高中数学圆锥曲线知识点总结(合集5篇)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学圆锥曲线知识点总结(合集5篇)
第一篇:高中数学圆锥曲线知识点总结
高中数学知识点大全—圆锥曲线
一、考点(限考)概要:
1、椭圆:
(1)轨迹定义:
①定义一:在平面内到两定点的距离之和等于定长的点的轨迹是椭圆,两定点是焦点,两定点间距离是焦距,且定长2a大于焦距2c。
用集合表示为:
;
②定义二:在平面内到定点的距离和它到一条定直线的距离之比是个常数e,那么这个点的轨迹叫做椭圆。
其中定点叫焦点,定直线叫准线,常数e是离心率。
用集合表示为:
(2)标准方程和性质:
;
注意:当没有明确焦点在个坐标轴上时,所求的标准方程应有两个。
(3)参数方程:
3、双曲线:
(1)轨迹定义:
(θ为参数);
①定义一:在平面内到两定点的距离之差的绝对值等于定长的点的轨迹是双曲线,两定点是焦点,两定点间距离是焦距。
用集合表示为:
②定义二:到定点的距离和它到一条定直线的距离之比是个常数e,那么这个点的轨迹叫做双曲线。
其中定点叫焦点,定直线叫准线,常数e是离心率。
用集合表示为:(2)标准方程和性质:
注意:当没有明确焦点在个坐标轴上时,所求的标准方程应有两个。
4、抛物线:
(1)轨迹定义:在平面内到定点和定直线的距离相等的点的轨迹是抛物线,定点是焦点,定直线是准线,定点与定直线间的距离叫焦参数p。
用集合表示为
:
(2)标准方程和性质:
①焦点坐标的符号与方程符号一致,与准线方程的符号相反;
②标准方程中一次项的字母与对称轴和准线方程的字母一致;
③标准方程的顶点在原点,对称轴是坐标轴,有别于一元二次函数的图像;
二、复习点睛:
1、平面解析几何的知识结构:
2、椭圆各参数间的关系请记熟“六点六线,一个三角形”,即六点:四个顶点,两个焦点;六线:两条准线,长轴短轴,焦点线和垂线PQ;三角形:焦点三角形各性质(除切线外)均可在这个图中找到。
则椭圆的
3、椭圆形状与e的关系:当e→0,c→0,椭圆→圆,直至成为极限位置的圆,则认为圆是椭圆在e=0时的特例。
当e→1,c→a椭圆变扁,直至成为极限位置的线段也可认为是椭圆在e=1时的特例。
4、利用焦半径公式计算焦点弦长:若斜率为k的直线被圆锥曲线所截得的弦为AB,A、B两点的坐标分别为,则弦长,此时这里体现了解析几何“设而不求”的解题思想。
5、若过椭圆左(或右)焦点的焦点弦为AB,则
;
6、结合下图熟记双曲线的:“四点八线,一个三角形”,即:四点:顶点和焦点;八线:实轴、虚轴、准线、渐进线、焦点弦、垂线PQ。
三角形:焦点三角形。
7、双曲线形状与e的关系:,e越大,即渐近线的斜率的绝对值就越大,这时双曲线的形状就从扁狭逐渐变得开阔。
由此可知,双曲线的离心率越大,它的开口就越阔。
8、双曲线的焦点到渐近线的距离为b。
9、共轭双曲线:以已知双曲线的实轴为虚轴,虚轴为实轴,这样得到的双曲线称为原双曲线的共轭双曲线。
区别:三常数a、b、c中a、b不同(互换)c相同,它们共用一对渐近线。
双曲线和它的共轭双曲线的焦点在同一圆上。
确定双曲线的共轭双曲线的方法:将1变为-1。
10、过双曲线点的情况如下:
