2009年-2019年湖南省普通高中学业水平考试数学试题及答案

合集下载

湖南省高中会考(2009-2014年)——普通高中学业水平考试数学试卷及答案

湖南省高中会考(2009-2014年)——普通高中学业水平考试数学试卷及答案

科目:数学(试题卷)注意事项:1.答题前,考生务必将自己的姓名、准考证号写在答题卡和本试题卷的封面上,并认真核对答题卡条形码上的姓名、准考证号和科目。

2.选择题和非选择题均须在答题卡上作答,在本试题卷和草稿纸上作答无效。

考生在答题卡上按答题卡中注意事项的要求答题。

3.本试题卷共7页。

如缺页,考生须及时报告监考老师,否则后果自负。

4.考试结束后,将本试题卷和答题卡一并交回。

姓名____________________________准考证号____________________________祝你考试顺利!2009年湖南省普通高中学业水平考试试卷数学本试题卷包括选择题、填空题和解答题三部分,共5页.时量120分钟.满分100分.一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.5.已知集合A{1,0,1,2},B{2,1,2},则AB().A.{1}B.{2}A=9C.{1,2}D.{2,0,1,2}A=A+136.若运行右图的程序,则输出的结果是().PRINTAA.4B.13ENDC.9D.22(第2题图)7.将一枚质地均匀的骰子抛掷一次,出现“正面向上的点数为6”的概率是().A. 13B.14C.15D.168.sincos44的值为().A. 12B.22C.24D.29.已知直线l过点(0,7),且与直线y4x2平行,则直线l的方程为().A.y4x7B.y4x7C.y4x7D.y4x710.已知向量a(1,2),b(x,1),若ab,则实数x的值为().A.2B.2C.1D.111.已知函数f(x)的图象是连续不断的,且有如下对应值表:x12345fx42147()在下列区间中,函数f(x)必有零点的区间为().A.(1,2)B.(2,3)C.(3,4)D.(4,5)12.已知直线l:yx1和圆C: 221xy,则直线l和圆C的位置关系为().A.相交B.相切C.相离D.不能确定13.下列函数中,在区间(0,)上为增函数的是().A. 1xy()ylogxB.C.3y1xD.ycosx xy114.已知实数x、y满足约束条件,则zyx的最大值为().x0y0A.1B.0C.1D.2二、填空题:本大题共5小题,每小题4分,共20分.15.已知函数f(x)2(0)xxxx1(x0),则f(2).(2)化成十进制数为.16.把二进制数10117.在△ABC中,角A、B的对边分别为a、b,A60,a3,B30,则b=.18.如图是一个几何体的三视图,该几何体的体积为.2233正视图侧视图2 CMAB俯视图(第14题图)(第15题图)19.如图,在△ABC中,M是BC的中点,若ABACAM,则实数=.三、解答题:本大题共5小题,共40分.解答应写出文字说明、证明过程或演算步骤.20.(本小题满分6分)已知函数()2sin()fxx,xR.3 (1)写出函数f(x)的周期;(2)将函数f(x)图象上的所有的点向左平行移动个单位,得到函数g(x)的图象,写出函数g(x)的表3达式,并判断函数g(x)的奇偶性.21.(本小题满分8分)某市为节约用水,计划在本市试行居民生活用水定额管理,为了较为合理地分组频数频率确定居民日常用水量的标准,通过抽样获得了100位居民某年的月均用水量(单[0,1)100.10位:吨),右表是100位居民月均用水量的频率分布表,根据右表解答下列问[1,2)a0.20题:(1)求右表中a和b的值;[2,3)300.30(2)请将频率分布直方图补充完整,并根据直方图估计该市每位居民月均用[3,4)20b水量的众数.[4,5)100.10[5,6]100.10合计1001.00(第17题图)22.(本小题满分8分)如图,在四棱锥P-ABCD中,底面ABCD是正方形,PA底面ABCD,且PA=AB.(1)求证:BD平面PAC;P(2)求异面直线BC与PD所成的角.ADBC(第18题图)23.(本小题满分8分)如图,某动物园要建造两间完全相同的矩形熊猫居室,其总面积为24平方米,设熊猫居室的一面墙AD 的长为x米(2x6).(1)用x表示墙AB的长;(2)假设所建熊猫居室的墙壁造价(在墙壁高度一定的前提下)为每米1000元,请将墙壁的总造价y(元)表示为x(米)的函数;(3)当x为何值时,墙壁的总造价最低?DFCxAEB(第19题图)24.(本小题满分10分)在正项等比数列{}a中,a14,a364.n(1)求数列{a n}的通项公式a n;(2)记b n log4a n,求数列{b n}的前n项和S n;(3)记24,ym对于(2)中的S n,不等式yS n对一切正整数n及任意实数恒成立,求实数m的取值范.围湖南省普通高中学业水平考试数学测试卷参考答案一、选择题(每小题4分,共40分)12345678910题号答案CDDACBBABA二、填空题(每小题4分,共20分)25.;12.5;13.1;14.3;15.2三、解答题16.解:(1)周期为2⋯⋯⋯⋯⋯⋯⋯⋯⋯3分(2)g(x)2sinx,⋯⋯⋯⋯⋯⋯⋯⋯⋯5分g(x)2sin(x)2sinxg(x)g(x)所以g(x)为奇函数⋯⋯⋯⋯⋯⋯⋯⋯6分26.解:(1)a=20;⋯⋯⋯2分b=0.20.⋯⋯⋯4分(2)(第16题图)根据直方图估计该市每位居民月均用水量的众数为2.5⋯⋯⋯⋯⋯⋯8分(说明:第二问中补充直方图与求众数只要做对一个得2分,两个全对的4分.)P27.(1)证明:∵PA平面ABCD,BD平面ABCD,PABD,⋯⋯⋯⋯⋯⋯⋯⋯1分又ABCD为正方形,BDAC,⋯⋯⋯⋯⋯2分而PA,AC是平面PAC内的两条相交直线,AD BD平面PAC⋯⋯⋯⋯⋯⋯⋯⋯4分(2)解:∵ABCD为正方形,BC∥AD,PDA为异面直线BC与AD所成的角,⋯6分B(第17题图)C由已知可知,△PDA为直角三角形,又PAAB,∵PAAD,PDA45,异面直线BC与AD所成的角为45o.⋯⋯⋯⋯⋯⋯⋯⋯8分28.解:(1)ABAD24,ADxAB 24x⋯⋯⋯⋯⋯⋯⋯2分(2)16y3000(x)(2x6)x⋯⋯⋯⋯⋯⋯5分(没写出定义域不扣分)(3)由1616 3000(x)30002x24000xx当且仅当x16x,即x4时取等号x4(米)时,墙壁的总造价最低为24000元. 答:当x为4米时,墙壁的总造价最低.⋯⋯⋯⋯⋯8分29.解:(1).a23qa116 ,解得q4或q4(舍去)q4⋯⋯2分n1n1naa1q444⋯⋯⋯⋯⋯3分(q4没有舍去的得2分) n(2)b logan,⋯⋯⋯5分n4n数列{b n}是首项b11,公差d1的等差数列n(n1)S⋯⋯⋯7分n2(3)解法1:由(2)知,2nn S,n2当n=1时,S取得最小值Sm i n1⋯⋯⋯8分n要使对一切正整数n及任意实数有yS n恒成立,即24m1即对任意实数,241m恒成立,241(2)233,所以m3,故m得取值范围是[3,).⋯⋯⋯⋯⋯10分解法2:由题意得:2121m4nn对一切正整数n及任意实数恒成立,22即211233 m(2)(n),228因为2,n1时,211233 (2)(n)有最小值3,228所以m3,故m得取值范围是[3,).⋯⋯⋯⋯⋯10分2010年湖南省普通高中学业水平考试卷数学本试题卷包括选择题,填空题和解答题三部分,时量120分钟,每分100分一、选择题:本大题共10小题,每小题4分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求1已知集合M={1,2},N={2,3},则MUN=()A{1,2};B{2,3};C{1,3};D{1,2,3}2已知a、b、cR,则(⋯)A,a+c>b+cBacbcCacbcDa+cbc3,下列几何体中,正视图。

2009-2019年湖南省普通高中学业水平考试数学试卷及答案

2009-2019年湖南省普通高中学业水平考试数学试卷及答案

湖南省2009年普通高中学业水平考试数 学一、选择题1. 已知集合A={-1,0,1,2},B={-2,1,2}则A B=(A{1} B.{2} C.{1,2} D.{-2,0,1,2} 2.若运行右图的程序,则输出的结果是 ( ) A.4, B. 9 C. 13 D.223.将一枚质地均匀的 子抛掷一次,出现“正面向上的点数为6”的概率是( ) A.31 B.41 C.51 D.614.4cos4sinππ的值为( )A.21B.22C.42D.25.已知直线l 过点(0,7),且与直线y=-4x+2平行,则直线l 的方程为( ) A.y=-4x-7 B.y=4x-7 C.y=-4x+7 D.y=4x+76.已知向量),1,(),2,1(-==x b a 若b a ⊥,则实数x 的值为( ) A.-2 B.2 C.-1 D.17.已知函数f(x)的图像是连续不断的,且有如下对应值表: 在下列区间中,函数f(x)必有零点的区间为 ( ) A.(1,2) B.(2,3) C.(3,4) D. (4,5)8.已知直线l :y=x+1和圆C :x 2+y 2=1,则直线l 和圆C 的位置关系为( ) A.相交 B.相切 C.相离 D.不能确定 9.下列函数中,在区间(0,+∞)上为增函数的是( ) A.xy )31(= B.y=log 3x C.xy 1= D.y=cosx10.已知实数x,y 满足约束条件⎪⎩⎪⎨⎧≥≥≤+,0,0,1y x y x 则z=y-x 的最大值为( )A.1B.0C.-1D.-2 二、填空题11.已知函数f(x)=⎩⎨⎧<+≥-),0(1)0(2x x x x x 则f(2)=___________.12.把二进制数101(2)化成十进制数为____________.13.在△ABC 中,角A 、B 的对边分别为a,b,A=600,a=3,B=300,则b=__________. 14.如图是一个几何体的三视图,该几何体的体积为_________.15.如图,在△ABC 中,M 是BC 的中点,若,AM AC AB λ=+则实数λ=________.三、解答题16.已知函数f(x)=2sin(x-3π), (1)写出函数f(x)的周期;(2)将函数f(x)图像上所有的点向左平移3π个单位,得到函数g(x)的图像,写出函数g(x)的表达式,并判断函数g(x)的奇偶性.2 223 3ABMC17.某市为了节约生活用水,计划在本市试行居民生活用水定额管理.为了较合理地确定居民日常用水量的标准,有关部门抽样调查了100位居民.右表是这100位居民月均用水量(单位:吨)的频率分布表,根据右表解答下列问题:(1)求右表中a 和b 的值;(2)请将下面的频率分布直方图补充完整,并根据直方图估计该市每位居民月均用水量的众数.18.在四棱锥P-ABCD 中,底面ABCD 是正方形,PA ⊥底面ABCD ,且PA=AB. (1)求证:BD ⊥平面PAC ; (2)求异面直线BC 与PD 所成的角.分组 频数 频率 [0,1) 10 0.1 [1,2) a 0.2 [2,3) 30 0.3 [3,4) 20 b [4,5) 10 0.1 [5,6) 10 0.1 合计10010 1 2 3 4 5 60.3 0.4 频率/组距 月均用水量BCDAP19.如图,某动物园要建造两间完全相同的矩形熊猫居室,其总面积为24平方米,设熊猫居室的一面墙AD 的长为x 米(2≤x ≤6). (1)用x 表示墙AB 的长;(2)假设所建熊猫居室的墙壁造价(在墙壁高度一定的前提下)为每米1000元, 请将墙壁的总造价y(元)表示为x(米)的函数; (3)当x 为何值时,墙壁的总造价最低?20.在正项等比数列{a n }中,a 1=4,a 3=64. (1)求数列{a n }的通项公式a n ;(2)记b n =log 4a n ,求数列{b n }的前n 项和S n ;(3)记y=-λ2+4λ-m,对于(2)中的S n ,不等式y ≤S n 对一切正整数n 及任意实数λ恒成立,求实数m 的取值范围.AEx参考答案 一、选择题二、填空题11.2 12.5 13.1 14.3π 15.2 三、解答题 16.(1)2π(2)g(x)=2sinx ,奇函数. 17.(1)a=20,b=0.2 (2)2.5吨 18.(1)略 (2)450 19.(1)AB=24/x; (2)y=3000(x+x16) (3)x=4,y min =24000. 20.(1)a n =4n ; (2)S n =2)1(+n n (3)m ≥3.2010年湖南省普通高中学业水平考试试卷数 学本试卷包括选择题、填空题和解答题三部分,共3页。

