC的值.23.(2019•重庆)如图,在△ABC中,AB=AC,AD⊥BC于点D.(1)若∠C=42°,求∠BAD的度数;(2)若点E在边AB上,EF∥AC交AD的延长线于点F.求证:AE=FE.24.(2019秋•渝中区校级期中)如图,△ABC是等腰三角形,AB=AC,点D是AB上一点,过点D作DE ⊥BC交BC于点E,交CA延长线于点F.(1)证明:AF=AD;(2)若∠B=60°,BD=4,AD=2,求EC的长.25.(2018•绍兴)数学课上,张老师举了下面的例题:例1等腰三角形ABC中,∠A=110°,求∠B的度数.(答案:35°)例2等腰三角形ABC中,∠A=40°,求∠B的度数,(答案:40°或70°或100°)张老师启发同学们进行变式,小敏编了如下一题:变式等腰三角形ABC中,∠A=80°,求∠B的度数.(1)请你解答以上的变式题.(2)解(1)后,小敏发现,∠A的度数不同,得到∠B的度数的个数也可能不同,如果在等腰三角形ABC中,设∠A=x°,当∠B有三个不同的度数时,请你探索x的取值范围.26.(2019秋•日照期中)综合与实践:问题情境:已知在△ABC中,∠BAC=100°,∠ABC=∠ACB,点D为直线BC上的动点(不与点B,C重合),点E在直线AC上,且AE=AD,设∠DAC=n.(1)如图1,若点D在BC边上,当n=36°时,求∠BAD和∠CDE的度数;拓广探索:(2)如图2,当点D运动到点B的左侧时,其他条件不变,试猜想∠BAD和∠CDE的数量关系,并说明理由;(3)当点D运动点C的右侧时,其他条件不变,请直接写出∠BAD和∠CDE的数量关系.。