外一点P(x,y)的直线与双曲线只有一个公共(1)P点在两条渐近线之间且不含双曲线的区域内时,有两条与渐近线平行的直线和分别与双曲线两支相切的两条切线,共四条;
(2)P点在两条渐近线之间且包含双曲线的区域内时,有两条与渐近线平行的直线和只与双曲线一支相切的两条切线,共四条;
(3)P在两条渐近线上但非原点,只有两条:一条是与另一渐近线平行的直线,一条是切线;
(4)P为原点时不存在这样的直线;
11、结合图形熟记抛物线:“两点两线,一个直角梯形”,即:两点:顶点和焦点;两线:准线、焦点弦;梯形:直角梯形ABCD。
12、对于抛物线上
13、抛物线则有如下结论:的点的坐标可设为的焦点弦(过焦点的弦)为AB,且,以简化计算;
,14、过抛物线外一点总有三条直线和抛物线有且只有一个公共点:两条切线和一条平行于对称轴的直线;
15、处理椭圆、双曲线、抛物线的弦中点问题常用代点相减法:即设为曲线上不同的两点,是的中点,则可得到弦中点与两点间关系:
16、当涉及到弦的中点时,通常有两种处理方法:一是韦达定理,即把直线方程代入曲线方程,消元后,用韦达定理求相关参数(即设而不求);二是点差法,即设出交点坐标,然后把交点坐标代入曲线
方程,两式相减后,再求相关参数。
在利用点差法时,必须检验条件△>0是否成立。
5、圆锥曲线:
(1)统一定义,三种圆锥曲线均可看成是这样的点集:为定点,d为点P到定直线的l 距离,e为常数,如图。
,其中F
(2)当0<e<1时,点P的轨迹是椭圆;当e>1时,点P的轨迹是双曲线;当e=1时,点P的轨迹是抛物线。
(3)圆锥曲线的几何性质:几何性质是圆锥曲线内在的、固有的性质,不因为位置的改变而改变。
①定性:焦点在与准线垂直的对称轴上
ⅰ椭圆及双曲线:中心为两焦点中点,两准线关于中心对称;
ⅱ椭圆及双曲线关于长轴、短轴或实轴、虚轴为轴对称,关于中心为中心对称;
ⅲ抛物线的对称轴是坐标轴,对称中心是原点。
②定量:
(4)圆锥曲线的标准方程及解析量(随坐标改变而变)
以焦点在x轴上的方程为例:
6、曲线与方程:
(1)轨迹法求曲线方程的程序:
①建立适当的坐标系;
②设曲线上任一点(动点)M的坐标为(x,y);
③列出符合条件p(M)的方程f(x,y)=0;
④化简方程f(x,y)=0为最简形式;
⑤证明化简后的方程的解为坐标的点都在曲线上;
(2)曲线的交点:
由方程组确定,方程组有几组不同的实数解,两条曲线就有几个公共点;方程组没有实数解,两条曲线就没有公共点。
第二篇:完美版圆锥曲线知识点总结
圆锥曲线的方程与性质
1.椭圆
(1)椭圆概念
平面内与两个定点、的距离的和等于常数2(大于)的点的轨迹叫做椭圆。
这两个定点叫做椭圆的焦点,两焦点的距离2c叫椭圆的焦距。
若为椭圆上任意一点,则有。
椭圆的标准方程为:()(焦点在x轴上)或()(焦点在y轴上)。
注:①以上方程中的大小,其中;
②在和两个方程中都有的条件,要分清焦点的位置,只要看和的分母的大小。
例如椭圆(,)当时表示焦点在轴上的椭圆;当时表示焦点在轴上的椭圆。
(2)椭圆的性质
①范围:由标准方程知,说明椭圆位于直线,所围成的矩形里;
②对称性:在曲线方程里,若以代替方程不变,所以若点在曲线上时,点也在曲线上,所以曲线关于轴对称,同理,以代替方程不变,则曲线关于轴对称。
若同时以代替,代替方程也不变,则曲线关于原点对称。