2019年湖南省普通高中学业水平考试数学试卷Word版含答案

2019年湖南省普通高中学业水平考试数学试卷Word版含答案

湖南省普通高中学业水平考试数学试卷一、选择题:本大题共10小题,每小题4分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知等差数列{n a }的前3项分别为2、4、6,则数列{n a }的第4项为A .7B .8C .10D .12 2.如图是一个几何体的三视图,则该几何体为A .球B .圆柱C .圆台D .圆锥 3.函数)2)(1()(+-=x x x f 的零点个数是A .0B .1C .2D .34.已知集合}2,0,1{-=A ,}3,{x =B ,若}2{=B A I ,则x 的值为 A .3 B .2 C .0 D .-15.已知直线1l :12+=x y ,2l :52+=x y ,则直线1l 与2l 的位置关系是 A .重合 B .垂直 C .相交但不垂直 D .平行6.下列坐标对应的点中,落在不等式01<-+y x 表示的平面区域内的是A .(0,0)B .(2,4)C .(-1,4)D .(1,8)7.某班有50名同学,将其编为1、2、3、…、50号,并按编号从小到大平均分成5组.现用系统抽样方法,从该班抽取5名同学进行某项调查,若第1组抽取的学生编号为3,第2组抽取的学生编号为13,则第4组抽取的学生编号为A .14B .23C .33D .438.如图,D 为等腰三角形ABC 底边AB 的中点,则下列等式恒成立的是A .0=⋅CB CA B .0=⋅AB CDC .0=⋅D .0=⋅9.将函数x y sin =的图象向左平移3π个单位长度,得到的图象对应的函数解析式为A .)3sin(π+=x yB .)3sin(π-=x y(第2题图)俯视图(第8题图)CABDC .)32sin(π+=x y D .)32sin(π-=x y 10.如图,长方形的面积为2,将100颗豆子随机地撒在长方形内,其中恰好有60颗豆子落在阴影部分内,则用随机模拟的方法可以估计图中阴影部分的面积为A .32B .54C .56D .34二、填空题:本大题共5小题,每小题4分,满分20分. 11.比较大小:5log 2 3log 2 (填“>”或“<”).12.已知圆4)(22=+-y a x 的圆心坐标为)0,3(,则实数=a .13.某程序框图如图所示,若输入的c b a ,,值分别为3,4,5,则输出的y 值为 . 14.已知角α的终边与单位圆的交点坐标为(23,21),则αcos = . 15.如图,A ,B 两点在河的两岸,为了测量A 、B 之间的距离,测量者在A 的同侧选定一点C ,测出A 、C 之间的距离是100米,∠BAC=105º,∠ACB=45º,则A 、B 两点之间的距离为 米.三、解答题:本大题共5小题,满分40分.解答应写出文字说明、证明过程或演算步骤. 16.(本小题满分6分)已知函数)(x f y =(]6,2[-∈x )的图象如图.根据图象写出: (1)函数)(x f y =的最大值; (2)使1)(=x f 的x 值.(第10题图)(第13题图)(第15题图)(第16题图)一批食品,每袋的标准重量是50g,为了了解这批食品的实际重量情况,从中随机抽取10袋食品,称出各袋的重量(单位:g),并得到其茎叶图(如图).(1)求这10袋食品重量的众数,并估计这批食品实际重量的平均数;(2)若某袋食品的实际重量小于或等于47g,则视为不合格产品,试估计这批食品重量的合格率.18.(本小题满分8分)如图,在四棱柱ABCD-A1B1C1D1中,D1D⊥底面ABCD,底面ABCD是正方形,且AB=1,D1D=2.(1)求直线D1B与平面ABCD所成角的大小;(2)求证:AC⊥平面BB1D1D.4 5 6 6 95 0 0 0 1 1 2(第17题图)(第18题图)A BCDA1B1C1D1已知向量a =(x sin ,1),b =(x cos ,1),∈x R . (1)当4π=x 时,求向量a + b 的坐标;(2)若函数=)(x f |a + b |2m +为奇函数,求实数m 的值. 20.(本小题满分10分)已知数列{n a }的前n 项和为a S n n +=2(a 为常数,∈n N *). (1)求1a ,2a ,3a ;(2)若数列{n a }为等比数列,求常数a n a ;(3)对于(2)中的n a ,记34)(112-⋅-⋅=++n n a a n f λλ,若0)(<n f 对任意的正整数n 恒成立,求实数λ的取值范围.2018年湖南省普通高中学业水平考试数学试卷参考答案二、填空题(每小题4分,满分20分) 11.>; 12. 3; 13.4; 14. 21; 15. 2100. 三、解答题(满分40分)16.解:(1)由图象可知,函数)(x f y =的最大值为2; …………………3分(2)由图象可知,使1)(=x f 的x 值为-1或5. ……………6分 17.解:(1)这10袋食品重量的众数为50(g ), ………………2分 因为这10袋食品重量的平均数为491052515150505049464645=+++++++++(g ), 所以可以估计这批食品实际重量的平均数为49(g ); ……………4分(2)因为这10袋食品中实际重量小于或等于47g 的有3袋,所以可以估计这批食品重量的不合格率为103,故可以估计这批食品重量的合格率为107. 8分 18.(1)解:因为D 1D ⊥面ABCD ,所以BD 为直线B D 1在平面ABCD 内的射影,所以∠D 1BD 为直线D 1B 与平面ABCD 所成的角, …………………2分又因为AB=1,所以BD=2,在Rt △D 1DB 中,1tan 11==∠BDDD BD D , 所以∠D 1BD=45º,所以直线D 1B 与平面ABCD 所成的角为45º; 4分 (2)证明:因为D 1D ⊥面ABCD ,AC 在平面ABCD 内,所以D 1D ⊥AC , 又底面ABCD 为正方形,所以AC ⊥BD , …………………6分 因为BD 与D 1D 是平面BB 1D 1D 内的两条相交直线,所以AC ⊥平面BB 1D 1D . …………………………8分 19.解:(1)因为a =(x sin ,1),b =(x cos ,1),4π=x ,所以a + b )2,2()2,cos (sin =+=x x ; …………………4分 (2)因为a + b )2,cos (sin x x +=,所以m x m x x x f ++=+++=52sin 4)cos (sin )(2, ……………6分因为)(x f 为奇函数,所以)()(x f x f -=-,即m x m x ---=++-52sin 5)2sin(,解得5-=m . ……………8分 注:由)(x f 为奇函数,得0)0(=f ,解得5-=m 同样给分.20.解:(1)211+==a S a , ……………………1分由212a a S +=,得22=a , ……………………2分 由3213a a a S ++=,得43=a ; …………………3分 (2)因为21+=a a ,当2≥n 时,112--=-=n n n n S S a ,又{n a }为等比数列,所以11=a ,即12=+a ,得1-=a , …………5分 故12-=n n a ; …………………………………6分 (3)因为12-=n n a ,所以3242)(2-⋅-⋅=n n n f λλ, ………………7分 令n t 2=,则2≥t ,34)2(34)(22---=-⋅-⋅=λλλλt t t n f , 设34)2()(2---=λλt t g ,当0=λ时,03)(<-=n f 恒成立, …………………8分当0>λ时,34)2()(2---=λλt t g 对应的点在开口向上的抛物线上,所以0)(<n f 不可能恒成立, ……………9分当0<λ时,34)2()(2---=λλt t g 在2≥t 时有最大值34--λ,所以要使0)(<n f 对任意的正整数n 恒成立,只需034<--λ,即43->λ,此时043<<-λ,综上实数λ的取值范围为043≤<-λ. …………………………10分说明:解答题如有其它解法,酌情给分.。

2019年湖南省普通高中学业水平考试数学试卷Word版含答案

2019年湖南省普通高中学业水平考试数学试卷Word版含答案

2019年湖南省普通高中学业水平考试数学试卷一、选择题:本大题共10小题,每小题4分,满分40分.在每小题给出的四个选项中,只有1 A C 2A C 3A 4 A 5A C 6A 7A 8的是A C 9.将函数x y sin =的图象向左平移3π个单位长度,得到的图象对应的函数解析式为A .)3sin(π+=x yB .)3sin(π-=x y(第8题图)DC .)32sin(π+=x y D .)32sin(π-=x y 10.如图,长方形的面积为2,将100颗豆子随机地撒在长方形内,其中恰好有60颗豆子落在阴影部分内,则用随机模拟的方法可以估计图中阴影部分的面积为AC 11.121314.αcos 15A16.(1(2(第16题图)一批食品,每袋的标准重量是50g,为了了解这批食品的实际重量情况,从中随机抽取10袋食品,称出各袋的重量(单位:g),并得到其茎叶图(如图).(1)求这10袋食品重量的众数,并估计这批食品实际重量的平均数;(218.2.(1(2已知向量a =(x sin ,1),b =(x cos ,1),∈x R . (1)当4π=x 时,求向量a + b 的坐标;(2)若函数=)(x f |a + b |2m +为奇函数,求实数m 的值. 20.(本小题满分10分)已知数列{n a }的前n 项和为a S n n +=2(a 为常数,∈n N *). (1)求1a ,2a ,3a ;(2)若数列{n a }为等比数列,求常数a 的值及n a ;(3)对于(2)中的n a ,记34)(112-⋅-⋅=++n n a a n f λλ,若0)(<n f 对任意的正整数n 恒成立,求实数λ的取值范围.2018年湖南省普通高中学业水平考试数学试卷参考答案111617, (218.((19所以a + b )2,2()2,cos (sin =+=x x ; …………………4分 (2)因为a + b )2,cos (sin x x +=,所以m x m x x x f ++=+++=52sin 4)cos (sin )(2, ……………6分因为)xf--,f=(xf为奇函数,所以)(x()即m2-5sin2+)5sin(,解得5mx+x--=-m.……………8分-=注:由))0(=f,解得5f为奇函数,得0(xm同样给分.=-20由由(又故(3令t设g当λλ当>λ当<。

2009-2017年湖南省普通高中学业水平考试数学试卷及答案

2009-2017年湖南省普通高中学业水平考试数学试卷及答案

湖南省2009年普通高中学业水平考试数 学一、选择题1. 已知集合A={-1,0,1,2},B={-2,1,2}则A B=( )A{1} B.{2} C.{1,2} D.{-2,0,1,2} 2.若运行右图的程序,则输出的结果是 ( ) A.4, B. 9 C. 13 D.223.将一枚质地均匀的 子抛掷一次,出现“正面向上的点数为6”的概率是( ) A.31 B.41 C.51 D.614.4cos4sinππ的值为( )A.21 B.22 C.42 D.2 5.已知直线l 过点(0,7),且与直线y=-4x+2平行,则直线l 的方程为( ) A.y=-4x-7 B.y=4x-7 C.y=-4x+7 D.y=4x+76.已知向量),1,(),2,1(-==x b a 若b a ⊥,则实数x 的值为( ) A.-2 B.2 C.-1 D.17.已知函数f(x)的图像是连续不断的,且有如下对应值表: x 1 2 3 4 5 f(x)-4-2147在下列区间中,函数f(x)必有零点的区间为 ( ) A.(1,2) B.(2,3) C.(3,4) D. (4,5)8.已知直线l :y=x+1和圆C :x 2+y 2=1,则直线l 和圆C 的位置关系为( ) A.相交 B.相切 C.相离 D.不能确定 9.下列函数中,在区间(0,+∞)上为增函数的是( ) A.xy )31(= B.y=log 3x C.xy 1= D.y=cosxA=9 A=A+13 PRINT A END10.已知实数x,y 满足约束条件⎪⎩⎪⎨⎧≥≥≤+,0,0,1y x y x 则z=y-x 的最大值为( )A.1B.0C.-1D.-2 二、填空题11.已知函数f(x)=⎩⎨⎧<+≥-),0(1)0(2x x x x x 则f(2)=___________.12.把二进制数101(2)化成十进制数为____________.13.在△ABC 中,角A 、B 的对边分别为a,b,A=600,a=3,B=300,则b=__________. 14.如图是一个几何体的三视图,该几何体的体积为_________.15.如图,在△ABC 中,M 是BC 的中点,若,AM AC AB λ=+则实数λ=________.三、解答题16.已知函数f(x)=2sin(x-3π), (1)写出函数f(x)的周期;(2)将函数f(x)图像上所有的点向左平移3π个单位,得到函数g(x)的图像,写出函数g(x)的表达式,并判断函数g(x)的奇偶性.2 223 3ABMC17.某市为了节约生活用水,计划在本市试行居民生活用水定额管理.为了较合理地确定居民日常用水量的标准,有关部门抽样调查了100位居民.右表是这100位居民月均用水量(单位:吨)的频率分布表,根据右表解答下列问题:(1)求右表中a 和b 的值;(2)请将下面的频率分布直方图补充完整,并根据直方图估计该市每位居民月均用水量的众数.18.在四棱锥P-ABCD 中,底面ABCD 是正方形,PA ⊥底面ABCD ,且PA=AB. (1)求证:BD ⊥平面PAC ; (2)求异面直线BC 与PD 所成的角.19.如图,某动物园要建造两间完全相同的矩形熊猫居室,其总面积为24平方米,设熊猫居分组 频数 频率 [0,1) 10 0.1 [1,2) a 0.2 [2,3) 30 0.3 [3,4) 20 b [4,5) 10 0.1 [5,6) 10 0.1 合计10010 1 2 3 4 5 60.1 0.2 0.3 0.4频率/组距月均用水量BCDAP室的一面墙AD 的长为x 米(2≤x ≤6). (1)用x 表示墙AB 的长;(2)假设所建熊猫居室的墙壁造价(在墙壁高度一定的前提下)为每米1000元, 请将墙壁的总造价y(元)表示为x(米)的函数; (3)当x 为何值时,墙壁的总造价最低?20.在正项等比数列{a n }中,a 1=4,a 3=64. (1)求数列{a n }的通项公式a n ;(2)记b n =log 4a n ,求数列{b n }的前n 项和S n ;(3)记y=-λ2+4λ-m,对于(2)中的S n ,不等式y ≤S n 对一切正整数n 及任意实数λ恒成立,求实数m 的取值范围. 参考答案ABCD EFx一、选择题 题号 1 2 3 4 5 6 7 8 9 10 答案CDDACBBABA二、填空题11.2 12.5 13.1 14.3π 15.2 三、解答题 16.(1)2π(2)g(x)=2sinx ,奇函数. 17.(1)a=20,b=0.2 (2)2.5吨 18.(1)略 (2)450 19.(1)AB=24/x; (2)y=3000(x+x16) (3)x=4,y min =24000. 20.(1)a n =4n ; (2)S n =2)1(+n n (3)m ≥3.2010年湖南省普通高中学业水平考试试卷数 学本试卷包括选择题、填空题和解答题三部分,共3页。