2021-2022学年八年级第一学期期中考试数学试卷附答案

2021-2022学年八年级第一学期期中考试数学试卷附答案

2021-2022学年八年级上学期期中考试数学试卷一.选择题(共12小题,满分48分,每小题4分)1.下列图形中,是轴对称图形的是( )A .B .C .D .2.下列判定两个三角形全等的说法中,不正确的是( )A .三角对应相等的两个三角形全等B .三边对应相等的两个三角形全等C .有一边及其对角和另一角对应相等的两个三角形全等D .有一组直角边和一组斜边对应相等的两个直角三角形全等3.等腰三角形的两边长分别为3cm 和7cm ,则周长为( )A .13cmB .17cmC .13cm 或17cmD .11cm 或17cm4.已知∠AOB ,求作射线OC ,使OC 平分∠AOB 作法的合理顺序是( )①作射线OC ;②在OA 和OB 上分别截取OD ,OE ,使OD =OE ;③分别以D ,E 为圆心,大于12DE 的长为半径作弧,在∠AOB 内,两弧交于C . A .①②③ B .②①③ C .②③① D .③②①5.小明同学在学习了全等三角形的相关知识后发现,只用两把完全相同的长方形直尺就可以作出一个角的平分线.如图:一把直尺压住射线OB ,另一把直尺压住射线OA 并且与第一把直尺交于点P ,小明说:“射线OP 就是∠BOA 的角平分线.”他这样做的依据是( )A.角的内部到角的两边的距离相等的点在角的平分线上B.角平分线上的点到这个角两边的距离相等C.三角形三条角平分线的交点到三条边的距离相等D.以上均不正确6.如图,将△ABC沿过边上两点D,E的直线折叠后,使得点B与点A重合.若已知BE =4cm,DE=3cm,则△ABC的周长与△ADC的周长的差为()A.4cm B.5cm C.8cm D.10cm7.已知:如图,在△ABC中,AB=AC,AB的垂直平分线DE,分别交AB,AC于点D,E.若AD=3,BC=5,则△BEC的周长为()A.8B.10C.11D.138.如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于12MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,若CD=3,则BD的长是()A.7B.6C.5D.49.如图,在△ABC中,∠B=90°,AB=6,BC=8,AD为∠BAC的角平分线,则三角形ADC的面积为()A.3B.10C.12D.15 10.如图,△ABC中,AB=AC,D是BC中点,下列结论中不正确的是()A.∠B=∠C B.AD⊥BC C.AD平分∠BAC D.AB=2BD 11.如图,已知AE∥DF,BE∥CF,AC=BD,则下列说法错误的是()A.△AEB≌△DFC B.△EBD≌△FCA C.ED=AF D.EA=EC 12.等边三角形的三条高把这个三角形分成()个直角三角形.A.8B.10C.11D.12二.填空题(共6小题,满分24分,每小题4分)13.平面直角坐标系中的点P(2−m,12m)关于x轴的对称点在第四象限,则m的取值范围为.14.如图,已知∠1=58°,∠B=60°,则∠2=°.15.如图,已知BC与DE交于点M,则∠A+∠B+∠C+∠D+∠E+∠F的度数为.16.如果一斜坡的坡度为i=1:√3,某物体沿斜面向上推进了10米,那么物体升高了米.17.在平面直角坐标系中,点A、B、C的坐标分别为A(8,0),B(2,6),C(4,0),点P,Q是△ABO边上的两个动点(点P不与点C重合),以P,O,Q为顶点的三角形与△COQ全等,则满足条件的点P的坐标为.18.如图,在第1个△A1BC中,∠B=20°,A1B=CB;在边A1B上任取一点D,延长CA1到A2,使A1A2=A1D,得到第2个△A1A2D;在边A2D上任取一点E,延长A1A2到A3,使A2A3=A2E,得到第3个△A2A3E,…按此做法继续下去,则第5个等腰三角形的底角度数是.三.解答题(共7小题)19.如图,五边形ABCDE的内角都相等,EF平分∠AED,求证:EF⊥BC.20.画图并填空:如图,请画出自A地经过B地去河边l的最短路线.(1)确定由A地到B地最短路线的依据是.(2)确定由B地到河边l的最短路线的依据是.21.已知如图,AC交BD于点O,AB=DC,∠A=∠D.(1)请写出符合上述条件的五个结论(并且不再添加辅助线,对顶角除外);(2)从你写出的5个结论中,任选一个加以证明.22.如图,△ABC中,A点坐标为(2,4),B点坐标为(﹣3,﹣2),C点坐标为(3,1).(1)在图中画出△ABC关于y轴对称的△A′B′C′(不写画法),并写出点A′,B′,C′的坐标.(2)求△ABC的面积.23.如图,在△ABC中,∠B=36°,∠C=76°,AD是△ABC的角平分线,BE是△ABD 中AD边上的高,求∠ABE的度数.24.如图1,在△CAB和△CDE中,CA=CB,CD=CE,∠ACB=∠DCE=α,连接AD、BE.(1)求证:△ACD≌△BCE;(2)如图2,当α=90°时,取AD、BE的中点P、Q,连接CP、CQ、PQ,判断△CPQ 的形状,并加以证明.25.问题发现:如图1,在△ABC中,AB=AC,∠BAC=60°,D为BC边上一点(不与点B,C重合),将线段AD绕点A逆时针旋转60°得到AE,连接EC,则:(1)①∠ACE的度数是;②线段AC,CD,CE之间的数量关系是.拓展探究:(2)如图2,在△ABC中,AB=AC,∠BAC=90°,D为BC边上一点(不与点B,C 重合),将线段AD绕点A逆时针旋转90°得到AE,连接EC,请写出∠ACE的度数及线段AD,BD,CD之间的数量关系,并说明理由;解决问题:(3)如图3,在Rt△DBC中,DB=3,DC=5,∠BDC=90°,若点A满足AB=AC,∠BAC=90°,请直接写出线段AD的长度.2021-2022学年八年级上学期期中考试数学试卷参考答案与试题解析一.选择题(共12小题,满分48分,每小题4分)1.下列图形中,是轴对称图形的是()A.B.C.D.解:A、不是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项错误;C、是轴对称图形,故此选项正确;D、不是轴对称图形,故此选项错误;故选:C.2.下列判定两个三角形全等的说法中,不正确的是()A.三角对应相等的两个三角形全等B.三边对应相等的两个三角形全等C.有一边及其对角和另一角对应相等的两个三角形全等D.有一组直角边和一组斜边对应相等的两个直角三角形全等解:A、三角对应相等的两个三角形不一定全等,故A选项符合题意;B、三边对应相等的两个三角形全等,故B选项不符合题意;C、有一边及其对角和另一角对应相等的两个三角形全等,故C选项不符合题意;D、有一组直角边和一组斜边对应相等的两个直角三角形全等,故D选项不符合题意;故选:A.3.等腰三角形的两边长分别为3cm和7cm,则周长为()A.13cm B.17cm C.13cm或17cm D.11cm或17cm 解:当7为腰时,周长=7+7+3=17cm;当3为腰时,因为3+3<7,所以不能构成三角形;故三角形的周长是17cm.故选:B .4.已知∠AOB ,求作射线OC ,使OC 平分∠AOB 作法的合理顺序是( )①作射线OC ;②在OA 和OB 上分别截取OD ,OE ,使OD =OE ;③分别以D ,E 为圆心,大于12DE 的长为半径作弧,在∠AOB 内,两弧交于C . A .①②③ B .②①③ C .②③① D .③②①解:角平分线的作法是:在OA 和OB 上分别截取OD ,OE ,使OD =OE ;分别以D ,E 为圆心,大于12DE 的长为半径作弧,在∠AOB 内,两弧交于C ; 作射线OC .故其顺序为②③①.故选:C .5.小明同学在学习了全等三角形的相关知识后发现,只用两把完全相同的长方形直尺就可以作出一个角的平分线.如图:一把直尺压住射线OB ,另一把直尺压住射线OA 并且与第一把直尺交于点P ,小明说:“射线OP 就是∠BOA 的角平分线.”他这样做的依据是( )A .角的内部到角的两边的距离相等的点在角的平分线上B .角平分线上的点到这个角两边的距离相等C .三角形三条角平分线的交点到三条边的距离相等D .以上均不正确解:(1)如图所示:过两把直尺的交点P 作PE ⊥AO ,PF ⊥BO ,∵两把完全相同的长方形直尺,∴PE =PF ,∴OP 平分∠AOB (角的内部到角的两边的距离相等的点在这个角的平分线上),故选:A .6.如图,将△ABC沿过边上两点D,E的直线折叠后,使得点B与点A重合.若已知BE =4cm,DE=3cm,则△ABC的周长与△ADC的周长的差为()A.4cm B.5cm C.8cm D.10cm解:∵将△ABC沿直线DE折叠后,使得点B与点A重合,∴AD=BD,BE=AE=4,∴AB=BE+AE=4+4=8,∴△ABC的周长﹣△ADC的周长=AB+BC+AC﹣AC﹣CD﹣AD=AB+BD﹣AD=AB=8(cm),故选:C.7.已知:如图,在△ABC中,AB=AC,AB的垂直平分线DE,分别交AB,AC于点D,E.若AD=3,BC=5,则△BEC的周长为()A.8B.10C.11D.13解:∵AB的垂直平分线DE分别交AB、AC于点D、E,∴AE=BE,∵AD=3,∴AB=6,∴AE+EC=AC=AB=6,∵BC=5,∴△EBC的周长=BC+BE+CE=BC+AE+CE=BC+AC=6+5=11;故选:C.8.如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于12MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,若CD=3,则BD的长是()A.7B.6C.5D.4解:如图,作DE⊥AB于点E,∵AD为∠CAB的平分线,∴DE=CD=3,∵∠B=30°,则BD=2DE=6,故选:B.9.如图,在△ABC中,∠B=90°,AB=6,BC=8,AD为∠BAC的角平分线,则三角形ADC的面积为()A .3B .10C .12D .15解:作DH ⊥AC 于H ,如图,在Rt △ABC 中,∠B =90°,AB =6,BC =8,∴AC =√62+82=10,∵AD 为∠BAC 的角平分线,∴DB =DH ,∵12×AB ×CD =12DH ×AC , ∴6(8﹣DH )=10DH ,解得DH =3,∴S △ADC =12×10×3=15.故选:D .10.如图,△ABC 中,AB =AC ,D 是BC 中点,下列结论中不正确的是( )A .∠B =∠C B .AD ⊥BC C .AD 平分∠BAC D .AB =2BD解:∵△ABC 中,AB =AC ,D 是BC 中点∴∠B =∠C ,(故A 正确)AD ⊥BC ,(故B 正确)∠BAD =∠CAD (故C 正确)无法得到AB =2BD ,(故D 不正确).故选:D .11.如图,已知AE ∥DF ,BE ∥CF ,AC =BD ,则下列说法错误的是( )A .△AEB ≌△DFC B .△EBD ≌△FCA C .ED =AFD .EA =EC 证明:∵AE ∥DF ,∴∠EAB =∠FDC ,∵BE ∥CF ,∴∠EBC =∠BCF ,∴∠ABE =∠FCD ,∵AC =BD ,∴AB =CD ,在△AEB 和△DFC 中,{∠EAB =∠FDC AB =CD ∠ABE =∠FCD,△AEB ≌△DFC (ASA ),∴BE =CF ,在△EBD 和△FCA 中,{BE =CF ∠EBD =∠ACF AC =BD,∴△EBD ≌△FCA (SAS ),∴ED =AF .故A ,B ,C 选项正确,AE =CE 说法不正确,故选:D .12.等边三角形的三条高把这个三角形分成( )个直角三角形.A .8B .10C .11D .12 解:如图:直角三角形有△ABE 、△ACE 、△ABF 、△BCF 、△ACD 、△BCD 、△ADO 、△AFO 、△CFO 、△CEO ,△BEO 、△BDO ,共12个.故选:D .二.填空题(共6小题,满分24分,每小题4分)13.平面直角坐标系中的点P (2−m ,12m)关于x 轴的对称点在第四象限,则m 的取值范围为 0<m <2 .解:点P (2﹣m ,12m )关于x 轴对称的点的坐标为P 1(2﹣m ,−12m ), ∵P 1(2﹣m ,−12m )在第四象限,∴{2−m >0−12m <0,解得0<m <2, ∴m 的取值范围为 0<m <2.故答案为0<m <2.14.如图,已知∠1=58°,∠B =60°,则∠2= 118 °.解:∵∠2=∠B +∠1,∴∠2=58°+60°=118°,故答案为118.15.如图,已知BC 与DE 交于点M ,则∠A +∠B +∠C +∠D +∠E +∠F 的度数为 360° .解:连接BE.∵△CDM和△BEM中,∠DMC=∠BME,∴∠C+∠D=∠MBE+∠BEM,∴∠A+∠B+∠C+∠D+∠E+∠F=∠A+∠B+∠MBE+∠BEM+∠E+∠F=∠A+∠F+∠ABE+∠BEF=360°.故答案为:360°.16.如果一斜坡的坡度为i=1:√3,某物体沿斜面向上推进了10米,那么物体升高了5米.解:∵斜坡的坡度为i=1:√3,又∵i=tan∠ABC=AC BC∴ACBC =√3=√33,∴∠ABC=30°,∵某物体沿斜面向上推进了10米,即AB=10,∴AC=5.故答案为:5.17.在平面直角坐标系中,点A、B、C的坐标分别为A(8,0),B(2,6),C(4,0),点P ,Q 是△ABO 边上的两个动点(点P 不与点C 重合),以P ,O ,Q 为顶点的三角形与△COQ 全等,则满足条件的点P 的坐标为 (2√105,6√105)或(1,3)或P (5,3)或(8﹣2√2,2√2) .解:以P ,O ,Q 为顶点的三角形与△COQ 全等,①如图1所示,当△POQ ≌△COQ 时,即OP =OC =4,过P 作PE ⊥OA 于E ,过B 作BF ⊥OA 于F ,则PE ∥BF ,∵B (2,6),∴OF =2,BF =6,∴OB =√22+62=2√10,∵PE ∥BF ,∴△POE ∽△BOF ,∴OP OB =PE BF =OE OF , ∴2√10=PE 6=OE2, ∴PE =6√105,OE =2√105, ∴点P 的坐标为(2√105,6√105);②如图2,当△POQ ≌△CQO 时,即QP =OC =4,OP =CQ ,∴四边形PQCO 是平行四边形,∴PQ ∥OA ,过P 作PE ⊥OA 于E ,过B 作BF ⊥OA 于F , 则PE ∥BF ,∵B(2,6),∴OF=2,BF=6,∴OB=√22+62=2√10,∵PQ∥OA,∴PBOB =PQ OA,∴PB=√10,∴PE=√10,∴点P是OB的中点,∵PE∥BF,∴PE=12BF=3,OE=12EF=1,∴点P的坐标为(1,3),如图3,如图3,当△OQC≌△QOP时,过P作PE⊥OA于E,过B作BF⊥OA于F,则PE∥BF,∵B(2,6),∴OF=2,BF=6,∴AF=6,∴△ABF和△APE是等腰直角三角形,∴PE=AE,∵直线AB的解析式为y=﹣x+8,∴设点P的坐标为(x,﹣x+8),连接PC∵△OQC≌△QOP,∴∠POQ=∠CQO,PQ=OC,CQ=OP,∴△PQC≌△COP,∴∠OPC=∠QCP,∴∠OQC=∠QCP,∴PC∥OQ,∴PC=12OB=√10,∵PC2=CE2+PE2,∴10=(x ﹣4)2+(﹣x +8)2,解得:x =5,x =7(不合题意舍去),∴P (5,3);如图4,当△OQC ≌△QOP 时,过P 作PE ⊥OA 于E ,连接PC ,同理PE =AE ,PC ∥OQ ,∵AC =OC ,∴AP =PQ ,∵△OQC ≌△QOP ,∴PQ =OC =4,∴AP =PQ =4,∴PE =AE =2√2,∴OE =8﹣2√2,∴P (8﹣2√2,2√2),综上所述,点P 的坐标为(2√105,6√105)或(1,3)或P (5,3)或(8﹣2√2,2√2). 故答案为(2√105,6√105)或(1,3)或P (5,3)或(8﹣2√2,2√2).18.如图,在第1个△A 1BC 中,∠B =20°,A 1B =CB ;在边A 1B 上任取一点D ,延长CA 1到A 2,使A 1A 2=A 1D ,得到第2个△A 1A 2D ;在边A 2D 上任取一点E ,延长A 1A 2到A 3,使A 2A 3=A 2E ,得到第3个△A 2A 3E ,…按此做法继续下去,则第5个等腰三角形的底角度数是 5° .解:∵在△CBA 1中,∠B =20°,A 1B =CB ,∴∠BA 1C =180°−∠B 2=80°, ∵A 1A 2=A 1D ,∠BA 1C 是△A 1A 2D 的外角,∴∠DA 2A 1=12∠BA 1C =12×80°; 同理可得,∠EA 3A 2=(12)2×80°,∠F A 4A 3=(12)3×80°, ∴第n 个等腰三角形的底角度数是(12)n ﹣1×80°. ∴第5个等腰三角形的底角度数为:(12)4×80°=5°,故答案为:5°.三.解答题(共7小题)19.如图,五边形ABCDE的内角都相等,EF平分∠AED,求证:EF⊥BC.证明:五边形内角和为:(5﹣2)×180°=540°.∵5个内角都相等,∴∠A=∠B=∠AED=540°5=108°.∵EF平分∠AED,∴∠1=∠2=54°.∵四边形的内角和为360°,在四边形ABFE中,∠3=360°﹣(108°+108°+54°)=90°.∴EF⊥BC.20.画图并填空:如图,请画出自A地经过B地去河边l的最短路线.(1)确定由A地到B地最短路线的依据是两点之间线段最短.(2)确定由B地到河边l的最短路线的依据是垂线段最短.解:自A地经过B地去河边l的最短路线,如图所示.(1)确定由A地到B地最短路线的依据是两点之间线段最短.(2)确定由B地到河边l的最短路线的依据是垂线段最短.21.已知如图,AC交BD于点O,AB=DC,∠A=∠D.(1)请写出符合上述条件的五个结论(并且不再添加辅助线,对顶角除外);(2)从你写出的5个结论中,任选一个加以证明.解:(1)符合上述条件的五个结论为:△AOB ≌△DOC ,OA =OD ,OB =OC ,∠ABO =∠DCO ,∠OBC =∠OCB .(2)证明如下:∵AB =DC ,∠A =∠D ,又有∠AOB =∠DOC∴△AOB ≌△DOC∴OA =OD ,OB =OC ,∠ABO =∠DCO∵OB =OC∴∠OBC =∠OCB .22.如图,△ABC 中,A 点坐标为(2,4),B 点坐标为(﹣3,﹣2),C 点坐标为(3,1).(1)在图中画出△ABC 关于y 轴对称的△A ′B ′C ′(不写画法),并写出点A ′,B ′,C ′的坐标.(2)求△ABC 的面积.解:(1)如图,A ′(﹣2,4),B ′(3,﹣2),C ′(﹣3,1);(2)S △ABC =6×6−12×5×6−12×6×3−12×1×3,=36﹣15﹣9﹣112, =1012.23.如图,在△ABC中,∠B=36°,∠C=76°,AD是△ABC的角平分线,BE是△ABD 中AD边上的高,求∠ABE的度数.解:∵∠B=36°,∠C=76°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣36°﹣76°=68°,∵AD是∠BAC的平分线,∴∠BAD=12×68°=34°,∵AE⊥BE,∴∠AEB=90°,∴∠ABE=180°﹣∠AEB﹣∠BAE=180°﹣90°﹣34°=56°.24.如图1,在△CAB和△CDE中,CA=CB,CD=CE,∠ACB=∠DCE=α,连接AD、BE.(1)求证:△ACD≌△BCE;(2)如图2,当α=90°时,取AD、BE的中点P、Q,连接CP、CQ、PQ,判断△CPQ的形状,并加以证明.解:(1)如图1,∵∠ACB =∠DCE =α,∴∠ACD =∠BCE ,在△ACD 和△BCE 中,{CA =CB ∠ACD =∠BCE CD =CE,∴△ACD ≌△BCE (SAS ),∴BE =AD ;(2)△CPQ 为等腰直角三角形.证明:如图2,由(1)可得,BE =AD ,∵AD ,BE 的中点分别为点P 、Q ,∴AP =BQ ,∵△ACD ≌△BCE ,∴∠CAP =∠CBQ ,在△ACP 和△BCQ 中,{CA =CB∠CAP =∠CBQ AP =BQ,∴△ACP ≌△BCQ (SAS ),∴CP=CQ,且∠ACP=∠BCQ,又∵∠ACP+∠PCB=90°,∴∠BCQ+∠PCB=90°,∴∠PCQ=90°,∴△CPQ为等腰直角三角形.25.问题发现:如图1,在△ABC中,AB=AC,∠BAC=60°,D为BC边上一点(不与点B,C重合),将线段AD绕点A逆时针旋转60°得到AE,连接EC,则:(1)①∠ACE的度数是60°;②线段AC,CD,CE之间的数量关系是AC=DC+EC.拓展探究:(2)如图2,在△ABC中,AB=AC,∠BAC=90°,D为BC边上一点(不与点B,C 重合),将线段AD绕点A逆时针旋转90°得到AE,连接EC,请写出∠ACE的度数及线段AD,BD,CD之间的数量关系,并说明理由;解决问题:(3)如图3,在Rt△DBC中,DB=3,DC=5,∠BDC=90°,若点A满足AB=AC,∠BAC=90°,请直接写出线段AD的长度.解:(1)∵在△ABC中,AB=AC,∠BAC=60°,∴∠BAC=∠DAE=60°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,在△BAD和△CAE中,{AB=AC∠BAD=∠CAE AD=AE,∴△BAD≌△CAE(SAS),∴∴∠ACE=∠B=60°,BD=CE,∴BC=BD+CD=EC+CD,∴AC=BC=EC+CD;故答案为:60°,AC=DC+EC;(2)BD2+CD2=2AD2,理由如下:由(1)得,△BAD≌△CAE,∴BD=CE,∠ACE=∠B=45°,∴∠DCE=90°,∴CE2+CD2=ED2,在Rt△ADE中,AD2+AE2=ED2,又AD=AE,∴BD2+CD2=2AD2;(3)如图3,作AE⊥CD于E,连接AD,∵在Rt△DBC中,DB=3,DC=5,∠BDC=90°,∴BC=√9+25=√34,∵∠BAC=90°,AB=AC,∴AB=AC=√17,∠ABC=∠ACB=45°,∵∠BDC=∠BAC=90°,∴点B,C,A,D四点共圆,∴∠ADE=45°,∴△ADE是等腰直角三角形,∴AE=DE,∴CE=5﹣DE,∵AE2+CE2=AC2,∴AE2+(5﹣AE)2=17,∴AE=1,AE=4,∴AD=√2或AD=4√2.。