所以,椭圆关于轴、轴和原点对称。
这时,坐标轴是椭圆的对称轴,原点是对称中心,椭圆的对称中心叫椭圆的中心;
③顶点:确定曲线在坐标系中的位置,常需要求出曲线与轴、轴的交点坐标。
在椭圆的标准方程中,令,得,则,是椭圆与轴的两个交点。
同理令得,即,是椭圆与轴的两个交点。
所以,椭圆与坐标轴的交点有四个,这四个交点叫做椭圆的顶点。
同时,线段、分别叫做椭圆的长轴和短轴,它们的长分别为和,和分别叫做椭圆的长半轴长和短半轴长。
由椭圆的对称性知:椭圆的短轴端点到焦点的距离为;在中,,且,即;
④离心率:椭圆的焦距与长轴的比叫椭圆的离心率。
∵,∴,且越接近,就越接近,从而就越小,对应的椭圆越扁;反之,越接近于,就越接近于,从而越接近于,这时椭圆越接近于圆。
当且仅当时,两焦点重合,图形变为圆,方程为。
2.双曲线
(1)双曲线的概念
平面上与两点距离的差的绝对值为非零常数的动点轨迹是双曲线()。
注意:①式中是差的绝对值,在条件下;时为双曲线的一支;时为双曲线的另一支(含的一支);②当时,表示两条射线;③当时,不表示任何图形;④两定点叫做双曲线的焦点,叫做焦距。
(2)双曲线的性质
①范围:从标准方程,看出曲线在坐标系中的范围:双曲线在两条直线的外侧。
即,即双曲线在两条直线的外侧。
②对称性:双曲线关于每个坐标轴和原点都是对称的,这时,坐标轴是双曲线的对称轴,原点是双曲线的对称中心,双曲线的对称中心叫做双曲线的中心。
③顶点:双曲线和对称轴的交点叫做双曲线的顶点。
在双曲线的方程里,对称轴是轴,所以令得,因此双曲线和轴有两个交点,他们是双曲线的顶点。
令,没有实根,因此双曲线和y轴没有交点。
1)注意:双曲线的顶点只有两个,这是与椭圆不同的(椭圆有四个顶点),双曲线的顶点分别是实轴的两个端点。
2)实轴:线段叫做双曲线的实轴,它的长等于叫做双曲线的实半轴长。
虚轴:线段叫做双曲线的虚轴,它的长等于叫做双曲线的虚半轴长。
④渐近线:注意到开课之初所画的矩形,矩形确定了两条对角线,这两条直线即称为双曲线的渐近线。
从图上看,双曲线的各支向外延伸时,与这两条直线逐渐接近。
⑤等轴双曲线:
1)定义:实轴和虚轴等长的双曲线叫做等轴双曲线。
定义式:;
2)等轴双曲线的性质:(1)渐近线方程为:
;(2)渐近线互相垂直。
注意以上几个性质与定义式彼此等价。
亦即若题目中出现上述其
一,即可推知双曲线为等轴双曲线,同时其他几个亦成立。
3)注意到等轴双曲线的特征,则等轴双曲线可以设为:,当时交点在轴,当时焦点在轴上。
⑥注意与的区别:三个量中不同(互换)相同,还有焦点所在的坐标轴也变了。
3.抛物线
(1)抛物线的概念
平面内与一定点F和一条定直线l的距离相等的点的轨迹叫做抛物线(定点F不在定直线l上)。
定点F叫做抛物线的焦点,定直线l叫做抛物线的准线。
方程叫做抛物线的标准方程。
注意:它表示的抛物线的焦点在x轴的正半轴上,焦点坐标是F (,0),它的准线方程是;
(2)抛物线的性质
一条抛物线,由于它在坐标系的位置不同,方程也不同,有四种不同的情况,所以抛物线的标准方程还有其他几种形式:,.这四种抛物线的图形、标准方程、焦点坐标以及准线方程如下表:
标准方程
图形
焦点坐标
准线方程
范围
对称性
轴
轴
轴
轴
顶点
离心率
说明:(1)通径:过抛物线的焦点且垂直于对称轴的弦称为通径;
