初中数学精讲隐圆模型(线段最值和轨迹问题)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
几何模型11——隐圆问题
在初中数学中利用隐圆解决平面几何问题大致分为三类,第一类是定点加定长构造圆形,第二类是定弦定角,第三类是从动模型之轨迹为圆也就是常说的“瓜豆原理”,在初中数学当中构造定弦定角构造圆形在压轴题当中经常出现,定弦定角构造圆形圆形中一般求一个定点到一动点线段长度的最小值问题的时候一般涉及定弦定角问题。
定弦定角解决问题的步骤:
(1)让动点动一下,观察另一个动点的运动轨迹,发现另一个动点的运动轨迹为一段弧
(2)找不变的张角(很多时候一般是找出张角的补角),(补角一般为60︒、45︒)
(3)找张角所对的定弦,根据三点确定隐形圆,确定圆心位置
(4)计算隐形圆的半径
(5)圆心与所求线段上定点的距离可以求出来
(6)最小值等于圆心到定点之间的距离减去半径
例1.如图,在矩形纸片ABCD中,AB=2,AD=3,点E是AB的中点,点F是AD边上的一个动点,将△AEF沿EF所在直线翻折,得到△A′EF,求A′C的长的最小值
变式1.如图,在矩形ABCD中,AB=2,AD=,点E为AB中点,点F为AD 边上从A到D运动的一个动点,连接EF,将△AEF沿EF折叠,点A落在点G处,在运动的过程中,求点G运动的路径长
(1)直径所对的圆周角是直角. 构造思路:一条定边所对的角始终为直角,则直角顶点轨迹是以定边为直径的圆或圆弧.
图形释义:
例2.如图,半径为4的⊙O 中,CD 为直径,弦AB ⊥CD 且过半径OD 的中点,点E 为⊙O 上一动点,CF ⊥AE 于点F .当点E 从点B 出发顺时针运动到点D 时,求点F 所经过的路径长
变式1.如图,在正方形ABCD 中,AB =2,动点E 从点A 出发向终点D 运动,同时动点F 从点D 出发向终点C 运动,点E ,F 的运动速度相同,当它们到达各自的终点时停止运动.运动过程中线段AF ,BE 相交于点P ,求线段DP 长的最小值
变式2.如图,E ,F 是正方形ABCD 的边AD 上两个动点,满足AE =DF .连接CF 交BD 于点G ,连接BE 交AG 于点H .若正方形的边长为2,则线段DH 长度的最小值是 .
P P
A B
O
P
变式3.如图,在菱形ABCD 中,∠ABC =60°,AB =4,点E 是AB 边上的动点,过点B 作直线CE 的垂线,垂足为F ,当点E 从点A 运动到点B 时,求点F 的运动路径长
变式4.如图,Rt △ABC 中,AB ⊥BC ,AB =6,BC =4,P 是△ABC 内部的一个动点,且满足∠P AB =∠PBC ,则线段CP 长的最小值为( )
(2)定边对定角
在“定边对直角”问题中,依据“直径所对的圆周角是直角”,
关键性在于寻找定边、直角,而根据圆周角定理:同圆或等
圆中,同弧或等弧所对的圆周角都相.定边必不可少,而直角则可一般为定角.例如,AB 为定值,∠P 为定角,则A
点轨迹是一个圆.
∠P 度数也是特殊角,比如30°、45°、60°、120°,下分别作对应的轨迹圆.
例3.如图,△ABC 是等边三角形,边长为6,E 、F 分别是BC 、AC 上的动点,且CE =AF ,连接AE 、BF 交于点G ,求CG 最小值
60°
120°
O P A
B
O
120°120°P A
B
P P
A
B P
30°
O 60°B
A
P 90°45°A
B
O P
变式2.如图,△ABC为等边三角形,AB=3.若P为△ABC内一动点,且满足∠P AB=∠ACP,求线段PB长度的最小值
变式3.边三角形ABC的边长为6,在AC,BC边上各取一点E,F,连接AF,BE相交于点P.AF=BE,当点E从点A运动到点C时,试求点P经过的路径长.
例4.如图,半径为2cm,圆心角为90°的扇形OAB的弧AB上有一运动的点P,从点P向半径OA引垂线PH交OA于点H.设△OPH的内心为I,当点P在弧AB上从点A运动到点B时,求内心I所经过的路径长
变式1.如图,AB是⊙O的直径,M、N是(异于A、B)上两点,C是上一
动点,∠ACB的角平分线交⊙O于点D,∠BAC的平分线交CD于点E.当点C从点M运动到点N时,则C、E两点的运动路径长的比是.
变式2.如图,半径为4的⊙O中,弦AB的长度为4,点C是劣弧上的一
个动点,点D是弦AC的中点,点E是弦BC的中点,连接DE、OD、OE.(1)求∠AOB的度数;
(2)当点C沿着劣弧从点A开始,逆时针运动到点B时,求△ODE的外心P所经过的路径的长度;
例5.如图,AC=3,BC=5,且∠BAC=90°,D为AC上一动点,以AD为直径作圆,连接BD交圆于E点,连CE,则CE的最小值为()
16
A.2
13+C.5D.
13-B.2
9
变式1.如图,△ABC中,AC=3,BC=2
4,∠ACB=45°,D为△ABC内一动点,⊙O为△ACD的外接圆,直线BD交⊙O于P点,交BC于E点,弧AE=CP,则AD的最小值为()
A.1B.2C.2D.2
41-
4
例6.如图,P 是圆O 上一个动点,A 为定点,连接AP ,以AP 为一边作等边△APQ . 考虑:当点P 在圆O 上运动时,Q 点轨迹是?
【分析】
Q 点满足(1)∠PAQ=60°;(2)AP=AQ ,故Q 点轨迹是个圆: 考虑∠PAQ=60°,可得Q 点轨迹圆圆心M 满足∠MAO=60°;
考虑AP=AQ ,可得Q 点轨迹圆圆心M 满足AM=AO ,且可得半径MQ=PO . 即可确定圆M 位置,任意时刻均有△APO ≌△AQM .
例7.如图,正方形ABCD 中,25AB ,O 是BC 边的中点,点E 是正方形内一动点,OE=2,连接DE ,将线段DE 绕点D 逆时针旋转90°得DF ,连接AE 、CF .求线段OF 长的最小值.
【解析】E 是主动点,F 是从动点,D 是
定点,E 点满足EO=2,故E 点轨迹是以O 为圆心,2为半径的圆.答案为52-2 变式1.如图,已知在扇形AOB 中,OA =3,∠AOB =120º,C 是在
上的动点,
以BC 为边作正方形BCDE ,当点C 从点A 移动至点B 时,求点D 运动的路径长?
O
P
A Q
60°
M
Q
A
P
O
O A
B C
D E F O A B C D E
F M
变式2.如图,AB为⊙O的直径,C为⊙O上一点,其中AB=2,∠AOC=120°,P为⊙O上的动点,连AP,取AP中点Q,连CQ,则线段CQ的最大值为____________.
变式3.如图,在等腰Rt△ABC中,AC=BC=22,点P在以斜边AB为直径的半
圆上,M为PC的中点,当半圆从点A运动至点B时,点M运动的路径长为________.。