步进电机的速度控制及运动规律
步进电机的控制原理
步进电机的控制原理步进电机是一种高精度的电动执行器,具有定位准确、不需反馈器和转矩、速度和位置控制的特点,广泛用于数码设备、计算机和机器人控制等领域。
步进电机的控制原理包括三部分:输入信号、驱动电路和电机转动。
一、输入信号步进电机的输入信号有两种:脉冲信号和方向信号。
脉冲信号是由控制器发送给驱动电路的,用来控制电机的转动步数和速度。
步进电机的每一步运动需要一定的脉冲信号,具体步数由控制器编程决定。
方向信号则表示电机转动的正、反方向,一般由控制器通过电平高低来控制。
输入信号是步进电机运动的基础,只有正确的输入信号才能实现精准控制。
二、驱动电路步进电机的控制需要依赖驱动电路,一般为双H桥驱动电路。
它能够根据输入信号的变化,控制步进电机的相序和电流大小,从而实现电机的精准控制。
驱动电路是整个控制系统的核心部分,不同类型的步进电机需要不同的驱动方式,因此制定相应的驱动电路是十分重要的。
三、电机转动步进电机的转动是由驱动电路提供的电流产生的磁场、轴承和转子间的相互作用实现的。
不同类型的步进电机其转动的方式也不同,如单相、两相、五相、六相等。
不同类型的步进电机也需要不同的驱动方式,否则会导致控制不准确或失步。
综上所述,步进电机的控制原理需要在三个方面进行开展:输入信号、驱动电路和电机转动。
只有以正确的方式输入信号,配合正确的驱动电路和电机类型,才能实现精准的电机控制。
在实际应用中,我们需要根据具体情况来选择不同类型的步进电机和相应的控制方式,以实现最优控制效果。
步进电机常用升降速控制方法说明
步进电机常用升降速控制方法说明步进电机常用的升降频控制方法有两种:直线升降频和指数曲线升降频。
指数曲线法具有较强的跟踪能力,但当速度变化较大时平衡性差。
直线法平稳性好,适用于速度变化较大的快速定位方式。
以恒定的加速度升降,规律简练,用软件实现比较简单。
步进电机驱动执行机构从一个位置向另一个位置移动时,要经历升速、恒速和减速过程。
当信浓步进电机的运行频率低于其本身起动频率时,可以用运行频率直接起动并以此频率运行,需要停止时,可从运行频率直接降到零速。
当步进电机运行频率fbfa(有载起动时的起动频率)时,若直接用fb频率起动会造成步进电机失步甚至堵转。
同样在fb频率下突然停止时,由于惯性作用,步进电机会发生过冲,影响定位精度。
如果非常缓慢的升降速,信浓步进电机虽然不会产生失步和过冲现象,但影响了执行机构的工作效率。
所以对信浓步进电机加减速要保证在不失步和过冲前提下,用最快的速度(或最短的时间)移动到指定位置。
1。
步进电机运动规律及速度控制方法
步进电机运动规律及速度控制方法姓名:吴良辰班级:10机设(2)学号:6学期我们专业开设了机电传动控制这么课,它是机电一体化人才所需要知识结构的躯体,由于电力传动控制装置和机械设备是一个不可分割的整体,所以我么能从中了解到机电传动控制的一般知识,要掌握电机、电器、晶闸管等工作原理、特性、应用和选用的方法。
了解最新控制技术在机械设备中的应用。
在现代工业中,机电传动不仅包括拖动生产机械的电动机,而且还包括控制电动机的一整套控制,以满足生产过程自动化的要求。
也就是说,现代机电传动是和各种控制元件组成的自动控制系统联系在一起。
机电系统一般可分为图一所示的三个部分。
图1 机电传动控制在没上这门课之前,在我自己认为,电机就是那些就是高中学的那些直流电动机,就是通电线圈在磁场转动。
那是直流电动机了,慢慢的我接触了交流电动机,刚开始知道220V市电。
记得大一下学期,我们金工实习了,看到工训下面那么多的车床,铣床,钻床……由于要提供大的功率,所以主电机都是选用380V。
上完这门让我更详细了解他们内部的结构和工作原理。
还说明知识是慢慢积累的过程。
见的多学的多。
我明白了很多以前的疑惑。
看到电视机上那些智能机器人,他们的活动很自如,就像仿生肌肉一样。
尤其是日本的机器人。
它的机械臂很有可能是步进电机控制的,还有一种说法是液压与气压控制的。
我觉的两者都有。