(2)抛物线的几何性质的特点:有一个顶点,一个焦点,一条准线,一条对称轴,无对称中心,没有渐近线;(3)注意强调的几何意义:是焦点到准线的距离。
4.高考数学圆锥曲线部分知识点梳理
一、方程的曲线:
在平面直角坐标系中,如果某曲线C(看作适合某种条件的点的集合或轨迹)上的点与一个二元方程f(x,y)=0的实数解建立了如下的关系:(1)曲线上的点的坐标都是这个方程的解;(2)以这个方程的解为坐标的点都是曲线上的点,那么这个方程叫做曲线的方程;这条曲线叫做方程的曲线。
点与曲线的关系:若曲线C的方程是f(x,y)=0,则点P0(x0,y0)在曲线C上f(x0,y
0)=0;点P0(x0,y0)不在曲线C上f(x0,y0)≠0。
两条曲线的交点:若曲线C1,C2的方程分别为f1(x,y)=0,f2(x,y)=0,则点P0(x0,y0)是C1,C2的交点{方程组有n个不同的实数解,两条曲线就有n个不同的交点;方程组没有实数解,曲线就没有交点。
二、圆:
1、定义:点集{M||OM|=r},其中定点O为圆心,定长r 为半径.
2、方程:(1)标准方程:圆心在c(a,b),半径为r的圆方程是(x-a)2+(y-b)2=r2
圆心在坐标原点,半径为r的圆方程是x2+y2=r2
(2)一般方程:①当D2+E2-4F>0时,一元二次方程x2+y2+Dx+Ey+F=0叫做圆的一般方程,圆心为半径是。
配方,将方程x2+y2+Dx+Ey+F=0化为(x+)2+(y+)2=
②当D2+E2-4F=0时,方程表示一个点(-,-);
③当D2+E2-4F<0时,方程不表示任何图形.(3)
点与圆的位置关系
已知圆心C(a,b),半径为r,点M的坐标为(x0,y0),则|MC|<r点M在圆C内,|MC|=r点M在圆C上,|MC|>r点M在圆C
内,其中|MC|=。
(4)
直线和圆的位置关系:①直线和圆有相交、相切、相离三种位置关系:直线与圆相交有两个公共点;直线与圆相切有一个公共点;直线与圆相离没有公共点。
②直线和圆的位置关系的判定:(i)判别式法;(ii)利用圆心C(a,b)到直线Ax+By+C=0的距离与半径r的大小关系来判定。
三、圆锥曲线的统一定义:
平面内的动点P(x,y)到一个定点F(c,0)的距离与到不通过这个定点的一条定直线l的距离之
比是一个常数e(e>0),则动点的轨迹叫做圆锥曲线。
其中定点F(c,0)称为焦点,定直线l称为准线,正常数e称为离心率。
当0<e<1时,轨迹为椭圆;当e=1时,轨迹为抛物线;当e>1时,轨迹为双曲线。
四、椭圆、双曲线、抛物线:
椭圆
双曲线
抛物线
定义
1.到两定点F1,F2的距离之和为定值2a(2a>|F1F2|)的点的轨迹2.与定点和直线的距离之比为定值e的点的轨迹.(0
1.到两定点F1,F2的距离之差的绝对值为定值2a(0<2a<|F1F2|)的点的轨迹
2.与定点和直线的距离之比为定值e的点的轨迹.(e>1)
与定点和直线的距离相等的点的轨迹.轨迹条件
点集:({M||MF1+|MF2|=2a,|F
1F2|<2a}.点集:{M||MF1|-|MF2|.=±2a,|F2F2|>2a}.点集{M|
|MF|=点M到直线l的距离}.图形
方
程
标准方程
(>0)
(a>0,b>0)
参数方程
(t为参数)