江岸区2020~2021学年度第二学期期末考试八年级数学试卷(含答案) 2022

江岸区2020~2021学年度第二学期期末考试八年级数学试卷(含答案) 2022

江岸区2020~2021学年度第二学期期末考试八年级数学试卷一、选择题(每小题3分,共30分)1.在实数范围内有意义,则x 的取值范围是( ) A.3x >B.3x ≥C.3x <D.3x ≤2.下列各式中,运算正确的是( )=9=C.3= =3.以下列长度的线段为边,不能组成直角三角形的是( )A.6、8、9C.1D.8、15、174.近日来,武汉市网红打卡点“武汉小锻仓”吸引众多市民前来拍照打卡,洪山区交警大队加强了该区域的交通管制,控制车辆速度,确保市民安全.某交警在该路口统计的某个时段,来往的27辆车行驶速度的分布如条形图所示这些车辆速度的众数是( ) A.53 B.52C.55D.515.将直线22y x =-向上平移4个单位长度后,所得的直线的解析式为( ) A.2y x =B.24y x =-C.22y x =+D.26y x =-6.下列性质中,矩形具有、正方形也具有、但是菱形却不具有的性质是( ) A.对角线互相垂直B.对角线互相平分C.对角线长度相等D.一组对角线平分一组对角7.水龙头关闭不严会造成滴水,已知漏水量与漏水时间为一次函数关系,八(6)班的同学进行了以下实验,在滴水的水龙头下放置一个能显示水量的容器,每10分钟记录一次容器中的水量,下表是一位同学的记录结果,老师发现有一组数据记录有较大偏差,它是( )A.第2组B.第3组C.第4组D.第5组8.如图Rt ABC ∆中,90ABC ∠=︒,BC =5AC =,分别以三边为直径画半圆,则两月形图案的面积之和(阴影部分的面积)是( ) A.5πB.10πC.5D.10第8题图 第9题图9.如图,在矩形ABCD 中,E 是BC 的中点,将ABE ∆折叠后得到AFE ∆,点F 在矩形内部,延长AF 交CD 于点H ,若4AD =,43CH =,则折痕AE 的长为( )B.C.3D.10.已知函数2y x a =-(a 为常数),当13x ≤≤时,y 有最小值为5,则a 的值为( ) A.3或1-B.3或4C.2-或1-D.2-或4二、填空题(每小题3分,共18分)11.= .12.某学校欲招聘一名教师,对应聘者甲进行了笔试和面试,其笔试和面试的成绩分别为80分和90分,若按笔试成绩占30%,面试成绩占70%计算综合成绩,则甲的综合成绩为 分.13.平行四边形ABCD 两角线AC 、BD 交于点O ,ABO ∆为等边三角形,且2AB =,则BC 的长为 .14.如图,已知函数2y x =和4y ax =+(a 为常数,且0a ≠)的图象相交于点()1,2A ,则关于x 的不等式42ax x +≥的解集为 .第14题图 第15题图 第16题图15.如图,甲.乙两个工程队完成某项工程,首先是甲单独做了10天,然后乙队加入合做,完成剩下的全部工程.设工程总量为单位1,工程进度满足如图所示的函数关系,设n =甲的工作效率乙的工作效率,则n 的值为 .16.如图,在ABC ∆中,60BAC ∠=︒,45ABC ∠=︒,AD 平分CAB ∠交BC 于点D .P 为直线AB 上一动点.以DP 、BD 为邻边构造平行四边形DPQB ,连接CQ ,若4AC =.则CQ 的最小值为 . 三、解答题(72分)17.计算: ;(2)(42+18.如图,在ABC ∆中,90BAC ∠=︒,点D 、E 分别是边BC 、AC 的中点,过点A 作//AF BC ,交DE 的延长线于F 点,连接AD 、CF .求证:四边形ADCF 是菱形.19.武汉市教育局举办中小学生经典诵读活动,微发了同学们的读书热情.为了引导学生生“多读书,读好书”,某校对八年级部分学生的课外阅读量进行了随机调查,整理调查结果发现,学生课外阅读的数量最少的是5本,最多的是8本,并根据调查结果绘制了如图不完整的图表.(1)补全条形统计图,扇形统计图中的a = .(2)本次抽样调查中,中位数是 ,扇形统计图中课外阅读6本的扇形的圆心角大小为 度; (3)若该校八年级共有1200名学生,请估计该校八年级学生课外阅读至少7本的人数.20.如图,在所给的正方形网格中,每个小正方形的边长均为1个单位.每个小正方形的顶点称为格点,如图格点()3,5A -,()7,2B -,()0,2D ,用无刻度的直尺作图. (1)作平行四边形ABCD ,则点C 的坐标为 .(2)作出BD 的中点E ,并直接写出直线OE 的解析式 ; (3)在x 轴上作出点N ,使得180BNO ANO ∠+∠=︒.21.如图,在平面直角坐标系xoy 中,已知()0,4A ,()4,0B ,一次函数2y x =-的图象与直线AB 交于点P . (1)求P 点的坐标;(2)若M 点是y 轴上一点,且PMA ∆的面积等于10,求点M 的坐标;(3)若直线2y x b =-+与AOB ∆的三边恰好有两个公共点.直接写出b 的取值范围 .22.5月22日以来,大理市漾濞县连发多次地震,其中A 、B 两乡镇受灾非常严重.C 、D 两市获知A 、B 两乡镇分别需要救灾物资180吨和290吨后,决定调运物资支援A 、B 两乡镇.已知C 市有救灾物资220吨,D 市有救灾物资250吨,现将这些物资全部运往A 、B 两乡镇.已知从C 市运往A 、B 两乡镇的费用分别是每吨22元和18元,从D 市运往A 、B 两乡镇的费用分别是24元和25元,设D 市运往B 乡镇的救灾物资为x 吨. (1)请填写下表(2)设C 、D 两市运往A 、B 两乡镇的救灾物资总运费为w 元,求总运费最小时的运输方案及最小运费; (3)经过紧急抢修,D 市运往B 乡镇的路况得到改善,缩短了运输时间,每吨运费减少了t 元()0t >,具体路线运费不变.若C 、D 两市运往A 、B 两乡镇的救灾物资总运费的最小值为9430元,求t 的值.23.正方形ABCD 中,点E 在边BC 上,点F 在边CD 上.(1)如图1,若60CEF ∠=︒,AP EF ⊥于点P ,当AP AB =时,求AEF ∠的度数;(2)如图2,若AE EF =,点H 在边BC 上,且在点E 右侧,当2CHF HAB ∠=∠时,求证:HFE EAB ∠=∠. (3)T 为正方形ABCD 外一动点,且45ATB ∠=︒,M 为边AD 的中点,当T 运动时,则AMMT的最小值为 .图1 图2 图324.如图1,直线AB 的解析式为6y kx =+,D 点坐标为()8,0,O 点关于直线AB 的对称点C 点在直线AD 上.(1)求直线AD 、AB 的解析式.(2)如图2,若OC 交AB 于点E ,在线段AD 上是否存在一点F ,使△ABC 与△AEF 的面积相等,若存在求出F 点坐标,若不存在,请说明理由.(3)如图3,过点D 的直线:l y mx b =+.当它与直线AB 夹角等于45︒时,求出相应m 的值.图1 图2 图3江岸区2020~2021学年度第二学期期末考试八年级数学试卷(答案)一、选择题1-5:BDBBC 6-10: CCCAD 二、填空题11. 12.87 13. 14.1x ≤15.3216.2三、解答题17.(1);(2)2 18.证明:点D 、E 分别是边BC 、AC 的中点,//DE AB ∴, //AF BC ,∴四边形ABDF 是平行四边形,AF BD ∴=,又BD DC =,则AF DC =, //AF DC ,∴四边形ADCF 是平行四边形;点D 是边BC 的中点,ABC ∆是直角三角形,AD DC ∴=,∴平行四边形ADCF 是菱形.19.(1);20.(2)6;129.6︒. (3)148120052850+⨯=(人) 答:该校八年级学生课外阅读至少7本的人数大约有528人. 20.(1)()4,1--. (2)47y x =-.(3)21.解(1)依题意设直线AB 的解析式为:4y kx =+ 又0(4)B ,在直线AB 上 所以440k += 解得: 1k =-.所以直线AB 解析式为:4y x =-+联立得42y x y x =-+⎧⎨=-⎩,解得:48x y =-⎧⎨=⎩.所以()4,8P -. (2)12PMA P S AM x ∆=⨯, 14102AM ∴⨯⨯=, 5AM ∴=,(0,4)A , (0,9)M ∴或(0,1)-.(3)08b <<.22.(1)70x -;290x -;250x -.(2)22(70)18(290)24(250)25w x x x x =-+-+-+59680x =+070025002900x x x x ≥⎧⎪-≥⎪⎨-≥⎪⎪-≥⎩,解得:70250x ≤≤. 当70250x ≤≤ 时,w 随x 的增大而增大所以当 70x =时,w 有最小值,最小运费w 为10030元.答:C 市调往A 乡镇0吨,调往B 乡镇220吨,D 市调往A 乡镇180吨,调往B 乡镇70吨,最小运费为10030元.(3)依题意得:()59680w t x =-+ 70250x ≤≤ 当50t -≥,即5t ≤时,w 随x 的增大而增大 所以当 70x =时,w 有最小值()57096809430t -+=∴⨯,解得:607t = (5t ≤,舍去)当50t -<时,即5t >,w 随x 的增大而减小 所以当250x =时,w 有最小值()525096809430t -⨯+=∴,解得:6t =答:当最小运费为9430时,t 的值为6. 23.解:(1)ABCD 为正方形,AP 垂直于EF ,90B APE ∴∠=∠=︒,AB AP =,AE AE =, ABE APE ∴∆≅∆, AEB AEF ∴∠=∠,60CEF ∠=︒, 120BEF ∴∠=︒, 60AEF ∴∠=︒,(2)连接AF ,作CQ FH ⊥于Q , 设BAH x ∠=,EAH y ∠=, 则2CHF x ∠=,90AHB x ∠=︒-,()180********AHF CHF AHB x x x ∠=︒-∠-∠=︒--︒-=︒-, 90AHB AHF x ∴∠=∠=︒-,即AH 平分BHF ∠, 易证:ABH AQH ∆∆≌,BAH QAH ∴∠=∠,AB AQ =, AQF ADF ∴∆≅∆,AFD AFQ ∴∠=∠,QAF DAF ∠=∠,即AF 平分DAQ ∠,45HAF ∴∠=︒,BAE BAH EAH x y ∠=∠-∠=-, BAH QAH x ∠=∠=,1452QAF DAF QAD x ∠=∠=∠=︒-,45AFD AFQ x ∴∠=∠=︒+,又AE EF =,()4545EAF EFA EAH HAQ QAF y x x y ∴∠=∠=∠+∠+∠=++︒-=︒+ ()4545HFE AFQ AFE x y x y ∠=∠-∠=︒+-︒+=-,BAE HFE ∴∠=∠.(3)3. 24.解(1)6y kx =+,()0,6A ∴,即6OA =,又()8,0D ,8OD ∴=,直线AD 的解析式为364y x =-+.在 Rt ABD ∆中,10AD ==, 点O 、点C 关于直线AB 对称,∴设OB BC a ==,6OA AC ==,4CD =,8BD a ∴=-,在 Rt BCD ∆中,()22248a a +=-,3a ∴=(面积法亦可)()3,0B ∴,∴直线AB 的解析式为26y x =-+.(2)由(1)易求2412,55C ⎛⎫⎪⎝⎭,直线AD 的解析式为:364y x =-+,∴直线OC 的解析式为:12y x =. ABC AEF S S ∆∆=,BEC ECF S S ∆∆∴=,//BF OC ∴,设直线BF 的解析式为:12y x n =+, ()3,0B 在直线BF 上,1302b ∴⨯+=, 32b ∴=-,直线BF 的解析式为:122y x 3=-, 联立得:1322364y x y x ⎧=-⎪⎪⎨⎪=-+⎪⎩,解得:632x y =⎧⎪⎨=⎪⎩.故存在,36,2F ⎛⎫ ⎪⎝⎭.(3)如图,设若直线DE 、DF 与直线AB 夹角等于45︒,即DEF ∆为等腰直角三角形,作EM DM ⊥于M ,FN DN ⊥于N , 易证:DEM FDN ∆∆≌,EM DN ∴=,DM FN =,直线l 过()8,0D ,即08m b =+,解得:8b m =-,∴直线l 的解析式为: 8y mx m =-,设E 坐标为(),26t t -+,则8EM DN t ==-,26DM FN t ==-+,F ∴点坐标为()22,8t t +-,F 点在直线AB 上,()82226t t ∴-=-++,11 解得:2t =,()2,2E ∴,()6,6F -.当直线l 过E 点时,282m m -=,解得:13m =-, 当直线l 过F 点时,686m m -=-,解得:3m =. 所以3m =或13-.。

2021 2021八年级数学上册期末试卷(含答案)

2021 2021八年级数学上册期末试卷(含答案)

2021 2021八年级数学上册期末试卷(含答案)2021-2021八年级数学上册期末试卷(含答案)第一部分:中山2022-2022八年级数学第一卷期末试卷及参考答案中山市2021-2021学年第一学期期末水平测试试卷八年级数学(测试时间:100分钟,满分:120分)一、单选题(共10题,每题3分,满分30分)1.计算a2?a的结果是()a、 a2b.2a3c.a3d.2a22.下面图形是用木条钉成的支架,其中不容易变形的是()a、不列颠哥伦比亚省。

3.下列算式结果为-3的是()a、 ?。

?3b.(-3)0c.31?d.d.(?3)24.如果把5x中的x与y都扩大为原来的10倍,那么这个代数式的值()x?yb、扩展到原来的5倍A.扩展到原来的10倍c.缩小为原来的12d.不变5.在下列图形中,非轴对称的为()a.正方形b.等腰直角三角形c.等边三角形d.含30°的直角三角形6.下列变形,是因式分解的是()a、 x(x?1)?十、十、c.x?x?x(x?1)22b.x?x?1?x(x?1)?1d.2a(b?c)?2ab?2ac27.如果等腰三角形中的一个角度等于40°,则等腰三角形顶角的度数为()a.40°b.100°c.40°或100°d.40°或70°8。