2009-2014年湖南省普通高中学业水平考试数学试卷(含答案)

2009-2014年湖南省普通高中学业水平考试数学试卷(含答案)

2014年湖南省普通高中学业水平考试数学试卷本试卷包括选择题、填空题和解答题三部分,共5页。

时量120分钟,满分100分.一、选择题:本大题共10小题,每小题4分,满分40分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1.如图是一个几何体的三视图,则该几何体为 A.圆柱 B.圆锥 C.圆台 D.球2.已知元素{0,1,2,3}a ∈,且{0,1,2}a ∉,则a 的值为 A.0 B.1 C.2 D.33.在区间[0,5]内任取一个实数,则此数大于3的概率为A.15 B. 25 C.35 D.454.某程序框图如图所示,若输入x 的值为1,则输出y 的值是A.2B.3C.4D.55.在△ABC 中,若0AB AC ⋅=u u u r u u u r,则△ABC 的形状是A.直角三角形B.等腰三角形C.锐角三角形D.钝角三角形 6.sin120o的值为A.2 B.1- C.3 D. 2-7.如图,在正方体1111ABCD A B C D -中,异面直线BD 与11A C 的位置关系是 A.平行 B.相交 C.异面但不垂直 D. 异面且垂直 8.不等式(1)(2)0x x +-≤的解集为A.{|12}x x -≤≤B. {|12}x x -<<C. {|12}x x x ≤-≥或D. {|12}x x x <->或9.点(,1)P m 不在不等式02<-+y x 表示的平面区域内,则实数m 的取值范围是 A.1m < B. 1m ≤ C.1m ≥ D.1m >10.某同学从家里骑车一路匀速行驶到学校,只是在途中遇到一次交通堵塞,耽误了一些时间,下列函数的图像最能符合上述情况的是二、填空题:本大题共5小题,每小题4分,满分20分. 11.样本数据2,0,6,3,6-的众数是 .12.在ABC ∆中, 角A 、B 、C 所对应的边分别为a 、b 、c ,已知11,2,sin 3a b A ===,则sin B = .13.已知a 是函数()22log f x x =-的零点, 则实数a 的值为 . 14.已知函数sin (0)y x ωω=>在一个周期内的图像如图所示,则ω的值为 .15.如图1,矩形ABCD 中,2,,AB BC E F =分别是,AB CD 的中点,现在沿EF 把这个矩形折成一个二面角A EF C --(如图2)则在图2中直线AF 与平面EBCF 所成的角为 .三、解答题:本大题共5小题,满分40分. 解答应写出文字说明、证明过程或演算步骤 . 16.(本小题满分6分)已知函数,[0,2],()4,(2,4].x x f x x x∈⎧⎪=⎨∈⎪⎩(1)画出函数()f x 的大致图像;(2)写出函数()f x 的最大值和单调递减区间.某班有学生50人,其中男同学30人,用分层抽样的方法从该班抽取5人去参加某社区服务活动.(1)求从该班男、女同学中各抽取的人数;(2)从抽取的5名同学中任选2名谈此活动的感受,求选出的2名同学中恰有1名男同学的概率. 18.(本小题满分8分) 已知等比数列{}n a 的公比2q =,且234,1,a a a +成等差数列. (1)求1n a a 及;(2)设n n b a n =+,求数列{}n b 的前5项和5S .已知向量(1,sin ),(2,1).a b θ==r r(1)当6πθ=时,求向量2a b +r r的坐标;(2)若a r ∥b r ,且(0,)2πθ∈,求sin()4πθ+的值.20.(本小题满分10分) 已知圆22:230C x y x ++-=. (1)求圆的圆心C 的坐标和半径长;(2)直线l 经过坐标原点且不与y 轴重合,l 与圆C 相交于1122(,),B(,)A x y x y 两点,求证:1211x x +为定值; (3)斜率为1的直线m 与圆C 相交于,D E 两点,求直线m 的方程,使△CDE 的面积最大.2014年湖南省普通高中学业水平考试数学试卷参考答案及评分标准题号 1 2 3 4 5 6 7 8 9 10 答案CDBBACDACA二 、填空题(每小题4分,满分20分) 11.6 12.23 13.4 14.2 15. 45o (或4π)三 、解答题(满分40分)16. 解:(1)函数()f x 的大致图象如图所示; ……………………………2分 (2)由函数()f x 的图象得出,()f x 的最大值为2, ………………4分其单调递减区间为[]2,4.…………6分17. 解: (1)305350⨯=(人), 205250⨯=(人), 所以从男同学中抽取3人, 女同学中抽取2人; ……………………………………4分 (2)过程略. 3()5P A =. ……………………………………………………………………………8分18. 解: (1)12n n a -=; ………………………………………………………………4分 (2)546S =. ……………………………………………………………………………8分 19. 解: (1)()4,2; …………………………………………………………………4分 (2)26+. ………………………………………………………………………8分 20. 解: (1)配方得()2214x y ++=, 则圆心C 的坐标为()1,0-,……………………2分 圆的半径长为2; ………………………………………………………………………4分 (2)设直线l 的方程为y kx =, 联立方程组22230x y x y kx ⎧++-=⎨=⎩,消去y 得()221230k x x ++-=, ………………………………………………5分则有: 1221222131x x k x x k ⎧+=-⎪⎪+⎨⎪=-⎪+⎩ ………………………………………………6分 所以1212121123x x x x x x ++==为定值. ………………………………………………7分 (3)解法一 设直线m 的方程为y kx b =+, 则圆心C 到直线m 的距离d =所以DE ==, …………………………………8分()2241222CDEd d S DE d d ∆-+=⋅=≤=,当且仅当d =,即d =时, CDE ∆的面积最大, …………………………9分=解之得3b =或1b =-, 故所求直线方程为30x y -+=或10x y --=.……………………………………10分解法二 由(1)知2CD CE R ===, 所以1sin 2sin 22CDE S CD CE DCE DCE ∆=⋅⋅∠=∠≤,当且仅当CD CE ⊥时, CDE ∆的面积最大,此时DE = ………………………………………………………8分 设直线m 的方程为y x b =+ 则圆心C 到直线m的距离d =…………………………………………………9分由DE ==,得d =,=得3b =或1b =-,故所求直线方程为30x y -+=或10x y --=.……………………………………10分(第3题图)俯视图侧视图正视图2013年湖南省普通高中学业水平考试试卷数 学本试题卷包括选择题、填空题和解答题三部分,共5页。

(2021年整理)2009-2017年湖南省普通高中学业水平考试数学试卷及答案

(2021年整理)2009-2017年湖南省普通高中学业水平考试数学试卷及答案

(完整)2009-2017年湖南省普通高中学业水平考试数学试卷及答案编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)2009-2017年湖南省普通高中学业水平考试数学试卷及答案)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)2009-2017年湖南省普通高中学业水平考试数学试卷及答案的全部内容。

湖南省2009年普通高中学业水平考试数 学一、选择题1. 已知集合A={—1,0,1,2},B={—2,1,2}则AA{1} B.{2} C.{1,2} D 。

{—2,02。

若运行右图的程序,则输出的结果是 ( )A 。

4, B. 9 C. 13 D 。

223。

将一枚质地均匀的 子抛掷一次,出现“正面向上的点数为6"的概率是( )A.31 B 。

41 C 。

51 D.61 4.4cos 4sin ππ的值为( )A 。

21B 。

22 C.42 D 。

25。

已知直线l 过点(0,7),且与直线y=-4x+2平行,则直线l 的方程为( ) A 。

y=—4x —7 B.y=4x-7 C.y=—4x+7 D 。

y=4x+7 6。

已知向量),1,(),2,1(-==x b 若⊥,则实数x 的值为( ) A 。

—2 B.2 C 。

—1 D.1 7。

已知函数f (x)的图像是连续不断的,且有如下对应值表: 在下列区间中,函数f(x)必有零点的区间为 ( )A 。

(1,2)B 。

(2,3)C 。

(3,4)D 。

(4,5) 8。

已知直线l:y=x+1和圆C:x 2+y 2=1,则直线l 和圆C 的位置关系为( ) A.相交 B 。

2019湖南省高中学业水平考试数学试卷

2019湖南省高中学业水平考试数学试卷

2019年湖南普通高中学业水平考试试卷(一)数 学本试题卷包括选择题、填空题和解答题三部分.时量120分钟,满分100分.一、选择题:本大题共10小题,每小题4分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{0,1,2}M =,N={1,x },若{0,1,2,3}M N =,则x 的值为( )A .0B .1C .2D .32.已知一个几何体的三视图中有且只有两个视图相同,则该几何体可能是( ).A.圆柱B. 三棱柱C. 球D.正方体3.已知直线:x+y -1=0与圆方程22(2)(1)5x y +++=,则它们位置关系是( )A .相切B .相离C .相交D .相交且过圆心 4.某程序框图如图所示,若输入的c b a ,,值分别为2,4,6,则输出的y 值为 ( )A .2B .4C .6D .85.在区间[0,5]内任取一个实数,则此数大于3的概率为 ( )A .45B .35C .25D .156.已知a是函数 =)(x f 2-)1(log 2-x 的零点, 则实数a的值为( )A .1B .3C .5D .97.已知向量(1,2),(,4)x ==a b ,若a ⊥b ,则实数x 的值为( )A .4B .2C .-2D .-48.设x ,y 满足不等等式组⎪⎩⎪⎨⎧≥+≤≤222y x y x ,则z =x +2y 的最小值为 ( )A .0B .2C .4D .69.若幂函数()y f x =的图像经过点)(2,4,则(25)f 的值是 ( )A .1B .3C .5D .710.已知函数()sin cos =f x x x ,则)(x f 的最大值是 ( )A . 21B .1C .2D . 41 二、填空题:本大题共5小题,每小题4分,满分20分.11. 在ABC ∆中,a 、b 、c 分别为角A 、B 、C 的对边,已知︒=105A ,1=b ,2=c ,则a 等于 。