很有幸大一时候进入了第二课堂,在里面学到东西,也接触了步进电机,我是在学51单片机那时候也买了一个,就觉得很神奇。
在加上前几天参加了江西省电子设计大赛,我就感觉到要是要选控制类的题目做,步进电机是不能少的。
所以步进电机是个好东西。
我在网上查了一下资料,上个世纪就出现了步进电机,它是一种可以自由回转的电磁铁,动作原理和今天的反应式步进电机没有什么区别,也是依靠气隙磁导的变化来产生电磁转矩。
很遗憾的是它是国外人发明的。
开始写正题了,上完这门课,那个步进电机是让我很痴迷的。
步进电机在位置控制,速度,控制方面有着卓越的作用,是其他电机无法比拟的。
步进电机运动规律及速度控制方法
步进电机运动规律及速度控制方法姓名:吴良辰班级:10机设(2)学号:201010310206学期我们专业开设了机电传动控制这么课,它是机电一体化人才所需要知识结构的躯体,由于电力传动控制装置和机械设备是一个不可分割的整体,所以我么能从中了解到机电传动控制的一般知识,要掌握电机、电器、晶闸管等工作原理、特性、应用和选用的方法。
了解最新控制技术在机械设备中的应用。
在现代工业中,机电传动不仅包括拖动生产机械的电动机,而且还包括控制电动机的一整套控制,以满足生产过程自动化的要求。
也就是说,现代机电传动是和各种控制元件组成的自动控制系统联系在一起。
机电系统一般可分为图一所示的三个部分。
图1 机电传动控制在没上这门课之前,在我自己认为,电机就是那些就是高中学的那些直流电动机,就是通电线圈在磁场转动。
那是直流电动机了,慢慢的我接触了交流电动机,刚开始知道220V市电。
记得大一下学期,我们金工实习了,看到工训下面那么多的车床,铣床,钻床……由于要提供大的功率,所以主电机都是选用380V。
上完这门让我更详细了解他们内部的结构和工作原理。
还说明知识是慢慢积累的过程。
见的多学的多。
我明白了很多以前的疑惑。
看到电视机上那些智能机器人,他们的活动很自如,就像仿生肌肉一样。
尤其是日本的机器人。
它的机械臂很有可能是步进电机控制的,还有一种说法是液压与气压控制的。
我觉的两者都有。
很有幸大一时候进入了第二课堂,在里面学到东西,也接触了步进电机,我是在学51单片机那时候也买了一个,就觉得很神奇。
在加上前几天参加了江西省电子设计大赛,我就感觉到要是要选控制类的题目做,步进电机是不能少的。
所以步进电机是个好东西。
我在网上查了一下资料,上个世纪就出现了步进电机,它是一种可以自由回转的电磁铁,动作原理和今天的反应式步进电机没有什么区别,也是依靠气隙磁导的变化来产生电磁转矩。
很遗憾的是它是国外人发明的。
开始写正题了,上完这门课,那个步进电机是让我很痴迷的。
步进电机的速度控制和位移控制公式
步进电机的速度控制和位移控制公式下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!步进电机是一种常见的电动机,用于控制机械系统的运动。
步进电机的调速原理
步进电机的调速原理
调速原理是指控制步进电机转速的方法。
常见的调速原理有以下几种:
1. 定常电流控制:通过控制步进电机的驱动电流大小来实现调速。
电机转速与驱动电流成正比关系,增大电流可以提高转速,减小电流可以降低转速。
2. 单微步调速:通过改变步进电机的微步数来实现调速。
步进电机分为全步和微步两种工作模式,全步每转一周,电机转动一个完整的步距角,而微步则是将步距角进一步细分。
通常通过控制电机可执行的微步数,来调控电机的转速。
3. 物理机械调速:通过改变步进电机的负载来实现调速。
例如,在电机轴上增加负载可以降低转速,减小负载则可以提高转速。
4. 闭环调速:通过反馈系统来实现闭环控制,实时调整电机驱动信号以达到预定转速。
常见的闭环调速方法有位置反馈和速度反馈。
位置反馈通常使用编码器等装置来实时监测电机转动角度,根据误差信号调整驱动信号;速度反馈则是通过速度传感器实时监测电机转速,并根据误差信号进行调整。
这些调速原理可以根据实际需求进行选择和组合,以实现步进电机的精确调速。
步进电机调速原理
步进电机调速原理
步进电机是一种特殊的直线或旋转电机,具有可以控制位置和速
