《探索与发现三角形内角和》评课稿

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《探索与发现三角形内角和》评课稿

《探索与发现三角形内角和》评课稿

评课是指评者对照课堂教学目标,对教师和学生在课堂教学中的活动以及由此所引起的变化进行价值的判断。以下是小编为大家整理的《探索与发现三角形内角和》评课稿相关内容。

《探索与发现三角形内角和》评课稿篇1

一、激趣导入,让学生乐于操作数学

数学课程标准强调创设的数学活动应该是应从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程、数学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。这就是说数学教学活动要给学生创造一个实际操作的环境,学生可以在观察、探索、发现的过程中增加对数学知识的感性认识,形成丰厚的经验背景,从而更有助于学生对数学的学习和理解,同时还要为学生创造一个进行交流和探讨的环境,有助于发挥学生的主体性、积极性和创造性,充分体现现代教学的思想。

我在《三角形内角和》的课堂教学中,从学生个体的经验出发,注重学生学习数学的态度、动机和兴趣,组织能够帮助学生获得经验的活动。采用激趣与导入这一教学环节,激发学生学习兴趣和激活学生已有的经验和基本知识,来替代传统课堂教学中的复习这一环节。通过让学生任意画一个三角形,说出三种三角形的特征,为探索三角形内角和奠定一定基础。利用日常生活中见到的一些三角形,特别是直角三角板,计算三角形的内角和,既激活了学生对三角形内角和的已有了解,初步感知三角形的内角和是180这一数学规律,又激发了学生探索的积极性。当老师提出是不是每个三角形的内角和都是180度呢?这个问题时,学生已是兴致盎然,非常乐于操作数学,探索、发现三角形内角和这一数学规律了。

二、探索发现,让学生善于实验数学

从教学的角度讲,重结论、轻过程的教学只是一种形式上的走捷径的教学,因为它从源头上剥夺了知识的内在联系。数学的.结论来源

于学生的探索,对现象的观察,对数据的度量、统计与分析,对各种情况的归纳总结。我们要设计学生熟悉的教学情景,提供丰富的教学资料,汲取学生切身的生活体验,让学生展开直接的、面对面的对话,积极地探索和发现数学规律。这节课,在探索与发现中设计了两个层面的研究:

1、学生量出三角形三个内角的度数并算出三个内角的和,发现锐角三角形、直角三角形和钝角三角形的内角和都是180。但同时学生也提出了不同的看法,引起争论,进入第二层次的探索。(课堂是学生的课堂,在学生的操作和交流中,提出的我可以用实验证明你是错误的,使我深深的感受到,只有把我们的课堂变成学生辩论场,只有把我们的课堂变成可以操作的课堂,用做数学的理念来实施教学,学生才能善于实验数学,才能发挥自己的智慧和才华,也只有在这样的课堂中才能培养学生的个性和思维。)

2、利用学生引发的争议,让学生动手操作,想办法把三角形的三个内角拼成一个平角,并进行交流。这样,引导学生通过剪拼、撕拼、折拼等多种方式把三个内角拼成一个平角,验证三角形的内角和是180这一数学规律。特别是把直角三角形中的两个锐角折成了一个直角,你能解释这种现象吗?把学生的兴趣和思维带入了一种更高的境界,课堂上学生自始至终保持着浓厚的探究兴趣,不再把学习数学看成负担,增强了学好数学的信心,享受着学习数学的乐趣,学生动手操作,使实践能力、观察能力、归纳能力等都得到很好的锻炼,教学效果也比较好。

给学生探索的机会,也是给课堂生成的机会。利用学生创造的素材挖掘内在的知识,正是我们注重课堂生成和尊重学生的重要表现。从学生的发现中,不难看出学生善于实验数学,完全能通过数学活动探索问题的本质。

三、迁移应用,让学生精于实践数学

在探索和实践中我们认识到,学生的学习不仅是知识的积累,更应在知识应用中强调应用数学的意识;不仅要让学生主动地获取知识,还要让学生去发现和研究问题、解决问题,让学生精于实践数学。在