2009-2017年湖南省普通高中学业水平考试数学试卷及答案

2009-2017年湖南省普通高中学业水平考试数学试卷及答案

湖南省2009年普通高中学业水平考试数 学一、选择题1. 已知集合A={-1,0,1,2},B={-2,1,2}则AB=( )A{1} B.{2} C.{1,2} D.{-2,0,1,2} 2.若运行右图的程序,则输出的结果是 ( ) A.4, B. 9 C. 13 D.223.将一枚质地均匀的 子抛掷一次,出现“正面向上的点数为6”的概率是( ) A. B.C.D.4.的值为( )A. B. C. D.5.已知直线l 过点(0,7),且与直线y=-4x+2平行,则直线l 的方程为( ) A.y=-4x-7 B.y=4x-7 C.y=-4x+7 D.y=4x+76.已知向量若,则实数x 的值为( )A.-2B.2C.-1D.1 7.已知函数f(x)的图像是连续不断的,且有如下对应值表: x 1 2 3 4 5 f(x)-4-2147A.(1,2)B.(2,3)C.(3,4)D. (4,5)8.已知直线l :y=x+1和圆C :x 2+y 2=1,则直线l 和圆C 的位置关系为( ) A.相交 B.相切 C.相离 D.不能确定 9.下列函数中,在区间(0,+)上为增函数的是( )A. B.y=log 3x C.D.y=cosx10.已知实数x,y 满足约束条件则z=y-x 的最大值为( )A.1B.0C.-1D.-2 二、填空题 11.已知函数f(x)=则f(2)=___________.12.把二进制数101(2)化成十进制数为____________. 13.在△ABC 中,角A 、B 的对边分别为a,b,A=600,a=,B=300,则b=__________.14.如图是一个几何体的三视图,该几何体的体积为_________.A=9 A=A+13 PRINT A END15.如图,在△ABC 中,M 是BC 的中点,若则实数=________.三、解答题16.已知函数f(x)=2sin(x-),(1)写出函数f(x)的周期;(2)将函数f(x)图像上所有的点向左平移个单位,得到函数g(x)的图像,写出函数g(x)的表达式,并判断函数g(x)的奇偶性.17.某市为了节约生活用水,计划在本市试行居民生活用水定额管理.为了较合理地确定居民日常用水量的标准,有关部门抽样调查了100位居民.右表是这100位居民月均用水量(单位:吨)的频率分布表,根据右表解答下列问题:(1)求右表中a 和b 的值;(2)请将下面的频率分布直方图补充完整,并根据直方图估计该市每位居民月均用水量的众数.18.在四棱锥P-ABCD 中,底面ABCD 是正方形,PA 底面ABCD ,且PA=AB.(1)求证:BD平面PAC ;(2)求异面直线BC 与PD 所成的角.分组 频数 频率 [0,1) 10 0.1 [1,2) a 0.2 [2,3) 30 0.3 [3,4) 20 b [4,5) 10 0.1 [5,6) 10 0.1 合计1001A BM0.3 0.4 频率/组距 月均用水量19.如图,某动物园要建造两间完全相同的矩形熊猫居室,其总面积为24平方米,设熊猫居室的一面墙AD 的长为x 米(2≤x ≤6). (1)用x 表示墙AB 的长;(2)假设所建熊猫居室的墙壁造价(在墙壁高度一定的前提下)为每米1000元, 请将墙壁的总造价y(元)表示为x(米)的函数; (3)当x 为何值时,墙壁的总造价最低?20.在正项等比数列{a n }中,a 1=4,a 3=64. (1)求数列{a n }的通项公式a n ;(2)记b n =log 4a n ,求数列{b n }的前n 项和S n ; (3)记y=-2+4-m,对于(2)中的S n ,不等式y ≤S n 对一切正整数n 及任意实数恒成立,求实数m 的取值范围.湖南省2009年普通高中学业水平考试参考答案BCDAPBCD Ex数学一、选择题题号 1 2 3 4 5 6 7 8 9 10答案 C D D A C B B A B A11.2 12.5 13.1 14.315.2三、解答题16.(1)2(2)g(x)=2sinx ,奇函数.17.(1)a=20,b=0.2(2)2.5吨18.(1)略(2)45019.(1)AB=24/x;(2)y=3000(x+)(3)x=4,y min=24000.20.(1)a n=4n;(2)S n=(3)m≥3.2010年湖南省普通高中学业水平考试试卷数学本试卷包括选择题、填空题和解答题三部分,共3页。

2009年-2019年湖南省普通高中学业水平考试数学试题及答案

2009年-2019年湖南省普通高中学业水平考试数学试题及答案

湖南省2009年普通高中学业水平考试数 学一、选择题1. 已知集合A={-1,0,1,2},B={-2,1,2}则A B=( )A{1} B.{2} C.{1,2} D.{-2,0,1,2} 2.若运行右图的程序,则输出的结果是 ( ) A.4, B. 9 C. 13 D.223.将一枚质地均匀的 子抛掷一次,出现“正面向上的点数为6”的概率是( ) A.31 B.41 C.51 D.61 4.4cos4sinππ的值为( )A.21B.22C.42D.25.已知直线l 过点(0,7),且与直线y=-4x+2平行,则直线l 的方程为( ) A.y=-4x-7 B.y=4x-7 C.y=-4x+7 D.y=4x+76.已知向量),1,(),2,1(-==x b a 若b a ⊥,则实数x 的值为( ) A.-2 B.2 C.-1 D.17.已知函数f(x)的图像是连续不断的,且有如下对应值表:A.(1,2)B.(2,3)C.(3,4)D. (4,5)8.已知直线l :y=x+1和圆C :x 2+y 2=1,则直线l 和圆C 的位置关系为( ) A.相交 B.相切 C.相离 D.不能确定 9.下列函数中,在区间(0,+∞)上为增函数的是( ) A.xy )31(= B.y=log 3x C.xy 1=D.y=cosx 10.已知实数x,y 满足约束条件⎪⎩⎪⎨⎧≥≥≤+,0,0,1y x y x 则z=y-x 的最大值为( )A.1B.0C.-1D.-2 二、填空题11.已知函数f(x)=⎩⎨⎧<+≥-),0(1)0(2x x x x x 则f(2)=___________.12.把二进制数101(2)化成十进制数为____________.13.在△ABC 中,角A 、B 的对边分别为a,b,A=600,a=3,B=300,则b=__________. 14.如图是一个几何体的三视图,该几何体的体积为_________.15.,AM λ=则实数λ=________.三、解答题16.已知函数f(x)=2sin(x-3π), (1)写出函数f(x)的周期;(2)将函数f(x)图像上所有的点向左平移3π个单位,得到函数g(x)的图像,写出函数g(x)的表达式,并判断函数g(x)的奇偶性.17.某市为了节约生活用水,计划在本市试行居民生活用水定额管理.为了较合理地确定居民日常用水量的标准,有关部门抽样调查了100位居民.右表是这100位居民月均用水量(单位:吨)的频率分布表,根据右表解答下列问题: (1)求右表中a 和b 的值;(2)请将下面的频率分布直方图补充完整,并根据直方图估计该市每位居民月均用水量的众数.B18.在四棱锥P-ABCD 中,底面ABCD 是正方形,PA ⊥底面ABCD ,且PA=AB. (1)求证:BD ⊥平面PAC ; (2)求异面直线BC 与PD 所成的角.19.如图,某动物园要建造两间完全相同的矩形熊猫居室,其总面积为24平方米,设熊猫居室的一面墙AD 的长为x 米(2≤x ≤6). (1)用x 表示墙AB 的长;(2)假设所建熊猫居室的墙壁造价(在墙壁高度一定的前提下)为每米1000元, 请将墙壁的总造价y(元)表示为x(米)的函数; (3)当x 为何值时,墙壁的总造价最低?月均用水量BCDAPEx20.在正项等比数列{a n }中,a 1=4,a 3=64. (1)求数列{a n }的通项公式a n ;(2)记b n =log 4a n ,求数列{b n }的前n 项和S n ;(3)记y=-λ2+4λ-m,对于(2)中的S n ,不等式y ≤S n 对一切正整数n 及任意实数λ恒成立,求实数m 的取值范围. 参考答案 一、选择题11.2 12.5 13.1 14.3π 15.2 三、解答题 16.(1)2π(2)g(x)=2sinx ,奇函数. 17.(1)a=20,b=0.2 (2)2.5吨 18.(1)略 (2)450 19.(1)AB=24/x; (2)y=3000(x+x16) (3)x=4,y min =24000. 20.(1)a n =4n ; (2)S n =2)1(+n n (3)m ≥3.2010年湖南省普通高中学业水平考试试卷数 学本试卷包括选择题、填空题和解答题三部分,共3页。

2009-2017年湖南省普通高中学业水平考试数学试卷及答案

2009-2017年湖南省普通高中学业水平考试数学试卷及答案

湖南省2009年普通高中学业水平考试数 学一、选择题1.已知集合A={-1,0,1,2},B={-2,1,2}则AA{1} B.{2} C.{1,2} D.{-2,0,1,2.若运行右图的程序,则输出的结果是 ( )A.4,B. 9C. 13D.223.将一枚质地均匀的 子抛掷一次,出现“正面向上的点数为6”的概率是( ) A.31 B.41 C.51 D.61 4.4cos4sinππ的值为( )A.21B.22C.42D.25.已知直线l 过点(0,7),且与直线y=-4x+2平行,则直线l 的方程为( ) A.y=-4x-7 B.y=4x-7 C.y=-4x+7 D.y=4x+76.已知向量),1,(),2,1(-==x b a 若⊥,则实数x 的值为( ) A.-2 B.2 C.-1 D.17.已知函数f(x)的图像是连续不断的,且有如下对应值表: 在下列区间中,函数f(x)必有零点的区间为 ( ) A.(1,2) B.(2,3) C.(3,4) D. (4,5)8.已知直线l :y=x+1和圆C :x 2+y 2=1,则直线l 和圆C 的位置关系为( ) A.相交 B.相切 C.相离 D.不能确定 9.下列函数中,在区间(0,+∞)上为增函数的是( )A.xy )31(= B.y=log 3x C.xy 1= D.y=cosx10.已知实数x,y 满足约束条件⎪⎩⎪⎨⎧≥≥≤+,0,0,1y x y x 则z=y-x 的最大值为( )A.1B.0C.-1D.-2 二、填空题11.已知函数f(x)=⎩⎨⎧<+≥-),0(1)0(2x x x x x 则f(2)=___________.12.把二进制数101(2)化成十进制数为____________.13.在△ABC 中,角A 、B 的对边分别为a,b,A=600,a=3,B=300,则b=__________. _________.15.如图,在△ABC 中,M 是BC 的中点,若,AM AC AB λ=+则实数λ=________.三、解答题16.已知函数f(x)=2sin(x-3π), (1)写出函数f(x)的周期;(2)将函数f(x)图像上所有的点向左平移3π个单位,得到函数g(x)的图像,写出函数g(x)的表达式,并判断函数g(x)的奇偶性.22233BMC17.某市为了节约生活用水,计划在本市试行居民生活用水定额管理.为了较合理地确定居民日常用水量的标准,有关部门抽样调查了100位居民.右表是这100位居民月均用水量(单位:吨)的频率分布表,根据右表解答下列问题:(1)求右表中a 和b 的值;(2)请将下面的频率分布直方图补充完整,并根据直方图估计该市每位居民月均用水量的众数.18.在四棱锥P-ABCD 中,底面ABCD 是正方形,PA ⊥底面ABCD ,且PA=AB. (1)求证:BD ⊥平面PAC ; (2)求异面直线BC 与PD 所成的角.分组 频数 频率 [0,1)100.1[1,2)a 0.2[2,3)30 0.3[3,4)20 b[4,5)10 0.1[5,6)10 0.1合计100 100频率/组距 月均用水量P19.如图,某动物园要建造两间完全相同的矩形熊猫居室,其总面积为24平方米,设熊猫居室的一面墙AD 的长为x 米(2≤x ≤6).(1)用x 表示墙AB 的长;(2)假设所建熊猫居室的墙壁造价(在墙壁高度一定的前提下)为每米1000元, 请将墙壁的总造价y(元)表示为x(米)的函数; (3)当x 为何值时,墙壁的总造价最低?20.在正项等比数列{a n }中,a 1=4,a 3=64. (1)求数列{a n }的通项公式a n ;(2)记b n =log 4a n ,求数列{b n }的前n 项和S n ;(3)记y=-λ2+4λ-m,对于(2)中的S n ,不等式y ≤S n 对一切正整数n 及任意实数λ恒成立,求实数m 的取值范围.ABCE湖南省2009年普通高中学业水平考试参考答案数 学一、选择题二、填空题11.2 12.5 13.1 14.3π 15.2 三、解答题 16.(1)2π(2)g(x)=2sinx ,奇函数. 17.(1)a=20,b=0.2 (2)2.5吨 18.(1)略 (2)450 19.(1)AB=24/x; (2)y=3000(x+x16) (3)x=4,y min =24000. 20.(1)a n =4n ;(2)S n =2)1(+n n (3)m ≥3.2010年湖南省普通高中学业水平考试试卷数 学本试卷包括选择题、填空题和解答题三部分,共3页。