度的优点。
调速是步进电机的主要应用之一,它可以通过改变电流的
频率或者改变电源电压来实现调速。
步进电机调速原理主要有以下几种:
一、微步控制调速原理
微步控制是一种在控制电流中引入微小的时间对称脉冲,以实现
对步进电机转速的调节。
微步控制可以分为全步、半步、四分之一步、八分之一步等多种不同步数的控制方式,是一种高精度、低噪音、低
振动的调速方式。
二、调整电源电压原理
步进电机的转速与电源电压成正比,因此调节电源电压可以实现
调速。
调节电源电压时需要注意:调节电源电压过高会使步进电机发热,短时间内甚至会烧坏电机;过低电压会影响电机的动力性能和工
作效率。
三、控制脉冲频率原理
步进电机的转速与控制脉冲的频率成反比,因此调整控制脉冲的
频率可以实现调速。
这种调速方式需要合理地选择驱动器的细分,以
提高脉冲频率的精度和稳定性,从而实现平稳的调速效果。
四、增强电流控制原理
增强电流控制是一种通过增加电机的驱动电流来提高电机输出功
率和动力性能的控制方式。
在这种调速方式下,电机的驱动电流可以
随着转动速度的变化而逐渐增加,从而实现高速、高扭矩的调速效果。
综上所述,步进电机调速原理主要包括微步控制、调整电源电压、控制脉冲频率和增强电流控制等多种方式。
在实际应用中,我们可以
根据不同的需求和实际情况选择最合适的调速方式来实现调速效果。
步进电机运动规律及速度控制方法
步进电机运动规律及速度控制方法姓名:吴良辰班级:10机设(2)学号:201010310206学期我们专业开设了机电传动控制这么课,它是机电一体化人才所需要知识结构的躯体,由于电力传动控制装置和机械设备是一个不可分割的整体,所以我么能从中了解到机电传动控制的一般知识,要掌握电机、电器、晶闸管等工作原理、特性、应用和选用的方法。
了解最新控制技术在机械设备中的应用。
在现代工业中,机电传动不仅包括拖动生产机械的电动机,而且还包括控制电动机的一整套控制,以满足生产过程自动化的要求。
也就是说,现代机电传动是和各种控制元件组成的自动控制系统联系在一起。
机电系统一般可分为图一所示的三个部分。
图1 机电传动控制在没上这门课之前,在我自己认为,电机就是那些就是高中学的那些直流电动机,就是通电线圈在磁场转动。
那是直流电动机了,慢慢的我接触了交流电动机,刚开始知道220V市电。
记得大一下学期,我们金工实习了,看到工训下面那么多的车床,铣床,钻床……由于要提供大的功率,所以主电机都是选用380V。
上完这门让我更详细了解他们内部的结构和工作原理。
还说明知识是慢慢积累的过程。
见的多学的多。
我明白了很多以前的疑惑。
看到电视机上那些智能机器人,他们的活动很自如,就像仿生肌肉一样。
尤其是日本的机器人。
它的机械臂很有可能是步进电机控制的,还有一种说法是液压与气压控制的。
我觉的两者都有。
很有幸大一时候进入了第二课堂,在里面学到东西,也接触了步进电机,我是在学51单片机那时候也买了一个,就觉得很神奇。
在加上前几天参加了江西省电子设计大赛,我就感觉到要是要选控制类的题目做,步进电机是不能少的。
所以步进电机是个好东西。
我在网上查了一下资料,上个世纪就出现了步进电机,它是一种可以自由回转的电磁铁,动作原理和今天的反应式步进电机没有什么区别,也是依靠气隙磁导的变化来产生电磁转矩。
很遗憾的是它是国外人发明的。
开始写正题了,上完这门课,那个步进电机是让我很痴迷的。
如何控制步进电机速度(即如何计算脉冲频率)
如何控制步进电机速度(即如何计算脉冲频率)步进电机是一种常用的控制器件,它通过接收脉冲信号来进行精确的位置控制。
控制步进电机的速度就是控制脉冲的频率,也就是发送给电机的脉冲数目和时间的关系。
下面将介绍几种常见的方法来控制步进电机的速度。
1.简单定频控制方法:这种方法通过固定每秒脉冲数(也称为频率)来控制步进电机的速度。
通常,在开发步进电机控制系统时,我们会选择一个合适的频率,然后通过改变脉冲的间隔时间来调整步进电机的速度。
脉冲频率可以通过以下公式计算:频率=目标速度(转/秒)×每转需要的脉冲数。