范围
─a£x£a,─b£y£b
|x|
³
a,yÎR
x³0
中心
原点O(0,0)
原点O(0,0)
顶点
(a,0),(─a,0),(0,b),(0,─b) (a,0),(─a,0)
(0,0)
对称轴
x轴,y轴;
长轴长2a,短轴长2b
x轴,y轴;
实轴长2a,虚轴长2b.x轴焦点
F1(c,0),F2(─c,0)
F1(c,0),F2(─c,0)
准
线
x=±
准线垂直于长轴,且在椭圆外.x=±
准线垂直于实轴,且在两顶点的内侧.x=-
准线与焦点位于顶点两侧,且到顶点的距离相等.焦距
2c
(c=)
2c
(c=)
离心率
e=1
【备注1】双曲线:
⑶等轴双曲线:双曲线称为等轴双曲线,其渐近线方程为,离心率.⑷共轭双曲线:以已知双曲线的虚轴为实轴,实轴为虚轴的双曲线,叫做已知双曲线的共轭双曲线.与互为共轭双曲线,它们具有共同的渐近线:.⑸共渐近线的双曲线系方程:的渐近线方程为如果双曲线的渐近线为时,它的双曲线方程可设为
.【备注2】抛物线:
(1)抛物线=2px(p>0)的焦点坐标是(,0),准线方程x=-,开口向右;抛物线=-2px(p>0)的焦点坐标是(-,0),准线方程x=,开口向左;抛物线=2py(p>0)的焦点坐标是(0,),准线方程y=-,开口向上;
抛物线=-2py(p>0)的焦点坐标是(0,-),准线方程y=,开口向下.(2)抛物线=2px(p>0)上的点M(x0,y0)与焦点F的距离;抛物线=-2px(p>0)上的点M(x0,y0)与焦点F的距离
(3)设抛物线的标准方程为=2px(p>0),则抛物线的焦点到其顶点的距离为,顶点到准线的距离,焦点到准线的距离为p.(4)已知过抛物线=2px(p>0)焦点的直线交抛物线于A、B两点,则线段AB称为焦点弦,设A(x1,y1),B(x2,y2),则弦长=+p或(α为直线AB的倾斜角),(叫做焦半径).五、坐标的变换:
(1)坐标变换:在解析几何中,把坐标系的变换(如改变坐标系原点的位置或坐标轴的方向)叫做坐标变换.实施坐标变换时,点的位置,曲线的形状、大小、位置都不改变,仅仅只改变点的坐标与曲线的方
程.(2)坐标轴的平移:坐标轴的方向和长度单位不改变,只改变原点的位置,这种坐标系的变换叫做坐标轴的平移,简称移轴。
(3)坐标轴的平移公式:设平面内任意一点M,它在原坐标系xOy中的坐标是(x,y),在新坐标系x
′O′y′中的坐标是.设新坐标系的原点O′在原坐标系xOy中的坐标是(h,k),则
或
叫做平移(或移轴)公式.(4)
中心或顶点在(h,k)的圆锥曲线方程见下表:
方
程
焦
点
焦
线
对称轴
椭圆
+=1
(±c+h,k)
x=±+h
x=h
y=k
+
=1
(h,±c+k)
y=±+k
x=h
y=k
双曲线
-=1
(±c+h,k)
x=±+k
x=h
y=k
-=1
(h,±c+h)
y=±+k
x=h
y=k
抛物线
(y-k)2=2p(x-h)
(+h,k)
x=-+h
y=k
(y-k)2=-2p(x-h)
(-+h,k)
x=+h
y=k
(x-h)2=2p(y-k)
(h,+k)
y=-+k
x=h
(x-h)2=-2p(y-k)
(h,-
+k)
y=+k
x=h
六、椭圆的常用结论:
1.点P处的切线PT平分△PF1F2在点P处的外角.