学生探索发现数学规律后,引导学生应用规律解决一些实际的问题,即完成试一试,和想想做做第1题,求出三角形中未知角的度数。教师引导学生互相学习,与他人合作。同时鼓励学生注意倾听他人的意见,力图领会理解他人的想法,把别人的思路同自己的想法联系起来,反思自己的知识和解决问题的方法。学生表现精彩纷呈,特别是直角三角形的一个锐角的求法,出现了多种形式。1、55+90=145,180-145=35,因为直角是90。2、180-55=125,125-90=35 3、90-55=35,我是根据在直角三角形中,两个锐角的和是90度,所以只要用90减去55就可以了。

实践表明,把数学知识进行有效的迁移和应用,有利于发展每个学生的潜能,有利于培养学生的创新精神,有利于学生主体性发展和素质的全面提高。

四、拓展延伸,让学生勇于研究数学。

在新课程理念的背景下,教学中学生的情意因素被提高到一个新的层面来理解。情感不仅指学习兴趣、学习态度、学习动机,更是指内心体验和心灵世界的丰富。在学生发现了数学规律、能比较熟练的应用后,他们必然会产生新的欲望,去解决生活中的实际问题,这时,我们应适当地提供一些材料,来满足学生进一步学习动机。在这次课堂教学中,拓展延伸部分解决了两个问题,想想做做第2、3题,让学生研究、交流,得出不管是大三角形还是小三角形,三角形的内角和都是180;讨论一个直角三角形中最多有几个直角?为什么?由于通过了大量的活动和交流,积累了丰富的经验和情感体验,学生能积极地、深入地去研究数学了。拓展延伸,对发展学生的思维能力、开发智力、促进素质教育等有着不可忽视的作用,生生之间,师生之间勇于共同研究问题,探求数学的奥秘,可以开阔思路,培养能力,提高数学素养。

总而言之,整个课堂教学用激趣与导入、探索与发现、迁移和应用、拓展与延伸四个基本环节,替代了传统的五步教学法。在学生主体的探讨和实践中体验三角形内角和这一数学规律,使探讨氛围达到**,在交流和探索中既张扬了个性,又轻轻愉快地消化了抽象的概念,

并运用概念解决了一些实际问题。通过新的课堂教学模式,让学生产生激情,主动参与,释放激情,在这一过程中,既激发了学生学习数学的兴趣,又激发了学生的探究欲望、创造欲望,从而促进学生良好的数学品质的形成。

《探索与发现三角形内角和》评课稿篇2

前几天我有幸听了赵老师执教的“探索与发现三角形内角和”。本节课与传统的概念教学相比,有很大的改进,体现了新的教学理念,主要表现在以下几个方面;

一、构建新的课堂教学模式。

传统的教学往往只重视对结论的记忆和模仿,而这节课老师把学生的`学习定位在自主建构知识的基础上,建立了“猜想——验证——归纳——运用”的教学模式。

二、培养学生勇于猜想,大胆创新的精神。

教学中赵老师遵循的基本教学原则是激励学生展开积极的思维活动。先创设猜角的游戏情景,让学生对三角形的三个角的度数关系产生好奇,引发学生的探究欲望。

三、为学生提供了大量数学活动的机会,让学生真正成为学习的主人

“给学生一些权利,让他们自己选择;让他们自己去锻炼;给学生一些问题,让他们自己去探索;给学生一片空间,让学生自己飞翔。”这正是课堂教学改革中学生的主体性的表现。所以在这节课中赵老师树立了数学教学为学生服务,创设有助于学生自主学习,合作交流的机会,通过想办法求三角形的内角和这一核心问题,引发学生去思考,去探究。这样学生的潜能的以激活,思维展开了想象,能力得以发展。

四、给学生一个开放探究的学习空间。

培养学生的问题意识是数学课堂教学的核心问题,所以课堂上学生的学习过程就是解决问题的过程,当一个问题解决完后又引发出新的问题,使学生体会到成功的喜悦,使数学课堂充满挑战。所以课堂上老师没有因学生发现三角形内角和是180度而罢休,然后用一个大的三角形剪成两个小的,用两个小的拼成大的内角和延伸,使学生悟出规律,这样学

相关文档
最新文档