2.脉冲宽度调制(PWM)控制方法:使用PWM调制技术可以在不改变脉冲频率的情况下改变脉冲的时间宽度,从而控制步进电机的速度。
通过改变每个脉冲的高电平时间和低电平时间的比例,可以实现步进电机的速度控制。
较长的高电平时间会导致步进电机转动较快,而较短的高电平时间会导致步进电机转动较慢。
3.脉冲加速与减速控制方法:步进电机的加速和减速是通过改变脉冲信号的频率和间隔时间来实现的。
在加速时,脉冲的频率逐渐增加,间隔时间逐渐减小,从而使步进电机从静止状态加速到目标速度。
在减速时,脉冲的频率逐渐减小,间隔时间逐渐增加,从而使步进电机从目标速度减速到静止状态。
在实际应用中,可以通过编程控制脉冲信号的频率来控制步进电机的速度。
根据不同的需求,可以选择适合的控制方法来实现步进电机的精准控制。
除了控制脉冲频率,步进电机的速度还受到其他因素的影响,如驱动器的最大输出速度、电机的最大速度等。
因此,在进行步进电机速度控制时,还需要考虑这些因素,并做好相应的调整以确保步进电机的正常运行。
步进电机运动规律及速度控制方法
步进电机运动规律及速度控制方法姓名:吴良辰班级:10机设(2)学号:0206学期我们专业开设了机电传动控制这么课,它是机电一体化人才所需要知识结构的躯体,由于电力传动控制装置和机械设备是一个不可分割的整体,所以我么能从中了解到机电传动控制的一般知识,要掌握电机、电器、晶闸管等工作原理、特性、应用和选用的方法。
了解最新控制技术在机械设备中的应用。
在现代工业中,机电传动不仅包括拖动生产机械的电动机,而且还包括控制电动机的一整套控制,以满足生产过程自动化的要求。
也就是说,现代机电传动是和各种控制元件组成的自动控制系统联系在一起。
机电系统一般可分为图一所示的三个部分。
图1 机电传动控制在没上这门课之前,在我自己认为,电机就是那些就是高中学的那些直流电动机,就是通电线圈在磁场转动。
那是直流电动机了,慢慢的我接触了交流电动机,刚开始知道220V市电。
记得大一下学期,我们金工实习了,看到工训下面那么多的车床,铣床,钻床……由于要提供大的功率,所以主电机都是选用380V。
上完这门让我更详细了解他们内部的结构和工作原理。
还说明知识是慢慢积累的过程。
见的多学的多。
我明白了很多以前的疑惑。
看到电视机上那些智能机器人,他们的活动很自如,就像仿生肌肉一样。
尤其是日本的机器人。
它的机械臂很有可能是步进电机控制的,还有一种说法是液压与气压控制的。
我觉的两者都有。
很有幸大一时候进入了第二课堂,在里面学到东西,也接触了步进电机,我是在学51单片机那时候也买了一个,就觉得很神奇。
在加上前几天参加了江西省电子设计大赛,我就感觉到要是要选控制类的题目做,步进电机是不能少的。
所以步进电机是个好东西。
我在网上查了一下资料,上个世纪就出现了步进电机,它是一种可以自由回转的电磁铁,动作原理和今天的没有什么区别,也是依靠气隙磁导的变化来产生电磁转矩。
很遗憾的是它是国外人发明的。
开始写正题了,上完这门课,那个步进电机是让我很痴迷的。
步进电机在位置控制,速度,控制方面有着卓越的作用,是其他电机无法比拟的。
步进电机运行原理
步进电机运行原理
步进电机,又称脉冲式电机,是指在驱动电路的控制下,步进电机每步(步)转一格的同时发出一次脉冲信号,其转速与所发脉冲数成正比。
由于每步的步进值是事先规定好的,且步进电机只能以固定的步进值转动,故称为“步进”电机。
其原理是通过对脉冲信号的接收、译码、比较及执行等一系列过程而实现准确定位、无超调、无振动等。
步进电机按输入脉冲数分为单周期、双周期和多周期三种。
通常以单相输入脉冲数为例,将输入的脉冲数乘以电机的转一圈所需时间即可得到电机旋转一周所需的脉冲数。
步进电机又称编码器,其工作原理是把待测位置的信息转换成电信号(脉冲)输出,然后根据该信号控制步进电机转动一圈。
步进电机工作时,电磁铁的气隙中产生一个与输入脉冲相对应的脉冲信号(电平),由专用电路将该信号转换为电平,驱动步进电动机转子旋转一定角度后停止。
此时电磁铁所吸起的位置称为输入位置。
由于电机转动一周只需一步,所以叫做步进。