2.PT平分△PF1F2在点P处的外角,则焦点在直线PT上的射影H点的轨迹是以长轴为
直径的圆,除去长轴的两个端点.3.以焦点弦PQ为直径的圆必与对应准线相离.4.以焦点半径PF1为直径的圆必与以长轴为直径的圆内切.5.若在椭圆上,则过的椭圆的切线方程是.6.若在椭圆外,则过作椭圆的两条切线切点为P1、P2,则切点弦P1P2的直线方程是.7.椭圆(a>b>0)的左右焦点分别为F1,F
2,点P为椭圆上任意一点,则椭圆的焦点角形的面积为.8.椭圆(a>b>0)的焦半径公式,(,).9.设过椭圆焦点F作直线与椭圆相交P、Q两点,A为椭圆长轴上一个顶点,连结AP
和AQ分别交相应于焦点F的椭圆准线于M、N两点,则MF⊥NF.10.过椭圆一个焦点F的直线与椭圆交于两点P、Q,A1、A2为椭圆长轴上的顶点,A1P和A2Q交于点M,A2P和A1Q交于点N,则MF⊥NF.11.AB是椭圆的不平行于对称轴的弦,M为AB的中点,则,即。
12.若在椭圆内,则被Po所平分的中点弦的方程是;
【推论】:
1、若在椭圆内,则过Po的弦中点的轨迹方程是。
椭圆(a>b>o)的两个顶点为,,与y轴平行的直线交椭圆于P1、P2时A1P1与A2P2交点的轨迹方程是.
2、过椭圆
(a>0,b>0)上任一点任意作两条倾斜角互补的直线交椭圆于B,C 两点,则直线BC有定向且(常数).3、若P为椭圆(a>b>0)上异于长轴端点的任一点,F1,F
2是焦点,,则.4、设椭圆(a>b>0)的两个焦点为F1、F2,P (异于长轴端点)为椭圆上任意一点,在△PF1F2中,记,,则有.5、若椭圆(a>b>0)的左、右焦点分别为F1、F2,左准线为L,则当0<e≤时,可在椭圆上求一点P,使得PF1是P到对应准线距离d与PF2的比例中项.6、P为椭圆(a>b>0)上任一点,F1,F2为二焦点,A为椭圆内一定点,则,当且仅当三点共线时,等号成立.7、椭圆与直线有公共点的充要条件是.8、已知椭圆(a>b>0),O为坐标原点,P、Q为椭圆上两动点,且.(1);(2)|OP|2+|OQ|2的最大值为;(3)的最小值是.9、过椭圆(a>b>0)的右焦点F作直线交该椭圆右支于
M,N两点,弦MN的垂直平分线交x轴于P,则.10、已知椭圆(a>b>0),A、B、是椭圆上的两点,线段AB的垂直平分线与x轴相交于点,则.11、设P点是椭圆(a>b>0)上异于长轴端点的任一点,F1、F2为其焦点记,则(1).(2)
.12、设A、B是椭圆(a>b>0)的长轴两端点,P是椭圆上的一点,,,c、e分别是椭圆的半焦距离心率,则有(1).(2)
.(3)
.13、已知椭圆(a>b>0)的右准线与x轴相交于点,过椭圆右焦点的直线与椭圆相交于A、B两点,点在右准线上,且轴,则直线AC 经过线段EF的中点.14、过椭圆焦半径的端点作椭圆的切线,与以长轴为直径的圆相交,则相应交点与相应焦点的连线必与切线垂直.15、过椭圆焦半径的端点作椭圆的切线交相应准线于一点,则该点与焦点的连线必与焦半径互相垂直.16、椭圆焦三角形中,内点到一焦点的距离与以该焦点为端点的焦半径之比为常数e(离心率).(注:在椭圆焦三角形中,非焦顶点的内、外角平分线与长轴交点分别称为内、外点.)
17、椭圆焦三角形中,内心将内点与非焦顶点连线段分成定比e.18、椭圆焦三角形中,半焦距必为内、外点到椭圆中心的比例中项.七、双曲线的常用结论:
1、点P处的切线PT平分△PF1F2在点P处的内角.