2009_2017湖南省普通高中学业水平考试数学试卷及答案解析

2009_2017湖南省普通高中学业水平考试数学试卷及答案解析

湖南省2009年普通高中学业水平考试数 学一、选择题1. 已知集合A={-1,0,1,2},B={-2,1,2}则A B=( )A{1} B.{2} C.{1,2} D.{-2,0,1,2} 2.若运行右图的程序,则输出的结果是 ( ) A.4, B. 9 C. 13 D.223.将一枚质地均匀的 子抛掷一次,出现“正面向上的点数为6”的概率是( ) A.31 B.41 C.51 D.614.4cos4sinππ的值为( )A.21 B.22 C.42 D.2 5.已知直线l 过点(0,7),且与直线y=-4x+2平行,则直线l 的方程为( ) A.y=-4x-7 B.y=4x-7 C.y=-4x+7 D.y=4x+76.已知向量),1,(),2,1(-==x b a 若b a ⊥,则实数x 的值为( ) A.-2 B.2 C.-1 D.17.已知函数f(x)的图像是连续不断的,且有如下对应值表: x 1 2 3 4 5 f(x)-4-2147在下列区间中,函数f(x)必有零点的区间为 ( ) A.(1,2) B.(2,3) C.(3,4) D. (4,5)8.已知直线l :y=x+1和圆C :x 2+y 2=1,则直线l 和圆C 的位置关系为( ) A.相交 B.相切 C.相离 D.不能确定 9.下列函数中,在区间(0,+∞)上为增函数的是( ) A.xy )31(= B.y=log 3x C.xy 1= D.y=cosxA=9 A=A+13 PRINT A END10.已知实数x,y 满足约束条件⎪⎩⎪⎨⎧≥≥≤+,0,0,1y x y x 则z=y-x 的最大值为( )A.1B.0C.-1D.-2 二、填空题11.已知函数f(x)=⎩⎨⎧<+≥-),0(1)0(2x x x x x 则f(2)=___________.12.把二进制数101(2)化成十进制数为____________.13.在△ABC 中,角A 、B 的对边分别为a,b,A=600,a=3,B=300,则b=__________. 14.如图是一个几何体的三视图,该几何体的体积为_________.15.如图,在△ABC 中,M 是BC 的中点,若,AM AC AB λ=+则实数λ=________.三、解答题16.已知函数f(x)=2sin(x-3π), (1)写出函数f(x)的周期;(2)将函数f(x)图像上所有的点向左平移3π个单位,得到函数g(x)的图像,写出函数g(x)的表达式,并判断函数g(x)的奇偶性.2 223 3ABMC17.某市为了节约生活用水,计划在本市试行居民生活用水定额管理.为了较合理地确定居民日常用水量的标准,有关部门抽样调查了100位居民.右表是这100位居民月均用水量(单位:吨)的频率分布表,根据右表解答下列问题:(1)求右表中a 和b 的值;(2)请将下面的频率分布直方图补充完整,并根据直方图估计该市每位居民月均用水量的众数.18.在四棱锥P-ABCD 中,底面ABCD 是正方形,PA ⊥底面ABCD ,且PA=AB. (1)求证:BD ⊥平面PAC ; (2)求异面直线BC 与PD 所成的角.分组 频数 频率 [0,1) 10 0.1 [1,2) a 0.2 [2,3) 30 0.3 [3,4) 20 b [4,5) 10 0.1 [5,6) 10 0.1 合计10010 1 2 3 4 5 60.1 0.2 0.3 0.4频率/组距月均用水量BCDAP19.如图,某动物园要建造两间完全相同的矩形熊猫居室,其总面积为24平方米,设熊猫居室的一面墙AD 的长为x 米(2≤x ≤6). (1)用x 表示墙AB 的长;(2)假设所建熊猫居室的墙壁造价(在墙壁高度一定的前提下)为每米1000元, 请将墙壁的总造价y(元)表示为x(米)的函数; (3)当x 为何值时,墙壁的总造价最低?20.在正项等比数列{a n }中,a 1=4,a 3=64. (1)求数列{a n }的通项公式a n ;(2)记b n =log 4a n ,求数列{b n }的前n 项和S n ;(3)记y=-λ2+4λ-m,对于(2)中的S n ,不等式y ≤S n 对一切正整数n 及任意实数λ恒成立,求实数m 的取值范围.ABCD EFx湖南省2009年普通高中学业水平考试参考答案数 学一、选择题 题号 1 2 3 4 5 6 7 8 9 10 答案CDDACBBABA二、填空题11.2 12.5 13.1 14.3π 15.2 三、解答题 16.(1)2π(2)g(x)=2sinx ,奇函数. 17.(1)a=20,b=0.2 (2)2.5吨 18.(1)略 (2)450 19.(1)AB=24/x; (2)y=3000(x+x16) (3)x=4,y min =24000. 20.(1)a n =4n ; (2)S n =2)1(+n n (3)m ≥3.2010年湖南省普通高中学业水平考试试卷数 学本试卷包括选择题、填空题和解答题三部分,共3页。

湖南省普通高中学业水平考试试卷数学

湖南省普通高中学业水平考试试卷数学

湖南省普通高中学业水平考试试卷数学2019年湖南省普通高中学业水平考试试卷数 学1. 已知集合A={-1,0,1,2},则A I B=( )A{1} B.{2} C.{1,2} 0,1,2}2.若运行右图的程序,则输出的结果是 ( )A.4,B. 9C. 13D.223.将一枚质地均匀的 子抛掷一次,出现“正面向上的点数为6”的概率是( )A.31B.41C.51D.614.4cos 4sin ππ的值为( ) A.21 B.22C.42 D.25.已知直线l 过点(0,7),且与直线y=-4x+2平行,则直线l 的方程为( )是( )A.xy )31(= B.y=log 3xC.xy 1=D.y=cosx10.已知实数x,y 满足约束条件⎪⎩⎪⎨⎧≥≥≤+,0,0,1y x y x 则z=y-x 的最大值为( )A.1B.0C.-1D.-2 二、填空题 11.已知函数f(x)=⎩⎨⎧<+≥-),0(1)0(2x x x x x 则f(2)=___________.12.把二进制数101(2)化成十进制数为____________.13.在△ABC 中,角A 、B 的对边分别为a,b,A=600,a=3,B=300,则b=__________. 14.15.如图,在△ABC中,M是BC的中点,若+=B三、解答题π),16.已知函数f(x)=2sin(x-3(1)写出函数f(x)的周期;π个(2)将函数f(x)图像上所有的点向左平移3单位,得到函数g(x)的图像,写出函数g(x)的表达式,并判断函数g(x)的奇偶性.计划在本市试行居民生活用水定额管理.为了较合理地确定居民日常用水量的标准,有关部门抽样调查了100位居民.右表是这100位居民月均用水量(单位:吨)的频率分布表,根据右表解答下列问题:(1)求右表中a和b的值;(2)请将下面的频率分布直方图补充完整,并根据直方图估计该市每位居民月均用水量的众数.18.在四棱锥P-ABCD 中,底面ABCD 是正方形,PA ⊥底面ABCD ,且PA=AB. (1)求证:BD ⊥平面PAC ; (2)求异面直线BC 与PD 所成的角.0 1 2 3 4 5 6月均用水量BDA P19.如图,某动物园要建造两间完全相同的矩形熊猫居室,其总面积为24平方米,设熊猫居室的一面墙AD的长为x米(2≤x≤6).(1)用x表示墙AB的长;(2)假设所建熊猫居室的墙壁造价(在墙壁高度一定的前提下)为每米1000元,请将墙壁的总造价y(元)表示为x(米)的函数;(3)当x为何值时,墙壁的总造价最低?20.在正项等比数列{an }中,a1=4,a3=64.(1)求数列{an }的通项公式an;(2)记bn =log4an,求数列{bn}的前n项和Sn;A BE(3)记y=-λ2+4λ-m,对于(2)中的S,不等式yn对一切正整数n及任意实数λ恒成立,求实≤Sn数m的取值范围.参考答案一、选择题二、填空题11.2 12.5 13.1 14.3π15.2三、解答题16.(1)2π(2)g(x)=2sinx ,奇函数.17.(1)a=20,b=0.2(2)2.5吨18.(1)略(2)45019.(1)AB=24/x;(2)y=3000(x+x16)(3)x=4,y min=24000.20.(1)a n=4n;(2)S n=2)1(nn (3)m≥3.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

湖南省2009年普通高中学业水平考试数 学一、选择题1. 已知集合A={-1,0,1,2},B={-2,1,2}则A I B=( )A{1} B.{2} C.{1,2} D.{-2,0,1,2} 2.若运行右图的程序,则输出的结果是 ( ) A.4, B. 9 C. 13 D.223.将一枚质地均匀的 子抛掷一次,出现“正面向上的点数为6”的概率是( ) A.31 B.41 C.51 D.61 4.4cos4sinππ的值为( )A.21B.22C.42D.25.已知直线l 过点(0,7),且与直线y=-4x+2平行,则直线l 的方程为( ) A.y=-4x-7 B.y=4x-7 C.y=-4x+7 D.y=4x+76.已知向量),1,(),2,1(-==x b a 若b a ⊥,则实数x 的值为( ) A.-2 B.2 C.-1 D.17.已知函数f(x)的图像是连续不断的,且有如下对应值表: x 1 2 3 4 5 f(x)-4-2147在下列区间中,函数f(x)必有零点的区间为 ( ) A.(1,2) B.(2,3) C.(3,4) D. (4,5)8.已知直线l :y=x+1和圆C :x 2+y 2=1,则直线l 和圆C 的位置关系为( ) A.相交 B.相切 C.相离 D.不能确定 9.下列函数中,在区间(0,+∞)上为增函数的是( ) A.xy )31(= B.y=log 3x C.xy 1=D.y=cosx 10.已知实数x,y 满足约束条件⎪⎩⎪⎨⎧≥≥≤+,0,0,1y x y x 则z=y-x 的最大值为( )A=9 A=A+13 PRINT A ENDA.1B.0C.-1D.-2 二、填空题11.已知函数f(x)=⎩⎨⎧<+≥-),0(1)0(2x x x x x 则f(2)=___________.12.把二进制数101(2)化成十进制数为____________.13.在△ABC 中,角A 、B 的对边分别为a,b,A=600,a=3,B=300,则b=__________. 14.如图是一个几何体的三视图,该几何体的体积为_________.15.如图,在△ABC 中,M 是BC 的中点,若,AM AC AB λ=+则实数λ=________.三、解答题16.已知函数f(x)=2sin(x-3π), (1)写出函数f(x)的周期;(2)将函数f(x)图像上所有的点向左平移3π个单位,得到函数g(x)的图像,写出函数g(x)的表达式,并判断函数g(x)的奇偶性.2 223 3ABMC17.某市为了节约生活用水,计划在本市试行居民生活用水定额管理.为了较合理地确定居民日常用水量的标准,有关部门抽样调查了100位居民.右表是这100位居民月均用水量(单位:吨)的频率分布表,根据右表解答下列问题:(1)求右表中a 和b 的值;(2)请将下面的频率分布直方图补充完整,并根据直方图估计该市每位居民月均用水量的众数.18.在四棱锥P-ABCD 中,底面ABCD 是正方形,PA ⊥底面ABCD ,且PA=AB. (1)求证:BD ⊥平面PAC ; (2)求异面直线BC 与PD 所成的角.分组 频数 频率 [0,1) 10 0.1 [1,2) a 0.2 [2,3) 30 0.3 [3,4) 20 b [4,5) 10 0.1 [5,6) 10 0.1 合计10010 1 2 3 4 5 60.1 0.2 0.3 0.4 频率/组距 月均用水量BCDAP19.如图,某动物园要建造两间完全相同的矩形熊猫居室,其总面积为24平方米,设熊猫居室的一面墙AD 的长为x 米(2≤x ≤6). (1)用x 表示墙AB 的长;(2)假设所建熊猫居室的墙壁造价(在墙壁高度一定的前提下)为每米1000元, 请将墙壁的总造价y(元)表示为x(米)的函数; (3)当x 为何值时,墙壁的总造价最低?20.在正项等比数列{a n }中,a 1=4,a 3=64. (1)求数列{a n }的通项公式a n ;(2)记b n =log 4a n ,求数列{b n }的前n 项和S n ;(3)记y=-λ2+4λ-m,对于(2)中的S n ,不等式y ≤S n 对一切正整数n 及任意实数λ恒成立,求实数m 的取值范围.ABCD EFx参考答案 一、选择题 题号 1 2 3 4 5 6 7 8 9 10 答案CDDACBBABA二、填空题11.2 12.5 13.1 14.3π 15.2 三、解答题 16.(1)2π(2)g(x)=2sinx ,奇函数. 17.(1)a=20,b=0.2 (2)2.5吨 18.(1)略 (2)450 19.(1)AB=24/x; (2)y=3000(x+x16) (3)x=4,y min =24000. 20.(1)a n =4n ; (2)S n =2)1(+n n (3)m ≥3.2010年湖南省普通高中学业水平考试试卷数 学本试卷包括选择题、填空题和解答题三部分,共3页。