如图所示,AC和BD在O点相交,∠ a=∠ D.制作△ AOB≌ △ doc,需要添加一个条件,可能不正确()a.oa=odb.ab=dcc.ob=ocd.∠abo=∠dcoaad图8图99.如图,d是ab的中点,将△abc沿过点d的直线折叠,使点a落在bc边上点f处,若∠b=50°,则∠edf的度数为()a、40°b.50°c.60°d.80°10.某厂接到加工720件衣服的订单,每天做48件正好按时完成,后因客户要求提前5天交货,设每天应多做x件,则x应满足的方程为()720720720720?? 5b。

2021-2022学年八年级数学上学期期末考试试卷【含解析】

2021-2022学年八年级数学上学期期末考试试卷【含解析】

一、选择题(本大题共8小题,每小题2分,共16分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.下面四个艺术字中,是轴对称图形的个数是()A.1个B.2个C.3个D.4个2.在平面直角坐标系中,点M(﹣2,1)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.已知图中的两个三角形全等,则∠α的度数是()A.72°B.60°C.58°D.50°4.如图,数轴上点A对应的数是0,点B对应的数是1,BC⊥AB,垂足为B,且BC=1,以A为圆心,AC为半径画弧,交数轴于点D,则点D表示的数为()A.1.4 B. C.1.5 D.25.如果函数y=x﹣b(b为常数)与函数y=﹣2x+4的图象的交点坐标是(2,0),那么关于x、y的二元一次方程组的解是()A.B.C.D.6.如图,在△ABC中,∠ACB=90°,D是AB中点,连接CD.若AB=10,则CD的长为()A.5 B.6 C.7 D.87.如图,直线y=﹣x+c与直线y=ax+b的交点坐标为(3,﹣1),关于x 的不等式﹣x+c≥ax+b的解集为()A.x≥﹣1 B.x≤﹣1 C.x≥3 D.x≤38.匀速地向一个容器内注水,最后把容器注满,在注水过程中,水面高度h随时间t的变化规律如图所示(图中OABC为一折线),这个容器的形状是下图中的()A.B.C.D.二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.在实数π、、﹣、0.303003…(相邻两个3之间依次多一个0)中,无理数有个.10.平面直角坐标系中,将点A(1,﹣2)向上平移1个单位长度后与点B重合,则点B的坐标是(,).11.用四舍五入法对9.2345取近似数为.(精确到0.01)12.在平面直角坐标系中,点P(2,3)关于y轴对称的点的坐标是.13.如图,已知∠ACD=∠BCE,AC=DC,如果要得到△ACB≌△DCE,那么还需要添加的条件是.(填写一个即可,不得添加辅助线和字母)14.如图,在△ABC中,AB=AC,D为AB上一点,AD=CD,若∠ACD=40°,则∠B=°.15.如图,在△ABC中,AB=AC=13,BC=10,D为BC上一点,若BD=5,则AD的长为.16.如图,在Rt△ABC中,∠A=90°,∠ABC的平分线BD交AC于点D,DE是BC的垂直平分线,点E是垂足.若DC=2,AD=1,则BE的长为.17.已知y是x的一次函数,函数y与自变量x 的部分对应值如表,x …﹣2 ﹣1 0 1 2 …y …10 8 6 4 2 …点(x1,y1),(x2,y2)在该函数的图象上.若x1>x2,则y1y2.18.老师让同学们举一个y是x的函数的例子,同学们分别用表格、图象、函数表达式列举了如下4个x、y之间的关系:①气温x 1 2 0 1日期y 1 2 3 4②③y=kx+b ④y=|x|其中y一定是x的函数的是.(填写所有正确的序号)三、解答题(本大题共9小题,共64分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.计算:|π﹣3|+()2+(﹣1)0.20.求下面各式中的x:(1)x2=4;(2)(x﹣1)3=8.21.如图,在△ABC与△FDE中,点D在AB上,点B在DF上,∠C=∠E,AC∥FE,AD=FB.求证:△ABC≌△FDE.22.如图,在7×7网格中,每个小正方形的边长都为1.(1)建立适当的平面直角坐标系后,若点A(3,4)、C(4,2),则点B 的坐标为;(2)图中格点△ABC的面积为;(3)判断格点△ABC的形状,并说明理由.23.已知一次函数y=﹣2x+4,完成下列问题:(1)求此函数图象与x轴、y轴的交点坐标;(2)画出此函数的图象;观察图象,当0≤y≤4时,x的取值范围是;(3)平移一次函数﹣2x+4的图象后经过点(﹣3,1),求平移后的函数表达式.24.小红驾车从甲地到乙地,她出发第xh时距离乙地ykm,已知小红驾车中途休息了1小时,图中的折线表示她在整个驾车过程中y与x之间的函数关系.(1)B点的坐标为(,);(2)求线段AB所表示的y与x之间的函数表达式;(3)小红休息结束后,以60km/h的速度行驶,则点D表示的实际意义是.25.如图,已知△ABC与△ADE为等边三角形,D为BC延长线上的一点.(1)求证:△ABD≌△ACE;(2)求证:CE平分∠ACD.26.建立一次函数关系解决问题:甲、乙两校为了绿化校园,甲校计划购买A种树苗,A种树苗每棵24元;乙校计划购买B种树苗,B种树苗每棵18元.两校共购买了35棵树苗.若购进B种树苗的数量少于A种树苗的数量,请给出一种两校总费用最少的方案,并求出该方案所需的总费用.27.如图①,四边形OACB为长方形,A(﹣6,0),B(0,4),直线l 为函数y=﹣2x﹣5的图象.(1)点C的坐标为;(2)若点P在直线l上,△APB为等腰直角三角形,∠APB=90°,求点P 的坐标;小明的思考过程如下:第一步:添加辅助线,如图②,过点P作MN∥x轴,与y轴交于点N,与AC的延长线交于点M;第二步:证明△MPA≌△NBP;第三步:设NB=m,列出关于m的方程,进而求得点P的坐标.请你根据小明的思考过程,写出第二步和第三步的完整解答过程;(3)若点P在直线l上,点Q在线段AC上(不与点A重合),△QPB为等腰直角三角形,直接写出点P的坐标.参考答案与试题解析一、选择题(本大题共8小题,每小题2分,共16分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.下面四个艺术字中,是轴对称图形的个数是()A.1个B.2个C.3个D.4个【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:根据轴对称图形的概念可得,“十”是轴对称图形,共1个.故选A.【点评】本题考查了轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.2.在平面直角坐标系中,点M(﹣2,1)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】点的坐标.【分析】根据各象限内点的坐标特征解答.【解答】解:点M(﹣2,1)在第二象限.故选:B.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).3.已知图中的两个三角形全等,则∠α的度数是()A.72°B.60°C.58°D.50°【考点】全等图形.【分析】要根据已知的对应边去找对应角,并运用“全等三角形对应角相等”即可得答案.【解答】解:∵图中的两个三角形全等a与a,c与c分别是对应边,那么它们的夹角就是对应角∴∠α=50°故选:D.【点评】本题考查全等三角形的知识.解题时要认准对应关系,如果把对应角搞错了,就会导致错选A或C.4.如图,数轴上点A对应的数是0,点B对应的数是1,BC⊥AB,垂足为B,且BC=1,以A为圆心,AC为半径画弧,交数轴于点D,则点D表示的数为()A.1.4 B. C.1.5 D.2【考点】实数与数轴;勾股定理.【分析】首先根据勾股定理求出AC的长,再根据同圆的半径相等可知AD=AC,再根据条件:点A对应的数是0,可求出D点坐标.【解答】解:∵BC⊥AB,∴∠ABC=90°,∴AC===,∵以A为圆心,AC为半径画弧,交数轴于点D,∴AD=AC=,∴点D表示的数是:,故选:B.【点评】此题主要考查了实数与数轴,勾股定理,关键是求出AC的长.5.如果函数y=x﹣b(b为常数)与函数y=﹣2x+4的图象的交点坐标是(2,0),那么关于x、y的二元一次方程组的解是()A.B.C.D.【考点】一次函数与二元一次方程(组).【专题】数形结合.【分析】根据函数图象交点坐标为两函数解析式组成的方程组的解进行回答.【解答】解:∵函数y=x﹣b(b为常数)与函数y=﹣2x+4的图象的交点坐标是(2,0),∴方程组的解是.故选A.【点评】本题考查了一次函数与二元一次方程(组):满足函数解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.6.如图,在△ABC中,∠ACB=90°,D是AB中点,连接CD.若AB=10,则CD的长为()A.5 B.6 C.7 D.8【考点】直角三角形斜边上的中线.【分析】根据直角三角形斜边上的中线等于斜边的一半解答即可.【解答】解:∵∠ACB=90°,D是AB中点,∴CD=AB=5,故选:A.【点评】本题考查的是直角三角形的性质,掌握直角三角形斜边上的中线等于斜边的一半是解题的关键.7.如图,直线y=﹣x+c与直线y=ax+b的交点坐标为(3,﹣1),关于x 的不等式﹣x+c≥ax+b的解集为()A.x≥﹣1 B.x≤﹣1 C.x≥3 D.x≤3【考点】一次函数与一元一次不等式.【专题】数形结合.【分析】观察函数图象,写出直线y=﹣x+c在直线y=ax+b上方所对应的自变量的取值范围即可.【解答】解:当x≤3时,﹣x+c≥ax+b,即x的不等式﹣x+c≥ax+b的解集为x≤3.故选D.【点评】本题考查了一次函数与一元一次不等式:一次函数与一元一次不等式的关系从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.8.匀速地向一个容器内注水,最后把容器注满,在注水过程中,水面高度h随时间t的变化规律如图所示(图中OABC为一折线),这个容器的形状是下图中的()A.B.C.D.【考点】函数的图象.【分析】根据每一段函数图象的倾斜程度,反映了水面上升速度的快慢,再观察容器的粗细,作出判断.【解答】解:注水量一定,函数图象的走势是稍陡,平,陡;那么速度就相应的变化,跟所给容器的粗细有关.则相应的排列顺序就为C.故选C.【点评】此题考查函数图象的应用,需注意容器粗细和水面高度变化的关联.二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.在实数π、、﹣、0.303003…(相邻两个3之间依次多一个0)中,无理数有 3 个.【考点】无理数.【分析】根据无理数的三种形式求解.【解答】解:无理数有:π、、0.303003…,共3个.故答案为:3.【点评】本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.10.平面直角坐标系中,将点A(1,﹣2)向上平移1个单位长度后与点B重合,则点B的坐标是( 1 ,﹣1 ).【考点】坐标与图形变化-平移.【分析】让横坐标不变,纵坐标加1可得到所求点的坐标.【解答】解:∵﹣2+1=﹣1,∴点B的坐标是(1,﹣1),故答案为:1,﹣1.【点评】本题考查了坐标与图形变化﹣平移:在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a 个单位长度.(即:横坐标,右移加,左移减;纵坐标,上移加,下移减.11.用四舍五入法对9.2345取近似数为9.23 .(精确到0.01)【考点】近似数和有效数字.【分析】把千分位上的数字4进行四舍五入即可.【解答】解:9.2345≈9.23(精确到0.01).故答案为9.23.【点评】本题考查了近似数和有效数字:经过四舍五入得到的数为近似数;从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.12.在平面直角坐标系中,点P(2,3)关于y轴对称的点的坐标是(﹣2.3).【考点】关于x轴、y轴对称的点的坐标.【分析】根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可直接得到答案.【解答】解:点P(2,3)关于y轴对称的点的坐标是(﹣2,3),故答案为:(﹣2,3).【点评】此题主要考查了关于y轴对称点的坐标特点,关键是掌握点的坐标的变化规律.13.如图,已知∠ACD=∠BCE,AC=DC,如果要得到△ACB≌△DCE,那么还需要添加的条件是∠A=∠D .(填写一个即可,不得添加辅助线和字母)【考点】全等三角形的判定.【分析】此题是一道开放型的题目,答案不唯一,还可以是∠B=∠E或BC=EC,根据全等三角形的判定定理推出即可.【解答】解:∠A=∠D,理由是:∵∠ACD=∠BCE,∴∠ACD+∠DCB=∠BCE+∠DCB,∴∠ACB=∠DCE,在△ACB和△DCE中∴△ACB≌△DCE(ASA),故答案为:∠A=∠D.【点评】本题考查了全等三角形的判定的应用,能求出全等的三个条件是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.14.如图,在△ABC中,AB=AC,D为AB上一点,AD=CD,若∠ACD=40°,则∠B= 70 °.【考点】等腰三角形的性质.【分析】先在△ADC中由AD=CD,根据等边对等角得出∠A=∠ACD=40°,然后在△ABC中由AB=AC,根据等边对等角的性质以及三角形内角和定理得出∠B=∠C=(180°﹣∠A)=70°.【解答】解:∵AD=CD,∠ACD=40°,∴∠A=∠ACD=40°,∵AB=AC,∴∠B=∠C=(180°﹣∠A)=70°.故答案为70.