—— 1 —1 —。
步进电机运动规律及速度控制方法
步进电机运动规律及速度控制方法姓名:吴良辰班级:10机设(2)学号:201010310206学期我们专业开设了机电传动控制这么课,它是机电一体化人才所需要知识结构的躯体,由于电力传动控制装置和机械设备是一个不可分割的整体,所以我么能从中了解到机电传动控制的一般知识,要掌握电机、电器、晶闸管等工作原理、特性、应用和选用的方法。
了解最新控制技术在机械设备中的应用。
在现代工业中,机电传动不仅包括拖动生产机械的电动机,而且还包括控制电动机的一整套控制,以满足生产过程自动化的要求。
也就是说,现代机电传动是和各种控制元件组成的自动控制系统联系在一起。
机电系统一般可分为图一所示的三个部分。
图1 机电传动控制在没上这门课之前,在我自己认为,电机就是那些就是高中学的那些直流电动机,就是通电线圈在磁场转动。
那是直流电动机了,慢慢的我接触了交流电动机,刚开始知道220V市电。
记得大一下学期,我们金工实习了,看到工训下面那么多的车床,铣床,钻床……由于要提供大的功率,所以主电机都是选用380V。
上完这门让我更详细了解他们内部的结构和工作原理。
还说明知识是慢慢积累的过程。
见的多学的多。
我明白了很多以前的疑惑。
看到电视机上那些智能机器人,他们的活动很自如,就像仿生肌肉一样。
尤其是日本的机器人。
它的机械臂很有可能是步进电机控制的,还有一种说法是液压与气压控制的。
我觉的两者都有。
很有幸大一时候进入了第二课堂,在里面学到东西,也接触了步进电机,我是在学51单片机那时候也买了一个,就觉得很神奇。
在加上前几天参加了江西省电子设计大赛,我就感觉到要是要选控制类的题目做,步进电机是不能少的。
所以步进电机是个好东西。
我在网上查了一下资料,上个世纪就出现了步进电机,它是一种可以自由回转的电磁铁,动作原理和今天的没有什么区别,也是依靠气隙磁导的变化来产生电磁转矩。
很遗憾的是它是国外人发明的。
开始写正题了,上完这门课,那个步进电机是让我很痴迷的。
步进电机pwm调速原理
步进电机PWM调速原理概述步进电机是一种常见的电动机类型,它能够将电能转化为机械转动。
在许多应用中,需要对步进电机进行调速以满足不同的需求。
在本文中,我们将探讨步进电机PWM调速原理及其工作原理。
什么是步进电机PWM调速PWM(Pulse Width Modulation)调速是一种常用的电路调速技术,通过调节电源电压的占空比,控制驱动电机的平均功率,进而改变电机的转速。
步进电机工作原理步进电机是一种离散运动的电机,它通过不同相位电流的切换,使得电机转子按一定角度步进。
步进电机由定子和转子组成,定子上有若干组线圈。
步进电机驱动电路步进电机驱动电路主要由大功率开关管和弱驱动电路组成。
在驱动电路中,PWM调速是常见的一种方法。
电压调整方式步进电机的速度与输入电压成正比,因此通过调整输入电压的大小,可以实现步进电机的调速。
在步进电机驱动电路中,常用的方法是通过调整驱动电源的电压来控制步进电机的转速。
PWM调速原则PWM调速原则是通过改变电源电压的占空比来改变步进电机的转速。
占空比是指一个周期内,高电平的时间与周期的比值。
占空比越小,平均输出电压也越小,电机转速也越慢。
步进电机PWM调速的实现步骤步进电机PWM调速的实现步骤如下:1.设定目标转速2.根据目标转速计算占空比3.设置PWM调速电路4.运行步进电机步进电机PWM调速的优缺点步进电机PWM调速具有以下优点:•调速范围广:PWM调速可以实现步进电机在较宽范围内的调速,满足不同应用需求。
•响应速度快:PWM调速可以快速调节电机速度,满足实时性要求。
•控制精度高:由于PWM调速可以实现电机转速的精确控制,因此可以实现高精度的转速控制。
步进电机PWM调速的缺点包括: - 电路复杂:步进电机PWM调速需要专门的电路设计和控制,相对于简单的电压调整方式,电路复杂度较高。
- 对电机有一定要求:步进电机PWM调速对步进电机的特性参数有一定要求,不同的电机可能需要不同的调速电路。
什么是步进电机?怎样控制速度?
