缠论优秀文档
合集下载
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
两中枢波动重合与否的重要意义
连续两个中枢波动重合的本质原因
波动重合的明确和意义 中枢升级 上涨走势和趋势差异对比图 走势级别延续定理 要素分解 思考 中枢重合的明确和意义 中枢延伸 更大级别缠中说禅走势中枢产生,当且仅当围绕连续两个同级别缠中说禅走势中枢产生的波动区间产生重叠。
鉴于该问题探讨的难度、深度和所要用到的 走势级别延续定理 要素分解 思考
二、定理别称:级别终结定理 缠中说禅走势级别延续定理一
在更大级别缠中说禅走势中枢产生前,只能是只具有该级别缠中说禅走势中枢的盘整或趋势的延续。 缠论理论中走势类型中中枢的研究 走势类型为盘整 即:走势中枢=盘整走势=盘上或盘下
走势级别延续定理 要素分解 思考
走势级别延续定理 要素思考
缠论强大的体现:逻辑 推理和数学化
二、中枢研究和29课的关系
知识点,暂且不做更深的研究,等以后其 缠中说禅走势级别延续定理二
波动重合的明确和意义 中枢升级 二、定理别称:级别惯性定理
他知识学习后再做研究。本问题的原因分 缠中说禅走势级别延续定理一
本问题的原因分析非常重要,多多思考。 二、定理别称:级别惯性定理
析非常重要,多多思考。 一个中枢叫盘整 两个构成趋势分上下
一、定理: 走势级别延续定理 要素思考 缠论强大的体现:逻辑推理和数学化
鉴于该问题探讨的难度、深度和所要用到的知识点,暂且不做更深的研究,等以后其他知识学习后再做研究。
更大级别缠中说禅走势中枢产生,当且仅 中枢重合的明确和意义 中枢延伸
一个中枢叫盘整 两个构成趋势分上下 在更大级别缠中说禅走势中枢产生前,只能是只具有该级别缠中说禅走势中枢的盘整或趋势的延续。
两中枢波动分离 属上涨走势类型而且是趋势
上涨走势和趋势差异对比图
在更大级别缠中说禅走势中枢产生前,该级别的走势类型将延续; 波动重合的明确和意义 中枢升级 两中枢波动重合与否的重要意义 波动重合的明确和意义 中枢升级 趋势中连续的两个中枢与上涨走势的关系 一个中枢叫盘整 两个构成趋势分上下 本问题的原因分析非常重要,多多思考。 两中枢波动重合与否的重要意义 上涨趋势 和 向上盘整 上涨走势和趋势差异对比图 在更大级别缠中说禅走势中枢产生前,该级别的走势类型将延续; 波动重合的明确和意义 中枢升级 在更大级别缠中说禅走势中枢产生前,只能是只具有该级别缠中说禅走势中枢的盘整或趋势的延续。
当围绕连续两个同级别缠中说禅走势中枢 两中枢波动重合与否的重要意义
走势级别延续定理 要素思考 缠论强大的体现:逻辑推理和数学化
产生的波动区间产生重叠。 二、定理别称:级别惯性定理
一、缠中说禅走势中枢是什么 波动重合的明确和意义 中枢升级 在更大级别缠中说禅走势中枢产生前,该级别的走势类型将延续; 走势级别延续定理 要素分解 思考 盘整继续盘整 趋势继续趋势 走势级别延续定理 要素分解 思考
缠论:20
缠中说禅走势中枢级别扩张及第三 类买卖点
缠中说禅走势中枢研究
一、缠中说禅走势中枢是什么
缠中说 禅
走势
中枢
盘 特指盘整类型 中枢
整
概念来源
特指一个中枢
缠论
上 上涨趋势 和 向上盘
涨
整
一个中枢叫盘整 两个构成 趋势分上下
下 下跌趋势 和 向下盘 一个中枢叫盘整 两个构成
跌
整
趋势分上下
缠论理论中走势类型中中枢的研究 走势类型为盘整 即:走势中 枢=盘整走势=盘上或盘下
走势中枢 盘整走势 研究
二、中枢研究和29课的关系
一个是特定走势:中枢产生后的走势问题
一个是走势转折:任何走势完美后的走势类型特征问题
三、走势中枢产生后的走势
1、该走势中枢的延伸
【继续盘整】
2、产生新的同级别走势中枢 【走出第二中枢】
四、知识点纠正:
趋势中连续的两个中枢与上涨走势的关系
两中枢波动重叠 属上涨走势类型但不是趋势
要素
相关知识
走势 级 别
走势本级别与更大级 别
走势 类 型
盘整继续盘整 趋势继 续趋势
波动 重 合
波动重合的明确和意 义 中枢升级
中枢重合的明确和意 义 中枢延伸
判别 1、中枢级别对等 或 基 走势级别对等 2、
中枢要素再研究
中枢的数学模型
一个中枢叫盘整 两个构成趋势分上下 二、定理别称:级别惯性定理
缠中说禅走势级别延续定理一
一、定理: 在更大级别缠中说禅走势中枢产生前,该 级别的走势类型将延续; 在更大级别缠中说禅走势中枢产生前,只 能是只具有该级别缠中说禅走势中枢的盘 整或趋势的延续。
二、定理别称:级别惯性定理ຫໍສະໝຸດ 缠中说禅走势级别延续定理二