【点评】本题考查了等腰三角形等边对等角的性质以及三角形内角和定理,求出∠A的度数是解题的关键.15.如图,在△ABC中,AB=AC=13,BC=10,D为BC上一点,若BD=5,则AD的长为12 .【考点】勾股定理;等腰三角形的性质.【分析】由题意得出D为BC的中点,由等腰三角形的性质得出AD⊥BC,由勾股定理求出AD即可.【解答】解:∵BC=10,BD=5,∴D为BC的中点,∵AB=AC=13,∴ADE⊥BC,∴AD===12;故答案为:12.【点评】本题考查了等腰三角形的性质、勾股定理;熟练掌握等腰三角形的性质,由勾股定理求出AD是解决问题的关键.16.如图,在Rt△ABC中,∠A=90°,∠ABC的平分线BD交AC于点D,DE是BC的垂直平分线,点E是垂足.若DC=2,AD=1,则BE的长为.【考点】线段垂直平分线的性质;角平分线的性质.【分析】根据线段的垂直平分线的性质得到DB=DC=2,根据角平分线的性质得到DE=AD=1,根据勾股定理计算即可.【解答】解:∵DE是BC的垂直平分线,∴DB=DC=2,∵BD是∠ABC的平分线,∠A=90°,DE⊥BC,∴DE=AD=1,∴BE==,故答案为:.【点评】本题考查的是线段的垂直平分线的性质、角平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.17.已知y是x的一次函数,函数y与自变量x的部分对应值如表,x …﹣2 ﹣1 0 1 2 …y …10 8 6 4 2 …点(x1,y1),(x2,y2)在该函数的图象上.若x1>x2,则y1 <y2.【考点】一次函数图象上点的坐标特征.【分析】先利用待定系数法求出一次函数的解析式,判断出函数的增减性,再由若x1>x2即可得出结论.【解答】解:设一次函数的解析式为y=kx+b(k≠0),∵当x=0时,y=6;当x=1时,y=4,∴,解得,∴一次函数的解析式为y=﹣2x+6.∵k=2<0,∴y随x的增大而减小.∵x1>x2,∴y1<y2.故答案为:<.【点评】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.18.老师让同学们举一个y是x的函数的例子,同学们分别用表格、图象、函数表达式列举了如下4个x、y之间的关系:①气温x 1 2 0 1日期y 1 2 3 4②③y=kx+b ④y=|x|其中y一定是x的函数的是④.(填写所有正确的序号)【考点】函数的概念.【分析】根据函数的定义判断即可.【解答】解:一般的,在一个变化过程中,有两个变量x、y,对于x的每一个值,y都有唯一的值和它对应,x是自变量,y是x的函数,①②③不符合定义,④符合定义,故答案为④.【点评】本题考查了函数的概念,熟练掌握什么是函数是解题的关键.三、解答题(本大题共9小题,共64分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.计算:|π﹣3|+()2+(﹣1)0.【考点】实数的运算;零指数幂.【专题】计算题;实数.【分析】原式第一项利用绝对值的代数意义化简,第二项利用平方根定义计算,最后一项利用零指数幂法则计算即可得到结果.【解答】解:原式=π﹣3+2+1=π.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.求下面各式中的x:(1)x2=4;(2)(x﹣1)3=8.【考点】立方根;平方根.【专题】计算题;实数.【分析】(1)方程利用平方根定义开方即可求出x的值;(2)方程利用立方根定义开立方即可求出x的值.【解答】解:(1)开方得:x=2或x=﹣2;(2)开立方得:x﹣1=2,解得:x=3.【点评】此题考查了立方根,以及平方根,熟练掌握各自的定义是解本题的关键.21.如图,在△ABC与△FDE中,点D在AB上,点B在DF上,∠C=∠E,AC∥FE,AD=FB.求证:△ABC≌△FDE.【考点】全等三角形的判定.【专题】证明题.【分析】根据平行线性质求出∠A=∠F,求出AB=FD,根据AAS推出全等即可.【解答】证明:∵AC∥FE,∴∠A=∠F,∵AD=FB,∴AD+DB=FB+DB,即AB=FD,在△ABC和△FDE中,∴△ABC≌△FDE(AAS).【点评】本题考查了平行线的性质,全等三角形的判定的应用,能求出全等的三个条件是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.22.如图,在7×7网格中,每个小正方形的边长都为1.(1)建立适当的平面直角坐标系后,若点A(3,4)、C(4,2),则点B 的坐标为(0,0);(2)图中格点△ABC的面积为 5 ;(3)判断格点△ABC的形状,并说明理由.【考点】勾股定理;勾股定理的逆定理.【专题】网格型.【分析】(1)由已知点的坐标即可得出点B为坐标原点,即可得出结果;(2)图中格点△ABC的面积=矩形的面积减去3个直角三角形的面积,即可得出结果;(3)由勾股定理可得:AB2=25,BC2=20,AC2=5,得出BC2+AC2=AB2,由勾股定理的逆定理即可得出结论.【解答】(1)解:∵点A(3,4)、C(4,2),∴点B的坐标为(0,0);故答案为:(0,0);(2)解:图中格点△ABC的面积=4×4﹣×4×2﹣×4×3﹣×2×1=5;故答案为:5;(3)解:格点△ABC是直角三角形.理由如下:由勾股定理可得:AB2=32+42=25,BC2=42+22=20,AC2=22+12=5,∴BC2+AC2=20+5=25,AB2=25,∴BC2+AC2=AB2,∴△ABC是直角三角形.【点评】本题考查了勾股定理、勾股定理的逆定理、坐标与图形性质;熟练掌握勾股定理和勾股定理的逆定理是解决问题的关键.23.已知一次函数y=﹣2x+4,完成下列问题:(1)求此函数图象与x轴、y轴的交点坐标;(2)画出此函数的图象;观察图象,当0≤y≤4时,x的取值范围是0≤x≤2 ;(3)平移一次函数﹣2x+4的图象后经过点(﹣3,1),求平移后的函数表达式.【考点】一次函数图象上点的坐标特征;一次函数的图象;一次函数图象与几何变换.【分析】(1)分别求出直线与x轴、y轴的交点,画出函数图象即可;(2)根据函数图象与坐标轴的交点可直接得出结论;(3)设平移后的函数表达式为y=﹣2x+b,把(﹣3,1)代入求出b的值即可得出结论.【解答】解:(1)∵当x=0时y=4,∴函数y=﹣2x+4的图象与y轴的交点坐标为(0,4);∵当y=0时,﹣2x+4=0,解得:x=2,∴函数y=﹣2x+4的图象与x轴的交点坐标(2,0).(2)函数图象如图所示.观察图象,当0≤y≤4时,x的取值范围是0≤x≤2.故答案为:0≤x≤2;(3)设平移后的函数表达式为y=﹣2x+b,将(﹣3,1)代入得:6+b=1,∴b=﹣5,∴y=﹣2x﹣5.答:平移后的直线函数表达式为:y=﹣2x﹣5.【点评】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.24.小红驾车从甲地到乙地,她出发第xh时距离乙地ykm,已知小红驾车中途休息了1小时,图中的折线表示她在整个驾车过程中y与x之间的函数关系.(1)B点的坐标为( 3 ,120 );(2)求线段AB所表示的y与x之间的函数表达式;(3)小红休息结束后,以60km/h的速度行驶,则点D表示的实际意义是小红到达乙地.【考点】一次函数的应用;一次函数的图象;待定系数法求一次函数解析式.【专题】图表型;数形结合;函数思想;一次函数及其应用.【分析】(1)由图象可知C点坐标,根据小红驾车中途休息了1小时可得B点坐标;(2)利用待定系数法,由A、B两点坐标可求出函数关系式;(3)D点表示小红距离乙地0km,即小红到达乙地.【解答】解:(1)由图象可知,C(4,120),∵小红驾车中途休息了1小时,∴点B的坐标为(3,120);(2)设y与x之间的函数表达式为y=kx+b.根据题意,当x=0时,y=420;当x=3时,y=120.∴,解得:,∴y与x之间的函数表达式:y=﹣100x+420.(3)D点表示此时小红距离乙地0km,即小红到达乙地.故答案为:(1)(3,120),(2)小红到达乙地.【点评】本题主要考查学生结合题意读懂图象的基本能力和待定系数法求函数表达式的技能,属基础题.25.如图,已知△ABC与△ADE为等边三角形,D为BC延长线上的一点.(1)求证:△ABD≌△ACE;(2)求证:CE平分∠ACD.【考点】全等三角形的判定与性质;等边三角形的性质.【专题】证明题.【分析】(1)由等边三角形可知AB=AC,AD=AE,∠BAC=∠DAE=60,从而∠BAD=∠CAE,结论显然.(2)在(1)的结论下,可得∠ACE=60°,而∠ACB=60°,结论显然.【解答】解:(1)∵△ABC为等边三角形,△ADE为等边三角形,∴AB=AC,AD=AE,∠DAE=∠BAC=∠ACB=∠B=60°,∵∠DAE=∠BAC,∴∠DAE+∠CAD=∠BAC+∠CAD,∴∠BAD=∠CAE,在△ABD和△ACE中,∴△ABD≌△ACE(SAS).(2)∵△ABD≌△ACE,∴∠ACE=∠B=60°,∵∠ACB=∠ACE=60°,∴∠ECD=180°﹣∠ACE﹣∠ACB=180°﹣60°﹣60°=60°,∴∠ACE=∠DCE=60°,∴CE平分∠ACD.【点评】本题主要考查了等边三角形的性质、全等三角形的判定与性质、角平分线的判定等知识点,是基础题,正确识别出证明全等所需的条件是解答关键.26.建立一次函数关系解决问题:甲、乙两校为了绿化校园,甲校计划购买A种树苗,A种树苗每棵24元;乙校计划购买B种树苗,B种树苗每棵18元.两校共购买了35棵树苗.若购进B种树苗的数量少于A种树苗的数量,请给出一种两校总费用最少的方案,并求出该方案所需的总费用.【考点】一次函数的应用;一次函数的性质.【专题】应用题;函数思想;一次函数及其应用.【分析】甲校购进x棵A种树苗,两校所需要的总费用为w元,根据总费用=购买A树苗所需费用+购买B树苗所需费用,列出函数关系式,根据函数性质确定最值.【解答】解:设甲校购进x棵A种树苗,两校所需要的总费用为w元.根据题意得:w=24x+18(35﹣x)=6x+630∵35﹣x<x,∴x>17.5,且x为整数,在一次函数w=6x+630中,∵k=6>0,∴w随x的增大而增大,∴当x=18时,w有最小值,最小值w=6×18+630=738,此时35﹣x=17.答:甲校购买A种树苗18棵,乙校购买B种树苗17棵,所需的总费用最少,最少为738元.【点评】本题主要考查利用函数性质解决实际问题的能力,建立函数模型是解题关键,利用函数性质确定最值是手段.27.如图①,四边形OACB为长方形,A(﹣6,0),B(0,4),直线l 为函数y=﹣2x﹣5的图象.(1)点C的坐标为(﹣6,4);(2)若点P在直线l上,△APB为等腰直角三角形,∠APB=90°,求点P 的坐标;小明的思考过程如下:第一步:添加辅助线,如图②,过点P作MN∥x轴,与y轴交于点N,与AC的延长线交于点M;第二步:证明△MPA≌△NBP;第三步:设NB=m,列出关于m的方程,进而求得点P的坐标.请你根据小明的思考过程,写出第二步和第三步的完整解答过程;(3)若点P在直线l上,点Q在线段AC上(不与点A重合),△QPB为等腰直角三角形,直接写出点P的坐标.【考点】一次函数综合题.【专题】综合题;一次函数及其应用.【分析】(1)根据矩形的性质可以求得.(2)由△MPA≌△NBP列出方程即可求解.(3)分三种情形讨论①∠PBQ=90°,利用图1中△PMB≌△BNQ即可求出.②∠BPQ=90°,利用图2中△PMB≌△CNP即可求出.③∠PQB=90°,利用图3中△PNQ≌△BMQ即可求出.【解答】解:(1)∵四边形AOBC是矩形,∴AO=CO=6,AC=BO=4,∴点C的坐标为(﹣6,4).故答案为C(﹣6,4).(2)根据题意得:∠AMP=∠PNB=90°,∵△APB为等腰直角三角形,∴AP=BP,∠APB=90°,∵∠APB=∠AMP=90°,∴∠NPB+∠MPA=∠MPA+∠MAP=90°,∴∠NPB=∠MPA,在△MPA和△NBP中,,∴△MPA≌△NBP(AAS),∴AM=PN,MP=NB,设NB=m,则MP=m,PN=MN﹣MP=6﹣m,AM=4+m,∵AM=PN,∴4+m=6﹣m,解得:m=1,∴点P的坐标为(﹣5,5);(3)设点Q的坐标为(﹣6,q),分3种情况讨论:①当∠PBQ=90°时,如右图,过点P作PM⊥y轴于点M,点Q作QN⊥y 轴于点N,∵∠QBN+∠PBM=90°,∠MPB+∠PBM=90°∴∠QBN=∠MPB,∠PMB=∠QNB=90°在△AQN和△PBM中,,∴△PMB≌△BNQ,∴MB=NQ=6,PM=BN=4﹣q,∴P(q﹣4,10),代入y=﹣2x﹣5,解得:q=﹣3.5,∴p(﹣7.5,10).②当∠BPQ=90°时,若点P在BQ上方,即为(2)的情况,此时点Q与点A重合,由于题设中规定点Q不与点A重合,故此种情况舍去;若点P在BQ下方,如右图,过点P作PN⊥AC于点N,作PM⊥y轴于点M,设BM=m,∵∠APM+∠NPC=90°,∠NQB+∠NPQ=90°,∴∠BPM=∠NQP,在△APM和△QPN中,∴△PMB≌△CNP,∴PN=BM=m,∴PM=6﹣m,∴P(m﹣6,4﹣m),把P坐标代入y=﹣2x﹣5,得4﹣m=﹣2m+12﹣5,解得:m=3此时点P的坐标为(﹣3,1);③当∠PQB=90°时如右图,过点Q作QM⊥y轴于点M,过点P作PN⊥AC垂足为N,设BM=m,∵∠PQB=∠MQN=90°,∴∠PQN=∠MQB,在△PQN和△BQM中,,∴△PNQ≌△BMQ,∴QN=QM=6,MB=NP=m,∴P(﹣6﹣m,10﹣m),把P坐标代入y=﹣2x﹣5,得:10﹣m=12+2m﹣5,解得:m=1,此时点P的坐标为(﹣7,9),综上所述,点P的坐标为(﹣7.5,10)或(﹣3,1)或(﹣7,9).【点评】本题考查矩形、一次函数、等腰直角三角形、全等三角形的判定和性质等有关知识,作辅助线构造全等三角形是解题的关键,学会用方程的思想解决问题.。