什么是步进电机?怎样控制速度?什么是步进电机?怎样控制速度?1.什么是步进电机?步进电机是一种将电脉冲转化为角位移的执行机构。
通俗一点讲:当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度(及步进角)。
您可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;同时您可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。
2.步进电机分哪几种?步进电机分三种:永磁式(PM),反应式(VR)和混合式(HB)永磁式步进一般为两相,转矩和体积较小,步进角一般为7.5度或15度;反应式步进一般为三相,可实现大转矩输出,步进角一般为1.5度,但噪声和振动都很大。
在欧美等发达国家80年代已被淘汰;混合式步进是指混合了永磁式和反应式的优点。
它又分为两相和五相:两相步进角一般为1.8度而五相步进角一般为 0.72度。
这种步进电机的应用最为广泛。
3.什么是保持转矩(HOLDING TORQUE)?保持转矩(HOLDING TORQUE)是指步进电机通电但没有转动时,定子锁住转子的力矩。
它是步进电机最重要的参数之一,通常步进电机在低速时的力矩接近保持转矩。
由于步进电机的输出力矩随速度的增大而不断衰减,输出功率也随速度的增大而变化,所以保持转矩就成为了衡量步进电机最重要的参数之一。
比如,当人们说2N.m 的步进电机,在没有特殊说明的情况下是指保持转矩为2N.m的步进电机。
4.什么是DETENT TORQUE?DETENT TORQUE 是指步进电机没有通电的情况下,定子锁住转子的力矩。
TORQUE 在国内没有统一的翻译方式,容易使大家产生误解;由于反应式步进电机的转子不是永磁材料,所以它没有DETENTTORQUE。
5.步进电机精度为多少?是否累积?一般步进电机的精度为步进角的3-5%,且不累积。
6.步进电机的外表温度允许达到多少?步进电机温度过高首先会使电机的磁性材料退磁,从而导致力矩下降乃至于失步,因此电机外表允许的最高温度应取决于不同电机磁性材料的退磁点;一般来讲,磁性材料的退磁点都在摄氏130度以上,有的甚至高达摄氏200度以上,所以步进电机外表温度在摄氏80-90度完全正常。
步进电机的速度控制及运动规划.
步进电机的速度控制及运动规划步进电机区别于其他控制用途电机的最大特点是,它可接受数字控制信号(电脉冲信号)并转化成与之相对应的角位移或直线位移,因而本身就是一个完成数字模拟转化的执行元件。
而且它能进行开环位置控制,输入一个脉冲信号就得到一个规定的位置增量。
这样的增量位置控制系统与传统的直流伺服系统相比,其成本明显降低,几乎不必进行系统调整。
因此,步进电机广泛应用于数控机床、机器人、遥控、航天等领域,特别是微型计算机和微电子技术的发展,使步进电机获得更为广泛的应用。
步进电机的速度特性步进电机的转速取决于脉冲频率、转子齿数和拍数。
其角速度与脉冲频率成正比,而且在时间上与脉冲同步。
因而在转子齿数和运行拍数一定的情况下,只要控制脉冲频率即可获得所需速度。
由于步进电机是借助它的同步转矩而启动的,为了不发生失步,启动频率是不高的。
特别是随着功率的增加,转子直径增大,惯量增大,启动频率和最高运行频率可能相差10倍之多。
为了充分发挥电机的快速性能,通常使电机在低于启动频率下启动,然后逐步增加脉冲频率直到所希望的速度,所选择的变化速率要保证电机不发生失步,并尽量缩短启动加速时间。
为了保证电机的定位精度,在停止以前必须使电机从最高速度逐步减小脉冲率降到能够停止的速度(等于或稍大于启动速度)。
因此,步进电机拖动负载高速移动一定距离并精确定位时,一般来说都应包括“启动-加速-高速运行(匀速)-减速-停止”五个阶段,速度特性通常为梯形,如果移动的距离很短则为三角形速度特性,如图1所示。
图1 步进电机的速度曲线步进电机控制系统结构PC机在适当的时刻通过对硬件控制电路上的8253计数器0赋初值,设置好加减速过程的频率变化(即速度、加速度变化),以防止失步。