时量120分钟,满分100分。

注意事项:1.答题前,考生务必将自己的姓名、准考证号写在答题卡和本试题卷的封面上。

2.选择题和非选择题均须在答题卡上作答,在本试卷和草稿纸上作答无效。

考生在答题卡上按答题卡中注意事项的要求答题。

3.本卷共3页,如缺页,考生须及时报告监考老师,否则后果自负。

4.考试结束后,将本试题卷和答题卡一并交回。

一、选择题:本大题共10 小题,每小题4分,满分40分。

在每小题给出得四个选项中,只有一项是符合题目要求的.1.已知集合{}{}3,12,2,1==N M ,则N M ⋃= ( ) A .{}2,1 B .{}3,2 C .{}3,1 D .{}3,2,12.已知R c b a ∈、、,b a >,则( )A .c b c a +>+B .c b c a +<+C .c b c a +≥+D .c b c a +≤+ 3.下列几何体中,正视图、侧视图和俯视图都相同的是( )A .圆柱B .圆锥C .球D .三棱锥 4.已知圆C 的方程是()()42122=-+-y x ,则圆心坐标与半径分别为( )A .()2,1,2=rB .()2,1--,2=rC .()2,1,4=rD .()2,1--,4=r 5.下列函数中,是偶函数的是( ) A .()x x f = B .()xx f 1=C .()2x x f = D .()x x f sin = 6.如图所示的圆盘由八个全等的扇形构成,指针绕中心旋转,可能随机停止,则指针停止在阴影部分内的概率是( )A .21 B .41C .61D .817.化简()2cos sin αα+=( )A .α2sin 1+B . αsin 1-C .α2sin 1-D .αsin 1+ 8.在ABC ∆中,若0=⋅CB CA ,则ABC ∆是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形9.已知函数()x f =xa (0>a 且1≠a ),()21=f ,则函数()x f 的解析式是( )A . ()x f =x4 B .()x f =x⎪⎭⎫ ⎝⎛41 C .()x f =x 2 D . ()x f =x⎪⎭⎫ ⎝⎛2110.在ABC ∆中,c b a 、、分别为角A 、B 、C 的对边,若︒=60A ,1=b ,2=c ,则a =( )A .1B .3C .2D .7 二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分. 11.直线22+=x y 的斜率是 . 12.已知若图所示的程序框图,若输入的x 值为1,则输出的y 值是 . 13.已知点()y x ,在如图所示的阴影部分内运动,则y x z +=2的最大值是 . 14.已知平面向量)24(,=a ,)3(,x b =,若a ∥b ,则实数x 的值为 . 15.张山同学的家里开了一个小卖部,为了研究气温对某种冷饮销售量的影响,他收集了这一段时间内这种冷饮每天的销售量y (杯)与当天最高气温x (C ︒)的有关数据,通过描绘散点图,发现y 和x 呈现线性相关关系,并求的回归方程为∧y =602+x ,如果气象预报某天的最高气温为C ︒34,则可以预测该天这种饮料的销售量为 杯。

三、解答题:本大题共5小题,满分40分。

解答应写出文字说明、证明过程或演算步骤。

16.(本小题满分6分)已知函数x A x f 2sin )(=(0>A )的部分图像,如图所示, (1)判断函数()x f y =在区间⎥⎦⎤⎢⎣⎡434ππ,上是增函数还是减函数,并指出函数()x f y =的最大值。

(2)求函数()x f y =的周期T 。

17.(本小题满分8分)如图是一名篮球运动员在某一赛季10场比赛的得分的原始记录的茎叶图, (1)计算该运动员这10场比赛的平均得分;(2)估计该运动员在每场比赛中得分不少于40分的概率。

18.(本小题满分8分)在等差数列{}n a 中,已知22=a ,44=a , (1)求数列{}n a 的通项公式n a ; (2)设na nb 2=,求数列{}n b 前5项的和5S .19.(本小题满分8分)如图,1111D C B A ABCD -为长方体, (1)求证:11D B ∥平面D BC 1(2)若BC =C C 1,求直线1BC 与平面ABCD 所成角的大小.20.(本小题满分10分) 已知函数()x f =()1log 2-x , (1)求函数()x f 的定义域;(2)设()x g =()x f +a ;若函数()x g 在(2,3)有且仅有一个零点,求实数a 的取值范围; (3)设()x h =()x f +()x f m,是否存在正实数m ,使得函数y =()x h 在[3,9]内的最大值为4 ?若存在,求出m 的值;若不存在,请说明理由。

2010年湖南省普通高中学业水平考试试卷数学参考答案一、选择题:1—10 DACACDABCD二、填空题:11 2; 12 2; 13 4; 14 6; 15 128. 三、解答题:16 (1)减函数,最大值为2; (2)π=T 。