2、PT平分△PF1F2在点P处的内角,则焦点在直线PT上的射影H点的轨迹是以长轴为直径的圆,除去长轴的两个端点.
3、以焦点弦PQ为直径的圆必与对应准线相交.
4、以焦点半径PF1为直径的圆必与以实轴为直径的圆相切.(内切:P在右支;外切:P在左支)
5、若在双曲线(a>0,b>0)上,则过的双曲线的切线方程是.
6、若在双曲线(a>0,b>0)外,则过Po作双曲线的两条切线切点为P1、P2,则切点弦P1P2的直线方程是.
7、双曲线(a>0,b>o)的左右焦点分别为F1,F
2,点P为双曲线上任意一点,则双曲线的焦点角形的面积为.8、双曲线(a>0,b>o)的焦半径公式:(,)当在右支上时,,;当在左支上时,,。
9、设过双曲线焦点F作直线与双曲线相交
P、Q两点,A为双曲线长轴上一个顶点,连结AP
和AQ分别交相应于焦点F的双曲线准线于M、N两点,则MF⊥NF.10、过双曲线一个焦点F的直线与双曲线交于两点P、Q,A1、A2为双曲线实轴上的顶点,A1P和A2Q交于点M,A2P和A1Q交于点N,则MF⊥NF.11、AB是双曲线(a>0,b>0)的不平行于对称轴的弦,M为AB的中点,则,即。
12、若在双曲线(a>0,b>0)内,则被Po所平分的中点弦的方程是.13、若在双曲线(a>0,b>0)内,则过Po的弦中点的轨迹方程是.【推论】:
1、双曲线(a>0,b>0)的两个顶点为,,与y轴平行的直线交双曲线于P1、P2时A1P1与A2P2交点的轨迹方程是.
2、过双曲线(a >0,b>o)上任一点任意作两条倾斜角互补的直线交双曲线于B,C两点,则直线BC有定向且(常数).
3、若P为双曲线(a>0,b>0)右(或左)支上除顶点外的任一点,F1,F
2是焦点,,则(或).4、设双曲线(a>0,b>0)的两个焦点为F1、F2,P(异于长轴端点)为双曲线上任意一点,在△PF1F2中,记,,则有.5、若双曲线(a>0,b>0)的左、右焦点分别为F1、F2,左准线为L,则当1<e≤时,可在双曲线上求一点P,使得PF1是P到对应准线距离d与PF2的比例中项.6、P为双曲线(a>0,b>0)上任一点,F1,F2为二焦点,A为双曲线内一定点,则,当且仅当三点共线且和在y轴同侧时,等号成立.7、双曲线(a>0,b>0)与直线有公共点的充要条件是.8、已知双曲线(b>a
>0),O为坐标原点,P、Q为双曲线上两动点,且.(1);(2)|OP|2+|OQ|2的最小值为;(3)的最小值是.9、过双曲线(a>0,b>0)的右焦点F作直线交该双曲线的右支于M,N两点,弦MN的垂直平分线交x轴于P,则
.10、已知双曲线(a>0,b>0),A、B是双曲线上的两点,线段AB的垂直平分线与x轴相交于点,则或.11、设P点是双曲线(a>0,b >0)上异于实轴端点的任一点,F1、F2为其焦点记,则(1).(2)
.12、设A、B是双曲线(a>0,b>0)的长轴两端点,P是双曲线上的一点,,,c、e分别是双曲线的半焦距离心率,则有(1).(2) .(3)