例如,在点位控制中设置好速度曲线图,在起动和升速时,使步进电机产生足够的转矩驱动负载,跟上规定的速度和加速度;在减速时,下降特性使负载不产生过冲,停止在规定的位置。
硬件控制电路板上的8253产生脉冲方波作为中断信号源,启动细分驱动电路中的固化程序以产生一定频率的脉冲,经功率放大后驱动步进电机运动。
步进电机速度控制方法介绍
步进电机只能够由数字信号控制运行的,当脉冲提供给驱动器时,在过于短的时间里,控制系统发出的脉冲数太多,也就是脉冲频率过高,将导致步进电机堵转。
要解决这个问题,必须采用加减速的办法。
就是说,在步进电机起步时,要给逐渐升高的脉冲频率,减速时的脉冲频率需要逐渐减低。
这就是我们常说的“加减速”方法。
步进电机转速度是根据输入的脉冲信号的变化来改变的,从理论上讲,给驱动器一个脉冲,步进电机就旋转一个步距角(细分时为一个细分步距角)。
实际上,如果脉冲信号变化太快,步进电机由于内部的反向电动势的阻尼作用,转子与定子之间的磁反应将跟随不上电信号的变化,将导致堵转和丢步。
所以步进电机在高速启动时,需要采用脉冲频率升速的方法,在停止时也要有降速过程,以保证实现步进电机精密定位控制。
加速和减速的原理是一样的。
以加速实例加以说明:加速过程是由基础频率(低于步进电机的直接起动最高频率)与跳变频率(逐渐加快的频率)组成加速曲线(降速过程反之)。
跳变频率是指步进电机在基础频率上逐渐提高的频率,此频率不能太大,否则会产生堵转和丢步。
加减速曲线一般为指数曲线或经过修调的指数曲线,当然也可采用直线或正弦曲线等。
使用单片机或者PLC,都能够实现加减速控制。
对于不同负载、不同转速,需要选择合适的基础频率与跳变频率,才能够达到最佳控制效果。
指数曲线,在软件编程中,先算好时间常数存贮在计算机存贮器内,工作时指向选取。
通常,完成步进电机的加减速时间为300ms以上。
如果使用过于短的加减速时间,对绝大多数步进电机来说,就会难以实现步进电机的高速旋转。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
步进电机的速度控制及运动规律
步进电机区别于其他控制用途电机的最大特点是,它可接受数字控制信号(电脉冲信号)并转化成与之相对应的角位移或直线位移,因而本身就是一个完成数字模拟转化的执行元件。
而且它能进行开环位置控制,输入一个脉冲信号就得到一个规定的位置增量。
这样的增量位置控制系统与传统的直流伺服系统相比,其成本明显降低,几乎不必进行系统调整。
因此,步进电机广泛应用于数控机床、机器人、遥控、航天等领域,特别是微型计算机和微电子技
术的发展,使步进电机获得更为广泛的应用。
步进电机的速度特性
步进电机的转速取决于脉冲频率、转子齿数和拍数。
其角速度与脉冲频率成正比,而且在时间上与脉冲同步。
因而在转子齿数和运行拍数一定的情况下,只要控制脉冲频率即可获得所需速度。
由于步进电机是借助它的同步转矩而启动的,为了不发生失步,启动频率是不高的。
特别是随着功率的增加,转子直径增大,惯量增大,启动频率和最高运行频率可能相差10
倍之多。
为了充分发挥电机的快速性能,通常使电机在低于启动频率下启动,然后逐步增加脉冲频率直到所希望的速度,所选择的变化速率要保证电机不发生失步,并尽量缩短启动加速时间。
为了保证电机的定位精度,在停止以前必须使电机从最高速度逐步减小脉冲率降到能够停止的速度(等于或稍大于启动速度)。
因此,步进电机拖动负载高速移动一定距离并精确定位时,一般来说都应包括“启动-加速-高速运行(匀速)-减速-停止”五个阶段,速度特性通常为梯形,如果移动的距离很短则为三角形速度特性,如图1所示。
图1 步进电机的速度曲线
步进电机控制系统结构
PC机在适当的时刻通过对硬件控制电路上的8253计数器0赋初值,设置好加减速过程的频率变化(即速度、加速度变化),以防止失步。
例如,在点位控制中设置好速度曲线图,在起动和升速时,使步进电机产生足够的转矩驱动负载,跟上规定的速度和加速度;在减速时,下降特性使负载不产生过冲,停止在规定的位置。