17 (1)34; (2)0.3.18 (1)n a n =; (2)625=S . 19 (1)略; (2)︒4520 (1){}1>x x ; (2)01<<-a ; (3)4=m .2011年湖南普通高中学业水平考试试卷数 学真题本试题卷包括选择题、填空题和解答题三部分.时量120分钟,满分100分.一、选择题:本大题共10小题,每小题4分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{1,2,3,4,5}=A ,{2,5,7,9}=B ,则I A B 等于( ) A .{1,2,3,4,5} B .{2,5,7,9}C .{2,5}D .{1,2,3,4,5,7,9}2.若函数()3=+f x x ,则(6)f 等于( )A .3B .6C .9D .63.直线1:2100--=l x y 与直线2:3440+-=l x y 的交点坐标为( )A .(4,2)-B .(4,2)-C .(2,4)-D .(2,4)-4.两个球的体积之比为8:27,那么这两个球的表面积之比为( )A .2:3B .4:9C .2:3D .22:335.已知函数()sin cos =f x x x ,则()f x 是( ) A .奇函数B .偶函数C .非奇非偶函数D .既是奇函数又是偶函数6.向量(1,2)=-r a ,(2,1)=rb ,则( )A .//r r a bB .⊥r r a bC .r a 与r b 的夹角为60oD .r a 与r b 的夹角为30o7.已知等差数列{}n a 中,7916+=a a ,41=a ,则12a 的值是( )A .15B .30C .31D .64 8.阅读下面的流程图,若输入的a ,b ,c 分别是5,2,6,则输出的a ,b ,c 分别是( ) A .6,5,2 B .5,2,6 C .2,5,6 D .6,2,5 9.已知函数2()2=-+f x x x b 在区间(2,4)内有唯一零点,则b 的取值范围是( )A .RB .(,0)-∞C .(8,)-+∞D .(8,0)-10.在ABC ∆中,已知120=oA ,1=b ,2=c ,则a 等于( ) A .3B .523+C .7D .523-二、填空题:本大题共5小题,每小题4分,满分20分.11.某校有高级教师20人,中级教师30人,其他教师若干人,为了了解该校教师的工资收入情况,拟按分层抽样的方法从该校所有的教师中抽取20人进行调查.已知从其他教师中共抽取了10人,则该校共有教师 人. 12.3log 4(3)的值是 .13.已知0m >,0n >,且4m n +=,则mn 的最大值是 . 14.若幂函数()y f x =的图像经过点1(9,)3,则(25)f 的值是 . 15.已知()f x 是定义在[)(]2,00,2-U 上的奇函数,当0x >时,()f x 的图像如图所示,那么()f x 的值域是 .[-3,-2)U(2,3]三、解答题:本大题共5小题,满分40分.解答应写出文字说明、证明过程或演算步骤. 16.(本小题满分6分)一个均匀的正方体玩具,各个面上分别写有1,2,3,4,5,6,将这个玩具先后抛掷2次,求: (1)朝上的一面数相等的概率;(2)朝上的一面数之和小于5的概率.23y2x O17.(本小题满分8分)如图,圆心C 的坐标为(1,1),圆C 与x 轴和y 轴都相切. (1)求圆C 的方程;(2)求与圆C 相切,且在x 轴和y 轴上的截距相等的直线方程.18.(本小题满分8分)如图,在三棱锥P ABC -,PC ⊥底面ABC ,AB BC ⊥,D 、E 分别是AB 、PB 的中点.(1)求证://DE 平面PAC ; (2)求证:AB PB ⊥.19.(本小题满分8分)已知数列{}n a 的前n 项和为2n S n n =+.(1)求数列{}n a 的通项公式; (2)若()12na nb =,求数列{}n b 的前n 项和为n T .20.(本小题满分10分)设函数()f x a b =⋅r r ,其中向量(cos 21,1)a x =+r,(1,3sin 2)b x m =+r.(1)求()f x 的最小正周期;(2)当0,6x π⎡⎤∈⎢⎥⎣⎦时,4()4f x -<<恒成立,求实数m 的取值范围.参考答案一.C A B B A B A D D C 二.11. 100; 12. 2; 13. 4; 14.51; 15. [-3,-2)U(2,3] 三.16.(1)61;(2)61 17.(1)1)1_()1(22=+-y x ; (2)22±=+y x ;18.略19.(1)n a n 2=;(2))411(31n n T -= 20.(1)π;(2)(-6,1)2012年湖南省普通高中学业水平考试数学试卷一、选择题:本大题共10小题,每小题4分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知等差数列{n a }的前3项分别为2、4、6,则数列{n a }的第4项为A .7B .8C .10D .122.如图是一个几何体的三视图,则该几何体为 A .球 B .圆柱 C .圆台 D .圆锥3.函数)2)(1()(+-=x x x f 的零点个数是正视图(第2题图)俯视图 侧视图A .0B .1C .2D .34.已知集合}2,0,1{-=A ,}3,{x =B ,若}2{=B A I ,则x 的值为 A .3 B .2 C .0 D .-15.已知直线1l :12+=x y ,2l :52+=x y ,则直线1l 与2l 的位置关系是A .重合B .垂直C .相交但不垂直D .平行6.下列坐标对应的点中,落在不等式01<-+y x 表示的平面区域内的是 A .(0,0) B .(2,4) C .(-1,4) D .(1,8)7.某班有50名同学,将其编为1、2、3、…、50号,并按编号从小到大平均分成5组.现用系统抽样方法,从该班抽取5名同学进行某项调查,若第1组抽取的学生编号为3,第2组抽取的学生编号为13,则第4组抽取的学生编号为 A .14 B .23 C .33 D .43 8.如图,D 为等腰三角形ABC 底边AB 的中点,则下列等式恒成立的是A .0=⋅CB CA B .0=⋅AB CDC .0=⋅CD CA D .0=⋅CB CD 9.将函数x y sin =的图象向左平移3π个单位长度,得到的图象对应的函数解析式为A .)3sin(π+=x yB .)3sin(π-=x yC .)32sin(π+=x yD .)32sin(π-=x y10.如图,长方形的面积为2,将100颗豆子随机地撒在长方形内,其中恰好有60颗豆子落在阴影部分内,则用随机模拟的方法可以估计图中阴影部分的面积为A .32B .54C .56D .34二、填空题:本大题共5小题,每小题4分,满分20分. 11.比较大小:5log 2 3log 2 (填“>”或“<”). 12.已知圆4)(22=+-y a x 的圆心坐标为)0,3(,则实数=a .13.某程序框图如图所示,若输入的c b a ,,值分别为3,4,(第10题图)(第8题图)C ABD 开始 输入a ,b ,c输出y结束 (第13题图)3cb a y ++=5,则输出的y 值为 .14.已知角α的终边与单位圆的交点坐标为(23,21),则αcos = .15.如图,A ,B 两点在河的两岸,为了测量A 、B 之间的距离,测量者在A 的同侧选定一点C ,测出A 、C 之间的距离是100米,∠BAC=105º,∠ACB=45º,则A 、B 两点之间的距离为 米.三、解答题:本大题共5小题,满分40分.解答应写出文字说明、证明过程或演算步骤. 16.(本小题满分6分)已知函数)(x f y =(]6,2[-∈x )的图象如图.根据图象写出: (1)函数)(x f y =的最大值; (2)使1)(=x f 的x 值. 17.(本小题满分8分)一批食品,每袋的标准重量是50g ,为了了解这批食品的实际重量情况,从中随机抽取10袋食品,称出各袋的重量(单位:g ),并得到其茎叶图(如图).(1)求这10袋食品重量的众数,并估计这批食品实际重量的平均数; (2)若某袋食品的实际重量小于或等于47g ,则视为不合格产品,试估计这批食品重量的合格率.4 5 6 6 95 0 0 0 1 1 2(第17题图)(第15题图) B A C 105º 45º河 -2-1 O 256x2 -11y(第16题图)18.(本小题满分8分)如图,在四棱柱ABCD -A 1B 1C 1D 1中,D 1D ⊥底面ABCD ,底面ABCD 是正方形,且AB=1,D 1D=2.(1)求直线D 1B 与平面ABCD 所成角的大小; (2)求证:AC ⊥平面BB 1D 1D .19.(本小题满分8分)已知向量a =(x sin ,1),b =(x cos ,1),∈x R .(1)当4π=x 时,求向量a + b 的坐标;(2)若函数=)(x f |a + b |2m +为奇函数,求实数m 的值.(第18题图)A B CD A 1 B 1C 1D 120.(本小题满分10分)已知数列{n a }的前n 项和为a S nn +=2(a 为常数,∈n N *).(1)求1a ,2a ,3a ;(2)若数列{n a }为等比数列,求常数a 的值及n a ;(3)对于(2)中的n a ,记34)(112-⋅-⋅=++n n a a n f λλ,若0)(<n f 对任意的正整数n 恒成立,求实数λ的取值范围.2013年湖南省普通高中学业水平考试数学试卷一、选择题:本大题共10小题,每小题4分,满分40分.1.已知集合{0,1,2}M =,{}N x =,若{0,1,2,3}M N =U ,则x 的值为( ) A .3 B .2C .1D .0(第3题图)俯视图侧视图正视图开始输入x0?x >21y x =-输出y y x=结束是否 (第14题图)2.设1,(1)()2,(1)x f x x x ⎧≥⎪=⎨⎪<⎩,则(1)f 的值为( )A .0B .1C .2D .-13.已知一个几何体的三视图如图所示,则该几何体是( ). A.圆柱 B. 三棱柱 C.球 D.四棱柱4.函数2cos ,y x x R =∈的最小值是( )A .-3B .-1C .1D .35.已知向量(1,2),(,4)x ==a b ,若a ∥b ,则实数x 的值为( )A .8B .2C .-2D .-86.某学校高一、高二、高三年级的学生人数分别为600,400,800,为了了解教师的教学情况,该校采用分层抽样的方法,从这三个年级中抽取45名学生进行座谈,则高一、高二、高三年级抽取的人数分别为( ) A .15,5,25B .15,15,15C .10,5,30D .15,10,207.某袋中有9个大小相同的球,其中有5个红球,4个白球,现从中任意取出1个,则取出的球恰好是白球的概率为( )A .15 B .14 C .49 D .598.已知点(,)x y 在如图所示的平面区域(阴影部分)内运动,则z x y =+的最大值是( ) A .1 B .2 C .3 D .59.已知两点(4,0),(0,2)P Q ,则以线段PQ 为直径的圆的方程是( ) A .22(2)(1)5x y +++= B .22(2)(1)10x y -+-=C .22(2)(1)5x y -+-=D .22(2)(1)10x y +++=10.如图,在高速公路建设中需要确定隧道的长度,工程技术人员已测得隧道两端的两点,A B 到点C 的距离1AC BC ==km ,且0120ACB ∠=,则,A B 两点间的距离为( )A .3kmB .2kmC .1.5kmD .2km二、填空题:本大题共5小题,每小题4分,满分20分. 11.计算:22log 1log 4+= ..12.已知1,,9x 成等比数列,则实数x = .yxo(3,2)(1,2)(1,0)(第8题图)1km120°1kmCBA(第10题图)13.经过点(0,3)A ,且与直线2y x =-+垂直的直线方程是 . 14.某程序框图如图所示,若输入的x 的值为2,则输出的y 值为 .15.已知向量a r 与b r 的夹角为4π,2a =r ,且4a b =r r g,则b =r .三、解答题:本大题共5小题,满分40分.解答应写出文字说明、证明过程或演算步骤. 16.(本小题满分6分)已知1cos ,(0,)22παα=∈(1)求tan α的值;(2)求sin()6πα+的值.某公司为了了解本公司职员的早餐费用情况,抽样调査了100位职员的早餐日平均费用(单位:元),得到如下图所示的频率分布直方图,图中标注a 的数字模糊不清.(1) 试根据频率分布直方图求a 的值,并估计该公司职员早餐日平均费用的众数;(2) 已知该公司有1000名职员,试估计该公司有多少职员早餐日平均费用不少于8元?18.(本小题满分8分) 如图,在三棱锥A BCD -中,AB ⊥平面BCD ,BC BD ⊥,3BC =,4BD =,直线AD 与平面BCD 所成的角为045,点,E F 分别是,AC AD 的中点. (1)求证:EF ∥平面BCD ; (2)求三棱锥A BCD -的体积.频率组距早餐日平均费用(元)a 0.100.0512*******(第17题图)FEDCBA(第18题图)已知数列{}n a 满足:313a =-,14n n a a -=+(1,)n n N >∈. (1)求12,a a 及通项n a ;(2)设n S 是数列{}n a 的前n 项和n S ,则数列1S ,2S ,3S ,…中哪一项最小?并求出这个最小值. 20.(本小题满分10分)已知函数()22x x f x λ-=+⋅()R λ∈ (1)当1λ=-时,求函数()f x 的零点; (2)若函数()f x 为偶函数,求实数λ的值; (3)若不等式12≤()f x ≤4在[0,1]x ∈上恒成立,求实数λ的取值范围.2013年湖南省普通高中学业水平考试数学试卷一、选择题题号 1 2 3 4 5 6 7 8 9 10 答案 ABCABDCDCA二、填空题11、 2 ; 12、 ±3 ; 13、30x y -+=; 14、2 ; 15、 4 三、解答题:16、(1)(0,),cos 02παα∈∴>Q ,从而23cos 1sin 2αα=-=(2)231sin 2cos22sin cos 12sin 2ααααα++=+-= 17、(1)高一有:20012001202000⨯=(人);高二有20012080-=(人) (2)Q 频率为0.015100.03100.025100.005100.75⨯+⨯+⨯+⨯=∴人数为0.7520001500⨯=(人) 18、(1)2(0)62()26(1)156f b a f x x x f a b b ===-⎧⎧⇒⇒=-+⎨⎨=++==⎩⎩Q (2)22()26(1)5,[2,2]f x x x x x =-+=-+∈-Q1x ∴=时,()f x 的最小值为5,2x =-时,()f x 的最大值为14.19、(1)11232,2,4,8n n a a a a a -==∴==Q*12(2,)nn a n n N a -=≥∈Q,{}n a ∴为首项为2,公比为2的等比数列,1222n n n a -∴=⋅= (2)22log log 2n n n b a n ===Q ,(1)1232n n n S n +∴=++++=L 20、(1)22:(1)(2)5C x y k ++-=-Q e ,(1,2)C ∴- (2)由505k k ->⇒< (3)由22224051680(1)(2)5x y y y k x y k-+=⎧⇒-++=⎨++-=-⎩设1122(,),(,),M x y N x y 则1212168,55k y y y y ++==,2241620(8)05k k ∆=-+>⇒< 112212*********24,24,(24)(24)4[2()4]5k x y x y x x y y y y y y -=-=-∴=--=-++=Q 1212,0,OM ON x x y y ⊥∴+=Q 即41688240()5555k k k k -++=⇒=<满足2014年湖南省普通高中学业水平考试试卷数 学本试卷包括选择题、填空题和解答题三部分.时量120分钟,满分100分.一、选择题:本大题共10小题,每小题4分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.如图是一个几何体的三视图,则该几何体为 A.圆柱 B.圆锥 C.圆台 D.球2.已知元素a ∈{0,1,2,3},且a ∉{0,1,2},则a 的值为 A.0 B.1 C.2 D.33.在区间[0,5]内任取一个实数,则此数大于3的概率为 A.51 B.52 C.53 D.54 4.某程序框图如图所示,若输入x 的值为1,则输出y 的值是 A.2 B.3 C.4 D.5 5.在△ABC 中,若0=⋅AC AB ,则△ABC 的形状是 A.直角三角形 B.等腰三角形 C.锐角三角形 D.钝角三角形6.sin120︒的值为 A.22 B.-1 C.23 D.-22 7.如图,在正方体ABCD -A 1B 1C 1D 1中,直线BD 与A 1C 1的位置关系是 A.平行B.相交C.异面但不垂直D. 异面且垂直8.不等式(x +1)(x -2)≤0的解集为 A.{x|-1≤x ≤2}B. {x|-1<x <2}C. {x|x ≥2或x ≤-1}D. {x|x >2或x <-1}9.点P(m,1)不在不等式x +y -2<0表示的平面区域内,则实数m 的取值范围是 A.m <1B.m ≤1C.m ≥1D.m >110.某同学从家里骑车一路匀速行驶到学校,只是在途中遇到一次交通堵塞,耽搁了一些时间,下列函数的图像最能符合上述情况的是二、填空题:本大题共5小题,每小题4分,满分20分.11.样本数据-2,0,6,3,6的众数是______.12.在△ABC中,角A、B、C所对应的边分别为a、b、c,已知a=1,b=2,sinA=3 1,则sinB=______.13.已知a是函数f(x)=2-log2x的零点,则实数a的值为______.14.已知函数y=sinωx(ω>0)在一个周期内的图像如图所示,则ω的值为______.15.如图1,在矩形ABCD中,AB=2BC,E、F分别是AB、CD的中点,现在沿EF把这个矩形折成一个直二面角A-EF-C(如图2),则在图2中直线AF与平面EBCF所成的角的大小为______.三、解答题:本大题共5小题,满分40分.解答应写出文字说明、证明过程或演算步骤.16.