2020-2021学年江西省赣州市兴国县八年级(下)期末数学试卷(解析版)

2020-2021学年江西省赣州市兴国县八年级(下)期末数学试卷(解析版)

2020-2021学年江西省赣州市兴国县八年级(下)期末数学试卷一.选择题(共6小题).(共6小题).1.函数中自变量x的取值范围是()A.x≥4B.x≤4C.x>4D.x≠42.下列计算正确的是()A.a6÷a2=a3B.(a2)3=a6C.﹣=D.(x﹣3)2=x2﹣93.在一次“中国汉字听写大赛”选拔赛中,甲、乙两位同学的平均分数都是92分,甲的成绩方差是10,乙的成绩方差是2,下列说法正确的是()A.甲的成绩比乙的成绩稳定B.乙的成绩比甲的成绩稳定C.甲、乙二人的成绩一样稳定D.无法确定甲、乙的成绩谁更稳定4.如图,在4个均由16个小正方形组成的网格正方形中,各有一个格点三角形,那么这4个正方形中,与众不同的是()A.B.C.D.5.在下列给出的条件中,能判定四边形ABCD为平行四边形的是()A.AB=BC,CD=DA B.AB∥CD,AD=BCC.AB∥CD,∠A=∠C D.∠A=∠B,∠C=∠D6.三个正方形的面积如图所示,则面积为A的正方形的边长为()A.164B.36C.8D.6二.填空题(本大题共6小题,每小题3分,共18分).7.直角三角形的两直角边是3和4,则斜边是8.如图,已知矩形ABCD,P、R分别是BC和DC上的动点,E、F分别是PA、PR的中点.如果DR=5,AD=12,则EF的长为.9.《九章算术》是中国传统数学的重要著作之一,奠定了中国传统数学的基本框架.如图所示是其中记载的一道“折竹”问题:“今有竹高一丈,末折抵地,去根三尺,问折者高几何?”题意是:一根竹子原高1丈(1丈=10尺),中部有一处折断,竹梢触地面处离竹根4尺,试问折断处离地面多高?答:折断处离地面尺高.10.如图,将矩形纸片ABCD沿AE翻折,使点B落在线段DC上,对应的点为F,若AB =5,AD=3,则CE=.11.将直线y=3x+1的图象向上平移2个单位,将直线y=x+1向右平移1个单位,则平移后的两直线交点坐标为.12.甲、乙两车沿同一平直公路由A地匀速行驶(中途不停留),前往终点B地,甲、乙两车之间的距离S(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.下列说法其中正确的结论有.①A、B两地相距210千米;②甲车速度为60千米/小时;③乙车速度为120千米/小时;④乙车共行驶小时.三.解答题(本大题共5小题,每小题6分,共30分).13.计算:(1);(2).14.已知,求x2y+xy2的值.15.如图,点E是正方形ABCD内一点,且EB=EC.请仅用无刻度的直尺按要求作图(保留画图痕迹,不写作法).(1)在图1中,作出BC边的中点.(2)在图2中,作出CD边的中点.16.如图,▱ABCD的两条对角线相交于点O,且AC平分∠DAB.(1)求证:四边形ABCD是菱形;(2)若AC=8,BD=6,试求四边形ABCD的面积.17.如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,CD=1.5,BD=2.5.(1)求点D到直线AB的距离;(2)求线段AC的长.四、解答题(本大题共3小题,每小题8分,共24分).18.传承爱国情怀,讴歌百年党史,某校开展了“学党史,知党恩,跟党走”的知识竞赛.现从该校七、八年级中各随机抽取20名学生的竞赛成绩(100分制,80分及以上为优秀)进行整理、描述和分析(成绩用x表示,共分成四组:A.0≤x<60,B.60≤x<80,C.80≤x<100,D.x=100),下面给出了部分信息:七年级抽取的学生竞赛成绩在C组的数据是:80,84,85,90,95,98.八年级抽取的学生竞赛成绩在C组的数据是:80,82,84,86,86,90,94,98.根据以上信息,解答下列问题:七、八年级抽取的学生竞赛成绩的统计量年级平均数众数中位数满分率七年级82100b25%八年级82a88c (1)直接写出a,b,c的值;(2)根据上述数据,你认为该校七、八年级中哪个年级学生对“党史”掌握较好?请说明理由(写出一条理由即可);(3)该校七、八年级共有800人参加了此次竞赛活动,估计参加此次竞赛活动成绩优秀的学生人数是多少?19.已知,如图,一次函数的图象经过点P(6,4)和B(0,﹣4),与x轴交于点A.(1)求一次函数的解析式;(2)在y轴上存在一点M,且△ABM的面积为,求点M的坐标.20.如图,在△ABC中,延长AC至点D,使CD=AC,过点D作DE∥AB交BC的延长线于点E,延长DE至点F,使EF=DE,连接AF.(1)求证:DE=AB;(2)求证:AF∥BE;(3)当AC=BC时,连接AE,BD,求证:四边形AEDB为矩形.五、解答题(本大题共2小题,每小题9分,共18分).21.某花农要将规格相同的800棵平安树运往A,B,C三地销售,要求运往C地的棵数是运往A地棵数的3倍,各地的运费如表所示:A地B地C地运费(元/棵)102015(1)设运往A地的平安树x(棵),总运费为y(元)试写出y与x的函数关系式;(2)若要求运往A地的平安树不超过运往B地的平安树,且总运费不超过14000元,问当运往A地的平安树多少棵时,总运费才最省?22.我们新定义一种三角形:两边平方和等于第三边平方的4倍的三角形叫做常态三角形.例如:某三角形三边长分别是5,6和8,因为62+82=4×52=100,所以这个三角形是常态三角形.(1)若△ABC三边长分别是2,和4,则此三角形常态三角形(填“是”或“不是”);(2)若Rt△ABC是常态三角形,则此三角形的三边长之比为(请按从小到大排列);(3)如图,Rt△ABC中,∠ACB=90°,BC=6,点D为AB的中点,连接CD,若△BCD是常态三角形,求△ABC的面积.六、解答题(本大题共1小题,每小题12分,共12分).23.问题情境:如图1,点E为正方形ABCD内一点,∠AEB=90°,点G为正方形ABCD外一点,∠G=90°,BE=BG,延长AE交CG于点F,连接DE.猜想证明:(1)试判断四边形BEFG的形状,并说明理由;(2)如图2,若DA=DE,请猜想线段CF与GF的数量关系并加以证明;解决问题:(3)如图1,若BE=9,CF=3,则DE=.参考答案一.选择题(本大题共6小题,每小题3分,共18分).1.函数中自变量x的取值范围是()A.x≥4B.x≤4C.x>4D.x≠4【分析】根据二次根式的被开方数大于或等于0,且分母不等于0,可以求出x的范围.解:根据题意,得:x﹣4>0,解得:x>4.故选:C.2.下列计算正确的是()A.a6÷a2=a3B.(a2)3=a6C.﹣=D.(x﹣3)2=x2﹣9【分析】根据同底数幂的除法,幂的乘方,二次根式的加减,完全平方公式分别计算即可.解:A选项,a6÷a2=a4,故该选项错误,不符合题意;B选项,幂的乘方,底数不变,指数相乘,故该选项正确,符合题意;C选项,﹣=2﹣=,故该选项错误,不符合题意;D选项,(x﹣3)2=x2﹣6x+9,故该选项错误,不符合题意.故选:B.3.在一次“中国汉字听写大赛”选拔赛中,甲、乙两位同学的平均分数都是92分,甲的成绩方差是10,乙的成绩方差是2,下列说法正确的是()A.甲的成绩比乙的成绩稳定B.乙的成绩比甲的成绩稳定C.甲、乙二人的成绩一样稳定D.无法确定甲、乙的成绩谁更稳定【分析】根据方差的意义求解可得.解:∵甲,乙两位同学的平均分都是92分,而甲的成绩方差是10,乙的成绩方差是2,即甲的成绩方差大于乙的成绩方差,∴乙的成绩比甲的成绩稳定.故选:B.4.如图,在4个均由16个小正方形组成的网格正方形中,各有一个格点三角形,那么这4个正方形中,与众不同的是()A.B.C.D.【分析】分别求A、B、C、D选项中各三角形的边长,根据勾股定理的逆定理可以判定B、C、D中三角形为直角三角形,A为钝角三角形,即可解题.解:设网格中每个小正方形的边长是1.图A中三角形各边长为、、,故该三角形为钝角三角形;图B中各边长为2、4、2,故该三角形为直角三角形;图C中各边长、2、,故该三角形为直角三角形;图D中各边长为、2、5,故该三角形为直角三角形.即B,C,D是直角三角形,A不是直角三角形.故选:A.5.在下列给出的条件中,能判定四边形ABCD为平行四边形的是()A.AB=BC,CD=DA B.AB∥CD,AD=BCC.AB∥CD,∠A=∠C D.∠A=∠B,∠C=∠D【分析】根据平行四边形的判定进行判断即可得出结论.解:如图所示,根据平行四边形的判定,A、B、D条件均不能判定为平行四边形,C选项中,由于AB∥CD,∠A=∠C,所以∠B=∠D,所以只有C能判定.故选:C.6.三个正方形的面积如图所示,则面积为A的正方形的边长为()A.164B.36C.8D.6【分析】根据勾股定理计算,得到答案.解:由勾股定理得,BC2=CD2﹣BD2=100﹣64=36,即面积为A的正方形的边长==6,故选:D.二.填空题(本大题共6小题,每小题3分,共18分).7.直角三角形的两直角边是3和4,则斜边是5【分析】在直角三角形中,已知两直角边根据勾股定理可以计算斜边.解:在直角三角形中,三边边长符合勾股定理,已知两直角边为3、4,则斜边边长==5,故答案为5.8.如图,已知矩形ABCD,P、R分别是BC和DC上的动点,E、F分别是PA、PR的中点.如果DR=5,AD=12,则EF的长为 6.5.【分析】首先利用勾股定理计算出AR的长,然后再根据三角形中位线定理计算出EF的长即可.解:∵∠D=90°,DR=5,AD=12,∴AR=,∵E、F分别是PA、PR的中点,∴EF=AR=6.5,故答案为:6.5.9.《九章算术》是中国传统数学的重要著作之一,奠定了中国传统数学的基本框架.如图所示是其中记载的一道“折竹”问题:“今有竹高一丈,末折抵地,去根三尺,问折者高几何?”题意是:一根竹子原高1丈(1丈=10尺),中部有一处折断,竹梢触地面处离竹根4尺,试问折断处离地面多高?答:折断处离地面 4.2尺高.【分析】根据题意结合勾股定理得出折断处离地面的长度即可.解:设折断处离地面x尺,根据题意可得:x2+42=(10﹣x)2,解得:x=4.2.答:折断处离地面4.2尺高.故答案为:4.210.如图,将矩形纸片ABCD沿AE翻折,使点B落在线段DC上,对应的点为F,若AB =5,AD=3,则CE=.【分析】根据翻折知∠B=∠AFE,AB=AF=5,BE=EF,勾股定理得CD=4,CE=x,则BE=EF=3﹣x,在Rt△CEF中,利用勾股定理列方程即可.解:∵四边形ABCD是矩形,∴∠B=∠D=90°,CD=AB,∵将矩形纸片ABCD沿AE翻折,使点B落在线段DC上,∴∠B=∠AFE,AB=AF=5,BE=EF,在Rt△ADF中,由勾股定理得:CD=,∴CF=CD﹣DF=5﹣4=1,设CE=x,则BE=EF=3﹣x,在Rt△CEF中,由勾股定理得:12+x2=(3﹣x)2,解得x=,∴CE=.故答案为:.11.将直线y=3x+1的图象向上平移2个单位,将直线y=x+1向右平移1个单位,则平移后的两直线交点坐标为(﹣,﹣).【分析】求得平移后的直线解析式,然后两个解析式联立成方程组,解方程组即可求得两直线交点坐标.解:将直线y=3x+1的图象向上平移2个单位得到y=3x+3,将直线y=x+1向右平移1个单位得到y=(x﹣1)+1,即y=x,解得,∴平移后的两直线交点坐标为(﹣,﹣),故答案为(﹣,﹣).12.甲、乙两车沿同一平直公路由A地匀速行驶(中途不停留),前往终点B地,甲、乙两车之间的距离S(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.下列说法其中正确的结论有①②③.①A、B两地相距210千米;②甲车速度为60千米/小时;③乙车速度为120千米/小时;④乙车共行驶小时.