硬件控制电路板上的8253产生脉冲方波作为中断信号源,启动细分驱动电路中的固化程序以产生一定频率的脉冲,经功率放大后驱动步进电机运动。
步进电机运动方向的改变及启动和停止均由计算机控制硬件控制电路实
现。
图2 步进电机控制系统
软件和硬件结合起来一起进行控制,具有电路简单、控制方便等优点。
在这种控制中,微机软件占用的存储单元少,程序开发不受定时限制。
只要外部中断允许,微机就能在电机的每一步之间自由地执行其他任务,以实现多台步进电机的运动控制。
定时器初值的确定
步进电机的实时控制运用PC机,脉冲方波的产生采用8253定时器,其计数器0工作于方式0以产生脉冲方波,计数器1工作于方式1起记数作用,8253计数器0的钟频由2MHz 晶振提供。
设计算机赋给8253计数器0的初值为D1,则产生的脉冲方波频率为f1=f0/D1,周期为T1=1/f1=D1/f0,D1=f0T1=f0/f1。
其中,f1为启动频率,f0为晶振频率。
步进电机升降速数学模型
为使步进电机在运行中不出现失步现象,一般要求其最高运行频率应小于(或等于)步进响应频率fs。
在该频率下,步进电机可以任意启动、停止或反转而不发生失步现象。
步进电机升降速有两种驱动方式,即三角形与梯形驱动方式(见图1),而三角形驱动方式是梯形驱动的特例,因而我们只要研究梯形方式。
电机的加速和减速是通过计算机不断地修改定时器初值来实现的。
在电机加速阶段,从启动瞬时开始,每产生一个脉冲,定时器初值减小某一定值,则相应的脉冲周期减小,即脉冲频率增加;在减速阶段,定时器初值不断增加,则相应的脉冲周期增大,脉冲频率减小,对应梯形脉冲频率特性的减速阶段。
该设计的关键是确定脉冲定时tn,脉冲时间间隔即脉冲周期Tn和脉冲频率fn。
假设从启动瞬时开始计算脉冲数,加速阶段的脉冲数为n,并设启动瞬时为计时起点,定时器初值为D1,定时器初值的减量为△。
从加速阶段的物理过程可知,第一个脉冲周期,即启动时的脉冲周期T1=D1/f0,t1= 0。
由于定时器初值的修改,第2个脉冲周期T2=(D1-△)/f0=T1-△/f0,脉冲定时t2=T1,则第n个脉冲的周期为:
Tn=T1-(n-1)△/f0 (1)
脉冲定时为:
(2)
脉冲频率为:
1/fn=Tn=T1-(n-1)△/f0 (3)
上式分别显示了脉冲数n与脉冲频率fn和时间tn的关系。
令△/f0=δ,即加速阶段相邻两脉
冲周期的减量,则上述公式简化为:
tn=(n-1)T1-(n-2)(n-1)δ/2 (4)
1/fn=T1-(n-1)δ (5)
联立(4)、(5),并简化fn与tn的关系,得出加速阶段的数学模型为:
(6)
其中,是常数,其值与定时器初值及定时器变化量有关,A=-δ, B=(2T1+δ)2,C=8δ。
加速阶段脉冲频率的变化为:
(7)
从(6)、(7)式可以看出,在加速阶段,脉冲频率不断升高,且加速度以二次函数增加。
这种加速方法对步进电机运行十分有利,因为启动时,加速度平缓,一旦步进电机具有一定的速度,加速度增加很快。
这样一方面使加速度平稳过渡,有利于提高机器的定位精度,另一方
面可以缩短加速过程,提高快速性能。
对于减速阶段,按照与上述类似的分析方法,可以得出脉冲频率特性的表达方式为:
(8)
(9)
其中,A=-δ, B=(2T1-δ)2,C=8δ,T1为减速开始时脉冲周期,δ为减速阶段相邻两个脉冲周期的增量。
由于T1>>δ,则B=4T12,由(8)、(9)式可以看出,脉冲频率在减速阶段不断下降,且加速度为负,绝对值以二次函数减小。
这种减速性能对步进电机同样有利,它使步进电机在减速时能够平稳地停止而没有冲击,提高了机器的定位精度。
综上所述,可以得出本设计的脉冲频率特性(见图3)。
图3 脉冲频率特性
实验及总结
该方法已经成功的应用于本人设计的智能运动控制单元,通过开发Windows环境下的控制软件,利用VC++设计良好的控制接口界面,方便地实现了运动方式、速度、加减速的选择和位置控制,具有一定程度的智能。
该控制单元减少了PC机被占用时间,以便于在电机运行的同时去完成别的工作,从而实现了三台步进电机的加减速和速度及位置控制。
并且利用了细分驱动电源,提高了步进精度和定位精度。