(本小题满分6分)已知函数⎪⎩⎪⎨⎧∈∈=].,(,],,[,)(4242xxxxxf(1)画出函数f(x)的大致图像;(2)写出函数f(x)的最大值和单调递减区间.17.(本小题满分8分)某班有学生50人,其中男同学30人,用分层抽样的方法从该班抽取5人去参加某社区服务活动.(1)求从该班男、女同学中各抽取的人数;(2)从抽取的5名同学中任选2名谈此活动的感受,求选出的2名同学中恰有1名男同学的概率.18.(本小题满分8分)已知等比数列{a n }的公比q =2,且a 2,a 3+1,a 4成等差数列. (1)求a 1及a n ;(2)设b n =a n +n ,求数列{b n }的前5项和S 5.19.(本小题满分8分)已知向量a =(1,sin θ),b =(2,1). (1)当θ=6π时,求向量2a +b 的坐标; (2)若a ∥b ,且θ∈(0,2π),,求sin(θ+4π)的值.20.(本小题满分10分)已知圆C :x 2+y 2+2x -3=0.(1)求圆的圆心C 的坐标和半径长;(2)直线l 经过坐标原点且不与y 轴重合,l 与圆C 相交于A(x 1,y 1)、B(x 2,y 2)两点,求证:2111x x +为定值; (3)斜率为1的直线m 与圆C 相交于D 、E 两点,求直线m 的方程,使△CDE 的面积最大.2014年湖南省普通高中学业水平考试数学试卷参考答案及评分标准一、选择题(每小题4分,满分40分) CDBBA CDACA二 、填空题(每小题4分,满分20分)11.6;12.32;13.4;14.2;15.45︒(或4π)三 、解答题(满分40分)16. 解:(1)函数f(x)的大致图象如图所示(2分); (2)由函数f(x)的图象得出,f(x)的最大值为2(4分), 其单调递减区间为[2,4](6分)17. 解: (1)355030=⨯(人),255020=⨯(人),所以从男同学中抽取3人,女同学中抽取2人(4分);(2)过程略.18.解:(1)由已知得a 2=2a 1,a 3+1=4a 1+1,a 4=8a 1,又2(a 3+1)=a 2+a 4, 所以2(4a 1+1)=2a 1+8a 1,解得a 1=1(2分),故a n =a 1q n-1=2n-1(4分);(2)因为b n =2n-1+n ,所以S 5=b 1+b 2+b 3+b 4+b 5=2551121215⋅++--⋅)()(=46(8分) 19.解:(1)因为6πθ=,所以a =),(211,于是向量2a +b =),(),(),(24122112=+(4分)(2)因为a ∥b ,所以21=θsin (5分),又因为),(20πθ∈,所以23=θcos (6分),所以462444+=+=+πθπθπθsin cos cos sin )sin((8分).20. 解:(1)配方得(x +1)2+y 2=4,则圆心C 的坐标为(-1,0)(2分), 圆的半径长为2(4分);(2)设直线l 的方程为y =kx ,联立方程组⎩⎨⎧==-++kxy x y x 03222消去y 得(1+k 2)x 2+2x -3=0(5分),则有:2212211312k x x k x x +-=+-=+,(6分) 所以3211212121=+=+x x x x x x 为定值(7分). (3)解法一 设直线m 的方程为y =kx +b ,则圆心C 到直线m 的距离21||-=b d ,所以222422d d R DE -=-=||(8分),d d d DE S CDE⋅-=⋅=2421||∆≤22422=+-d d )(, 当且仅当24d d -=,即2=d 时,△CDE 的面积最大(9分) 从而221=-||b ,解之得b =3或b =-1,故所求直线方程为x -y +3=0或x -y -1=0(10分) 解法二 由(1)知|CD|=|CE|=R =2,所以DCE DCE CE CD S CDE ∠=∠⋅⋅=sin sin ||||221∆≤2, 当且仅当CD ⊥CE 时,△CDE 的面积最大,此时22=||DE (8分) 设直线m 的方程为y =x +b ,则圆心C 到直线m 的距离21||-=b d (9分)由22422222=-=-=d d R DE ||,得2=d , 由221=-||b ,得b =3或b =-1,故所求直线方程为x -y +3=0或x -y -1=0(10分).2 O xy2 2015年湖南省普通高中学业水平考试数学试卷本试题卷包括选择题、填空题和解答题三部分,时量120分钟,满分100分 一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合M={1,2},N={0,1,3},则M ∩N= ( ) A .{1} B .{0,1} C .{1,2} D .{1,2,3} 2.化简(1-cos30°)(1+cos30°)得到的结果是( )A .34B .14C .0D .13.如图,一个几何体的三视图都是半径为1的圆, 则该几何体表面积( )A .πB .2πC .4πD .43π4.直线x-y+3=0与直线x+y-4=0的位置关系为( )A .垂直B .平行C .重合D .相交但不垂直5.如图,ABCD 是正方形,E 为CD 边上一点,在该正方形中随机撒一粒豆子,落在阴影部分的概率为( )A .14B .13C .12D .346.已知向量()()1,23,6a b b a λ==--=r r r r,,若,则实数λ的值为( )A .13B .3C .13-D .-37.某班有50名学生,将其编为1,2,3,…,50号,并按编号从小到大平均分成5组,现从该班抽取5名学生进行某项调查,若用系统抽样方法,从第一组抽取学生的号码为5,则抽取5名学生的号码是( )A .5,15,25,35,45B .5,10,20,30,40C .5,8,13,23,43D .5,15,26,36,46 8.已知函数f (x )的图像是连续不断的,且有如下对应值表:x -1 0 1 2 3 f (x) 8 4 -2 0 6 则函数f (x )一定存在零点的区间是( )A .(-1,0)B .(0,1)C .(1,2)D .(2,3) 9.如图,点(x ,y )在阴影部分所表示的平面区域上,则z=y-x 的最大值为( )A .-2B .0C .1D .210.一个蜂巢里有1只蜜蜂,第一天,它飞出去找回了1个伙伴;第二天,2只蜜蜂飞出去各自找回了1个伙伴;……;如果这个找伙伴的过程继续下去,第n 天所有的蜜蜂都归巢后,蜂巢中一共有蜜蜂的只数为( ) A .2n -1 B .2n C .3n D .4n二、填空题:本大题共5小题,每小题4分,共20分. 11.函数f (x )= log(x -3)的定义域为 _________. CA B D E是 否0?x ≥开始x输入 x 输出x-输出正视图 侧视图俯视图D 1C 1B 1 A 1 DBCA 12.函数sin(2)3y x π=+的最小正周期为_______.13.某程序框图如图所示,若输入的x 值为-4,则输出的结果为__________.14.在ΔABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知c =2a ,sin A =12,则sin C =_______.15.已知直线l :x - y +2=0,圆C :x 2 +y 2 = r 2(r >0),若直线l 与圆C 相切,则圆的半径是r = _____.三、解答题:本大题共5小题,共40分.解答应写出文字说明,证明过程或演算步骤.16.(本小题满分6分)学校举行班级篮球赛,某名运动员每场比赛得分记录的径叶图如下: (1)求该运动员得分的中位数和平均数; (2)估计该运动员每场得分超过10分的概率.17.(本小题满分8分)已知函数f (x )=(x -m )2+2.(1)若函数f (x )的图象过点(2,2),求函数y =f (x )的单调递增区间; (2)若函数f (x )是偶函数,求的m 值.18.(本小题满分8分) 已知正方体ABCD- A 1B 1C 1D 1. (1)证明:D 1A //平面C 1BD ;(2)求异面直线D 1A 与BD 所成的角.19.(本小题满分8分)已知向量(2sin ,1),(2cos ,1),.a x b x x R ==∈r r0 3 5 7 8 1 0 1 2 0 0 4(1)当x=4π时,求向量a b +r r 的坐标;(2)设函数f (x )=a b ⋅r r ,将函数f (x )图象上的所有点向左平移4π个单位长度得到g (x )的图象,当x ∈[0,2π]时,求函数g (x )的最小值. 20.(本小题满10分)已知数列{a n }满足a 1=2,a n+1=a n +2,其中n ∈N*. (1)写出a 2,a 3及a n ;(2)记设数列{a n }的前n 项和为S n ,设T n =12111+++nS S S L ,试判断T n 与1的关系;(3)对于(2)中S n ,不等式S n ∙S n -1+4S n -λ(n +1)S n -1≥0对任意的大于1的整数n 恒成立,求实数λ的取值范围.2015年湖南省普通高中学业水平考试数学试卷参考答案一、选择题 ABCAC DABDB二 、填空题 11.(3,+∞); 12.π; 13.4; 14.1; 15.2三 、解答题(满分40分)16.解:(1)中位数为10;平均数为9. …4分(2)每场得分超过10分的概率为P=0.3. …6分17.解:(1) 依题,2=(2-m )2+2,解得m =2, …2分∴f (x )=(x -2)2+2, ∴y =f (x )的单调递增区间是(2,+∞). …4分 (2)若函数f (x )是偶函数,则f (-x )=f (x ), …6分 即(-x -m )2+2=(x -m )2+2,解得m =0. …8分18.(1)证明:在正方体中,D 1A ∥C 1B ,又C 1B ⊂平面C 1BD ,D 1A ⊄平面C 1BD ,∴D 1A //平面C 1BD . …4分(2) 解:∵ D 1A ∥C 1B ,∴异面直线D 1A 与BD 所成的角是∠C 1BD . …6分又ΔC 1BD 是等边三角形. ∴∠C 1BD=60°.∴D 1A 与BD 所成的角是60°. …8分19.解:(1) 依题,(2,1),(2,1),+(22,2).a b a b ==∴=r r r r…4分(2) 依题,f (x )=4sin x cos x +1=2sin2x +1,g (x )=2sin[2(x +4π)]+1=2cos2x +1,∵x ∈[0, 2π],∴2x ∈[0,π],∴当2x =π时,g (x )min =-1. …8分20.解:(1) 依题a 2= a 1+2=4,a 3= a 2+2=6,依题{a n }是公差为2的等差数列,∴a n =2n ; …3分(2) ∵ S n =n (n +1),∴1111(1)1n S n n n n ==-++,∴T n 111111(1)()()122311n n n =-+-++-=-++L <1 …6分 (3) 依题n (n +1)∙(n -1)n +4n (n +1)-λ(n +1)(n -1)n ≥0, 即(n -1)n +4-λ(n -1)≥0,即λ≤41n n +-对大于1的整数n 恒成立,又4411511n n n n +=-++≥--,当且仅当n =3时,41n n +-取最小值5, 所以λ的取值范围是(-∞,5] (10)分2015年湖南省普通高中学业水平考试数学试卷本试题卷包括选择题、填空题和解答题三部分,时量120分钟,满分100分2 O xy2 一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合M={1,2},N={0,1,3},则M ∩N= ( ) A A .{1} B .{0,1} C .{1,2} D .{1,2,3} 2.化简(1-cos30°)(1+cos30°)得到的结果是( )BA .34B .14C .0D .13.如图,一个几何体的三视图都是半径为1的圆, 则该几何体表面积( ) CA .πB .2πC .4πD .43π4.直线x-y+3=0与直线x+y-4=0的位置关系为( )AA .垂直B .平行C .重合D .相交但不垂直5.如图,ABCD 是正方形,E 为CD 边上一点,在该正方形中随机撒一粒豆子,落在阴影部分的概率为( )CA .14B .13C .12D .346.已知向量()()1,23,6a b b a λ==--=r r r r,,若,则实数λ的值为( )DA .13B .3C .13- D .-37.某班有50名学生,将其编为1,2,3,…,50号,并按编号从小到大平均分成5组,现从该班抽取5名学生进行某项调查,若用系统抽样方法,从第一组抽取学生的号码为5,则抽取5名学生的号码是( )AA .5,15,25,35,45B .5,10,20,30,40C .5,8,13,23,43D .5,15,26,36,46 8.已知函数f (x )的图像是连续不断的,且有如下对应值表:x -1 0 1 2 3 f (x) 8 4 -2 0 6 则函数f (x )一定存在零点的区间是( )BA .(-1,0)B .(0,1)C .(1,2)D .(2,3) 9.如图,点(x ,y )在阴影部分所表示的平面区域上,则z=y-x 的最大值为( )DA .-2B .0C .1D .210.一个蜂巢里有1只蜜蜂,第一天,它飞出去找回了1个伙伴;第二天,2只蜜蜂飞出去各自找回了1个伙伴;……;如果这个找伙伴的过程继续下去,第n 天所有的蜜蜂都归巢后,蜂巢中一共有蜜蜂的只数为( )B A .2n -1 B .2n C .3n D .4n二、填空题:本大题共5小题,每小题4分,共20分. 11.函数f (x )= log(x -3)的定义域为 _________. (3,+∞) 12.函数sin(2)3y x π=+的最小正周期为_______. π13.某程序框图如图所示,若输入的x 值为-4,CA B D E是否 0?x ≥开始结束x 输入x 输出x-输出正视图 侧视图俯视图D 1C 1B 1 A 1 DBCA 则输出的结果为__________.414.在ΔABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知c =2a ,sin A =12,则sin C =_______.115.已知直线l :x - y +2=0,圆C :x 2 +y 2 = r 2(r >0),若直线l 与圆C 相切,则圆的半径是r = _____.2三、解答题:本大题共5小题,共40分.解答应写出文字说明,证明过程或演算步骤.16.(本小题满分6分)学校举行班级篮球赛,某名运动员每场比赛得分记录的径叶图如下: (1)求该运动员得分的中位数和平均数; (2)估计该运动员每场得分超过10分的概率. 16.解:(1)中位数为10;平均数为9. …4分 (2)每场得分超过10分的概率为P=0.3. …6分17.(本小题满分8分)已知函数f (x )=(x -m )2+2(1)若函数f (x )的图象过点(2,2),求函数y =f (x )的单调递增区间; (2)若函数f (x )是偶函数,求的m 值.17.解:(1) 依题,2=(2-m )2+2,解得m =2, …2分∴f (x )=(x -2)2+2, ∴y =f (x )的单调递增区间是(2,+∞). …4分 (2)若函数f (x )是偶函数,则f (-x )=f (x ), …6分 即(-x -m )2+2=(x -m )2+2,解得m =0. …8分18.(本小题满分8分) 已知正方体ABCD- A 1B 1C 1D 1. (1)证明:D 1A //平面C 1BD ;(2)求异面直线D 1A 与BD 所成的角.18.(1)证明:在正方体中,D 1A ∥C 1B ,又C 1B ⊂平面C 1BD ,D 1A ⊄平面C 1BD ,∴D 1A //平面C 1BD . …4分 (2) 解:∵ D 1A ∥C 1B ,∴异面直线D 1A 与BD 所成的角是∠C 1BD . …6分又ΔC 1BD 是等边三角形. ∴∠C 1BD=60°.∴D 1A 与BD 所成的角是60°. …8分19.(本小题满分8分)已知向量(2sin ,1),(2cos ,1),.a x b x x R ==∈r r(1)当x=4π时,求向量a b +r r 的坐标;2 3 5 7 8 3 0 1 2 0 0 4(2)设函数f (x )=a b ⋅r r ,将函数f (x )图象上的所有点向左平移4π个单位长度得到g (x )的图象,当x ∈[0, 2π]时,求函数g (x )的最小值.19.解:(1) 依题,(2,1),(2,1),+(22,2).a b a b ==∴=r r r r…4分(2) 依题,f (x )=4sin x cos x +1=2sin2x +1,g (x )=2sin[2(x +4π)]+1=2cos2x +1,∵x ∈[0, 2π],∴2x ∈[0,π],∴当2x =π时,g (x )min =-1. …8分20.(本小题满10分)已知数列{a n }满足a 1=2,a n+1=a n +2,其中n ∈N*. (1)写出a 2,a 3及a n ;(2)记设数列{a n }的前n 项和为S n ,设T n =12111+++nS S S L ,试判断T n 与1的关系;(3)对于(2)中S n ,不等式S n ∙S n -1+4S n -λ(n +1)S n -1≥0对任意的大于1的整数n 恒成立,求实数λ的取值范围.20.解:(1) 依题a 2= a 1+2=4,a 3= a 2+2=6,依题{a n }是公差为2的等差数列,∴a n =2n ; …3分(2) ∵ S n =n (n +1),∴1111(1)1n S n n n n ==-++,∴T n 111111(1)()()122311n n n =-+-++-=-++L <1 …6分 (3) 依题n (n +1)∙(n -1)n +4n (n +1)-λ(n +1)(n -1)n ≥0, 即(n -1)n +4-λ(n -1)≥0,即λ≤41n n +-对大于1的整数n 恒成立,又4411511n n n n +=-++≥--,当且仅当n =3时,41n n +-取最小值5, 所以λ的取值范围是(-∞,5] (10)分2016年湖南省普通高中学业水平考试试卷数 学本试卷包括选择题、填空题和解答题三部分。

相关文档
最新文档