【分析】根据题意和函数图象可以分别计算出各个小题中的结果,从而可以判断各小题是否正确,从而可以解答本题.解:由图可知,甲车的速度为:60÷1=60千米/时,故②正确,则A、B两地的距离是:60×=210(千米),故①正确,则乙的速度为:(60×2)÷(2﹣1)=120千米/时,故③正确,乙车行驶的时间为:2﹣1=1(小时),故④错误,故答案为①②③.三.解答题(本大题共5小题,每小题6分,共30分).13.计算:(1);(2).【分析】(1)把各二次根式化为最简二次根式,然后合并即可;(2)利用平方差公式计算.解:(1)原式=3﹣2+=2;(2)原式=3﹣5=﹣2.14.已知,求x2y+xy2的值.【分析】先计算出x+y与xy的值,再利用因式分解得到原式=xy(x+y),然后利用整体代入的方法计算.解:∵x=﹣2,y=+2,∴x+y=2,xy=3﹣4=﹣1,∴x2y+xy2=xy(x+y)=﹣1×2=﹣2.15.如图,点E是正方形ABCD内一点,且EB=EC.请仅用无刻度的直尺按要求作图(保留画图痕迹,不写作法).(1)在图1中,作出BC边的中点.(2)在图2中,作出CD边的中点.【分析】(1)连接AC、BD,它们相交于O点,连接EO并延长交BC于F,则F点满足条件;(2)FE交AD于H,连接CH交BD于G,则AG的延长线交CD于P,则P点满足条件.解:(1)如图1,点F为所作;(2)如图2,点P为所作.16.如图,▱ABCD的两条对角线相交于点O,且AC平分∠DAB.(1)求证:四边形ABCD是菱形;(2)若AC=8,BD=6,试求四边形ABCD的面积.【分析】(1)证明AB=BC,即可得出结论;(2)由菱形的面积公式即可求解.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAC=∠BCA,又∵AC平分∠DAB,∴∠DAC=∠BAC,∴∠BCA=∠BAC,∴AB=BC,∴平四边形ABCD是菱形;(2)解:由(1)得:四边形ABCD是菱形,∴菱形ABCD面积为=AC×BD=×8×6=24.17.如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,CD=1.5,BD=2.5.(1)求点D到直线AB的距离;(2)求线段AC的长.【分析】(1)作DE⊥AB,根据角平分线的性质得到DE=CD=1.5,得到答案;(2)证明Rt△ACD≌Rt△AED,根据全等三角形的性质得到AC=AE,根据勾股定理求出BE,再根据勾股定理列出方程,解方程得到答案.解:(1)过点D作DE⊥AB于E,∵AD平分∠BAC,∠C=90°,DE⊥AB,∴DE=CD=1.5,∴点D到直线AB的距离为1.5;(2)在Rt△ACD和Rt△AED中,,∴Rt△ACD≌Rt△AED(HL)∴AC=AE,在Rt△DEB中,BE==2,在Rt△ACB中,AB2=AC2+BC2,即(AC+2)2=AC2+42,解得,AC=3.四、解答题(本大题共3小题,每小题8分,共24分).18.传承爱国情怀,讴歌百年党史,某校开展了“学党史,知党恩,跟党走”的知识竞赛.现从该校七、八年级中各随机抽取20名学生的竞赛成绩(100分制,80分及以上为优秀)进行整理、描述和分析(成绩用x表示,共分成四组:A.0≤x<60,B.60≤x<80,C.80≤x<100,D.x=100),下面给出了部分信息:七年级抽取的学生竞赛成绩在C组的数据是:80,84,85,90,95,98.八年级抽取的学生竞赛成绩在C组的数据是:80,82,84,86,86,90,94,98.根据以上信息,解答下列问题:七、八年级抽取的学生竞赛成绩的统计量年级平均数众数中位数满分率七年级82100b25%八年级82a88c (1)直接写出a,b,c的值;(2)根据上述数据,你认为该校七、八年级中哪个年级学生对“党史”掌握较好?请说明理由(写出一条理由即可);(3)该校七、八年级共有800人参加了此次竞赛活动,估计参加此次竞赛活动成绩优秀的学生人数是多少?【分析】(1)找出七年级成绩处在中间位置的两个数的平均数即为中位数,可求出的值,找出八年级成绩出现次数最多的数即为八年级成绩的众数a,根据八年级成绩的中位数可得88分以上的有10人,则100分的有7人,可得八年级的满分率;(2)根据满分率进行判断即可;(3)求出七、八年级学生竞赛成绩的优秀率即可.解:(1)七年级学生竞赛成绩从小到大排列后,处在中间位置的两个数的平均数为b=(80+84)÷2=82(分),因此中位数是82分,即b=82,八年级学生竞赛成绩的中位数是88,因此在88分以上的应有10人,可得100分的有10﹣3=7(人),因此竞赛成绩的众数为100,即a=100;c=7÷20=35%,答:a=100,b=82,c=35%;(2)八年级学生对“党史”掌握较好,理由为:八年级的满分率较高;(3)800×=520(人),答:参加此次竞赛活动成绩优秀的学生人数为520人.19.已知,如图,一次函数的图象经过点P(6,4)和B(0,﹣4),与x轴交于点A.(1)求一次函数的解析式;(2)在y轴上存在一点M,且△ABM的面积为,求点M的坐标.【分析】(1)通过待定系数法求解.(2)通过三角形的面积求出BM的长度,再求出点M的坐标.解:(1)设一次函数的解析式为y=kx+b,把点P(6,4)和B(0,﹣4)代入y=kx+b得,解得,所以一次函数解析式为;(2)当y=0时,,解得x=3,则A(3,0),∵在y轴上存在一点M,且△ABM的面积为,∴,即.∴BM=5,∵B(0,﹣4),∴M(0,1)或(0,﹣9).20.如图,在△ABC中,延长AC至点D,使CD=AC,过点D作DE∥AB交BC的延长线于点E,延长DE至点F,使EF=DE,连接AF.(1)求证:DE=AB;(2)求证:AF∥BE;(3)当AC=BC时,连接AE,BD,求证:四边形AEDB为矩形.【分析】(1)由AAS定理证明△ABC≌△DEC,即可得出结论;(2)由三角形中位线定理证明即可;(3)证四边形AEDB是平行四边形,再证AD=BE,即可得出结论.【解答】证明:(1)∵DE∥AB,∴∠ABC=∠DEC,在△ABC和△DEC中,,∴△ABC≌△DEC(AAS),∴DE=AB;(2)∵DC=AC,DE=EF,∴CE是△DAF的中位线,∴AF∥BE;(3)由(1)得:DE=AB,△ABC≌△DEC,∴BC=CE,∠BAC=∠EDC,∴AB∥DE,∴四边形AEDB是平行四边形,∵AC=BC,∴AC=BC=CE=CD,∴AD=BE,∴四边形ABCD是矩形.五、解答题(本大题共2小题,每小题9分,共18分).21.某花农要将规格相同的800棵平安树运往A,B,C三地销售,要求运往C地的棵数是运往A地棵数的3倍,各地的运费如表所示:A地B地C地运费(元/棵)102015(1)设运往A地的平安树x(棵),总运费为y(元)试写出y与x的函数关系式;(2)若要求运往A地的平安树不超过运往B地的平安树,且总运费不超过14000元,问当运往A地的平安树多少棵时,总运费才最省?【分析】(1)先分别求出运往B,C两地的棵数,根据总运费=运往A地的费用+运往B 地的费用+运往C地的费用,由条件就可以列出解析式;(2)先根据题干信息求出x的取值范围,再利用一次函数的性质即可求解.解:(1)运往A地的平安树x棵,则运往C地3x棵,运往B地(800﹣4x)棵,由题意得y=10x+20(800﹣4x)+15×3x,y=﹣25x+16000.∵800﹣4x>0且x>0,∴0<x<200,故y与x的函数关系式为:y=﹣25x+16000(0<x<200,x为整数);(2)由题意得:,解得:80≤x≤160,由一次函数的性质可知:在80≤x≤160范围内,y随x的增大而减小,∴x=160时,y有最小值.答:当运往A地的平安树160棵时,总运费才最省.22.我们新定义一种三角形:两边平方和等于第三边平方的4倍的三角形叫做常态三角形.例如:某三角形三边长分别是5,6和8,因为62+82=4×52=100,所以这个三角形是常态三角形.(1)若△ABC三边长分别是2,和4,则此三角形是常态三角形(填“是”或“不是”);(2)若Rt△ABC是常态三角形,则此三角形的三边长之比为::(请按从小到大排列);(3)如图,Rt△ABC中,∠ACB=90°,BC=6,点D为AB的中点,连接CD,若△BCD是常态三角形,求△ABC的面积.【分析】(1)直接利用常态三角形的定义判断即可;(2)利用勾股定理以及结合常态三角形的定义得出两直角边的关系,进而得出答案;(3)直接利用直角三角形的性质结合常态三角形的定义得出BD的长,进而求出答案.解:(1)∵22+42=4×()2=20,∴△ABC三边长分别是2,和4,则此三角形是常态三角形.故答案为:是;(2)∵Rt△ABC是常态三角形,∴设两直角边长为:a,b,斜边长为:c,则a2+b2=c2,a2+c2=4b2,则2a2=3b2,故a:b=:,∴设a=x,b=x,则c=x,∴此三角形的三边长之比为:::.故答案为:::;(3)∵Rt△ABC中,∠ACB=90°,BC=6,点D为AB的中点,△BCD是常态三角形,∴当AD=BD=DC,CD2+BD2=4×62时,解得:BD=DC=6,则AB=12,故AC==6,则△ABC的面积为:×6×6=.当AD=BD=DC,CD2+BC2=4×BD2时,解得:BD=DC=2,则AB=4,故AC=2,则△ABC的面积为:×6×2=6.故△ABC的面积为或6.六、解答题(本大题共1小题,每小题12分,共12分).23.问题情境:如图1,点E为正方形ABCD内一点,∠AEB=90°,点G为正方形ABCD外一点,∠G=90°,BE=BG,延长AE交CG于点F,连接DE.猜想证明:(1)试判断四边形BEFG的形状,并说明理由;(2)如图2,若DA=DE,请猜想线段CF与GF的数量关系并加以证明;解决问题:(3)如图1,若BE=9,CF=3,则DE=3.【分析】(1)根据SAS证△AEB≌△BCG,推出∠EBG=90°,又BE=BG,即可得出四边形BEFG为正方形;(2)过点D作DH⊥AE于点H,由等腰三角形的性质得AE=2AH,根据AAS证△ADH ≌△BAE,得AH=BE=AE,又AE=CG,BE=GF,即可得证结论;(3)过点D作DP⊥AE于点P,根据AAS证△ADP≌△BAE,根据数量关系得出DP=12,PE=3,再根据勾股定理即可求出DE的长.解:(1)四边形BGFE是正方形;理由如下:∵四边形ABCD是正方形,∴∠ABC=90°,AB=BC,又∵∠AEB=∠G=90°,BE=BG,∴△AEB≌△BCG(SAS),∴∠ABE=∠CBG,∴∠EBG=90°,又BE=BG,∴四边形EBGF是正方形;(2)CF=GF,理由如下:过点D作DH⊥AE于点H,∵DA=DE,DH⊥AE,∴AE=2AH,∠ADH+∠DAH=90°,∵四边形ABCD是正方形,∴AD=AB,∠DAB=90°,∴∠DAH+∠EAB=90°,∴∠ADH=∠EAB,又∵AD=AB,∠AHD=∠AEB=90°,∴△ADH≌△BAE(AAS),∴AH=BE=AE,由(1)可知,AE=CG,∵四边形BEGF是正方形,∴BE=GF,∴GF=CG,∴CF=GF;(3)过点D作DP⊥AE于点P,∵DP⊥AE,∴∠ADP+∠DAP=90°,∵四边形ABCD是正方形,∴AD=AB,∠DAB=90°,∴∠DAP+∠EAB=90°,∴∠ADP=∠EAB,又∵AD=AB,∠APD=∠AEB=90°,∴△ADP≌△BAE(AAS),∴AP=BE,DP=AE,又由(1)知,AE=CG,∵BE=9,CF=3,∴BG=9,CG=CF+FG=12,∴DP=CG=12,PE=AE﹣AP=12﹣9=3,∴DE====3,故答案为:3.。