.13、已知双曲线(a>0,b>0)的右准线与x轴相交于点,过双曲线右焦点的直线与双曲线相交于A、B两点,点在右准线上,且轴,则直线AC经过线段EF的中点.14、过双曲线焦半径的端点作双曲线的切线,与以长轴为直径的圆相交,则相应交点与相应焦点的连线必与切线垂直.15、过双曲线焦半径的端点作双曲线的切线交相应准线于一点,则该点与焦点的连线必与焦半径互相垂直.16、双曲线焦三角形中,外点到一焦点的距离与以该焦点为端点的焦半径之比为常数e(离心率).(注:在双曲线焦三角形中,非焦顶点的内、外角平分线与长轴交点分别称为内、外点).17、双曲线焦三角形中,其焦点所对的旁心将外点与非焦顶点连线段分成定比e.18双曲线焦三角形中,半焦距必为内、外点到双曲线中心的比例中项.八、抛物线的常用结论:
①顶点.②则焦点半径;则焦点半径为.③通径为2p,这是过焦点的所有弦中最短的.④(或)的参数方程为(或)(为参数).图形焦点
准线
范围
对称轴
轴
轴
顶点
(0,0)
离心率
焦点
圆锥曲线的性质对比
圆锥曲线
椭圆
双曲线
抛物线
标准方程
(x^2/a^2)+(y^2/b^2)=1 a>b>0
(x^2/a^2)-(y^2/b^2)=1 a>0,b>0
y^2=2px
p>0
范围
x∈[-a,a]
y∈[-b,b]
x∈(-∞,-a]∪[a,+∞)
y∈R
x∈[0,+∞)
y∈R
对称性
关于x轴,y轴,原点对称
关于x轴,y轴,原点对称
关于x轴对称
顶点
(a,0),(-a,0),(0,b),(0,-b) (a,0),(-a,0)
(0,0)
焦点
(c,0),(-c,0)
【其中c^2=a^2-b^2】(c,0),(-c,0)
【其中c^2=a^2+b^2】(p/2,0)
准线
x=±(a^2)/c
x=±(a^2)/c
x=-p/2
渐近线——————————
y=±(b/a)x
—————
离心率
e=c/a,e∈(0,1)
e=c/a,e∈(1,+∞)
e=1
焦半径
∣PF1∣=a+ex
∣PF2∣=a-ex
∣PF1∣=∣ex+a∣∣PF2∣=∣ex-a∣∣PF∣=x+p/2
焦准距
p=(b^2)/c
p=(b^2)/c
p
通径
(2b^2)/a
(2b^2)/a
2p
参数方程
x=a·cosθ
y=b·sinθ,θ为参数
x=a·secθ
y=b·tanθ,θ为参数
x=2pt^2
y=2pt,t为参数
过圆锥曲线上一点
(x0·x/a^2)+(y0·y/b^2)=1
(x0,y0)的切线方程
(x0x/a^2)-(y0·y/b^2)=1
y0·y=p(x+x0)
斜率为k的切线方程
y=kx±√[(a^2)·(k^2)+b^2]
y=kx±√[(a^2)·(k^2)-b^2]
y=kx+p/2k
第三篇:高中数学知识点总结
高中数学难度更大,难度在于它的深度和广度,但如果能理清思路,抓住重点,多实践,变渣滓为暴君并非不可能。
高中数学知识点总结有哪些你知道吗?一起来看看高中数学知识点总结,欢迎查阅!
高中数学知识点汇总
1.必修课程由5个模块组成:
必修1:集合,函数概念与基本初等函数(指数函数,幂函数,对数函数)
必修2:立体几何初步、平面解析几何初步。
必修3:算法初步、统计、概率。
必修4:基本初等函数(三角函数)、平面向量、三角恒等变换。
必修5:解三角形、数列、不等式。
以上所有的知识点是所有高中生必须掌握的,而且要懂得运用。
选修课程分为4个系列:
系列1:2个模块
选修1-1:常用逻辑用语、圆锥曲线与方程、空间向量与立体几何。
选修1-2:统计案例、推理与证明、数系的扩充与复数、框图
系列2:3个模块
选修2-1:常用逻辑用语、圆锥曲线与方程、空间向量与立体几何选修2-2:导数及其应用、推理与证明、数系的扩充与复数。