贪心算法-01背包问题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
贪⼼算法-01背包问题
1、问题描述:
给定n种物品和⼀背包。
物品i的重量是wi,其价值为vi,背包的容量为C。
问:应如何选择装⼊背包的物品,使得装⼊背包中物品的总价值最⼤?
形式化描述:给定c >0, wi >0, vi >0 , 1≤i≤n.要求找⼀n元向量(x1,x2,…,xn,), xi∈{0,1}, ∋ ∑ wi xi≤c,且∑ vi xi达最⼤.即⼀个特殊的整数规划问题。
2、最优性原理:
设(y1,y2,…,yn)是 (3.4.1)的⼀个最优解.则(y2,…,yn)是下⾯相应⼦问题的⼀个最优解:
证明:使⽤反证法。
若不然,设(z2,z3,…,zn)是上述⼦问题的⼀个最优解,⽽(y2,y3,…,yn)不是它的最优解。
显然有
∑vizi > ∑viyi (i=2,…,n)
且 w1y1+ ∑wizi<= c
因此 v1y1+ ∑vizi (i=2,…,n) > ∑ viyi, (i=1,…,n)
说明(y1,z2, z3,…,zn)是(3.4.1)0-1背包问题的⼀个更优解,导出(y1,y2,…,yn)不是背包问题的最优解,⽭盾。
3、递推关系:
设所给0-1背包问题的⼦问题
的最优值为m(i,j),即m(i,j)是背包容量为j,可选择物品为i,i+1,…,n时0-1背包问题的最优值。
由0-1背包问题的最优⼦结构性质,可以建⽴计算m(i,j)的递归式:
注:(3.4.3)式此时背包容量为j,可选择物品为i。
此时在对xi作出决策之后,问题处于两种状态之⼀:
(1)背包剩余容量是j,没产⽣任何效益;
(2)剩余容量j-wi,效益值增长了vi ;
使⽤递归C++代码如下:
#include<iostream>
using namespace std;
const int N=3;
const int W=50;
int weights[N+1]={0,10,20,30};
int values[N+1]={0,60,100,120};
int V[N+1][W+1]={0};
int knapsack(int i,int j)
{
int value;
if(V[i][j]<0)
{
if(j<weights[i])
{
value=knapsack(i-1,j);
}
else
{
value=max(knapsack(i-1,j),values[i]+knapsack(i-1,j-weights[i]));
}
V[i][j]=value;
}
return V[i][j];
}
int main()
{
int i,j;
for(i=1;i<=N;i++)
for(j=1;j<=W;j++)
V[i][j]=-1;
cout<<knapsack(3,50)<<endl;
cout<<endl;
}
不使⽤递归的C++代码:简单⼀点的修改
//3d10-1 动态规划背包问题
#include <iostream>
using namespace std;
const int N = 4;
void Knapsack(int v[],int w[],int c,int n,int m[][10]);
void Traceback(int m[][10],int w[],int c,int n,int x[]);
int main()
{
int c=8;
int v[]={0,2,1,4,3},w[]={0,1,4,2,3};//下标从1开始
int x[N+1];
int m[10][10];
cout<<"待装物品重量分别为:"<<endl;
for(int i=1; i<=N; i++)
{
cout<<w[i]<<" ";
}
cout<<endl;
cout<<"待装物品价值分别为:"<<endl;
for(int i=1; i<=N; i++)
{
cout<<v[i]<<" ";
}
cout<<endl;
Knapsack(v,w,c,N,m);
cout<<"背包能装的最⼤价值为:"<<m[1][c]<<endl;
Traceback(m,w,c,N,x);
cout<<"背包装下的物品编号为:"<<endl;
for(int i=1; i<=N; i++)
{
if(x[i]==1)
{
cout<<i<<" ";
}
}
cout<<endl;
return 0;
}
void Knapsack(int v[],int w[],int c,int n,int m[][10])
{
int jMax = min(w[n]-1,c);//背包剩余容量上限范围[0~w[n]-1] for(int j=0; j<=jMax;j++)
{
m[n][j]=0;
}
for(int j=w[n]; j<=c; j++)//限制范围[w[n]~c]
{
m[n][j] = v[n];
}
for(int i=n-1; i>1; i--)
{
jMax = min(w[i]-1,c);
for(int j=0; j<=jMax; j++)//背包不同剩余容量j<=jMax<c
{
m[i][j] = m[i+1][j];//没产⽣任何效益
}
for(int j=w[i]; j<=c; j++) //背包不同剩余容量j-wi >c
{
m[i][j] = max(m[i+1][j],m[i+1][j-w[i]]+v[i]);//效益值增长vi }
}
m[1][c] = m[2][c];
if(c>=w[1])
{
m[1][c] = max(m[1][c],m[2][c-w[1]]+v[1]);
}
}
//x[]数组存储对应物品0-1向量,0不装⼊背包,1表⽰装⼊背包void Traceback(int m[][10],int w[],int c,int n,int x[])
{
for(int i=1; i<n; i++)
{
if(m[i][c] == m[i+1][c])
{
x[i]=0;
}
else
{
x[i]=1;
c-=w[i];
}
}
x[n]=(m[n][c])?1:0;
}
运⾏结果:
算法执⾏过程对m[][]填表及Traceback回溯过程如图所⽰:
从m(i,j)的递归式容易看出,算法Knapsack需要O(nc)计算时间; Traceback需O(n)计算时间;算法总体需要O(nc)计算时间。
当背包容量c很⼤时,算法需要的计算时间较多。
例如,当c>2^n时,算法需要Ω(n2^n)计算时间。