2024-2025学年江西省赣州市赣州中学八年级上学期开学考试数学试题

2024-2025学年江西省赣州市赣州中学八年级上学期开学考试数学试题

2024-2025学年江西省赣州市赣州中学八年级上学期开学考试数学试题1.下列运算正确的是()A.B.C.D.2.如果,那么下列结论错误的是()A.B.C.D.3.如图的两个三角形全等,则的度数为()A.50°B.58°C.60°D.62°4.如图,在△ABC中,∠C=70º,沿图中虚线截去∠C,则∠1+∠2=()A.360ºB.250ºC.180ºD.140º5.将一个含有的三角板按如图所示,摆放在一组平行线内,,则的度数为()A.B.C.D.6.已知,如图,是内部的一条射线,P是射线上任意点,,下列条件中:①,②,③,④,能判定是的角平分线的有()A.1个B.2个C.3个D.4个7.的平方根是__________,的算术平方根是__________.8.已知直线轴,且、,则的值为____.9.已知一个样本有40个数据,把它分成5组,第一组到第四组的频数分别是10、4、x、16,第五组的频率是0.1,则x的值为______.10.若的不等式组有两个整数解,则的取值范围是______.11.个一样大小的长方形恰好可以拼成一个大的长方形,如图甲所示,若拼成如图乙所示的正方形,中间还留下一个洞,恰好是边长为厘米的小正方形.设一个小长方形的长为厘米,宽为厘米,则所列二元一次方程组是______.12.如图,,垂足为,,,射线,垂足为,动点从点出发以的速度沿射线运动,点为射线上一动点,满足,随着点运动而运动,当点运动______秒时,与点、、为顶点的三角形全等(时间不等于).13.()计算:;()解方程组:.14.解不等式:并求它的所有整数解的和.15.()如图①,矩形的一条对称轴已经作好,请用一把无刻度的直尺作出矩形的另一条对称轴.()在图②中,矩形的边、上分别有、两点,且;请用一把无刻度的直尺作出矩形的一条对称轴.16.【综合与实践】如图,把两个面积均为的小正方形纸片分别沿对角线裁剪后拼成一个大的正方形纸片.(1)求大正方形纸片的边长;(2)若沿此大正方形纸片边的方向裁剪出一个长方形纸片,能否使裁剪出的长方形纸片的长宽之比为,且面积为?若能,求剪出的长方形纸片的长和宽;若不能,试说明理由.17.已知,,,求证:.18.如图,在平面直角坐标系中,三个顶点的坐标分别是,,,将平移,使点与点重合,得到,点,的对应点分别为、.(1)画出并写出点、的坐标;(2)求的面积;(3)若直线经过点且与轴垂直,点在直线l上,且的面积等于1,直接写出点的坐标.19.为鼓励居民节约用电,某市对居民用电采用阶梯电价,制定电价收费方案如表一,为了解该市某小区居民用电情况,在该小区随机抽查了50户居民某月平均用电量(单位:千瓦时)记录数据如下:155,158,175,158,158,124,154,148,169,120,150,133,160,215,172.126,145,130,131,118,108,157,145,165,122,106,165,150,136,144.140,159,110,134,170,168,162,170,175,186,182,156,138,157.100,142,168,218,175,146.整理数据后得频数分布表如表二.表一阶梯电价方案表档次月平均用电量(千瓦时)电价(元千瓦时)第一档0.52第二档第三档大于2800.82表二某月平均用电量(千瓦时)频数510132b(1)写出______,______;(2)若根据表二制成扇形统计图,全年月平均用电是不低于140千瓦时的部分所对圆心角的度数为______;(3)请根据抽㚗的数据判断,全市是否有的居民每月全部用电支出均可用第一档标准计费.20.如图,在中,于,分别交、于、两点,且,,求证:.21.某市为了提高市民的交通安全意识,要求骑行过程中必须佩戴安全头盔,可以保护头部,减少伤害.某商店经销甲、乙两种安全头盔,进价、售价见下表.甲乙进价(元/顶)4030售价(元/顶)60m(1)若该商店进货甲、乙两种安全头盔共100顶,一共花费了3700元,求甲、乙两种安全头盔分别进货多少顶?(2)在(1)的条件下,将头盔全部售出,商家把乙种安全头盔的售价m至少定为多少元,才能保证利润不低于1700元?22.问题情景:某综合实践小组开展了“无盖长方体纸盒的制作”实践活动.(1)下面不可能是长方体展开图的是___________.(填序号)(2)综合实践小组利用边长为厘米的正方形纸板制作出两种不同方案的无盖长方体盒子.其中.①根据图1方式制作一个无盖的长方体盒子,先在纸板四角剪去四个同样大小边长为厘米的小正方形,再沿虚线折合起来,则长方体纸盒的底面积为__________平方厘米;②根据图2方式制作一个无盖的长方体纸盒,先在纸板上剪去一个小长方形,再沿虚线折合起来,如图所示,已知,求该长方体纸盒的体积;(3)小明按照图1的方式用边长为厘米的正方形纸片制作了一个无盖的长方体盒子,小明想利用这个盒子研究无盖长方体的展开图,他发现其中有一种展开图外围周长为厘米,求小明剪去的四个同样大小的小正方形的边长.(求出所有可能的情况)23.综合与实践【课题学习】:平行线的“等角转化”功能.如图1,已知点A是外一点,连接.求的度数.解:过点A作,∴______,,又∵.∴______.【问题解决】(1)阅读并补全上述推理过程.【解题反思】从上面的推理过程中,我们发现平行线具有“等角转化”的功能,将,,“凑”在一起,得出角之间的关系,使问题得以解决.【方法运用】(2)如图2所示,已知,交于点E,,在图2的情况下求的度数.【拓展探究】(3)如图3所示,已知,分别平分和,且所在直线交于点F,过F作,若,在图3的情况下求的度数.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

江西省赣州市2021年八年级上学期数学期末考试试卷(II)卷
姓名:________ 班级:________ 成绩:________
一、选择题。

在每小题给出的四个选项中,有且仅有一项是符合题目要求 (共12题;共34分)
1. (3分) (2019八上·越秀期末) 下列图形中,是轴对称图形的是()
A .
B .
C .
D .
2. (3分)下列变形中,属因式分解的是()
A . 2x﹣2y=2(x﹣y)
B . (x+y)2=x2+2xy+y2
C . (x+2y)(x﹣2y)=x2﹣2y2
D . x2﹣4x+5=(x﹣2)2+1
3. (3分)(2017·宾县模拟) 下列运算正确的是()
A .
B . (m2)3=m5
C . a2•a3=a5
D . (x+y)2=x2+y2
4. (3分)多项式y2+4加上一个单项式后,使它能成为一个二项整式的完全平方,则满足条件的单项式有()
A . 2个
B . 3个
D . 5个
5. (3分) (2017八下·武进期中) 若分式的值为0,则x的值为()
A . ±2
B . 2
C . ﹣2
D . 4
6. (2分)如图.△ABC的∠B的外角的平分线BD与∠C的外角的平分线CE相交于点P,若点P到AC的距离为2,则点P到AB的距离为()
A . 1
B . 2
C . 3
D . 4
7. (3分) (2020八上·昭平期末) 已知:如图,AD是△ABC的中线,∠1=2∠2,CE⊥AD,BF⊥AD,点E、F 为垂足,EF=6cm,则BC的长为()
A . 6cm
B . 12cm
C . 18cm
D . 24cm
8. (3分)一个等腰三角形的一个内角为90°,那么这个等腰三角形的一个底角为()
A . 90°
B . 45°
C . 50°
9. (3分)若分式中的a、b的值同时扩大到原来的10倍,则分式的值()
A . 是原来的20倍
B . 是原来的10倍
C . 是原来的
D . 不变
10. (2分)已知直角三角形中30°角所对的直角边长是2 cm,则另一条直角边的长是()
A . 4 cm
B . 4 cm
C . 6 cm
D . 6 cm
11. (3分)(2017·佳木斯) 如图,在矩形ABCD中,AD=4,∠DAC=30°,点P、E分别在AC、AD上,则PE+PD 的最小值是()
A . 2
B . 2
C . 4
D .
12. (3分)(2018·株洲) 关于的分式方程解为,则常数的值为()
A .
B .
C .
D .
二、填空题(本大题共8个小题,每小题3分,本大题满分24分) (共6题;共18分)
13. (3分) (2017七下·无锡期中) 每到四月,许多地方杨絮、柳絮如雪花般漫天飞舞,人们不堪其扰. 据测定,杨絮纤维的直径约0.0000105m,该数值用科学记数法表示为________.
14. (3分) (2016八上·蓬江期末) 分解因式:﹣x2+2x﹣1=________.
15. (3分)我们用符号[x]表示一个不大于实数x的最大整数,如:[3.69]=3,[﹣0.56]=﹣1,则按这个规律[﹣ ]=________.
16. (3分) (2019八下·宣州期中) 若a,b,c是直角三角形的三条边长,斜边c上的高的长是h ,给出下列结论:
①以a2 , b2 , c2的长为边的三条线段能组成一个三角形;②以的长为边的三条线段能组成一个三角形;③以a+b , c+h , h的长为边的三条线段能组成直角三角形;④以的长为边的三条线段能组成直角三角形,符合题意结论的序号为________.
17. (3分)一个三角形可被剖成两个等腰三角形,原三角形的一个内角为36度,求原三角形最大内角的所有可能值________.
18. (3分)如图,已知在△ABC中,AB=AC=6,∠BAC=30°,将△ABC绕点A逆时针旋转,使点B落在点C 处,此时点C落在点D处,延长AD与BC的延长线相交于点E,则DE的长为________.
三、解答题(共60分) (共8题;共50分)
19. (5分) (2017七下·睢宁期中) 计算:
(1)(﹣)﹣1+(﹣2)2×50﹣(﹣)﹣2;
(2) 2a5﹣a2•a3+(2a4)2÷a3.
20. (5分)(2018·衢州模拟) 解分式方程:
21. (5分) (2017八下·新野期中) 先化简,再计算:÷ ,其中,
.
22. (7分)如图,在△ABC中,AB=AC,EF交AB于点E,交AC的延长线于点F,交BC于点D,且BE=CF.
求证:DE=DF.
23. (2分) (2018八上·江北期末) 在我市区某中学美化校园招标时,有甲、乙两个工程队投标,经测算:甲队单独完成这项工程需要天;若由甲队先做天,剩下的工程由甲、乙合做天可完成.
(1)乙队单独完成这项工程需要多少天?
(2)甲队施工一天,需付工程款万元,乙队施工一天需付工程款万元,若该工程计划在天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成该工程省钱,还是由甲乙两队全程合作完成该工程省钱?
24. (2分)(2017·岳池模拟) 在▱ABCD中,点E、F分别在AB、CD上,且AE=CF.
(1)求证:△ADE≌△CBF;
(2)若DF=BF,求证:四边形DEBF为菱形.
25. (12分)设m是不小于﹣1的实数,关于x的方程x2+2(m﹣2)x+m2﹣3m+3=0有两个不相等的实数根x1、x2 ,
(1)若x12+x22=6,求m值;
(2)求的最大值.
26. (12分) (2017八下·闵行期末) 如图1,已知△OAB、△OBC、△OCD、△ODE、△OEF和△OFA均为边长为a的等边三角形,点P为边BC上任意一点,过P作PM∥AB交AF于M,作PN∥CD交DE于N.
(1)那么∠MPN=________,并求证PM+PN=3a;
(2)如图2,联结OM、ON.求证:OM=ON;
(3)如图3,OG平分∠MON,判断四边形OMGN是否为特殊四边形,并说明理由.
参考答案
一、选择题。

在每小题给出的四个选项中,有且仅有一项是符合题目要求 (共12题;共34分) 1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
7-1、
8-1、
9-1、
10-1、
11-1、
12-1、
二、填空题(本大题共8个小题,每小题3分,本大题满分24分) (共6题;共18分)
13-1、
14-1、
15-1、
16、答案:略
17-1、
18-1、
三、解答题(共60分) (共8题;共50分)
19-1、19-2、20-1、21-1、
22-1、23-1、
23-2、24-1、24-2、
25-1、
25-2、26-1、
26-2、
26-3、。

相关文档
最新文档